WorldWideScience

Sample records for near-surface geologic materials

  1. Ascertaining Grain Scale Effects Of Seismic Or Aseismic Stimulation Upon Strength Of Near Surface Geological Materials

    Directory of Open Access Journals (Sweden)

    Bilal Hassan

    2017-02-01

    Full Text Available Certain peculiarities of inelastic nonlinearity of unconsolidated near surface periodically stressed granular media contributed at micro- scale are investigated to ascertain possible anomalous time dependent strength behavior macro-effects with geotechnicalgeo-environmental implications. Comparative examination of ultrasonic P- and S-wave repeatable displacement response wave-forms in time records and spectra of pulse stimulated both confined dry and fully saturated ceramic grains analogue endorsable by pertinent theory is performed. Examination is primarily aimed at both understanding connectivity of louder response generated by seemingly unobtrusive quieter seismic and aseismic events in granular sediments. Secondarily results impart an enhanced conceptual substantiation of some previously disseminated andor published results. The results hint certain persistive time and frequency restricted occurrences vouching vital insights. It could be unambiguously clarified that subtle acoustic emission andor stick-slip type micro events in stimulated i.e. seismic or aseismic unconsolidated granular sediments do occur. When spread over time andor space their cumulated effect may be capable of altering granular material macro strength behavior. It is clearly deducible from resonant type spectral results that material fragmentation or force chain formation type phenomenon occurs possibly due to macro-scale friction mobilization by grain-scale events. It is further speculated that invisible high frequency events may irreversibly alter grain-scale surface properties andor intergranular friction as pseudo enhanced elasticity type effect more elusive with saturation. An assessment of an examined temporal distribution of grain-scale stick-slip type events when stimulated by P- and S-wave modes is posited to be non-identical. The former as if is retardation associated while the latter relaxation type in a characteristic sense. Presented result forms combined not

  2. Near surface bulk density estimates of NEAs from radar observations and permittivity measurements of powdered geologic material

    Science.gov (United States)

    Hickson, Dylan; Boivin, Alexandre; Daly, Michael G.; Ghent, Rebecca; Nolan, Michael C.; Tait, Kimberly; Cunje, Alister; Tsai, Chun An

    2018-05-01

    The variations in near-surface properties and regolith structure of asteroids are currently not well constrained by remote sensing techniques. Radar is a useful tool for such determinations of Near-Earth Asteroids (NEAs) as the power of the reflected signal from the surface is dependent on the bulk density, ρbd, and dielectric permittivity. In this study, high precision complex permittivity measurements of powdered aluminum oxide and dunite samples are used to characterize the change in the real part of the permittivity with the bulk density of the sample. In this work, we use silica aerogel for the first time to increase the void space in the samples (and decrease the bulk density) without significantly altering the electrical properties. We fit various mixing equations to the experimental results. The Looyenga-Landau-Lifshitz mixing formula has the best fit and the Lichtenecker mixing formula, which is typically used to approximate planetary regolith, does not model the results well. We find that the Looyenga-Landau-Lifshitz formula adequately matches Lunar regolith permittivity measurements, and we incorporate it into an existing model for obtaining asteroid regolith bulk density from radar returns which is then used to estimate the bulk density in the near surface of NEA's (101955) Bennu and (25143) Itokawa. Constraints on the material properties appropriate for either asteroid give average estimates of ρbd = 1.27 ± 0.33g/cm3 for Bennu and ρbd = 1.68 ± 0.53g/cm3 for Itokawa. We conclude that our data suggest that the Looyenga-Landau-Lifshitz mixing model, in tandem with an appropriate radar scattering model, is the best method for estimating bulk densities of regoliths from radar observations of airless bodies.

  3. Geology along topographic profile for near-surface test facility

    International Nuclear Information System (INIS)

    Fecht, K.R.

    1978-01-01

    The U.S. Department of Energy, through the Basalt Waste Isolation Program within Rockwell Hanford Operations, is investigating the feasibility of terminal storage of radioactive waste in deep caverns constructed in the Columbia River Basalt. A portion of the geological work conducted in support of the Engineering Design Unit to evaluate the west end of Gable Mountain as a site for in situ testing of the thermomechanical behavior of basalt is reported. The surficial geology of the west end of Gable Mountain was mapped in a reconnaissance fashion at a scale of 1:62,500 to identify geologic features which could affect siting of the proposed facilities. A detailed study of the geological conditions was conducted along a traverse across the most probable site for the proposed project

  4. Near-surface monitoring strategies for geologic carbon dioxide storage verification

    Energy Technology Data Exchange (ETDEWEB)

    Oldenburg, Curtis M.; Lewicki, Jennifer L.; Hepple, Robert P.

    2003-10-31

    Geologic carbon sequestration is the capture of anthropogenic carbon dioxide (CO{sub 2}) and its storage in deep geologic formations. Geologic CO{sub 2} storage verification will be needed to ensure that CO{sub 2} is not leaking from the intended storage formation and seeping out of the ground. Because the ultimate failure of geologic CO{sub 2} storage occurs when CO{sub 2} seeps out of the ground into the atmospheric surface layer, and because elevated concentrations of CO{sub 2} near the ground surface can cause health, safety, and environmental risks, monitoring will need to be carried out in the near-surface environment. The detection of a CO{sub 2} leakage or seepage signal (LOSS) in the near-surface environment is challenging because there are large natural variations in CO{sub 2} concentrations and fluxes arising from soil, plant, and subsurface processes. The term leakage refers to CO{sub 2} migration away from the intended storage site, while seepage is defined as CO{sub 2} passing from one medium to another, for example across the ground surface. The flow and transport of CO{sub 2} at high concentrations in the near-surface environment will be controlled by its high density, low viscosity, and high solubility in water relative to air. Numerical simulations of leakage and seepage show that CO{sub 2} concentrations can reach very high levels in the shallow subsurface even for relatively modest CO{sub 2} leakage fluxes. However, once CO{sub 2} seeps out of the ground into the atmospheric surface layer, surface winds are effective at dispersing CO{sub 2} seepage. In natural ecological systems with no CO{sub 2} LOSS, near-surface CO{sub 2} fluxes and concentrations are controlled by CO{sub 2} uptake by photosynthesis, and production by root respiration, organic carbon biodegradation in soil, deep outgassing of CO{sub 2}, and by exchange of CO{sub 2} with the atmosphere. Existing technologies available for monitoring CO{sub 2} in the near-surface environment

  5. Site characterization field manual for near surface geologic disposal of low-level radioactive waste

    International Nuclear Information System (INIS)

    McCray, J.G.; Nowatzki, E.A.

    1985-01-01

    This field manual has been developed to aid states and regions to do a detailed characterization of a proposed near-surface low-level waste disposal site. The field manual is directed at planners, staff personnel and experts in one discipline to acquaint them with the requirements of other disciplines involved in site characterization. While it can provide a good review, it is not designed to tell experts how to do their job within their own discipline

  6. Assessment of Environmental Factors of Geology on Waste and Engineering Barriers for Waste Storage Near Surface

    International Nuclear Information System (INIS)

    Arimuladi SP

    2007-01-01

    Geological environment factors include features and processes occurring within that spatial and temporal (post-closure) domain whose principal effect is to determine the evolution of the physical, chemical, biological and human conditions of the domain that are relevant to estimating the release and migration of radionuclide and consequent exposure to man. Hardness of radioactive waste and engineer barrier can be decrease by environmental factors. Disposal system domain geological environment factors is a category in the International FEP list and is divided into sub-categories. There are 13 sub-factors of geological environment, 12 sub-factors influence hardness of radioactive waste and engineer barrier, thermal processes and conditions in geosphere can be excluded. (author)

  7. Formation of nanocrystalline surface layers in various metallic materials by near surface severe plastic deformation

    Directory of Open Access Journals (Sweden)

    Masahide Sato, Nobuhiro Tsuji, Yoritoshi Minamino and Yuichiro Koizumi

    2004-01-01

    Full Text Available The surface of the various kinds of metallic materials sheets were severely deformed by wire-brushing at ambient temperature to achieve nanocrystalline surface layer. The surface layers of the metallic materials developed by the near surface severe plastic deformation (NS-SPD were characterized by means of TEM. Nearly equiaxed nanocrystals with grain sizes ranging from 30 to 200 nm were observed in the near surface regions of all the severely scratched metallic materials, which are Ti-added ultra-low carbon interstitial free steel, austenitic stainless steel (SUS304, 99.99 wt.%Al, commercial purity aluminum (A1050 and A1100, Al–Mg alloy (A5083, Al-4 wt.%Cu alloy, OFHC-Cu (C1020, Cu–Zn alloy (C2600 and Pb-1.5%Sn alloy. In case of the 1050-H24 aluminum, the depth of the surface nanocrystalline layer was about 15 μm. It was clarified that wire-brushing is an effective way of NS-SPD, and surface nanocrystallization can be easily achieved in most of metallic materials.

  8. Geologic mapping of near-surface sediments in the northern Mississippi Embayment, McCracken County, KY

    Energy Technology Data Exchange (ETDEWEB)

    Sexton, Joshua L [JL Sexton and Son; Fryar, Alan E [Dept of Earth and Geoligical Sciences, Univ of KY,; Greb, s F [Univ of KY, KY Geological Survey

    2006-04-01

    POSTER: The Jackson Purchase region of western Kentucky consists of Coastal Plain sediments near the northern margin of the Mississippi Embayment. Within this region is the Paducah Gaseous Diffusion Plant (PGDP), a uranium enrichment facility operated by the US Department of Energy. At PGDP, a Superfund site, soil and groundwater studies have provided subsurface lithologic data from hundreds of monitoring wells and borings. Despite preliminary efforts by various contractors, these data have not been utilized to develop detailed stratigraphic correlations of sedimentary units across the study area. In addition, sedimentary exposures along streams in the vicinityof PGDP have not been systematically described beyond the relatively simple geologic quadrangle maps published by the US Geological Survey in 1966-67. This study integrates lithologic logs, other previous site investigation data, and outcrop mapping to provide a compilation of near-surface lithologic and stratigraphic data for the PGDP area. A database of borehole data compiled during this study has been provided to PGDP for future research and archival.

  9. Time-windows-based filtering method for near-surface detection of leakage from geologic carbon sequestration sites

    Energy Technology Data Exchange (ETDEWEB)

    Pan, L.; Lewicki, J.L.; Oldenburg, C.M.; Fischer, M.L.

    2010-02-28

    We use process-based modeling techniques to characterize the temporal features of natural biologically controlled surface CO{sub 2} fluxes and the relationships between the assimilation and respiration fluxes. Based on these analyses, we develop a signal-enhancing technique that combines a novel time-window splitting scheme, a simple median filtering, and an appropriate scaling method to detect potential signals of leakage of CO{sub 2} from geologic carbon sequestration sites from within datasets of net near-surface CO{sub 2} flux measurements. The technique can be directly applied to measured data and does not require subjective gap filling or data-smoothing preprocessing. Preliminary application of the new method to flux measurements from a CO{sub 2} shallow-release experiment appears promising for detecting a leakage signal relative to background variability. The leakage index of ?2 was found to span the range of biological variability for various ecosystems as determined by observing CO{sub 2} flux data at various control sites for a number of years.

  10. Coil response inversion for very early time modelling of helicopter-borne time-domain electromagnetic data and mapping of near-surface geological layers

    DEFF Research Database (Denmark)

    Schamper, Cyril Noel Clarence; Auken, Esben; Sørensen, Kurt Ingvard K.I.

    2014-01-01

    Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric cu...... resolution of shallow geological layers in the depth interval 0-20 m. This is proved by comparing results from the airborne electromagnetic survey to more than 100 km of Electrical Resistivity Tomography measured with 5 m electrode spacing.......Very early times in the order of 2-3 μs from the end of the turn-off ramp for time-domain electromagnetic systems are crucial for obtaining a detailed resolution of the near-surface geology in the depth interval 0-20 m. For transient electromagnetic systems working in the off time, an electric...

  11. The Effects of Realistic Geological Heterogeneity on Seismic Modeling: Applications in Shear Wave Generation and Near-Surface Tunnel Detection

    Science.gov (United States)

    Sherman, Christopher Scott

    compressional wave energy may be generated within the shear radiation node of the source. Interestingly, in some cases this shear wave may arise as a coherent pulse, which may be used to improve seismic imaging efforts. In the third and fourth chapters, I discuss the results of a numerical analysis and field study of seismic near-surface tunnel detection methods. Detecting unknown tunnels and voids, such as old mine workings or solution cavities in karst terrain, is a challenging prob- lem in geophysics and has implications for geotechnical design, public safety, and domestic security. Over the years, a number of different geophysical methods have been developed to locate these objects (microgravity, resistivity, seismic diffraction, etc.), each with varying results. One of the major challenges facing these methods is understanding the influence of geologic heterogeneity on their results, which makes this problem a natural extension of the modeling work discussed in previous chapters. In the third chapter, I present the results of a numerical study of surface-wave based tunnel detection methods. The results of this analysis show that these methods are capable of detecting a void buried within one wavelength of the surface, with size potentially much less than one wavelength. In addition, seismic surface- wave based detection methods are effective in media with moderate heterogeneity (epsilon < 5 %), and in fact, this heterogeneity may serve to increase the resolution of these methods. In the fourth chapter, I discuss the results of a field study of tunnel detection methods at a site within the Black Diamond Mines Regional Preserve, near Antioch California. I use a com- bination of surface wave backscattering, 1D surface wave attenuation, and 2D attenuation tomography to locate and determine the condition of two tunnels at this site. These results compliment the numerical study in chapter 3 and highlight their usefulness for detecting tunnels at other sites.

  12. Performance of backfill materials in near surface disposal facilities for low and intermediate level radwaste. Appendix 4: China (a)

    International Nuclear Information System (INIS)

    Cunli, G.; Yawen, H.; Zhiwen, F.; Anxi, C.; Xiuzhen, L.; Jinsheng, Z.

    2001-01-01

    Full text: Backfill material is an important component of a multi-barriered disposal facility for low and intermediate level radioactive waste. This appendix describes the work concerning 'performance study on engineering materials of shallow land disposal of low and intermediate level radwaste'. At the time of the CRP, China had planned to establish five regional disposal sites for low-and-intermediate level radioactive waste. According to the potential distribution of these sites, forty-three sampling points were selected through information survey and table discussion. After field survey and screening, eight of them were selected for further studies in laboratory. Basic physical and chemical properties of each sample were measured in laboratory. The results indicate that no one of the samples can individually function as the backfill material in a multi-barriered near surface facility. Then nine additives for adsorption modification were tested using a static method. Further adsorption tests were conducted: three additives screened out in previous experiment were evaluated using the static method. Results obtained show that the Kd values of mixtures of 90% NW-3 and 10% BC for Co-60, Cs-134 and Sr-85, compared with those of 100% NW-3, are 4.8, 4.6 and 4.7 times higher, respectively. Effects of contact time, pH of tracer solutions and radionuclide concentrations of tracer solutions on Kd values of three samples, NW-3, BC and 90% NW-3 with 10% BC, were also be evaluated using the static method. Column tests were performed to evaluate migration of Co-60, Cs-134 and Sr-85 in NW-3 columns with different densities. The column tests were carried out for 210 days. However, no breakthrough was obtained. Long term performance of backfill materials was assessed through natural analogue. We compared Chinese ancient tombs with near-surface low and intermediate level radioactive waste (LILW) disposal facilities. Both were designed based upon multi-barrier principle. Then three

  13. Performance of engineered barriers materials in near surface disposal facilities in Spain. Appendix 11: Spain

    International Nuclear Information System (INIS)

    Zuloaga, P.

    2001-01-01

    In October 1992 the Ministry of Industry and Energy issued the Operating License of El Cabril Near Surface Disposal Facility, in the province of Cordoba, some 100 km away from Cordoba city. Waste packages, mainly 0.22 m 3 steel drums, containing solidified waste in a cement based waste form or pellets coming from the super-compaction process, are placed inside concrete disposal containers. These containers are made of reinforced concrete and in their construction fabrication joints have been avoided. Once these containers are filled with 18 drums (0.22 m 3 ) or 30 to 60 compaction pellets, they are backfilled and sealed with a mortar grout, resulting into a solid block. These blocks are then disposed of inside concrete vaults, called disposal cells, each one with a capacity for 320 containers. The full vaults are backfilled with gravel in the existing central gap left to absorb fabrication and handling tolerances. Then a plastic film is placed on the containers to prevent a true union between the last layer of disposal containers and the massed concrete layer cast to protect the workers during the construction of the closing slab. This 0.5 m thick closing slab is made of reinforced concrete and is protected by acrylic/fibreglass unperceived film. Galleries are made of a 300 kg/cm 2 characteristic strength concrete

  14. The potential of near-surface geophysical methods in a hierarchical monitoring approach for the detection of shallow CO2 seeps at geological storage sites

    Science.gov (United States)

    Sauer, U.; Schuetze, C.; Dietrich, P.

    2013-12-01

    The MONACO project (Monitoring approach for geological CO2 storage sites using a hierarchic observation concept) aims to find reliable monitoring tools that work on different spatial and temporal scales at geological CO2 storage sites. This integrative hierarchical monitoring approach based on different levels of coverage and resolutions is proposed as a means of reliably detecting CO2 degassing areas at ground surface level and for identifying CO2 leakages from storage formations into the shallow subsurface, as well as CO2 releases into the atmosphere. As part of this integrative hierarchical monitoring concept, several methods and technologies from ground-based remote sensing (Open-path Fourier-transform infrared (OP-FTIR) spectroscopy), regional measurements (near-surface geophysics, chamber-based soil CO2 flux measurement) and local in-situ measurements (using shallow boreholes) will either be combined or used complementary to one another. The proposed combination is a suitable concept for investigating CO2 release sites. This also presents the possibility of adopting a modular monitoring concept whereby our monitoring approach can be expanded to incorporate other methods in various coverage scales at any temporal resolution. The link between information obtained from large-scale surveys and local in-situ monitoring can be realized by sufficient geophysical techniques for meso-scale monitoring, such as geoelectrical and self-potential (SP) surveys. These methods are useful for characterizing fluid flow and transport processes in permeable near-surface sedimentary layers and can yield important information concerning CO2-affected subsurface structures. Results of measurements carried out a natural analogue site in the Czech Republic indicate that the hierarchical monitoring approach represents a successful multidisciplinary modular concept that can be used to monitor both physical and chemical processes taking place during CO2 migration and seepage. The

  15. Performance of engineered barrier materials in near surface disposal facilities for radioactive waste. Results of a co-ordinated research project

    International Nuclear Information System (INIS)

    2001-11-01

    The primary objectives of the CRP were to: promote the sharing of experiences of the Member States in their application of engineered barrier materials for near surface disposal facilities; help enhance their use of engineered barriers by improving techniques and methods for selecting, planning and testing performance of various types of barrier materials for near surface disposal facilities. The objective of this publication is to provide and overview of technical issues related to the engineered barrier systems and a summary of the major findings of each individual research project that was carried out within the framework of the CRP. This publication deals with a general overview of engineered barriers in near surface disposal facilities, key technical information obtained within the CRP and overall conclusions and recommendations for future research and development activities. Appendices presenting individual research accomplishments are also provided. Each of the 13 appendices was indexed separately

  16. Shock compression of geological materials

    International Nuclear Information System (INIS)

    Kirk, S; Braithwaite, C; Williamson, D; Jardine, A

    2014-01-01

    Understanding the shock compression of geological materials is important for many applications, and is particularly important to the mining industry. During blast mining the response to shock loading determines the wave propagation speed and resulting fragmentation of the rock. The present work has studied the Hugoniot of two geological materials; Lake Quarry Granite and Gosford Sandstone. For samples of these materials, the composition was characterised in detail. The Hugoniot of Lake Quarry Granite was predicted from this information as the material is fully dense and was found to be in good agreement with the measured Hugoniot. Gosford Sandstone is porous and undergoes compaction during shock loading. Such behaviour is similar to other granular material and we show how it can be described using a P-a compaction model.

  17. Near-surface land disposal

    International Nuclear Information System (INIS)

    Kittel, J.H.

    1989-01-01

    The Radioactive Waste Management Handbook provides a comprehensive, systematic treatment of nuclear waste management. Near-Surface Land Disposal, the first volume, is a primary and secondary reference for the technical community. To those unfamiliar with the field, it provides a bridge to a wealth of technical information, presenting the technology associated with the near-surface disposal of low or intermediate level wastes. Coverage ranges from incipient planning to site closure and subsequent monitoring. The book discusses the importance of a systems approach during the design of new disposal facilities so that performance objectives can be achieved; gives an overview of the radioactive wastes cosigned to near-surface disposal; addresses procedures for screening and selecting sites; and emphasizes the importance of characterizing sites and obtaining reliable geologic and hydrologic data. The planning essential to the development of particular sites (land acquisition, access, layout, surface water management, capital costs, etc.) is considered, and site operations (waste receiving, inspection, emplacement, closure, stabilization, etc.) are reviewed. In addition, the book presents concepts for improved confinement of waste, important aspects of establishing a monitoring program at the disposal facility, and corrective actions available after closure to minimize release. Two analytical techniques for evaluating alternative technologies are presented. Nontechnical issues surrounding disposal, including the difficulties of public acceptance are discussed. A glossary of technical terms is included

  18. Characterization of Near-Surface Geology and Possible Voids Using Resistivity and Electromagnetic Methods at the Gran Quivira Unit of Salinas Pueblo Missions National Monument, Central New Mexico, June 2005

    Science.gov (United States)

    Ball, Lyndsay B.; Lucius, Jeffrey E.; Land, Lewis A.; Teeple, Andrew

    2006-01-01

    At the Gran Quivira Unit of Salinas Pueblo Missions National Monument in central New Mexico, a partially excavated pueblo known as Mound 7 has recently become architecturally unstable. Historical National Park Service records indicate both natural caves and artificial tunnels may be present in the area. Knowledge of the local near-surface geology and possible locations of voids would aid in preservation of the ruins. Time-domain and frequency-domain electromagnetic as well as direct-current resistivity methods were used to characterize the electrical structure of the near-surface geology and to identify discrete electrical features that may be associated with voids. Time-domain electromagnetic soundings indicate three major electrical layers; however, correlation of these layers to geologic units was difficult because of the variability of lithologic data from existing test holes. Although resistivity forward modeling was unable to conclusively determine the presence or absence of voids in most cases, the high-resistivity values (greater than 5,000 ohm-meters) in the direct-current resistivity data indicate that voids may exist in the upper 50 meters. Underneath Mound 7, there is a possibility of large voids below a depth of 20 meters, but there is no indication of substantial voids in the upper 20 meters. Gridded lines and profiled inversions of frequency-domain electromagnetic data showed excellent correlation to resistivity features in the upper 5 meters of the direct-current resistivity data. This technique showed potential as a reconnaissance tool for detecting voids in the very near surface.

  19. Detailed Geological Modelling in Urban Areas focused on Structures relevant to the Near Surface Groundwater Flow in the context of Climatic Changes

    Science.gov (United States)

    Bach, T.; Pallesen, T. M.; Jensen, N. P.; Mielby, S.; Sandersen, P.; Kristensen, M.

    2015-12-01

    This case demonstrates a practical example from the city of Odense (DK) where new geological modeling techniques has been developed and used in the software GeoScene3D, to create a detailed voxel model of the anthropogenic layer. The voxel model has been combined with a regional hydrostratigraphic layer model. The case is part of a pilot project partly financed by VTU (Foundation for Development of Technology in the Danish Water Sector) and involves many different datatypes such as borehole information, geophysical data, human related elements (landfill, pipelines, basements, roadbeds etc). In the last few years, there has been increased focus on detailed geological modeling in urban areas. The models serve as important input to hydrological models. This focus is partly due to climate changes as high intensity rainfalls are seen more often than in the past, and water recharge is a topic too. In urban areas, this arises new challenges. There is a need of a high level of detailed geological knowledge for the uppermost zone of the soil, which typically are problematic due to practically limitations, especially when using geological layer models. Furthermore, to accommodate the need of a high detail, all relevant available data has to be used in the modeling process. Human activity has deeply changed the soil layers, e.g. by constructions as roadbeds, buildings with basements, pipelines, landfill etc. These elements can act as barriers or pathways regarding surface near groundwater flow and can attribute to local flooding or mobilization and transport of contaminants etc. A geological voxel model is built by small boxes (a voxel). Each box can contain several parameters, ex. lithology, transmissivity or contaminant concentration. Human related elements can be implemented using tools, which gives the modeler advanced options for making detailed small-scale models. This case demonstrates the workflow and the resulting geological model for the pilot area.

  20. Health benefits of geologic materials and geologic processes

    Science.gov (United States)

    Finkelman, R.B.

    2006-01-01

    The reemerging field of Medical Geology is concerned with the impacts of geologic materials and geologic processes on animal and human health. Most medical geology research has been focused on health problems caused by excess or deficiency of trace elements, exposure to ambient dust, and on other geologically related health problems or health problems for which geoscience tools, techniques, or databases could be applied. Little, if any, attention has been focused on the beneficial health effects of rocks, minerals, and geologic processes. These beneficial effects may have been recognized as long as two million years ago and include emotional, mental, and physical health benefits. Some of the earliest known medicines were derived from rocks and minerals. For thousands of years various clays have been used as an antidote for poisons. "Terra sigillata," still in use today, may have been the first patented medicine. Many trace elements, rocks, and minerals are used today in a wide variety of pharmaceuticals and health care products. There is also a segment of society that believes in the curative and preventative properties of crystals (talismans and amulets). Metals and trace elements are being used in some of today's most sophisticated medical applications. Other recent examples of beneficial effects of geologic materials and processes include epidemiological studies in Japan that have identified a wide range of health problems (such as muscle and joint pain, hemorrhoids, burns, gout, etc.) that may be treated by one or more of nine chemically distinct types of hot springs, and a study in China indicating that residential coal combustion may be mobilizing sufficient iodine to prevent iodine deficiency disease. ?? 2006 MDPI. All rights reserved.

  1. Allaying public concern regarding CO{sub 2} geological sequestration through the development of automated stations for the continuous geochemical monitoring of gases in the near surface environment

    Energy Technology Data Exchange (ETDEWEB)

    Annunziatellis, A.; Beaubien, S.E.; Ciotoli, G.; Lombardi, S. [La Sapienza Univ., Rome (Italy). Dept. of Earth Sciences

    2005-07-01

    Several carbon dioxide (CO{sub 2}) enhanced oil recovery projects conducted in North America have demonstrated that the deep, onshore geological sequestration of anthropogenic CO{sub 2} is technically feasible. However, the technology has yet to be proven to regulators and the general public. It must be demonstrated that carbon sequestration will result in the long-term isolation of the injected CO{sub 2} and that there is no health risk for local residents due to the leakage of CO{sub 2} at surface. It was suggested that in order to alleviate these concerns, low-cost, early warning systems should be installed to monitor gas compositions and concentrations in the soil gas and groundwater. Doing so, would trigger a warning if any increased concentrations of CO{sub 2} or other associated gases were noted in these phases, and allow for early examination of the cause of the anomalous value. In addition, since gas flow is typically along natural faults or abandoned bore holes, installation of monitoring stations around these higher risk sites would help maximize efficiency while minimizing costs. In this study, gas permeable tubing was used to sample soil gas or gases dissolved in groundwater via diffusion. In the case of equilibration with a gas phase the gas concentration within the tubing will eventually match that of the surrounding environment, whereas in the aqueous phase the internal volume of the tube will represent a head space where equilibrium concentrations will be governed by Henry's Constant. CO{sub 2}, hydrogen and hydrogen sulphide from either soil-gas or groundwater were analyzed with low cost infra-red electrochemical detectors. The data was processed with an integrated computer and the results were sent automatically via modem to a central laboratory. The prototype was installed in the San Vittorino Plain in central Italy where it has collected over 5 months of continuous CO{sub 2} data in an area susceptible to sinkhole formation caused by the

  2. Neutron activation analysis of geological material

    International Nuclear Information System (INIS)

    Greef, G.J.

    1977-05-01

    In neutron activation analysis the precision and accuracy of results are often misleading, since only the statistical errors which accompany the measuring of radioactivity are taken into consideration. Several other factors can, however, also influence precision and accuracy. It was found that a geological sample was contaminated with the construction material of the mill in which it had been pulverised. Several geometrical differences which could possibly play a role were also investigated. Impurities in the irradiation containers affect the determination of some elements in the samples; the contamination materials in quarts irradiation tubes were determined. The flux gradients which may effect the relative activities of the samples and standards were measured. Suitable standards are necessary to ensure accurate analyses of geological material. Available natural standards were critically evaluated and several methods were investigated by which synthetic standards may be prepared. In order to accurately determine gallium, lanthanum and samarium by means of neutron activation analysis, sodium first had to be removed. After irradiation the sample was dissolved in a mixture of acids and the soidium absorbed from the solution on a hydrated antimony pentoxide column. Gallium, lanthanum and samarium activities were measured by means of precision gamma-spectrometry

  3. Research on near-surface disposal of very low level radioactive waste

    International Nuclear Information System (INIS)

    Wang Shaowei; Yue Huiguo; Hou Jie; Chen Haiying; Zuo Rui; Wang Jinsheng

    2012-01-01

    Radioactive waste disposal is one of the most sensitive environmental problems to control and solve. As the arriving of decommissioning of early period nuclear facilities in China, large amounts of very low level radioactive waste will be produced inevitably. The domestic and abroad definitions about very low level radioactive waste and its disposal were introduced, and then siting principles of near-surface disposal of very low level radioactive waste were discussed. The near- surface disposal siting methods of very low level radioactive waste were analyzed from natural and geographical conditions assessment, geological conditions analysis, hydrogeological conditions analysis, geological hazard assessment and radioactive background investigation; the near-surface disposal sites'natural barriers of very low level radioactive waste were analyzed from the crustal structure and physico-chemical characteristics, the dynamics characteristics of groundwater, the radionuclide adsorption characteristics of natural barriers and so on; the near-surface disposal sites' engineered barriers of very low level radioactive waste were analyzed from the repository design, the repository barrier materials selection and so on. Finally, the improving direction of very low level radioactive waste disposal was proposed. (authors)

  4. Near-Surface Engineered Environmental Barrier Integrity

    International Nuclear Information System (INIS)

    Piet, S.J.; Breckenridge, R.P.

    2002-01-01

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined

  5. Multielemental analysis of geological materials using EDXRF

    Energy Technology Data Exchange (ETDEWEB)

    Fernández, Zahily Herrero; Santos Júnior, José A. dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Rojas, Lino A. Valcárcel, E-mail: zahily1985@gmail.com, E-mail: jaraujo@ufpe.br, E-mail: romilton@ufpe.br, E-mail: josineide.santos@ufpe.br, E-mail: linomarvic@gmail.com [Universidade Federal de Pernambuco (UFPE), Recife (Brazil). Departamento de Energia Nuclear; Alvarez, Juan R. Estevez, E-mail: jestevez@ceaden.edu.cu [Centro de Aplicaciones Tecnológicas y Desarrollo Nuclear, Havana (Cuba); França, Elvis Joacir de, E-mail: ejfranca@gmail.com [Centro Regional de Ciências Nucleares do Nordeste (CRCN-EN/CNEN-PE), Recife, PE (Brazil)

    2017-07-01

    In northeastern Brazil, there are few studies about the metal pollution of surface soils and for the first time it will be studied heavy metals contamination in soils with different cover land. The State of Pernambuco is representative of the Brazilian Northeast region in relation to the variability of climatic conditions, soil types, cover and land use. Based on this, this paper provides information on the determination of metals in soil samples collected in Pernambuco, Brazil. The analysis of Al, Ca, Fe, K, Mg, Mn, Ni, Pb, Si, Sr, Ti and Zn were performed using Energy Dispersive X Ray Fluorescence (EDXRF). The 316 locations studied were specifically selected taking into account the different land use of soil. Analytical curves were obtained by means of the analysis of certified reference materials, for quantify the metals. The regression coefficients of the analytical curves were higher than 0.99. The quality of the analytical procedure was demonstrated at a 95% confidence level. The analysis of diverse geological samples from Pernambuco indicated higher concentrations of Ni and Zn in sugarcane, with maximum values of 41 mg kg{sup -1} and 118 mg kg{sup -1}, respectively and agricultural areas (41 mg kg{sup -1} and 127 mg kg{sup -1}, respectively). The trace element Sr was mainly enriched in urban soils with values of 400 mg kg{sup -1}. According to the results, the EDXRF method was successfully implemented, providing some chemical tracers for the quality assessment of tropical soils and sediments. (author)

  6. Multielemental analysis of geological materials using EDXRF

    International Nuclear Information System (INIS)

    Fernández, Zahily Herrero; Santos Júnior, José A. dos; Amaral, Romilton dos Santos; Santos, Josineide Marques do Nascimento; Rojas, Lino A. Valcárcel; França, Elvis Joacir de

    2017-01-01

    In northeastern Brazil, there are few studies about the metal pollution of surface soils and for the first time it will be studied heavy metals contamination in soils with different cover land. The State of Pernambuco is representative of the Brazilian Northeast region in relation to the variability of climatic conditions, soil types, cover and land use. Based on this, this paper provides information on the determination of metals in soil samples collected in Pernambuco, Brazil. The analysis of Al, Ca, Fe, K, Mg, Mn, Ni, Pb, Si, Sr, Ti and Zn were performed using Energy Dispersive X Ray Fluorescence (EDXRF). The 316 locations studied were specifically selected taking into account the different land use of soil. Analytical curves were obtained by means of the analysis of certified reference materials, for quantify the metals. The regression coefficients of the analytical curves were higher than 0.99. The quality of the analytical procedure was demonstrated at a 95% confidence level. The analysis of diverse geological samples from Pernambuco indicated higher concentrations of Ni and Zn in sugarcane, with maximum values of 41 mg kg -1 and 118 mg kg -1 , respectively and agricultural areas (41 mg kg -1 and 127 mg kg -1 , respectively). The trace element Sr was mainly enriched in urban soils with values of 400 mg kg -1 . According to the results, the EDXRF method was successfully implemented, providing some chemical tracers for the quality assessment of tropical soils and sediments. (author)

  7. Characterization of a complex near-surface structure using well logging and passive seismic measurements

    Science.gov (United States)

    Benjumea, Beatriz; Macau, Albert; Gabàs, Anna; Figueras, Sara

    2016-04-01

    We combine geophysical well logging and passive seismic measurements to characterize the near-surface geology of an area located in Hontomin, Burgos (Spain). This area has some near-surface challenges for a geophysical study. The irregular topography is characterized by limestone outcrops and unconsolidated sediments areas. Additionally, the near-surface geology includes an upper layer of pure limestones overlying marly limestones and marls (Upper Cretaceous). These materials lie on top of Low Cretaceous siliciclastic sediments (sandstones, clays, gravels). In any case, a layer with reduced velocity is expected. The geophysical data sets used in this study include sonic and gamma-ray logs at two boreholes and passive seismic measurements: three arrays and 224 seismic stations for applying the horizontal-to-vertical amplitude spectra ratio method (H/V). Well-logging data define two significant changes in the P-wave-velocity log within the Upper Cretaceous layer and one more at the Upper to Lower Cretaceous contact. This technique has also been used for refining the geological interpretation. The passive seismic measurements provide a map of sediment thickness with a maximum of around 40 m and shear-wave velocity profiles from the array technique. A comparison between seismic velocity coming from well logging and array measurements defines the resolution limits of the passive seismic techniques and helps it to be interpreted. This study shows how these low-cost techniques can provide useful information about near-surface complexity that could be used for designing a geophysical field survey or for seismic processing steps such as statics or imaging.

  8. Siting of near surface disposal facilities

    International Nuclear Information System (INIS)

    1994-01-01

    Radioactive waste is generated from the production of nuclear energy and from the use of radioactive materials in industrial applications, research and medicine. The importance of safe management of radioactive waste for the protection of human health and the environment has long been recognized and considerable experience has been gained in this field. The Radioactive Waste Safety Standards (RADWASS) programme is the IAEA's contribution to establishing and promoting, in a coherent and comprehensive manner, the basic safety philosophy for radioactive waste management and the steps necessary to ensure its implementation. The Safety Standards are supplemented by a number of Safety Guides and Safety Practices. This Safety Guide defines the site selection process and criteria for identifying suitable near surface disposal facilities for low and intermediate level solid wastes. Management of the siting process and data needed to apply the criteria are also specified. 4 refs

  9. Quantifying Uncertainty in Near Surface Electromagnetic Imaging Using Bayesian Methods

    Science.gov (United States)

    Blatter, D. B.; Ray, A.; Key, K.

    2017-12-01

    Geoscientists commonly use electromagnetic methods to image the Earth's near surface. Field measurements of EM fields are made (often with the aid an artificial EM source) and then used to infer near surface electrical conductivity via a process known as inversion. In geophysics, the standard inversion tool kit is robust and can provide an estimate of the Earth's near surface conductivity that is both geologically reasonable and compatible with the measured field data. However, standard inverse methods struggle to provide a sense of the uncertainty in the estimate they provide. This is because the task of finding an Earth model that explains the data to within measurement error is non-unique - that is, there are many, many such models; but the standard methods provide only one "answer." An alternative method, known as Bayesian inversion, seeks to explore the full range of Earth model parameters that can adequately explain the measured data, rather than attempting to find a single, "ideal" model. Bayesian inverse methods can therefore provide a quantitative assessment of the uncertainty inherent in trying to infer near surface conductivity from noisy, measured field data. This study applies a Bayesian inverse method (called trans-dimensional Markov chain Monte Carlo) to transient airborne EM data previously collected over Taylor Valley - one of the McMurdo Dry Valleys in Antarctica. Our results confirm the reasonableness of previous estimates (made using standard methods) of near surface conductivity beneath Taylor Valley. In addition, we demonstrate quantitatively the uncertainty associated with those estimates. We demonstrate that Bayesian inverse methods can provide quantitative uncertainty to estimates of near surface conductivity.

  10. Coseismic landslides reveal near-surface rock strength in a high-relief tectonically active setting

    Science.gov (United States)

    Gallen, Sean F.; Clark, Marin K.; Godt, Jonathan W.

    2014-01-01

    We present quantitative estimates of near-surface rock strength relevant to landscape evolution and landslide hazard assessment for 15 geologic map units of the Longmen Shan, China. Strength estimates are derived from a novel method that inverts earthquake peak ground acceleration models and coseismic landslide inventories to obtain material proper- ties and landslide thickness. Aggregate rock strength is determined by prescribing a friction angle of 30° and solving for effective cohesion. Effective cohesion ranges are from 70 kPa to 107 kPa for 15 geologic map units, and are approximately an order of magnitude less than typical laboratory measurements, probably because laboratory tests on hand-sized specimens do not incorporate the effects of heterogeneity and fracturing that likely control near-surface strength at the hillslope scale. We find that strength among the geologic map units studied varies by less than a factor of two. However, increased weakening of units with proximity to the range front, where precipitation and active fault density are the greatest, suggests that cli- matic and tectonic factors overwhelm lithologic differences in rock strength in this high-relief tectonically active setting.

  11. The geological and material investigation programme

    International Nuclear Information System (INIS)

    Joshi, A.V.

    1982-01-01

    The radioactive waste disposal problem is an interdisciplinary problem. The geological formation cannot be considered on its own, but must also be considered in connection with the engineering design of the disposal facility. Engineering design including the encapsulation of the glass in a 15 cm thick steel cylinder and a minimum 40 year cooling time ensures low temperatures in the salt-steel interface. Even if large quantities of carnallite were found 3.5 m away from the sides of the borehole, the temperature at 2500 m depth after taking into account temperature increase from radioactive waste will not release crystal water from the carnallite. Anhydrite layers, which may be found in the neighbourhood of Erslev 2 and at the depths contemplated for radioactive waste disposal, will not be continous, but only in the form of blocks of limited lengths. They cannot therefore form a passage to a water bearing aquifer. The volume of salt necessary for waste disposal - including a 200 m safety barrier - is less than 2 km 3 . The Mors dome with a salt volume of about 264 km 3 provides a very substantial safety margin. The geological investigations have fulfilled the purpose of the present phase of investigations and show the Mors salt dome to be a suitable dome for disposal of high-level radioactive waste. (EG)

  12. Sorption studies of radioelements on geological materials

    International Nuclear Information System (INIS)

    Berry, John A.; Yui, Mikazu; Kitamura, Akira

    2007-11-01

    Batch sorption experiments have been carried out to study the sorption of uranium, technetium, curium, neptunium, actinium, protactinium, polonium, americium and plutonium onto bentonite, granodiorite and tuff. Mathematical modelling using the HARPHRQ program and the HATCHES database was carried out to predict the speciation of uranium and technetium in the equilibrated seawater, and neptunium, americium and plutonium in the rock equilibrated water. Review of the literature for thermodynamic data for curium, actinium, protactinium and polonium was carried out. Where sufficient data were available, predictions of the speciation and solubility were made. This report is a summary report of the experimental work conducted by AEA Technology during April 1991-March 1998, and the main results have been presented at Material Research Society Symposium Proceedings and published as proceedings of them. (author)

  13. Barium and radium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    Gillham, R.W.; Sharma, H.D.; Reddy, M.R.; Cooper, E.L.; Cherry, J.A.

    1981-05-01

    This report describes the results of laboratory studies on the distribution coefficients of radium and barium in samples of unconsolidated geologic materials. Graphs of Ksub(d) versus solution concentration for the respective elements showed constant Ksub(d) values in the low concentration range suggesting that, at low concentrations, a distribution coefficient is a valid means of representing the geochemical reactions of both barium and radium. The Ksub(d) values for barium range between 60 and 3500 ml/g. The values appear to be influenced by the amount of barium occurring naturally in the soil materials and thus there is little possiblility of using barium as an analog of radium in laboratory experiments. The Ksub(d) values of radium vary from 50 to 1000 ml/g indicating that a wide range of geological materials have a substantial capacity to retard the migration of radium

  14. Application of benchtop micro-XRF to geological materials

    DEFF Research Database (Denmark)

    Flude, Stephanie; Haschke, Michael; Storey, Michael

    2017-01-01

    Recent developments in X-ray optics have allowed the development of a range of commercially available benchtop micro-XRF (μ-XRF) instruments that can produce X-ray spot sizes of 20–30 μm on the sample, allowing major- and trace-element analysis on a range of sample types and sizes with minimal......, by using a simple type-calibration against a reference material of similar matrix and composition. Qualitative analysis with micro-XRF can simplify and streamline sample characterization and processing for subsequent geochemical and isotopic analysis....... sample preparation. Such instruments offer quantitative analysis using fundamental parameter based 'standardless' quantification algorithms. The accuracy and precision of this quantitative analysis on geological materials, and application of micro-XRF to wider geological problems is assessed using...

  15. Dynamic High-Pressure Behavior of Hierarchical Heterogeneous Geological Materials

    Science.gov (United States)

    2016-04-01

    plate-impact experiments. The peak stress, particle velocity, or shock velocity, are measured using point diagnostics employing either stress gauges or...and porous geological materials. In this prior work, they obtained the Hugoniot states for a 60:40 volumetric mixture of ice and sand [8], to...in copper capsule, backed with PMMA. The instrumentation includes two PVDF stress gauges , VISAR, and ToA shorting pins. 44mm ø ~5mm thick sample

  16. Thomas Hardy, Provincial Geology and the Material Imagination

    Directory of Open Access Journals (Sweden)

    Adelene Buckland

    2008-04-01

    Full Text Available This essay explores the nineteenth-century traffic and exchange of fossils and natural-historical objects between province and metropolis as represented by two very different geological writers of the period, the fossil collector Gideon Mantell and the novelist Thomas Hardy. The men are connected through Mantell's 'The Wonders of Geology', the sixth edition of which (1848 Hardy read and utilised for his descriptions of the geological past in his third novel, 'A Pair of Blue Eyes' (1873. These two texts demonstrate a powerful investment in determining the meaning of the geological object according to the social and geographical spaces in which it is discovered, displayed, and discussed, so that the scientific object becomes the site around which complex cultural politics coalesce and sit in tension. In its consideration of the relationship between place and meaning in science, and in its focus on scientific material culture, this essay attempts to disrupt the current spotlight on the interrelationships between scientific law and narrative pattern in Victorian literary studies. Instead, it hopes to contribute to a discussion of the ways in which the novel's attention to scientific objects rather than narratives made it an important site of epistemological enquiry into the basis of scientific knowledge and the inseparability of that knowledge from the discourses and spaces which produced it.

  17. Experiments on thermal conductivity in buffer materials for geologic repository

    International Nuclear Information System (INIS)

    Kanno, T.; Yano, T.; Wakamatsu, H.; Matsushima, E.

    1989-01-01

    Engineered barriers for geologic disposal for HLW are planned to consist of canister, overpack and buffer elements. One of important physical characteristics of buffer materials is determining temperature profiles within the near field in a repository. Buffer materials require high thermal conductivity to disperse radiogenic heat away to the host rock. As the buffer materials, compacted blocks of the mixture of sodium bentonite and sand have been the most promising candidate in some countries, e.g. Sweden, Switzerland and Japan. The authors have been carrying out a series of thermal dispersion experiments to evaluate thermal conductivity of bentonite/quartz sand blocks. In this study, the following two factors considered to affect thermal properties of the near field were examined: effective thermal conductivities of buffer materials, and heat transfer characteristics of the gap between overpack and buffer materials

  18. Predictive Modeling of Terrestrial Radiation Exposure from Geologic Materials

    Energy Technology Data Exchange (ETDEWEB)

    Malchow, Russell L. [National Security Technologies, LLC; Haber, Daniel University of Nevada, Las Vegas; Burnley, Pamela [University of Nevada, Las Vegas; Marsac, Kara [University of Nevada, Las Vegas; Hausrath, Elisabeth [University of Nevada, Las Vegas; Adcock, Christopher [University of Nevada, Las Vegas

    2015-01-01

    Aerial gamma ray surveys are important for those working in nuclear security and industry for determining locations of both anthropogenic radiological sources and natural occurrences of radionuclides. During an aerial gamma ray survey, a low flying aircraft, such as a helicopter, flies in a linear pattern across the survey area while measuring the gamma emissions with a sodium iodide (NaI) detector. Currently, if a gamma ray survey is being flown in an area, the only way to correct for geologic sources of gamma rays is to have flown the area previously. This is prohibitively expensive and would require complete national coverage. This project’s goal is to model the geologic contribution to radiological backgrounds using published geochemical data, GIS software, remote sensing, calculations, and modeling software. K, U and Th are the three major gamma emitters in geologic material. U and Th are assumed to be in secular equilibrium with their daughter isotopes. If K, U, and Th abundance values are known for a given geologic unit the expected gamma ray exposure rate can be calculated using the Grasty equation or by modeling software. Monte Carlo N-Particle Transport software (MCNP), developed by Los Alamos National Laboratory, is modeling software designed to simulate particles and their interactions with matter. Using this software, models have been created that represent various lithologies. These simulations randomly generate gamma ray photons at energy levels expected from natural radiologic sources. The photons take a random path through the simulated geologic media and deposit their energy at the end of their track. A series of nested spheres have been created and filled with simulated atmosphere to record energy deposition. Energies deposited are binned in the same manner as the NaI detectors used during an aerial survey. These models are used in place of the simplistic Grasty equation as they take into account absorption properties of the lithology which the

  19. Predictive modeling of terrestrial radiation exposure from geologic materials

    Science.gov (United States)

    Haber, Daniel A.

    Aerial gamma ray surveys are an important tool for national security, scientific, and industrial interests in determining locations of both anthropogenic and natural sources of radioactivity. There is a relationship between radioactivity and geology and in the past this relationship has been used to predict geology from an aerial survey. The purpose of this project is to develop a method to predict the radiologic exposure rate of the geologic materials in an area by creating a model using geologic data, images from the Advanced Spaceborne Thermal Emission and Reflection Radiometer (ASTER), geochemical data, and pre-existing low spatial resolution aerial surveys from the National Uranium Resource Evaluation (NURE) Survey. Using these data, geospatial areas, referred to as background radiation units, homogenous in terms of K, U, and Th are defined and the gamma ray exposure rate is predicted. The prediction is compared to data collected via detailed aerial survey by our partner National Security Technologies, LLC (NSTec), allowing for the refinement of the technique. High resolution radiation exposure rate models have been developed for two study areas in Southern Nevada that include the alluvium on the western shore of Lake Mohave, and Government Wash north of Lake Mead; both of these areas are arid with little soil moisture and vegetation. We determined that by using geologic units to define radiation background units of exposed bedrock and ASTER visualizations to subdivide radiation background units of alluvium, regions of homogeneous geochemistry can be defined allowing for the exposure rate to be predicted. Soil and rock samples have been collected at Government Wash and Lake Mohave as well as a third site near Cameron, Arizona. K, U, and Th concentrations of these samples have been determined using inductively coupled mass spectrometry (ICP-MS) and laboratory counting using radiation detection equipment. In addition, many sample locations also have

  20. Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.; Torres-Vidal, C.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Coordinated research program ''Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities'' (ISAM) has developed improved safety assessment methodology for near surface disposal facilities. The program has been underway for three years and has included around 75 active participants from 40 countries. It has also provided examples for application to three safety cases--vault, Radon type and borehole radioactive waste disposal facilities. The program has served as an excellent forum for exchange of information and good practices on safety assessment approaches and methodologies used worldwide. It also provided an opportunity for reaching broad consensus on the safety assessment methodologies to be applied to near surface low and intermediate level waste repositories. The methodology has found widespread acceptance and the need for its application on real waste disposal facilities has been clearly identified. The ISAM was finalized by the end of 2000, working material documents are available and an IAEA report will be published in 2002 summarizing the work performed during the three years of the program. The outcome of the ISAM program provides a sound basis for moving forward to a new IAEA program, which will focus on practical application of the safety assessment methodologies to different purposes, such as licensing radioactive waste repositories, development of design concepts, upgrading existing facilities, reassessment of operating repositories, etc. The new program will also provide an opportunity for development of guidance on application of the methodology that will be of assistance to both safety assessors and regulators

  1. Computer modeling of nuclide adsorption on geologic materials

    International Nuclear Information System (INIS)

    Silva, R.J.; White, A.R.; Yee, A.W.

    1980-07-01

    A computer program, called MINEQL, has been developed and is being tested for use in predicting the distribution of radionuclides between solid and aqueous species for a variety of geologic materials and solution conditions. MINEQL is designed to accept a list of components of a system (electrolytes, solid substrates and radionuclides) and their total analytical concentrations, solve the appropriate set of mass balance and equilibrium expressions, and produce a list of the identities and concentrations of all species formed by interactions among the components and between them and/or water

  2. The sorption of polonium, actinium and protactinium onto geological materials

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-01-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results

  3. The sorption of polonium, actinium and protactinium onto geological materials

    Energy Technology Data Exchange (ETDEWEB)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Ilett, D.J.; McCrohon, R.; Tweed, C.J.; Yui, M.

    1999-07-01

    This paper describes a combined experimental and modeling program of generic sorption studies to increase confidence in the performance assessment for a potential high-level radioactive waste repository in Japan. The sorption of polonium, actinium and protactinium onto geological materials has been investigated. Sorption of these radioelements onto bentonite, tuff and granodiorite from equilibrated de-ionized water was studied under reducing conditions at room temperature. In addition, the sorption of actinium and protactinium was investigated at 60 C. Thermodynamic chemical modeling was carried out to aid interpretation of the results.

  4. CHARACTERIZATION OF GEOLOGICAL MATERIALS USING ION AND PHOTON BEAMS

    International Nuclear Information System (INIS)

    TOROK, SZ.B.; JONES, K.W.; TUNIZ, C.

    1998-01-01

    Geological specimens are often complex materials that require different analytical methods for their characterization. The parameters of interest may include the chemical composition of major, minor and trace elements. The chemical compounds incorporated in the minerals, the crystal structure and isotopic composition need to be considered. Specimens may be highly heterogeneous thus necessitating analytical methods capable of measurements on small sample volumes with high spatial resolution and sensitivity. Much essential information on geological materials can be obtained by using ion or photon beams. In this chapter we describe the principal analytical techniques based on particle accelerators, showing some applications that are hardly possible with conventional methods. In particular, the following techniques will be discussed: (1) Synchrotron radiation (SR) induced X-ray emission (SRIXE) and particle-induced X-ray emission (PEE) and other ion beam techniques for trace element analysis. (2) Accelerator mass spectrometry (AMS) for ultra sensitive analysis of stable nuclides and long-lived radionuclides. In most of the cases also the possibilities of elemental and isotopic analysis with high resolution will be discussed

  5. UNMANNED AIRCRAFT SYSTEMS FOR RAPID NEAR SURFACE GEOPHYSICAL MEASUREMENTS

    Directory of Open Access Journals (Sweden)

    J. B. Stoll

    2013-08-01

    Full Text Available This paper looks at some of the unmanned aircraft systems (UAS options and deals with a magnetometer sensor system which might be of interest in conducting rapid near surface geophysical measurements. Few of the traditional airborne geophysical sensors are now capable of being miniaturized to sizes and payload within mini UAS limits (e.g. airborne magnetics, gamma ray spectrometer. Here the deployment of a fluxgate magnetometer mounted on an UAS is presented demonstrating its capability of detecting metallic materials that are buried in the soil. The effectiveness in finding ferrous objects (e.g. UXO, landslides is demonstrated in two case studies.

  6. Study of uranium oxidation states in geological material.

    Science.gov (United States)

    Pidchenko, I; Salminen-Paatero, S; Rothe, J; Suksi, J

    2013-10-01

    A wet chemical method to determine uranium (U) oxidation states in geological material has been developed and tested. The problem faced in oxidation state determinations with wet chemical methods is that U redox state may change when extracted from the sample material, thereby leading to erroneous results. In order to quantify and monitor U redox behavior during the acidic extraction in the procedure, an analysis of added isotopic redox tracers, (236)U(VI) and (232)U(IV), and of variations in natural uranium isotope ratio ((234)U/(238)U) of indigenous U(IV) and U(VI) fractions was performed. Two sample materials with varying redox activity, U bearing rock and U-rich clayey lignite sediment, were used for the tests. The Fe(II)/Fe(III) redox-pair of the mineral phases was postulated as a potentially disturbing redox agent. The impact of Fe(III) on U was studied by reducing Fe(III) with ascorbic acid, which was added to the extraction solution. We observed that ascorbic acid protected most of the U from oxidation. The measured (234)U/(238)U ratio in U(IV) and U(VI) fractions in the sediment samples provided a unique tool to quantify U oxidation caused by Fe(III). Annealing (sample heating) to temperatures above 500 °C was supposed to heal ionizing radiation induced defects in the material that can disturb U redox state during extraction. Good agreement between two independent methods was obtained for DL-1a material: an average 38% of U(IV) determined by redox tracer corrected wet chemistry and 45% for XANES. Copyright © 2013 Elsevier Ltd. All rights reserved.

  7. Duplex sonography of the near-surface leg veins

    International Nuclear Information System (INIS)

    Mendoza, E.

    2007-01-01

    The book contains the following contributions: The ultrasonograph, selection of the ultrasonic transducer, anatomy of the near-surface vein system, physiology of the near-surface vein system, varicose status classification, systematics of the duplex sonography of near-surface leg veins, provocational maneuver for the duplex sonographic varicose diagnostics, exploration of vena saphena parva, perforans veins, side branches, phlebitis, sonography for varicose therapy, postsurgical sonography, deep leg veins, examination of near-surface leg veins for the pathology of the deep vein system, differential diagnostic clarification of leg oedema from the phlebologic-lymphological view, diagnostic side features along the near-surface leg veins

  8. Pressure effects on thermal conductivity and expansion of geologic materials

    International Nuclear Information System (INIS)

    Sweet, J.N.

    1979-02-01

    Through analysis of existing data, an estimate is made of the effect of pressure or depth on the thermal conductivity and expansion of geologic materials which could be present in radioactive waste repositories. In the case of homogeneous dense materials, only small shifts are predicted to occur at depths less than or equal to 3 km, and these shifts will be insignificant as compared with those caused by temperature variations. As the porosity of the medium increases, the variation of conductivity and expansion with pressure becomes greater, with conductivity increasing and expansion decreasing as pressure increases. The pressure dependence of expansion can be found from data on the temperature variation of the isobaric compressibility. In a worst case estimate, a decrease in expansion of approx. 25% is predicted for 5% porous sandstone at a depth of 3 km. The thermal conductivity of a medium with gaseous inclusions increases as the porosity decreases, with the magnitude of the increase being dependent on the details of the porosity collapse. Based on analysis of existing data on tuff and sandstone, a weighted geometric mean formula is recommended for use in calculating the conductivity of porous rock. As a result of this study, it is recommended that measurement of rock porosity versus depth receive increased attention in exploration studies and that the effect of porosity on thermal conductivity and expansion should be examined in more detail

  9. Geology

    Data.gov (United States)

    Kansas Data Access and Support Center — This database is an Arc/Info implementation of the 1:500,000 scale Geology Map of Kansas, M­23, 1991. This work wasperformed by the Automated Cartography section of...

  10. Stability of metallic copper in the near surface environment

    International Nuclear Information System (INIS)

    Amcoff, Oe.; Holenyi, K.

    1992-03-01

    The present study was initiated by the National Board for Spent Nuclear Fuel (SKN). It may be regarded as a review of the state of the art of copper stability - copper mobility in a low temperature - near surface environment. In the discussion, we have emphasized geological - geochemical milieus that have a direct bearing on the problem of final storage of spent nuclear fuel in copper canisters. The literature review has concentrated on copper in connection with: a. low-temperature environments, and b. Stability-mobility, with particular emphasis on a chloride-rich, sulphur-rich milieu. The possible influence on the present processes of radiolysis and engineered barriers besides copper is not discussed in this report. In order to faciliate the discussion, a number of examples on copper mineral stabilities and copper solubility etc. are given below, based on thermodynamic calculations. These calculations are simplified to a certain degree and the discussion is based on differences in orders of magnitude rather than on exact figures. The thermodynamic foundation for the calculations is given in an appendix. Conclusions and recommendations are outlined in general terms in a separate report. (59 refs.) (au)

  11. Presentation of a reference material for the spatially resolved hydrogen analytics in near-surface layers by means of nuclear-reaction analysis; Darstellung eines Referenzmaterials fuer die ortsaufgeloeste Wasserstoffanalytik in oberflaechennahen Schichten mittels Kernreaktionsanalyse

    Energy Technology Data Exchange (ETDEWEB)

    Reinholz, U.

    2005-10-03

    The object of the thesis is the presentation of the theory of the {sup 15}N-reaction analysis (NRA), the experiemental construction of the corresponding beam pipe at the ion accelerator of the BAM and the evaluation of the measurement results. The aim is the first characterization of a reference material for the H analytics on the base of amorphous silicon (aSi) on a Si[100] substrate. The homogeneity of the aSi:H layers deposited by means of CVD was studied. For this pro substrate for about 30 samples the hydrogen depth profiles were measures, folded by means of a program created within the thesis and subjected to a statistical evaluation. The result were mean value ans standard deviation of the hydrogen concentration as well as an estimator for the contribution of the inhomogeneity to the measurement uncertainty. The stability of the potential reference material was proved by the constancy of result of repeated measurements of the hydrogen concentration during the application of a large dose of {sup 15}N ions. In an international ring experiment the reproducibility of the measurement results was proved. For the characterization of the aSi:H layers beside the NRA the white-light interferometry, ellipsometry, profilometry, and X-ray reflectometry, as well as the IR and Raman spectroscopy were used. The stoichiometry of the applied standard material kapton was checked by means of NMR spectroscopy and CHN analysis.

  12. Technetium getters in the near surface environment

    International Nuclear Information System (INIS)

    Krumhansl, James L.; Zhang, Pengchu; Westrich, Henry R.; Bryan, Charles R.; Molecke, Martin A.

    2000-01-01

    Conventional performance assessments assume that radioactive 99 Tc travels as a non-sorbing component with an effective K d (distribution coefficient) of 0. This is because soil mineral surfaces commonly develop net negative surface charges and pertechnetate (TcO 4 ), with large ionic size and low electrical density, is not sorbed onto them. However, a variety of materials have been identified that retain Tc and may eventually lead to promising Tc getters. In assessing Tc getter performance it is important to evaluate the environment in which the getter is to function. In many contaminant plumes Tc will only leach slowly from the source of the contamination and significant dilution is likely. Thus, sub-ppb Tc concentrations are expected and normal groundwater constituents will dominate the aquifer chemistry. In this setting a variety of constituents were found to retard TcO 4 : imogolite, boehmite, hydrotalcite, goethite, copper sulfide and oxide and coal. Near leaking tanks of high level nuclear waste, Tc may be present in mg/L level concentrations and groundwater chemistry will be dominated by constituents from the waste. Both bone char, and to a lesser degree, freshly precipitated Al hydroxides may be effective Tc scavengers in this environment. Thus, the search for Tc getters is far from hopeless, although much remains to be learned about the mechanisms by which these materials retain Tc

  13. Test case for a near-surface repository

    International Nuclear Information System (INIS)

    Elert, M.; Jones, C.; Nilsson, L.B.; Skagius, K.; Wiborgh, M.

    1998-01-01

    A test case is presented for assessment of a near-surface disposal facility for radioactive waste. The case includes waste characterization and repository design, requirements and constraints in an assessment context, scenario development, model description and test calculations

  14. Technology and economics of near-surface geothermal resources exploitation

    Directory of Open Access Journals (Sweden)

    Э. И. Богуславский

    2017-04-01

    Full Text Available The paper presents economic justification for applicability of near-surface geothermal installations in Luga region, based on results of techno-economic calculations as well as integrated technical and economic comparison of different prediction scenarios of heat supply, both conventional and using geothermal heat pumps (GHP. Construction costs of a near-surface geothermal system can exceed the costs of central heating by 50-100 %. However, operation and maintenance (O&M costs of heat production for geothermal systems are 50-70 % lower than for conventional sources of heating. Currently this technology is very important, it is applied in various countries (USA, Germany, Japan, China etc., and depending on the region both near-surface and deep boreholes are being used. World practice of near-surface geothermal systems application is reviewed in the paper.

  15. ISLSCP II Reanalysis Near-Surface Meteorology Data

    Data.gov (United States)

    National Aeronautics and Space Administration — This data set for the ISLSCP Initiative II data collection provides near surface meteorological variables, fluxes of heat, moisture and momentum at the surface, and...

  16. ISLSCP II Reanalysis Near-Surface Meteorology Data

    Data.gov (United States)

    National Aeronautics and Space Administration — ABSTRACT: This data set for the ISLSCP Initiative II data collection provides near surface meteorological variables, fluxes of heat, moisture and momentum at the...

  17. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    International Nuclear Information System (INIS)

    Werner, Kent; Bosson, Emma; Berglund, Sten

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  18. Description of climate, surface hydrology, and near-surface hydrogeology. Simpevarp 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2005-04-01

    This report presents and evaluates the site investigations and primary data on meteorology, surface hydrology and near-surface hydrogeology that are available in the Simpevarp 1.2 'data freeze'. The main objective is to update the previous Simpevarp 1.1 description of the meteorological, surface hydrological and near-surface hydrogeological conditions in the Simpevarp area. Based on the Simpevarp 1.2 dataset, an updated conceptual and descriptive model of the surface and near-surface water flow conditions in the Simpevarp area is presented. In cases where site investigation data are not yet available, regional and/or generic data are used as input to the modelling. GIS- and process-based tools, used for initial quantitative flow modelling, are also presented. The objectives of this initial quantitative modelling are to illustrate, quantify and support the site descriptive model, and also to produce relevant input data to the ecological systems modelling within the SKB SurfaceNet framework.For the Simpevarp 1.2 model, the relevant site investigations include the establishment of one local meteorological station and surface-hydrological stations for discharge measurements, delineation and description of catchment areas, manual discharge measurements in water courses, slug tests in groundwater monitoring wells, and manual groundwater level measurements. In addition, other investigations have also contributed to the modelling, providing data on geometry (including topography), data from surface-based geological investigations and boreholes in Quaternary deposits, and data on the hydrogeological properties of the bedrock. The conceptual and descriptive modelling includes an identification and basic description of type areas, domains and interfaces between domains within the model area. The surface and near-surface flow system is described, including the assignment of hydrogeological properties to HSDs (Hydraulic Soil Domains) of Quaternary deposits based on a

  19. Mapping watershed potential to contribute phosphorus from geologic materials to receiving streams, southeastern United States

    Science.gov (United States)

    Terziotti, Silvia; Hoos, Anne B.; Harned, Douglas; Garcia, Ana Maria

    2010-01-01

    As part of the southeastern United States SPARROW (SPAtially Referenced Regressions On Watershed attributes) water-quality model implementation, the U.S. Geological Survey created a dataset to characterize the contribution of phosphorus to streams from weathering and erosion of surficial geologic materials. SPARROW provides estimates of total nitrogen and phosphorus loads in surface waters from point and nonpoint sources. The characterization of the contribution of phosphorus from geologic materials is important to help separate the effects of natural or background sources of phosphorus from anthropogenic sources of phosphorus, such as municipal wastewater or agricultural practices. The potential of a watershed to contribute phosphorus from naturally occurring geologic materials to streams was characterized by using geochemical data from bed-sediment samples collected from first-order streams in relatively undisturbed watersheds as part of the multiyear U.S. Geological Survey National Geochemical Survey. The spatial pattern of bed-sediment phosphorus concentration is offered as a tool to represent the best available information at the regional scale. One issue may weaken the use of bed-sediment phosphorus concentration as a surrogate for the potential for geologic materials in the watershed to contribute to instream levels of phosphorus-an unknown part of the variability in bed-sediment phosphorus concentration may be due to the rates of net deposition and processing of phosphorus in the streambed rather than to variability in the potential of the watershed's geologic materials to contribute phosphorus to the stream. Two additional datasets were created to represent the potential of a watershed to contribute phosphorus from geologic materials disturbed by mining activities from active mines and inactive mines.

  20. Determination of noble metals in geological materials by radiochemical neutron-activation analysis

    International Nuclear Information System (INIS)

    Ahmad, I.; Ahmad, S.; Morris, D.F.C.

    1977-01-01

    A method for the determination of platinum, palladium, gold and iridium in geological materials following activation with thermal neutrons is described. Radionuclides formed from the elements are separated by a scheme based largely on liquid-liquid extractions. The procedure has been applied to the analysis of US Geological Survey standard rocks and to studies of the distribution of the noble metals in lateritic nickel ores. (author)

  1. Near-surface storage facilities for vitrified high-level wastes

    International Nuclear Information System (INIS)

    Kondrat'ev, A.N.; Kulichenko, V.V.; Kryukov, I.I.; Krylova, N.V.; Paramoshkin, V.I.; Strakhov, M.V.

    1980-01-01

    Concurrently with the development of methods for solidifying liquid radioactive wastes, reliable and safe methods for the storage and disposal of solidified wastes are being devised in the USSR and other countries. One of the main factors affecting the choice of storage conditions for solidified wastes originating from the vitrification of high-level liquid wastes from fuel reprocessing plants is the problem of removing the heat produced by radioactive decay. In order to prevent the temperature of solidified wastes from exceeding the maximum permissible level for the material concerned, it is necessary to limit either the capacity of waste containers or the specific heat release of the wastes themselves. In order that disposal of high-level wastes in geological formations should be reliable and economic, solidified wastes undergo interim storage in near-surface storage facilities with engineered cooling systems. The paper demonstrates the relative influences of specific heat release, of the maximum permissible storage temperature for vitrified wastes and of the methods chosen for cooling wastes in order for the dimensions of waste containers to be reduced to the extent required. The effect of concentrating wastes to a given level in the vitrification process on the cost of storage in different types of storage facility is also examined. Calculations were performed for the amount of vitrified wastes produced by a reprocessing plant with a capacity of five tonnes of uranium per 24 hours. Fuel elements from reactors of the water-cooled, water-moderated type are sent for reprocessing after having been held for about two years. The dimensions of the storage facility are calculated on the assumption that it will take five years to fill

  2. Conceptual design of the Brazilian near surface repository

    Energy Technology Data Exchange (ETDEWEB)

    Mourao, Rogerio P.; Freire, Carolina Braccini, E-mail: mourao@cdtn.br, E-mail: cbf@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/UFMG-MG), Belo Horizonte, MG (Brazil)

    2013-07-01

    CNEN is presently in the planning phase of the implementation of a repository for low and intermediate level wastes. One of the present activities of this project is to define a concept for the disposal of radioactive wastes to be received. The conceptual design of the repository takes into account the quantities and characteristics of the waste, the disposal arrangement, the waste acceptance criteria, the site characteristics, the period of the facility operation and institutional control, the engineering barriers to be used, as well as the facility's operational aspects. The facility will be a near-surface repository, an internationally accepted concept and adopted for example in France (L'Aube repository) and Spain (El Cabril). An acceptable site for such a repository must have characteristics that minimize the risk of human exposure to the radiation and environmental contamination. For this, the chosen site must meet specific technical and socioeconomic requirements, such as favorable physiographic, meteorological, geotechnical and tectonic characteristics, low demographic density, absence of agricultural activities and mineral deposits and proximity to the paved road grid. In this work the technical and socioeconomic requirements necessary and sufficient for site selection are presented. Also discussed is the method for the establishment of the main features that the different facility's buildings must have. Since a specific site has not yet been selected, a simulated area with straight and parallel sides, no gradient, served by access road and having a surface sufficient to hold the disposal structures and support facilities, as well as the legal exclusion zones. The buildings were designed and positioned in order to meet the needs in terms of flow of waste, personnel, supplies and materials necessary to perform the activities within the enterprise. The methodology for compilation of information related to buildings is presented. This

  3. Conceptual design of the Brazilian near surface repository

    International Nuclear Information System (INIS)

    Mourao, Rogerio P.; Freire, Carolina Braccini

    2013-01-01

    CNEN is presently in the planning phase of the implementation of a repository for low and intermediate level wastes. One of the present activities of this project is to define a concept for the disposal of radioactive wastes to be received. The conceptual design of the repository takes into account the quantities and characteristics of the waste, the disposal arrangement, the waste acceptance criteria, the site characteristics, the period of the facility operation and institutional control, the engineering barriers to be used, as well as the facility's operational aspects. The facility will be a near-surface repository, an internationally accepted concept and adopted for example in France (L'Aube repository) and Spain (El Cabril). An acceptable site for such a repository must have characteristics that minimize the risk of human exposure to the radiation and environmental contamination. For this, the chosen site must meet specific technical and socioeconomic requirements, such as favorable physiographic, meteorological, geotechnical and tectonic characteristics, low demographic density, absence of agricultural activities and mineral deposits and proximity to the paved road grid. In this work the technical and socioeconomic requirements necessary and sufficient for site selection are presented. Also discussed is the method for the establishment of the main features that the different facility's buildings must have. Since a specific site has not yet been selected, a simulated area with straight and parallel sides, no gradient, served by access road and having a surface sufficient to hold the disposal structures and support facilities, as well as the legal exclusion zones. The buildings were designed and positioned in order to meet the needs in terms of flow of waste, personnel, supplies and materials necessary to perform the activities within the enterprise. The methodology for compilation of information related to buildings is presented. This information will be

  4. Deformation characteristics of the near-surface layers of zirconia ceramics implanted with aluminum ions

    Science.gov (United States)

    Ghyngazov, S. A.; Vasiliev, I. P.; Frangulyan, T. S.; Chernyavski, A. V.

    2015-10-01

    The effect of ion treatment on the phase composition and mechanical properties of the near-surface layers of zirconium ceramic composition 97 ZrO2-3Y2O3 (mol%) was studied. Irradiation of the samples was carried out by accelerated ions of aluminum with using vacuum-arc source Mevva 5-Ru. Ion beam had the following parameters: the energy of the accelerated ions E = 78 keV, the pulse current density Ji = 4mA / cm2, current pulse duration equal τ = 250 mcs, pulse repetition frequency f = 5 Hz. Exposure doses (fluence) were 1016 и 1017 ion/cm2. The depth distribution implanted ions was studied by SIMS method. It is shown that the maximum projected range of the implanted ions is equal to 250 nm. Near-surface layers were investigated by X-ray diffraction (XRD) at fixed glancing incidence angle. It is shown that implantation of aluminum ions into the ceramics does not lead to a change in the phase composition of the near-surface layer. The influence of implanted ions on mechanical properties of ceramic near-surface layers was studied by the method of dynamic nanoindentation using small loads on the indenter P=300 mN. It is shown that in ion- implanted ceramic layer the processes of material recovery in the deformed region in the unloading mode proceeds with higher efficiency as compared with the initial material state. The deformation characteristics of samples before and after ion treatment have been determined from interpretation of the resulting P-h curves within the loading and unloading sections by the technique proposed by Oliver and Pharr. It was found that implantation of aluminum ions in the near-surface layer of zirconia ceramics increases nanohardness and reduces the Young's modulus.

  5. Spherical wave particle velocities in geologic materials from laboratory experiments

    International Nuclear Information System (INIS)

    Cizek, J.C.; Florence, A.L.

    1983-01-01

    Particle velocity records that describe spherical waves in rock simulants, tuffs, salt, and granite have been obtained in laboratory experiments. The records aid the modeling of constitutive equations for continuum mechanics codes used in DNA containment research. The technique has also been applied to investigate containment-related problems involving material poperties, failure criteria, scaling, decoupling, and residual strain field relaxation. 22 figures

  6. Test case for a near-surface repository

    Energy Technology Data Exchange (ETDEWEB)

    Elert, M.; Jones, C. [Kemakta Konsult AB, Stockholm (Sweden); Nilsson, L.B. [Swedish Nuclear Fuel and Waste Co, Stockholm (Sweden); Skagius, K.; Wiborgh, M. [Kemakta Konsult AB, Stockholm (Sweden)

    1998-09-01

    A test case is presented for assessment of a near-surface disposal facility for radioactive waste. The case includes waste characterization and repository design, requirements and constraints in an assessment context, scenario development, model description and test calculations 6 refs, 12 tabs, 16 figs

  7. FEATURES OF GEODEFORMATION CHANGES OF NEAR SURFACE SEDIMENTARY ROCKS

    Directory of Open Access Journals (Sweden)

    I. A. Larionov

    2016-11-01

    Full Text Available The results of investigations of the deformation process in the near surface sedimentary rocks, which has been carried out in a seismically active region of Kamchatka peninsular since 2007,are presented. The peculiarity of the experiments on the registration of geodeformations is the application of a laser deformograph-interferometer constructed according to the Michelson interferometer scheme.

  8. Near-Surface Seismic Velocity Data: A Computer Program For ...

    African Journals Online (AJOL)

    A computer program (NESURVELANA) has been developed in Visual Basic Computer programming language to carry out a near surface velocity analysis. The method of analysis used includes: Algorithms design and Visual Basic codes generation for plotting arrival time (ms) against geophone depth (m) employing the ...

  9. Modelling of nuclide migration for support of the site selection for near surface repository in Lithuania

    International Nuclear Information System (INIS)

    Kilda, R.; Poskas, P.; Ragaisis, V.

    2006-01-01

    Construction of the near surface repository (NSR) for disposal of short-lived low-and intermediate-level waste (LILW) is planned in Lithuania. Reference design of the repository was prepared. Site selection process is going on. Environmental Impact Assessment (EIA) Program and Report were prepared and are under review by regulators. Releases of radionuclides to water pathway and potential human exposure after closure of the NSR have been assessed for support of the site selection for NSR installation. Two candidate sites were taken under consideration. The assessments have been performed following ISAM methodology recommended by IAEA for safety assessments of near surface disposal facilities. The conceptual design of NSR as well as peculiarities of geological and hydro-geological environment relevant to each candidate site is taken into account. The results of the analysis as part of EIA Report are presented in the paper. It is demonstrated that estimated impact of potential radionuclide migration for both candidate sites is below dose constrain established by regulations of Lithuania. (author)

  10. Visualized materials of information on HLW geological disposal for promotion of public understanding

    International Nuclear Information System (INIS)

    Shobu, Nobuhiro; Yoshikawa, Hideki; Kashiwazaki, Hiroshi

    2003-03-01

    Japan Nuclear Cycle Development Institute (JNC) has a few thousands of short term visitors to Geological Isolation Basic Research Facility of Tokai works in every year. From the viewpoint of promotion of the visitor's understanding and also smooth communication between researchers and visitors, the explanation of the technical information on geological disposal should be carried out in more easily understandable methods, as well as conventional tour to the engineering-scale test facility (ENTRY). The images of repository operation, output data of technical calculations regarding geological disposal were visualized. We can use them practically as one of the useful explanation tools to support visitor's understanding. The visualized materials are attached to this report with the DVD-R media, furthermore, background information of each visualized materials was documented. (author)

  11. Biomolecular Nano-Flow-Sensor to Measure Near-Surface Flow

    Directory of Open Access Journals (Sweden)

    Noji Hiroyuki

    2009-01-01

    Full Text Available Abstract We have proposed and experimentally demonstrated that the measurement of the near-surface flow at the interface between a liquid and solid using a 10 nm-sized biomolecular motor of F1-ATPase as a nano-flow-sensor. For this purpose, we developed a microfluidic test-bed chip to precisely control the liquid flow acting on the F1-ATPase. In order to visualize the rotation of F1-ATPase, several hundreds nanometer-sized particle was immobilized at the rotational axis of F1-ATPase to enhance the rotation to be detected by optical microscopy. The rotational motion of F1-ATPase, which was immobilized on an inner surface of the test-bed chip, was measured to obtain the correlation between the near-surface flow and the rotation speed of F1-ATPase. As a result, we obtained the relationship that the rotation speed of F1-ATPase was linearly decelerated with increasing flow velocity. The mechanism of the correlation between the rotation speed and the near-surface flow remains unclear, however the concept to use biomolecule as a nano-flow-sensor was proofed successfully. (See supplementary material 1 Electronic supplementary material The online version of this article (doi:10.1007/s11671-009-9479-3 contains supplementary material, which is available to authorized users. Click here for file

  12. A rapid method for the separation and estimation of uranium in geological materials using ion chromatography

    International Nuclear Information System (INIS)

    Prakash, Satya; Bangroo, P.N.

    2013-01-01

    Ion Chromatography is an elegant analytical technique which was primarily developed for the analysis of anionic species and over the years it has been used successfully to analyse various elements in different matrices. In this work the potential of Ion Chromatography has been used for the rapid separation and estimation of uranium in hydrogeochemical and other geological materials

  13. ICP-MS applications for the analysis of geological materials and environmental samples

    International Nuclear Information System (INIS)

    Bendl, J.

    1997-01-01

    This work deals with applications of inductively coupled plasma - mass spectrometry applications for the analysis of geological materials and environmental samples. There are instrumentation, calibration, alternatives of sample introduction, interferences, trace elements analysis, rare earth elements and uranium and thorium, precious metals, isotopic analysis and environmental analysis discussed

  14. Review of behavior of plutonium in soils and other geologic materials

    International Nuclear Information System (INIS)

    Nishita, H.

    1979-10-01

    Available information on the physical and chemical reactions of Pu in soils and other geologic materials is reviewed. The primary intent of this review was to bring together information that may be helpful in assessing the movement and biological availability of Pu in terrestrial environment. The review is divided into two general categories, e.g., studies of chemical reactions of Pu in aqueous solutions and studies of Pu reactions in the more complex systems of soils and other geologic materials. The latter category is further divided into studies of Pu in materials that were freshly contaminated in the laboratory and of Pu in materials that had been contaminated in natural environments and had resided there for varying numbers of years. After the discussion of physical and chemical reactions of Pu, several reported examples of the actual movement of Pu in terrestrial environments are given

  15. An investigation of the repeatability of calibration factors in gamma-ray spectrometry of geological materials

    International Nuclear Information System (INIS)

    Mustapha, A.O.; Patel, J.P.; Rathore, I.V.S.; Hashim, N.O.; Otwoma, D.

    2004-01-01

    A NaI(Tl)-based gamma spectrometer for the analysis of geological materials was calibrated using the IAEA reference materials RGU-1, RGTH-1 and RGK-1. To simulate typical geological samples, two additional standards were prepared from aliquots of the three reference materials. The reproducibility of the instrument calibration factors (CFs) was tested by repeated measurements of the pure IAEA reference materials and the mixed samples in a reproducible counting geometry. The results were analysed using a two-way classification analysis of variance; it was found that the variance in the CFs is significantly higher between standards than it is between measurements. Allowance should be made for this when estimating uncertainties in measurements with the NaI(Tl) spectrometers

  16. Derivation of activity limits for the disposal of radioactive waste in near surface disposal facilities

    International Nuclear Information System (INIS)

    2003-12-01

    Radioactive waste must be managed safely, consistent with internationally agreed safety standards. The disposal method chosen for the waste should be commensurate with the hazard and longevity of the waste. Near surface disposal is an option used by many countries for the disposal of radioactive waste containing mainly short lived radionuclides and low concentrations of long lived radionuclides. The term 'near surface disposal' encompasses a wide range of design options, including disposal in engineered structures at or just below ground level, disposal in simple earthen trenches a few metres deep, disposal in engineered concrete vaults, and disposal in rock caverns several tens of metres below the surface. The use of a near surface disposal option requires design and operational measures to provide for the protection of human health and the environment, both during operation of the disposal facility and following its closure. To ensure the safety of both workers and the public (both in the short term and the long term), the operator is required to design a comprehensive waste management system for the safe operation and closure of a near surface disposal facility. Part of such a system is to establish criteria for accepting waste for disposal at the facility. The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures and in addition, to prevent or limit hazards, which could arise from non-radiological causes. Waste acceptance criteria include limits on radionuclide content concentration in waste materials, and radionuclide amounts in packages and in the repository as a whole. They also include limits on quantity of free liquids, requirements for exclusion of chelating agents and pyrophoric materials, and specifications of the characteristics of the waste containers. Largely as a result of problems encountered at some disposal facilities operated in the past, in 1985 the IAEA published guidance on generic acceptance

  17. Current status of the near surface repository in Romania

    International Nuclear Information System (INIS)

    Andrei, V.; Glodeanu, F.; Rotaru, I.

    2000-01-01

    The radioactive waste management at the Cernavoda NPP is based on collection, pretreatment and storage of all solid wastes. The disposal of operational and decommissioning wastes has been evaluated, based on the results of a research and development programme. A near surface disposal facility was selected and a siting process was implemented. The status of this project and its prospective are discussed in the paper. (author)

  18. Erosion of surface and near surface disposal facilities

    International Nuclear Information System (INIS)

    1988-06-01

    A literature search was undertaken to identify existing data and analytical procedures regarding the processes of gully erosion. The applicability of the available information to the problems of gully erosion potential at surface and near surface disposal sites is evaluated. It is concluded that the existing knowledge regarding gully erosion is insufficient to develop procedures to ensure the long-term stability of disposal sites. Recommendations for further research are presented. 46 refs

  19. Electronic structures near surfaces of perovskite type oxides

    International Nuclear Information System (INIS)

    Hara, Toru

    2005-01-01

    This work is intended to draw attention to the origin of the electronic structures near surfaces of perovskite type oxides. Deep states were observed by ultraviolet photoelectron spectroscopic measurements. The film thickness dependent electronic structures near surfaces of (Ba 0.5 Sr 0.5 )TiO 3 thin films were observed. As for the 117-308 nm thick (Ba 0.5 Sr 0.5 )TiO 3 films, deep states were lying at 0.20, 0.55, and 0.85 eV below the quasi-fermi level, respectively. However, as for the 40 nm thick (Ba 0.5 Sr 0.5 )TiO 3 film, the states were overlapped. The A-site doping affected electronic structures near surfaces of SrTiO 3 single crystals. No evolution of deep states in non-doped SrTiO 3 single crystal was observed. However, the evolution of deep states in La-doped SrTiO 3 single crystal was observed

  20. Geologic considerations for the subsurface injection of naturally occurring radioactive materials (NORM): A case study

    International Nuclear Information System (INIS)

    Ladle, G.H.

    1995-01-01

    NORM waste consists of naturally occurring radioactive material associated with oil and gas operations as scale deposited in tubulars, surface piping, pumps, and other producing and processing equipment. NORM also occurs as sludge and produced sands at wellheads, transport vessels and tank bottoms. For disposal, NORM scale and sludge are separated from the tubulars and tank bottoms and ground to less than 100 microns and mixed into a slurry at the surface facility for disposal into a deep well injection interval below the Underground Sources of Drinking Water zone. This paper addresses two primary considerations: (1) subsurface geologic investigations which identify specific geologic horizons that have sufficient porosity and permeability to accept NORM slurries containing high total suspended solids concentrations, and (2) surface facility requirements. Generic and specific information, criteria, and examples are included in the paper to allow the application of the geologic principles to other areas or regions

  1. Inspection and verification of waste packages for near surface disposal

    International Nuclear Information System (INIS)

    2000-01-01

    Extensive experience has been gained with various disposal options for low and intermediate level waste at or near surface disposal facilities. Near surface disposal is based on proven and well demonstrated technologies. To ensure the safety of near surface disposal facilities when available technologies are applied, it is necessary to control and assure the quality of the repository system's performance, which includes waste packages, engineered features and natural barriers, as well as siting, design, construction, operation, closure and institutional controls. Recognizing the importance of repository performance, the IAEA is producing a set of technical publications on quality assurance and quality control (QA/QC) for waste disposal to provide Member States with technical guidance and current information. These publications cover issues on the application of QA/QC programmes to waste disposal, long term record management, and specific QA/QC aspects of waste packaging, repository design and R and D. Waste package QA/QC is especially important because the package is the primary barrier to radionuclide release from a disposal facility. Waste packaging also involves interface issues between the waste generator and the disposal facility operator. Waste should be packaged by generators to meet waste acceptance requirements set for a repository or disposal system. However, it is essential that the disposal facility operator ensure that waste packages conform with disposal facility acceptance requirements. Demonstration of conformance with disposal facility acceptance requirements can be achieved through the systematic inspection and verification of waste packages at both the waste generator's site and at the disposal facility, based on a waste package QA/QC programme established by the waste generator and approved by the disposal operator. However, strategies, approaches and the scope of inspection and verification will be somewhat different from country to country

  2. Material interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1986-01-01

    This review paper systematizes the additional interactions that materials in a geologic repository will impose on the borosilicate glass waste form-groundwater interactions. These materials are the steel canister that holds the glass, the steel overpack over the canister, backfill materials that may be used, and last, the repository host rock. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g., oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interaction(s) is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. Repository relevant interactions testing that requires further study before long-term predictions can be made are noted. 62 refs

  3. Reduction of beta-interference in gamma-spectrometric measurements of neutron-irradiated geological material

    International Nuclear Information System (INIS)

    Garmann, L.B.

    1986-01-01

    The analytical technique for INAA, when applied to geological materials, is improved by introducing an electromagnetic field between sample and detector. This field lowers the bremsstrahlung background intensity in the gamma-spectrum by reducing the number of beta-particles reaching the detector. Thus precision, accuracy and lower detection limit are improved. The technique was used on alkalisyenite and on meteoritic material, rocks containing high quantities of sodium and iron, respectively. After neutron irradiation, the induced nuclides sup(24)Na and sup(59)Fe are responsible for high bremsstrahlung interference, which under normal analyitical conditions would mask any x-ray or gamma-ray peaks of interest. The technique is easily applied to multielement analysis of geological and biological materials. It can be combined with sophisticated spectrum-treating techniques such as spectrum stripping and spectrum smoothing, or coincidence-anticoincidence circuits. (author)

  4. Near-surface geophysical investigations inside the cloister of an historical palace in Lecce, Italy

    Science.gov (United States)

    Nuzzo, L.; Quarta, T.

    2009-04-01

    Near-surface geophysics can play a major role in the framework of the Cultural Heritages diagnostics as the recourse to non-invasive geophysical methods is usually the only way to gain information on subsurface properties that can affect the stability of historical structures and accelerate degradation processes. In most cases the deterioration of ancient buildings is due to various causes: external, such as pollution, biological degradation and adverse climatic or microclimatic conditions; internal, such as a particular geological or hydro-geological setting or a combination of both. Therefore, being able to discriminate between the different sources and to identify the main process of decay becomes essential for the development of effective remediation actions. The present case study shows the main results of an integrated geophysical campaign performed inside the cloister of an important palace in Lecce, Southern Italy, in order to investigate the possible subsurface causes of deterioration affecting its pillars and walls and, more importantly, some altars of the annexed church. The historical building, named Palazzo dei Celestini, was formerly a monastery directly connected to the Basilica of Santa Croce and nowadays is the head office of the Province of Lecce Administration and the Prefecture. With its rich baroque façade, Palazzo dei Celestini and Santa Croce is the most famous architectural complex of the historical centre of Lecce. Its foundations generally rest on a very shallow and sometimes outcropping wet calcarenitic basement, evidenced by previous geophysical surveys performed in the nearby. The high capillarity of the local fine-grained calcarenitic stone used as building and ornamental material for the historical complex was thought to be responsible for the deterioration problems evidenced at some altars of the church and in the lower portion of the walls and pillars of the palace, although a previous microclimatic study inside the Basilica had

  5. Site selection report basalt waste isolation program near-surface test facility

    International Nuclear Information System (INIS)

    Sharpe, S.D.

    1978-01-01

    A site selection committee was established to review the information gathered on potential sites and to select a site for the Near-Surface Test Facility Phase I. A decision was made to use a site on the north face of Gable Mountain located on the Hanford Site. This site provided convenient access to the Pomona Basalt Flow. This flow was selected for use at this site because it exhibited the characteristics established in the primary criteria. These criteria were: the flows thickness; its dryness; its nearness to the surface; and, its similarities to basalt units which are candidates for the repository. After the selection of the Near-Surface Test Facility Phase I Site, the need arose for an additional facility to demonstrate safe handling, storage techniques, and the physical effects of radioactive materials on an in situ basalt formation. The committee reviewed the sites selected for Phase I and chose the same site for locating Phase II of the Near-Surface Test Facility

  6. Measurements of the near-surface flow over a hill

    Science.gov (United States)

    Vosper, S. B.; Mobbs, S. D.; Gardiner, B. A.

    2002-10-01

    The near-surface flow over a hill with moderate slope and height comparable with the boundary-layer depth is investigated through field measurements of the mean flow (at 2 m), surface pressure, and turbulent momentum flux divergence between 8 and 15 m. The measurements were made along an east-west transect across the hill Tighvein (height 458 m, approximate width 8 km) on the Isle of Arran, south-west Scotland, during two separate periods, each of around three-weeks duration. Radiosonde ascents are used to determine the variation of a Froude number, FL = U/NL, where U is the wind speed at the middle-layer height, hm, N is the mean Brunt-Väisälä frequency below this height and L is a hill length-scale. Measurements show that for moderately stratified flows (for which FL 0.25) a minimum in the hill-induced surface-pressure perturbation occurs across the summit and this is accompanied by a maximum in the near-surface wind speed. In the more strongly stratified case (FL 0.25) the pressure field is more asymmetric and the lee-slope flow is generally stronger than on the windward slope. Such a flow pattern is qualitatively consistent with that predicted by stratified linear boundary-layer and gravity-wave theories. The near-surface momentum budget is analysed by evaluating the dominant terms in a Bernoulli equation suitable for turbulent flow. Measurements during periods of westerly flow are used to evaluate the dominant terms, and the equation is shown to hold to a reasonable approximation on the upwind slope of the hill and also on the downwind slope, away from the summit. Immediately downwind of the summit, however, the Bernoulli equation does not hold. Possible reasons for this, such as non-separated sheltering and flow separation, are discussed.

  7. Determination of near surface in-situ stresses

    International Nuclear Information System (INIS)

    Garritty, P.; Irvin, R.

    1983-06-01

    One of the major unknowns affecting aspects of underground construction and the geohydrology of rock masses is the magnitude and direction of the geostatic principal stresses in the earth's crust. This is particularly the case in near surface rocks where there are indications that high horizontal stresses may exist. The techniques, experiences and results of a preliminary rock stress measurement programme conducted at shallow depth in the Carnmenellis Granite, Cornwall, using C.S.I.R.O. triaxial hollow inclusion cells are described. (author)

  8. Characterization of groundwater flow for near surface disposal facilities

    International Nuclear Information System (INIS)

    2001-02-01

    The main objective of this report is to provide a description of the site investigation techniques and modelling approaches that can be used to characterise the flow of subsurface water at near surface disposal facilities in relation to the various development stages of the repositories. As one of the main goals of defining groundwater flow is to establish the possible contaminant migration, certain aspects related to groundwater transport are also described. Secondary objectives are to discuss the implications of various groundwater conditions with regard to the performance of the isolation systems

  9. Studies of cesium and strontium migration in unconsolidated Canadian geological materials

    International Nuclear Information System (INIS)

    Gillham, R.W.; Lindsay, L.E.; Reynolds, W.D.; Kewen, T.J.; Cherry, J.A.; Reddy, M.R.

    1981-06-01

    Distribution coefficients (Ksub(d)) were measured for cesium and strontium in 16 samples of Canadian unconsolidated geological materials. The samples were collected to cover a wide range of grain size, clay-mineral composition, cation exchange capacity and carbonate mineral content. Distribution coefficients ranged between 10 2 and 2.0 x 10 4 ml/g for cesium and between 2.5 and 10 2 ml/g for strontium, indicating that most unconsolidated geological materials have a substantial ability to retard the migration of cesium, while strontium could generally be expected to be somewhat more mobile. The measured K values were not significantly correlated with the measured soil properties, but appeared to be significantly affected by the background concentration of stable isotopes of the respective radionuclides

  10. Separation of interfering elements in the neutron activation analysis of lanthanides in geological materials

    International Nuclear Information System (INIS)

    Saiki, M.

    1988-01-01

    A chemical procedure has been developed for the separation of U, Th, Fe, Sc, Na,Ta, and Mo which interfere in the neutron activation analysis of the lanthanide elements in geological materials. This procedure is based on the solvent extraction of interferents using a solution of tetracycline in benzyl alcohol. The lanthanide elements remaining in the aqueous phase are coprecipitated on calcium oxalate or ferric hydroxide for irradiation and subsequent determination by gamma ray spectrometry. The chemical separation procedure was applied in the analysis of lanthanides in two international geological reference materials GSP-1 (USGS), GS-N (CRPG) and in the analysis of a volcanic rock from Pocos de Caldas, MG, Brazil. The sensitivities for all the lanthanides were determined. (author) [pt

  11. Geologic setting of diverse volcanic materials in northern Elysium Planitia, Mars

    International Nuclear Information System (INIS)

    Mouginis-Mark, P.J.

    1990-01-01

    Geologic mapping of high-resolution (30-50 m/pixel) Viking Orbiter images of northern Elysium Planitia has identified seven sites where current problems in martian volcanology, chronology, and stratigraphy can be resolved. These sites, which are discussed in the context of a potential Mars rover/sample return mission, would permit the following investigations: (1) the dating of Lower Amazonian lava flows from Elysium Mons (thereby providing absolute calibration for global crater size/frequency relative chronologies), (2) the petrologic investigation of long run-out lava flows, (3) the geologic interpretation of materials that may either be lava flows or lahar deposits, (4) the analysis of materials believed to be ash deposits produced by explosive eruptions of Hecates Tholus, and (5) the investigation of the stratigraphy of fractured terrain along the boundary between northern Elysium Planitia and southern Utopia Planitia. 63 refs

  12. Application of the Fourier descriptors method to the morphological classification of particles in geological materials

    International Nuclear Information System (INIS)

    Manzanas Lopez, J.; Santiago Buey, C.

    2010-01-01

    This study focuses on the use of Fourier descriptors to quantitatively describe the morphology of particles aggregates or pores in geological materials. Firstly, the mathematical fundaments of the method are explained. Then, the Fourier descriptors method is applied to the Krumbein Scale, a system of measuring roundness and sphericity of particles. the analysis of the comparison shows that there is good correlation between the Sphericity parameter at the Krumbein classifications and the value of the modulus of the Fourier descriptor No-1. This good correlation, along with the mathematical precision which allows to prevent subjective valorisations in the morphological description, corroborates the validity of the method to quantify the sphericity elongation of particles in geological materials. (Author) 12 refs.

  13. Evaluation of new geological reference materials for uranium-series measurements: Chinese Geological Standard Glasses (CGSG) and macusanite obsidian.

    Science.gov (United States)

    Denton, J S; Murrell, M T; Goldstein, S J; Nunn, A J; Amato, R S; Hinrichs, K A

    2013-10-15

    Recent advances in high-resolution, rapid, in situ microanalytical techniques present numerous opportunities for the analytical community, provided accurately characterized reference materials are available. Here, we present multicollector thermal ionization mass spectrometry (MC-TIMS) and multicollector inductively coupled plasma mass spectrometry (MC-ICP-MS) uranium and thorium concentration and isotopic data obtained by isotope dilution for a suite of newly available Chinese Geological Standard Glasses (CGSG) designed for microanalysis. These glasses exhibit a range of compositions including basalt, syenite, andesite, and a soil. Uranium concentrations for these glasses range from ∼2 to 14 μg g(-1), Th/U weight ratios range from ∼4 to 6, (234)U/(238)U activity ratios range from 0.93 to 1.02, and (230)Th/(238)U activity ratios range from 0.98 to 1.12. Uranium and thorium concentration and isotopic data are also presented for a rhyolitic obsidian from Macusani, SE Peru (macusanite). This glass can also be used as a rhyolitic reference material, has a very low Th/U weight ratio (around 0.077), and is approximately in (238)U-(234)U-(230)Th secular equilibrium. The U-Th concentration data agree with but are significantly more precise than those previously measured. U-Th concentration and isotopic data agree within estimated errors for the two measurement techniques, providing validation of the two methods. The large (238)U-(234)U-(230)Th disequilibria for some of the glasses, along with the wide range in their chemical compositions and Th/U ratios should provide useful reference points for the U-series analytical community.

  14. Spectrophotometric determination of Fe(II) in Geological Materials by Using Ferrozine as Cromogenic Reagent

    International Nuclear Information System (INIS)

    Sanchez, D. M.; Martin, R.; Marin, J.; Morante, R.; Gutierrez, L.; Bayon, A.

    1999-12-01

    A rapid and sensitive spectrophotometric method for the determination of labile ferrous iron in geological materials is described. Samples are treated by boiling with hydrochloric acid for 60 min. in an atmosphere of carbon dioxide. Systematic erroneous results due to high concentrations of ferric iron are resolved. The limit of detection for the method was 0.02% of FeO. International standard granites analysed by the proposed method showed recoveries ranged from 81-102%. (Author) 9 refs

  15. Correction for interelement effect in X-Ray fluorescence analysis of trace elements in geological materials

    International Nuclear Information System (INIS)

    El-Behay, A.Z.; Attawiya, M.Y.; Khattab, F.M.

    1984-01-01

    In a trial to obtain accurate results from X-ray fluorescence technique for the analysis of trace elements in geological materials, two corrections were used for the obtained data, namely, correction for the observed x-ray intensities for absorption and/or enhancement effects due to the presence of other elements in the system and correction for spectral deconvolution to account for the overlapping lines. Significant improvement in the precision and accuracy was obtained and evaluated

  16. Dynamic simulations of geologic materials using combined FEM/DEM/SPH analysis

    Energy Technology Data Exchange (ETDEWEB)

    Morris, J P; Johnson, S M

    2008-03-26

    An overview of the Lawrence Discrete Element Code (LDEC) is presented, and results from a study investigating the effect of explosive and impact loading on geologic materials using the Livermore Distinct Element Code (LDEC) are detailed. LDEC was initially developed to simulate tunnels and other structures in jointed rock masses using large numbers of polyhedral blocks. Many geophysical applications, such as projectile penetration into rock, concrete targets, and boulder fields, require a combination of continuum and discrete methods in order to predict the formation and interaction of the fragments produced. In an effort to model this class of problems, LDEC now includes implementations of Cosserat point theory and cohesive elements. This approach directly simulates the transition from continuum to discontinuum behavior, thereby allowing for dynamic fracture within a combined finite element/discrete element framework. In addition, there are many application involving geologic materials where fluid-structure interaction is important. To facilitate solution of this class of problems a Smooth Particle Hydrodynamics (SPH) capability has been incorporated into LDEC to simulate fully coupled systems involving geologic materials and a saturating fluid. We will present results from a study of a broad range of geomechanical problems that exercise the various components of LDEC in isolation and in tandem.

  17. Near-surface temperature gradient in a coastal upwelling regime

    Science.gov (United States)

    Maske, H.; Ochoa, J.; Almeda-Jauregui, C. O.; Ruiz-de la Torre, M. C.; Cruz-López, R.; Villegas-Mendoza, J. R.

    2014-08-01

    In oceanography, a near homogeneous mixed layer extending from the surface to a seasonal thermocline is a common conceptual basis in physics, chemistry, and biology. In a coastal upwelling region 3 km off the coast in the Mexican Pacific, we measured vertical density gradients with a free-rising CTD and temperature gradients with thermographs at 1, 3, and 5 m depths logging every 5 min during more than a year. No significant salinity gradient was observed down to 10 m depth, and the CTD temperature and density gradients showed no pronounced discontinuity that would suggest a near-surface mixed layer. Thermographs generally logged decreasing temperature with depth with gradients higher than 0.2 K m-1 more than half of the time in the summer between 1 and 3 m, 3 and 5 m and in the winter between 1 and 3 m. Some negative temperature gradients were present and gradients were generally highly variable in time with high peaks lasting fractions of hours to hours. These temporal changes were too rapid to be explained by local heating or cooling. The pattern of positive and negative peaks might be explained by vertical stacks of water layers of different temperatures and different horizontal drift vectors. The observed near-surface gradient has implications for turbulent wind energy transfer, vertical exchange of dissolved and particulate water constituents, the interpretation of remotely sensed SST, and horizontal wind-induced transport.

  18. The Thermodynamics of Selenium Minerals in Near-Surface Environments

    Directory of Open Access Journals (Sweden)

    Vladimir Krivovichev

    2017-10-01

    Full Text Available Selenium compounds are relatively rare as minerals; there are presently only 118 known mineral species. This work is intended to codify and systematize the data of mineral systems and the thermodynamics of selenium minerals, which are unstable (selenides or formed in near-surface environments (selenites, where the behavior of selenium is controlled by variations of the redox potential and the acidity of solutions at low temperatures and pressures. These parameters determine the migration of selenium and its precipitation as various solid phases. All selenium minerals are divided into four groups—native selenium, oxide, selenides, and oxysalts—anhydrous selenites (I and hydrous selenites and selenates (II. Within each of the groups, minerals are codified according to the minimum number of independent elements necessary to define the composition of the mineral system. Eh–pH diagrams were calculated and plotted using the Geochemist’s Workbench (GMB 9.0 software package. The Eh–pH diagrams of the Me–Se–H2O systems (where Me = Co, Ni, Fe, Cu, Pb, Zn, Cd, Hg, Ag, Bi, As, Sb, Al and Ca were plotted for the average contents of these elements in acidic waters in the oxidation zones of sulfide deposits. The possibility of the formation of Zn, Cd, Ag and Hg selenites under natural oxidation conditions in near surface environments is discussed.

  19. Conceptual and Numerical Modeling of Radionuclide Transport and Retention in Near-Surface Systems

    International Nuclear Information System (INIS)

    Pique, Angels; Arcos, David; Grandia, Fidel; Molinero, Jorge; Duro, Lara; Berglund, Sten

    2013-01-01

    Scenarios of barrier failure and radionuclide release to the near-surface environment are important to consider within performance and safety assessments of repositories for nuclear waste. A geological repository for spent nuclear fuel is planned at Forsmark, Sweden. Conceptual and numerical reactive transport models were developed in order to assess the retention capacity of the Quaternary till and clay deposits for selected radionuclides, in the event of an activity release from the repository. The elements considered were carbon (C), chlorine (Cl), cesium (Cs), iodine (I), molybdenum (Mo), niobium (Nb), nickel (Ni), radium (Ra), selenium (Se), strontium (Sr), technetium (Tc), thorium (Th), and uranium (U). According to the numerical predictions, the repository-derived nuclides that would be most significantly retained are Th, Ni, and Cs, mainly through sorption onto clays, followed by U, C, Sr, and Ra, trapped by sorption and/or incorporation into mineral phases

  20. Near-surface compressional and shear wave speeds constrained by body-wave polarization analysis

    Science.gov (United States)

    Park, Sunyoung; Ishii, Miaki

    2018-06-01

    A new technique to constrain near-surface seismic structure that relates body-wave polarization direction to the wave speed immediately beneath a seismic station is presented. The P-wave polarization direction is only sensitive to shear wave speed but not to compressional wave speed, while the S-wave polarization direction is sensitive to both wave speeds. The technique is applied to data from the High-Sensitivity Seismograph Network in Japan, and the results show that the wave speed estimates obtained from polarization analysis are compatible with those from borehole measurements. The lateral variations in wave speeds correlate with geological and physical features such as topography and volcanoes. The technique requires minimal computation resources, and can be used on any number of three-component teleseismic recordings, opening opportunities for non-invasive and inexpensive study of the shallowest (˜100 m) crustal structures.

  1. Corrosion behaviour of container materials for geological disposal of high level radioactive waste

    International Nuclear Information System (INIS)

    Accary, A.

    1985-01-01

    The disposal of high level radioactive waste in geological formations, based on the multibarrier concept, may include the use of a container as one of the engineered barriers. In this report the requirements imposed on this container and the possible degradation processes are reviewed. Further on an overview is given of the research being carried out by various research centres in the European Community on the assessment of the corrosion behaviour of candidate container materials. The results obtained on a number of materials under various testing conditions are summarized and evaluated. As a result, three promising materials have been selected for a detailed joint testing programme. It concerns two highly corrosion resistant alloys, resp. Ti-Pd (0.2 Pd%) and Hastelloy C4 and one consumable material namely a low carbon steel. Finally the possibilities of modelling the corrosion phenomena are discussed

  2. Preliminary concepts: materials management in an internationally safeguarded nuclear-waste geologic repository

    International Nuclear Information System (INIS)

    Ostenak, C.A.; Whitty, W.J.; Dietz, R.J.

    1979-11-01

    Preliminary concepts of materials accountability are presented for an internationally safeguarded nuclear-waste geologic repository. A hypothetical reference repository that receives nuclear waste for emplacement in a geologic medium serves to illustrate specific safeguards concepts. Nuclear wastes received at the reference repository derive from prior fuel-cycle operations. Alternative safeguards techniques ranging from item accounting to nondestructive assay and waste characteristics that affect the necessary level of safeguards are examined. Downgrading of safeguards prior to shipment to the repository is recommended whenever possible. The point in the waste cycle where international safeguards may be terminate depends on the fissile content, feasibility of separation, and practicable recoverability of the waste: termination may not be possible if spent fuels are declared as waste

  3. Near-surface flow of volcanic gases on Io

    International Nuclear Information System (INIS)

    Lee, S.W.; Thomas, P.C.

    1980-01-01

    Significant near-surface flow of gas several hundred kilometers from Pele (Plume 1) on Io is indicated by a series of bright, elongate albedo markings. Particles produced at small, local vents are apparently carried as much as 70 km farther 'downwind' from Pele. The gas densities and velocities necessary to suspend 0.1 to 10 micron particles at such a distance imply mass flow rates of 10 to the 7th - 10 to the 9th g/sec. Such flow rates are consistent with other estimates of mass transport by the plume. The large flow rates so far from the source allow an estimate of the rate of resurfacing of Io by lava flows and pyroclastics that is independent of estimates based on meteorite flux or on the amount of solids carried within the plumes themselves

  4. Near-surface segregation in irradiated Ni3Si

    International Nuclear Information System (INIS)

    Wagner, W.; Rehn, L.E.; Wiedersich, H.

    1982-01-01

    The radiation-induced growth of Ni 3 Si films on the surfaces of Ni(Si) alloys containing = 3 Si phase has been observed. Post-irradiation depth profiling by Auger electron spectroscopy, as well as in situ analysis by high-resolution Rutherford backscattering spectrometry, reveals Si-enrichment at the surfaces of Ni(Si) alloys in excess of stoichiometric Ni 3 Si during irradiation. Thin, near-surface layers with silicon concentrations of 28 to 30 at.% are observed, and even higher Si enrichment is found in the first few atom layers. Transmission electron microscopy and selected area-electron diffraction were employed to characterize these Si-enriched layers. A complex, multiple-spot diffraction pattern is observed superposed on the diffraction pattern of ordered Ni 3 Si. The d-spacings obtained from the extra spots are consistent with those of the orthohexagonal intermetallic compound Ni 5 Si 2 . (author)

  5. Unwrapped phase inversion for near surface seismic data

    KAUST Repository

    Choi, Yun Seok

    2012-11-04

    The Phase-wrapping is one of the main obstacles of waveform inversion. We use an inversion algorithm based on the instantaneous-traveltime that overcomes the phase-wrapping problem. With a high damping factor, the frequency-dependent instantaneous-traveltime inversion provides the stability of refraction tomography, with higher resolution results, and no arrival picking involved. We apply the instantaneous-traveltime inversion to the synthetic data generated by the elastic time-domain modeling. The synthetic data is a representative of the near surface seismic data. Although the inversion algorithm is based on the acoustic wave equation, the numerical examples show that the instantaneous-traveltime inversion generates a convergent velocity model, very similar to what we see from traveltime tomography.

  6. Near-surface groundwater responses to injection of geothermal wastes

    Energy Technology Data Exchange (ETDEWEB)

    Arnold, S.C.

    1984-06-01

    Experiences with injecting geothermal fluids have identified technical problems associated with geothermal waste disposal. This report assesses the feasibility of injection as an alternative for geothermal wastewater disposal and analyzes hydrologic controls governing the upward migration of injected fluids. Injection experiences at several geothermal developments are presented, including: Raft River, Salton Sea, East Mesa, Otake and Hatchobaru in Japan, and Ahuachapan in El Salvador. Hydrogeologic and design/operational factors affecting the success of an injection program are identified. Hydrogeologic factors include subsidence, near-surface effects of injected fluids, and seismicity. Design/operational factors include hydrodynamic breakthrough, condition of the injection system and reservoir maintenance. Existing and potential effects of production/injection on these factors are assessed.

  7. Fluctuation diamagnetism near surfaces and twinning planes in superconductors

    International Nuclear Information System (INIS)

    Burmistrov, S.N.; Dubovskii, L.B.

    1984-01-01

    Fluctuations of the magnetic moment and of the specific heat near surfaces and twinning planes in superconductors are studied. Fluctuations near a surface yield an additional contribution to the effect of the usual bulk fluctuations on the diamagnetic moment. Such an additional contribution has a singularity near a temperature T/sub c/3(H), which is higher than the bulk superconducting transition temperature in a magnetic field T/sub c/2(H). Depending on the strength of the magnetic field, the singularity of the additional contribution to the magnetic moment can be either logarithmic (strong fields) or of square-root type (weak fields). Experiments which could reveal the aforementioned anomalous behavior are discussed in detail

  8. Near-surface analysis with nuclear reactions and scattering

    International Nuclear Information System (INIS)

    Dunning, K.L.; Hirvonen, J.K.

    1974-01-01

    Very useful information about the elemental composition of solids in the surface and near-surface regions can be obtained with small accelerators and suitable auxiliary apparatus. Two methods which produce data from which quantitative concentration depth profiles can be constructed and which have been used extensively at this laboratory are: nuclear resonance profiling and Rutherford backscattering. The first method is described in detail. Data are given on profiles of Al and Al + Na films implanted on silicon substrates. Rutherford backscattering spectra for chromium implanted into silicon dioxide are used to illustrate the improved depth sensitivity that can be obtained with a magnetic spectrometer in depth concentration profiles of heavy impurities relative to that obtainable with a conventional semiconductor detector

  9. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han; Guo, Bowen; Hanafy, Sherif; Lin, Fan-Chi; Schuster, Gerard T.

    2014-01-01

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps

  10. Complementary modelling of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    Energy Technology Data Exchange (ETDEWEB)

    Sena, Clara; Grandia, Fidel; Arcos, David; Molinero, Jorge; Duro, Lara (Amphos XXI Consulting S.L., Barcelona (Spain))

    2008-10-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting a comprehensive geoscientific characterization of two alternative sites to allocate a deep geological repository of high level nuclear waste. The Site Characterization Program also includes the near-surface systems, which are expected to constitute the last geological barrier between the repository system and the earth's surface. The evaluation of the retention capacity of the near surface systems is, therefore, very relevant for the site characterization program. From the geological point of view, near-surface systems in the Forsmark area consist of Quaternary deposits that overlay a granitic bedrock. Glacial till is the most abundant outcropping Quaternary deposit (approx75% of surface extension) and the remainder is made up of clayey materials (glacial and post-glacial clays). These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time scale considered in this work, is calcium carbonate (calcite). This mineral is found along with clay minerals (e.g. illite) and Fe(III) hydroxides. In contrast, glacial and post-glacial clays are basically composed of illite with minor amounts of calcium carbonate, and containing organic matter-rich levels (gyttja) which can promote reducing conditions in the system. The assessment of the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark was developed in an earlier work, that focused on the evaluation of the capacity of the Quaternary deposits for radionuclide retention. The work reported here is an improvement of the geochemical conceptual and numerical model already presented, based on data available in the Site Descriptive Model v 1.2 (Forsmark). Regarding the geochemical variability of the Quaternary deposits present at Forsmark and its implications on radionuclide mobility through the near-surface systems, a

  11. Mechanisms of interfacial reactivity in near surface and extreme environments

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Ying [Univ. of California, San Diego, CA (United States); Balaska, Eric [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weare, John [Univ. of California, San Diego, CA (United States); Fulton, John [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bogatko, Stuart [Univ. of California, San Diego, CA (United States); Balasubramanian, Mahalingam [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Cauet, Emilie [Univ. of California, San Diego, CA (United States); Kerisit, Sebastien [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Felmy, Andrew [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Schenter, Gregory [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Weare, Jonathan [U of Chicago

    2017-01-09

    +, Co2+, Mn2+, Fe3+, Cr3+. Calculations on these systems are demanding because of their open electronic shells, and high ionic charge. Principal Investigator: Professor John Weare (University of California, San Diego) The prediction of the interactions of geochemical fluids with minerals, nanoparticles, and colloids under extreme near surface conditions of temperature (T) and pressure (P) is a grand challenge research need in geosciences (U.S. DOE 2007, Basic Research Needs for Geosciences: Facilitating the 21st Energy Systems.). To evaluate the impact of these processes on energy production and management strategies it is necessary to have a high level of understanding of the interaction between complex natural fluids and mineral formations. This program emphasizes 1st principle parameter free simulations of complex chemical processes in solutions, in the mineral phase, and in the interfaces between these phases The development of new computational tools (with emphasis on oxide materials and reaction dynamics) tailored to treat wide range of conditions and time scales experienced in such geochemical applications is has been developed. Because of the sensitivity of the interaction in these systems to electronic structure and local bonding environments, and of the need to describe bond breaking/formation, our simulations are based on interactions calculated at the electronic structure level (ab-initio molecular dynamics, AIMD). The progress in the computational aspects of program may be summarized in terms of the following themes (objectives); Development of efficient parameter free dynamical simulation technology based on 1st principles force and energy calculations especially adapted for geochemical applications (e.g., mineral, interfaces and aqueous solutions) (continuing program); Calculation of the dynamics of water structure of in the surface-water interface of transition metal oxides and oxihydroxides; and

  12. Materials interactions relating to long-term geologic disposal of nuclear waste glass

    International Nuclear Information System (INIS)

    Bibler, N.E.; Jantzen, C.M.

    1987-01-01

    In the geologic disposal of nuclear waste glass, the glass will eventually interact with groundwater in the repository system. Interactions can also occur between the glass and other waste package materials that are present. These include the steel canister that holds the glass, the metal overpack over the canister, backfill materials that may be used, and the repository host rock. This review paper systematizes the additional interactions that materials in the waste package will impose on the borosilicate glass waste form-groundwater interactions. The repository geologies reviewed are tuff, salt, basalt, and granite. The interactions emphasized are those appropriate to conditions expected after repository closure, e.g. oxic vs anoxic conditions. Whenever possible, the effect of radiation from the waste form on the interactions is examined. The interactions are evaluated based on their effect on the release and speciation of various elements including radionuclides from the glass. It is noted when further tests of repository interactions are needed before long-term predictions can be made. 63 references, 1 table

  13. Research Note : Near-surface layer replacement for sparse data: Is interpolation needed?

    NARCIS (Netherlands)

    Sun, Yimin; Verschuur, D.J.; Luo, Yi

    2017-01-01

    Near-surface problem is a common challenge faced by land seismic data processing, where often, due to near-surface anomalies, events of interest are obscured. One method to handle this challenge is near-surface layer replacement, which is a wavefield reconstruction process based on downward

  14. A study on nuclide migration in buffer materials and rocks for geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sato, Haruo

    1998-01-01

    This thesis summarizes the results investigated in order to establish a basic theory on the predictive method of diffusion coefficients of nuclides in compacted sodium bentonite which is a candidate buffer material and in representative rocks for the geological disposal of radioactive waste by measuring the pore structural factors of the compacted bentonite and rocks such as porosity and tortuosity, measuring diffusion coefficients of nuclides in the bentonite and rocks, acquiring basic data on diffusion and developing diffusion models which can quantitatively predict nuclide migration in long-term. (J.P.N.). 117 refs

  15. Platinum stable isotope analysis of geological standard reference materials by double-spike MC-ICPMS

    DEFF Research Database (Denmark)

    Creech, John Benjamin; Baker, J. A.; Handler, M. R.

    2014-01-01

    . Double-spiking of samples was carried out prior to digestion and chemical separation to correct for any mass-dependent fractionation that may occur due to incomplete recovery of Pt. Samples were digested using a NiS fire assay method, which pre-concentrates Pt into a metallic bead that is readily...... metal standard solution doped with a range of synthetic matrices and results in Pt yields of ≥90% with purity of ≥95%. Using this chemical separation technique, we have separated Pt from 11 international geological standard reference materials comprising of PGE ores, mantle rocks, igneous rocks and one...

  16. Raw materials for the energy supply of the future. Geology, markets, environmental influences

    International Nuclear Information System (INIS)

    Hagelueken, Christian; Thauer, Rudolf K.; Buchholz, Peter; Gutzmer, Jens; Littke, Ralf; Angerer, Gerhard; Wellmer, Friedrich-Wilhelm

    2015-01-01

    More and more metals are needed to expand modern energy technologies, but we can not completely dispense with fossil raw materials and biomass in the near future either. Are the incidence of the conversion of energy sources sufficient? The analysis of the academy project ''Energy Systems of the Future'' (ESYS) comes to the conclusion that geologically enough raw materials are available. The challenge, however, is to make the supply safe, affordable and environmentally and socially compatible. The analysis explains the mechanisms of action on the global commodity markets and identifies supply risks. These include, for example, sudden demand on the international markets as well as the unequal distribution of the world's raw material reserves. This is followed by the analysis approaches, in order to recognize warning signals for potential raw material bottlenecks in time, to develop evasive strategies and to secure the raw material supply for the energy turnarounds. For example, the expansion of recycling can help to reduce the dependence on metal imports. In mining, on the other hand, innovative technologies have to be developed in order to improve the exploration and utilization of the deposits. By establishing binding environmental and social standards, the extraction of raw materials could also become more sustainable. The analysis also highlights the importance of bioenergy and fossil raw materials, such as oil and natural gas, for energy generation. The authors describe the advantages and disadvantages of these energy carriers and the measures that can be used to reduce environmental pollution such as greenhouse gas emissions. [de

  17. Near-surface neotectonic deformation associated with seismicity in the northeastern United States

    International Nuclear Information System (INIS)

    Alexander, S.S.; Gold, D.P.; Gardner, T.W.; Slingerland, R.L.; Thornton, C.P.

    1989-10-01

    For the Lancaster, PA seismic zone a multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface geological and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and 10--20 km in width. Anomalies associated with this zone include distinctive lineament and surface erosional patterns; geologically recent uplift evidenced by elevations of stream terraces along the Susquehanna River; and localized contemporary travertine deposits in streams down-drainage from the inferred active fault zone. In the Moodus seismic zone the frequency of tectonically-controlled lineaments was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the orientation of the maximum horizontal stress direction (N80-85E) recently determined from in-situ stress measurements in a 1.5 km-deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms. 284 refs., 33 figs

  18. Near-surface neotectonic deformation associated with seismicity in the northeastern United States

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, S.S.; Gold, D.P.; Gardner, T.W.; Slingerland, R.L.; Thornton, C.P. (Pennsylvania State Univ., University Park, PA (USA). Dept. of Geosciences)

    1989-10-01

    For the Lancaster, PA seismic zone a multifaceted investigation revealed several manifestations of near-surface, neotectonic deformation. Remote sensing data together with surface geological and geophysical observations, and recent seismicity reveal that the neotectonic deformation is concentrated in a NS-trending fault zone some 50 km in length and 10--20 km in width. Anomalies associated with this zone include distinctive lineament and surface erosional patterns; geologically recent uplift evidenced by elevations of stream terraces along the Susquehanna River; and localized contemporary travertine deposits in streams down-drainage from the inferred active fault zone. In the Moodus seismic zone the frequency of tectonically-controlled lineaments was observed to increase in the Moodus quadrangle compared to adjacent areas and dominant lineament directions were observed that are perpendicular and parallel to the orientation of the maximum horizontal stress direction (N80-85E) recently determined from in-situ stress measurements in a 1.5 km-deep borehole in the seismic zone and from well-constrained earthquake focal mechanisms. 284 refs., 33 figs.

  19. Near-surface 3D reflections seismic survey; Sanjigen senso hanshaho jishin tansa

    Energy Technology Data Exchange (ETDEWEB)

    Nakahigashi, H; Mitsui, H; Nakano, O; Kobayashi, T [DIA Consultants Co. Ltd., Tokyo (Japan)

    1997-05-27

    Faults are being actively investigated across Japan since the Great Hanshin-Awaji Earthquake. Discussed in this report is the application of the 3D near-surface reflection seismic survey in big cities. Data from trenching and drilling is used for the geological interpretation of the surroundings of a fault, and the reflection seismic survey is used to identify the position, etc., of the fault. In this article, when the results obtained from the experimental field are examined, it is found that the conventional 2D imaging reflection survey betrays the limit of its capability when the geological structure is complicated, that the 3D reflection seismic survey, on the contrary, is capable of high-precision imaging and, when augmented by drilling, etc., becomes capable of a more detailed interpretation, and that it also contributes effectively to the improvement of local disaster prevention in big cities. Using as the model the Tachikawa fault that runs near JR Tachikawa Station, embodiment of the 3D reflection seismic survey is reviewed. For the acquisition of data excellent in quality in a 3D reflection seismic survey conducted utilizing the roads in the sector chosen for experiment in the urban area, the shock generating points and receiving points should be positioned by taking into account the parameters in the bin arranging process so that the mid-points will be regularly distributed on the surface. 3 refs., 11 figs., 1 tab.

  20. Data-driven exploration of copper mineralogy and its application to Earth's near-surface oxidation

    Science.gov (United States)

    Morrison, S. M.; Eleish, A.; Runyon, S.; Prabhu, A.; Fox, P. A.; Ralph, J.; Golden, J. J.; Downs, R. T.; Liu, C.; Meyer, M.; Hazen, R. M.

    2017-12-01

    Earth's atmospheric composition has changed radically throughout geologic history.1,2 The oxidation of our atmosphere, driven by biology, began with the Great Oxidation Event (GOE) 2.5 Ga and has heavily influenced Earth's near surface mineralogy. Therefore, temporal trends in mineral occurrence elucidate large and small scale geologic and biologic processes. Cu, and other first-row transition elements, are of particular interest due to their variation in valance state and sensitivity to ƒO2. Widespread formation of oxidized Cu mineral species (Cu2+) would not have been possible prior to the GOE and we have found that the proportion of oxidized Cu minerals increased steadily with the increase in atmospheric O2 on Earth's surface (see Fig. 1). To better characterize the changes in Cu mineralogy through time, we have employed advanced analytical and visualization methods. These techniques rely on large and growing mineral databases (e.g., rruff.info, mindat.org, earthchem.org, usgs.gov) and allow us to quantify and visualize multi-dimensional trends.5

  1. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    International Nuclear Information System (INIS)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de

    2013-02-01

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of 135 Cs, 59 Ni, 230 Th and 226 Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a tendency to

  2. Updated model for radionuclide transport in the near-surface till at Forsmark - Implementation of decay chains and sensitivity analyses

    Energy Technology Data Exchange (ETDEWEB)

    Pique, Angels; Pekala, Marek; Molinero, Jorge; Duro, Lara; Trinchero, Paolo; Vries, Luis Manuel de [Amphos 21 Consulting S.L., Barcelona (Spain)

    2013-02-15

    The Forsmark area has been proposed for potential siting of a deep underground (geological) repository for radioactive waste in Sweden. Safety assessment of the repository requires radionuclide transport from the disposal depth to recipients at the surface to be studied quantitatively. The near-surface quaternary deposits at Forsmark are considered a pathway for potential discharge of radioactivity from the underground facility to the biosphere, thus radionuclide transport in this system has been extensively investigated over the last years. The most recent work of Pique and co-workers (reported in SKB report R-10-30) demonstrated that in case of release of radioactivity the near-surface sedimentary system at Forsmark would act as an important geochemical barrier, retarding the transport of reactive radionuclides through a combination of retention processes. In this report the conceptual model of radionuclide transport in the quaternary till at Forsmark has been updated, by considering recent revisions regarding the near-surface lithology. In addition, the impact of important conceptual assumptions made in the model has been evaluated through a series of deterministic and probabilistic (Monte Carlo) sensitivity calculations. The sensitivity study focused on the following effects: 1. Radioactive decay of {sup 135}Cs, {sup 59}Ni, {sup 230}Th and {sup 226}Ra and effects on their transport. 2. Variability in key geochemical parameters, such as the composition of the deep groundwater, availability of sorbing materials in the till, and mineral equilibria. 3. Variability in hydraulic parameters, such as the definition of hydraulic boundaries, and values of hydraulic conductivity, dispersivity and the deep groundwater inflow rate. The overarching conclusion from this study is that the current implementation of the model is robust (the model is largely insensitive to variations in the parameters within the studied ranges) and conservative (the Base Case calculations have a

  3. Effect of grinding and polishing on near-surface phase transformations in zirconia

    International Nuclear Information System (INIS)

    Reed, J.S.; Lejus, A.M.

    1977-01-01

    The transformation of near-surface material on grinding and polishing has been investigated in sintered zirconia of 1 μm grain size and 99 percent density containing 4.5 and 7.0 mole percent Y 2 O 3 . Rough wet and dry grinding transformed about 20 percent cubic phase into 18 percent tetragonal and 2 percent monoclinic in material initially 47 percent cubic and 53 percent tetragonal (4.5 mole percent Y 2 O 3 ) but no change of phase in material that was fully cubic (7.0 mole percent Y 2 O 3 ). Annealing and polishing reduced lattice strain but only polishing reduced the concentration of monoclinic and tetragonal phases. Microhardness studies indicated that lattice strain and the phase transformations increased the penetration hardness to a depth of about 4 μm

  4. International Atomic Energy Agency (IAEA) initiatives: Records management for deep and near surface geologic repositories

    International Nuclear Information System (INIS)

    Warner, P.J.

    1996-01-01

    The international scientific community has long had an interest in determining methods by which information regarding nuclear waste repositories, and the inherent danger to humanity, could be passed from generation to generation and society to society. Because nuclear waste will remain radioactive for thousands of years future generations must be warned of the dangers thus eliminating intentional or inadvertent intrusion. Member States of the IAEA have determined that the principle safety of such sites must not rely solely on long term institutional arrangements for the retention of information. It is believed that repository siting, design, operation and postoperation information should be gathered, managed and retained so that this information remains accessible to future societies over a very long period of time. The radionuclide life is 10,000 years; thus the retention of information continues beyond current societies, cultures and languages, and must be continually migrated to new retrieval technologies to assure access

  5. Well materials durability in case of carbon dioxide and hydrogen sulphide geological sequestration

    International Nuclear Information System (INIS)

    Jacquemet, N.

    2006-01-01

    The geological sequestration of carbon dioxide (CO 2 ) and hydrogen sulphide (H 2 S) is a promising solution for the long-term storage of these undesirable gases. It consists in injecting them via wells into deep geological reservoirs. The steel and cement employed in the well casing can be altered and provide pathways for leakage with subsequent human and environmental consequences. The materials ageing was investigated by laboratory experiments in geologically relevant P-T conditions. A new experimental and analysis procedure was designed for this purpose. A numerical approach was also done. The cement and steel were altered in various fluid phases at 500 bar-120 C and 500 bar-200 C: a brine, a brine saturated with H 2 S-CO 2 , a mixture of brine saturated with H 2 S-CO 2 and of supercritical H 2 S-CO 2 phase, a dry supercritical H 2 S-CO 2 phase without liquid water. In all cases, two distinct reactions are observed: the cement carbonation by the CO 2 and the steel sulfidation by the H 2 S. The carbonation and sulfidation are respectively maximal and minimal when they occur within the dry supercritical phase without liquid water. The textural and porosity properties of the cement are weakly affected by all the treatments at 120 C. The porosity even decreases in presence of H 2 S-CO 2 . But these properties are affected at 200 C when liquid water is present in the system. At this temperature, the initial properties are only preserved or improved by the treatments within the dry supercritical phase. The steel is corroded in all cases and thus is the vulnerable material of the wells. (author)

  6. Duplex sonography of the near-surface leg veins; Duplexsonographie der oberflaechlichen Beinvenen

    Energy Technology Data Exchange (ETDEWEB)

    Mendoza, E.

    2007-07-01

    The book contains the following contributions: The ultrasonograph, selection of the ultrasonic transducer, anatomy of the near-surface vein system, physiology of the near-surface vein system, varicose status classification, systematics of the duplex sonography of near-surface leg veins, provocational maneuver for the duplex sonographic varicose diagnostics, exploration of vena saphena parva, perforans veins, side branches, phlebitis, sonography for varicose therapy, postsurgical sonography, deep leg veins, examination of near-surface leg veins for the pathology of the deep vein system, differential diagnostic clarification of leg oedema from the phlebologic-lymphological view, diagnostic side features along the near-surface leg veins.

  7. Safety indicators used to prove the role of natural barrier for Saligny near surface disposal system

    International Nuclear Information System (INIS)

    Niculae, Ortenzia; Durdun, I.; Ionita, Gh.

    2007-01-01

    Full text: The siting process for a near surface repository suitable for the radioactive waste resulted from Cernavoda NPP operation and decommissioning (low level radioactive waste with small amounts of long lived radionuclides) started in 1992 and it included the collection of data from specific field and laboratory works for each site selection stage as well as different safety performance evaluation. According to the IAEA standards (Safety Guide No.111-G-3.1, 1994), the purpose of the siting process is not to get the best solution but to find out 'an acceptable solution, with sufficient safety reserves'. Since 1996, detailed field and investigation works were performed in Saligny preferred site including an experimental area to test the improvement method proposed for the foundation ground of repository, as well as detailed performance assessments using specific computer codes. The paper presents the results of recent performance assessments for the natural barrier of disposal system. The calculations were done using HYDRUS 2D, FEHM and AMBER computer codes. The endpoint of the Safety Report for Siting a Near Surface Repository at Saligny Site [CITON and SCN, Safety Report for Siting a Near Surface Repository at Saligny Site, 2007, pages 8.2.1-1 to 8.2.1-22 and 8-63 to 8-70] was the assessment of safety indicators. Individual annual effective dose for exposed peoples (both workers and general public) was the main safety indicator. In the same document, the radionuclide concentration in the disposal system compartments has been evaluated, as supplementary safety indicator of repository barriers (especially to confirm the natural barrier performance). The results confirmed the performance of natural barrier: the maximum extension of H-3 and Co-60 contaminant plume after repository closure remains more above underground water level. In the aquifer, iodine concentration reaches a value of 10 -15 mol/l, at the same magnitude order with the admitted limit from CFR

  8. Near Surface CO2 Triple Oxygen Isotope Composition

    Directory of Open Access Journals (Sweden)

    Sasadhar Mahata

    2016-02-01

    Full Text Available The isotopic composition of carbon dioxide in the atmosphere is a powerful tool for constraining its sources and sinks. In particular, the 17O oxygen anomaly [Δ17O = 1000 × ln(1 + δ17O/1000 - 0.516 × 1000 × ln(1 + δ18O/1000], with a value > 0.5‰ produced in the middle atmosphere, provides an ideal tool for probing the exchange of carbon dioxide between the biosphere/hydrosphere and atmosphere. The biosphere/hydrosphere and anthropogenic emissions give values ≤ 0.3‰. Therefore, any anomaly in near surface CO2 would reflect the balance between stratospheric input and exchange with the aforementioned surface sources. We have analyzed Δ17O values of CO2 separated from air samples collected in Taipei, Taiwan, located in the western Pacific region. The obtained mean anomaly is 0.42 ± 0.14‰ (1-σ standard deviation, in good agreement with model prediction and a published decadal record. Apart from typically used δ13C and δ18O values, the Δ17O value could provide an additional tracer for constraining the carbon cycle.

  9. Enlargement of the Baldone near-surface radioactive waste repository

    International Nuclear Information System (INIS)

    Dreimanis, A.

    2007-01-01

    A unified analysis of the enlargement of the Baldone near-surface radioactive waste (RW) repository RADONS considers the interplay of the existing engineering, safety and infrastructure premises, with the foreseen newly socio-technical features. This enlargement consists in construction of two additional RW disposal vaults and in building a long-term storage facility for spent sealed sources at the RADONS territory. Our approach is based on consecutive analysis of following basic elements: - the origin of enlargement - the RADONS safety analysis and a set of optimal socio-technical solutions of Salaspils research reactor decommissioning waste management; - the enlargement - a keystone of the national RW management concept, including the long-term approach; - the enlargement concept - the result of international co-operation and obligations; - arrangement optimization of new disposal and storage space; - environmental impact assessment for the repository enlargement - the update of socio-technical studies. The study of the public opinion revealed: negative attitude to repository enlargement is caused mainly due to missing information on radiation level and on the RADONS previous operations. These results indicate: basic measures to improve the public attitude to repository enlargement: the safety upgrade, public education and compensation mechanisms. A detailed stakeholders engagement and public education plan is elaborated. (author)

  10. Preliminary results report: Conasauga near-surface heater experiment

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-06-01

    From November 1977 to August 1978, two near-surface heater experiments were operated in two somewhat different stratigraphic sequences within the Conasauga formation which consist predominantly of shale. Specific phenomena investigated were the thermal and mechanical responses of the formation to an applied heat load, as well as the mineralogical changes induced by heating. Objective was to provide a minimal integrated field and laboratory study that would supply a data base which could be used in planning more expensive and complex vault-type experiments in other localities. The experiments were operated with heater power levels of between 6 and 8 kW for heater mid-plane temperatures of 385 0 C. The temperature fields within the shale were measured and analysis is in progress. Steady state conditions were achieved within 90 days. Conduction appears to be the principal mechanism of heat transport through the formation. Limited mechanical response measurements consisting of vertical displacement and stress data indicate general agreement with predictions. Posttest data, collection of which await experiment shutdown and cooling of the formation, include the mineralogy of posttest cores, posttest transmissivity measurements and corrosion data on metallurgical samples

  11. Upgrading of radon's type near surface repository in Latvia

    International Nuclear Information System (INIS)

    Abramenkovs, A.

    2006-01-01

    In 1959, the Soviet government decided to construct the near surface radioactive wastes repository 'Radons' near the Baldone city. It was put in operation in 1962. The changes in the development of the repository were induced by the necessarily to upgrade it for disposal of radioactive wastes from the decommissioning of the Salaspils Research Reactor (SRR). The safety assessment of repository was performed during 2000-2001 under the PHARE project for necessary upgrades of repository. The outline design for new vaults and interim storage for long lived radioactive wastes was elaborated during 2003-2004 years. The Environmental Impact Assessment (EIA) for upgrade of Baldone repository was performed during 2004-2005 years. It was found, that additional efforts must be devoted for solution of social aspects o for successful operation and upgrade of repository. It was shown by EIA, that the local population has a negative opinion against the upgrade of repository in Latvia. The main recommendations for upgrades were connected with increasing the safety of repository, increasing of PR activities for education of society and developing of compensation mechanism for local municipality. (author)

  12. Atomic absorption spectrometric determination of copper, zinc, and lead in geological materials

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1976-01-01

    An atomic absorption spectrometric method is described for the determination of copper, zinc, and lead in geological materials. The sample is digested with HF-HCl-H2O2; the final solution for analysis is in 10 % (v/v) HCl. Copper and zinc are determined directly by aspirating the solution into an air-acetylene flame. A separate aliquot of the solution is used for determination of lead; lead is extracted into TOPO-MIBK from the acidic solution in the presence of iodide and ascorbic acid. For a 0.50-g sample, the limits of determination are 10-2000 p.p.m. for Cu and Zn, and 5-5000 p.p.m. for Pb. As much as 40 % Fe or Ca. and 10 % Al, Mg, or Mn in the sample do not interfere. The proposed method can be applied to the determination of copper, zinc, and lead in a wide range of geological materials including iron- and manganese-rich, calcareous and carbonate samples. ?? 1976.

  13. Strategies for Detecting Hidden Geothermal Systems by Near-Surface Gas Monitoring

    Energy Technology Data Exchange (ETDEWEB)

    Lewicki, Jennifer L.; Oldenburg, Curtis M.

    2004-12-15

    the near-surface environment include (1) the infrared gas analyzer (IRGA) for measurement of concentrations at point locations, (2) the accumulation chamber (AC) method for measuring soil CO2 fluxes at point locations, (3) the eddy covariance (EC) method for measuring net CO2 flux over a given area, (4) hyperspectral imaging of vegetative stress resulting from elevated CO2 concentrations, and (5) light detection and ranging (LIDAR) that can measure CO2 concentrations over an integrated path. Technologies currently in developmental stages that have the potential to be used for CO2 monitoring include tunable lasers for long distance integrated concentration measurements and micro-electronic mechanical systems (MEMS) that can make widespread point measurements. To address the challenge of detecting potentially small-magnitude geothermal CO2 emissions within the natural background variability of CO2, we propose an approach that integrates available detection and monitoring methodologies with statistical analysis and modeling strategies. Within the area targeted for geothermal exploration, point measurements of soil CO2 fluxes and concentrations using the AC method and a portable IRGA, respectively, and measurements of net surface flux using EC should be made. Also, the natural spatial and temporal variability of surface CO2 fluxes and subsurface CO2 concentrations should be quantified within a background area with similar geologic, climatic, and ecosystem characteristics to the area targeted for geothermal exploration. Statistical analyses of data collected from both areas should be used to guide sampling strategy, discern spatial patterns that may be indicative of geothermal CO2 emissions, and assess the presence (or absence) of geothermal CO2 within the natural background variability with a desired confidence level. Once measured CO2 concentrations and fluxes have been determined to be of anomalous geothermal origin with high confidence, more expensive vertical

  14. The monostandard method in thermal neutron activation analysis of geological, biological and environmental materials

    International Nuclear Information System (INIS)

    Alian, A.; Djingova, R.G.; Kroener, B.; Sansoni, B.

    1984-01-01

    A simple method is described for instrumental multielement thermal neutron activation analysis using a monostandard. For geological and air dust samples, iron is used as a comparator, while sodium has advantages for biological materials. To test the capabilities of this method, the values of the effective cross sections of the 23 elements determined were evaluated in a reactor site with an almost pure thermal neutron flux of about 9x10 12 nxcm -2 xs -1 and an epithermal neutron contribution of less than 0.03%. The values obtained were found to agree mostly well with the best literature values of thermal neutron cross sections. The results of an analysis by activation in the same site agree well with the relative method using multielement standards and for several standard reference materials with certified element contents. A comparison of the element contents obtained by the monostandard and relative methods together with corresponding precisions and accuracies is given. (orig.) [de

  15. Design and operational considerations of United States commercial near-surface low-level radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Birk, S.M.

    1997-10-01

    In accordance with the Low-Level Radioactive Waste Policy Amendments Act of 1985, states are responsible for providing for disposal of commercially generated low-level radioactive waste (LLW) within their borders. LLW in the US is defined as all radioactive waste that is not classified as spent nuclear fuel, high-level radioactive waste, transuranic waste, or by-product material resulting from the extraction of uranium from ore. Commercial waste includes LLW generated by hospitals, universities, industry, pharmaceutical companies, and power utilities. LLW generated by the country''s defense operations is the responsibility of the Federal government and its agency, the Department of Energy. The commercial LLRW disposal sites discussed in this report are located near: Sheffield, Illinois (closed); Maxey Flats, Kentucky (closed); Beatty, Nevada (closed); West Valley, New York (closed); Barnwell, South Carolina (operating); Richland, Washington (operating); Ward Valley, California, (proposed); Sierra Blanca, Texas (proposed); Wake County, North Carolina (proposed); and Boyd County, Nebraska (proposed). While some comparisons between the sites described in this report are appropriate, this must be done with caution. In addition to differences in climate and geology between sites, LLW facilities in the past were not designed and operated to today''s standards. This report summarizes each site''s design and operational considerations for near-surface disposal of low-level radioactive waste. The report includes: a description of waste characteristics; design and operational features; post closure measures and plans; cost and duration of site characterization, construction, and operation; recent related R and D activities for LLW treatment and disposal; and the status of the LLW system in the US

  16. Evaluation of performance of barrier materials in geological disposal of radioactive waste

    International Nuclear Information System (INIS)

    Sasakura, Takeshi; Kobayashi, Ichizo

    2004-01-01

    It is important to evaluate the hydraulic and mechanical performance of barrier materials for geological disposal of radioactive waste. Many experiments on the hydraulic and mechanical performance of barrier materials have been implemented. However, both the ordinary water head-controlled permeability test for evaluating hydraulic performance and the oedometer test for obtaining the mechanical properties are usually needed. In this study, the flow pump permeability test was applied to various barrier materials with the purpose of quickly evaluating their hydraulic performance. The flow pump permeability test was shown to be applicable to every barrier material employed in this study, of which the coefficient of permeability ranged from 10-7 to 10-14 m/sec. The time needed to obtain the coefficient of permeability was about 1/8 that of ordinary head-controlled permeability tests. The resulting coefficient of permeability was more accurate than that from the standard water head-controlled permeability test. Moreover, the bentonite-engineered barrier materials were subjected to a constant strain rate consolidation test, which is a method to quickly evaluate the mechanical performance. The results of the consolidation tests were consistent with the results of the oedometer tests and the necessary time for the test was reduced to only four days even in case of Na-ben-tonite, for which a couple of months was necessary with the standard oedometer test. (author)

  17. Near-surface eddy dynamics in the Southern Ocean

    Directory of Open Access Journals (Sweden)

    Marilisa Trani

    2011-12-01

    Full Text Available The Antarctic Circumpolar Current (ACC is a crucial component of the global ocean conveyor belt, acting as a zonal link among the major ocean basins but, to some extent, limiting meridional exchange and tending to isolate the ocean south of it from momentum and heat income. In this work we investigate one of the most important mechanisms contributing to the poleward transfer of properties in the Southern Ocean, that is the eddy component of the dynamics. For this particular purpose, observations obtained from near-surface drifters have been used: they represent a very useful data set to analyse the eddy field because of their ability to catch a large number of scales of motion while providing a quasi-synoptic coverage of the investigated area. Estimates of the eddy heat and momentum fluxes are carried out using data taken from the Global Drifter Program databank; they refer to Surface Velocity Program drifter trajectories collected in the area south of 35°S between 1995 and 2006. Eddy kinetic energies, variance ellipses, momentum and heat fluxes have been calculated using the pseudo-Eulerian method, showing patterns in good agreement with those present in the literature based on observational and model data, although there are some quantitative differences. The eddy fluxes have been separated into their rotational and divergent portions, the latter being responsible for the meridional transports. The associated zonal and depth-exponentially integrated meridional heat transport exhibits values spanning over a range between -0.4 PW and –1.1 PW in the ACC region, consistent with previous estimates.

  18. Experimental Research on The Deformability of a Geological Material: Initial Characterisation and Identification of Parameters

    International Nuclear Information System (INIS)

    Villar, M.V.; Udias, A.; Canamon, I.; Robles, J.

    2006-01-01

    This document reflects the work performed at CIEMAT (Engineered and Geological Barriers Group) in the framework of the RTD Project BTE2002-04244-C02-02 (DEF-NOSAT). The first phase of the project consisted on the selection and characterisation of a geological material fitted for unsaturated triaxial testing. The result obtained during this phase gave place to the selection of a silty clay from Alcala de Henares (Madrid, Spain). Compaction and permeability tests were performed as well as studies on mixtures of this soil with sand. With the selected mixtures (70/30 and 50/50 percent sand/soil) isotropic compression tests were carried out in the saturated sample. The results of these tests have allowed the determination of some of the parameters needed to model the mechanical behaviour of the soil. The report includes also a brief description of a methodology developed in the Department of Applied Mathematics and Computer Methods of the Universidad Politecnica de Madrid for getting these parameters by optimisation of the experimental results, as well as the results obtained. (Author) 25 refs

  19. Determination of copper in geological materials by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1981-01-01

    X-ray fluorescence has been applied to the determination of copper content of geological materials in the concentration range of 0.01 to % CuO. A molybdenum target tube Is used, samples being presented in finely-ground powder form. Various methods for the correction for background and Instrumental copper interferences have been considered. To correct for matrix effects different tube scattered primary radiations have been tested as references or internal standards. MoK(41 - (C) provides the most suitable results. The use of influence empirical coefficients for the effect of iron on copper and of mass absorption coefficients has also been considered. For samples with a high content of lead, several procedures to correct for I t s influence have been investigated. Comparison between data obtained by X-ray fluorescence and wet-chemical techniques indicated good agreement. (Author) 6 refs

  20. Determination of rubidium and strontium in geological materials by X-Ray fluorescence spectrometry

    International Nuclear Information System (INIS)

    Roca, M.

    1979-01-01

    In order to determine whole-rock ages by the Rb/Sr procedure, an X-ray fluorescence spectrometry method for the determination of both elements has been developed. The samples are pressed into boric acid backed and ringed pellets with this material as a binding agent. Matrix corrections are made following the determination od the mass absorption coefficients, based on the intensity of the Compton-scattered peak of MoKα. or MoKβ 1 .3. The U. S. Geological Survey granodiorite GSP-1 is used as a reference standard. Spectral-line interferences have been carefully studied and the empirical correction factors determined. A BASIC language program for calculating the Rb and Sr concentrations and the Rb/Sr ratios has been written. (Author) 7 refs

  1. Apollo 15 clastic materials and their relationship to local geologic features

    Science.gov (United States)

    Fruchter, J. S.; Stoeser, J. W.; Lindstrom, M. M.; Goles, G. G.

    1973-01-01

    Ninety sub-samples of Apollo 15 materials have been analyzed by instrumental neutron activation analysis techniques for as many as 21 elements. Soil and soil breccia compositions show considerable variation from station to station although at any given station the soils and soil breccias were compositionally very similar to one another. Mixing model calculations show that the station-to-station variations can be related to important local geologic features. These features include the Apennine Front, Hadley Rille and the ray from the craters Aristillus or Autolycus. Compositional similarities between soils and soil breccias at the Apollo 15 site indicate that the breccias and soils are related in some fundamental way, although the exact nature of this relationship is not yet fully understood.

  2. Selection of a Site for a Near-Surface Disposal Facility: A Joint Report on Characterization of Sites

    International Nuclear Information System (INIS)

    Motiejunas, S.; Cernakauskas, P.

    2005-01-01

    Report describes general and safety-relevant environmental conditions of investigated sites and provides an overview of information concerning wastes to be disposed of. Safety relevant design aspects are given in the Project Report on Reference Design for a Near-Surface Disposal Facility for Low-and Intermediate-Level Short-Lived Radioactive Waste in Lithuania. This Report summarizes results of investigations performed during 2003-2005 by a number of researchers and evaluated by RATA. The work was performed by the Institute of Geology and Geography, the Lithuanian Energy Institute, Vilnius University, the Institute of Chemistry, UAB Grota, the Lithuanian Geological Survey, Swedish consultants from Geodevelopment, SKB and SKI-ICP, and generalized by RATA

  3. NATO Advanced Research Workshop on Chemical Instabilities : Applications in Chemistry, Engineering, Geology, and Materials Science

    CERN Document Server

    Baras, F

    1984-01-01

    On March 14-18, 1983 a workshop on "Chemical Instabilities: Applications in Chemistry, Engineering, Geology, and Materials Science" was held in Austin, Texas, U.S.A. It was organized jointly by the University of Texas at Austin and the Universite Libre de Bruxelles and sponsored qy NATO, NSF, the University of Texas at Austin, the International Solvay Institutes and the Ex­ xon Corporation. The present Volume includes most of the material of the in­ vited lectures delivered in the workshop as well as material from some posters, whose content was directly related to the themes of the invited lectures. In ,recent years, problems related to the stability and the nonlinear dynamics of nonequilibrium systems invaded a great num­ ber of fields ranging from abstract mathematics to biology. One of the most striking aspects of this development is that subjects reputed to be "classical" and "well-established" like chemistry, turned out to give rise to a rich variety of phenomena leading to multiple steady states and...

  4. Platinum stable isotope analysis of geological standard reference materials by double-spike MC-ICPMS.

    Science.gov (United States)

    Creech, J B; Baker, J A; Handler, M R; Bizzarro, M

    2014-01-10

    We report a method for the chemical purification of Pt from geological materials by ion-exchange chromatography for subsequent Pt stable isotope analysis by multiple-collector inductively coupled plasma mass spectrometry (MC-ICPMS) using a 196 Pt- 198 Pt double-spike to correct for instrumental mass bias. Double-spiking of samples was carried out prior to digestion and chemical separation to correct for any mass-dependent fractionation that may occur due to incomplete recovery of Pt. Samples were digested using a NiS fire assay method, which pre-concentrates Pt into a metallic bead that is readily dissolved in acid in preparation for anion-exchange chemistry. Pt was recovered from anion-exchange resin in concentrated HNO 3 acid after elution of matrix elements, including the other platinum group elements (PGE), in dilute HCl and HNO 3 acids. The separation method has been calibrated using a precious metal standard solution doped with a range of synthetic matrices and results in Pt yields of ≥90% with purity of ≥95%. Using this chemical separation technique, we have separated Pt from 11 international geological standard reference materials comprising of PGE ores, mantle rocks, igneous rocks and one sample from the Cretaceous-Paleogene boundary layer. Pt concentrations in these samples range from ca. 5 ng g -1 to 4 μg g -1 . This analytical method has been shown to have an external reproducibility on δ 198 Pt (permil difference in the 198 Pt/ 194 Pt ratio from the IRMM-010 standard) of ±0.040 (2 sd) on Pt solution standards (Creech et al., 2013, J. Anal. At. Spectrom. 28, 853-865). The reproducibility in natural samples is evaluated by processing multiple replicates of four standard reference materials, and is conservatively taken to be ca. ±0.088 (2 sd). Pt stable isotope data for the full set of reference materials have a range of δ 198 Pt values with offsets of up to 0.4‰ from the IRMM-010 standard, which are readily resolved with this technique. These

  5. Groundwater flow modeling for near-field of a hypothetical near-surface disposal facility

    International Nuclear Information System (INIS)

    Park, H. Y.; Park, J. W.; Jang, G. M.; Kim, C. R.

    2000-01-01

    For a hypothetical near-surface radioactive disposal facility, the behavior of groundwater flow around the near-field of disposal vault located at the unsaturated zone were analyzed. Three alternative conceptual models proposed as the hydraulic barrier layer design were simulated to assess the hydrologic performance of engineered barriers for the facility. In order to evaluate the seepage possibility of the infiltrated water passed through the final disposal cover after the facility closure, the flow path around and water flux through each disposal vault were compared. The hydrologic parameters variation that accounts for the long-term aging and degradation of the cover and engineered materials was considered in the simulations. The results showed that it is necessary to construct the hydraulic barrier at the upper and sides of the vault, and that, for this case, achieving design hydraulic properties of bentonite/sand mixture barrier in the as-built condition is crucial to limit the seepage into the waste

  6. Risk assessment associated to possible concrete degradation of a near surface disposal facility

    Science.gov (United States)

    Capra, B.; Billard, Y.; Wacquier, W.; Gens, R.

    2013-07-01

    This article outlines a risk analysis of possible concrete degradation performed in the framework of the preparation of the Safety Report of ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for the construction and operation of a near surface disposal facility of category A waste - short-lived low and intermediate level waste - in Dessel. The main degradation mechanism considered is the carbonation of different concrete components over different periods (from the building phase up to 2000 years), which induces corrosion of the rebars. A dedicated methodology mixing risk analysis and numerical modeling of concrete carbonation has been developed to assess the critical risks of the disposal facility at different periods. According to the results obtained, risk mapping was used to assess the impact of carbonation of concrete on the different components at the different stages. The most important risk is related to an extreme situation with complete removal of the earth cover and side embankment.

  7. Preliminary safety evaluation of an aircraft impact on a near-surface radioactive waste repository

    Energy Technology Data Exchange (ETDEWEB)

    Lo Frano, R.; Forasassi, G.; Pugliese, G. [Department of Industrial and Civil Engineering (DICI), University of Pisa, Pisa (Italy)

    2013-07-01

    The aircraft impact accident has become very significant in the design of a nuclear facilities, particularly, after the tragic September 2001 event, that raised the public concern about the potential damaging effects that the impact of a large civilian airplane could bring in safety relevant structures. The aim of this study is therefore to preliminarily evaluate the global response and the structural effects induced by the impact of a military or commercial airplane (actually considered as a 'beyond design basis' event) into a near surface radioactive waste (RWs) disposal facility. The safety evaluation was carried out according to the International safety and design guidelines and in agreement with the stress tests requirements for the security track. To achieve the purpose, a lay out and a scheme of a possible near surface repository, like for example those of the El Cabril one, were taken into account. In order to preliminarily perform a reliable analysis of such a large-scale structure and to determine the structural effects induced by such a types of impulsive loads, a realistic, but still operable, numerical model with suitable materials characteristics was implemented by means of FEM codes. In the carried out structural analyses, the RWs repository was considered a 'robust' target, due to its thicker walls and main constitutive materials (steel and reinforced concrete). In addition to adequately represent the dynamic response of repository under crashing, relevant physical phenomena (i.e. penetration, spalling, etc.) were simulated and analysed. The preliminary assessment of the effects induced by the dynamic/impulsive loads allowed generally to verify the residual strength capability of the repository considered. The obtained preliminary results highlighted a remarkable potential to withstand the impact of military/large commercial aircraft, even in presence of ongoing concrete progressive failure (some penetration and spalling of the

  8. A shallow subsurface controlled release facility in Bozeman, Montana, USA, for testing near surface CO2 detection techniques and transport models

    Energy Technology Data Exchange (ETDEWEB)

    Spangler, Lee H. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Dobeck, Laura M. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Repasky, Kevin S. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Nehrir, Amin R. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Humphries, Seth D. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Barr, Jamie L. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Keith, Charlie J. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Shaw, Joseph A. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Rouse, Joshua H. [Montana State Univ., Bozeman, MT (United States). Dept. of Electrical and Computer Engineering; Cunningham, Alfred B. [Montana State Univ., Bozeman, MT (United States). Dept. of Civil Engineering; Benson, Sally M. [Stanford Univ., CA (United States). Global Climate and Energy Project; Oldenburg, Curtis M. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Lewicki, Jennifer L. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Wells, Arthur W. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Diehl, J. Rodney [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Strazisar, Brian R. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Fessenden, Julianna E. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Div. of Earth and Environmental Sciences; Rahn, Thom A. [Los Alamos National Lab. (LANL), Los Alamos, NM (United States). Div. of Earth and Environmental Sciences; Amonette, James E. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Barr, Jon L. [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Pickles, William L. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Jacobson, James D. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Silver, Eli A. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Male, Erin J. [Univ. of California, Santa Cruz, CA (United States). Earth and Planetary Sciences; Rauch, Henry W. [Univ. of West Virginia, Morgantown, WV (United States). Dept. of Geology and Geography; Gullickson, Kadie S. [Montana State Univ., Bozeman, MT (United States). Dept. of Chemistry and Biochemistry; Trautz, Robert [Electric Power Research Inst. (EPRI), Palo Alto, CA (United States); Kharaka, Yousif [U.S. Geological Survey, Menlo Park, CA (United States); Birkholzer, Jens [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States). Earth Sciences Div.; Wielopolski, Lucien [Brookhaven National Lab. (BNL), Upton, NY (United States)

    2010-03-01

    A controlled field pilot has been developed in Bozeman, Montana, USA, to study near surface CO2 transport and detection technologies. A slotted horizontal well divided into six zones was installed in the shallow subsurface. The scale and CO2 release rates were chosen to be relevant to developing monitoring strategies for geological carbon storage. The field site was characterized before injection, and CO2 transport and concentrations in saturated soil and the vadose zone were modeled. Controlled releases of CO2 from the horizontal well were performed in the summers of 2007 and 2008, and collaborators from six national labs, three universities, and the U. S. Geological Survey investigated movement of CO2 through the soil, water, plants, and air with a wide range of near surface detection techniques. An overview of these results will be presented.

  9. The economic geology of clays/shales raw materials for the ceramics industry in Lebanon

    International Nuclear Information System (INIS)

    Atiyyah, Frida

    1986-01-01

    Author.Field, laboratory and market studies are a must for proper evaluation of natural resources for the mineral industry of lebanon. Sites selectively convenient to the existing major Lebanese ceramics industry centered in the Beqa'a region, were investigated as to their geology, geography and economic character. The raw materials are shales, mud stones, siltstones and other argillaceous rocks of Jurassic to Cretaceous age coming from selective sites in south and central Lebanon. The finished products include wall, floor, roofing tiles, pipes, sanitary ware, pottery and brick specimens. Differential thermal analysis, scanning electron microscopy, firing and physico-chemical tests and analyses characterized the raw materials into two major groups: the suitable are siliceous argillaceous rocks and unsuitable calcareous argillaceous rocks. The suitable group is divided into two varieties. The first is dominantly a disordered Kaolinite with low drying and firing values, low plasticity index, giving a gray firing color, and with low iron and soluble salts content. The second is dominantly illite with the above properties showing medium values, and giving a red color due to the iron content. The unsuitable group is dominantly an intermixed clay type with high plasticity, soluble salts content and shrinkage values. The exposed parts, of the studied 11 sites the proved suitable, have estimated reserves around 23000 m 3 . This is only a fraction of the resources available to meet industrial consumption requirements. Further area coverage investigation and drilling would prove the very high potential existing for the industry. These Lebanese materials as determined by their properties, are used partially or fully in the various products. The foreign import, notably from non-Arab sources can be substituted by nearby economic Arab deposits. The ceramics industry is faced with developmental problems, economic, social and technical. Securing the local and the surrounding

  10. The economic geology of clays/shales raw materials for the ceramics industry in Lebanon

    Energy Technology Data Exchange (ETDEWEB)

    Atiyyah, Frida [Dept. of Geology, American Univ. of Beirut (Lebanon)

    1986-07-01

    Author.Field, laboratory and market studies are a must for proper evaluation of natural resources for the mineral industry of lebanon. Sites selectively convenient to the existing major Lebanese ceramics industry centered in the Beqa'a region, were investigated as to their geology, geography and economic character. The raw materials are shales, mud stones, siltstones and other argillaceous rocks of Jurassic to Cretaceous age coming from selective sites in south and central Lebanon. The finished products include wall, floor, roofing tiles, pipes, sanitary ware, pottery and brick specimens. Differential thermal analysis, scanning electron microscopy, firing and physico-chemical tests and analyses characterized the raw materials into two major groups: the suitable are siliceous argillaceous rocks and unsuitable calcareous argillaceous rocks. The suitable group is divided into two varieties. The first is dominantly a disordered Kaolinite with low drying and firing values, low plasticity index, giving a gray firing color, and with low iron and soluble salts content. The second is dominantly illite with the above properties showing medium values, and giving a red color due to the iron content. The unsuitable group is dominantly an intermixed clay type with high plasticity, soluble salts content and shrinkage values. The exposed parts, of the studied 11 sites the proved suitable, have estimated reserves around 23000 m{sup 3}. This is only a fraction of the resources available to meet industrial consumption requirements. Further area coverage investigation and drilling would prove the very high potential existing for the industry. These Lebanese materials as determined by their properties, are used partially or fully in the various products. The foreign import, notably from non-Arab sources can be substituted by nearby economic Arab deposits. The ceramics industry is faced with developmental problems, economic, social and technical. Securing the local and the surrounding

  11. Near-surface residual stresses and microstructural changes after turning of a nickel-based superalloy

    Energy Technology Data Exchange (ETDEWEB)

    Schlauer, Christian

    2003-07-01

    Nickel-based superalloys are precipitation hardened alloys with complex compositions. They are used in aircraft engines and land-based gas turbines in load bearing structural components that are exposed to high temperatures. Failure mechanisms in this environment are high and low cycle fatigue, creep, and corrosion. During manufacturing, residual stresses are often introduced into the material due to inhomogeneous plastic deformations, both intentionally and unintentionally. One such manufacturing process is metal cutting, which introduces residual stresses in the surface layer. The stress state in the near-surface zone of components is of special interest as the surface often experiences peak loads and cracks have their starting point there. In this thesis, near-surface residual stress distributions and microstructural changes are studied in the nickel-based superalloy Inconel 718 for two different turning operations, face grooving and facing. Process variables are in both cases cutting speed and feed that have been varied between (10 and 1200) m/min and (0.01 and 0.5) mm, respectively. The first turning technique face grooving, which gives cutting conditions similar to orthogonal cutting, showed a clear dependency of the residual stresses on the cutting speed. The tensile stress at the surface, the maximum compressive stress below the surface, and the thickness of the affected layer increase with increasing cutting speed. The tensile stresses are constrained to a thin surface layer and compressive residual stresses below the surface dominate the depth profile of the residual stresses. Only at low cutting speed, residual stresses were largely avoided. The second turning technique facing confirmed the dependency of the residual stresses on the cutting speed and revealed a similar dependency on the feed. Microstructural investigations of near-surface cross-sections by means of transmission electron microscopy showed a zone where the grains had undergone plastic

  12. Matrix effects on the determination of manganese in geological materials by atomic-absorption spectrophotometry under different flame conditions

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1978-01-01

    Suppression caused by five of the seven matrix elements studied (Si, Al, Fe, Ca and Mg) was observed in the atomic-absorption determination of manganese in geological materials, when synthetic solutions and the recommended oxidizing air-acetylene flame were used. The magnitude of the suppression effects depends on (1) the kind and concentration of the interfering elements, (2) the type of acid medium, and (3) the concentration of manganese to be determined. All interferences noted are removed or alleviated by using a reducing nitrous oxide-acetylene flame. The atomic-absorption method using this flame can be applied to the determination of total and extractable manganese in a wide range of geological materials without interferences. Analyses of six U.S. Geological Survey rock standards for manganese gave results in agreement with the reported values. ?? 1978.

  13. Effect of soil erosion on the long-term stability of FUSRAP near-surface waste-burial sites

    International Nuclear Information System (INIS)

    Knight, M.J.

    1983-04-01

    Decontamination of FUSRAP sites could result in the generation of large volumes (in excess of 400,000 m 3 ) of low-activity radioactive wastes (primarily contaminated soil and building materials) requiring subsequent disposal. It is likely that near-surface burial will be seriously considered as an option for disposal of these materials. A number of factors - including soil erosion - could adversely affect the long-term stability of a near-surface waste-burial site. The majority of FUSRAP sites are located in the humid eastern United States, where the principal cause of erosion is the action of water. This report examines the effect of soil erosion by water on burial-site stability based on analysis of four hypothetical near-surface burial sites. The Universal Soil Loss Equation was employed to estimate average annual soil loss from burial sites and the 1000-year effects of soil loss on the soil barrier (burial trench cap) placed over low-activity wastes. Results suggest that the land use of the burial site and the slope gradient of the burial trench cap significantly affect the rate of soil erosion. The development of measures limiting the potential land use of a burial site (e.g., mixing large rocks into the burial trench cap) may be required to preserve the integrity of a burial trench for long periods of time

  14. Capability Study For Using the Impulse Graphite Reactor For Activation Analysis of Geological Materials

    International Nuclear Information System (INIS)

    Azarov, V.A.; Silaev, M.E.

    1998-01-01

    The IGR reactor facility available in the Institute of Atomic Energy NNC RK is mainly used for testing the going and newly developed fuel compositions and reactor materials. In connection with a decrease of the demand in investigations like that there was considered the capability to use the reactor for solving another research and, particularly, applied problems. A mineral exploration is one of the urgent objectives in the Republic of Kazakstan, and in Semipalatinsk region in particular. To perform the exploration like that it's required, in addition to rough field investigations, the methods of analysis for element composition of geological materials, the difference of which is in their effectiveness, quality and low first cost. Activation methods of analysis allow to provide with a high analysis quality and effectiveness. Therefore, there was proposed to study the capability to use the IGR reactor for the activation analysis of geological materials. To solve this goal the following activity in three basic trends is required: 1. To create the needed theoretical and, on its basis, the methodical base for performing the analytical activity; 2. To create the experimental and technical and organizational infrastructure for the investigations, providing with a high productivity and low prime cost of work; 3. To conduct works on marketing and to use the going methodical and technical base on the market of services. Major objectives for the creation of the theoretical and methodical base for analysis are: a) the study of neutron and physical IGR reactor characteristics under various operation modes; b) the study of the radiation effect on the results of activation analysis; c) the simulation of the temperature mode for irradiation of samples in the reactor and experimental model survey; d) the study of the capability to use non-traditional elements and materials as neutron reactor flux monitors; e) the development of the technique for the experimental and computational

  15. Evaluation of Solid Geologic Reference Materials for Uranium-Series Measurements via LA-ICPMS

    Science.gov (United States)

    Matthews, K. A.; Goldstein, S. J.; Norman, D. E.; Nunn, A. J.; Murrell, M. T.

    2008-12-01

    Uranium-series geochemistry and geochronology have a wide range of applications in paleoclimatology, volcanology and other disciplines. To further explore these fields, the geoanalytical community has now begun to exploit recent advances in in situ, micron-scale sampling via laser ablation-ICPMS. Unfortunately, improvements in instrumentation have generally outpaced development of the appropriate geologic reference materials required for in situ U-series work. We will report results for uranium and thorium isotopic ratios and elemental concentrations measured in a suite of solid standards from the USGS (e.g., BCR-2G, BHVO-2G, GSD-1G, MACS-1, NKT-2G), as well as those from the MPI-DING series (e.g., ATHO-G, T1-G, StHs6/80-G). Specifically created for microanalysis, two of these standards are synthetic (GSD-1G, MACS-1) and the remainder are naturally-sourced glasses. They cover a range of compositions, ages (± secular equilibrium), elemental concentrations and expected isotopic ratios. The U-series isotopics of some powdered source materials have been characterized (e.g., BCR-2, BHVO-2), although there is no confirmation of the same ratios in the glass. Bulk measurement of these solid standards via TIMS and solution multicollector-ICPMS can then be used to assess the performance of LA-ICPMS techniques which require matrix-matched solid standards for correction of U-series elemental and isotopic ratios. These results from existing, widely-available reference materials will also facilitate quantification and comparison of U-series data among laboratories in the broader geoscience community.

  16. New technique for the determination of trace noble metal content in geological and process materials

    Energy Technology Data Exchange (ETDEWEB)

    Mitkin, V.N. E-mail: mit@che.nsk.su; Zayakina, S.B.; Anoshin, G.N

    2003-02-03

    A new two-step sample preparation technique is proposed for the instrumental determination of trace quantities of noble metals (NM) in refractory geological and process materials. The decomposition procedure is based on the oxidizing fluorination of samples with subsequent sulfatization (OFS) of the sample melt or cake. Fluorination of samples is accomplished using a mixture of KHF{sub 2}+KBrF{sub 4} or KHF{sub 2}+BrF{sub 3} depending on the ratio of sample mass to oxidizing mixture. Both cakes and melts can result using this procedure. Sulfatization of resulting fluorides is completed using concentrated sulfuric acid heated to 550 deg. C. Validation studies using certified geostandard reference materials (GSO VP-2, ZH-3, Matte RTP, HO-1, SARM-7) have shown that the proposed method is fast, convenient and most often produces non-hygroscopic homogeneous residues suitable for analysis by atomic absorption spectrometry (AAS) and atomic emission spectrometry (AES). Results obtained for NM concentrations in reference materials agreed with certified concentration ranges and results obtained using other methods of analysis. The OFS procedure combined with direct current plasma d.c. plasma AES achieved the following limits of detection (LOD) for the noble metals: Ag, Au, Pd, 1-2x10{sup -6}; Pt, 5x10{sup -6}; and Ru, Rh, Ir, Os, 1-3x10{sup -7} wt.%. Using graphite furnace AAS (GFAAS) combined extraction pre-concentration the following LODs for NMs were achieved: Pt, Ru, 1x10{sup -6}; Pd, Rh, 1x10{sup -7}; and Au, Ag, 1-2x10{sup -8} wt.%. The relative standard deviation for NM determinations (S{sub r}) was dependent on NM concentration and sample type, but commonly was in the range of 3-15% for d.c. plasma AES and 5-30% for GFAAS.

  17. Analysis of geological material and especially ores by means of a 252Cf source

    International Nuclear Information System (INIS)

    Barrandon, J.N.; Borderie, B.; Melky, S.; Halfon, J.; Marce, A.

    1976-01-01

    Tests were made on the possibilities for analysis by 252 Cf activation in the earth sciences and mining research. The results obtained show that while 252 Cf activation can only resolve certain very specific geochemical research problems, it does allow the exact and rapid determination of numerous elements whose ores are of great economic importance such as fluorine, titanium, vanadium, manganese, copper, antimony, barium, and tungsten. The utilization of activation analysis methods in the earth sciences is not a recent phenomenon. It has generally been limited to the analysis of traces in relatively small volumes by means of irradiation in nuclear reactors. Traditional neutron sources were little used and were not very applicable. The development of 252 Cf isotopic sources emitting more intense neutron fluxes make it possible to consider carrying out more sensitive determinations without making use of a nuclear reactor. In addition, this technique can be adapted for in situ analysis in mines and mine borings. Our work which is centered upon the possibilities of instrumental laboratory analyses of geological materials through 252 Cf activation is oriented in two principal directions: the study of the experimental sensitivities of the various elements in different rocks with the usual compositions; and the study of the possibilities for routine ore analyses

  18. Near-surface alloys for hydrogen fuel cell applications

    DEFF Research Database (Denmark)

    Greeley, Jeffrey Philip; Mavrikakis, Manos

    2006-01-01

    of CO with relatively facile H-2 activation is nearly ideal for this application. We suggest that. as nanoscale materials synthesis techniques improve, it will become feasible to reproducibly prepare NSAs with highly specified surface structures, resulting in the design and manufacture of a wide variety...... facile H-2 activation. These NSAs could, potentially, facilitate highly selective hydrogenation reactions at low temperatures. In the present work, the suitability of NSAs for use as hydrogen fuel cell anodes has been evaluated: the combination of properties, possessed by selected NSAs, of weak binding...... of such materials for use in fuel cells and in an ever. increasing range of catalytic applications. Furthermore, we introduce a new concept for NSA-defect sites, which could be responsible for the promotional catalytic effects of a second metal added. even in minute quantities, to a host metal catalyst....

  19. Stress field of a near-surface basal screw dislocation in elastically anisotropic hexagonal crystals

    Directory of Open Access Journals (Sweden)

    Valeri S. Harutyunyan

    2017-11-01

    Full Text Available In this study, we derive and analyze the analytical expressions for stress components of the dislocation elastic field induced by a near-surface basal screw dislocation in a semi-infinite elastically anisotropic material with hexagonal crystal lattice. The variation of above stress components depending on “free surface–dislocation” distance (i.e., free surface effect is studied by means of plotting the stress distribution maps for elastically anisotropic crystals of GaN and TiB2 that exhibit different degrees of elastic anisotropy. The dependence both of the image force on a screw dislocation and the force of interaction between two neighboring basal screw dislocations on the “free surface–dislocation” distance is analyzed as well. The influence of elastic anisotropy on the latter force is numerically analyzed for GaN and TiB2 and also for crystals of such highly elastically-anisotropic materials as Ti, Zn, Cd, and graphite. The comparatively stronger effect of the elastic anisotropy on dislocation-induced stress distribution quantified for TiB2 is attributed to the higher degree of elastic anisotropy of this compound in comparison to that of the GaN. For GaN and TiB2, the dislocation stress distribution maps are highly influenced by the free surface effect at “free surface–dislocation” distances roughly smaller than ≈15 and ≈50 nm, respectively. It is found that, for above indicated materials, the relative decrease of the force of interaction between near-surface screw dislocations due to free surface effect is in the order Ti > GaN > TiB2 > Zn > Cd > Graphite that results from increase of the specific shear anisotropy parameter in the reverse order Ti < GaN < TiB2 < Zn < Cd < Graphite. The results obtained in this study are also applicable to the case when a screw dislocation is situated in the “thin film–substrate” system at a (0001 basal interface between the film and substrate provided that the elastic constants

  20. Material Units, Structures/Landforms, and Stratigraphy for the Global Geologic Map of Ganymede (1:15M)

    Science.gov (United States)

    Patterson, G. Wesley; Head, James W.; Collins, Geoffrey C.; Pappalardo, Robert T.; Prockter, Louis M.; Lucchitta, Baerbel K.

    2008-01-01

    In the coming year a global geological map of Ganymede will be completed that represents the most recent understanding of the satellite on the basis of Galileo mission results. This contribution builds on important previous accomplishments in the study of Ganymede utilizing Voyager data and incorporates the many new discoveries that were brought about by examination of Galileo data. Material units have been defined, structural landforms have been identified, and an approximate stratigraphy has been determined utilizing a global mosaic of the surface with a nominal resolution of 1 km/pixel assembled by the USGS. This mosaic incorporates the best available Voyager and Galileo regional coverage and high resolution imagery (100-200 m/pixel) of characteristic features and terrain types obtained by the Galileo spacecraft. This map has given us a more complete understanding of: 1) the major geological processes operating on Ganymede, 2) the characteristics of the geological units making up its surface, 3) the stratigraphic relationships of geological units and structures, and 4) the geological history inferred from these relationships. A summary of these efforts is provided here.

  1. A fundamental discussion of what triggers localized deformation in geological materials

    Science.gov (United States)

    Peters, Max; Paesold, Martin; Poulet, Thomas; Herwegh, Marco; Regenauer-Lieb, Klaus; Veveakis, Manolis

    2015-04-01

    critical amount of dissipative work translated into heat over the diffusive capacity of the system by an instability study designed for such materials (Gruntfest, 1963). With respect to our numerical experiments, this critical parameter determines the timing when the entire amount of deformation energy translated into heat cannot be diffusively transported out of the system anymore. The resulting local temperature rise then induces strain localization. In contrast to classical shear heating scenarios with (catastrophic) thermal runaways, temperature variations of less than 1 K are sufficient for this localization mode to occur due to the balance between heat producing (e.g. dislocation creep) and consuming (grain growth) processes in the present setup. We demonstrate that this rise in latent heat is sufficient to provoke grain growth, operating as an endothermic reaction, stabilizing the simulated localized structure in turn. Various localized ductile structures, such as folded or boudinaged layers, can therefore be placed at the same material failure mode due to fundamental energy bifurcations triggered by dissipative work out of homogeneous state. Finally, we will discuss situations, in which structural heterogeneities are considered negligible and where the energy theory described here plays an underlying role by means of a comparison between numerical experiments and natural examples. REFERENCES Austin, N. and Evans, B. (2007). Paleowattmeters: A scaling relation for dynamically recrystallized grain size. Geology, 35. Gruntfest, I.J. (1963). Thermal feedback in liquid flow, plane shear at constant stress. Transactions of the Society of Rheology, 7. Hansen, L.N. and Zimmermann, M.E. and Dillman, A.M. and Kohlstedt, D.L (2012). Strain localization in olivine aggregates at high temperature: a laboratory comparison of constant-strain-rate and constant-stress boundary conditions. Earth and Planetary Science Letters, 333-334. Herwegh, M., Poulet, T., Karrech, A. and

  2. Postmortem near surface analysis of beryllium limiter tiles from ISX-B

    International Nuclear Information System (INIS)

    Zuhr, R.A.

    1985-11-01

    Beryllium is a promising material for plasma-side components in magnetic confinement fusion devices and is being considered for possible use in the Joint European Torus (JET). In order to test beryllium as a limiter material, a collaborative JET/ISX-B experiment was carried out in which the ISX-B tokamak was operated for more than 4000 discharges with a beryllium limiter. At the end of the test period the limiter was removed and the composition of the near-surface region of selected tiles was analyzed as a function of position by Rutherford backscattering. The amount of deuterium retained near the surface was measured by nuclear reaction analysis. Chromium, iron, and nickel were the dominant metallic impurities in the surface with a combined concentration on the order of 10 16 cm -2 . Oxygen surface coverages were generally in the mid-10 16 cm -2 range. A consistent trend in the impurity data was that heavily damaged or melted areas generally incorporated more impurities. The amounts of deuterium trapped in the tiles ranged from 1 to 5 x 10 17 cm -2 over all of the surfaces exposed to the plasma. No deuterium was detectable on surfaces (the protected sides) not directly exposed to the plasma

  3. QACD: A method for the quantitative assessment of compositional distribution in geologic materials

    Science.gov (United States)

    Loocke, M. P.; Lissenberg, J. C. J.; MacLeod, C. J.

    2017-12-01

    In order to fully understand the petrogenetic history of a rock, it is critical to obtain a thorough characterization of the chemical and textural relationships of its mineral constituents. Element mapping combines the microanalytical techniques that allow for the analysis of major- and minor elements at high spatial resolutions (e.g., electron microbeam analysis) with 2D mapping of samples in order to provide unprecedented detail regarding the growth histories and compositional distributions of minerals within a sample. We present a method for the acquisition and processing of large area X-ray element maps obtained by energy-dispersive X-ray spectrometer (EDS) to produce a quantitative assessment of compositional distribution (QACD) of mineral populations within geologic materials. By optimizing the conditions at which the EDS X-ray element maps are acquired, we are able to obtain full thin section quantitative element maps for most major elements in relatively short amounts of time. Such maps can be used to not only accurately identify all phases and calculate mineral modes for a sample (e.g., a petrographic thin section), but, critically, enable a complete quantitative assessment of their compositions. The QACD method has been incorporated into a python-based, easy-to-use graphical user interface (GUI) called Quack. The Quack software facilitates the generation of mineral modes, element and molar ratio maps and the quantification of full-sample compositional distributions. The open-source nature of the Quack software provides a versatile platform which can be easily adapted and modified to suit the needs of the user.

  4. Study of waterproof capabilities of the engineered barrier containing bentonite in near surface radioactive waste repositories

    International Nuclear Information System (INIS)

    Luu Cao Nguyen; Nguyen Ba Tien; Doan Thi Thu Hien; Nguyen Van Chinh; Vuong Huu Anh

    2017-01-01

    In Vietnam, the study of nuclear fuel cycle is in first steps, such as the exploitation and uranium processing. These processes generated large amounts of radioactive waste over-timing. The naturally occurring radioactive material and technologically enhanced radioactive material (NORM/TENORM) waste, which would be large, needs to be managed and disposed reasonably by effective methods. These wastes were used to be disposal in the near surface. It was therefore very important to study the model of radioactive waste repository, where bentonite waterproofing layer would be applied for the engineered barrier. The aim of this study was to obtain the preliminary parameters for low-level radioactive waste disposal site being suitable with the conditions of Vietnam. The investigation of the ratio between soil and bentonite was taken part. The experiments with some layers of waterproofing material with the ratio of soil and bentonite as 75/25, 50/50 and 25/75 were carried out to test the moving of uranium nuclide through these waterproofing material layers. Analyzing the uranium content in each layer (0.1 cm) of pressed soil - bentonite mixture (as a block) to determine the uranium nuclide adsorption from solution into the materials in the different ratios at the different times: 1, 2 and 3 months was carried out. The results showed that the calculated average rate of uranium nuclide migration into the soil - bentonite layer was 5.4x10 -10 , 5.4x10 -10 and 3.85x10 -10 m/s corresponding to the waterproofing layer thickness (for 300 years) 4.86 m, 4.86 m and 3.63 m respectively, which was due on the ratio of soil and bentonite 75/25, 50/50, 25/75 to keep the safety for the repository. (author)

  5. Conasauga near-surface heater experiment. Final report

    International Nuclear Information System (INIS)

    Krumhansl, J.L.

    1979-11-01

    The Conasauga Experiment was undertaken to begin assessment of the thermomechanical and chemical response of a specific shale to the heat resulting from emplacement of high-level nuclear wastes. Canister-size heaters were implanted in Conasauga shale in Tennessee. Instrumentation arrays wee placed at various depths in drill holes around each heater. The heaters operated for 8 months and, after the first 4 days, were maintained at 385 0 C. Emphasis was on characterizing the thermal and mechanical response of the formation. Conduction was the major mode of heat transport; convection was perceptible only at temperatures above the boiling point of water. Despite dehydration of the shale at higher temperatures, in situ thermal conductivity was essentially constant and not a function of temperature. The mechanical response of the formation was a slight overall expansion, apparently resulting in a general decrease in permeability. Metallurgical observations were made, the stability of a borosilicate glass wasteform simulant was assessed, and changes in formation mineralogy and groundwater composition were documented. In each of these areas, transient nonequilibrium processes occur that affect material stability and may be important in determining the integrity of a repository. In general, data from the test reflect favorably on the use of shale as a disposal medium for nuclear waste

  6. Radionuclide transport from near-surface repository for radioactive waste - The unsaturated zone approach

    Energy Technology Data Exchange (ETDEWEB)

    Jakimaviciute-Maseliene, V. [Vilnius University (Lithuania); Mazeika, J. [Nature Research Centre (Lithuania); Motiejunas, S. [Radioactive Waste Management Agency (Lithuania)

    2014-07-01

    About 100 000 m{sup 3} of solid conditioned Low and Intermediate Level Waste (LILW), generated during operation and decommissioning of the Ignalina nuclear power plant (INPP), are to be disposed of in a near-surface repository (NSR) - a 'hill'-type repository with reinforced concrete vaults and with engineered and natural barriers. The northeastern Lithuania and the environment of the INPP in particular were recognized as the areas most suitable for a near-surface repository (Stabatiske Site). The engineered barriers of the repository consist of concrete cells surrounded by clay-based material of low permeability with about the same isolating capacity in all directions. The clay materials must be effectively compactable so that required hydraulic conductivity is reached. The Lithuanian Triassic clay turned out to be sufficiently rich in smectites and was proposed as main candidate for sealing of the repository. When the concrete vaults are filled, the repository cover will be constructed. The surface of the mound will be planted with grass. In this study a computer code FEFLOW 5.0 was applied for simulating the transport of the most mobile radionuclides ({sup 3}H, {sup 14}C, {sup 59}Ni and {sup 94}Nb) with moisture through an unsaturated vault of the near-surface repository in Stabatiske Site. The HYDRUS-1D analysis was used to assess the radionuclide transport in the repository and to estimate initial activity concentrations of radionuclides transported from the cemented waste matrix. Radionuclide release from the vault in the unsaturated conditions after closure of the repository and consequent contaminant plume transport has been assessed taking into account site-specific natural and engineering conditions and based on a normal evolution scenario. The highest peak radionuclide activity concentrations were estimated applying the FEFLOW code. The highest value of {sup 14}C activity concentration(about 1.3x10{sup 8} Bq/m{sup 3}) at the groundwater table

  7. Nanoscale Roughness of Faults Explained by the Scale-Dependent Yield Stress of Geologic Materials

    Science.gov (United States)

    Thom, C.; Brodsky, E. E.; Carpick, R. W.; Goldsby, D. L.; Pharr, G.; Oliver, W.

    2017-12-01

    Despite significant differences in their lithologies and slip histories, natural fault surfaces exhibit remarkably similar scale-dependent roughness over lateral length scales spanning 7 orders of magnitude, from microns to tens of meters. Recent work has suggested that a scale-dependent yield stress may result in such a characteristic roughness, but experimental evidence in favor of this hypothesis has been lacking. We employ an atomic force microscope (AFM) operating in intermittent-contact mode to map the topography of the Corona Heights fault surface. Our experiments demonstrate that the Corona Heights fault exhibits isotropic self-affine roughness with a Hurst exponent of 0.75 +/- 0.05 at all wavelengths from 60 nm to 10 μm. If yield stress controls roughness, then the roughness data predict that yield strength varies with length scale as λ-0.25 +/ 0.05. To test the relationship between roughness and yield stress, we conducted nanoindentation tests on the same Corona Heights sample and a sample of the Yair Fault, a carbonate fault surface that has been previously characterized by AFM. A diamond Berkovich indenter tip was used to indent the samples at a nominally constant strain rate (defined as the loading rate divided by the load) of 0.2 s-1. The continuous stiffness method (CSM) was used to measure the indentation hardness (which is proportional to yield stress) and the elastic modulus of the sample as a function of depth in each test. For both samples, the yield stress decreases with increasing size of the indents, a behavior consistent with that observed for many engineering materials and recently for other geologic materials such as olivine. The magnitude of this "indentation size effect" is best described by a power-law with exponents of -0.12 +/- 0.06 and -0.18 +/- 0.08 for the Corona Heights and Yair Faults, respectively. These results demonstrate a link between surface roughness and yield stress, and suggest that fault geometry is the physical

  8. Geo-microbiological reactivity of iron materials: impact on geological disposal of radioactive wastes

    International Nuclear Information System (INIS)

    Esnault, L.

    2010-01-01

    This thesis sought to describe the dynamic concept of a viable and sustainable microbiological activity under deep geological disposal conditions and to assess its impact on containment properties and storage components. Thus, in this study, a model based on the bacterial ferric reduction was chosen for its sustainability criteria in the system and its ability to alter the materials in storage conditions. The main results of this work demonstrated the capability of the environment to stand the iron-reducing bacterial activity and the conditions of its development in the deep clay environments. The bio-availability of structural Fe (III) in clay minerals and iron oxides produced during the process of metal corrosion was clearly demonstrated. In this system, the corrosion appears to be a positive factor on bacterial activities by producing an energy source, hydrogen. The iron-reducing bacterial activities can lead to a resumption of metallic corrosion through the consumption of iron oxides in the passive film. The direct consequence would be a reduction of the lifetime of metal containers. In the case of ferric clay minerals, the consequences of such an activity are such that they can have an impact on the overall porous structure both in terms of chemical reactivity of the materials or physical behavior of the clayey barrier. One of the most significant results is the crystallization of new clay phases at very low temperatures, below 40 C, highlighting the influence of the anaerobic microbial activity in the mineralogical transformations of clay minerals. Furthermore, these experiments also allowed to visualize, for the first time, a mechanism of bacterial respiration at distance, this increases the field of the availability of essential elements as Fe 3+ for bacterial growth in extreme environment. In conclusion, these results clearly showed the impact of the microbiological factor on the reactivity of clay and metal minerals, while relying on control parameters on

  9. NOAA Climate Data Record (CDR) of Ocean Near Surface Atmospheric Properties, Version 2

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NOAA Ocean Surface Bundle (OSB) Climate Data Record (CDR) consist of three parts: sea surface temperature; near-surface wind speed, air temperature, and specific...

  10. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun; AlTheyab, Abdullah; Hanafy, Sherif M.; Schuster, Gerard T.

    2016-01-01

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green

  11. North Atlantic near-surface salinity contrasts and intra-basin water vapor transfer

    Science.gov (United States)

    Reagan, J. R.; Seidov, D.; Boyer, T.

    2017-12-01

    The geographic distribution of near-surface salinity (NSS) in the North Atlantic is characterized by a very salty (>37) subtropical region contrasting with a much fresher (NSS. Additional results and potential implications will be presented and discussed.

  12. Projected change in characteristics of near surface temperature inversions for southeast Australia

    Science.gov (United States)

    Ji, Fei; Evans, Jason Peter; Di Luca, Alejandro; Jiang, Ningbo; Olson, Roman; Fita, Lluis; Argüeso, Daniel; Chang, Lisa T.-C.; Scorgie, Yvonne; Riley, Matt

    2018-05-01

    Air pollution has significant impacts on human health. Temperature inversions, especially near surface temperature inversions, can amplify air pollution by preventing convective movements and trapping pollutants close to the ground, thus decreasing air quality and increasing health issues. This effect of temperature inversions implies that trends in their frequency, strength and duration can have important implications for air quality. In this study, we evaluate the ability of three reanalysis-driven high-resolution regional climate model (RCM) simulations to represent near surface inversions at 9 sounding sites in southeast Australia. Then we use outputs of 12 historical and future RCM simulations (each with three time periods: 1990-2009, 2020-2039, and 2060-2079) from the NSW/ACT (New South Wales/Australian Capital Territory) Regional Climate Modelling (NARCliM) project to investigate changes in near surface temperature inversions. The results show that there is a substantial increase in the strength of near surface temperature inversions over southeast Australia which suggests that future inversions may intensify poor air quality events. Near surface inversions and their future changes have clear seasonal and diurnal variations. The largest differences between simulations are associated with the driving GCMs, suggesting that the large-scale circulation plays a dominant role in near surface inversion strengths.

  13. Control of preexisting faults and near-surface diapirs on geometry and kinematics of fold-and-thrust belts (Internal Prebetic, Eastern Betic Cordillera)

    Science.gov (United States)

    Pedrera, Antonio; Marín-Lechado, Carlos; Galindo-Zaldívar, Jesús; García-Lobón, José Luis

    2014-07-01

    We have determined, for the first time, the 3D geometry of a sector of the eastern Internal Prebetic comprised between Parcent and Altea diapirs, combining structural, borehole and multichannel seismic reflection data. The tectonic structure of the Jurassic-Cretaceous carbonate series is characterized by regional ENE-WSW fold-and-thrusts that interact with oblique N-S and WNW-ESE folds, detached over Triassic evaporites and clays. The structural style comprises box-shape anticlines, and N-vergent anticlines with vertical to overturned limbs frequently bordered by reverse and strike-slip faults. The anticlines surround a triangular broad synclinal structure, the Tárbena basin, filled by a late Oligocene to Tortonian sedimentary sequence that recorded folding and thrusting history. The location and geometrical characteristics of fold-and-thrusts may be controlled by the positive inversion of pre-existing Mesozoic normal faults, and by the position and shape of near-surface diapirs composed of Triassic rocks. Therefore, we propose an initial near-surface diapir emplacement of Triassic evaporitic rocks driven by late Jurassic to early Cretaceous rifting of the southern Iberian paleomargin. Thrusting and folding started during the latest Oligocene (∼28-23 Ma) roughly orthogonal to the NW-directed shortening. Deformation migrated to the south during Aquitanian (∼23-20 Ma), when tectonic inversion implied the left-lateral transpressive reactivation of N-S striking former normal faults and right-lateral/reverse reactivation of inherited WNW-ESE faults. We show two mechanisms driving the extrusion of the diapirs during contraction: lateral migration of a pre-existing near-surface diapir associated with dextral transpression; and squeezing of a previous near-surface diapir at the front of an anticline. Our study underlines the value of 3D geological modeling to characterize geometry and kinematics of complex fold-and-thrust belts influenced by preexisting faults and

  14. Development of Microanaytical Reference Materials for In-situ Anaysis at the U.S. Geological Survey

    Science.gov (United States)

    Wilson, S.

    2006-05-01

    With the increased use of microanalysis in geochemical investigations comes the need for a reliable and diversified supply of reference materials homogenous at the micrometer scale to assist analysts in element quantification. To meet these requirements, the U.S. Geological Survey (USGS) has undertaken a program to develop a series of reference materials which cover a range of sample types currently being investigated in our microanalytical laboratories. Initial efforts have focused on the development of natural basalt glasses (BCR- 2G, BHVO-2G, BIR-1G, TB-1G, NKT-1G) from a variety of geologic settings. In addition to these natural basalt materials a series of synthetic basalt glasses GSA-1G, GSC-1G, GSD-1G, GSE-1G have also been developed with 65 trace elements at 0, 3, 30, and 300, ppm respectively. The homogeneity of these materials and their use in international microanalytical proficiency studies will be presented. Application of this technology to the development of glass reference materials as part of a USGS/NASA collaborative studies on the development of Lunar Soil Simulant material will also be discussed.

  15. Risk assessment associated to possible concrete degradation of a near surface disposal facility

    Directory of Open Access Journals (Sweden)

    Wacquier W.

    2013-07-01

    Full Text Available This article outlines a risk analysis of possible concrete degradation performed in the framework of the preparation of the Safety Report of ONDRAF/NIRAS, the Belgian Agency for Radioactive Waste and Enriched Fissile Materials, for the construction and operation of a near surface disposal facility of category A waste – short-lived low and intermediate level waste – in Dessel. The main degradation mechanism considered is the carbonation of different concrete components over different periods (from the building phase up to 2000 years, which induces corrosion of the rebars. A dedicated methodology mixing risk analysis and numerical modeling of concrete carbonation has been developed to assess the critical risks of the disposal facility at different periods. According to the results obtained, risk mapping was used to assess the impact of carbonation of concrete on the different components at the different stages. The most important risk is related to an extreme situation with complete removal of the earth cover and side embankment.

  16. Safety performance of a near surface repository subject to a fuel burning

    International Nuclear Information System (INIS)

    Stefanini, Lorenzo; Frano, Rosa Lo; Forasassi, Giuseppe

    2015-01-01

    This study aims to investigate the performances of a near surface repository subject to fuel burning occurring simultaneously or subsequently to a large commercial aircraft impact. Specifically the thermal effects caused by a Boeing-747 crushing (considered like “beyond design basis accident”) are studied. An important part of this study is the analysis of the possible (thermo-mechanical) degradation effects, as dehydration, degasification, pressurization, etc. that the concrete may undergo, particularly in the case of prolonged fire, and of the resistance of structure itself in this condition. Conservative assumptions and restrictions have been made with regard to the fire scenario, the maximum temperature of which is calculated on the basis of the fuel airplane amount, the normal impact, the variation of the material properties along with the temperature as well the damaging phenomena of concrete. The airplane impact load, calculated with the Riera approach, and the maximum temperature, reached during the fuel combustion, are used as input (boundary condition) in the numerical simulations performed by MARC© code. The obtained results showed that a repository wall thickness, ranging from 0.6 to 0.9 m, is not sufficient to prevent the local penetration of wall. To reduce the computational cost, the analyses have been made only on a half part of the structure, highlighting the dominance of thermal effects. Despite the ongoing concrete degradation phenomena, the overall integrity of the repository seemed to be guaranteed as well as the containment and the confinement of radioactive waste. (author)

  17. Numerical modeling of the Near Surface Test Facility No. 1 and No. 2 heater tests

    International Nuclear Information System (INIS)

    Hocking, G.; Williams, J.; Boonlualohr, P.; Mathews, I.; Mustoe, G.

    1981-01-01

    Thermomechanical predictive calculations have been undertaken for two full scale heater tests No. 1 and No. 2 at the Near Surface Test Facility (NSTF) at Hanford, Washington. Numerical predictions were made of the basaltic rock response involving temperatures, displacements, strains and stresses due to energizing the electrical heaters. The basalt rock mass was modeled as an isotropic thermal material but with temperature dependent thermal conductivity, specific heat and thermal expansion. The fractured nature of the basalt necessitated that it be modeled as a cross anisotropic medium with a bi-linear locking stress strain relationship. The cross-anisotropic idealization was selected after characterization studies indicated that a vertical columnar structure persisted throughout the test area and no major throughgoing discontinuities were present. The deformational properties were determined from fracture frequency and orientation, joint deformational data, Goodman Jack results and two rock mass classification schemes. Similar deformational moduli were determined from these techniques, except for the Goodman Jack results. The finite element technique was utilized for both the non-linear thermal and mechanical computations. An incremental stiffness method with residual force correction was employed to solve the non-linear problem by piecewise linearization. Two and three dimensional thermomechanical scoping calculations were made to assess the significance of various parameters and associated errors with geometrical idealizations. Both heater tests were modeled as two dimensional axisymmetric geometry with water assumed to be absent. Instrument response was predicted for all of the thermocouples, extensometers, USBM borehole deformation and IRAD gages for the entire duration of both tests

  18. Determination of iridium at low levels (sub ng g-1) in geological materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Morcelli, Claudia Petronilho Ribeiro

    1999-01-01

    The analysis of the platinum group elements (PGE: Ru, Rh, Pd, Os, Ir and Pt) in geological materials is difficult, due to the low concentrations of these elements (ng g -1 or sub ng g -1 ) and their heterogeneous distribution in many geological matrices. The determination of PGE has attracted great interest due not only to the increasing utilization of these elements in modern industry, but also to the information that these elements can provide on mantle processes. The determination of very low amounts of iridium is particularly important on account of some anomalous concentrations of iridium in sedimentary rock samples, related to the impact of an extraterrestrial object responsible for extinctions at the Cretaceous-Tertiary (K-T) boundary. In the present paper, a radiochemical neutron activation method for the determination of iridium in geological materials is presented. The procedure consisted of thermal neutron irradiation of about 500 mg of the sample, followed by sintering with sodium peroxide, precipitation with tellurium and high resolution gamma-ray spectrometry with a hyper-pure Ge detector. The accuracy and precision of the procedure were evaluated by analysis of the certified reference material SARM-7 (South Africa Bureau of Standards) and W-1 (USGS). The detection limit for the analytical conditions employed was 0.004 ng g -1 . The procedure was applied to the reference materials TDB-1 and WGB-1 (CANMET), which present provisional values for Ir, and to the reference materials GXR-3, GXR-5 and GXR- 6 (USGS), which do not present information values for Ir. This work is a contribution to Ir values in these reference materials. As an example of application of the method to real samples, the developed procedure was employed in the determination of iridium in basalts from Parana basin, collected in Bom Guara do Sul, Santa Catarina, provided by the Geosciences Institute of the University of Campinas. (author)

  19. Applications of Real Space Crystallography in Characterization of Dislocations in Geological Materials in a Scanning Electron Microscope (SEM)

    Science.gov (United States)

    Kaboli, S.; Burnley, P. C.

    2017-12-01

    Imaging and characterization of defects in crystalline materials is of significant importance in various disciplines including geoscience, materials science, and applied physics. Linear defects such as dislocations and planar defects such as twins and stacking faults, strongly influence many of the properties of crystalline materials and also reflect the conditions and degree of deformation. Dislocations have been conventionally imaged in thin foils in a transmission electron microscope (TEM). Since the development of field emission scanning electron microscopes (FE-SEM) with high gun brightness and small spot size, extensive efforts have been dedicated to the imaging and characterization of dislocations in semi-conductors using electron channeling contrast imaging (ECCI) in the SEM. The obvious advantages of using SEM over TEM include easier and non-destructive sample preparation and a large field of view enabling statistical examination of the density and distribution of dislocations and other defects. In this contribution, we extend this technique to geological materials and introduce the Real Space Crystallography methodology for imaging and complete characterization of dislocations based on bend contour contrast obtained by ECCI in FE-SEM. Bend contours map out the distortion in the crystal lattice across a deformed grain. The contrast of dislocations is maximum in the vicinity of bend contours where crystal planes diffract at small and positive deviations from the Bragg positions (as defined by Bragg's law of electron diffraction). Imaging is performed in a commercial FE-SEM equipped with a standard silicon photodiode backscattered (BSE) detector and an electron backscatter diffraction (EBSD) system for crystal orientation measurements. We demonstrate the practice of this technique in characterization of a number of geological materials in particular quartz, forsterite olivine and corundum, experimentally deformed at high pressure-temperature conditions. This

  20. Determination of uranium in geologic materials by laser-excited fluorescence

    International Nuclear Information System (INIS)

    McHugh, J.B.

    1982-01-01

    A laser-excited fluorescence method is described for the determination of trace amounts of uranium in rocks and soils. The limit of detection is less than 1 ppm, and the relative standard deviation ranges from 2.6 to 12.5%. The method was evaluated by using known geological reference samples

  1. Geochemical Analyses of Geologic Materials from Areas of Critical Environmental Concern, Clark and Nye Counties, Nevada

    Science.gov (United States)

    Ludington, Steve; Castor, Stephen B.; Budahn, James R.; Flynn, Kathryn S.

    2005-01-01

    INTRODUCTION An assessment of known and undiscovered mineral resources of selected areas administered by the Bureau of Land Management (BLM) in Clark and Nye Counties, Nevada was conducted by the U.S. Geological Survey (USGS), Nevada Bureau of Mines and Geology (NBMG), and University of Nevada, Las Vegas (UNLV). The purpose of this work was to provide the BLM with information for use in their long-term planning process in southern Nevada so that they can make better-informed decisions. The results of the assessment are in Ludington (2006). Existing information about the areas, including geology, geophysics, geochemistry, and mineral-deposit information was compiled, and field examinations of selected areas and mineral occurrences was conducted. This information was used to determine the geologic setting, metallogenic characteristics, and mineral potential of the areas. Twenty-five Areas of Critical Environmental Concern (ACECs) were identified by BLM as the object of this study. They range from tiny (less than one km2) to large (more than 1,000 km2). The location of the study areas is shown on Figure 1. This report includes geochemical data for rock samples collected by staff of the USGS and NBMG in these ACECs and nearby areas. Samples have been analyzed from the Big Dune, Ash Meadows, Arden, Desert Tortoise Conservation Center, Coyote Springs Valley, Mormon Mesa, Virgin Mountains, Gold Butte A and B, Whitney Pockets, Rainbow Gardens, River Mountains, and Piute-Eldorado Valley ACECs.

  2. The analysis of thallium in geological materials by radiochemical neutron activation and x-ray fluorescence spectrometry: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    McGoldrick, P J; Robinson, P [Tasmania Univ., Sandy Bay, TAS (Australia)

    1994-12-31

    Carrier-based radiochemical neutron activation (RNAA) is a precise and accurate technique for the analysis of Tl in geological materials. For about a decade, until the mid-80s, a procedure modified from Keays et al. (1974) was used at the University of Melbourne to analyse for Tl in a wide variety of geological materials. Samples of powdered rock weighing several hundred milligrams each were irradiated in HIFAR for between 12 hours and 1 week, and subsequently fused with a sodium hydroxide - sodium peroxide mixture and several milligrams of inactive Tl carrier. Following acid digestion of the fusion mixture anion exchange resin was used to separate Tl from the major radioactive rock constituents. The Tl was then stripped from the resin and purified as thallium iodide and a yield measured gravimetrically. Activity from {sup 204}Tl (a {beta}-emitter with a 3 8 year half-life) was measured and Tl determined by reference to pure chemical standards irradiated and processed along with the unkowns. Detection limits for the longer irradiations were about one part per billion. Precision was monitored by repeat analyses of `internal standard` rocks and was estimated to be about five to ten percent (one standard deviation). On the other hand, X-ray fluorescence spectrometry (XRF) was seen as an excellent cost-effective alternative for thallium analysis in geological samples, down to 1 ppm. 6 refs. 1 tab., 1 fig.

  3. The analysis of thallium in geological materials by radiochemical neutron activation and x-ray fluorescence spectrometry: a comparison

    Energy Technology Data Exchange (ETDEWEB)

    McGoldrick, P.J.; Robinson, P. [Tasmania Univ., Sandy Bay, TAS (Australia)

    1993-12-31

    Carrier-based radiochemical neutron activation (RNAA) is a precise and accurate technique for the analysis of Tl in geological materials. For about a decade, until the mid-80s, a procedure modified from Keays et al. (1974) was used at the University of Melbourne to analyse for Tl in a wide variety of geological materials. Samples of powdered rock weighing several hundred milligrams each were irradiated in HIFAR for between 12 hours and 1 week, and subsequently fused with a sodium hydroxide - sodium peroxide mixture and several milligrams of inactive Tl carrier. Following acid digestion of the fusion mixture anion exchange resin was used to separate Tl from the major radioactive rock constituents. The Tl was then stripped from the resin and purified as thallium iodide and a yield measured gravimetrically. Activity from {sup 204}Tl (a {beta}-emitter with a 3 8 year half-life) was measured and Tl determined by reference to pure chemical standards irradiated and processed along with the unkowns. Detection limits for the longer irradiations were about one part per billion. Precision was monitored by repeat analyses of `internal standard` rocks and was estimated to be about five to ten percent (one standard deviation). On the other hand, X-ray fluorescence spectrometry (XRF) was seen as an excellent cost-effective alternative for thallium analysis in geological samples, down to 1 ppm. 6 refs. 1 tab., 1 fig.

  4. Determination of arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc in geological materials by atomic-absorption spectrometry

    Science.gov (United States)

    Viets, J.G.; O'Leary, R. M.; Clark, Robert J.

    1984-01-01

    Arsenic, antimony, bismuth, cadmium, copper, lead, molybdenum, silver and zinc are very useful elements in geochemical exploration. In the proposed method, geological samples are fused with potassium pyrosulphate and the fusate is dissolved in a solution of hydrochloric acid, ascorbic acid and potassium iodide. When this solution is shaken with a 10% V/V Aliquat 336 - isobutyl methyl ketone organic phase, the nine elements of interest are selectively partitioned in the organic phase. All nine elements can then be determined in the organic phase using flame atomic-absorption spectrometry. The method is rapid and allows the determination of Ag and Cd at levels down to 0.1 p.p.m., Cu, Mo, and Zn down to 0.5 p.p.m., Pb, Bi and Sb down to 1 p.p.m. and As down to 5 p.p.m. in geological materials.

  5. Review on influences of colloids on geologic disposal of high level radioactive waste. For better understanding of natural colloidal materials

    International Nuclear Information System (INIS)

    Kanai, Yutaka; Suzuki, Masaya; Kamioka, Hikari; Yoshida, Takahiro; Suko, Takeshi

    2007-01-01

    Although the influences of colloidal materials on radionuclide transport in geological media are pointed out, their behaviors in natural environment have not yet been well elucidated and therefore their influences on the geologic disposal of high-level radioactive waste (HLW) are not fully estimated quantitatively. This paper reviewed the studies on natural colloids, especially focused on inorganic, organic and biological colloids, and discussed the future works to be carried out. Much attention should be paid to the sampling and analysis. Excellent techniques for in-situ observation, concentration without changing the state of colloid, standard procedure for analysis, are necessary to be developed. More research studies on the behaviors of colloids are required in not only far- and near-fields but also items on effects of the environments and its evolution. (author)

  6. Factors affecting criticality for spent-fuel materials in a geologic setting

    International Nuclear Information System (INIS)

    Gore, B.F.; Jenquin, U.P.; Serne, R.J.

    1981-04-01

    Following closure of a geologic repository for spent fuel, geologic process may change geometries and spacings, and water may enter the repository. In this study the conditions required for the criticality of spent fuel constituents are determined. Many factors affect criticality, and the effects of various possible post-closure changes are investigated. Factors having the greatest effect on criticality are identified to provide guidance for research programs and for design and evaluation studies. Section II describes the calculational methods and computer codes used to determine critical conditions. Section III of this document addresses effects of the fissile content of spent fuel on criticality. Calculations have been performed to determine the minimum critical mass of spent fuel actinides as a function of the duration of in-reactor fuel exposure for a variety of possible conditions. Section IV addresses the conditions required for criticality under a scenario believed to be highly unlikely but having a unique possibility. Pu quantities and concentrations required for criticality without water were determined for various conditions of Pu separation, rock moderation and reflection, rock impurities and isotopic content of the Pu. Section V addresses the possibility of geochemical processes separating Pu from other spent fuel constituents. Solubilities of U and Pu are calculated for groundwaters characteristic of basalt, tuff, granite, bedded and dome salt. Maximum concentrations which could be adsorbed on geologic media in contact with these groundwaters are then calculated. Comparison of these maximum adsorbed concentrations with the results presented in Section IV yields the conclusion that criticality cannot occur in sorbed deposits of Pu in geologic media due to the low Pu concentrations achievable. The possibility of selective Pu precipitation, however, is not ruled out by these arguments

  7. Determination of low concentrations of thorium in geological materials by X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1981-01-01

    An X-ray fluorescence method for the determination of thorium in geological samples down to 2 ppm ThO 2 has been developed. To achieve this determination limit an exposed area of the sample 42.5 mm in diameter is used, working with a molybdenum target tube operated at 90 kV and 30 m A. Corrections for background and line interference of the Rb Kα radiation have been carefully considered and empirical correction coefficients calculated. (Author) 3 refs

  8. Evaluation of reactor induced (n,p) reactions for activation analysis of titanium in geological materials

    Energy Technology Data Exchange (ETDEWEB)

    Espinosa Garcia, R; Cohen, I M [Comision Nacional de Energia Atomica, Buenos Aires (Argentina)

    1984-05-01

    The possibilities of reactor induced (n,p) reactions as a tool for neutron activation analysis of titanium in geological samples are discussed. The interference of calcium and scandium is experimentally evaluated. Results for Ti, Ca and Sc in GSP-1 and PCC-1 standard rocks are presented. Based on the experimental values, it is concluded that the /sup 47/Ti(n,p)/sup 47/Sc reaction is the most favourable for titanium determination. 11 refs.

  9. Development of analytical techniques for determining rare earth elements in geological materials

    International Nuclear Information System (INIS)

    Moraes, Noemia M.P. de; Kakazu, M.H.; Iyer, S.S.

    1987-01-01

    This work presents a comparative study between instrumental neutron activation analysis, inductively coupled plasma emission spectrometry and mass spectrometric isotope dilution techniques. Some advantages and disadvantages of the techniques are presented, depending on the type of the analysis required. Emphasis in give upon mass spectrometric isotope dilution, and some procedures for the development of this technique are presented. This methodology is being established by the nuclear and isotopic geology group of the IPEN. (author) [pt

  10. Safety assessment and geosphere transport methodology for the geologic isolation of nuclear waste materials

    International Nuclear Information System (INIS)

    Burkholder, H.C.; Stottlemyre, J.A.; Raymond, J.R.

    1977-01-01

    As part of the National Waste Terminal Storage Program in the United States, the Waste Isolation Safety Assessment Program (WISAP) is underway to develop and demonstrate the methods and obtain the data necessary to assess the safety of geologic isolation repositories and to communicate the assessment results to the public. This paper reviews past analysis efforts, discusses the WISAP technical approach to the problem, and points out areas where work is needed

  11. Characterizing near-surface CO2 conditions before injection - Perspectives from a CCS project in the Illinois Basin, USA

    Science.gov (United States)

    Locke, R.A.; Krapac, I.G.; Lewicki, J.L.; Curtis-Robinson, E.

    2011-01-01

    The Midwest Geological Sequestration Consortium is conducting a large-scale carbon capture and storage (CCS) project in Decatur, Illinois, USA to demonstrate the ability of a deep saline formation to store one million tonnes of carbon dioxide (CO2) from an ethanol facility. Beginning in early 2011, CO2 will be injected at a rate of 1,000 tonnes/day for three years into the Mount Simon Sandstone at a depth of approximately 2,100 meters. An extensive Monitoring, Verification, and Accounting (MVA) program has been undertaken for the Illinois Basin Decatur Project (IBDP) and is focused on the 0.65 km2 project site. Goals include establishing baseline conditions to evaluate potential impacts from CO2 injection, demonstrating that project activities are protective of human health and the environment, and providing an accurate accounting of stored CO2. MVA efforts are being conducted pre-, during, and post- CO2 injection. Soil and net CO2 flux monitoring has been conducted for more than one year to characterize near-surface CO2 conditions. More than 2,200 soil CO2 flux measurements have been manually collected from a network of 118 soil rings since June 2009. Three ring types have been evaluated to determine which type may be the most effective in detecting potential CO 2 leakage. Bare soil, shallow-depth rings were driven 8 cm into the ground and were prepared to minimize surface vegetation in and near the rings. Bare soil, deep-depth rings were prepared similarly, but were driven 46 cm. Natural-vegetation, shallow-depth rings were driven 8 cm and are most representative of typical vegetation conditions. Bare-soil, shallow-depth rings had the smallest observed mean flux (1.78 ??mol m-2 s-1) versus natural-vegetation, shallow-depth rings (3.38 ??mol m-2 s-1). Current data suggest bare ring types would be more sensitive to small CO2 leak signatures than natural ring types because of higher signal to noise ratios. An eddy covariance (EC) system has been in use since June

  12. Technical considerations in the design of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    2001-11-01

    Good design is an important step towards ensuring operational as well as long term safety of low and intermediate level waste (LILW) disposal. The IAEA has produced this report with the objective of outlining the most important technical considerations in the design of near surface disposal facilities and to provide some examples of the design process in different countries. This guidance has been developed in light of experience gained from the design of existing near surface disposal facilities in a range of Member States. In particular the report provide information on design objective, design requirements, and design phases. The report focuses on: near surface disposal facilities accepting solidified LILW; disposal facilities on or just below the ground surface, where the final protective covering is of the order of a few metres thick; and disposal facilities several tens of metres below the ground surface (including rock cavern type facilities)

  13. Near-surface thermal characterization of plasma facing components using the 3-omega method

    International Nuclear Information System (INIS)

    Dechaumphai, Edward; Barton, Joseph L.; Tesmer, Joseph R.; Moon, Jaeyun; Wang, Yongqiang; Tynan, George R.; Doerner, Russell P.; Chen, Renkun

    2014-01-01

    Near-surface regime plays an important role in thermal management of plasma facing components in fusion reactors. Here, we applied a technique referred to as the ‘3ω’ method to measure the thermal conductivity of near-surface regimes damaged by ion irradiation. By modulating the frequency of the heating current in a micro-fabricated heater strip, the technique enables the probing of near-surface thermal properties. The technique was applied to measure the thermal conductivity of a thin ion-irradiated layer on a tungsten substrate, which was found to decrease by nearly 60% relative to pristine tungsten for a Cu ion dosage of 0.2 dpa

  14. Wyoming bentonites. Evidence from the geological record to evaluate the suitability of bentonite as a buffer material during the long-term underground containment of radioactive wastes

    International Nuclear Information System (INIS)

    Smellie, J.

    2001-12-01

    In the Swedish programme for the deep, geological disposal of radioactive wastes, bentonite is planned to be used as a barrier material to reduce groundwater flow and minimise radionuclide migration into the geosphere. One of the possible threats to long-term bentonite stability is the gradual incursion of saline water into the repository confines which may reduce the swelling capacity of the bentonite, even to the extent of eliminating the positive effects of mixing bentonite into backfill materials. Important information may be obtained from the study of analogous processes in nature (i.e. natural analogue or natural system studies) where bentonite, during its formation, has been in long-term contact with reducing waters of brackish to saline character. Type bentonites include those mined from the Clay Spur bed at the top of the Cretaceous Mowry Formation in NE Wyoming and demarcated for potential use as a barrier material (e.g. MX-80 sodium bentonite) in the Swedish radioactive waste programme. This bentonite forms part of the Mowry Shale which was deposited in a southern embayment of the late Albian Western Interior Cretaceous sea (Mowry Sea). The question is whether these bentonite deposits show evidence of post-deposition alteration caused by the sea water in which they were deposited, and/or, have they been altered subsequently by contact with waters of increasing salinity? Bentonites are the product of pyroclastic fall deposits thought to be generated by the type of explosive, subaerial volcanic activity characteristic of Plinian eruptive systems. In Wyoming the overall composition of the original ash varied from dacite to rhyolite, or latite to trachyte. The ash clouds were carried to high altitudes and eastwards by the prevailing westerly winds before falling over the shallow Mowry Sea and forming thin but widespread and continuous horizons on sea floor muds and sands. Whilst bentonites were principally wind-transported, there is evidence of some water

  15. Wyoming bentonites. Evidence from the geological record to evaluate the suitability of bentonite as a buffer material during the long-term underground containment of radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Smellie, J [Conterra AB (Sweden)

    2001-12-01

    In the Swedish programme for the deep, geological disposal of radioactive wastes, bentonite is planned to be used as a barrier material to reduce groundwater flow and minimise radionuclide migration into the geosphere. One of the possible threats to long-term bentonite stability is the gradual incursion of saline water into the repository confines which may reduce the swelling capacity of the bentonite, even to the extent of eliminating the positive effects of mixing bentonite into backfill materials. Important information may be obtained from the study of analogous processes in nature (i.e. natural analogue or natural system studies) where bentonite, during its formation, has been in long-term contact with reducing waters of brackish to saline character. Type bentonites include those mined from the Clay Spur bed at the top of the Cretaceous Mowry Formation in NE Wyoming and demarcated for potential use as a barrier material (e.g. MX-80 sodium bentonite) in the Swedish radioactive waste programme. This bentonite forms part of the Mowry Shale which was deposited in a southern embayment of the late Albian Western Interior Cretaceous sea (Mowry Sea). The question is whether these bentonite deposits show evidence of post-deposition alteration caused by the sea water in which they were deposited, and/or, have they been altered subsequently by contact with waters of increasing salinity? Bentonites are the product of pyroclastic fall deposits thought to be generated by the type of explosive, subaerial volcanic activity characteristic of Plinian eruptive systems. In Wyoming the overall composition of the original ash varied from dacite to rhyolite, or latite to trachyte. The ash clouds were carried to high altitudes and eastwards by the prevailing westerly winds before falling over the shallow Mowry Sea and forming thin but widespread and continuous horizons on sea floor muds and sands. Whilst bentonites were principally wind-transported, there is evidence of some water

  16. Nondestructive assay of fluorine in geological and other materials by instrumental photon activation analysis with a microtron

    Energy Technology Data Exchange (ETDEWEB)

    Krausová, Ivana [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Mizera, Jiří, E-mail: mizera@ujf.cas.cz [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic); Institute of Rock Structure and Mechanics, Academy of Sciences of the Czech Republic, V Holešovičkách 41, 182 09 Praha 8 (Czech Republic); Řanda, Zdeněk; Chvátil, David; Krist, Pavel [Nuclear Physics Institute, Academy of Sciences of the Czech Republic, Řež 130, 25068 Řež (Czech Republic)

    2015-01-01

    Reliable determination of low concentrations of fluorine in geological and coal samples is difficult. It usually requires tedious decomposition and dissolution of the sample followed by chemical conversion of fluorine into its anionic form. The present paper examines possibilities of non-destructive determination of fluorine, mainly in minerals, rocks and coal, by instrumental photon activation analysis (IPAA) using the MT-25 microtron. The fluorine assay consists of counting the positron–electron annihilation line of {sup 18}F at 511 keV, which is a product of the photonuclear reaction {sup 19}F(γ, n){sup 18}F and a pure positron emitter. The assay is complicated by the simultaneous formation of other positron emitters. The main contributors to interference in geological samples are from {sup 45}Ti and {sup 34m}Cl, whereas those from {sup 44}Sc and {sup 89}Zr are minor. Optimizing beam energy and irradiation-decay-counting times, together with using interfering element calibration standards, allowed reliable IPAA determination of fluorine in selected USGS and CRPG geochemical reference materials, NIST coal reference materials, and NIST RM 8414 Bovine Muscle. In agreement with the published data obtained by PIGE, the results of the F assay by IPAA have revealed erroneous reference values provided for the NIST reference materials SRM 1632 Bituminous Coal and RM 8414 Bovine Muscle. The detection limits in rock and coal samples are in the range of 10–100 μg g{sup −1}.

  17. Near-surface facilities for disposal radioactive waste from non-nuclear application

    International Nuclear Information System (INIS)

    Barinov, A.

    2000-01-01

    The design features of the near-surface facilities of 'Radon', an estimation of the possible emergency situations, and the scenarios of their progress are given. The possible safety enhancing during operation of near-surface facilities, so called 'Historical facilities', and newly developed ones are described. The Moscow SIA 'Radon' experience in use of mobile module plants for liquid radioactive waste purification and principal technological scheme of the plant are presented. Upgrading of the technological scheme for treatment and conditioning of radioactive waste for new-developed facilities is shown. The main activities related to management of spent ionizing sources are mentioned

  18. Identification of candidate sites for a near surface repository for radioactive waste

    International Nuclear Information System (INIS)

    Motiejunas, S.

    2004-01-01

    This Report comprises results of the area survey stage, which involves regional screening to define the regions of interest and identification of potential sites within suitable regions. The main goal was to define a few sites potentially suitable for constructing of the near surface repository. It was concluded that a vicinity of Ignalina NPP is among the best suitable regions for the near surface repository. At the present investigation level a ridge in Galilauke village has the most favorable conditions. However, Apvardai site is potentially suitable for the repository too

  19. Link between DOC in near surface peat and stream water in an upland catchment.

    Science.gov (United States)

    Clark, Joanna M; Lane, Stuart N; Chapman, Pippa J; Adamson, John K

    2008-10-15

    Hydrologic transport of dissolved organic carbon (DOC) from peat soils may differ to organo-mineral soils in how they responded to changes in flow, because of differences in soil profile and hydrology. In well-drained organo-mineral soils, low flow is through the lower mineral layer where DOC is absorbed and high flow is through the upper organic layer where DOC is produced. DOC concentrations in streams draining organo-mineral soils typically increase with flow. In saturated peat soils, both high and low flows are through an organic layer where DOC is produced. Therefore, DOC in stream water draining peat may not increase in response to changes in flow as there is no switch in flow path between a mineral and organic layer. To verify this, we conducted a high-resolution monitoring study of soil and stream water at an upland peat catchment in northern England. Our data showed a strong positive correlation between DOC concentrations at -1 and -5 cm depth and stream water, and weaker correlations between concentrations at -20 to -50 cm depth and stream water. Although near surface organic material appears to be the key source of stream water DOC in both peat and organo-mineral soils, we observed a negative correlation between stream flow and DOC concentrations instead of a positive correlation as DOC released from organic layers during low and high flow was diluted by rainfall. The differences in DOC transport processes between peat and organo-mineral soils have different implications for our understanding of long-term changes in DOC exports. While increased rainfall may cause an increase in DOC flux from peat due to an increase in water volume, it may cause a decrease in concentrations. This response is contrary to expected changes in DOC exports from organo-mineral soils, where increase rainfall is likely to result in an increase in flux and concentration.

  20. Analysis of siliceous geologic materials by energy-dispersive X-ray fluorescence

    International Nuclear Information System (INIS)

    Roca, M.; Bayon, A.

    1987-01-01

    The determination of the elements Al, Si, K, Ca, Ti, Cr, Mn and Fe in siliceous geologic samples by energy-dispersive X-ray fluorescence is investigated using the most adequate excitation conditions: direct excitation mode (rhodium anode X-ray tube) for the former two elements, and the secondary targets titanium for K and Ca, and germanium for Ti, Cr, Mn and Fe. For the correction of matrix effects the use of ratio methods has been tested. Procedure files have been defined allowing the automatic simultaneous acquisition and processing of spectra. (author)

  1. Structure of the 1906 near-surface rupture zone of the San Andreas Fault, San Francisco Peninsula segment, near Woodside, California

    Science.gov (United States)

    Rosa, C.M.; Catchings, R.D.; Rymer, M.J.; Grove, Karen; Goldman, M.R.

    2016-07-08

    High-resolution seismic-reflection and refraction images of the 1906 surface rupture zone of the San Andreas Fault near Woodside, California reveal evidence for one or more additional near-surface (within about 3 meters [m] depth) fault strands within about 25 m of the 1906 surface rupture. The 1906 surface rupture above the groundwater table (vadose zone) has been observed in paleoseismic trenches that coincide with our seismic profile and is seismically characterized by a discrete zone of low P-wave velocities (Vp), low S-wave velocities (Vs), high Vp/Vs ratios, and high Poisson’s ratios. A second near-surface fault strand, located about 17 m to the southwest of the 1906 surface rupture, is inferred by similar seismic anomalies. Between these two near-surface fault strands and below 5 m depth, we observed a near-vertical fault strand characterized by a zone of high Vp, low Vs, high Vp/Vs ratios, and high Poisson’s ratios on refraction tomography images and near-vertical diffractions on seismic-reflection images. This prominent subsurface zone of seismic anomalies is laterally offset from the 1906 surface rupture by about 8 m and likely represents the active main (long-term) strand of the San Andreas Fault at 5 to 10 m depth. Geometries of the near-surface and subsurface (about 5 to 10 m depth) fault zone suggest that the 1906 surface rupture dips southwestward to join the main strand of the San Andreas Fault at about 5 to 10 m below the surface. The 1906 surface rupture forms a prominent groundwater barrier in the upper 3 to 5 m, but our interpreted secondary near-surface fault strand to the southwest forms a weaker barrier, suggesting that there has been less or less-recent near-surface slip on that strand. At about 6 m depth, the main strand of the San Andreas Fault consists of water-saturated blue clay (collected from a hand-augered borehole), which is similar to deeply weathered serpentinite observed within the main strand of the San Andreas Fault at

  2. Modelling for near-surface interaction of lithium ceramics and sweep-gas by use of cellular automation

    International Nuclear Information System (INIS)

    Shimura, K.; Terai, T.; Yamawaki, M.; Yamaguchi, K.

    2003-01-01

    Tritium release from the lithium ceramics as a fusion reactor breeder material is strongly affected by the composition of the sweep-gas as result of its influences with the material's surface. The typical surface processes which play important roles are adsorption, desorption and interaction between vacancy site and the constituents of the sweep-gas. Among a large number of studies and models, yet it seems to be difficult to model the overall behaviour of those processes due to its complex time-transient nature. In the present work the coarse grained atomic simulation based on the Cellular Automaton (CA) is used to model the dynamics of near-surface interaction between Li 2 O surface and sweep-gas that is consisting of a noble gas, hydrogen gas and water vapour. (author)

  3. Geologic Water Storage in Pre-Columbian Peru

    Energy Technology Data Exchange (ETDEWEB)

    Fairley Jr., Jerry P.

    1997-07-14

    Agriculture in the arid and semi-arid regions that comprise much of present-day Peru, Bolivia, and Northern Chile is heavily dependent on irrigation; however, obtaining a dependable water supply in these areas is often difficult. The precolumbian peoples of Andean South America adapted to this situation by devising many strategies for transporting, storing, and retrieving water to insure consistent supply. I propose that the ''elaborated springs'' found at several Inka sites near Cuzco, Peru, are the visible expression of a simple and effective system of groundwater control and storage. I call this system ''geologic water storage'' because the water is stored in the pore spaces of sands, soils, and other near-surface geologic materials. I present two examples of sites in the Cuzco area that use this technology (Tambomachay and Tipon) and discuss the potential for identification of similar systems developed by other ancient Latin American cultures.

  4. Near-surface characterization for seismic exploration based on gravity and resistivity data

    Czech Academy of Sciences Publication Activity Database

    Mrlina, Jan

    (2016), č. článku 41892. [Middle East Geoscience Conference and Exhibition /12./. Manama, 07.03.2016-10.03.2016] Institutional support: RVO:67985530 Keywords : gravity and resistivity surveys * near-surface formations * seismic velocity Subject RIV: DC - Siesmology, Volcanology, Earth Structure

  5. Regime transitions in near-surface temperature inversions : a conceptual model

    NARCIS (Netherlands)

    van de Wiel, B.J.H.; Vignon, E.; Baas, P.; Bosveld, F.C.; de Roode, S.R.; Moene, A.F.; Genthon, C.; van der Linden, Steven J.A.; van Hooft, J. Antoon; van Hooijdonk, I.G.S.

    2017-01-01

    A conceptual model is used in combination with observational analysis to understand regime transitions of near-surface temperature inversions at night as well as in Arctic conditions. The model combines a surface energy budget with a bulk parameterization for turbulent heat transport. Energy fluxes

  6. A methodology for evaluating alternative sites for a near-surface radioactive waste repository

    International Nuclear Information System (INIS)

    Watson, S.R.; Brownlow, S.A.

    1986-02-01

    This report addresses the issue of constructing an evaluation procedure for a near-surface radioactive waste repository. It builds on earlier work of the authors, and describes a basis for a practicable methodology for assessing the relative merits of different sites. (author)

  7. The Role of the Mean State of Arctic Sea Ice on Near-Surface Temperature Trends

    NARCIS (Netherlands)

    Linden, van der E.C.; Bintanja, R.; Hazeleger, W.; Katsman, C.A.

    2014-01-01

    Century-scale global near-surface temperature trends in response to rising greenhouse gas concentrations in climate models vary by almost a factor of 2, with greatest intermodel spread in the Arctic region where sea ice is a key climate component. Three factors contribute to the intermodel spread:

  8. Near-Surface Effects of Free Atmosphere Stratification in Free Convection

    NARCIS (Netherlands)

    Mellado, Juan Pedro; Heerwaarden, van C.C.; Garcia, Jade Rachele

    2016-01-01

    The effect of a linear stratification in the free atmosphere on near-surface properties in a free convective boundary layer (CBL) is investigated by means of direct numerical simulation. We consider two regimes: a neutral stratification regime, which represents a CBL that grows into a residual

  9. Consideration of Criteria for a Conceptual Near Surface Radioactive Waste disposal Facility in Kenya

    Energy Technology Data Exchange (ETDEWEB)

    Nderitu, Stanley Werugia; Kim, Changlak [KEPCO International Nuclear Graduate School, Ulsan (Korea, Republic of)

    2014-05-15

    The purpose of the criteria is to limit the consequences of events which could lead to radiation exposures. This study will present an approach for establishing radiological waste acceptance criteria using a safety assessment methodology and illustrate some of its application in establishing limits on the total activity and the activity concentrations of radioactive waste to be disposed in a conceptual near surface disposal facility in Kenya. The approach will make use of accepted methods and computational schemes currently used in assessing the safety of near surface disposal facilities. The study will mainly focus on post-closure periods. The study will employ some specific inadvertent human intrusion scenarios in the development of example concentration ranges for the disposal of near-surface wastes. The overall goal of the example calculations is to illustrate the application of the scenarios in a performance assessment to assure that people in the future cannot receive a dose greater than an established limit. The specific performance assessments will use modified scenarios and data to establish acceptable disposal concentrations for specific disposal sites and conditions. Safety and environmental impacts assessments is required in the post-closure phase to support particular decisions in development, operation, and closure of a near surface repository.

  10. Atomic and electronic structure of V-Rh(110) near-surface alloy

    Czech Academy of Sciences Publication Activity Database

    Píš, I.; Stetsovych, V.; Mysliveček, J.; Kettner, M.; Vondráček, Martin; Dvořák, F.; Mazur, D.; Matolín, V.; Nehasil, V.

    2013-01-01

    Roč. 117, č. 24 (2013), s. 12679-12688 ISSN 1932-7447 Institutional support: RVO:68378271 Keywords : V−Rh(110) near-surface alloy * STM * XPS Subject RIV: BM - Solid Matter Physics ; Magnetism Impact factor: 4.835, year: 2013

  11. Design data sheets Near-Surface Test Facility Bottom Loading Transporter (BLT): Title 1

    International Nuclear Information System (INIS)

    Young, G.M.

    1979-01-01

    This document is an accumulation of all the Design Data Sheets relative to the handling equipment in the transporter for the Near-Surface Test Facility. The Data Sheets are in ascending numerical order. Each Data Sheet, regardless of the number of pages, shall stand by itself within this document

  12. Near Surface Stoichiometry in UO2: A Density Functional Theory Study

    Directory of Open Access Journals (Sweden)

    Jianguo Yu

    2015-01-01

    Full Text Available The mechanisms of oxygen stoichiometry variation in UO2 at different temperature and oxygen partial pressure are important for understanding the dynamics of microstructure in these crystals. However, very limited experimental studies have been performed to understand the atomic structure of UO2 near surface and defect effects of near surface on stoichiometry in which the system can exchange atoms with the external reservoir. In this study, the near (110 surface relaxation and stoichiometry in UO2 have been studied with density functional theory (DFT calculations. On the basis of the point-defect model (PDM, a general expression for the near surface stoichiometric variation is derived by using DFT total-energy calculations and atomistic thermodynamics, in an attempt to pin down the mechanisms of oxygen exchange between the gas environment and defected UO2. By using the derived expression, it is observed that, under poor oxygen conditions, the stoichiometry of near surface is switched from hyperstoichiometric at 300 K with a depth around 3 nm to near-stoichiometric at 1000 K and hypostoichiometric at 2000 K. Furthermore, at very poor oxygen concentrations and high temperatures, our results also suggest that the bulk of the UO2 prefers to be hypostoichiometric, although the surface is near-stoichiometric.

  13. Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Dudley, Colton; Dorsey, Alison; Louie, John [UNR; Schwering, Paul; Pullammanappallil, Satish

    2016-08-01

    Colton Dudley, Alison Dorsey, Paul Opdyke, Dustin Naphan, Marlon Ramos, John Louie, Paul Schwering, and Satish Pullammanappallil, 2013, Near-surface geophysical characterization of Holocene faults conducive to geothermal flow near Pyramid Lake, Nevada: presented at Amer. Assoc. Petroleum Geologists, Pacific Section Annual Meeting, Monterey, Calif., April 19-25.

  14. Greenland meltwater storage in firn limited by near-surface ice formation

    DEFF Research Database (Denmark)

    Machguth, Horst; MacFerrin, Mike; van As, Dirk

    2016-01-01

    above sea level), firn has undergone substantial densification, while at lower elevations, where melt is most abundant, porous firn has lost most of its capability to retain meltwater. Here, the formation of near-surface ice layers renders deep pore space difficult to access, forcing meltwater to enter...

  15. Site specificity of biosphere parameter values in performance assessments of near-surface repositories

    International Nuclear Information System (INIS)

    Zeevaert, Th.; Volckaert, G.; Vandecasleele

    1993-01-01

    The contribution is dealing with the performance assessment model for near surface repositories in Belgium. It consists of four submodels called: site, aquifer, biosphere and dose. For some characteristic radionuclides, results of the study are shown for a typical site, and differences in doses assessed with the generic approach discussed. Shortcomings are indicated

  16. Comparison between assimilated and non-assimilated experiments of the MACCii global reanalysis near surface ozone

    Science.gov (United States)

    Tsikerdekis, Athanasios; Katragou, Eleni; Zanis, Prodromos; Melas, Dimitrios; Eskes, Henk; Flemming, Johannes; Huijnen, Vincent; Inness, Antje; Kapsomenakis, Ioannis; Schultz, Martin; Stein, Olaf; Zerefos, Christos

    2014-05-01

    In this work we evaluate near surface ozone concentrations of the MACCii global reanalysis using measurements from the EMEP and AIRBASE database. The eight-year long reanalysis of atmospheric composition data covering the period 2003-2010 was constructed as part of the FP7-funded Monitoring Atmospheric Composition and Climate project by assimilating satellite data into a global model and data assimilation system (Inness et al., 2013). The study mainly focuses in the differences between the assimilated and the non-assimilated experiments and aims to identify and quantify any improvements achieved by adding data assimilation to the system. Results are analyzed in eight European sub-regions and region-specific Taylor plots illustrate the evaluation and the overall predictive skill of each experiment. The diurnal and annual cycles of near surface ozone are evaluated for both experiments. Furthermore ozone exposure indices for crop growth (AOT40), human health (SOMO35) and the number of days that 8-hour ozone averages exceeded 60ppb and 90ppb have been calculated for each station based on both observed and simulated data. Results indicate mostly improvement of the assimilated experiment with respect to the high near surface ozone concentrations, the diurnal cycle and range and the bias in comparison to the non-assimilated experiment. The limitations of the comparison between assimilated and non-assimilated experiments for near surface ozone are also discussed.

  17. Seasonal cyclogenesis and the role of near-surface stratified layer in the Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Murty, V.S.N.; Sarma, M.S.S.; Tilvi, V.

    The role of the near-surface stratified layer developed due to the spread of low salinity waters under the influence of freshwater influx on the cyclogenesis over the Bay of Bengal is addressed. The seasonal variation of the Effective Oceanic Layer...

  18. Shear-wave seismic reflection imaging and impedance inversion for a near-surface point-bar

    Science.gov (United States)

    Benton, N. W.; Morrison, M.; Lorenzo, J. M.; Odom, B.; Clift, P. D.; Olson, E.; Gostic, A.

    2017-12-01

    Imaging and inversion of SH-waves are useful to detect, map, and quantitatively characterize near-surface point-bar strata. We conduct a horizontally-polarized (SH) reflection survey across and along a near-surface (9 - 40 m) downstream point-bar. We invert for shear-impedance profiles and correlate our interpretation to electrical conductivity (EC) logs in adjacent wells to study the internal architecture and lithology of point-bars. We acquire two common-midpoint (CMP) SH-wave seismic reflection lines at False River (Point Coupee Parish, Louisiana). A 104 m long seismic line (L1) is oriented orthogonal (NW - SE) to point-bar strike. A second line (L2) is 48 m long and set parallel to point-bar strike (NE - SW). Two EC wells lie 33 m apart. Both wells are parallel with respect to the L1 survey and offset from it by 15 m. EC log measurements range from 1 - 25 m depth. Interference of Love-waves prevents seismic imaging at depths less than 9 m. The L1 and L2 data sets are inverted for shear-impedance using a model-based band-limited impedance (BLIMP) algorithm that incorporates a low-frequency velocity model. This model is also used for the depthing processing. The L1 cross-section shows coherent dipping reflection events ( 4 - 7º) from 0.15 - 0.35 s (10 - 40 m). The corresponding shear-impedance profile also reveals coherent and dipping impedance contrasts that grow in magnitude with increasing depth. The L2 cross-section shows comparatively less dip ( 1º) as well as sharper and shallower continuity of reflection events (0.1 - 0.28 s TWT or 9 - 25 m). Depth-converted (TVD) seismic amplitudes and impedance values correlate to near-surface point-bar geology via superposition of log data. The first well (W5) shows distinct EC local maxima (+50 - 70 mS/m) at 14.5 and 15.5 m depth that correlate well with the seismic amplitudes and impedance values from both L1 and L2 data sets. The second well (W7) shows comparatively lower local maxima (+40 - 60 mS/m) but at greater

  19. Development of near surface seismic methods for urban and mining applications

    Science.gov (United States)

    Malehmir, Alireza; Brodic, Bojan; Place, Joachim; Juhlin, Christopher; Bastani, Mehrdad

    2014-05-01

    There is a great need to improve our understanding of the geological conditions in the shallow subsurface. Direct observations of the subsurface are cumbersome and expensive, and sometimes impossible. Urban and mining areas are especially challenging due to various sources of noise such as from traffic, buildings, cars, city trains, trams, bridges and high-voltage power-lines. Access is also restricted both in time and space, which requires the equipment to be versatile, fast to set up and pack, and produces the least disruptions. However, if properly designed and implemented, geophysical methods are capable of imaging detailed subsurface structures and can successfully be used to provide crucial information for site characterizations, infrastructure planning, brown- and near-field exploration, and mine planning. To address some of these issues Uppsala University, in collaboration with a number of public authorities, research organizations and industry partners, has recently developed a prototype broadband (0-800 Hz based on digital sensors) multi-component seismic landstreamer system. The current configuration consists of three segments with twenty 3C-sensors each 2 m apart and an additional segment with twenty 3C-sensors each 4 m apart, giving a total streamer length of 200 m. These four segments can be towed in parallel or in series, which in combination with synchronized wireless and cabled sensors can address a variety of complex near surface problems. The system is especially geared for noisy environments and areas where high-resolution images of the subsurface are needed. The system has little sensitivity to electrical noise and measures sensor tilt, important in rough terrains, so it can immediately be corrected for during the acquisition. Thanks to the digital sensors, the system can also be used for waveform tomography and multi-channel analysis of surface waves (MASW). Both these methods require low frequencies and these are often sacrificed in

  20. An assessment of gas impact on geological repository. Methodology and material property of gas migration analysis in engineered barrier system

    International Nuclear Information System (INIS)

    Yamamoto, Mikihiko; Mihara, Morihiro; Ooi, Takao

    2004-01-01

    Gas production in a geological repository has potential hazard, as overpressurisation and enhanced release of radionuclides. Amongst data needed for assessment of gas impact, gas migration properties of engineered barriers, focused on clayey and cementitious material, was evaluated in this report. Gas injection experiments of saturated bentonite sand mixture, mortar and cement paste were carried out. In the experiments, gas entry phenomenon and gas outflow rate were observed for these materials. Based on the experimental results, two-phase flow parameters were evaluated quantitatively. A conventional continuum two-phase flow model, which is only practically used multidimensional multi-phase flow model, was applied to fit the experimental results. The simulation results have been in good agreement with the gas entry time and the outflow flux of gas and water observed in the experiments. It was confirmed that application of the continuum two-phase flow model to gas migration in cementitious materials provides sufficient degree of accuracy for assessment of repository performance. But, for sand bentonite mixture, further extension of basic two-phase flow model is needed especially for effect of stress field. Furthermore, gas migration property of other barrier materials, including rocks, but long-term gas injection test, clarification of influence of chemicals environment and large-scale gas injection test is needed for multi-barrier assessment tool development and their verification. (author)

  1. Functional response of a near-surface soil microbial community to a simulated underground CO2 storage leak.

    Science.gov (United States)

    Morales, Sergio E; Holben, William E

    2013-01-01

    Understanding the impacts of leaks from geologic carbon sequestration, also known as carbon capture and storage, is key to developing effective strategies for carbon dioxide (CO2) emissions management and mitigation of potential negative effects. Here, we provide the first report on the potential effects of leaks from carbon capture and storage sites on microbial functional groups in surface and near-surface soils. Using a simulated subsurface CO2 storage leak scenario, we demonstrate how CO2 flow upward through the soil column altered both the abundance (DNA) and activity (mRNA) of microbial functional groups mediating carbon and nitrogen transformations. These microbial responses were found to be seasonally dependent and correlated to shifts in atmospheric conditions. While both DNA and mRNA levels were affected by elevated CO2, they did not react equally, suggesting two separate mechanisms for soil microbial community response to high CO2 levels. The results did not always agree with previous studies on elevated atmospheric (rather than subsurface) CO2 using FACE (Free-Air CO2 Enrichment) systems, suggesting that microbial community response to CO2 seepage from the subsurface might differ from its response to atmospheric CO2 increases.

  2. Presence of aliphatic and polycyclic aromatic hydrocarbons in near-surface sediments of an oil spill area in Bohai Sea.

    Science.gov (United States)

    Li, Shuanglin; Zhang, Shengyin; Dong, Heping; Zhao, Qingfang; Cao, Chunhui

    2015-11-15

    In order to determine the source of organic matter and the fingerprint of the oil components, 50 samples collected from the near-surface sediments of the oil spill area in Bohai Sea, China, were analyzed for grain size, total organic carbon, aliphatic hydrocarbons (AHs), and polycyclic aromatic hydrocarbons (PAHs). The concentrations of C15-35 n-alkanes and 16 United States Environmental Protection Agency (US EPA) priority pollutant PAHs were found in the ranges of 0.88-3.48μg g(-1) and 9.97-490.13ng/g, respectively. The terrestrial organic matters characterized by C27-C35 n-alkanes and PAHs, resulting from the combustion of higher plants, are dominantly contributed from the transportation of these plants by rivers. Marine organic matters produced from plankton and aquatic plants were represented by C17-C26 n-alkanes in AHs. Crude oil, characterized by C17-C21 n-alkanes, unresolved complex mixture (UCM) with a mean response factor of C19 n-alkanes, low levels of perylene, and a high InP/(InP+BghiP) ratio, seeped into the oceans from deep hydrocarbon reservoirs, as a result of geological faults. Copyright © 2015 Elsevier Ltd. All rights reserved.

  3. Determination of total tin in geological materials by electrothermal atomic-absorption spectrophotometry using a tungsten-impregnated graphite furnace

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    An electrothermal atomic-absorption spectrophotometric method is described for the determination of total tin in geological materials, with use of a tungsten-impregnated graphite furnace. The sample is decomposed by fusion with lithium metaborate and the melt is dissolved in 10% hydrochloric acid. Tin is then extracted into trioctylphosphine oxide-methyl isobutyl ketone prior to atomization. Impregnation of the furnace with a sodium tungstate solution increases the sensitivity of the determination and improves the precision of the results. The limits of determination are 0.5-20 ppm of tin in the sample. Higher tin values can be determined by dilution of the extract. Replicate analyses of eighteen geological reference samples with diverse matrices gave relative standard deviations ranging from 2.0 to 10.8% with an average of 4.6%. Average tin values for reference samples were in general agreement with, but more precise than, those reported by others. Apparent recoveries of tin added to various samples ranged from 95 to 111% with an average of 102%. ?? 1984.

  4. Atomic-absorption spectrometric determination of cobalt, nickel, and copper in geological materials with matrix masking and chelation-extraction

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.; Crenshaw, G.L.

    1979-01-01

    An atomic-absorption spectrometric method is reported for the determination of cobalt, nickel, and copper in a variety of geological materials including iron- and manganese-rich, and calcareous samples. The sample is decomposed with HP-HNO3 and the residue is dissolved in hydrochloric acid. Ammonium fluoride is added to mask iron and 'aluminum. After adjustment to pH 6, cobalt, nickel, and copper are chelated with sodium diethyl-dithiocarbamate and extracted into methyl isobutyl ketone. The sample is set aside for 24 h before analysis to remove interferences from manganese. For a 0.200-g sample, the limits of determination are 5-1000 ppm for Co, Ni, and Cu. As much as 50% Fe, 25% Mn or Ca, 20% Al and 10% Na, K, or Mg in the sample either individually or in various combinations do not interfere. Results obtained on five U.S. Geological Survey rock standards are in general agreement with values reported in the literature. ?? 1979.

  5. Multi-block analysis coupled to laser-induced breakdown spectroscopy for sorting geological materials from caves.

    Science.gov (United States)

    Ammari, Faten; Bassel, Léna; Ferrier, Catherine; Lacanette, Delphine; Chapoulie, Rémy; Bousquet, Bruno

    2016-10-01

    In this study, multi-block analysis was applied for the first time to LIBS spectra provided by a portable LIBS system (IVEA Solution, France) equipped with three compact Czerny-Turner spectrometers covering the spectral ranges 200-397nm, 398-571nm and 572-1000nm. 41 geological samples taken from a laboratory-cave situated in the "Vézère valley", an area rich with prehistoric sites and decorated caves listed as a UNESCO world heritage in the south west of France, were analyzed. They were composed of limestone and clay considered as underlying supports and of two types of alterations referred as moonmilk and coralloid. Common Components and Specific Weights Analysis (CCSWA) allowed sorting moonmilk and coralloid samples. The loadings revealed higher amounts of magnesium, silicon, aluminum and strontium in coralloids and the saliences emphasized that among the three spectrometers installed in the LIBS instrument used in this work; that covering the range 572-1000nm was less contributive. This new approach for processing LIBS data not only provides good results for sorting geological materials but also clearly reveals which spectral range contains most of the information. This specific advantage of multi-block analysis could lead for some applications to simplify the design and to reduce the size of LIBS instruments. Copyright © 2016 Elsevier B.V. All rights reserved.

  6. Development of low alkaline cementitious grouting materials for a deep geological repository

    International Nuclear Information System (INIS)

    Suzuki, Kenichiro; Miura, Norihiko; Iriya, Keishiro; Kobayashi, Yasushi

    2012-01-01

    In order to reduce uncertainties of long-term safety assessment for a High Level radioactive Waste (HLW) repository system, low alkaline cementitious grouting materials have been studied. The pH of the leachate from the grouting material is targeted to be below 11.0, since the degradation of the bentonite buffer and host rock is limited. The current work focused on the effects of pozzolanic reactions to reduce pH and the development of low alkaline cementitious injection materials in which super-micro ordinary Portland cement (SOPC) was partially replaced by silica fume (SF), micro silica (MS) and fly ash (FA). As it is important to realize how the grouting material will respond to a high injection pressure into the fracture, and in order to understand the penetrability of different low alkaline cement mixes and to observe their flow behavior through the fracture, injection tests were conducted by using a simulated model fracture of 2 m diameter made from parallel plates of acrylic acid resin and stainless steel. Experimental results of the basic properties for selecting suitable materials and that of injecting into a simulated fracture to assess the grouting performance are described

  7. Heater test planning for the Near Surface Test Facility at the Hanford reservation. Volume II. Appendix

    International Nuclear Information System (INIS)

    DuBois, A.; Binnall, E.; Chan, T.; McEvoy, M.; Nelson, P.; Remer, J.

    1979-04-01

    Volume II contains the following information: theoretical support for radioactive waste storage projects - development of data analysis methods and numerical models; injectivity temperature profiling as a means of permeability characterization; geophysical holes at the Near Surface Test Facility (NSTF), Hanford; proposed geophysical and hydrological measurements at NSTF; suggestions for characterization of the discontinuity system at NSTF; monitoring rock property changes caused by radioactive waste storage using the electrical resistivity method; microseismic detection system for heated rock; Pasco Basin groundwater contamination study; a letter to Mark Board on Gable Mountain Faulting; report on hydrofracturing tests for in-situ stress measurement, NSTF, Hole DC-11, Hanford Reservation; and borehole instrumentation layout for Hanford Near Surface Test Facility

  8. Direct detection of near-surface faults by migration of back-scattered surface waves

    KAUST Repository

    Yu, Han

    2014-08-05

    We show that diffraction stack migration can be used to estimate the distribution of near-surface faults. The assumption is that near-surface faults generate detectable back-scattered surface waves from impinging surface waves. The processing steps are to isolate the back-scattered surface waves, and then migrate them by diffraction migration using the surface wave velocity as the migration velocity. Instead of summing events along trial quasi-hyperbolas, surface wave migration sums events along trial quasi-linear trajectories that correspond to the moveout of back-scattered surface waves. A deconvolution filter derived from the data can be used to collapse a dispersive arrival into a non-dispersive event. Results with synthetic data and field records validate the feasibility of this method. Applying this method to USArray data or passively recorded exploration data might open new opportunities in mapping tectonic features over the extent of the array.

  9. The measurement of in-situ stress in near surface environments

    International Nuclear Information System (INIS)

    Garritty, P.; Irvin, R.A.

    1984-04-01

    One of the major unknowns affecting aspects of underground construction and the geohydrology of rock masses is the magnitude and direction of the geostatic principal stresses in the earth's crust. This is particularly the case in near surface rocks where there are indications that high horizontal stresses may exist. The measurement of stress in near surface environments is particularly difficult. The techniques, experience and results of a geostatic stress measurement programme using four commercially available devices at shallow depth in the Carnmenellis Granite are critically discussed and compared. This report also brings together some of the conclusions of two previous reports in the series, Garritty (1983) and Garritty and Irvin (1983), and emphasises the fundamental relationship between the state of stress in the earth's crust and the geohydrology of rock masses. (author)

  10. Electrical properties of polyimides containing a near-surface deposit of silver

    Science.gov (United States)

    Rancourt, J. D.; Porta, G. M.; Taylor, L. T.

    1987-01-01

    Films containing a surface or near-surface deposit of palladium, gold or copper metal as well as tin, cobalt, copper, or lithium oxides have been prepared by dissolving appropriate metal salts into poly(amide-acid)/N,N-dimethylacetamide solutions and curing the solvent cast films to temperatures up to 300 C. This preparation technique has been extended to evaluate the thermal, spectroscopic, and electrical characteristics of condensation polyimide films modified with silver nitrate. A near-surface deposit of metallic silver results but the reflective surface has high electrical resistivity (sheet resistivity) due to a polymer coating or overlayer above the metal. Details pertaining to the silver nitrate modified condensation polyimides are presented. Also, the applicability of the structural model and electrical model previously proposed for the cobalt oxide system are assessed.

  11. KS 20322007 Near-Surface Disposal Radioactive Waste - Code Of Practice

    International Nuclear Information System (INIS)

    Omondi, C.

    2017-01-01

    To provide a basis for the near-surface disposal of solid radioactive waste to ensures that there is no unacceptable risk to humans, other biota or the environment. Near-Surface Disposal is the disposal of radioactive waste in below or above the natural ground surface, within app. 30 m. The code deals with management aspects associated with radioactive waste disposal only, and is not intended to cover issues related to the production and use of radionuclides. The objective of waste disposal is to isolate radioactive waste in order to ensure that there is no unacceptable health risk to humans and no long-term unacceptable effect to the environment. Radiation protection annual effective dose for exposure of members of the public should not exceed 1 mSv/year and occupational exposure of 20 mSv/year

  12. Evaluation of geologic materials to limit biological intrusion of low-level waste site covers

    International Nuclear Information System (INIS)

    Hakonson, T.E.; White, G.C.; Karlen, E.M.

    1982-01-01

    The long-term integrity of low-level waste shallow land burial sites is dependent on the interaction of physical, chemical, and biological factors that modify the waste containment system. This paper reports the preliminary results of a screening study to-determine the effectiveness of four biobarrier materials to stop plant root and animal penetration into simulated low-level wastes. Experiments employed 288 lysimeters consisting of 25-cm-diam PVC pipe, with four factors tested: plant species (alfalfa, barley, and sweet clover); top soil thickness (30 and 60 cm); biobarrier material (crushed tuff, bentonite clay, cobble, and cobble-gravel); and biobarrier thickness (clay-15, 30, and 45 cm, others 30, 60, and 90 cm). The crushed tuff, a sandy backfill material, offers little resistance to root and animal intrusion through the cover profile, while bentonite clay, cobble, and cobble-gravel combinations do reduce plant root and animal intrusion thorugh cover profiles. However, dessication of the clay barrier by invading plant roots may limit the usefulness of this material as a moisture and/or biological barrier. The cobble-gravel combination appears to be the best candidate for further testing on a larger scale because the gravel helps impede the imgration of soil into the cobble layer - the probable cause of failure of cobble-only biobarriers

  13. Nano-Tomography of Porous Geological Materials Using Focused Ion Beam-Scanning Electron Microscopy

    Directory of Open Access Journals (Sweden)

    Yang Liu

    2016-10-01

    Full Text Available Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution serves as an introduction and overview of FIB-SEM tomography applied to porous materials. Using two different porous Earth materials, a diatomite specimen, and an experimentally produced amorphous silica layer on olivine, we discuss the experimental setup of FIB-SEM tomography. We then focus on image processing procedures, including image alignment, correction, and segmentation to finally result in a three-dimensional, quantified pore network representation of the two example materials. To each image processing step we consider potential issues, such as imaging the back of pore walls, and the generation of image artefacts through the application of processing algorithms. We conclude that there is no single image processing recipe; processing steps need to be decided on a case-by-case study.

  14. Nano-tomography of porous geological materials using focused ion beam-scanning electron microscopy

    NARCIS (Netherlands)

    Liu, Yang; King, Helen E.; van Huis, Marijn A.; Drury, Martyn R.; Plümper, Oliver

    2016-01-01

    Tomographic analysis using focused ion beam-scanning electron microscopy (FIB-SEM) provides three-dimensional information about solid materials with a resolution of a few nanometres and thus bridges the gap between X-ray and transmission electron microscopic tomography techniques. This contribution

  15. Methodological aspects and development of techniques for neutron activation analysis of microcomponents in materials of geologic origin

    International Nuclear Information System (INIS)

    Cohen, I.M.

    1982-01-01

    Some aspects of the activation analysis methodology applied to geological samples activated in nuclear reactors were studied, and techniques were developed for the determination of various elements in different types of matrixes, using gamma spectrometry for the measurement of the products. The consideration of the methodological aspects includes the study of the working conditions, the preparation of samples and standards, irradiations, treatment of the irradiated material, radiochemical separation and measurement. Experiments were carried out on reproducibility and errors in relation to the behaviour of the measurement equipment and that of the methods of area calculation (total area, Covell and Wasson), as well as on the effects of geometry variations on the results of the measurements, the RA-3 reactors's flux variations, and the homogeneity of the samples and standards. Also studied were: the selection of the conditions of determination, including the irradiation and decay times; the irradiation with thermal and epithermal neutrons; the measurement with the use of absorbers, and the resolution of complex peaks. Both non-destructive and radiochemical separation techniques were developed for the analysis of 5 types of geological materials. These methods were applied to the following determinations: a) In, Cd, Mn, Ga and Co in blende; b) La, Ce, Pr, Nd, Sm, Eu, Gd, Tb, Dy, Ho, Er, Tm, Yb and Lu in fluorites; c) La, Ca, Eu, Tb, Yb, Se and Th in barites and celestites; d) Cu and Zn in soils. The spectral interferences or those due to nuclear reactions were studied and evaluated by mathematical calculation. (M.E.L.) [es

  16. Distribution of near-surface permafrost in Alaska: estimates of present and future conditions

    Science.gov (United States)

    Pastick, Neal J.; Jorgenson, M. Torre; Wylie, Bruce K.; Nield, Shawn J.; Johnson, Kristofer D.; Finley, Andrew O.

    2015-01-01

    High-latitude regions are experiencing rapid and extensive changes in ecosystem composition and function as the result of increases in average air temperature. Increasing air temperatures have led to widespread thawing and degradation of permafrost, which in turn has affected ecosystems, socioeconomics, and the carbon cycle of high latitudes. Here we overcome complex interactions among surface and subsurface conditions to map nearsurface permafrost through decision and regression tree approaches that statistically and spatially extend field observations using remotely sensed imagery, climatic data, and thematic maps of a wide range of surface and subsurface biophysical characteristics. The data fusion approach generated medium-resolution (30-m pixels) maps of near-surface (within 1 m) permafrost, active-layer thickness, and associated uncertainty estimates throughout mainland Alaska. Our calibrated models (overall test accuracy of ~85%) were used to quantify changes in permafrost distribution under varying future climate scenarios assuming no other changes in biophysical factors. Models indicate that near-surface permafrost underlies 38% of mainland Alaska and that near-surface permafrost will disappear on 16 to 24% of the landscape by the end of the 21st Century. Simulations suggest that near-surface permafrost degradation is more probable in central regions of Alaska than more northerly regions. Taken together, these results have obvious implications for potential remobilization of frozen soil carbon pools under warmer temperatures. Additionally, warmer and drier conditions may increase fire activity and severity, which may exacerbate rates of permafrost thaw and carbon remobilization relative to climate alone. The mapping of permafrost distribution across Alaska is important for land-use planning, environmental assessments, and a wide-array of geophysical studies.

  17. Automatic monitoring of ecosystem structure and functions using integrated low-cost near surface sensors

    Science.gov (United States)

    Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.

    2016-12-01

    Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.

  18. Does an inter-flaw length control the accuracy of rupture forecasting in geological materials?

    Science.gov (United States)

    Vasseur, Jérémie; Wadsworth, Fabian B.; Heap, Michael J.; Main, Ian G.; Lavallée, Yan; Dingwell, Donald B.

    2017-10-01

    Multi-scale failure of porous materials is an important phenomenon in nature and in material physics - from controlled laboratory tests to rockbursts, landslides, volcanic eruptions and earthquakes. A key unsolved research question is how to accurately forecast the time of system-sized catastrophic failure, based on observations of precursory events such as acoustic emissions (AE) in laboratory samples, or, on a larger scale, small earthquakes. Until now, the length scale associated with precursory events has not been well quantified, resulting in forecasting tools that are often unreliable. Here we test the hypothesis that the accuracy of the forecast failure time depends on the inter-flaw distance in the starting material. We use new experimental datasets for the deformation of porous materials to infer the critical crack length at failure from a static damage mechanics model. The style of acceleration of AE rate prior to failure, and the accuracy of forecast failure time, both depend on whether the cracks can span the inter-flaw length or not. A smooth inverse power-law acceleration of AE rate to failure, and an accurate forecast, occurs when the cracks are sufficiently long to bridge pore spaces. When this is not the case, the predicted failure time is much less accurate and failure is preceded by an exponential AE rate trend. Finally, we provide a quantitative and pragmatic correction for the systematic error in the forecast failure time, valid for structurally isotropic porous materials, which could be tested against larger-scale natural failure events, with suitable scaling for the relevant inter-flaw distances.

  19. The IAEA research project on improvement of safety assessment methodologies for near surface disposal facilities

    International Nuclear Information System (INIS)

    Torres-Vidal, C.; Graham, D.; Batandjieva, B.

    2002-01-01

    The International Atomic Energy Agency (IAEA) Research Coordinated Project on Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities (ISAM) was launched in November 1997 and it has been underway for three years. The ISAM project was developed to provide a critical evaluation of the approaches and tools used in long-term safety assessment of near surface repositories. It resulted in the development of a harmonised approach and illustrated its application by way of three test cases - vault, borehole and Radon (a particular range of repository designs developed within the former Soviet Union) type repositories. As a consequence, the ISAM project had over 70 active participants and attracted considerable interest involving around 700 experts from 72 Member States. The methodology developed, the test cases, the main lessons learnt and the conclusions have been documented and will be published in the form of an IAEA TECDOC. This paper presents the work of the IAEA on improvement of safety assessment methodologies for near surface waste disposal facilities and the application of these methodologies for different purposes in the individual stages of the repository development. The paper introduces the main objectives, activities and outcome of the ISAM project and summarizes the work performed by the six working groups within the ISAM programme, i.e. Scenario Generation and Justification, Modelling, Confidence Building, Vault, Radon Type Facility and Borehole test cases. (author)

  20. Modeling the Impacts of Boreal Deforestation on the Near-Surface Temperature in European Russia

    Directory of Open Access Journals (Sweden)

    Zhihui Li

    2013-01-01

    Full Text Available Boreal deforestation plays an important role in affecting regional and global climate. In this study, the regional temperature variation induced by future boreal deforestation in European Russia boreal forest region was simulated based on future land cover change and the Weather Research and Forecasting (WRF model. This study firstly tested and validated the simulation results of the WRF model. Then the land cover datasets in different years (2000 as baseline year, 2010, and 2100 was used in the WRF model to explore the impacts of boreal deforestation on the near-surface temperature. The results indicated that the WRF model has good ability to simulate the temperature change in European Russia. The land cover change in European Russia boreal forest region, which will be characterized by the conversion from boreal forests to croplands (boreal deforestation in the future 100 years, will lead to significant change of the near-surface temperature. The regional annual temperature will decrease by 0.58°C in the future 100 years, resulting in cooling effects to some extent and making the near-surface temperature decrease in most seasons except the spring.

  1. Near-surface bulk densities of asteroids derived from dual-polarization radar observations

    Science.gov (United States)

    Virkki, A.; Taylor, P. A.; Zambrano-Marin, L. F.; Howell, E. S.; Nolan, M. C.; Lejoly, C.; Rivera-Valentin, E. G.; Aponte, B. A.

    2017-09-01

    We present a new method to constrain the near-surface bulk density and surface roughness of regolith on asteroid surfaces using planetary radar measurements. The number of radar observations has increased rapidly during the last five years, allowing us to compare and contrast the radar scattering properties of different small-body populations and compositional types. This provides us with new opportunities to investigate their near-surface physical properties such as the chemical composition, bulk density, porosity, or the structural roughness in the scale of centimeters to meters. Because the radar signal can penetrate into a planetary surface up to a few decimeters, radar can reveal information that is hidden from other ground-based methods, such as optical and infrared measurements. The near-surface structure of asteroids and comets in centimeter-to-meter scale is essential information for robotic and human space missions, impact threat mitigation, and understanding the history of these bodies as well as the formation of the whole Solar System.

  2. Inverting near-surface models from virtual-source gathers (SM Division Outstanding ECS Award Lecture)

    Science.gov (United States)

    Ruigrok, Elmer; Vossen, Caron; Paulssen, Hanneke

    2017-04-01

    The Groningen gas field is a massive natural gas accumulation in the north-east of the Netherlands. Decades of production have led to significant compaction of the reservoir rock. The (differential) compaction is thought to have reactivated existing faults and to be the main driver of induced seismicity. The potential damage at the surface is largely affected by the state of the near surface. Thin and soft sedimentary layers can lead to large amplifications. By measuring the wavefield at different depth levels, near-surface properties can directly be estimated from the recordings. Seismicity in the Groningen area is monitored primarily with an array of vertical arrays. In the nineties a network of 8 boreholes was deployed. Since 2015, this network has been expanded with 70 new boreholes. Each new borehole consists of an accelerometer at the surface and four downhole geophones with a vertical spacing of 50 m. We apply seismic interferometry to local seismicity, for each borehole individually. Doing so, we obtain the responses as if there were virtual sources at the lowest geophones and receivers at the other depth levels. From the retrieved direct waves and reflections, we invert for P- & S- velocity and Q models. We discuss different implementations of seismic interferometry and the subsequent inversion. The inverted near-surface properties are used to improve both the source location and the hazard assessment.

  3. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun; AlTheyab, Abdullah; Hanafy, Sherif M.; Schuster, Gerard T.

    2017-01-01

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  4. Imaging near-surface heterogeneities by natural migration of backscattered surface waves: Field data test

    KAUST Repository

    Liu, Zhaolun

    2017-03-06

    We have developed a methodology for detecting the presence of near-surface heterogeneities by naturally migrating backscattered surface waves in controlled-source data. The near-surface heterogeneities must be located within a depth of approximately one-third the dominant wavelength λ of the strong surface-wave arrivals. This natural migration method does not require knowledge of the near-surface phase-velocity distribution because it uses the recorded data to approximate the Green’s functions for migration. Prior to migration, the backscattered data are separated from the original records, and the band-passed filtered data are migrated to give an estimate of the migration image at a depth of approximately one-third λ. Each band-passed data set gives a migration image at a different depth. Results with synthetic data and field data recorded over known faults validate the effectiveness of this method. Migrating the surface waves in recorded 2D and 3D data sets accurately reveals the locations of known faults. The limitation of this method is that it requires a dense array of receivers with a geophone interval less than approximately one-half λ.

  5. Primary Criteria for Near Surface Disposal Facility in Egypt Proposal approach

    International Nuclear Information System (INIS)

    Abdellatif, M.M.

    2013-01-01

    The objective of radioactive waste disposal is to isolate waste from the surrounding media to protect human health and environment from the harmful effect of the ionizing radiation. The required degree of isolation can be obtained by implementing various disposal methods, of which near surface disposal represents an option commonly used and demonstrated in several countries. Near surface disposal has been practiced for some decades, with a wide variation in sites, types and amounts of wastes, and facility designs employed. Experience has shown that the effective and safe isolation of waste depends on the performance of the overall disposal system, which is formed by three major components or barriers: the site, the disposal facility and the waste form. The site selection process for low-level and intermediate level radioactive waste disposal facility addressed a wide range of public health, safety, environmental, social and economic factors. The primary goal of the sitting process is to identify a site that is capable of protecting public health, safety and the environment. This paper is concerning a proposal approach for the primary criteria for near surface disposal facility that could be applicable in Egypt.

  6. Mass transfer of CO2 to groundwaters from a near-surface waste disposal site

    International Nuclear Information System (INIS)

    Caron, F.; Wilkinson, S.R.; Manni, G.; Torok, J.

    1995-01-01

    Gaseous 14 CO 2 originating from buried low-level radioactive wastes (LLRW) in a near-surface disposal site can be released to the environment via two major paths: gas-phase diffusion through soils to the atmosphere, and dissolution in groundwater, followed by aqueous migration. Aqueous migration would give the highest dose to an individual, especially if C-14 was converted to an organic form and ingested. Gaseous diffusion would give a lower dose, largely because of atmospheric dispersion and dilution. The objective of this study was to develop the capability to estimate which of the two paths will likely be dominant for typical near-surface disposal facilities. The main missing parameter for making this estimate was a mass-transfer coefficient (K L ) of 14 CO 2 to groundwaters, which was determined experimentally using a large sand box. The K L thus determined was approximately 10 to 20 times smaller than for an open liquid surface. This suggests that there is a potential resistance to mass transfer, probably caused by the capillary fringe. The value obtained was incorporated into a simple model of CO 2 transport around a typical near-surface disposal site. The model suggests that CO 2 transport via both gaseous release and aqueous migration paths are of similar magnitude for a repository located ∼2 m above the water table. (author). 11 refs., 2 tabs., 2 figs

  7. Investigation of the near-surface electronic structure of Cr(001)

    International Nuclear Information System (INIS)

    Klebanoff, L.E.; Robey, S.W.; Liu, G.; Shirley, D.A.

    1985-01-01

    An angle-resolved photoelectron spectroscopy (ARPES) study of Cr(001) near-surface electronic structure is presented. Measurements are reported for energy-band dispersions along the [010] direction parallel to the crystal surface. The periodicity of these band dispersions indicates that the valence electrons experience and self-consistently establish antiferromagnetism in the near-surface layers of Cr(001). We also present highly-surface-sensitive ARPES measurements of the energy-band dispersions along the [001] direction normal to the surface. The results suggest that the surface magnetic moments, which couple ferromagnetically to each other within the surface layer, couple antiferromagnetically to the moments of the atoms in the second layer. Temperature-dependent studies are presented that reveal the persistence of near-surface antiferromagnetic order for temperatures up to 2.5 times the bulk Neel temperature. The temperature dependence of this antiferromagnetic order suggests that its thermal stability derives in part from the stability of the Cr(001) ferromagnetic surface phase

  8. Corrosion behaviour of container materials for geological disposal of high-level waste. Joint annual progress report 1983

    International Nuclear Information System (INIS)

    1985-01-01

    Within the framework of the Community R and D programme on management and storage of radioactive waste (shared-cost action), a research activity is aiming at the assessment of corrosion behaviour of potential container materials for geological disposal of vitrified high-level wastes. In this report, the results obtained during the year 1983 are described. Research performed at the Studiecentrum voor Kernenergie/Centre d'Etudes de l'Energie Nucleaire (SCK/CEN) at Mol (B), concerns the corrosion behaviour in clay environments. The behaviour in salt is tested by the Kernforschungszentrum (KfK) at Karlsruhe (D). Corrosion behaviour in granitic environments is being examined by the Commissariat a l'Energie Atomique (CEA) at Fontenay-aux-Roses (F) and the Atomic Energy Research Establishment (AERE) at Harwell (UK); the first is concentrating on corrosion-resistant materials and the latter on corrosion-allowance materials. Finally, the Centre National de la Recherche Scientifique (CNRS) at Vitry (F) is examining the formation and behaviour of passive layers on the metal alloys in the various environments

  9. Geological storage of carbon dioxide in the coal seams: from material to the reservoir

    International Nuclear Information System (INIS)

    Nikoosokhan, S.

    2012-01-01

    CO 2 emissions into the atmosphere are recognized to have a significant effect on global warming. Geological storage of CO 2 is widely regarded as an essential approach to reduce the impact of such emissions on the environment. Moreover, injecting carbon dioxide in coal bed methane reservoirs facilitates the recovery of the methane naturally present, a process known as enhanced coal bed methane recovery (ECBM). But the swelling of the coal matrix induced by the preferential adsorption by coal of carbon dioxide over the methane in place leads to a closure of the cleat system (a set of small natural fractures) of the reservoir and therefore to a loss of injectivity. This PhD thesis is dedicated to a study of how this injectivity evolves in presence of fluids. We derive two poro-mechanical dual-porosity models for a coal bed reservoir saturated by a pure fluid. The resulting constitutive equations enable to better understand and model the link between the injectivity of a coal seam and the adsorption-induced swelling of coal. For both models, the pore space of the reservoir is considered to be divided into the macroporous cleats and the pores of the coal matrix. The two models differ by how adsorption of fluid is taken into account: the first model is restricted to surface adsorption, while the second model can be applied for adsorption in a medium with a generic pore size distribution and thus in a microporous medium such as coal, in which adsorption mostly occurs by micropore filling. The latter model is calibrated on two coals with different sorption and swelling properties. We then perform simulations at various scales (Representative Elementary Volume, coal sample, coal seam). In particular, we validate our model on experimental data of adsorption-induced variations of permeability of coal. We also perform simulations of seams from which methane would be produced (CBM) or of methane-free seams into which CO 2 would be injected. We study the effect of various

  10. Evaluation of geologic materials to limit biological intrusion into low-level radioactive waste disposal sites

    International Nuclear Information System (INIS)

    Hakonson, T.E.

    1986-02-01

    This report describes the results of a three-year research program to evaluate the performance of selected soil and rock trench cap designs in limiting biological intrusion into simulated waste. The report is divided into three sections including a discussion of background material on biological interactions with waste site trench caps, a presentation of experimental data from field studies conducted at several scales, and a final section on the interpretation and limitations of the data including implications for the user

  11. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    International Nuclear Information System (INIS)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A.

    2013-01-01

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments – which involve moderate to extensive levels of particle damage – are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 × 105 grains are presented.

  12. Dynamic and impact contact mechanics of geologic materials: Grain-scale experiments and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Cole, David M.; Hopkins, Mark A.; Ketcham, Stephen A. [Engineer Research and Development Center - Cold Regions Research and Engineering Laboratory, 72 Lyme Rd., Hanover, NH 03755 (United States)

    2013-06-18

    High fidelity treatments of the generation and propagation of seismic waves in naturally occurring granular materials is becoming more practical given recent advancements in our ability to model complex particle shapes and their mechanical interaction. Of particular interest are the grain-scale processes that are activated by impact events and the characteristics of force transmission through grain contacts. To address this issue, we have developed a physics based approach that involves laboratory experiments to quantify the dynamic contact and impact behavior of granular materials and incorporation of the observed behavior indiscrete element models. The dynamic experiments do not involve particle damage and emphasis is placed on measured values of contact stiffness and frictional loss. The normal stiffness observed in dynamic contact experiments at low frequencies (e.g., 10 Hz) are shown to be in good agreement with quasistatic experiments on quartz sand. The results of impact experiments - which involve moderate to extensive levels of particle damage - are presented for several types of naturally occurring granular materials (several quartz sands, magnesite and calcium carbonate ooids). Implementation of the experimental findings in discrete element models is discussed and the results of impact simulations involving up to 5 Multiplication-Sign 105 grains are presented.

  13. The contribution of the representatives of the Siberian (Tomsk mining and geological school to the developmet of mineral raw material base in Russia and Abroad

    Directory of Open Access Journals (Sweden)

    П. С. Чубик

    2017-12-01

    Full Text Available This paper is devoted to the maturation and development of Siberian (Tomsk mining and geological school - one of the leading schools in Russia, which was created in the first third of the 20th century in Tomsk Technological Institute by V.A.Obruchev and M.A.Usov known to be outstanding Russian and Soviet geoscientists and members of the Russian Academy of Science. The article touches upon the participation of representatives of Siberian (Tomsk mining and geological school to the exploration and development of mineral and raw material base of Siberia, Russia’s Far East, Central Asia. The information about the most important geological discoveries made by nurslings of Siberian (Tomsk mining and geological school is provided.

  14. Rebar corrosion due to carbonation in structural reinforced concretes for near-surface LLW repositories: A critical failure mechanism

    Energy Technology Data Exchange (ETDEWEB)

    Torok, J

    1995-03-01

    The concrete roof of a near-surface radioactive waste repository is the principle protection against water infiltration and intrusion. The following potential roof failure mechanism is examined: carbon dioxide generated by the biodegradation of organic materials in the repository initiates corrosion of reinforcing steel embedded in the concrete roof. Because the bottom surface of the roof is mostly under tension, it is susceptible to cracking. The migration path for carbon dioxide is through cracks in the concrete between the bottom of the roof and the reinforcing bars. Carbonate corrosion of the reinforcing bars may result in concrete spalling, more extensive rebar corrosion and ultimately structural failure. Attention is brought to this failure mechanism because it has generally been overlooked in repository performance assessments. Literature relevant to the above failure is reviewed. Prerequisites for rebar corrosion are the presence of carbon dioxide and oxygen in the repository gas, high relative humidity and through-cracks in the concrete. High carbon dioxide concentrations and relative humidity are expected in the repository. The oxygen concentration in the repository is expected to be very low, and that is expected to minimize rebar corrosion rates. Cracks are likely to form in locations with high tensile stresses. Healing of the cracks could be a mitigating factor, but based on our analysis, it can not be relied on. To minimize the potential of this failure mechanism occurring with the Intrusion Resistant Underground Structure (IRUS), Canada`s proposed near-surface repository, carbon dioxide from the repository gas will be absorbed by the reactive, porous concrete placed between the waste and the roof. (author). 4 refs.

  15. Rebar corrosion due to carbonation in structural reinforced concretes for near-surface LLW repositories: A critical failure mechanism

    International Nuclear Information System (INIS)

    Torok, J.

    1995-03-01

    The concrete roof of a near-surface radioactive waste repository is the principle protection against water infiltration and intrusion. The following potential roof failure mechanism is examined: carbon dioxide generated by the biodegradation of organic materials in the repository initiates corrosion of reinforcing steel embedded in the concrete roof. Because the bottom surface of the roof is mostly under tension, it is susceptible to cracking. The migration path for carbon dioxide is through cracks in the concrete between the bottom of the roof and the reinforcing bars. Carbonate corrosion of the reinforcing bars may result in concrete spalling, more extensive rebar corrosion and ultimately structural failure. Attention is brought to this failure mechanism because it has generally been overlooked in repository performance assessments. Literature relevant to the above failure is reviewed. Prerequisites for rebar corrosion are the presence of carbon dioxide and oxygen in the repository gas, high relative humidity and through-cracks in the concrete. High carbon dioxide concentrations and relative humidity are expected in the repository. The oxygen concentration in the repository is expected to be very low, and that is expected to minimize rebar corrosion rates. Cracks are likely to form in locations with high tensile stresses. Healing of the cracks could be a mitigating factor, but based on our analysis, it can not be relied on. To minimize the potential of this failure mechanism occurring with the Intrusion Resistant Underground Structure (IRUS), Canada's proposed near-surface repository, carbon dioxide from the repository gas will be absorbed by the reactive, porous concrete placed between the waste and the roof. (author). 4 refs

  16. Permeability and pore structure connectivity of basic concrete formulations to use in near-surface repositories for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Santos, Carlos Eduardo de Oliveira; Tello, Clédola Cássia Oliveira de

    2017-01-01

    The main concern of engineers who prepare concrete specifications for a particular application is to predict the deteriorative exposures that could cause concrete degradation over its intended service life. A durable concrete is able to resist destructive environmental conditions, without requiring excessive maintenance. Durability of cementitious materials largely depends on the possibilities of penetration of hazardous ions into the porous material with water as medium. Therefore, the water permeability of cementitious materials is related to its durability. Permeability and porosity should not instinctively be regarded as manifestations of the same phenomenon. Usually, when permeability increases, porosity increases as well. The connectivity of pore network exerts an important control on preferential flow into cementitious materials. This work presents results of quantitative evaluation of permeability and pore connectivity of Portland cement concretes. Two concrete mixture proportions with limestone and gneiss as coarse aggregate were produced. A modified polycarboxyl ether plasticizer GLENIUM 51 was added to one of the concrete mixtures in order to reduce the water content. Permeability tests were performed on all the specimens and a geometric modeling considering pore with cylindrical shape was applied in order to evaluate the pore network connectivity. The results showed that pore structure connectivity of concrete with plasticizer admixture decreased. The purpose of this research is to expand the knowledge concerning concrete durability and to provide the technical requirements related to the production the Brazilian near-surface repository of radioactive wastes. (author)

  17. Permeability and pore structure connectivity of basic concrete formulations to use in near-surface repositories for radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Tolentino, Evandro; Santos, Carlos Eduardo de Oliveira [Centro Federal de Educação Tecnológica de Minas Gerais (CEFET-MG), Timóteo, MG (Brazil); Tello, Clédola Cássia Oliveira de, E-mail: tolentino@timoteo.cefetmg.br, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The main concern of engineers who prepare concrete specifications for a particular application is to predict the deteriorative exposures that could cause concrete degradation over its intended service life. A durable concrete is able to resist destructive environmental conditions, without requiring excessive maintenance. Durability of cementitious materials largely depends on the possibilities of penetration of hazardous ions into the porous material with water as medium. Therefore, the water permeability of cementitious materials is related to its durability. Permeability and porosity should not instinctively be regarded as manifestations of the same phenomenon. Usually, when permeability increases, porosity increases as well. The connectivity of pore network exerts an important control on preferential flow into cementitious materials. This work presents results of quantitative evaluation of permeability and pore connectivity of Portland cement concretes. Two concrete mixture proportions with limestone and gneiss as coarse aggregate were produced. A modified polycarboxyl ether plasticizer GLENIUM 51 was added to one of the concrete mixtures in order to reduce the water content. Permeability tests were performed on all the specimens and a geometric modeling considering pore with cylindrical shape was applied in order to evaluate the pore network connectivity. The results showed that pore structure connectivity of concrete with plasticizer admixture decreased. The purpose of this research is to expand the knowledge concerning concrete durability and to provide the technical requirements related to the production the Brazilian near-surface repository of radioactive wastes. (author)

  18. Use of physical techniques for dating of archaeological and geological materials in Brazil and Japan

    International Nuclear Information System (INIS)

    Ikeya, M.; Mascarenhas, S.

    1980-01-01

    The principle of ESR (Electron Spin Resonance) dating is described briefly. The dating of stalagtites and stalagmites at Caverna do Diabo (Brazil) follows as an example. ESR dating of archaeological materials (shells and bones) at the shell mound of Sambaqui in the Brazilian coast is presented and compared with the results of bone and shell dating in Japan. The use of ESR dating technique to indicate coffee bean oil decomposition (for the quality assessement of Brazilian coffee beans) is also described. (I.C.R.) [pt

  19. The subsurface geology of Río Tinto: material examined during a simulated Mars drilling mission for the Mars Astrobiology Research and Technology Experiment (MARTE).

    Science.gov (United States)

    Prieto-Ballesteros, Olga; Martínez-Frías, Jesús; Schutt, John; Sutter, Brad; Heldmann, Jennifer L; Bell, Mary Sue; Battler, Melissa; Cannon, Howard; Gómez-Elvira, Javier; Stoker, Carol R

    2008-10-01

    The 2005 Mars Astrobiology Research and Technology Experiment (MARTE) project conducted a simulated 1-month Mars drilling mission in the Río Tinto district, Spain. Dry robotic drilling, core sampling, and biological and geological analytical technologies were collectively tested for the first time for potential use on Mars. Drilling and subsurface sampling and analytical technologies are being explored for Mars because the subsurface is the most likely place to find life on Mars. The objectives of this work are to describe drilling, sampling, and analytical procedures; present the geological analysis of core and borehole material; and examine lessons learned from the drilling simulation. Drilling occurred at an undisclosed location, causing the science team to rely only on mission data for geological and biological interpretations. Core and borehole imaging was used for micromorphological analysis of rock, targeting rock for biological analysis, and making decisions regarding the next day's drilling operations. Drilling reached 606 cm depth into poorly consolidated gossan that allowed only 35% of core recovery and contributed to borehole wall failure during drilling. Core material containing any indication of biology was sampled and analyzed in more detail for its confirmation. Despite the poorly consolidated nature of the subsurface gossan, dry drilling was able to retrieve useful core material for geological and biological analysis. Lessons learned from this drilling simulation can guide the development of dry drilling and subsurface geological and biological analytical technologies for future Mars drilling missions.

  20. Role of complex utilization of mineral raw materials In geological research

    Energy Technology Data Exchange (ETDEWEB)

    Takacs, P.; Varju, G.

    1979-01-01

    Presents Hungarian research efforts on ways of utilizing the secondary raw materials alunite, pumice and slate coal from various mines. The slate coal is separated from brown coal and disposed of at spoil banks of brown coal mines, due to its high ash content (up to 56.8% under dry conditions), silicate content up to 58.2% and low calorific value between 1500 and 2780 kcal/kg. The research proposal for utilizing slate coal is directed at partial separation of the mineral and coal content by comminution, peptization and hydrocentrifugal separation. The larger part of the silicate content is held in the colloid suspension, which could be used for conditioning drilling mud or foundry sand. The produced coal concentrate has a reduced ash content and higher calorific value (between 500 and 800 kcal/kg) and could be employed in soil amelioration or combustion. (10 refs.) (In German)

  1. Proposed format and content of environmental reports for deep geologic terminal repositories for radioactive material

    International Nuclear Information System (INIS)

    Carrell, D.J.; Jones, G.L.

    1978-01-01

    As the Nuclear Regulatory Commission has not yet issued a format guide for the preparation of an environmental impact statement for radioactive waste repositories, Rockwell Hanford operations has developed an annotated outline which will serve as the basis for the environmental evaluation activities until replaced by an appropriate NRC regulatory guide. According to the outline, the applicant should summarize the major environmental effects that are expected to occur during the construction, operation, and terminal isolation phases of the radioactive material repository. Compare these environmental effects with the possible effect of continued use of interim storage facilities. Unless unforeseen environmental effects become apparent, the summary should be a positive statement indicating that the short-term environmental effects are outweighed by the long-term benefits of the repository

  2. Geological controls on soil parent material geochemistry along a northern Manitoba-North Dakota transect

    Science.gov (United States)

    Klassen, R.A.

    2009-01-01

    As a pilot study for mapping the geochemistry of North American soils, samples were collected along two continental transects extending east–west from Virginia to California, and north–south from northern Manitoba to the US–Mexican border and subjected to geochemical and mineralogical analyses. For the northern Manitoba–North Dakota segment of the north–south transect, X-ray diffraction analysis and bivariate relations indicate that geochemical properties of soil parent materials may be interpreted in terms of minerals derived from Shield and clastic sedimentary bedrock, and carbonate sedimentary bedrock terranes. The elements Cu, Zn, Ni, Cr and Ti occur primarily in silicate minerals decomposed by aqua regia, likely phyllosilicates, that preferentially concentrate in clay-sized fractions; Cr and Ti also occur in minerals decomposed only by stronger acid. Physical glacial processes affecting the distribution and concentration of carbonate minerals are significant controls on the variation of trace metal background concentrations.

  3. Geological controls on soil parent material geochemistry along a northern Manitoba-North Dakota transect

    International Nuclear Information System (INIS)

    Klassen, R.A.

    2009-01-01

    As a pilot study for mapping the geochemistry of North American soils, samples were collected along two continental transects extending east-west from Virginia to California, and north-south from northern Manitoba to the US-Mexican border and subjected to geochemical and mineralogical analyses. For the northern Manitoba-North Dakota segment of the north-south transect, X-ray diffraction analysis and bivariate relations indicate that geochemical properties of soil parent materials may be interpreted in terms of minerals derived from Shield and clastic sedimentary bedrock, and carbonate sedimentary bedrock terranes. The elements Cu, Zn, Ni, Cr and Ti occur primarily in silicate minerals decomposed by aqua regia, likely phyllosilicates, that preferentially concentrate in clay-sized fractions; Cr and Ti also occur in minerals decomposed only by stronger acid. Physical glacial processes affecting the distribution and concentration of carbonate minerals are significant controls on the variation of trace metal background concentrations.

  4. A hybrid 3D SEM reconstruction method optimized for complex geologic material surfaces.

    Science.gov (United States)

    Yan, Shang; Adegbule, Aderonke; Kibbey, Tohren C G

    2017-08-01

    Reconstruction methods are widely used to extract three-dimensional information from scanning electron microscope (SEM) images. This paper presents a new hybrid reconstruction method that combines stereoscopic reconstruction with shape-from-shading calculations to generate highly-detailed elevation maps from SEM image pairs. The method makes use of an imaged glass sphere to determine the quantitative relationship between observed intensity and angles between the beam and surface normal, and the detector and surface normal. Two specific equations are derived to make use of image intensity information in creating the final elevation map. The equations are used together, one making use of intensities in the two images, the other making use of intensities within a single image. The method is specifically designed for SEM images captured with a single secondary electron detector, and is optimized to capture maximum detail from complex natural surfaces. The method is illustrated with a complex structured abrasive material, and a rough natural sand grain. Results show that the method is capable of capturing details such as angular surface features, varying surface roughness, and surface striations. Copyright © 2017 Elsevier Ltd. All rights reserved.

  5. IASI's sensitivity to near-surface carbon monoxide (CO): Theoretical analyses and retrievals on test cases

    Science.gov (United States)

    Bauduin, Sophie; Clarisse, Lieven; Theunissen, Michael; George, Maya; Hurtmans, Daniel; Clerbaux, Cathy; Coheur, Pierre-François

    2017-03-01

    Separating concentrations of carbon monoxide (CO) in the boundary layer from the rest of the atmosphere with nadir satellite measurements is of particular importance to differentiate emission from transport. Although thermal infrared (TIR) satellite sounders are considered to have limited sensitivity to the composition of the near-surface atmosphere, previous studies show that they can provide information on CO close to the ground in case of high thermal contrast. In this work we investigate the capability of IASI (Infrared Atmospheric Sounding Interferometer) to retrieve near-surface CO concentrations, and we quantitatively assess the influence of thermal contrast on such retrievals. We present a 3-part analysis, which relies on both theoretical forward simulations and retrievals on real data, performed for a large range of negative and positive thermal contrast situations. First, we derive theoretically the IASI detection threshold of CO enhancement in the boundary layer, and we assess its dependence on thermal contrast. Then, using the optimal estimation formalism, we quantify the role of thermal contrast on the error budget and information content of near-surface CO retrievals. We demonstrate that, contrary to what is usually accepted, large negative thermal contrast values (ground cooler than air) lead to a better decorrelation between CO concentrations in the low and the high troposphere than large positive thermal contrast (ground warmer than the air). In the last part of the paper we use Mexico City and Barrow as test cases to contrast our theoretical predictions with real retrievals, and to assess the accuracy of IASI surface CO retrievals through comparisons to ground-based in-situ measurements.

  6. Scoping survey of perceived concerns, issues, and problems for near-surface disposal of FUSRAP waste

    International Nuclear Information System (INIS)

    Robinson, J.E.; Gilbert, T.L.

    1982-12-01

    This report is a scoping summary of concerns, issues, and perceived problems for near-surface disposal of radioactive waste, based on a survey of the current literature. Near-surface disposal means land burial in or within 15 to 20 m of the earth's surface. It includes shallow land burial (burial in trenches, typically about 6 m deep with a 2-m cap and cover) and some intermediate-depth land burial (e.g., trenches and cap similar to shallow land burial, but placed below 10 to 15 m of clean soil). Proposed solutions to anticipated problems also are discussed. The purpose of the report is to provide a better basis for identifying and evaluating the environmental impacts and related factors that must be analyzed and compared in assessing candidate near-surface disposal sites for FUSRAP waste. FUSRAP wastes are of diverse types, and their classification for regulatory purposes is not yet fixed. Most of it may be characterized as low-activity bulk solid waste, and is similar to mill tailings, but with somewhat lower average specific activity. It may also qualify as Class A segregated waste under the proposed 10 CFR 61 rules, but the parent radionuclides of concern in FUSRAP (primarily U-238 and Th-232) have longer half-lives than do the radionuclides of concern in most low-level waste. Most of the references reviewed deal with low-level waste or mill tailings, since there is as yet very little literature in the public domain on FUSRAP per se

  7. Effects of shrub and tree cover increase on the near-surface atmosphere in northern Fennoscandia

    Directory of Open Access Journals (Sweden)

    J. H. Rydsaa

    2017-09-01

    Full Text Available Increased shrub and tree cover in high latitudes is a widely observed response to climate change that can lead to positive feedbacks to the regional climate. In this study we evaluate the sensitivity of the near-surface atmosphere to a potential increase in shrub and tree cover in the northern Fennoscandia region. We have applied the Weather Research and Forecasting (WRF model with the Noah-UA land surface module in evaluating biophysical effects of increased shrub cover on the near-surface atmosphere at a fine resolution (5.4 km  ×  5.4 km. Perturbation experiments are performed in which we prescribe a gradual increase in taller vegetation in the alpine shrub and tree cover according to empirically established bioclimatic zones within the study region. We focus on the spring and summer atmospheric response. To evaluate the sensitivity of the atmospheric response to inter-annual variability in climate, simulations were conducted for two contrasting years, one warm and one cold. We find that shrub and tree cover increase leads to a general increase in near-surface temperatures, with the highest influence seen during the snowmelt season and a more moderate effect during summer. We find that the warming effect is stronger in taller vegetation types, with more complex canopies leading to decreases in the surface albedo. Counteracting effects include increased evapotranspiration, which can lead to increased cloud cover, precipitation, and snow cover. We find that the strength of the atmospheric feedback is sensitive to snow cover variations and to a lesser extent to summer temperatures. Our results show that the positive feedback to high-latitude warming induced by increased shrub and tree cover is a robust feature across inter-annual differences in meteorological conditions and will likely play an important role in land–atmosphere feedback processes in the future.

  8. Geologic studies

    International Nuclear Information System (INIS)

    Wayland, T.E.; Rood, A.

    1983-01-01

    The modern Great Divide Basin is the end product of natural forces influenced by the Green River lake system, Laramide tectonism, and intermittent volcanic events. It ranks as one of the most complex structural and stratigtaphic features within the Tertiary basins of Wyoming. Portions of the Great Divide Basin and adjoining areas in Wyoming have been investigated by applying detailed and region exploration methods to known uranium deposits located within the Red Desert portions of the basin. Geologic field investigations conducted by Bendix Field Engineering Corporaton (Bendix) were restricted to reconnaissance observations made during infrequent visits to the project area by various Bendix personnel. Locations of the most comprehensive field activities are shown in Figure II-1. The principal source fo data for geologic studies of the Red Desert project area has been information and materials furnished by industry. Several hundred holes have been drilled by various groups to delineate the uranium deposits. Results from Bendix-drilled holes at selected locations within the project area are summarized in Table II-1. Additional details and gross subsurface characteristics are illustrated in cross sections; pertinent geologic features are illustrated in plan maps. Related details of continental sedimentation that pertain to the Wyoming Basins generally, and the project area specificially, are discussed in subsections of this Geologic Studies section

  9. On release of radionuclides from a near-surface radioactive waste repository to the environment

    Directory of Open Access Journals (Sweden)

    Gudelis Arūnas

    2015-09-01

    Full Text Available A closed near-surface radioactive waste repository is the source of various radionuclides causing the human exposure. Recent investigations confirm an effectiveness of the engineering barriers installed in 2006 to prevent the penetration of radionuclides to the environment. The tritium activity concentration in groundwater decreased from tens of kBq/l to below hundreds of Bq/l. The monitoring and groundwater level data suggest the leaching of tritium from previously contaminated layers of unsaturated zone by rising groundwater while 210Pb may disperse as a decay product of 226Ra daughters.

  10. Conceptual design plan near-surface test facility: Phase II, Project B-300b

    International Nuclear Information System (INIS)

    Heneveld, W.H.; Mack, R.J.

    1979-01-01

    Activities are reported in programs devoted to demonstration and development of techniques for the safe placement and retrieval of the spent fuel canisters in a near-surface flow of the Columbia River Basalt. Other programs are reported designed to determine whether there are any unacceptable effects resulting from the interaction of the nuclear waste and basalt and to provide information to be used for near-term validation of the current numerical design models of the repository. Work is also reported on development of a data base for the design, construction, and licensing of a permanent large-scale basalt repository

  11. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun

    2016-09-06

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.

  12. Procedures and techniques for closure of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    2001-12-01

    The overall objective of this report is to provide Member States with guidance on planning and implementation of closure of near surface disposal facilities for low and intermediate level radioactive waste. The specific objectives are to review closure concepts, requirements, and components of closure systems; to discuss issues and approaches to closure, including regulatory, economic, and technical aspects; and to present major examples of closure techniques used and/or considered by Member States. Some examples of closure experience from Member States are presented in the Appendix and were indexed separately

  13. Assessing the fracture strength of geological and related materials via an atomistically based J-integral

    Science.gov (United States)

    Jones, R. E.; Criscenti, L. J.; Rimsza, J.

    2016-12-01

    Predicting fracture initiation and propagation in low-permeability geomaterials is a critical yet un- solved problem crucial to assessing shale caprocks at carbon dioxide sequestration sites, and controlling fracturing for gas and oil extraction. Experiments indicate that chemical reactions at fluid-geomaterial interfaces play a major role in subcritical crack growth by weakening the material and altering crack nu- cleation and growth rates. Engineering the subsurface fracture environment, however, has been hindered by a lack of understanding of the mechanisms relating chemical environment to mechanical outcome, and a lack of capability directly linking atomistic insight to macroscale observables. We have developed a fundamental atomic-level understanding of the chemical-mechanical mecha- nisms that control subcritical cracks through coarse-graining data from reactive molecular simulations. Previous studies of fracture at the atomic level have typically been limited to producing stress-strain curves, quantifying either the system-level stress or energy at which fracture propagation occurs. As such, these curves are neither characteristic of nor insightful regarding fracture features local to the crack tip. In contrast, configurational forces, such as the J-integral, are specific to the crack in that they measure the energy available to move the crack and truly quantify fracture resistance. By development and use of field estimators consistent with the continuum conservation properties we are able to connect the data produced by atomistic simulation to the continuum-level theory of fracture mechanics and thus inform engineering decisions. In order to trust this connection we have performed theoretical consistency tests and validation with experimental data. Although we have targeted geomaterials, this capability can have direct impact on other unsolved technological problems such as predicting the corrosion and embrittlement of metals and ceramics. Sandia National

  14. Near-surface, marine seismic-reflection data defines potential hydrogeologic confinement bypass in a tertiary carbonate aquifer, southeastern Florida

    Science.gov (United States)

    Cunningham, Kevin J.; Walker, Cameron; Westcott, Richard L.

    2012-01-01

    Approximately 210 km of near-surface, high-frequency, marine seismic-reflection data were acquired on the southeastern part of the Florida Platform between 2007 and 2011. Many high-resolution, seismic-reflection profiles, interpretable to a depth of about 730 m, were collected on the shallow-marine shelf of southeastern Florida in water as shallow as 1 m. Landward of the present-day shelf-margin slope, these data image middle Eocene to Pleistocene strata and Paleocene to Pleistocene strata on the Miami Terrace. This high-resolution data set provides an opportunity to evaluate geologic structures that cut across confining units of the Paleocene to Oligocene-age carbonate rocks that form the Floridan aquifer system.Seismic profiles image two structural systems, tectonic faults and karst collapse structures, which breach confining beds in the Floridan aquifer system. Both structural systems may serve as pathways for vertical groundwater flow across relatively low-permeability carbonate strata that separate zones of regionally extensive high-permeability rocks in the Floridan aquifer system. The tectonic faults occur as normal and reverse faults, and collapse-related faults have normal throw. The most common fault occurrence delineated on the reflection profiles is associated with karst collapse structures. These high-frequency seismic data are providing high quality structural analogs to unprecedented depths on the southeastern Florida Platform. The analogs can be used for assessment of confinement of other carbonate aquifers and the sealing potential of deeper carbonate rocks associated with reservoirs around the world.

  15. Effect of damage on water retention and gas transport properties geo-materials: Application to geological storage of radioactive waste

    International Nuclear Information System (INIS)

    M'Jahad, S.

    2012-01-01

    In the context of geological disposal of radioactive waste, this work contributes to the characterization of the effect of diffuse damage on the water retention and gas transfer properties of concrete (CEM I and CEM V) selected by Andra, Callovo-Oxfordian argillite (host rock) and argillite / concrete interfaces. This study provides information on the concrete microstructure from Mercury porosimetry intrusion and water retention curves: each concrete has a distinct microstructure, CEM I concrete is characterized by a significant proportion of capillary pores while CEM V concrete has a large proportion of C-S-H pores. Several protocols have been developed in order to damage concrete. The damage reduces water retention capacity of CEM I concrete and increases its gas permeability. Indeed, gas breakthrough pressure decreases significantly for damaged concrete, and this regardless of the type of concrete. For argillite, the sample mass increases gradually at RH = 100%, which creates and increases damage in the material. This reduces its ability to retain water. Otherwise, water retention and gas transport properties of argillite are highly dependent of its initial water saturation, which is linked to its damage. Finally, we observed a clogging phenomenon at the argillite/concrete interfaces, which is first mechanical and then hydraulic (and probably chemical) after water injection. This reduces the gas breakthrough pressure interfaces. (author)

  16. Calibration and combination of monthly near-surface temperature and precipitation predictions over Europe

    Science.gov (United States)

    Rodrigues, Luis R. L.; Doblas-Reyes, Francisco J.; Coelho, Caio A. S.

    2018-02-01

    A Bayesian method known as the Forecast Assimilation (FA) was used to calibrate and combine monthly near-surface temperature and precipitation outputs from seasonal dynamical forecast systems. The simple multimodel (SMM), a method that combines predictions with equal weights, was used as a benchmark. This research focuses on Europe and adjacent regions for predictions initialized in May and November, covering the boreal summer and winter months. The forecast quality of the FA and SMM as well as the single seasonal dynamical forecast systems was assessed using deterministic and probabilistic measures. A non-parametric bootstrap method was used to account for the sampling uncertainty of the forecast quality measures. We show that the FA performs as well as or better than the SMM in regions where the dynamical forecast systems were able to represent the main modes of climate covariability. An illustration with the near-surface temperature over North Atlantic, the Mediterranean Sea and Middle-East in summer months associated with the well predicted first mode of climate covariability is offered. However, the main modes of climate covariability are not well represented in most situations discussed in this study as the seasonal dynamical forecast systems have limited skill when predicting the European climate. In these situations, the SMM performs better more often.

  17. Pre-treatment of bituminized NPP wastes for disposal in near-surface repository

    Energy Technology Data Exchange (ETDEWEB)

    Vieira, Vanessa Mota; Tello, Clédola Cássia Oliveira de, E-mail: vanessamotavieira@gmail.com, E-mail: tellocc@cdtn.br [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil)

    2017-07-01

    The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. The Brazilian repository is being planned to be a near-surface one. In Brazil the low and intermediate level radioactive wastes are immobilized using cement and bitumen for Angra 1 and Angra 2 NPP, respectively. The main problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degradation in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70 - 90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to find solutions for the storage in surface repository of bituminized radioactive waste products, making them compatible with the acceptance criteria of cemented waste products. It was also performed a modeling with the results obtained in the leaching test using the ALT program and defined the transport model of the cesium leachate element and it was verified that in the early times the leaching was governed by the diffusion model and later by the partition model. The results obtained in this study can be used in the evaluation of performance of repositories. (author)

  18. Current status and new trends in the methodology of safety assessment for near surface disposal facilities

    International Nuclear Information System (INIS)

    Ilie, Petre; Didita, Liana; Danchiv, Alexandru

    2008-01-01

    The main goal of this paper is to present the status of the safety assessment methodology at the end of IAEA CRP 'Application of Safety Assessment Methodology for Near-Surface Radioactive Waste Disposal Facilities (ASAM)', and the new trends outlined at the launch of the follow-up project 'Practical Implementation of Safety Assessment Methodologies in a Context of Safety Case of Near-Surface Facilities (PRISM)'. Over the duration of the ASAM project, the ISAM methodology was confirmed as providing a good framework for conducting safety assessment calculations. In contrast, ASAM project identified the limitations of the ISAM methodology as currently formulated. The major limitations are situated in the area of the use of safety assessment for informing practical decisions about alternative waste and risk management strategies for real disposal sites. As a result of the limitation of the ISAM methodology, the PRISM project is established as an extension of the ISAM and ASAM projects. Based on the outcomes of the ASAM project, the main objective of the PRISM project are: 1 - to develop an overview of what constitutes an adequate safety case and safety assessment with a view to supporting decision making processes; 2 - to provide practical illustrations of how the safety assessment methodology could be used for addressing some specific issues arising from the ASAM project and national cases; 3 - to support harmonization with the IAEA's international safety standards. (authors)

  19. Near-surface gravity actuated pipe (GAP{sup TM}) system for Brazilian deepwater fluid transfer

    Energy Technology Data Exchange (ETDEWEB)

    Fromage, Lionel; Brown, Paul A. [SBM Offshore (Monaco)

    2009-12-19

    The recent discovery of new deep water and ultra-deep water oil and gas fields offshore Brazil, including pre-salt reservoirs, has become a focal point for field development Operators and Contractors. The aggressive nature of fluids (sour, high density) in combination with deeper waters implies potential flow assurance issues. These issues challenge riser and pipeline technology to find cost effective solutions for hydrocarbon fluid transfer in field development scenarios involving phased tied-back. The near-surface GAP{sup TM}, system (Gravity Actuated Pipe{sup TM}), which has been in operation for more than two years on the Kikeh field offshore Malaysia in 1325 m of water between a Dry Tree Unit (SPAR) and a turret-moored FPSO, is considered to meet these challenges since such a product is quasi independent of water depth and takes advantage of being near surface to optimize flow assurance. Furthermore the GAP{sup TM} has undergone technical upgrades when compared to the Kikeh project in order to make it suitable for the more hostile met ocean conditions offshore Brazil. This paper presents the design features, the construction and assembly plans in Brazil and the offshore installation of a GAP fluid transfer system for operation in Brazilian deep waters. (author)

  20. Pre-treatment of bituminized NPP wastes for disposal in near-surface repository

    International Nuclear Information System (INIS)

    Vieira, Vanessa Mota; Tello, Clédola Cássia Oliveira de

    2017-01-01

    The implementation of the national repository is an important technical requirement, and a legal requirement for the entry into operation of the nuclear power plant Angra 3. The Brazilian repository is being planned to be a near-surface one. In Brazil the low and intermediate level radioactive wastes are immobilized using cement and bitumen for Angra 1 and Angra 2 NPP, respectively. The main problems due to the disposal of bituminized wastes in repositories are swelling of the waste products and their degradation in the long term. To accommodate the swelling of the bituminized wastes, the drums are filled up to 70 - 90% of their volume, which reduces the structural the repository stability and the disposal availability. Countries, which use bitumen in the solidification of NPP's radioactive waste and have near-surface repositories, need to immobilize this bituminized waste within other drums containing cement pastes or mortars to disposal them. This study aims to find solutions for the storage in surface repository of bituminized radioactive waste products, making them compatible with the acceptance criteria of cemented waste products. It was also performed a modeling with the results obtained in the leaching test using the ALT program and defined the transport model of the cesium leachate element and it was verified that in the early times the leaching was governed by the diffusion model and later by the partition model. The results obtained in this study can be used in the evaluation of performance of repositories. (author)

  1. Recent Improvements in Retrieving Near-Surface Air Temperature and Humidity Using Microwave Remote Sensing

    Science.gov (United States)

    Roberts, J. Brent

    2010-01-01

    Detailed studies of the energy and water cycles require accurate estimation of the turbulent fluxes of moisture and heat across the atmosphere-ocean interface at regional to basin scale. Providing estimates of these latent and sensible heat fluxes over the global ocean necessitates the use of satellite or reanalysis-based estimates of near surface variables. Recent studies have shown that errors in the surface (10 meter)estimates of humidity and temperature are currently the largest sources of uncertainty in the production of turbulent fluxes from satellite observations. Therefore, emphasis has been placed on reducing the systematic errors in the retrieval of these parameters from microwave radiometers. This study discusses recent improvements in the retrieval of air temperature and humidity through improvements in the choice of algorithms (linear vs. nonlinear) and the choice of microwave sensors. Particular focus is placed on improvements using a neural network approach with a single sensor (Special Sensor Microwave/Imager) and the use of combined sensors from the NASA AQUA satellite platform. The latter algorithm utilizes the unique sampling available on AQUA from the Advanced Microwave Scanning Radiometer (AMSR-E) and the Advanced Microwave Sounding Unit (AMSU-A). Current estimates of uncertainty in the near-surface humidity and temperature from single and multi-sensor approaches are discussed and used to estimate errors in the turbulent fluxes.

  2. Temporal variation of 228Ra in the near-surface Gulf of Mexico

    International Nuclear Information System (INIS)

    Reid, F.D.; Moore, W.S.; Sackett, W.M.

    1979-01-01

    The Mn-fiber technique for extracting radium from seawater has proved useful for studying the marine geochemistry of 228 Ra. In the Gulf of Mexico, this technique was used to measure the surface and near-surface distribution of 226 Ra and 228 Ra. The observed surface distribution of 228 Ra, and particularly the radium activity ratio (228/226) can be explained by known circulation patterns, or, when local surface currents are not well understood, may provide insight into their general characteristics. The radium activity ratio has increased from 0.5 in 1968 to 0.7 in 1973 in the surface Gulf of Mexico. This observed increase cannot be attributed to known anthropogenic or natural source perturbations within the Caribbean Sea-Gulf of Mexico system. Possible causes include a change in the residence time for near-surface water, or variations in the relative dominance of the two eastern Caribbean; the North Equatorial Current and the Guiana Current. The temporal distribution of 228 Ra is unstable and naturally variable over a time period less than or equal to five years in the Gulf of Mexico and by extrapolation, the Caribbean Sea. Therefore, its usefulness in calculations of eddy diffusion coefficients for these regions is greatly diminished. (Auth.)

  3. Understanding thermal circulations and near-surface turbulence processes in a small mountain valley

    Science.gov (United States)

    Pardyjak, E.; Dupuy, F.; Durand, P.; Gunawardena, N.; Thierry, H.; Roubin, P.

    2017-12-01

    The interaction of turbulence and thermal circulations in complex terrain can be significantly different from idealized flat terrain. In particular, near-surface horizontal spatial and temporal variability of winds and thermodynamic variables can be significant event over very small spatial scales. The KASCADE (KAtabatic winds and Stability over CAdarache for Dispersion of Effluents) 2017 conducted from January through March 2017 was designed to address these issues and to ultimately improve prediction of dispersion in complex terrain, particularly during stable atmospheric conditions. We have used a relatively large number of sensors to improve our understanding of the spatial and temporal development, evolution and breakdown of topographically driven flows. KASCADE 2017 consisted of continuous observations and fourteen Intensive Observation Periods (IOPs) conducted in the Cadarache Valley located in southeastern France. The Cadarache Valley is a relatively small valley (5 km x 1 km) with modest slopes and relatively small elevation differences between the valley floor and nearby hilltops ( 100 m). During winter, winds in the valley are light and stably stratified at night leading to thermal circulations as well as complex near-surface atmospheric layering. In this presentation we present results quantifying spatial variability of thermodynamic and turbulence variables as a function of different large -scale forcing conditions (e.g., quiescent conditions, strong westerly flow, and Mistral flow). In addition, we attempt to characterize highly-regular nocturnal horizontal wind meandering and associated turbulence statistics.

  4. Spin properties of dense near-surface ensembles of nitrogen-vacancy centers in diamond

    Science.gov (United States)

    Tetienne, J.-P.; de Gille, R. W.; Broadway, D. A.; Teraji, T.; Lillie, S. E.; McCoey, J. M.; Dontschuk, N.; Hall, L. T.; Stacey, A.; Simpson, D. A.; Hollenberg, L. C. L.

    2018-02-01

    We present a study of the spin properties of dense layers of near-surface nitrogen-vacancy (NV) centers in diamond created by nitrogen ion implantation. The optically detected magnetic resonance contrast and linewidth, spin coherence time, and spin relaxation time, are measured as a function of implantation energy, dose, annealing temperature, and surface treatment. To track the presence of damage and surface-related spin defects, we perform in situ electron spin resonance spectroscopy through both double electron-electron resonance and cross-relaxation spectroscopy on the NV centers. We find that, for the energy (4 -30 keV) and dose (5 ×1011-1013ions/cm 2 ) ranges considered, the NV spin properties are mainly governed by the dose via residual implantation-induced paramagnetic defects, but that the resulting magnetic sensitivity is essentially independent of both dose and energy. We then show that the magnetic sensitivity is significantly improved by high-temperature annealing at ≥1100 ∘C . Moreover, the spin properties are not significantly affected by oxygen annealing, apart from the spin relaxation time, which is dramatically decreased. Finally, the average NV depth is determined by nuclear magnetic resonance measurements, giving ≈10 -17 nm at 4-6 keV implantation energy. This study sheds light on the optimal conditions to create dense layers of near-surface NV centers for high-sensitivity sensing and imaging applications.

  5. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Science.gov (United States)

    Markwitz, Andreas; Gupta, Prasanth; Mohr, Berit; Hübner, René; Leveneur, Jerome; Zondervan, Albert; Becker, Hans-Werner

    2016-03-01

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction 1H(15N, αγ)12C (Eres = 6.385 MeV). The films produced at 3.0-10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp2 hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  6. Long-term CO2 injection and its impact on near-surface soil microbiology.

    Science.gov (United States)

    Gwosdz, Simone; West, Julia M; Jones, David; Rakoczy, Jana; Green, Kay; Barlow, Tom; Blöthe, Marco; Smith, Karon; Steven, Michael; Krüger, Martin

    2016-12-01

    Impacts of long-term CO 2 exposure on environmental processes and microbial populations of near-surface soils are poorly understood. This near-surface long-term CO 2 injection study demonstrated that soil microbiology and geochemistry is influenced more by seasonal parameters than elevated CO 2 Soil samples were taken during a 3-year field experiment including sampling campaigns before, during and after 24 months of continuous CO 2 injection. CO 2 concentrations within CO 2 -injected plots increased up to 23% during the injection period. No CO 2 impacts on geochemistry were detected over time. In addition, CO 2 -exposed samples did not show significant changes in microbial CO 2 and CH 4 turnover rates compared to reference samples. Likewise, no significant CO 2 -induced variations were detected for the abundance of Bacteria, Archaea (16S rDNA) and gene copy numbers of the mcrA gene, Crenarchaeota and amoA gene. The majority (75%-95%) of the bacterial sequences were assigned to five phyla: Firmicutes, Proteobacteria, Actinobacteria, Acidobacteria and Bacteroidetes The majority of the archaeal sequences (85%-100%) were assigned to the thaumarchaeotal cluster I.1b (soil group). Univariate and multivariate statistical as well as principal component analyses showed no significant CO 2 -induced variation. Instead, seasonal impacts especially temperature and precipitation were detected. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  7. Types of safety assessments of near surface repository for radioactive waste

    International Nuclear Information System (INIS)

    Mateeva, M.

    2004-01-01

    The purpose of this article is to presents the classification of different types safety assessments of near surface repository for low and intermediate level radioactive waste substantiated with results of safety assessments generated in Bulgaria. The different approach of safety assessments applied for old existing repository as well as for site selection for construction new repository is outlined. The regulatory requirements in Bulgaria define three main types of assessments: Safety assessment; Technical substation of repository safety; Assessment of repository influence on environment that is in form of report prepared from the Ministry of environment and waters on the base of results obtained in two first types of assessments. Additionally first type is subdivided in three categories - preliminary safety assessment, safety assessment and post closure safety assessment, which are generated using deterministic approach. The technical substation of repository safety is generated using probabilistic approach. Safety assessment results that are presented here are based on evaluation of existing old repository type 'Radon' in Novi Han and real site selection procedure for new near surface repository for low and intermediate level radioactive waste from nuclear power station in Kozloduy. The important role of safety assessment for improvement the repository safety as well as for repository licensing, correct site selection and right choice of engineer barriers and repository design is discussed using generated results. (author)

  8. Development of a methodology for the safety assessment of near surface disposal facilities for radioactive waste

    International Nuclear Information System (INIS)

    Simon, I.; Cancio, D.; Alonso, L.F.; Agueero, A.; Lopez de la Higuera, J.; Gil, E.; Garcia, E.

    2000-01-01

    The Project on the Environmental Radiological Impact in CIEMAT is developing, for the Spanish regulatory body Consejo de Seguridad Nuclear (CSN), a methodology for the Safety Assessment of near surface disposal facilities. This method has been developed incorporating some elements developed through the participation in the IAEA's ISAM Programme (Improving Long Term Safety Assessment Methodologies for Near Surface Radioactive Waste Disposal Facilities). The first step of the approach is the consideration of the assessment context, including the purpose of the assessment, the end-Points, philosophy, disposal system, source term and temporal scales as well as the hypothesis about the critical group. Once the context has been established, and considering the peculiarities of the system, an specific list of features, events and processes (FEPs) is produced. These will be incorporated into the assessment scenarios. The set of scenarios will be represented in the conceptual and mathematical models. By the use of mathematical codes, calculations are performed to obtain results (i.e. in terms of doses) to be analysed and compared against the criteria. The methodology is being tested by the application to an hypothetical engineered disposal system based on an exercise within the ISAM Programme, and will finally be applied to the Spanish case. (author)

  9. Near-surface hydrogen depletion of diamond-like carbon films produced by direct ion deposition

    Energy Technology Data Exchange (ETDEWEB)

    Markwitz, Andreas, E-mail: A.Markwitz@gns.cri.nz [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Gupta, Prasanth [GNS Science, Lower Hutt (New Zealand); The MacDiarmid Institute for Advanced Materials and Nanotechnology (New Zealand); Mohr, Berit [GNS Science, Lower Hutt (New Zealand); Hübner, René [Institute of Ion Beam Physics and Materials Research, Helmholtz-Zentrum Dresden-Rossendorf (Germany); Leveneur, Jerome; Zondervan, Albert [GNS Science, Lower Hutt (New Zealand); Becker, Hans-Werner [RUBION, Ruhr-University Bochum (Germany)

    2016-03-15

    Amorphous atomically flat diamond-like carbon (DLC) coatings were produced by direct ion deposition using a system based on a Penning ion source, butane precursor gas and post acceleration. Hydrogen depth profiles of the DLC coatings were measured with the 15N R-NRA method using the resonant nuclear reaction {sup 1}H({sup 15}N, αγ){sup 12}C (E{sub res} = 6.385 MeV). The films produced at 3.0–10.5 kV acceleration voltage show two main effects. First, compared to average elemental composition of the film, the near-surface region is hydrogen depleted. The increase of the hydrogen concentration by 3% from the near-surface region towards the bulk is attributed to a growth model which favours the formation of sp{sup 2} hybridised carbon rich films in the film formation zone. Secondly, the depth at which the maximum hydrogen concentration is measured increases with acceleration voltage and is proportional to the penetration depth of protons produced by the ion source from the precursor gas. The observed effects are explained by a deposition process that takes into account the contributions of ion species, hydrogen effusion and preferential displacement of atoms during direct ion deposition.

  10. Fluxgate vector magnetometers: Compensated multi-sensor devices for ground, UAV and airborne magnetic survey for various application in near surface geophysics

    Science.gov (United States)

    Gavazzi, Bruno; Le Maire, Pauline; Munschy, Marc; Dechamp, Aline

    2017-04-01

    Fluxgate 3-components magnetometer is the kind of magnetometer which offers the lightest weight and lowest power consumption for the measurement of the intensity of the magnetic field. Moreover, vector measurements make it the only kind of magnetometer allowing compensation of magnetic perturbations due to the equipment carried with it. Unfortunately, Fluxgate magnetometers are quite uncommon in near surface geophysics due to the difficulty to calibrate them precisely. The recent advances in calibration of the sensors and magnetic compensation of the devices from a simple process on the field led Institut de Physique du Globe de Strasbourg to develop instruments for georeferenced magnetic measurements at different scales - from submetric measurements on the ground to aircraft-conducted acquisition through the wide range offered by unmanned aerial vehicles (UAVs) - with a precision in the order of 1 nT. Such equipment is used for different kind of application: structural geology, pipes and UXO detection, archaeology.

  11. Analysis of nitrate in near-surface aquifers in the midcontinental United States: An application of the inverse hyperbolic sine Tobit model

    Science.gov (United States)

    Yen, Steven T.; Liu, Shiping; Kolpin, Dana W.

    1996-01-01

    A nonnormal and heteroscedastic Tobit model is used to determine the primary factors that affect nitrate concentrations in near-surface aquifers, using data from the U.S. Geological Survey collected in 1991. Both normality and homoscedasticity of errors are rejected, justifying the use of a nonnormal and heteroscedastic model. The following factors are found to have significant impacts on nitrate concentrations in groundwater: well screen interval, depth to top of aquifers, percentages of urban residential, forest land, and pasture within 3.2 km, dissolved oxygen concentration level, and presence of a chemical facility and feedlot. The effects of explanatory variables on nitrate concentration are explored further by calculating elasticities. Dissolved oxygen concentration level has more notable effects on nitrate concentrations in groundwater than other variables.

  12. Near-Surface Geophysical Character of a Holocene Fault Carrying Geothermal Flow Near Pyramid Lake, Nevada

    Science.gov (United States)

    Dudley, C.; Dorsey, A.; Louie, J. N.; Schwering, P. C.; Pullammanappallil, S.

    2012-12-01

    Lines of calcium carbonate tufa columns mark recent faults that cut 11 ka Lake Lahontan sediments at Astor Pass, north of Pyramid Lake, Nevada. Throughout the Great Basin, faults appear to control the location of geothermal resources, providing pathways for fluid migration. Reservoir-depth (greater than 1 km) seismic imaging at Astor Pass shows a fault that projects to one of the lines of tufa columns at the surface. The presence of the tufa deposits suggests this fault carried warm geothermal waters through the lakebed clay sediments in recent time. The warm fluids deposited the tufa when they hit cold Lake Lahontan water at the lakebed. Lake Lahontan covered this location to a depth of at least 60 m at 11 ka. In collaboration with the Pyramid Lake Paiute Tribe, an Applied Geophysics class at UNR investigated the near-surface geophysical characteristics of this fault. The survey comprises near-surface seismic reflection and refraction, nine near-surface refraction microtremor (SeisOpt® ReMi™) arrays, nine near-surface direct-current resistivity soundings, magnetic surveys, and gravity surveys at and near the tufa columns. The refraction microtremor results show shear velocities near tufa and faults to be marginally lower, compared to Vs away from the faults. Overall, the 30-m depth-averaged shear velocities are low, less than 300 m/s, consistent with the lakebed clay deposits. These results show no indication of any fast (> 500 m/s) tufa below the surface at or near the tufa columns. Vs30 averages were 274 ± 13 m/s on the fault, 287 ± 2 m/s at 150 m east of the fault, and 290 ± 15 m/s at 150 m west of the fault. The P-velocity refraction optimization results also show no indication of high-velocity tufa buried below the surface in the Lahontan sediments, reinforcing the idea that all tufa was deposited above the lakebed surface. The seismic results provide a negative test of the hypothesis that deposition of the lakebeds in the Quaternary buried and

  13. Sandstone uranium deposits of Meghalaya: natural analogues for radionuclide migration and backfill material in geological repository for high level radioactive waste disposal

    International Nuclear Information System (INIS)

    Bajpai, R.K.; Narayan, P.K.

    2008-01-01

    Sandstone uranium deposits serve as potential natural analogue to demonstrate safety offered by geological media against possible release of nuclear waste from their confinement and migration towards biosphere. In this study, available database on geochemical aspects of Domisiat uranium deposit of Meghalaya has been evaluated to highlight the behavior of radionuclides of concern over long term in a geological repository. Constituents like actinides (U and Th), fission products and RE elements are adequately retained in clays and organic matters associated with these sandstone deposits. The study also highlights the possibility of utilization of lean ore discarded during mining and milling as backfill material in far field areas and optimizing near field buffers/backfills in a geological repository located in granitic rocks in depth range of 400-500m. (author)

  14. Human intruder dose assessment for deep geological disposal

    International Nuclear Information System (INIS)

    Smith, G. M.; Molinero, J.; Delos, A.; Valls, A.; Conesa, A.; Smith, K.; Hjerpe, T.

    2013-07-01

    For near-surface disposal, approaches to assessment of inadvertent human intrusion have been developed through international cooperation within the IAEA's ISAM programme. Other assessments have considered intrusion into deep geological disposal facilities, but comparable international cooperation to develop an approach for deep disposal has not taken place. Accordingly, the BIOPROTA collaboration project presented here (1) examined the technical aspects of why and how deep geological intrusion might occur; (2) considered how and to what degree radiation exposure would arise to the people involved in such intrusion; (3) identified the processes which constrain the uncertainties; and hence (4) developed and documented an approach for evaluation of human intruder doses which addresses the criteria adopted by the IAEA and takes account of other international guidance and human intrusion assessment experience. Models for radiation exposure of the drilling workers and geologists were developed and described together with compilation of relevant input data, taking into account relevant combinations of drilling technique, geological formation and repository material. Consideration has been given also to others who might be exposed to contaminated material left at the site after drilling work has ceased. The models have been designed to be simple and stylised, in accordance with international recommendations. The set of combinations comprises 58 different scenarios which cover a very wide range of human intrusion possibilities via deep drilling. (orig.)

  15. Inorganic and geological materials

    International Nuclear Information System (INIS)

    Dinnin, J.I.

    1975-01-01

    Recently described methods for applied inorganic analysis are reviewed from an interdisciplinary standpoint. Abstracts and periodical literature up to Nov. 1974, are included for consideration. The following areas of interest are covered: general reviews of inorganic analytical techniques; analytical techniques, areas of application, and analysis of individual elements. Selected books, monographs, and review articles on the analytical chemistry of the elements are listed. (416 references.) (U.S.)

  16. An improved method for the determination of trace levels of arsenic and antimony in geological materials by automated hydride generation-atomic absorption spectroscopy

    Science.gov (United States)

    Crock, J.G.; Lichte, F.E.

    1982-01-01

    An improved, automated method for the determination of arsenic and antimony in geological materials is described. After digestion of the material in sulfuric, nitric, hydrofluoric and perchloric acids, a hydrochloric acid solution of the sample is automatically mixed with reducing agents, acidified with additional hydrochloric acid, and treated with a sodium tetrahydroborate solution to form arsine and stibine. The hydrides are decomposed in a heated quartz tube in the optical path of an atomic absorption spectrometer. The absorbance peak height for arsenic or antimony is measured. Interferences that exist are minimized to the point where most geological materials including coals, soils, coal ashes, rocks and sediments can be analyzed directly without use of standard additions. The relative standard deviation of the digestion and the instrumental procedure is less than 2% at the 50 ??g l-1 As or Sb level. The reagent-blank detection limit is 0.2 ??g l-1 As or Sb. ?? 1982.

  17. The Modern Near-Surface Martian Climate: A Review of In-Situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martinez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; hide

    2017-01-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to todays Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars present day conditions and its implications for future Mars missions.

  18. Reduced near-surface thermal inversions in 2005-06 in the southeastern Arabian Sea (Lakshadweep Sea)

    Digital Repository Service at National Institute of Oceanography (India)

    Nisha, K.; Rao, S.A.; Gopalakrishna, V.V.; Rao, R.R.; GirishKumar, M.S.; Pankajakshan, T.; Ravichandran, M.; Rajesh, S.; Girish, K.; Johnson, Z.; Anuradha, M.; Gavaskar, S.S.M.; Suneel, V.; Krishna, S.M.

    Repeat XBT transects made at near-fortnightly intervals in the Lakshadweep Sea (southeastern Arabian Sea) and ocean data assimilation products are examined to describe the year-to-year variability in the observed near-surface thermal inversions...

  19. Workflow for near-surface velocity automatic estimation: Source-domain full-traveltime inversion followed by waveform inversion

    KAUST Repository

    Liu, Lu; Fei, Tong; Luo, Yi; Guo, Bowen

    2017-01-01

    This paper presents a workflow for near-surface velocity automatic estimation using the early arrivals of seismic data. This workflow comprises two methods, source-domain full traveltime inversion (FTI) and early-arrival waveform inversion. Source

  20. Application of near-surface geophysics as part of a hydrologic study of a subsurface drip irrigation system along the Powder River floodplain near Arvada, Wyoming

    Science.gov (United States)

    Sams, James I.; Veloski, Garret; Smith, Bruce D.; Minsley, Burke J.; Engle, Mark A.; Lipinski, Brian A.; Hammack, Richard W.; Zupancic, John W.

    2014-01-01

    Rapid development of coalbed natural gas (CBNG) production in the Powder River Basin (PRB) of Wyoming has occurred since 1997. National attention related to CBNG development has focused on produced water management, which is the single largest cost for on-shore domestic producers. Low-cost treatment technologies allow operators to reduce their disposal costs, provide treated water for beneficial use, and stimulate oil and gas production by small operators. Subsurface drip irrigation (SDI) systems are one potential treatment option that allows for increased CBNG production by providing a beneficial use for the produced water in farmland irrigation.Water management practices in the development of CBNG in Wyoming have been aided by integrated geophysical, geochemical, and hydrologic studies of both the disposal and utilization of water. The U.S. Department of Energy (DOE) National Energy Technology Laboratory (NETL) and the U.S. Geological Survey (USGS) have utilized multi-frequency airborne, ground, and borehole electromagnetic (EM) and ground resistivity methods to characterize the near-surface hydrogeology in areas of produced water disposal. These surveys provide near-surface EM data that can be compared with results of previous surveys to monitor changes in soils and local hydrology over time as the produced water is discharged through SDI.The focus of this investigation is the Headgate Draw SDI site, situated adjacent to the Powder River near the confluence of a major tributary, Crazy Woman Creek, in Johnson County, Wyoming. The SDI system was installed during the summer of 2008 and began operation in October of 2008. Ground, borehole, and helicopter electromagnetic (HEM) conductivity surveys were conducted at the site prior to the installation of the SDI system. After the installation of the subsurface drip irrigation system, ground EM surveys have been performed quarterly (weather permitting). The geophysical surveys map the heterogeneity of the near-surface

  1. Near-surface geothermal potential assessment of the region Leogang - Saalbach-Hinterglemm in Salzburg, Austria

    Science.gov (United States)

    Bottig, Magdalena; Rupprecht, Doris; Hoyer, Stefan

    2017-04-01

    Within the EU-funded Alpine Space project GRETA (Near-surface Geothermal Resources in the Territory of the Alpine space), a potential assessment for the use of near-surface geothermal energy is being performed. The focus region for Austria is represented by the two communities Leogang and Saalbach-Hinterglemm where settlements are located in altitudes of about 800 - 1.000 m. In these communities, as well as in large parts of the alpine space region in Austria, winter sports tourism is an important economic factor. The demand for heating and domestic hot water in this region of about 6.000 inhabitants rises significantly in the winter months due to around 2 million guest nights per year. This makes clear why the focus is on touristic infrastructure like alpine huts or hotels. It is a high-altitude area with a large number of remote houses, thus district-heating is not ubiquitous - thus, near-surface geothermal energy can be a useful solution for a self-sufficient energy supply. The objective of detailed investigation within the project is, to which extent the elevation, the gradient and the orientation of the hillside influence the geothermal usability of the shallow underground. To predict temperatures in depths of up to 100 m and therefore make statements on the geothermal usability of a certain piece of land, it is necessary to attain a precise ground-temperature map which reflects the upper model boundary. As there are no ground temperature measurement stations within the region, the GBA has installed four monitoring stations. Two are located in the valley, at altitudes of about 800 m, and two in higher altitudes of about 1.200 m, one on a south- and one on a north-slope. Using a software invented by the University of Soil Sciences in Vienna a ground-temperature map will be calculated. The calculation is based on climatic data considering parameters like soil composition. Measured values from the installed monitoring stations will help to validate or to

  2. Influences of the manufacturing process chain design on the near surface condition and the resulting fatigue behaviour of quenched and tempered SAE 4140

    International Nuclear Information System (INIS)

    Klein, M; Eifler, D

    2010-01-01

    To analyse interactions between single steps of process chains, variations in material properties, especially the microstructure and the resulting mechanical properties, specimens with tension screw geometry were manufactured with five process chains. The different process chains as well as their parameters influence the near surface condition and consequently the fatigue behaviour in a characteristic manner. The cyclic deformation behaviour of these specimens can be benchmarked equivalently with conventional strain measurements as well as with high-precision temperature and electrical resistance measurements. The development of temperature-values provides substantial information on cyclic load dependent changes in the microstructure.

  3. Influences of the manufacturing process chain design on the near surface condition and the resulting fatigue behaviour of quenched and tempered SAE 4140

    Energy Technology Data Exchange (ETDEWEB)

    Klein, M; Eifler, D, E-mail: klein@mv.uni-kl.d [Institute of Materials Science and Engineering, University of Kaiserslautern, D-67663 Kaiserslautern (Germany)

    2010-07-01

    To analyse interactions between single steps of process chains, variations in material properties, especially the microstructure and the resulting mechanical properties, specimens with tension screw geometry were manufactured with five process chains. The different process chains as well as their parameters influence the near surface condition and consequently the fatigue behaviour in a characteristic manner. The cyclic deformation behaviour of these specimens can be benchmarked equivalently with conventional strain measurements as well as with high-precision temperature and electrical resistance measurements. The development of temperature-values provides substantial information on cyclic load dependent changes in the microstructure.

  4. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    International Nuclear Information System (INIS)

    Lee, Seunghee; Kim, Juyoul

    2017-01-01

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • 14 C, 226 Ra, 241 Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing 14 C, 226 Ra and 241 Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10 −7 mSv/yr, for both disposal options and satisfied the regulatory limit of 0.1 mSv/yr. However, in the

  5. Formation of filtration fields close to near-surface radioactive waste storages

    International Nuclear Information System (INIS)

    Mart'yanov, V.V.

    2008-01-01

    Data on the formation of filtration fields in the location of near-surface radioactive waste storages for the conditions of uniformly isotropic properties of bearing strata are demonstrated. The possibility for changing parameters of mean-caused ground flow depending on water permeability of the storages and their dimensions in plan is noted. Comparison of different filtration fields permits to determine a state of its isolating properties. Assessment criteria of the storage engineering barriers integrity are given. Conditions for uniformly isotropic properties of bearing strata by three scenarios, when engineering barriers of the storage are waterproof, distracted or lost protective properties in full, have been determined. Changing filtration field, geochemical and radiochemical situations in bearing strata are noted to represent one of basic characteristics of the integrity of the storage [ru

  6. Conceptual model to determine maximum activity of radioactive waste in near-surface disposal facilities

    International Nuclear Information System (INIS)

    Iarmosh, I.; Olkhovyk, Yu.

    2016-01-01

    For development of the management strategy for radioactive waste to be placed in near - surface disposal facilities (NSDF), it is necessary to justify long - term safety of such facilities. Use of mathematical modelling methods for long - term forecasts of radwaste radiation impact and assessment of radiation risks from radionuclides migration can help to resolve this issue. The purpose of the research was to develop the conceptual model for determining the maximum activity of radwaste to be safely disposed in the NSDF and to test it in the case of Lot 3 Vector NSDF (Chornobyl exclusion zone). This paper describes an approach to the development of such a model. The conceptual model of "9"0 Sr migration from Lot 3 through aeration zone and aquifer soils was developed. The results of modelling are shown. The proposals on further steps for the model improvement were developed

  7. Near-surface traveltime tomographic inversion using multiple first break picks

    KAUST Repository

    Saragiotis, Christos; Choi, Yun Seok; Keho, T.; Alkhalifah, Tariq Ali

    2013-01-01

    The input data for refraction traveltime tomography are the traveltimes of the first breaks, which are picked using automatic pickers. Although automatic pickers perform satisfactorily overall, no one automatic picker can be characterized as the best one; one picker might fail for traces for which other pickers are accurate and vice versa for other traces. We introduce an iterative method for traveltime tomography, which takes as input traveltimes from a number of pickers. During the inversion scheme inconsistent traveltimes are replaced with more meaningful ones to obtain a smooth near-surface velocity model. The scheme is easily parallelizable and a byproduct of the inversion scheme is a set of consistent traveltimes which is close to the actual traveltimes of the first breaks.

  8. Preliminary Post-Closure Safety Assessment and Preoperational Radiomonitoring of Anarak Near Surface Repository

    International Nuclear Information System (INIS)

    Bagheri, A.

    2016-01-01

    Conclusion: • The results of design scenario demonstrate that the effect of surface water erosion scenario is acceptable. The results suggest that doses would still be well below the typical acceptance criteria, even with cautious assumptions likely to result in over-estimates of dose in surface water erosion scenario. • (Assuming the representative person who is living near the repository, 1100 years after closure and in case of water erosion scenario the maximum total dose is less than 0.2 mSv y -1 . Furthermore, the maximum dose is caused by 241 Am that is equal to 0.15 mSv y -1 ). The activity concentration levels of the natural and artificial radionuclides were determined in the all samples collected from Anarak site and surrounding area using active and passive device. All results showed the background level of the natural and artificial radionuclides before any operation in Anarak Near Surface Disposal Facility.

  9. Construction and operational experiences of engineered barrier test facility for near surface disposal of LILW

    International Nuclear Information System (INIS)

    Park, Jin Beak; Park, Se Moon; Kim, Chang Lak

    2003-01-01

    Engineered barrier test facility is specially designed to demonstrate the performance of engineered barrier system for the near-surface disposal facility under the domestic environmental conditions. Comprehensive measurement systems are installed within each test cell. Long-and short-term monitoring of the multi-layered cover system can be implemented according to different rainfall scenarios with artificial rainfall system. Monitoring data on the water content, temperature, matric potential, lateral drainage and percolation of cover-layer system can be systematically managed by automatic data acquisition system. The periodic measurement data are collected and will be analyzed by a dedicated database management system, and provide a basis for performance verification of the disposal cover design

  10. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  11. Important radionuclides and their sensitivity for groundwater pathway of a hypothetical near-surface disposal facility

    Energy Technology Data Exchange (ETDEWEB)

    Park, J. W.; Chang, K.; Kim, C. L. [Nuclear Enviroment Technology Institute, Taejon (Korea, Republic of)

    2001-04-01

    A radiological safety assessment was performed for a hypothetical near-surface radioactive waste repository as a simple screening calculation to identify important nuclides and to provide insights on the data needs for a successful demonstration of compliance. Individual effective doses were calculated for a conservative groundwater pathway scenario considering well drilling near the site boundary. Sensitivity of resulting ingestion dose to input parameter values was also analyzed using Monte Carlo sampling. Considering peak dose rate and assessment timescale, C-14 and I-129 were identified as important nuclides and U-235 and U-238 as potentially important nuclides. For C-14, the does was most sensitive to Darcy velocity in aquifer. The distribution coefficient showed high degree of sensitivity for I-129 release.

  12. Important radionuclides and their sensitivity for groundwater pathway of a hypothetical near-surface disposal facility

    International Nuclear Information System (INIS)

    Park, J. W.; Chang, K.; Kim, C. L.

    2001-01-01

    A radiological safety assessment was performed for a hypothetical near-surface radioactive waste repository as a simple screening calculation to identify important nuclides and to provide insights on the data needs for a successful demonstration of compliance. Individual effective doses were calculated for a conservative groundwater pathway scenario considering well drilling near the site boundary. Sensitivity of resulting ingestion dose to input parameter values was also analyzed using Monte Carlo sampling. Considering peak dose rate and assessment timescale, C-14 and I-129 were identified as important nuclides and U-235 and U-238 as potentially important nuclides. For C-14, the does was most sensitive to Darcy velocity in aquifer. The distribution coefficient showed high degree of sensitivity for I-129 release

  13. A Novel Compact Wideband TSA Array for Near-Surface Ice Sheet Penetrating Radar Applications

    Science.gov (United States)

    Zhang, Feng; Liu, Xiaojun; Fang, Guangyou

    2014-03-01

    A novel compact tapered slot antenna (TSA) array for near-surface ice sheet penetrating radar applications is presented. This TSA array is composed of eight compact antenna elements which are etched on two 480mm × 283mm FR4 substrates. Each antenna element is fed by a wideband coplanar waveguide (CPW) to coupled strip-line (CPS) balun. The two antenna substrates are connected together with a metallic baffle. To obtain wideband properties, another two metallic baffles are used along broadsides of the array. This array is fed by a 1 × 8 wideband power divider. The measured S11 of the array is less than -10dB in the band of 500MHz-2GHz, and the measured gain is more than 6dBi in the whole band which agrees well with the simulated results.

  14. Post-closure safety assessment of near surface disposal facilities for disused sealed radioactive sources

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Seunghee; Kim, Juyoul, E-mail: gracemi@fnctech.com

    2017-03-15

    Highlights: • Post-closure safety assessment of near surface disposal facility for DSRS was performed. • Engineered vault and rock-cavern type were considered for normal and well scenario. • {sup 14}C, {sup 226}Ra, {sup 241}Am were primary nuclides contributing large portion of exposure dose. • Near surface disposal of DSRSs containing {sup 14}C, {sup 226}Ra and {sup 241}Am should be restricted. - Abstract: Great attention has been recently paid to the post-closure safety assessment of low- and intermediate-level radioactive waste (LILW) disposal facility for disused sealed radioactive sources (DSRSs) around the world. Although the amount of volume of DSRSs generated from industry, medicine and research and education organization was relatively small compared with radioactive wastes from commercial nuclear power plants, some DSRSs can pose a significant hazard to human health due to their high activities and long half-lives, if not appropriately managed and disposed. In this study, post-closure safety assessment was carried out for DSRSs generated from 1991 to 2014 in Korea in order to ensure long-term safety of near surface disposal facilities. Two kinds of disposal options were considered, i.e., engineered vault type disposal facility and rock-cavern type disposal facility. Rock-cavern type disposal facility has been under operation in Gyeongju city, republic of Korea since August 2015 and engineered vault type disposal facility will be constructed until December 2020 in the vicinity of rock-cavern disposal facility. Assessment endpoint was individual dose to the member of critical group, which was modeled by GoldSim, which has been widely used as probabilistic risk analysis software based on Monte Carlo simulation in the area of safety assessment of radioactive waste facilities. In normal groundwater scenario, the maximum exposure dose was extremely low, approximately 1 × 10{sup −7} mSv/yr, for both disposal options and satisfied the regulatory limit

  15. Contents and Sample Arguments of a Safety Case for Near Surface Disposal of Radioactive Waste

    International Nuclear Information System (INIS)

    2017-06-01

    This publication arises from the results of two projects to assist Member States in understanding and developing safety cases for near-surface radioactive waste disposal facilities. The objective of the publication is to give detailed information on the contents of safety cases for radioactive waste disposal and the types of arguments that may be included. It is written for technical experts preparing a safety case, and decision makers in the regulatory body and government. The publication outlines the key uses and aspects of the safety case, its evolution in parallel with that of the disposal facility, the key decision steps in the development of the waste disposal facility, the components of the safety case, their place in the Matrix of Arguments for a Safety Case (the MASC matrix), and a detailed description of the development of sample arguments that might be included in a safety case for each of two hypothetical radioactive waste disposal facilities.

  16. X-ray diffractometric study on the near-surface layer structure in parallel glancing rays

    International Nuclear Information System (INIS)

    Shtypulyak, N.I.; Yakimov, I.I.; Litvintsev, V.V.

    1988-01-01

    X-ray diffraction method is suggested to use to investigate thin films and near-surface layers under the conditions of total external reflection (TER) and in the geometry of parallel glancing rays. Experimental realization of the method using the DRON-30 diffractometer is described. Calculation for the required width of the aperture of Soller slot system is presented. The described diffraction scheme is used to investigate thin film crystal structure at glancing angles in the range from TER up to 8-10 deg. The thickness of the investigated layer in this case changes from 2.5-8 nm up to 10 3 nm. The suggested diffraction method in parallel glancing rays is especially important when investigating the films with thickness lower than 1000-2000A

  17. Spectroscopy and control of near-surface defects in conductive thin film ZnO

    KAUST Repository

    Kelly, Leah L

    2016-02-12

    The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

  18. Spectroscopy and control of near-surface defects in conductive thin film ZnO

    KAUST Repository

    Kelly, Leah L; Racke, David A; Schulz, Philip; Li, Hong; Winget, Paul; Kim, Hyungchul; Ndione, Paul; Sigdel, Ajaya K; Bredas, Jean-Luc; Berry, Joseph J; Graham, Samuel; Monti, Oliver L A

    2016-01-01

    The electronic structure of inorganic semiconductor interfaces functionalized with extended π-conjugated organic molecules can be strongly influenced by localized gap states or point defects, often present at low concentrations and hard to identify spectroscopically. At the same time, in transparent conductive oxides such as ZnO, the presence of these gap states conveys the desirable high conductivity necessary for function as electron-selective interlayer or electron collection electrode in organic optoelectronic devices. Here, we report on the direct spectroscopic detection of a donor state within the band gap of highly conductive zinc oxide by two-photon photoemission spectroscopy. We show that adsorption of the prototypical organic acceptor C60 quenches this state by ground-state charge transfer, with immediate consequences on the interfacial energy level alignment. Comparison with computational results suggests the identity of the gap state as a near-surface-confined oxygen vacancy.

  19. Scientific and technical basis for the near surface disposal of low and intermediate level waste

    International Nuclear Information System (INIS)

    2002-01-01

    This report presents an overview of the scientific and technical basis for the disposal of low- and intermediate-level radioactive waste in near surface repositories. The focus is on basic principles, approaches, methodologies and technical criteria that can be used to develop and assess the performance of a disposal facility, and for building confidence in repository safety. This includes consideration of the multiple barrier concept, the performance of engineered barriers, the role of natural barriers and the development of a safety case. The emphasis is on defining the conditions relevant to the containment of the radionuclides in the repository and the processes that may affect the integrity of the engineered barriers. Both generic and specific data requirements for repository development and the assurance of safety are addressed. A large number of bibliographical references are given to support the information provided in this report

  20. Methodology for safety assessment of near-surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Mateeva, M.

    1998-01-01

    The objective of the work is to present the conceptual model of the methodology of safety assessment of near-surface radioactive disposal facilities. The widely used mathematical models and approaches are presented. The emphasis is given on the mathematical models and approaches, which are applicable for the conditions in our country. The different transport models for analysis and safety assessment of migration processes are presented. The parallel between the Mixing-Cell Cascade model and model of Finite-Differences is made. In the methodology the basic physical and chemical processes and events, concerning mathematical modelling of the flow and the transport of radionuclides from the Near Field to Far Field and Biosphere are analyzed. Suitable computer codes corresponding to the ideology and appropriate for implementing of the methodology are shown

  1. Evaluation of Near-Surface Gases in Marine Sediments to Assess Subsurface Petroleum Gas Generation and Entrapment

    Directory of Open Access Journals (Sweden)

    Michael A. Abrams

    2017-05-01

    Full Text Available Gases contained within near-surface marine sediments can be derived from multiple sources: shallow microbial activity, thermal cracking of organic matter and inorganic materials, or magmatic-mantle degassing. Each origin will display a distinctive hydrocarbon and non-hydrocarbon composition as well as compound-specific isotope signature and thus the interpretation of origin should be relatively straightforward. Unfortunately, this is not always the case due to in situ microbial alteration, non-equilibrium phase partitioning, mixing, and fractionation related to the gas extraction method. Sediment gases can reside in the interstitial spaces, bound to mineral or organic surfaces and/or entrapped in carbonate inclusions. The interstitial sediment gases are contained within the sediment pore space, either dissolved in the pore waters (solute or as free (vapour gas. The bound gases are believed to be attached to organic and/or mineral surfaces, entrapped in structured water or entrapped in authigenic carbonate inclusions. The purpose of this paper is to provide a review of the gas types found within shallow marine sediments and examine issues related to gas sampling and extraction. In addition, the paper will discuss how to recognise mixing, alteration and fractionation issues to best interpret the seabed geochemical results and determine gas origin to assess subsurface petroleum gas generation and entrapment.

  2. Near-surface processing on AlGaN/GaN heterostructures: a nanoscale electrical and structural characterization

    Directory of Open Access Journals (Sweden)

    Greco Giuseppe

    2011-01-01

    Full Text Available Abstract The effects of near-surface processing on the properties of AlGaN/GaN heterostructures were studied, combining conventional electrical characterization on high-electron mobility transistors (HEMTs, with advanced characterization techniques with nanometer scale resolution, i.e., transmission electron microscopy, atomic force microscopy (AFM and conductive atomic force microscopy (C-AFM. In particular, a CHF3-based plasma process in the gate region resulted in a shift of the threshold voltage in HEMT devices towards less negative values. Two-dimensional current maps acquired by C-AFM on the sample surface allowed us to monitor the local electrical modifications induced by the plasma fluorine incorporated in the material. The results are compared with a recently introduced gate control processing: the local rapid thermal oxidation process of the AlGaN layer. By this process, a controlled thin oxide layer on surface of AlGaN can be reliably introduced while the resistance of the layer below increase locally.

  3. Near-surface processing on AlGaN/GaN heterostructures: a nanoscale electrical and structural characterization.

    Science.gov (United States)

    Greco, Giuseppe; Giannazzo, Filippo; Frazzetto, Alessia; Raineri, Vito; Roccaforte, Fabrizio

    2011-02-11

    The effects of near-surface processing on the properties of AlGaN/GaN heterostructures were studied, combining conventional electrical characterization on high-electron mobility transistors (HEMTs), with advanced characterization techniques with nanometer scale resolution, i.e., transmission electron microscopy, atomic force microscopy (AFM) and conductive atomic force microscopy (C-AFM). In particular, a CHF3-based plasma process in the gate region resulted in a shift of the threshold voltage in HEMT devices towards less negative values. Two-dimensional current maps acquired by C-AFM on the sample surface allowed us to monitor the local electrical modifications induced by the plasma fluorine incorporated in the material.The results are compared with a recently introduced gate control processing: the local rapid thermal oxidation process of the AlGaN layer. By this process, a controlled thin oxide layer on surface of AlGaN can be reliably introduced while the resistance of the layer below increase locally.

  4. Capability assessment and challenges for quantum technology gravity sensors for near surface terrestrial geophysical surveying

    Science.gov (United States)

    Boddice, Daniel; Metje, Nicole; Tuckwell, George

    2017-11-01

    Geophysical surveying is widely used for the location of subsurface features. Current technology is limited in terms of its resolution (thus size of features it can detect) and penetration depth and a suitable technique is needed to bridge the gap between shallow near surface investigation using techniques such as EM conductivity mapping and GPR commonly used to map the upper 5 m below ground surface, and large features at greater depths detectable using conventional microgravity (> 5 m below ground surface). This will minimise the risks from unknown features buried in and conditions of the ground during civil engineering work. Quantum technology (QT) gravity sensors potentially offer a step-change in technology for locating features which lie outside of the currently detectable range in terms of size and depth, but that potential is currently unknown as field instruments have not been developed. To overcome this, a novel computer simulation was developed for a large range of different targets of interest. The simulation included realistic noise modelling of instrumental, environmental and location sources of noise which limit the accuracy of current microgravity measurements, in order to assess the potential capability of the new QT instruments in realistic situations and determine some of the likely limitations on their implementation. The results of the simulations for near surface features showed that the new technology is best employed in a gradiometer configuration as opposed to the traditional single sensor gravimeter used by current instruments due to the ability to suppress vibrational environmental noise effects due to common mode rejection between the sensors. A significant improvement in detection capability of 1.5-2 times was observed, putting targets such as mineshafts into the detectability zone which would be a major advantage for subsurface surveying. Thus this research, for the first time, has demonstrated clearly the benefits of QT gravity

  5. Assimilation of ASCAT near-surface soil moisture into the French SIM hydrological model

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-06-01

    The impact of assimilating near-surface soil moisture into the SAFRAN-ISBA-MODCOU (SIM) hydrological model over France is examined. Specifically, the root-zone soil moisture in the ISBA land surface model is constrained over three and a half years, by assimilating the ASCAT-derived surface degree of saturation product, using a Simplified Extended Kalman Filter. In this experiment ISBA is forced with the near-real time SAFRAN analysis, which analyses the variables required to force ISBA from relevant observations available before the real time data cut-off. The assimilation results are tested against ISBA forecasts generated with a higher quality delayed cut-off SAFRAN analysis. Ideally, assimilating the ASCAT data will constrain the ISBA surface state to correct for errors in the near-real time SAFRAN forcing, the most significant of which was a substantial dry bias caused by a dry precipitation bias. The assimilation successfully reduced the mean root-zone soil moisture bias, relative to the delayed cut-off forecasts, by close to 50 % of the open-loop value. The improved soil moisture in the model then led to significant improvements in the forecast hydrological cycle, reducing the drainage, runoff, and evapotranspiration biases (by 17 %, 11 %, and 70 %, respectively). When coupled to the MODCOU hydrogeological model, the ASCAT assimilation also led to improved streamflow forecasts, increasing the mean discharge ratio, relative to the delayed cut off forecasts, from 0.68 to 0.76. These results demonstrate that assimilating near-surface soil moisture observations can effectively constrain the SIM model hydrology, while also confirming the accuracy of the ASCAT surface degree of saturation product. This latter point highlights how assimilation experiments can contribute towards the difficult issue of validating remotely sensed land surface observations over large spatial scales.

  6. Frequency shifts of resonant modes of the Sun due to near-surface convective scattering

    Science.gov (United States)

    Bhattacharya, J.; Hanasoge, S. M.; Antia, H. M.

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the ``surface term.'' The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3D flows, can be reduced to an effective ``quiet-Sun'' wave equation with altered sound speed, Brünt-Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  7. FREQUENCY SHIFTS OF RESONANT MODES OF THE SUN DUE TO NEAR-SURFACE CONVECTIVE SCATTERING

    International Nuclear Information System (INIS)

    Bhattacharya, J.; Hanasoge, S.; Antia, H. M.

    2015-01-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modeled frequencies, a phenomenon referred to as the “surface term.” The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modeling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelengths (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary three-dimensional (3D) flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt–Väisäla frequency, and Lamb frequency. We derive the modified equation and relations for the appropriate averaging of 3D flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from 3D numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection

  8. The effect of near-surface convection on oscillation frequencies of stars

    Science.gov (United States)

    Hanasoge, Shravan

    2015-08-01

    Measurements of oscillation frequencies of the Sun and stars can provide important independent constraints on their internal structure and dynamics. Seismic models of these oscillations are used to connect structure and rotation of the star to its resonant frequencies, which are then compared with observations, the goal being that of minimizing the difference between the two. Even in the case of the Sun, for which structure models are highly tuned, observed frequencies show systematic deviations from modelled frequencies, a phenomenon referred to as the “surface term”. The dominant source of this systematic effect is thought to be vigorous near-surface convection, which is not well accounted for in both stellar modelling and mode-oscillation physics. Here we bring to bear the method of homogenization, applicable in the asymptotic limit of large wavelength (in comparison to the correlation scale of convection), to characterize the effect of small-scale surface convection on resonant-mode frequencies in the Sun. We show that the full oscillation equations, in the presence of temporally stationary 3-D flows, can be reduced to an effective “quiet-Sun” wave equation with altered sound speed, Brünt-Väisäla frequency and Lamb frequency. We derive the modified wave equation and relations for the appropriate averaging of three dimensional flows and thermal quantities to obtain the properties of this effective medium. Using flows obtained from three dimensional numerical simulations of near-surface convection, we quantify their effect on solar oscillation frequencies, and find that they are shifted systematically and substantially. We argue therefore that consistent interpretations of resonant frequencies must include modifications to the wave equation that effectively capture the impact of vigorous hydrodynamic convection.

  9. Molecular-dynamics analysis of mobile helium cluster reactions near surfaces of plasma-exposed tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Lin; Maroudas, Dimitrios, E-mail: maroudas@ecs.umass.edu [Department of Chemical Engineering, University of Massachusetts, Amherst, Massachusetts 01003-9303 (United States); Hammond, Karl D. [Department of Chemical Engineering, University of Missouri, Columbia, Missouri 65211 (United States); Wirth, Brian D. [Department of Nuclear Engineering, University of Tennessee, Knoxville, Tennessee 37996 (United States)

    2015-10-28

    We report the results of a systematic atomic-scale analysis of the reactions of small mobile helium clusters (He{sub n}, 4 ≤ n ≤ 7) near low-Miller-index tungsten (W) surfaces, aiming at a fundamental understanding of the near-surface dynamics of helium-carrying species in plasma-exposed tungsten. These small mobile helium clusters are attracted to the surface and migrate to the surface by Fickian diffusion and drift due to the thermodynamic driving force for surface segregation. As the clusters migrate toward the surface, trap mutation (TM) and cluster dissociation reactions are activated at rates higher than in the bulk. TM produces W adatoms and immobile complexes of helium clusters surrounding W vacancies located within the lattice planes at a short distance from the surface. These reactions are identified and characterized in detail based on the analysis of a large number of molecular-dynamics trajectories for each such mobile cluster near W(100), W(110), and W(111) surfaces. TM is found to be the dominant cluster reaction for all cluster and surface combinations, except for the He{sub 4} and He{sub 5} clusters near W(100) where cluster partial dissociation following TM dominates. We find that there exists a critical cluster size, n = 4 near W(100) and W(111) and n = 5 near W(110), beyond which the formation of multiple W adatoms and vacancies in the TM reactions is observed. The identified cluster reactions are responsible for important structural, morphological, and compositional features in the plasma-exposed tungsten, including surface adatom populations, near-surface immobile helium-vacancy complexes, and retained helium content, which are expected to influence the amount of hydrogen re-cycling and tritium retention in fusion tokamaks.

  10. Environmental geology and hydrology

    Science.gov (United States)

    Nakić, Zoran; Mileusnić, Marta; Pavlić, Krešimir; Kovač, Zoran

    2017-10-01

    Environmental geology is scientific discipline dealing with the interactions between humans and the geologic environment. Many natural hazards, which have great impact on humans and their environment, are caused by geological settings. On the other hand, human activities have great impact on the physical environment, especially in the last decades due to dramatic human population growth. Natural disasters often hit densely populated areas causing tremendous death toll and material damage. Demand for resources enhanced remarkably, as well as waste production. Exploitation of mineral resources deteriorate huge areas of land, produce enormous mine waste and pollute soil, water and air. Environmental geology is a broad discipline and only selected themes will be presented in the following subchapters: (1) floods as natural hazard, (2) water as geological resource and (3) the mining and mineral processing as types of human activities dealing with geological materials that affect the environment and human health.

  11. Measurement method of the distribution coefficient on the sorption process. Basic procedure of the method relevant to the barrier materials used for the deep geological disposal: 2006

    International Nuclear Information System (INIS)

    2006-08-01

    This standard was approved by Atomic Energy Society of Japan after deliberation of the Subcommittee on the Radioactive Waste Management, the Nuclear Cycle Technical Committee and the Standard Committee, and after obtaining about 600 comments from specialists of about 30 persons. This document defines the basic measurement procedure of the distribution coefficient (hereafter referred as Kd) to judge the reliability, reproducibility and applications and to provide the requirements for inter-comparison of Kd for a variety of barrier materials used for deep geological disposal of radioactive wastes. The basic measurement procedure of Kd is standardized, following the preceded standard, 'Measurement Method of the Distribution Coefficient on the Sorption Process - Basic Procedure of Batch Method Relevant to the Barrier Materials Used for the Shallow Land Disposal: 2002 (hereafter referred as Standard for the Shallow Land Disposal)', and considering recent progress after its publication and specific issues to the deep geological disposal. (J.P.N.)

  12. The use of retardion 11A8 amphoteric ion exchange resin for separation and determination of cadmium and zinc in geological and environmental materials by neutron activation analysis

    International Nuclear Information System (INIS)

    Samczynski, Z.; Dybczynski, R.

    2001-01-01

    In this work the ion exchange separation scheme with the use of amphoteric ion exchange resin Retardion 11A8 underlying the method for the determination of cadmium and zinc in geological and environmental materials by neutron activation analysis has been devised. The accuracy of the elaborated method was tested by determining Cd and Zn content in two reference materials: Lake Sediment (SL-1) of environmental and Zinnwaldite ZW-C of geological origin. The results of quantitative determinations show good agreement with the certified values. Gamma ray spectra of zinc and cadmium fractions are practically free from other activities apart from those, which are normally observed in the background. Analytical results were corrected for the blank resulting from using reagents, glassware and contact with atmosphere when isolation of analytes before neutron activation is accomplished. Considerable minimization and good reproducibility of the blank was finally achieved.(authors)

  13. Geology of Mars

    International Nuclear Information System (INIS)

    Soderblom, L.A.

    1988-01-01

    The geology of Mars and the results of the Mariner 4, 6/7, and 9 missions and the Viking mission are reviewed. The Mars chronology and geologic modification are examined, including chronological models for the inactive planet, the active planet, and crater flux. The importance of surface materials is discussed and a multispectral map of Mars is presented. Suggestions are given for further studies of the geology of Mars using the Viking data. 5 references

  14. The precise measurement of TL isotopic compositions by MC-ICPMS: Application to the analysis of geological materials and meteorites.

    Science.gov (United States)

    Rehkämper, Mark; Halliday, Alex N.

    1999-07-01

    The precision of Tl isotopic measurements by thermal ionization mass spectrometry (TIMS) is severely limited by the fact that Tl possesses only two naturally occurring isotopes, such that there is no invariant isotope ratio that can be used to correct for instrumental mass discrimination. In this paper we describe new chemical and mass spectrometric techniques for the determination of Tl isotopic compositions at a level of precision hitherto unattained. Thallium is first separated from the geological matrix using a two-stage anion-exchange procedure. Thallium isotopic compositions are then determined by multiple-collector inductively coupled plasma-mass spectrometry with correction for mass discrimination using the known isotopic composition of Pb that is admixed to the sample solutions. With these procedures we achieve a precision of 0.01-0.02% for Tl isotope ratio measurements in geological samples and this is a factor of ≥3-4 better than the best published results by TIMS. However, without adequate precautions, experimental artifacts can be generated that result in apparent Tl isotopic fractionations of up to one per mil. Analysis of five terrestrial samples indicate the existence of Tl isotopic variations related to natural fractionation processes on the Earth. Two of the three igneous rocks analyzed in this study display Tl isotopic compositions indistinguishable from our laboratory standard, the reference material NIST-997 Tl. A third sample, however, is characterized by ɛ Tl ≈ 2.5 ± 1.5, where ɛ Tl represents the deviation of the 205Tl/ 203Tl ratio of the sample relative to NIST-997 Tl in parts per 10 4. Even larger deviations were identified for two ferromanganese crusts from the Pacific Ocean, which display ɛ Tl-values of +5.0 ± 1.5 and +11.7 ± 1.3. We suggest that the large variability of Tl isotopic compositions in the latter samples are caused by low-temperature processes related to the formation of the Fe-Mn crusts by precipitation and

  15. Vitrified radwaste from reprocessing. Material concerning the examination by the Swedish Nuclear Power Inspectorate of the supplementary geology report from the KBS-project

    International Nuclear Information System (INIS)

    1979-01-01

    The Swedish Nuclear Power Inspectorate was designated by the Swedish Government to examine the supplementary geologic investigations performed by the utilities' KBS-project and to judge wheather the area investigated, Sternoe in southern Sweden, could be used for constructing a safe repository for radioactive wastes or not. This report contains material that was ordered by or sent to the Nuclear Power Inspectorate as well as the report by the Inspectorate to the Government. (L.E.)

  16. Acoustic-gravity waves generated by atmospheric and near-surface sources

    Science.gov (United States)

    Kunitsyn, Viacheslav E.; Kholodov, Alexander S.; Krysanov, Boris Yu.; Andreeva, Elena S.; Nesterov, Ivan A.; Vorontsov, Artem M.

    2013-04-01

    Numerical simulation of the acoustic-gravity waves (AGW) generated by long-period oscillations of the Earth's (oceanic) surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. Wavelike disturbances are quite frequent phenomena in the atmosphere and ionosphere. These events can be caused by the impacts from space and atmosphere, by oscillations of the Earth'as surface and other near-surface events. These wavelike phenomena in the atmosphere and ionosphere appear as the alternating areas of enhanced and depleted density (in the atmosphere) or electron concentration (in the ionosphere). In the paper, AGW with typical frequencies of a few hertz - millihertz are analyzed. AGW are often observed after the atmospheric perturbations, during the earthquakes, and some time (a few days to hours) in advance of the earthquakes. Numerical simulation of the generation of AGW by long-period oscillations of the Earth's and oceanic surface, earthquakes, explosions, thermal heating, seiches, and tsunami is carried out. The AGW generated by the near-surface phenomena within a few hertz-millihertz frequency range build up at the mid-atmospheric and ionospheric altitudes, where they assume their typical spatial scales of the order of a few hundred kilometers. Oscillations of the ionospheric plasma within a few hertz-millihertz frequency range generate electromagnetic waves with corresponding frequencies as well as travelling ionospheric irregularities (TIDs). Such structures can be successfully monitored using satellite radio tomography (RT) techniques. For the purposes of RT diagnostics, 150/400 MHz transmissions from low-orbiting navigational satellites flying in polar orbits at the altitudes of about 1000 km as well as 1.2-1.5 GHz signals form high-orbiting (orbital altitudes about 20000 km) navigation systems like GPS/GLONASS are used. The results of experimental studies on generation of wavelike disturbances by particle precipitation are presented

  17. Simulation Study of Near-Surface Coupling of Nuclear Devices vs. Equivalent High-Explosive Charges

    Energy Technology Data Exchange (ETDEWEB)

    Fournier, Kevin B [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Walton, Otis R [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Benjamin, Russ [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Dunlop, William H [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2014-09-29

    A computational study was performed to examine the differences in near-surface ground-waves and air-blast waves generated by high-explosive energy sources and those generated by much higher energy - density low - yield nuclear sources. The study examined the effect of explosive-source emplacement (i.e., height-of-burst, HOB, or depth-of-burial, DOB) over a range from depths of -35m to heights of 20m, for explosions with an explosive yield of 1-kt . The chemical explosive was modeled by a JWL equation-of-state model for a ~14m diameter sphere of ANFO (~1,200,000kg – 1 k t equivalent yield ), and the high-energy-density source was modeled as a one tonne (1000 kg) plasma of ‘Iron-gas’ (utilizing LLNL’s tabular equation-of-state database, LEOS) in a 2m diameter sphere, with a total internal-energy content equivalent to 1 k t . A consistent equivalent-yield coupling-factor approach was developed to compare the behavior of the two sources. The results indicate that the equivalent-yield coupling-factor for air-blasts from 1 k t ANFO explosions varies monotonically and continuously from a nearly perfec t reflected wave off of the ground surface for a HOB ≈ 20m, to a coupling factor of nearly zero at DOB ≈ -25m. The nuclear air - blast coupling curve, on the other hand, remained nearly equal to a perfectly reflected wave all the way down to HOB’s very near zero, and then quickly dropped to a value near zero for explosions with a DOB ≈ -10m. The near - surface ground - wave traveling horizontally out from the explosive source region to distances of 100’s of meters exhibited equivalent - yield coupling - factors t hat varied nearly linearly with HOB/DOB for the simulated ANFO explosive source, going from a value near zero at HOB ≈ 5m to nearly one at DOB ≈ -25m. The nuclear-source generated near-surface ground wave coupling-factor remained near zero for almost all HOB’s greater than zero, and then appeared to vary nearly - linearly with depth

  18. A new method for studying the transport of gamma photons in various geological materials by combining the SSNTD technique with Monte Carlo simulations

    International Nuclear Information System (INIS)

    Misdaq, M.A.; Merzouki, A.; Bourzik, W.; Sfairi, T.

    2000-01-01

    The gamma dose rate due to the uranium and thorium series as well as the potassium 40 nuclei represents a large fraction of the total dose rate from the natural background. Natural gamma-activities of rock and soil samples collected from volcanic areas have been determined using gamma-ray spectrometry. The corresponding gamma dose rates in air have been measured by means of thermoluminescence (TL) dosimeters. Annual absorbed gamma dose rates have been evaluated in different soil samples belonging to an archaeological site by using experimental and calculational methods. Uranium and thorium contents in different geological samples have been determined by using CR-39 and LR-115 type II solid state nuclear track detectors (SSNTD) and calculating the probabilities for alpha particles emitted by the uranium and thorium series to reach and be registered on the SSNTD films. A new method has been developed based on calculating the self-absorption and transmission coefficients of the gamma photons emitted by the uranium and thorium families as well as the potassium 40 isotope for evaluating the gamma dose rate in the considered geological samples. Transport of gamma-photons across parallelepipedic blocks of the geological materials studied has been investigated. Gamma dose rates have been evaluated in the atmosphere of different geological deposits. (author)

  19. Modeling and Simulation of Long-Term Performance of Near-Surface Barriers

    International Nuclear Information System (INIS)

    Piet, S. J.; Jacobson, J. J.; Martian, P.; Martineau, R.; Soto, R.

    2003-01-01

    Society has and will continue to generate hazardous wastes whose risks must be managed. For exceptionally toxic, long-lived, and feared waste, the solution is deep burial, e.g., deep geological disposal at Yucca Mtn. For some waste, recycle or destruction/treatment is possible. The alternative for other wastes is storage at or near the ground level (in someone's back yard); most of these storage sites include a surface barrier (cap) to prevent migration of the waste due to infiltration of surface water. The design lifespan for such barriers ranges from 30 to 1000 years, depending on hazard and regulations. In light of historical performance, society needs a better basis for predicting barrier performance over long time periods and tools for optimizing maintenance of barriers while in service. We believe that, as in other industries, better understanding of the dynamics of barrier system degradation will enable improved barriers (cheaper, longer-lived, simpler, easier to maintain) and improved maintenance. We are focusing our research on earthen caps, especially those with evapo-transpiration and capillary breaks. Typical cap assessments treat the barrier's structure as static prior to some defined lifetime. Environmental boundary conditions such as precipitation and temperature are treated as time dependent. However, other key elements of the barrier system are regarded as constant, including engineered inputs (e.g., fire management strategy, irrigation, vegetation control), surface ecology (critical to assessment of plant transpiration), capillary break interface, material properties, surface erosion rate, etc. Further, to be conservative, only harmful processes are typically considered. A more holistic examination of both harmful and beneficial processes will provide more realistic pre-service prediction and in-service assessment of performance as well as provide designers a tool to encourage beneficial processes while discouraging harmful processes. Thus, the

  20. The sinkhole of Schmalkalden, Germany - Imaging of near-surface subrosion structures and faults

    Science.gov (United States)

    Wadas, Sonja H.; Tschache, Saskia; Polom, Ulrich; Krawczyk, Charlotte M.

    2017-04-01

    In November 2010 a sinkhole of 30 m diameter and 20 m depth opened in a residential area in the village Schmalkalden, Germany, which fortunately led to damage of buildings and property only. The collapse was caused by leaching of soluble rocks in the subsurface, called subrosion. For an improved understanding of the processes leading to subrosion and sinkhole development a detailed characterization of the subsurface structures and elastic parameters is required. We used shear wave reflection seismic, which has proven to be a suitable method for high-resolution imaging of the near-surface. The village Schmalkalden is located in southern Thuringia in Germany. Since the Upper Cretaceous the area is dominated by fault tectonics, fractures and joints, which increase the rock permeability. The circulating groundwater leaches the Permian saline deposits in the subsurface and forms upward migrating cavities, which can develop into sinkholes, if the overburden collapses. In the direct vicinity of the backfilled sinkhole, five 2-D shear wave reflection seismic profiles with total length of ca. 900 m and a zero-offset VSP down to 150 m depth were acquired. For the surface profiles a 120-channel landstreamer attached with horizontal geophones and an electrodynamic micro-vibrator, exciting horizontally polarized shear waves, were used. For the VSP survey an oriented borehole probe equipped with a 3C-geophone and electrodynamic and hydraulic vibrators, exciting compression- and shear waves, were utilized. The seismic sections show high-resolution images from the surface to ca. 100 m depth. They display heterogeneous structures as indicated by strong vertical and lateral variations of the reflectors. In the near-surface, depressions are visible and zones of low seismic velocities sinkhole. The VSP data shows anomalies of the Vp-Vs ratio with values above 2,5. This indicates unstable zones correlated with the anomalies revealed by the 2-D sections. Possible factors for the

  1. Near-surface and bulk behavior of Ag in SiC

    International Nuclear Information System (INIS)

    Xiao, H.Y.; Zhang, Y.; Snead, L.L.; Shutthanandan, V.; Xue, H.Z.; Weber, W.J.

    2012-01-01

    Highlights: ► Ag release from SiC poses problems in safe operation of nuclear reactors. ► Near-surface and bulk behavior of Ag are studied by ab initio and ion beam methods. ► Ag prefers to adsorb on the surface rather than in the bulk SiC. ► At high temperature Ag desorbs from the surface instead of diffusion into bulk SiC. ► Surface diffusion may be a dominating mechanism accounting for Ag release from SiC. - Abstract: The diffusive release of fission products, such as Ag, from TRISO particles at high temperatures has raised concerns regarding safe and economic operation of advanced nuclear reactors. Understanding the mechanisms of Ag diffusion is thus of crucial importance for effective retention of fission products. Two mechanisms, i.e., grain boundary diffusion and vapor or surface diffusion through macroscopic structures such as nano-pores or nano-cracks, remain in debate. In the present work, an integrated computational and experimental study of the near-surface and bulk behavior of Ag in silicon carbide (SiC) has been carried out. The ab initio calculations show that Ag prefers to adsorb on the SiC surface rather than in the bulk, and the mobility of Ag on the surface is high. The energy barrier for Ag desorption from the surface is calculated to be 0.85–1.68 eV, and Ag migration into bulk SiC through equilibrium diffusion process is not favorable. Experimentally, Ag ions are implanted into SiC to produce Ag profiles buried in the bulk and peaked at the surface. High-temperature annealing leads to Ag release from the surface region instead of diffusion into the interior of SiC. It is suggested that surface diffusion through mechanical structural imperfection, such as vapor transport through cracks in SiC coatings, may be a dominating mechanism accounting for Ag release from the SiC in the nuclear reactor.

  2. Considerations in the development of near surface repositories for radioactive waste

    International Nuclear Information System (INIS)

    2003-01-01

    The report presents an integrated, stepwise approach for the development (includes pre-operational, operational and post-closure phases) of near surface disposal facilities for low and intermediate level radioactive waste. It has been developed in light of the considerable experience that has accumulated on the development of such disposal systems and is consistent with the current international requirements, principles, standards and guidance for the disposal of radioactive waste. It is considered that the systematic application of the various steps of the approach can contribute to the successful development of a repository programme. The approach is designed to be generic, integrating the various technical and nontechnical factors, and flexible enough to be suitable for use in the various Member States, ranging from countries that have nuclear power plants to countries that have small inventories of radioactive waste from nuclear applications. It is anticipated that this report will be particularly useful and of direct relevance to Member States that are currently developing, or have plans to develop, disposal facilities for low and intermediate level radioactive waste in the near future. The report is intended to respond to the disposal needs of the various Member States, ranging from countries with nuclear power plants to countries having small inventories of radioactive waste from nuclear applications. It was developed with the help of consultants and through an Advisory Group Meeting held in November 2001

  3. Trends in Mean Annual Minimum and Maximum Near Surface Temperature in Nairobi City, Kenya

    Directory of Open Access Journals (Sweden)

    George Lukoye Makokha

    2010-01-01

    Full Text Available This paper examines the long-term urban modification of mean annual conditions of near surface temperature in Nairobi City. Data from four weather stations situated in Nairobi were collected from the Kenya Meteorological Department for the period from 1966 to 1999 inclusive. The data included mean annual maximum and minimum temperatures, and was first subjected to homogeneity test before analysis. Both linear regression and Mann-Kendall rank test were used to discern the mean annual trends. Results show that the change of temperature over the thirty-four years study period is higher for minimum temperature than maximum temperature. The warming trends began earlier and are more significant at the urban stations than is the case at the sub-urban stations, an indication of the spread of urbanisation from the built-up Central Business District (CBD to the suburbs. The established significant warming trends in minimum temperature, which are likely to reach higher proportions in future, pose serious challenges on climate and urban planning of the city. In particular the effect of increased minimum temperature on human physiological comfort, building and urban design, wind circulation and air pollution needs to be incorporated in future urban planning programmes of the city.

  4. Approximate optimal tracking control for near-surface AUVs with wave disturbances

    Science.gov (United States)

    Yang, Qing; Su, Hao; Tang, Gongyou

    2016-10-01

    This paper considers the optimal trajectory tracking control problem for near-surface autonomous underwater vehicles (AUVs) in the presence of wave disturbances. An approximate optimal tracking control (AOTC) approach is proposed. Firstly, a six-degrees-of-freedom (six-DOF) AUV model with its body-fixed coordinate system is decoupled and simplified and then a nonlinear control model of AUVs in the vertical plane is given. Also, an exosystem model of wave disturbances is constructed based on Hirom approximation formula. Secondly, the time-parameterized desired trajectory which is tracked by the AUV's system is represented by the exosystem. Then, the coupled two-point boundary value (TPBV) problem of optimal tracking control for AUVs is derived from the theory of quadratic optimal control. By using a recently developed successive approximation approach to construct sequences, the coupled TPBV problem is transformed into a problem of solving two decoupled linear differential sequences of state vectors and adjoint vectors. By iteratively solving the two equation sequences, the AOTC law is obtained, which consists of a nonlinear optimal feedback item, an expected output tracking item, a feedforward disturbances rejection item, and a nonlinear compensatory term. Furthermore, a wave disturbances observer model is designed in order to solve the physically realizable problem. Simulation is carried out by using the Remote Environmental Unit (REMUS) AUV model to demonstrate the effectiveness of the proposed algorithm.

  5. Investigation of siting parameters for near surface disposal of low-level nuclear waste. Final report

    International Nuclear Information System (INIS)

    Schell, W.R.; Sanchez, A.L.; Thomas, E.D.

    1985-01-01

    A study was initiated in April 1984 to evaluate actual problems associated with and to recommend improvements for near surface disposal of low-level radioactive wastes in the State of Pennsylvania and the humid Northeast. The results of field measurements showed some vertical transport of 137 Cs and other fallout radionuclides in 210 Pb dated peat cores from the unsaturated zone. Under the natural acid rain conditions (pH 4.0), the most mobile radionuclide, 137 Cs, gave diffusion coefficients of 10 -7 to 10 -9 cm 2 /sec in the different organic rich soils. Both the upward and downward migration of radionuclides resulted from the hydrological cycle of evapotranspiration and precipitation which gave diffusive mixing of mobile radionuclides. The distribution coefficient, K/sub d/ values, for several radionuclides in the organic rich soils were found to be equal to or greater than those measured previously for inorganic clay and sediment matrices. To insure that radionuclides do not enter water supplies in the humid Northeast where pH 4.0 rain is encountered, a peat liner should be considered in the multibarrier design of repositories. 32 refs., 16 figs., 8 tabs

  6. Deployment Algorithms of Wireless Sensor Networks for Near-surface Underground Oil and Gas Pipeline Monitoring

    Directory of Open Access Journals (Sweden)

    Hua-Ping YU

    2014-07-01

    Full Text Available Oil and gas pipelines are the infrastructure of national economic development. Deployment problem of wireless underground sensor networks (WUSN for oil and gas pipeline systems is a fundamental problem. This paper firstly analyzed the wireless channel characteristics and energy consumption model in near-surface underground soil, and then studied the spatial structure of oil and gas pipelines and introduced the three-layer system structure of WUSN for oil and gas pipelines monitoring. Secondly, the optimal deployment strategy in XY plane and XZ plane which were projected from three-dimensional oil and gas pipeline structure was analyzed. Thirdly, the technical framework of using kinetic energy of the fluid in pipelines to recharge sensor nodes and partition strategy for energy consumption balance based on the wireless communication technology of magnetic induction waveguide were proposed, which can effectively improve the energy performance and connectivity of the network, and provide theoretical guidance and practical basis for the monitoring of long oil and gas pipeline network, the city tap water pipe network and sewage pipe network.

  7. Nonlinear Bubble Dynamics And The Effects On Propagation Through Near-Surface Bubble Layers

    Science.gov (United States)

    Leighton, Timothy G.

    2004-11-01

    Nonlinear bubble dynamics are often viewed as the unfortunate consequence of having to use high acoustic pressure amplitudes when the void fraction in the near-surface oceanic bubble layer is great enough to cause severe attenuation (e.g. >50 dB/m). This is seen as unfortunate since existing models for acoustic propagation in bubbly liquids are based on linear bubble dynamics. However, the development of nonlinear models does more than just allow quantification of the errors associated with the use of linear models. It also offers the possibility of propagation modeling and acoustic inversions which appropriately incorporate the bubble nonlinearity. Furthermore, it allows exploration and quantification of possible nonlinear effects which may be exploited. As a result, high acoustic pressure amplitudes may be desirable even in low void fractions, because they offer opportunities to gain information about the bubble cloud from the nonlinearities, and options to exploit the nonlinearities to enhance communication and sonar in bubbly waters. This paper presents a method for calculating the nonlinear acoustic cross-sections, scatter, attenuations and sound speeds from bubble clouds which may be inhomogeneous. The method allows prediction of the time dependency of these quantities, both because the cloud may vary and because the incident acoustic pulse may have finite and arbitrary time history. The method can be readily adapted for bubbles in other environments (e.g. clouds of interacting bubbles, sediments, structures, in vivo, reverberant conditions etc.). The possible exploitation of bubble acoustics by marine mammals, and for sonar enhancement, is explored.

  8. Application of X-rays and Synchrotron X Rays to Residual Stress Evaluation Near Surfaces

    International Nuclear Information System (INIS)

    Pyzalla, Anke

    1999-01-01

    A nondestructive residual stress analysis can be performed using diffraction methods. The easiest accessible radiation is characteristic X radiation that has a penetration depth of ∼10 microm suitable for the determination of the residual stresses in near-surface layers. Special techniques have been developed, e.g., with respect to in situ analyses of the stress state in oxide layers and the residual stress analysis in coarse grained zones of steel welds or annealed Ni-base alloys. Depending on the size of the gauge volume, neutron diffraction can provide information at depths of tens of millimetres of steel and many tens of millimetres of Al. An alternative to the use of the characteristic synchrotron radiation is the use of a high-energy polychromatic beam in an energy dispersive arrangement, which gives access to higher penetration depths at still gauge volumes as small as 100 microm x 100 microm x 1 mm in steel rods of 15-mm diameter. The combination of neutrons with conventional X rays and monochromatic and polychromatic synchrotron radiation allows for a comprehensive investigation of the phase composition, the texture, and the residual stresses

  9. Highly controllable near-surface swimming of magnetic Janus nanorods: application to payload capture and manipulation

    International Nuclear Information System (INIS)

    Mair, Lamar O; Carpenter, Jerome; Evans, Benjamin; Hall, Adam R; Shields, Adam; Superfine, Richard; Ford, Kris; Millard, Michael

    2011-01-01

    Directed manipulation of nanomaterials has significant implications in the field of nanorobotics, nanobiotechnology, microfluidics and directed assembly. With the goal of highly controllable nanomaterial manipulation in mind, we present a technique for the near-surface manoeuvering of magnetic nanorod swimmers and its application to controlled micromanipulation. We fabricate magnetic Janus nanorods and show that the magnetic rotation of these nanorods near a floor results in predictable translational motion. The nanorod plane of rotation is nearly parallel to the floor, the angle between rod tilt and floor being expressed by θ, where 0 0 0 . Orthogonal magnetic fields control in-plane motion arbitrarily. Our model for translation incorporates symmetry breaking through increased drag at the no-slip surface boundary. Using this method we demonstrate considerable rod steerability. Additionally, we approach, capture, and manipulate a polystyrene microbead as proof of principle. We attach Janus nanorods to the surfaces of cells and utilize these rods to manipulate individual cells, proving the ability to manoeuver payloads with a wide range of sizes.

  10. Flexural strengthening of reinforced lightweight polystyrene aggregate concrete beams with near-surface mounted GFRP bars

    Energy Technology Data Exchange (ETDEWEB)

    Tang, W.C.; Balendran, R.V.; Nadeem, A.; Leung, H.Y. [City University of Hong Kong (China). Department of Building and Construction

    2006-10-15

    Application of near-surface mounted (NSM) fibre reinforced polymer (FRP) bars is emerging as a promising technology for increasing flexural and shear strength of deficient reinforced concrete (RC) members. In order for this technique to perform effectively, the structural behaviour of RC elements strengthened with NSM FRP bars needs to be fully characterized. This paper focuses on the characterization of flexural behaviour of RC members strengthened with NSM glass-FRP bars. Totally, 10 beams were tested using symmetrical two-point loads test. The parameters examined under the beam tests were type of concretes (lightweight polystyrene aggregate concrete and normal concrete), type of reinforcing bars (GFRP and steel), and type of adhesives. Flexural performance of the tested beams including modes of failure, moment-deflection response and ultimate moment capacity are presented and discussed in this paper. Results of this investigation showed that beams with NSM GFRP bars showed a reduction in ultimate deflection and an improvement in flexural stiffness and bending capacity, depending on the PA content of the beams. In general, beams strengthened with NSM GFRP bars overall showed a significant increase in ultimate moment ranging from 23% to 53% over the corresponding beams without NSM GFRP bars. The influence of epoxy type was found conspicuously dominated the moment-deflection response up to the peak moment. Besides, the ultimate moment of concrete beams reinforced with GFRP bars could be predicted satisfactorily using the equation provided in ACI 318-95 Building Code. (author)

  11. Seismic potential of weak, near-surface faults revealed at plate tectonic slip rates.

    Science.gov (United States)

    Ikari, Matt J; Kopf, Achim J

    2017-11-01

    The near-surface areas of major faults commonly contain weak, phyllosilicate minerals, which, based on laboratory friction measurements, are assumed to creep stably. However, it is now known that shallow faults can experience tens of meters of earthquake slip and also host slow and transient slip events. Laboratory experiments are generally performed at least two orders of magnitude faster than plate tectonic speeds, which are the natural driving conditions for major faults; the absence of experimental data for natural driving rates represents a critical knowledge gap. We use laboratory friction experiments on natural fault zone samples at driving rates of centimeters per year to demonstrate that there is abundant evidence of unstable slip behavior that was not previously predicted. Specifically, weak clay-rich fault samples generate slow slip events (SSEs) and have frictional properties favorable for earthquake rupture. Our work explains growing field observations of shallow SSE and surface-breaking earthquake slip, and predicts that such phenomena should be more widely expected.

  12. Test results and supporting analysis of a near-surface heater experiment in the Eleana argillite

    International Nuclear Information System (INIS)

    McVey, D.F.; Lappin, A.R.; Thomas, R.K.

    1979-01-01

    A preliminary evaluation of the in-situ thermomechanical response of argillite to heating was obtained from a near-surface heater test in the Eleana Formation, at the United States Department of Energy, Nevada Test Site. The experiment consisted of a 3.8 kW, 3-m long x 0.3-m diameter electrical heater in a central hole surrounded by peripheral holes containing instrumentation to measure temperature, gas pressures, and vertical displacement. A thermal model of the experiment agreed well with experimental results; a comparison of measured and predicted temperatures indicates that some nonmodeled vertical transport of water and water vapor occurred near the heater, especially at early times. A mechanical model indicated that contraction of expandable clays in the argillite produced a region 1.5 - 2.0 m in radius, in which opening of preexisting joints occurred as a result of volumetric contraction. Results of thermal and mechanical modeling, laboratory property measurements, experimental temperature measurements, and post-test observations are all self-consistent and provide preliminary information on the in-situ response of argillaceous rocks to the emplacement of heat-producing nuclear waste

  13. Improved Overpressure Recording and Modeling for Near-Surface Explosion Forensics

    Science.gov (United States)

    Kim, K.; Schnurr, J.; Garces, M. A.; Rodgers, A. J.

    2017-12-01

    The accurate recording and analysis of air-blast acoustic waveforms is a key component of the forensic analysis of explosive events. Smartphone apps can enhance traditional technologies by providing scalable, cost-effective ubiquitous sensor solutions for monitoring blasts, undeclared activities, and inaccessible facilities. During a series of near-surface chemical high explosive tests, iPhone 6's running the RedVox infrasound recorder app were co-located with high-fidelity Hyperion overpressure sensors, allowing for direct comparison of the resolution and frequency content of the devices. Data from the traditional sensors is used to characterize blast signatures and to determine relative iPhone microphone amplitude and phase responses. A Wiener filter based source deconvolution method is applied, using a parameterized source function estimated from traditional overpressure sensor data, to estimate system responses. In addition, progress on a new parameterized air-blast model is presented. The model is based on the analysis of a large set of overpressure waveforms from several surface explosion test series. An appropriate functional form with parameters determined empirically from modern air-blast and acoustic data will allow for better parameterization of signals and the improved characterization of explosive sources.

  14. An overview of technical requirements on durable concrete production for near surface disposal facilities for radioactive wastes

    International Nuclear Information System (INIS)

    Tolentino, Evandro; Tello, Cledola Cassia Oliveira de

    2013-01-01

    Radioactive waste can be generated by a wide range of activities varying from activities in hospitals to nuclear power plants, to mines and mineral processing facilities. General public have devoted nowadays considerable attention to the subject of radioactive waste management due to heightened awareness of environmental protection. The preferred strategy for the management of all radioactive waste is to contain it and to isolate it from the accessible biosphere. The Federal Government of Brazil has announced the construction for the year of 2014 and operation for the year of 2016 of a near surface disposal facility for low and intermediate level radioactive waste. The objective of this paper is to provide an overview of technical requirements related to production of durable concrete to be used in near surface disposal facilities for radioactive waste concrete structures. These requirements have been considered by researchers dealing with ongoing designing effort of the Brazilian near surface disposal facility. (author)

  15. Socio-economic and other non-radiological impacts of the near surface disposal of radioactive waste

    International Nuclear Information System (INIS)

    2002-09-01

    The objective of this report is to introduce, in a generic sense, the elements that could comprise a socio-economic and non-radiological environmental impact assessment. The various social, economic and environmental impacts that could be associated with surface and near surface disposal are discussed through factors that could apply at the local, regional or national level. Impact management is also discussed. The report also introduces concepts to help Member States develop their own approaches to undertaking impact assessment and management. The report is intended to complement IAEA documents on the technology and safety aspects of the near surface disposal of radioactive waste. The scope of this report includes a discussion of a range of social, economic and nonradiological environmental impacts relevant to surface and near surface disposal and illustrations of some impact management measures

  16. Determination of sub-microgram amounts of selenium in geological materials by atomic-absorption spectrophotometry with electrothermal atomisation after solvent extraction

    Science.gov (United States)

    Sanzolone, R.F.; Chao, T.T.

    1981-01-01

    An atomic-absorption spectrophotometric method with electrothermal atomisation has been developed for the determination of selenium in geological materials. The sample is decomposed with a mixture of nitric, perchloric and hydrofluoric acids and heated with hydrochloric acid to reduce selenium to selenium (IV). Selenium is then extracted into toluene from a hydrochloric acid - hydrobromic acid medium containing iron. A few microlitres of the toluene extract are injected into a carbon rod atomiser, using a nickel solution as a matrix modifier. The limits of determination are 0.2-200 p.p.m. of selenium in a geological sample. For concentrations between 0.05 and 0.2 p.p.m., back-extraction of the selenium into dilute hydrochloric acid is employed before atomisation. Selenium values for reference samples obtained by replicate analysis are in general agreement with those reported by other workers, with relative standard deviations ranging from 4.1 to 8.8%. Recoveries of selenium spiked at two levels were 98-108%. Major and trace elements commonly encountered in geological materials do not interfere. Arsenic has a suppressing effect on the selenium signals, but only when its concentration is greater than 1000 p.p.m. Nitric acid interferes seriously with the extraction of selenium and must be removed by evaporation in the sample-digestion step.

  17. Mitigation of defocusing by statics and near-surface velocity errors by interferometric least-squares migration

    KAUST Repository

    Sinha, Mrinal

    2015-08-19

    We propose an interferometric least-squares migration method that can significantly reduce migration artifacts due to statics and errors in the near-surface velocity model. We first choose a reference reflector whose topography is well known from the, e.g., well logs. Reflections from this reference layer are correlated with the traces associated with reflections from deeper interfaces to get crosscorrelograms. These crosscorrelograms are then migrated using interferometric least-squares migration (ILSM). In this way statics and velocity errors at the near surface are largely eliminated for the examples in our paper.

  18. Development of performance assessment methodology for establishment of quantitative acceptance criteria of near-surface radioactive waste disposal

    Energy Technology Data Exchange (ETDEWEB)

    Kim, C. R.; Lee, E. Y.; Park, J. W.; Chang, G. M.; Park, H. Y.; Yeom, Y. S. [Korea Hydro and Nuclear Power Co., Ltd., Seoul (Korea, Republic of)

    2002-03-15

    The contents and the scope of this study are as follows : review of state-of-the-art on the establishment of waste acceptance criteria in foreign near-surface radioactive waste disposal facilities, investigation of radiological assessment methodologies and scenarios, investigation of existing models and computer codes used in performance/safety assessment, development of a performance assessment methodology(draft) to derive quantitatively radionuclide acceptance criteria of domestic near-surface disposal facility, preliminary performance/safety assessment in accordance with the developed methodology.

  19. ASAM - The international programme on application of safety assessment methodologies for near surface radioactive waste disposal facilities

    International Nuclear Information System (INIS)

    Batandjieva, B.

    2002-01-01

    The IAEA has launched a new Co-ordinated Research Project (CRP) on Application of Safety Assessment Methodologies for Near Surface Waste Disposal Facilities (ASAM). The CRP will focus on the practical application of the safety assessment methodology, developed under the ISAM programme, for different purposes, such as developing design concepts, licensing, upgrading existing repositories, reassessment of operating disposal facilities. The overall aim of the programme is to assist safety assessors, regulators and other specialists involved in the development and review of safety assessment for near surface disposal facilities in order to achieve transparent, traceable and defendable evaluation of safety of these facilities. (author)

  20. Safety standards for near surface disposal and the safety case and supporting safety assessment for demonstrating compliance with the standards

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The report presents the safety standards for near surface disposal (ICRP guidance and IAEA standards) and the safety case and supporting safety assessment for demonstrating compliance with the standards. Special attention is paid to the recommendations for disposal of long-lived solid radioactive waste. The requirements are based on the principle for the same level of protection of future individuals as for the current generation. Two types of exposure are considered: human intrusion and natural processes and protection measures are discussed. Safety requirements for near surface disposal are discussed including requirements for protection of human health and environment, requirements or safety assessments, waste acceptance and requirements etc

  1. Assessing Near-surface Heat, Water Vapor and Carbon Dioxide Exchange Over a Coastal Salt-marsh

    Science.gov (United States)

    Bogoev, I.; O'Halloran, T. L.; LeMoine, J.

    2017-12-01

    Coastal ecosystems play an important role in mitigating the effects of climate change by storing significant quantities of carbon. A growing number of studies suggest that vegetated estuarine habitats, specifically salt marshes, have high long-term rates of carbon sequestration, perhaps even higher than mature tropical and temperate forests. Large amounts of carbon, accumulated over thousands of years, are stored in the plant materials and sediment. Improved understanding of the factors that control energy and carbon exchange is needed to better guide restoration and conservation management practices. To that end, we recently established an observation system to study marsh-atmosphere interactions within the North Inlet-Winyah Bay National Estuarine Research Reserve. Near-surface fluxes of heat, water vapor (H2O) and carbon dioxide (CO2) were measured by an eddy-covariance system consisting of an aerodynamic open-path H2O / CO2 gas analyzer with a spatially integrated 3D sonic anemometer/thermometer (IRGASON). The IRGASON instrument provides co-located and highly synchronized, fast response H2O, CO2 and air- temperature measurements, which eliminates the need for spectral corrections associated with the separation between the sonic anemometer and the gas analyzer. This facilitates calculating the instantaneous CO2 molar mixing ratio relative to dry air. Fluxes computed from CO2 and H2O mixing ratios, which are conserved quantities, do not require post-processing corrections for air-density changes associated with temperature and water vapor fluctuations. These corrections are particularly important for CO2, because they could be even larger than the measured flux. Here we present the normalized frequency spectra of air temperature, water vapor and CO2, as well as their co-spectra with the co-located vertical wind. We also show mean daily cycles of sensible, latent and CO2 fluxes and analyze correlations with air/water temperature, wind speed and light availability.

  2. Quasi-plane-hypothesis of strain coordination for RC beams seismically strengthened with externally-bonded or near-surface mounted fiber reinforced plastic

    Science.gov (United States)

    Ren, Zhenhua; Zeng, Xiantao; Liu, Hanlong; Zhou, Fengjun

    2013-03-01

    The application of fiber reinforced plastic (FRP), including carbon FRP and glass FRP, for structural repair and strengthening has grown due to their numerous advantages over conventional materials such as externally bonded reinforcement (EBR) and near-surface mounted (NSM) strengthening techniques. This paper summarizes the results from 21 reinforced concrete beams strengthened with different methods, including externally-bonded and near-surface mounted FRP, to study the strain coordination of the FRP and steel rebar of the RC beam. Since there is relative slipping between the RC beam and the FRP, the strain of the FRP and steel rebar of the RC beam satisfy the quasi-plane-hypothesis; that is, the strain of the longitudinal fiber that parallels the neutral axis of the plated beam within the scope of the effective height ( h 0) of the cross section is in direct proportion to the distance from the fiber to the neutral axis. The strain of the FRP and steel rebar satisfies the equation: ɛ FRP= βɛ steel, and the value of β is equal to 1.1-1.3 according to the test results.

  3. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    Energy Technology Data Exchange (ETDEWEB)

    Werner, Kent [Golder Associates AB, Uppsala (Sweden); Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Taeby (Sweden); Brydsten, Lars [Umeaa University, Dept. of Ecology and Environmental Science (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)

    2007-03-15

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge

  4. Near-surface temperature lapse rates in a mountainous catchment in the Chilean Andes

    Science.gov (United States)

    Ayala; Schauwecker, S.; Pellicciotti, F.; McPhee, J. P.

    2011-12-01

    In mountainous areas, and in the Chilean Andes in particular, the irregular and sparse distribution of recording stations resolves insufficiently the variability of climatic factors such as precipitation, temperature and relative humidity. Assumptions about air temperature variability in space and time have a strong effect on the performance of hydrologic models that represent snow processes such as accumulation and ablation. These processes have large diurnal variations, and assumptions that average over longer time periods (days, weeks or months) may reduce the predictive capacity of these models under different climatic conditions from those for which they were calibrated. They also introduce large uncertainties when such models are used to predict processes with strong subdiurnal variability such as snowmelt dynamics. In many applications and modeling exercises, temperature is assumed to decrease linearly with elevation, using the free-air moist adiabatic lapse rate (MALR: 0.0065°C/m). Little evidence is provided for this assumption, however, and recent studies have shown that use of lapse rates that are uniform in space and constant in time is not appropriate. To explore the validity of this approach, near-surface (2 m) lapse rates were calculated and analyzed at different temporal resolution, based on a new data set of spatially distributed temperature sensors setup in a high elevation catchment of the dry Andes of Central Chile (approx. 33°S). Five minutes temperature data were collected between January 2011 and April 2011 in the Ojos de Agua catchment, using two Automatic Weather Stations (AWSs) and 13 T-loggers (Hobo H8 Pro Temp with external data logger), ranging in altitude from 2230 to 3590 m.s.l.. The entire catchment was snow free during our experiment. We use this unique data set to understand the main controls over temperature variability in time and space, and test whether lapse rates can be used to describe the spatial variations of air

  5. Near-surface air temperature lapse rates in Xinjiang, northwestern China

    Science.gov (United States)

    Du, Mingxia; Zhang, Mingjun; Wang, Shengjie; Zhu, Xiaofan; Che, Yanjun

    2018-02-01

    Lapse rates of near-surface (2 m) air temperature are important parameters in hydrologic and climate simulations, especially for the mountainous areas without enough in-situ observations. In Xinjiang, northwestern China, the elevations range from higher than 7000 m to lower than sea level, but the existing long-term meteorological measurements are limited and distributed unevenly. To calculate lapse rates in Xinjiang, the daily data of near-surface air temperature ( T min, T ave, and T max) were measured by automatic weather stations from 2012 to 2014. All the in situ observation stations were gridded into a network of 1.5° (latitude) by 1.5° (longitude), and the spatial distribution and the daily, monthly, seasonal variations of lapse rates for T min, T ave, and T max in Xinjiang are analyzed. The Urumqi River Basin has been considered as a case to study the influence of elevation, aspect, and the wet and dry air conditions to the T min, T ave, and T max lapse rates. Results show that (1) the lapse rates for T min, T ave, and T max vary spatially during the observation period. The spatial diversity of T min lapse rates is larger than that of T ave, and that of T max is the smallest. For each season, T max lapse rates have more negative values than T ave lapse rates which are steeper than T min lapse rates. The weakest spatial diversity usually appears in July throughout a year. (2) The comparison for the three subregions (North, Middle, and South region) exhibits that lapse rates have similar day-to-day and month-to-month characteristics which present shallower values in winter months and steeper values in summer months. The T ave lapse rates in North region are shallower than those in Middle and South region, and the steepest T ave lapse rates of the three regions all appear in April. T min lapse rates are shallower than T max lapse rates. The maximum medians of T min and T max lapse rates for each grid in the three regions all appear in January, whereas the

  6. Recharge and discharge of near-surface groundwater in Forsmark. Comparison of classification methods

    International Nuclear Information System (INIS)

    Werner, Kent; Johansson, Per-Olof; Brydsten, Lars; Bosson, Emma; Berglund, Sten

    2007-03-01

    This report presents and compares data and models for identification of near-surface groundwater recharge and discharge (RD) areas in Forsmark. The general principles of groundwater recharge and discharge are demonstrated and applied to interpret hydrological and hydrogeological observations made in the Forsmark area. 'Continuous' RD classification methods considered in the study include topographical modelling, map overlays, and hydrological-hydrogeological flow modelling. 'Discrete' (point) methods include field-based and hydrochemistry-based RD classifications of groundwater monitoring well locations. The topographical RD modelling uses the digital elevation model as the only input. The map overlays use background maps of Quaternary deposits, soils, and ground- and field layers of the vegetation/land use map. Further, the hydrological-hydrogeological modelling is performed using the MIKE SHE-MIKE 11 software packages, taking into account e.g. topography, meteorology, hydrogeology, and geometry of watercourses and lakes. The best between-model agreement is found for the topography-based model and the MIKE SHE-MIKE 11 model. The agreement between the topographical model and the map overlays is less good. The agreement between the map overlays on the one hand, and the MIKE SHE and field-based RD classifications on the other, is thought to be less good, as inferred from the comparison made with the topography-based model. However, much improvement of the map overlays can likely be obtained, e.g. by using 'weights' and calibration (such exercises were outside the scope of the present study). For field-classified 'recharge wells', there is a good agreement to the hydrochemistry-based (Piper plot) well classification, but less good for the field-classified 'discharge wells'. In addition, the concentration of the age-dating parameter tritium shows low variability among recharge wells, but a large spread among discharge wells. The usefulness of hydrochemistry-based RD

  7. Driving Solar Giant Cells through the Self-organization of Near-surface Plumes

    Science.gov (United States)

    Nelson, Nicholas J.; Featherstone, Nicholas A.; Miesch, Mark S.; Toomre, Juri

    2018-06-01

    Global 3D simulations of solar giant-cell convection have provided significant insight into the processes which yield the Sun’s observed differential rotation and cyclic dynamo action. However, as we move to higher-resolution simulations a variety of codes have encountered what has been termed the convection conundrum. As these simulations increase in resolution and hence the level of turbulence achieved, they tend to produce weak or even anti-solar differential rotation patterns associated with a weak rotational influence (high Rossby number) due to large convective velocities. One potential culprit for this convection conundrum is the upper boundary condition applied in most simulations, which is generally impenetrable. Here we present an alternative stochastic plume boundary condition which imposes small-scale convective plumes designed to mimic near-surface convective downflows, thus allowing convection to carry the majority of the outward solar energy flux up to and through our simulated upper boundary. The use of a plume boundary condition leads to significant changes in the convective driving realized in the simulated domain and thus to the convective energy transport, the dominant scale of the convective enthalpy flux, and the relative strength of the strongest downflows, the downflow network, and the convective upflows. These changes are present even far from the upper boundary layer. Additionally, we demonstrate that, in spite of significant changes, giant cell morphology in the convective patterns is still achieved with self-organization of the imposed boundary plumes into downflow lanes, cellular patterns, and even rotationally aligned banana cells in equatorial regions. This plume boundary presents an alternative pathway for 3D global convection simulations where driving is non-local and may provide a new approach toward addressing the convection conundrum.

  8. Laboratory Study of Topographic Effects on the Near-surface Tornado Flow Field

    Science.gov (United States)

    Razavi, Alireza; Sarkar, Partha P.

    2018-03-01

    To study topographic effects on the near-surface tornado flow field, the Iowa State University tornado simulator was used to simulate a translating tornado passing over three different two-dimensional topographies: a ridge, an escarpment and a valley. The effect of the translation speed on maximum horizontal wind speeds is observed for translation speeds of 0.15 and 0.50 m s^{-1} , with the lower value resulting in a larger maximum horizontal wind speed. The tornado translation over the three topographies with respect to flat terrain is assessed for changes in: (a) the maximum horizontal wind speeds in terms of the flow-amplification factor; (b) the maximum aerodynamic drag in terms of the tornado speed-up ratio; (c) the maximum duration of exposure at any location to high wind speeds of a specific range in terms of the exposure amplification factor. Results show that both the maximum wind amplification factor of 14%, as well as the maximum speed-up ratio of 14%, occur on the ridge. For all topographies, the increase in aerodynamic drag is observed to be maximized for low-rise buildings, which illustrates the importance of the vertical profiles of the horizontal wind speed near the ground. The maximum exposure amplification factors, estimated for the range of wind speeds corresponding to the EF2 (50-60 m s^{-1} ) and EF3 (61-75 m s^{-1}) scales, are 86 and 110% for the ridge, 4 and 60% for the escarpment and - 6 and 47% for the valley, respectively.

  9. Assimilation of ASCAT near-surface soil moisture into the SIM hydrological model over France

    Science.gov (United States)

    Draper, C.; Mahfouf, J.-F.; Calvet, J.-C.; Martin, E.; Wagner, W.

    2011-12-01

    This study examines whether the assimilation of remotely sensed near-surface soil moisture observations might benefit an operational hydrological model, specifically Météo-France's SAFRAN-ISBA-MODCOU (SIM) model. Soil moisture data derived from ASCAT backscatter observations are assimilated into SIM using a Simplified Extended Kalman Filter (SEKF) over 3.5 years. The benefit of the assimilation is tested by comparison to a delayed cut-off version of SIM, in which the land surface is forced with more accurate atmospheric analyses, due to the availability of additional atmospheric observations after the near-real time data cut-off. However, comparing the near-real time and delayed cut-off SIM models revealed that the main difference between them is a dry bias in the near-real time precipitation forcing, which resulted in a dry bias in the root-zone soil moisture and associated surface moisture flux forecasts. While assimilating the ASCAT data did reduce the root-zone soil moisture dry bias (by nearly 50%), this was more likely due to a bias within the SEKF, than due to the assimilation having accurately responded to the precipitation errors. Several improvements to the assimilation are identified to address this, and a bias-aware strategy is suggested for explicitly correcting the model bias. However, in this experiment the moisture added by the SEKF was quickly lost from the model surface due to the enhanced surface fluxes (particularly drainage) induced by the wetter soil moisture states. Consequently, by the end of each winter, during which frozen conditions prevent the ASCAT data from being assimilated, the model land surface had returned to its original (dry-biased) climate. This highlights that it would be more effective to address the precipitation bias directly, than to correct it by constraining the model soil moisture through data assimilation.

  10. Modeling and observational occurrences of near-surface drainage in Utopia Planitia, Mars

    Science.gov (United States)

    Costard, F.; Sejourne, A.; Kargel, J.; Godin, E.

    2016-12-01

    During the past 15 years, evidence for an ice-rich planet Mars has rapidly mounted, become increasingly varied in terms of types of deposits and types of observational data, and has become more widespread across the surface. The mid-latitudes of Mars, especially Utopia Planitia, show many types of interesting landforms similar to those in periglacial landscapes on Earth that suggest the presence of ice-rich permafrost. These include thermal contraction polygonal networks, scalloped terrains similar to thermokarst pits, debris flows, small mounds like pingos and rock glaciers. Here, we address questions concerning the influence of meltwater in the Utopia Planitia (UP) landscape using analogs of near-surface melting and drainage along ice-wedge troughs on Bylot Island, northern Canada. In Utopia Planitia, based on the identification of sinuous channel-like pits within polygonal networks, we suggest that episodic underground melting was possible under severe periglacial climate conditions. In UP, the collapse pattern and morphology of unconnected sinuous elongated pits that follow the polygon crack are similar to underground melting in Bylot Island (Nunavut, Canada). Based on this terrestrial analogue, we develop a thermal model that consists of a thick insulating dusty layer over ice-saturated dust during a period of slight climatic warming relative to today's climate. In the model, the melting point is reached at depths down to 150 m. We suggest that small-scale melting could have occurred below ground within ground-ice polygonal fractures and pooled in underground cavities. Then the water may have been released episodically causing mechanical erosion as well as undermining and collapse. After melting, the dry surface dusty layer might have been blown away, thus exposing the degraded terrain of the substrate layer.

  11. Near surface velocity and Q S structure of the Quaternary sediment in Bohai basin, China

    Science.gov (United States)

    Chong, Jiajun; Ni, Sidao

    2009-10-01

    Heavily populated by Beijing and Tianjin cities, Bohai basin is a seismically active Cenozoic basin suffering from huge lost by devastating earthquakes, such as Tangshan earthquake. The attenuation ( Q P and Q S) of the surficial Quaternary sediment has not been studied at natural seismic frequency (1-10 Hz), which is crucial to earthquake hazards study. Borehole seismic records of micro earthquake provide us a good way to study the velocity and attenuation of the surficial structure (0-500 m). We found that there are two pulses well separated with simple waveforms on borehole seismic records from the 2006 M W4.9 Wen’an earthquake sequence. Then we performed waveform modeling with generalized ray theory (GRT) to confirm that the two pulses are direct wave and surface reflected wave, and found that the average ν P and ν S of the top 300 m in this region are about 1.8 km/s and 0.42 km/s, leading to high ν P/ ν S ratio of 4.3. We also modeled surface reflected wave with propagating matrix method to constrain Q S and the near surface velocity structure. Our modeling indicates that Q S is at least 30, or probably up to 100, much larger than the typically assumed extremely low Q (˜10), but consistent with Q S modeling in Mississippi embayment. Also, the velocity gradient just beneath the free surface (0-50 m) is very large and velocity increases gradually at larger depth. Our modeling demonstrates the importance of borehole seismic records in resolving shallow velocity and attenuation structure, and hence may help in earthquake hazard simulation.

  12. Data related uncertainty in near-surface vulnerability assessments for agrochemicals in the San Joaquin Valley.

    Science.gov (United States)

    Loague, Keith; Blanke, James S; Mills, Melissa B; Diaz-Diaz, Ricardo; Corwin, Dennis L

    2012-01-01

    Precious groundwater resources across the United States have been contaminated due to decades-long nonpoint-source applications of agricultural chemicals. Assessing the impact of past, ongoing, and future chemical applications for large-scale agriculture operations is timely for designing best-management practices to prevent subsurface pollution. Presented here are the results from a series of regional-scale vulnerability assessments for the San Joaquin Valley (SJV). Two relatively simple indices, the retardation and attenuation factors, are used to estimate near-surface vulnerabilities based on the chemical properties of 32 pesticides and the variability of both soil characteristics and recharge rates across the SJV. The uncertainties inherit to these assessments, derived from the uncertainties within the chemical and soil data bases, are estimated using first-order analyses. The results are used to screen and rank the chemicals based on mobility and leaching potential, without and with consideration of data-related uncertainties. Chemicals of historic high visibility in the SJV (e.g., atrazine, DBCP [dibromochloropropane], ethylene dibromide, and simazine) are ranked in the top half of those considered. Vulnerability maps generated for atrazine and DBCP, featured for their legacy status in the study area, clearly illustrate variations within and across the assessments. For example, the leaching potential is greater for DBCP than for atrazine, the leaching potential for DBCP is greater for the spatially variable recharge values than for the average recharge rate, and the leaching potentials for both DBCP and atrazine are greater for the annual recharge estimates than for the monthly recharge estimates. The data-related uncertainties identified in this study can be significant, targeting opportunities for improving future vulnerability assessments. Copyright © by the American Society of Agronomy, Crop Science Society of America, and Soil Science Society of America

  13. Dark Fiber and Distributed Acoustic Sensing: Applications to Monitoring Seismicity and Near-Surface Properties

    Science.gov (United States)

    Ajo Franklin, J. B.; Lindsey, N.; Dou, S.; Freifeld, B. M.; Daley, T. M.; Tracy, C.; Monga, I.

    2017-12-01

    "Dark Fiber" refers to the large number of fiber-optic lines installed for telecommunication purposes but not currently utilized. With the advent of distributed acoustic sensing (DAS), these unused fibers have the potential to become a seismic sensing network with unparalleled spatial extent and density with applications to monitoring both natural seismicity as well as near-surface soil properties. While the utility of DAS for seismic monitoring has now been conclusively shown on built-for-purpose networks, dark fiber deployments have been challenged by the heterogeneity of fiber installation procedures in telecommunication as well as access limitations. However, the potential of telecom networks to augment existing broadband monitoring stations provides a strong incentive to explore their utilization. We present preliminary results demonstrating the application of DAS to seismic monitoring on a 20 km run of "dark" telecommunications fiber between West Sacramento, CA and Woodland CA, part of the Dark Fiber Testbed maintained by the DOE's ESnet user facility. We show a small catalog of local and regional earthquakes detected by the array and evaluate fiber coupling by using variations in recorded frequency content. Considering the low density of broadband stations across much of the Sacramento Basin, such DAS recordings could provide a crucial data source to constrain small-magnitude local events. We also demonstrate the application of ambient noise interferometry using DAS-recorded waveforms to estimate soil properties under selected sections of the dark fiber transect; the success of this test suggests that the network could be utilized for environmental monitoring at the basin scale. The combination of these two examples demonstrates the exciting potential for combining DAS with ubiquitous dark fiber to greatly extend the reach of existing seismic monitoring networks.

  14. Near-surface layer radiation color centers in lithium fluoride nanocrystals: Luminescence and composition

    Energy Technology Data Exchange (ETDEWEB)

    Voitovich, A.P., E-mail: voitovich@imaph.bas-net.by; Kalinov, V.S.; Stupak, A.P.; Novikov, A.N.; Runets, L.P.

    2015-01-15

    Lithium fluoride nanocrystals are irradiated by gamma quanta at 77 K. The radiation color centers formed in a near-surface layer of nanocrystals are studied. Absorption, luminescence and luminescence excitation spectra of the surface defects have been measured. It has been found that the luminescence excitation spectra for aggregated surface centers consist of two or three bands with not very much different intensities. Reactions of the surface centers separately with electrons and with anion vacancies have been investigated. Numbers of anion vacancies and electrons entering into the centers composition have been established and it has been found that F{sub S1}, F{sub S1}{sup −}, F{sub S2}, F{sub S2}{sup −}, F{sub S3}{sup +} and F{sub S3} types of the surface centers are formed. The degree of luminescence polarization has been defined and it has been determined that the polarization degree for F{sub S2}{sup +} centers changes sign under transition from one excitation band to another. It has been shown that during irradiation at 77 K radiation-induced defects are formed more efficiently on the surface than in the bulk. - Highlights: • Radiative color centers were fabricated in lithium fluoride nanocrystals. • The unique absorption and luminescence characteristics are inherent in the centers. • The reactions of these centers with electrons and anion vacancies were studied. • The degree of luminescence polarization was defined. • Numbers of anion vacancies and electrons forming the centers were established.

  15. Near-surface wind pattern in regional climate projections over the broader Adriatic region

    Science.gov (United States)

    Belušić, Andreina; Telišman Prtenjak, Maja; Güttler, Ivan; Ban, Nikolina; Leutwyler, David; Schär, Christoph

    2017-04-01

    The Adriatic region is characterized by the complex coastline, strong topographic gradients and specific wind regimes. This represents excellent test area for the latest generation of the regional climate models (RCMs) applied over the European domain. The most famous wind along the Adriatic coast is bora, which due to its strength, has a strong impact on all types of human activities in the Adriatic region. The typical bora wind is a severe gusty downslope flow perpendicular to the mountains. Besides bora, in the Adriatic region, typical winds are sirocco (mostly during the wintertime) and sea/land breezes (dominantly in the warm part of the year) as a part of the regional Mediterranean wind system. Thus, it is substantial to determine future changes in the wind filed characteristics (e.g., changes in strength and frequencies). The first step was the evaluation of a suite of ten EURO- and MED-CORDEX models (at 50 km and 12.5 km resolution), and two additional high resolution models from the Swiss Federal Institute of Technology in Zürich (ETHZ, at 12.5 km and 2.2. km resolution) in the present climate. These results provided a basis for the next step where wind field features, in an ensemble of RCMs forced by global climate models (GCMs) in historical and future runs are examined. Our aim is to determine the influence of the particular combination of RCMs and GCMs, horizontal resolution and emission scenario on the future changes in the near-surface wind field. The analysis reveals strong sensitivity of the simulated wind flow and its statistics to both season and location analyzed, to the horizontal resolution of the RCM and on the choice of the particular GCM that provides boundary conditions.

  16. Near surface silicide formation after off-normal Fe-implantation of Si(001) surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Khanbabaee, B., E-mail: khanbabaee@physik.uni-siegen.de; Pietsch, U. [Solid State Physics, University of Siegen, D-57068 Siegen (Germany); Lützenkirchen-Hecht, D. [Fachbereich C - Physik, Bergische Universität Wuppertal, D-42097 Wuppertal (Germany); Hübner, R.; Grenzer, J.; Facsko, S. [Helmholtz-Zentrum Dresden-Rossendorf, 01314 Dresden (Germany)

    2014-07-14

    We report on formation of non-crystalline Fe-silicides of various stoichiometries below the amorphized surface of crystalline Si(001) after irradiation with 5 keV Fe{sup +} ions under off-normal incidence. We examined samples prepared with ion fluences of 0.1 × 10{sup 17} and 5 × 10{sup 17} ions cm{sup −2} exhibiting a flat and patterned surface morphology, respectively. Whereas the iron silicides are found across the whole surface of the flat sample, they are concentrated at the top of ridges at the rippled surface. A depth resolved analysis of the chemical states of Si and Fe atoms in the near surface region was performed by combining X-ray photoelectron spectroscopy and X-ray absorption spectroscopy (XAS) using synchrotron radiation. The chemical shift and the line shape of the Si 2p core levels and valence bands were measured and associated with the formation of silicide bonds of different stoichiometric composition changing from an Fe-rich silicides (Fe{sub 3}Si) close to the surface into a Si-rich silicide (FeSi{sub 2}) towards the inner interface to the Si(001) substrate. This finding is supported by XAS analysis at the Fe K-edge which shows changes of the chemical environment and the near order atomic coordination of the Fe atoms in the region close to surface. Because a similar Fe depth profile has been found for samples co-sputtered with Fe during Kr{sup +} ion irradiation, our results suggest the importance of chemically bonded Fe in the surface region for the process of ripple formation.

  17. Near-surface energy transfers from internal tide beams to smaller vertical scale motions

    Science.gov (United States)

    Chou, S.; Staquet, C.; Carter, G. S.; Luther, D. S.

    2016-02-01

    Mechanical energy capable of causing diapycnal mixing in the ocean is transferred to the internal wave field when barotropic tides pass over underwater topography and generate internal tides. The resulting internal tide energy is confined in vertically limited structures, or beams. As internal tide beams (ITBs) propagate through regions of non-uniform stratification in the upper ocean, wave energy can be scattered through multiple reflections and refractions, be vertically trapped, or transferred to non-tidal frequencies through different nonlinear processes. Various observations have shown that ITBs are no longer detectable in horizontal kinetic energy beyond the first surface reflection. Importantly, this implies that some of the internal tide energy no longer propagates in to the abyssal ocean and consequently will not be available to maintain the density stratification. Using the NHM, a nonlinear and nonhydrostatic model based on the MITgcm, simulations of an ITB propagating up to the sea surface are examined in order to quantify the transformation of ITB energy to other motions. We compare and contrast the transformations enabled by idealized, smoothly-varying stratification with transformations enabled by realistic stratification containing a broad-band vertical wavenumber spectrum of variations. Preliminary two-dimensional results show that scattering due to small-scale structure in realistic stratification profiles from Hawaii can lead to energy being vertically trapped near the surface. Idealized simulations of "locally" generated internal solitary waves are analyzed in terms of energy flux transfers from the ITB to solitary waves, higher harmonics, and mean flow. The amount of internal tide energy which propagates back down after near-surface reflection of the ITB in different environments is quantified.

  18. Spatial prediction of near surface soil water retention functions using hydrogeophysics and empirical orthogonal functions

    Science.gov (United States)

    Gibson, Justin; Franz, Trenton E.

    2018-06-01

    The hydrological community often turns to widely available spatial datasets such as the NRCS Soil Survey Geographic database (SSURGO) to characterize the spatial variability of soil properties. When used to spatially characterize and parameterize watershed models, this has served as a reasonable first approximation when lacking localized or incomplete soil data. Within agriculture, soil data has been left relatively coarse when compared to numerous other data sources measured. This is because localized soil sampling is both expensive and time intense, thus a need exists in better connecting spatial datasets with ground observations. Given that hydrogeophysics is data-dense, rapid, non-invasive, and relatively easy to adopt, it is a promising technique to help dovetail localized soil sampling with spatially exhaustive datasets. In this work, we utilize two common near surface geophysical methods, cosmic-ray neutron probe and electromagnetic induction, to identify temporally stable spatial patterns of measured geophysical properties in three 65 ha agricultural fields in western Nebraska. This is achieved by repeat geophysical observations of the same study area across a range of wet to dry field conditions in order to evaluate with an empirical orthogonal function. Shallow cores were then extracted within each identified zone and water retention functions were generated in the laboratory. Using EOF patterns as a covariate, we quantify the predictive skill of estimating soil hydraulic properties in areas without measurement using a bootstrap validation analysis. Results indicate that sampling locations informed via repeat hydrogeophysical surveys, required only five cores to reduce the cross-validation root mean squared error by an average of 64% as compared to soil parameters predicted by a commonly used benchmark, SSURGO and ROSETTA. The reduction to five strategically located samples within the 65 ha fields reduces sampling efforts by up to ∼90% as compared to

  19. Near-surface Imaging of a Maya Plaza Complex using Ground-Penetrating Radar

    Science.gov (United States)

    Aitken, J. A.; Stewart, R. R.

    2005-05-01

    The University of Calgary has conducted a number of ground-penetrating radar surveys at a Maya archaeological site. The purpose of the study is to discern the near-surface structure and stratigraphy of the plaza, and to assist the archaeologists in focusing their excavation efforts. The area of study is located in Belize, Central America at the ancient Maya site of Maax Na. Flanked by structures believed to be temples to the north and west, the archaeologists were interested in determining how many levels of plaza were built and if there was any discernable slope to the plaza. Over the last three years, both 2-D lines and 3-D grids were acquired at the plaza using a Sensors and Software Inc. Noggin Plus system at an antenna frequency of 250 MHz. The processing flow consisted of the application of gain, various filtering techniques and a diffraction stack migration using Reflexw. Interpolation of the gridded data was investigated using simple averaging, F-K migration, pre-stack migration and inversion techniques. As this study has evolved over different field seasons, measured velocities appear to change with the saturation level of the shallow section. Velocity measurements ranged from 0.058 - .106 m/ns during the wet conditions encountered in 2002 and 2004, while velocities of 1.22 - 1.40 m/ns were measured in the drought of 2003. The GPR images to date indicate continuous and interpretable images of the subsurface, showing evidence of structure, discontinuities and amplitude variations. A number of interesting anomalies have been identified, and prioritized for excavation.

  20. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    International Nuclear Information System (INIS)

    Aneljung, Maria; Gustafsson, Lars-Goeran

    2007-04-01

    The hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow, transport mechanisms and the contact between ground- and surface water at the Forsmark site. The surface water system at Forsmark is described with the 1D modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. In spring 2007, a new data freeze will be available and a process of updating, rebuilding and calibrating the MIKE SHE model will start, based on the latest data set. Prior to this, it is important to gather as much knowledge as possible on calibration methods and to define critical calibration parameters and areas within the model. In this project, an optimization of the numerical description and an initial calibration of the MIKE SHE model has been made, and an updated base case has been defined. Data from 5 surface water level monitoring stations, 4 surface water discharge monitoring stations and 32 groundwater level monitoring stations (SFM soil boreholes) has been used for model calibration and evaluation. The base case simulations generally show a good agreement between calculated and measured water levels and discharges, indicating that the total runoff from the area is well described by the model. Moreover, with two exceptions (SFM0012 and SFM0022) the base case results show very good agreement between calculated and measured groundwater head elevations for boreholes installed below lakes. The model also shows a reasonably good agreement between calculated and measured groundwater head elevations or depths to phreatic surfaces in many other points. The following major types of calculation-measurement differences can be noted: Differences in groundwater level amplitudes due to transpiration processes. Differences in absolute mean groundwater head, due to differences between borehole casing levels and the interpolated DEM. Differences in absolute mean head elevations, due to local errors in hydraulic conductivity values

  1. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Gustafsson, Lars-Goeran [DHI Water and Environment AB, Goeteborg (Sweden)

    2007-04-15

    The hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow, transport mechanisms and the contact between ground- and surface water at the Forsmark site. The surface water system at Forsmark is described with the 1D modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. In spring 2007, a new data freeze will be available and a process of updating, rebuilding and calibrating the MIKE SHE model will start, based on the latest data set. Prior to this, it is important to gather as much knowledge as possible on calibration methods and to define critical calibration parameters and areas within the model. In this project, an optimization of the numerical description and an initial calibration of the MIKE SHE model has been made, and an updated base case has been defined. Data from 5 surface water level monitoring stations, 4 surface water discharge monitoring stations and 32 groundwater level monitoring stations (SFM soil boreholes) has been used for model calibration and evaluation. The base case simulations generally show a good agreement between calculated and measured water levels and discharges, indicating that the total runoff from the area is well described by the model. Moreover, with two exceptions (SFM0012 and SFM0022) the base case results show very good agreement between calculated and measured groundwater head elevations for boreholes installed below lakes. The model also shows a reasonably good agreement between calculated and measured groundwater head elevations or depths to phreatic surfaces in many other points. The following major types of calculation-measurement differences can be noted: Differences in groundwater level amplitudes due to transpiration processes. Differences in absolute mean groundwater head, due to differences between borehole casing levels and the interpolated DEM. Differences in absolute mean head elevations, due to local errors in hydraulic conductivity values

  2. Comparison of neutron activation analysis techniques for the determination of uranium concentrations in geological and environmental materials

    International Nuclear Information System (INIS)

    Landsberger, S.; Kapsimalis, R.

    2013-01-01

    We have described the determination of uranium in environmental, geological, and agricultural specimens by three different non-destructive nuclear methods. The effectiveness, as defined as the lower limits of detection in this work, of quantifying trace levels of bulk uranium in geological samples was evaluated for several common NAA techniques. These techniques include short-lived and medium-lived neutron activation analysis using thermal and epithermal neutrons; these results were compared with an assessment of Compton suppressed gamma-ray counting. A careful evaluation of three major (n,γ) reactions with chlorine, manganese and sodium that could impede determining low levels of uranium due to high Compton continuums was done. The evaluation of Compton suppressed passive gamma counting revealed that uranium concentrations below 50 mg kg −1 were not adequate to achieve good counting statistics using the 234m Pa the second daughter product of 238 U. -- Highlights: ► Determination of uranium concentrations in geological, environmental, and agricultural specimens. ► Use of several NAA and passive counting methods. ► Identified several key interferences. ► Use of Compton suppression to minimize effects of interferences

  3. The Modern Near-Surface Martian Climate: A Review of In-situ Meteorological Data from Viking to Curiosity

    Science.gov (United States)

    Martínez, G. M.; Newman, C. N.; De Vicente-Retortillo, A.; Fischer, E.; Renno, N. O.; Richardson, M. I.; Fairén, A. G.; Genzer, M.; Guzewich, S. D.; Haberle, R. M.; Harri, A.-M.; Kemppinen, O.; Lemmon, M. T.; Smith, M. D.; de la Torre-Juárez, M.; Vasavada, A. R.

    2017-10-01

    We analyze the complete set of in-situ meteorological data obtained from the Viking landers in the 1970s to today's Curiosity rover to review our understanding of the modern near-surface climate of Mars, with focus on the dust, CO2 and H2O cycles and their impact on the radiative and thermodynamic conditions near the surface. In particular, we provide values of the highest confidence possible for atmospheric opacity, atmospheric pressure, near-surface air temperature, ground temperature, near-surface wind speed and direction, and near-surface air relative humidity and water vapor content. Then, we study the diurnal, seasonal and interannual variability of these quantities over a span of more than twenty Martian years. Finally, we propose measurements to improve our understanding of the Martian dust and H2O cycles, and discuss the potential for liquid water formation under Mars' present day conditions and its implications for future Mars missions. Understanding the modern Martian climate is important to determine if Mars could have the conditions to support life and to prepare for future human exploration.

  4. Global Validation of MODIS Atmospheric Profile-Derived Near-Surface Air Temperature and Dew Point Estimates

    Science.gov (United States)

    Famiglietti, C.; Fisher, J.; Halverson, G. H.

    2017-12-01

    This study validates a method of remote sensing near-surface meteorology that vertically interpolates MODIS atmospheric profiles to surface pressure level. The extraction of air temperature and dew point observations at a two-meter reference height from 2001 to 2014 yields global moderate- to fine-resolution near-surface temperature distributions that are compared to geographically and temporally corresponding measurements from 114 ground meteorological stations distributed worldwide. This analysis is the first robust, large-scale validation of the MODIS-derived near-surface air temperature and dew point estimates, both of which serve as key inputs in models of energy, water, and carbon exchange between the land surface and the atmosphere. Results show strong linear correlations between remotely sensed and in-situ near-surface air temperature measurements (R2 = 0.89), as well as between dew point observations (R2 = 0.77). Performance is relatively uniform across climate zones. The extension of mean climate-wise percent errors to the entire remote sensing dataset allows for the determination of MODIS air temperature and dew point uncertainties on a global scale.

  5. A buffer material optimal design in the radioactive wastes geological disposal using the satisficing trade-off method and the self-organizing map

    International Nuclear Information System (INIS)

    Okamoto, Takashi; Hanaoka, Yuya; Aiyoshi, Eitaro; Kobayashi, Yoko

    2012-01-01

    In this paper, we consider a multi-objective optimization method in order to obtain a preferred solution for the buffer material optimal design problem in the high-level radioactive wastes geological disposal. The buffer material optimal design problem is formulated as a constrained multi-objective optimization problem. Its Pareto optimal solutions are distributed evenly on whole bounds of the feasible region. Hence, we develop a search method to find a preferred solution easily for a decision maker from the Pareto optimal solutions which are distributed evenly and vastly. In the preferred solution search method, the visualization technique of a Pareto optimal solution set using the self-organizing map is introduced into the satisficing trade-off method which is the interactive method to obtain a Pareto optimal solution that satisfies a decision maker. We confirm the effectiveness of the preferred solution search method in the buffer material optimal design problem. (author)

  6. PM2.5 chemical source profiles for vehicle exhaust, vegetative burning, geological material, and coal burning in Northwestern Colorado during 1995

    International Nuclear Information System (INIS)

    Watson, J.G.; Chow, J.C.; Houck, J.E.

    2001-01-01

    PM 2.5 (particles with aerodynamic diameters less than 2.5 μm) chemical source profiles applicable to speciated emissions inventories and receptor model source apportionment are reported for geological material, motor vehicle exhaust, residential coal (RCC) and wood combustion (RWC), forest fires, geothermal hot springs; and coal-fired power generation units from northwestern Colorado during 1995. Fuels and combustion conditions are similar to those of other communities of the inland western US. Coal-fired power station profiles differed substantially between different units using similar coals, with the major difference being lack of selenium in emissions from the only unit that was equipped with a dry limestone sulfur dioxide (SO 2 ) scrubber. SO 2 abundances relative to fine particle mass emissions in power plant emissions were seven to nine times higher than hydrogen sulfide (H 2 S) abundances from geothermal springs, and one to two orders of magnitude higher than SO 2 abundances in RCC emissions, implying that the SO 2 abundance is an important marker for primary particle contributions of non-aged coal-fired power station contributions. The sum of organic and elemental carbon ranged from 1% to 10% of fine particle mass in coal-fired power plant emissions, from 5% to 10% in geological material, >50% in forest fire emissions, >60% in RWC emissions, and >95% in RCC and vehicle exhaust emissions. Water-soluble potassium (K + ) was most abundant in vegetative burning profiles. K + /K ratios ranged from 0.1 in geological material profiles to 0.9 in vegetative burning emissions, confirming previous observations that soluble potassium is a good marker for vegetative burning. (Author)

  7. Safety Assessment Methodologies and Their Application in Development of Near Surface Waste Disposal Facilities--ASAM Project

    International Nuclear Information System (INIS)

    Batandjieva, B.; Metcalf, P.

    2003-01-01

    Safety of near surface disposal facilities is a primary focus and objective of stakeholders involved in radioactive waste management of low and intermediate level waste and safety assessment is an important tool contributing to the evaluation and demonstration of the overall safety of these facilities. It plays significant role in different stages of development of these facilities (site characterization, design, operation, closure) and especially for those facilities for which safety assessment has not been performed or safety has not been demonstrated yet and the future has not been decided. Safety assessments also create the basis for the safety arguments presented to nuclear regulators, public and other interested parties in respect of the safety of existing facilities, the measures to upgrade existing facilities and development of new facilities. The International Atomic Energy Agency (IAEA) has initiated a number of research coordinated projects in the field of development and improvement of approaches to safety assessment and methodologies for safety assessment of near surface disposal facilities, such as NSARS (Near Surface Radioactive Waste Disposal Safety Assessment Reliability Study) and ISAM (Improvement of Safety Assessment Methodologies for Near Surface Disposal Facilities) projects. These projects were very successful and showed that there is a need to promote the consistent application of the safety assessment methodologies and to explore approaches to regulatory review of safety assessments and safety cases in order to make safety related decisions. These objectives have been the basis of the IAEA follow up coordinated research project--ASAM (Application of Safety Assessment Methodologies for Near Surface Disposal Facilities), which will commence in November 2002 and continue for a period of three years

  8. Survey of naturally occurring hazardous materials in deep geologic formations: a perspective on the relative hazard of deep burial of nuclear wastes

    International Nuclear Information System (INIS)

    Tonnessen, K.A.; Cohen, J.J.

    1977-01-01

    Hazards associated with deep burial of solidified nuclear waste are considered with reference to toxic elements in naturally occurring ore deposits. This problem is put into perspective by relating the hazard of a radioactive waste repository to that of naturally occurring geologic formations. The basis for comparison derives from a consideration of safe drinking water levels. Calculations for relative toxicity of FBR waste and light water reactor (LWR) waste in an underground repository are compared with the relative toxicity indices obtained for average concentration ore deposits. Results indicate that, over time, nuclear waste toxicity decreases to levels below those of naturally occurring hazardous materials

  9. Efficiency of the scattered primary radiation as an internal standard in the determination of uranium and thorium in geological materials by X-ray spectrometry

    International Nuclear Information System (INIS)

    Diaz-Guerra, J.P.; Bayon, A.

    1980-01-01

    The efficiency of the scattered primary coherent and incoherent X-radiation of various wavelengths has been studied as a matrix correction in the determination of uranium and thorium in geological materials by X-ray spectrometry. The excitation has been performed with molybdenum and tungsten targets. Results illustrate that the incoherently-scattered Mok βsub(1,3) and Mok βsub(1,2) radiation are, respectively, the optimum reference lines. The particle size influence and the critical thickness of the sample are also considered.(auth.)

  10. Safety Problems of Disposal of Disused Sealed Sources in the Baldone Near Surface Repository

    International Nuclear Information System (INIS)

    Dreimanis, A.

    2003-01-01

    Current Latvian regulations encourage re-export of DSS, however, up to now in the repository has been disposed a lot of DSS. Baldone repository has received RW (mainly DSS) from ∼ 300 Latvia objects and from Kaliningrad region (from 1964 to 1973). DSS cause the major part of activity of the repository - from the total activity in facility ∼ 400 TBq more than 300 TBq is due to DSS. A long term Safety Assessment (SA) of the Baldone Radon-type near surface disposal facility has been performed by the consortium CASSIOPEE and recommendations are given. The waste disposal system consists of: vaults 1-6 (closed, as permanent disposal site), vault 7 (as a long-term retrievable storage site); 2 main components of the engineered barriers: the capping system and the vaults. Vaults 1 and 3-6 (of re-fabricated concrete elements, closed with reinforced concrete slabs, covered with hydro isolating layer completed by a sand/ soil layer). The vault No.7 (ten 130 m 3 underground concrete walled storage cells, protected from the weather by the building. These 10 underground storage cells are adjacent (2x5) with additional concrete walls in some of them. The cells are covered by 40 cm concrete slabs placed side to side. The assessment context and development of scenarios are presented in the paper. The results from the SA are presented. For the waste pathway scenarios - the resulting doses - ∼ 4 mSv/y at 30 y in the current status without cover, justify the implantation of a cover for the closure period of the repository. For air pathway scenarios - the basic dose target 1 mSv/y (for public) is not satisfied for all scenarios; the resulting effective dose for the on-site 'Western' residential scenario for the vaults with highest content of DSS: vault 3 - 303 mSv/y; vault 7 - 204 mSv/y. The main recommendations from the SA are: General Advice - to dispose sources with half-lives < 5,3 y; for the spent sources - to build a new long-term storage; 2. To move DSS from Vault 7 to the

  11. Exploring the link between multiscale entropy and fractal scaling behavior in near-surface wind.

    Directory of Open Access Journals (Sweden)

    Miguel Nogueira

    Full Text Available The equivalency between the power law behavior of Multiscale Entropy (MSE and of power spectra opens a promising path for interpretation of complex time-series, which is explored here for the first time for atmospheric fields. Additionally, the present manuscript represents a new independent empirical validation of such relationship, the first one for the atmosphere. The MSE-fractal relationship is verified for synthetic fractal time-series covering the full range of exponents typically observed in the atmosphere. It is also verified for near-surface wind observations from anemometers and CFSR re-analysis product. The results show a ubiquitous β ≈ 5/3 behavior inside the inertial range. A scaling break emerges at scales around a few seconds, with a tendency towards 1/f noise. The presence, extension and fractal exponent of this intermediate range are dependent on the particular surface forcing and atmospheric conditions. MSE shows an identical picture which is consistent with the turbulent energy cascade model: viscous dissipation at the small-scale end of the inertial range works as an information sink, while at the larger (energy-containing scales the multiple forcings in the boundary layer act as widespread information sources. Another scaling transition occurs at scales around 1-10 days, with an abrupt flattening of the spectrum. MSE shows that this transition corresponds to a maximum of the new information introduced, occurring at the time-scales of the synoptic features that dominate weather patterns. At larger scales, a scaling regime with flatter slopes emerges extending to scales larger than 1 year. MSE analysis shows that the amount of new information created decreases with increasing scale in this low-frequency regime. Additionally, in this region the energy injection is concentrated in two large energy peaks: daily and yearly time-scales. The results demonstrate that the superposition of these periodic signals does not destroy the

  12. Exploring the link between multiscale entropy and fractal scaling behavior in near-surface wind.

    Science.gov (United States)

    Nogueira, Miguel

    2017-01-01

    The equivalency between the power law behavior of Multiscale Entropy (MSE) and of power spectra opens a promising path for interpretation of complex time-series, which is explored here for the first time for atmospheric fields. Additionally, the present manuscript represents a new independent empirical validation of such relationship, the first one for the atmosphere. The MSE-fractal relationship is verified for synthetic fractal time-series covering the full range of exponents typically observed in the atmosphere. It is also verified for near-surface wind observations from anemometers and CFSR re-analysis product. The results show a ubiquitous β ≈ 5/3 behavior inside the inertial range. A scaling break emerges at scales around a few seconds, with a tendency towards 1/f noise. The presence, extension and fractal exponent of this intermediate range are dependent on the particular surface forcing and atmospheric conditions. MSE shows an identical picture which is consistent with the turbulent energy cascade model: viscous dissipation at the small-scale end of the inertial range works as an information sink, while at the larger (energy-containing) scales the multiple forcings in the boundary layer act as widespread information sources. Another scaling transition occurs at scales around 1-10 days, with an abrupt flattening of the spectrum. MSE shows that this transition corresponds to a maximum of the new information introduced, occurring at the time-scales of the synoptic features that dominate weather patterns. At larger scales, a scaling regime with flatter slopes emerges extending to scales larger than 1 year. MSE analysis shows that the amount of new information created decreases with increasing scale in this low-frequency regime. Additionally, in this region the energy injection is concentrated in two large energy peaks: daily and yearly time-scales. The results demonstrate that the superposition of these periodic signals does not destroy the underlying

  13. Surface and near surface defect detection in thick copper EB-welds using eddy current testing

    International Nuclear Information System (INIS)

    Pitkaenen, J.; Lipponen, A.

    2010-01-01

    The surface inspection of thick copper electron beam (EB) welds plays an important role in the acceptance of nuclear fuel disposal. The main reasons to inspect these components are related to potential manufacturing and handling defects. In this work the data acquisition software, visualising tools for eddy current (EC) measurements and eddy current sensors were developed for detection of unwanted defects. The eddy current equipment was manufactured by IZFP and the visualising software in active co-operation with Posiva and IZFP for the inspections. The inspection procedure was produced during the development of the inspection techniques. The inspection method development aims to qualify the method for surface and near surface defect detection and sizing according to ENIQ. The study includes technical justification to be carried out, and compilation of a defect catalogue and experience from measurements within the Posiva's research on issues related to manufacturing. The depth of penetration in copper components in eddy current testing is rather small. To detect surface breaking defects the eddy current inspection is a good solution. A simple approach was adopted using two techniques: higher frequency was used to detect surface defects and to determine the dimensions of the defects except depth, lower frequency was used to detect defects having a ligament and for sizing of deeper surface breaking defects. The higher frequency was 30 kHz and the lower frequency was 200 Hz. The higher frequency probes were absolute bobbing coils and lower frequency probes combined transmitter - several receiver coils. To evaluate both methods, calibration blocks were manufactured by FNS for weld inspections. These calibration specimens mainly consisted of electron discharge machined notches and holes of varying shapes, lengths and diameters in the range of 1 mm to 20 mm of depth. Also one copper lid specimen with 152 defects was manufactured and used for evaluation of weld inspection

  14. Changes in terrestrial near-surface wind speed and their possible causes: an overview

    Science.gov (United States)

    Wu, Jian; Zha, Jinlin; Zhao, Deming; Yang, Qidong

    2017-11-01

    Changes in terrestrial near-surface wind speed (SWS) are induced by a combination of anthropogenic activities and natural climate changes. Thus, the study of the long-term changes of SWS and their causes is very important for recognizing the effects of these processes. Although the slowdown in SWS has been analyzed in previous studies, to the best of knowledge, no overall comparison or detailed examination of this research has been performed. Similarly, the causes of the decreases in SWS and the best directions of future research have not been discussed in depth. Therefore, we analyzed a series of studies reporting SWS trends spanning the last 30 years from around the world. The changes in SWS differ among different regions. The most significant decreases have occurred in Central Asia and North America, with mean linear trends of - 0.11 m s-1 decade-1; the second most significant decreases have occurred in Europe, East Asia, and South Asia, with mean linear trends of - 0.08 m s-1 decade-1; and the weakest decrease has occurred in Australia. Although the SWS in Africa has decreased, this region lacks long-term observational data. Therefore, the uncertainties in the long-term SWS trend are higher in this region than in other regions. The changes in SWS, caused by a mixture of global-, regional-, and local-scale factors, are mainly due to changes in driving forces and drag forces. The changes in the driving forces are caused by changes in atmospheric circulation, and the changes in the drag forces are caused by changes in the external and internal friction in the atmosphere. Changes in surface friction are mainly caused by changes in the surface roughness due to land use and cover change (LUCC), including urbanization, and changes in internal friction are mainly induced by changes in the boundary layer characteristics. Future studies should compare the spatio-temporal differences in SWS between high and low altitudes and quantify the effects of different factors on

  15. Near-surface structural examination of human tooth enamel subject to in vitro demineralization and remineralization

    Science.gov (United States)

    Gaines, Carmen Veronica

    The early stages of chemical tooth decay are governed by dynamic processes of demineralization and remineralization of dental enamel that initiates along the surface of the tooth. Conventional diagnostic techniques lack the spatial resolution required to analyze near-surface structural changes in enamel at the submicron level. In this study, slabs of highly-polished, decay-free human enamel were subjected to 0.12M EDTA and buffered lactic acid demineralizing agents and MI Paste(TM) and calcifying (0.1 ppm F) remineralizing treatments in vitro. Grazing incidence x-ray diffraction (GIXD), a technique typically used for thin film analysis, provided depth profiles of crystallinity changes in surface enamel with a resolution better than 100 nm. In conjunction with nanoindentation, a technique gaining acceptance as a means of examining the mechanical properties of sound enamel, these results were corroborated with well-established microscopy and Raman techniques to assess the nanohardness, morphologies and chemical nature of treated enamel. Interestingly, the average crystallite size of surface enamel along its c-axis dimension increased by nearly 40% after a 60 min EDTA treatment as detected by GIXD. This result was in direct contrast to the obvious surface degradation observed by microscopic and confocal Raman imaging. A decrease in nanohardness from 4.86 +/- 0.44 GPa to 0.28 +/- 0.10 GPa was observed. Collective results suggest that mineral dissolution characteristics evident on the micron scale may not be fully translated to the nanoscale in assessing the integrity of chemically-modified tooth enamel. While an intuitive decrease in enamel crystallinity was observed with buffered lactic acid-treated samples, demineralization was too slow to adequately quantify the enamel property changes seen. MI Paste(TM) treatment of EDTA-demineralized enamel showed preferential growth along the a-axis direction. Calcifying solution treatments of both demineralized sample types

  16. Near Surface Geophysical Methods Applied to the Rising Star Cave System

    Science.gov (United States)

    Webb, S. J.; Naidoo, M.; Elliott, M. C.; Kruger, A.; Roberts, E.; Dirks, P.

    2017-12-01

    The Rising Star Cave system is located approximately 40 km northwest of Johannesburg in the Malmani dolomites (Chuniespoort group,Transvaal Supergroup). The cave system is extensive with 4 km of mapped passages and chambers. The Dinaledi chamber, host to the Homo Naledi fossils, is reached by following a tortuous route with squeezes as small as 20 cm. The chamber is located 30 m below surface and 80 m from the entrance. The enigmatic find of fossils from at least 15 individual hominins, without the presence of other species, led to the idea of deliberate burial. The present access route is difficult and it is unclear how early hominins were able to navigate it, prompting the suggestion of an undiscovered entrance. We are using near surface geophysical methods to investigate possible connections between the surface and the caves. Using a Geometrics Cs-vapor Walkmag, we collected preliminary ground magnetic intensity measurements over a region 300 m x 200 m, using 1 m station spacing and 10 m line spacing. The average magnetic variation along line is 200 nT. We also collected over 100 susceptibility measurements on outcropping lithologies, surface soil and cave sediments using a SM-30 susceptibility meter. The surface soil was one to two orders of magnitude higher than surrounding lithologies (average = 1.5 x 10-3 SI) and the cave sediment samples were slightly higher (average = 3.07 x 10-3 SI). We were able to collect GPR data (GSSI SIR-3000, 400 MHz) in selected spots on the cave floor with the goal of locating the cave floor beneath the sediments. Dolomites usually have low magnetic susceptibilities, but erosion products of the nearby magnetic Hospital Hill or Rooihoogte shales may have been transported into or onto the cave system. This is a likely cause of the magnetic anomalies and larger amplitude anomalies may indicate an accumulation of sediments, extending to depth. These anomalies will be further investigated using gravity to determine if there are

  17. A hydrochemical and isotopic case study around a near surface radioactive waste disposal

    International Nuclear Information System (INIS)

    Szanto, Zs.; Svingor, E.; Futo, I.; Palcsu, L.; Molnar, M.; Rinyu, L.

    2007-01-01

    As part of the site characterisation program for the near surface radioactive waste treatment and disposal facility (RWTDF) at Puespoekszilagy, Hungary, water quality and environmental isotope investigations have been carried out. Water samples for major ion chemistry, tritium, 14 C and stable isotope ratio measurements (δ 18 O, δD, δ 34 S, δ 13 C) were taken quarterly from the observation wells, the streams and the precipitation during the period 1999-2001. The chemical composition of groundwaters presented a continuous transition from waters situated on one side to waters on the top and on the other slope of the disposal suggesting the mixing of the three hydrochemical ''endmembers''. Most of δD and δ 18 O data were situated between GMWL and LMWL (δD = 7.2 x δ 18 O - 1 permille) with Oligocene aquifer presenting recharge of Pleistocene origin and water on the top and the gentle slope of the hill presenting recharge of Holocene origin. δ 34 S values of dissolved sulphates varied in a wide range (-14.2 permille to +5.4 permille). The tritium in precipitation varied between 4.4 and 18.1 TU with an annual weighted average of 10 ± 0.3 TU. The streams showed larger fluctuations than the wells, but the changes of δ 18 O, δD and T were small compared to those in precipitation (showing seasonal variation). Stable isotope, tritium and radiocarbon data proved that the replenishment of groundwater is slow on the steeper side and the direction of water movement is toward the gentle slope of the hill. It was judged that this path is the one that is most likely to give rise to high doses and, therefore, was used in the hydrological modelling of the safety assessment that followed the present work. The possibility that there may also be transport through the unsaturated zone and systems of perched water tables in layers 1 and 2 to both the Szilagyi and Nemedi streams cannot be excluded; the transport along these pathways is likely to be intermittent. (orig.)

  18. Eddy current spectroscopy for near-surface residual stress profiling in surface treated nonmagnetic engine alloys

    Science.gov (United States)

    Abu-Nabah, Bassam A.

    Recent research results indicated that eddy current conductivity measurements can be exploited for nondestructive evaluation of near-surface residual stresses in surface-treated nickel-base superalloy components. Most of the previous experimental studies were conducted on highly peened (Almen 10-16A) specimens that exhibit harmful cold work in excess of 30% plastic strain. Such high level of cold work causes thermo-mechanical relaxation at relatively modest operational temperatures; therefore the obtained results were not directly relevant to engine manufacturers and end users. The main reason for choosing peening intensities in excess of recommended normal levels was that in low-conductivity engine alloys the eddy current penetration depth could not be forced below 0.2 mm without expanding the measurements above 10 MHz which is beyond the operational range of most commercial eddy current instruments. As for shot-peened components, it was initially felt that the residual stress effect was more difficult to separate from cold work, texture, and inhomogeneity effects in titanium alloys than in nickel-base superalloys. In addition, titanium alloys have almost 50% lower electric conductivity than nickel-base superalloys; therefore require proportionally higher inspection frequencies, which was not feasible until our recent breakthrough in instrument development. Our work has been focused on six main aspects of this continuing research, namely, (i) the development of an iterative inversion technique to better retrieve the depth-dependent conductivity profile from the measured frequency-dependent apparent eddy current conductivity (AECC), (ii) the extension of the frequency range up to 80 MHz to better capture the peak compressive residual stress in nickel-base superalloys using a new eddy current conductivity measuring system, which offers better reproducibility, accuracy and measurement speed than the previously used conventional systems, (iii) the lift-off effect on

  19. Radionuclide transport modelling for a buried near surface low level radioactive waste

    International Nuclear Information System (INIS)

    Terzi, R.

    2004-01-01

    The disposal of radioactive waste, which is the last step of any radioactive waste management policy, has not yet been developed in Turkey. The existing legislation states only the discharge limits for the radioactive wastes to be discharged to the environment. The objective of this modelling study is to assist in safety assessment and selecting disposal site for gradually increasing non-nuclear radioactive wastes. This mathematical model has been developed for the environmental radiological assessment of near surface disposal sites for the low and intermediate level radioactive wastes. The model comprised of three main components: source term, geosphere transport and radiological assessment. Radiation dose for the babies (1 years age) and adults (≥17 years age) have been computed for the radionuclides Cesium 137 (Cs-137) and Strontium 90 (Sr-90), having the activity of 1.10 12 Becquerel(Bq), in radioactive waste through transport of radionuclide in liquid phase with the various pathways. The model consisted of first order ordinary differential equations was coded as a TCODE file in MATLAB program. The radiation dose to man for the realist case and low probability case have been calculated by using Runge-Kutta solution method in MATLAB programme for radionuclide transport from repository to soil layer and then to the ground water(saturated zone) through drinking water directly and consuming agricultural and animal products pathways in one year period. Also, the fatal cancer risk assessment has been made by taking into account the annual dose received by people. Various dose values for both radionuclides have been found which depended on distribution coefficient, retardation factor and dose conversion factors. The most important critical parameters on radiological safety assessment are the distribution coefficient in soil layer, seepage velocity in unsaturated zone and thickness of the unsaturated zone (soil zone). The highest radiation dose and average dose to

  20. The fire assay preconcentration of the platinum group elements for the neutron activation analysis of geological material

    International Nuclear Information System (INIS)

    Parry, S.J.

    1994-01-01

    This paper describes the work that has been carried out using neutron activation analysis (NAA) to develop a rapid and reliable method for the determination of the platinum group elements (PGE: Pt, Pd, Ir, Ru, Rh, and Os) and Au in geological, environmental and industrial samples. The method is based on the now established method of preconcentration with fire assay, followed by NAA of the separated PGE and Au. Recent developments have seen improvements in the technique to eliminate losses due to dissolution procedures, and complete recovery of the elements prior to analysis. The method is now being used to validate inductively coupled plasma-mass spectroscopy methods for analysis of the PGE

  1. Numerical modelling of surface hydrology and near-surface hydrogeology at Forsmark. Site descriptive modelling SDM. Site Forsmark

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma (Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden)); Gustafsson, Lars-Goeran; Sassner, Mona (DHI Sverige AB, Stockholm (Sweden))

    2008-09-15

    SKB is currently performing site investigations at two potential sites for a final repository for spent nuclear fuel. This report presents results of water flow and solute transport modelling of the Forsmark site. The modelling reported in this document focused on the near-surface groundwater, i.e. groundwater in Quaternary deposits and shallow rock, and surface water systems, and was performed using the MIKE SHE tool. The most recent site data used in the modelling were delivered in the Forsmark 2.3 dataset, which had its 'data freeze' on March 31, 2007. The present modelling is performed in support of the final version of the Forsmark site description that is produced during the site investigation phase. In this work, the hydrological modelling system MIKE SHE has been used to describe near-surface groundwater flow and the contact between groundwater and surface water at the Forsmark site. The surface water system at Forsmark is described with the one-dimensional 'channel flow' modelling tool MIKE 11, which is fully and dynamically integrated with MIKE SHE. The MIKE SHE model was updated with data from the F2.3 data freeze. The main updates concerned the geological description of the saturated zone and the time series data on water levels and surface water discharges. The time series data used as input data and for calibration and validation was extended until the Forsmark 2.3 data freeze (March 31, 2007). The present work can be subdivided into the following four parts: 1. Update of the numerical flow model. 2. Sensitivity analysis and calibration of the model parameters. 3. Validation of the calibrated model, followed by evaluation and identification of discrepancies between measurements and model results. 4. Additional sensitivity analysis and calibration in order to resolve the problems identified in point three above. The main actions taken during the calibration can be summarised as follows: 1. The potential evapotranspiration was

  2. Near-surface stratigraphy and morphology, Mississippi Inner Shelf, northern Gulf of Mexico

    Science.gov (United States)

    Flocks, James G.; Kindinger, Jack; Kelso, Kyle W.; Bernier, Julie C.; DeWitt, Nancy T.; FitzHarris, Michael

    2015-01-01

    Over the past decade, the Mississippi Barrier Islands have been the focus of a comprehensive geologic investigation by the U.S. Geological Survey (USGS), in collaboration with the U.S. Army Corps of Engineers (USACE) and the National Park Service (NPS). The islands (Dauphin, Petite Bois, Horn, East Ship, West Ship, and Cat) are part of the Gulf Islands National Seashore (GUIS), and provide a diverse ecological habitat, protect the mainland from storm waves, and help maintain estuarine conditions within Mississippi Sound. Over the past century, the islands have been in a state of decline with respect to elevation and land-area loss. In 2005, the islands were severely impacted by Hurricane Katrina, which inundated them with a storm surge of 8 meters, causing severe shoreface erosion and widening breaches in Dauphin, West Ship, and Cat Islands. To evaluate the impact and fate of the islands, understanding their evolution and resiliency became a priority for the USGS under the Northern Gulf of Mexico Ecosystem Change and Hazard Susceptibility Project. The project formed the basis for collaboration with the USACE Mississippi Coastal Improvement Project, which is intended to restore portions of coastal Mississippi and GUIS affected by storm impact. Since then, many studies have contributed to our understanding of the islands’ morphology and nearshore stratigraphy. This report expands upon the nearshore component to provide a stratigraphic and morphologic assessment offshore of Petit Bois Island.

  3. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    International Nuclear Information System (INIS)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran

    2007-11-01

    This report describes modelling where the hydrological modelling system MIKE SHE has been used to describe surface hydrology, near-surface hydrogeology, advective transport mechanisms, and the contact between groundwater and surface water within the SKB site investigation area at Laxemar. In the MIKE SHE system, surface water flow is described with the one-dimensional modelling tool MIKE 11, which is fully and dynamically integrated with the groundwater flow module in MIKE SHE. In early 2008, a supplementary data set will be available and a process of updating, rebuilding and calibrating the MIKE SHE model based on this data set will start. Before the calibration on the new data begins, it is important to gather as much knowledge as possible on calibration methods, and to identify critical calibration parameters and areas within the model that require special attention. In this project, the MIKE SHE model has been further developed. The model area has been extended, and the present model also includes an updated bedrock model and a more detailed description of the surface stream network. The numerical model has been updated and optimized, especially regarding the modelling of evapotranspiration and the unsaturated zone, and the coupling between the surface stream network in MIKE 11 and the overland flow in MIKE SHE. An initial calibration has been made and a base case has been defined and evaluated. In connection with the calibration, the most important changes made in the model were the following: The evapotranspiration was reduced. The infiltration capacity was reduced. The hydraulic conductivities of the Quaternary deposits in the water-saturated part of the subsurface were reduced. Data from one surface water level monitoring station, four surface water discharge monitoring stations and 43 groundwater level monitoring stations (SSM series boreholes) have been used to evaluate and calibrate the model. The base case simulations showed a reasonable agreement

  4. Sensitivity analysis and development of calibration methodology for near-surface hydrogeology model of Laxemar

    Energy Technology Data Exchange (ETDEWEB)

    Aneljung, Maria; Sassner, Mona; Gustafsson, Lars-Goeran (DHI Sverige AB, Lilla Bommen 1, SE-411 04 Goeteborg (Sweden))

    2007-11-15

    This report describes modelling where the hydrological modelling system MIKE SHE has been used to describe surface hydrology, near-surface hydrogeology, advective transport mechanisms, and the contact between groundwater and surface water within the SKB site investigation area at Laxemar. In the MIKE SHE system, surface water flow is described with the one-dimensional modelling tool MIKE 11, which is fully and dynamically integrated with the groundwater flow module in MIKE SHE. In early 2008, a supplementary data set will be available and a process of updating, rebuilding and calibrating the MIKE SHE model based on this data set will start. Before the calibration on the new data begins, it is important to gather as much knowledge as possible on calibration methods, and to identify critical calibration parameters and areas within the model that require special attention. In this project, the MIKE SHE model has been further developed. The model area has been extended, and the present model also includes an updated bedrock model and a more detailed description of the surface stream network. The numerical model has been updated and optimized, especially regarding the modelling of evapotranspiration and the unsaturated zone, and the coupling between the surface stream network in MIKE 11 and the overland flow in MIKE SHE. An initial calibration has been made and a base case has been defined and evaluated. In connection with the calibration, the most important changes made in the model were the following: The evapotranspiration was reduced. The infiltration capacity was reduced. The hydraulic conductivities of the Quaternary deposits in the water-saturated part of the subsurface were reduced. Data from one surface water level monitoring station, four surface water discharge monitoring stations and 43 groundwater level monitoring stations (SSM series boreholes) have been used to evaluate and calibrate the model. The base case simulations showed a reasonable agreement

  5. Effect of the structure and mechanical properties of the near-surface layer of lithium niobate single crystals on the manufacture of integrated optic circuits

    Science.gov (United States)

    Sosunov, A. V.; Ponomarev, R. S.; Yur'ev, V. A.; Volyntsev, A. B.

    2017-01-01

    This paper shows that the near-surface layer of a lithium niobate single layer 15 μm in depth is essentially different from the rest of the volume of the material from the standpoint of composition, structure, and mechanical properties. The pointed out differences are due to the effect of cutting, polishing, and smoothing of the lithium niobate plates, which increase the density of point defects and dislocations. The increasing density of the structural defects leads to uncontrollable changes in the conditions of the formations of waveguides and the drifting of characteristics of integrated optical circuits. The results obtained are very important for the manufacture of lithium niobate based integrated optical circuits.

  6. Quantitative aspects of highly emanating geologic materials and their role in creating high indoor radon. Final report, April 1, 1994--March 31, 1996

    International Nuclear Information System (INIS)

    Gundersen, L.C.S.; Schumann, R.R.; Gates, A.E.; Price, P.

    1996-01-01

    Indoor radon hot spots, areas where indoor radon commonly exceeds 20 pCi/L, are often caused by unusually highly emanating soils or rock and their interaction with ambient climatic conditions and a building's architecture. Highly emanating soils and rocks include glacial deposits; dry fractured clays; black shales; limestone-derived soils; karst and cave areas, fractured or sheared granitic crystalline rocks; mine tailings; uraniferous backfill; and most uranium deposits. The above list probably accounts for 90% of the Nation's indoor radon over 20 pCi/L. In several of these high indoor radon areas, there appears to be a link between the nature of the radon source in the ground, the architecture of the home, and the relative magnitude and ease of mitigation of the indoor air problem. Quantification of geologic materials in terms of their radon potential with respect to climatic and architectural considerations has never been accomplished. Recent studies have attempted semi-quantitative rankings but rigorous analysis has not been done. In this investigation the authors have attempted to develop the quantitative aspects of geologic materials for prediction of very high indoor radon at several scales of observation from national to census tract

  7. Groundwater monitoring and modelling of the “Vector” site for near-surface radioactive waste disposal in the Chornobyl exclusion zone

    Directory of Open Access Journals (Sweden)

    D. Bugai

    2017-12-01

    Full Text Available Results of purposeful groundwater monitoring and modelling studies are presented, which were carried out in order to better understand groundwater flow patterns from the “Vector” site for near-surface radioactive waste disposal and storage in the Chornobyl exclusion zone towards river network. Both data of observations at local-scale monitoring well network at “Vector” site carried out in 2015 - 2016 and modelling analyses using the regional groundwater flow model of Chornobyl exclusion zone suggest that the groundwater discharge contour for water originating from “Vector” site is Sakhan River, which is the tributary to Pripyat River. The respective groundwater travel time is estimated at 210 - 340 years. The travel times in subsurface for 90Sr, 137Cs, and transuranium radionuclides (Pu isotopes, 241Am are estimated respectively at thousands, tenths of thousands, hundreds of thousands – million of years. These results, as well as presented data of analyses of lithological properties of the geological deposits of the unsaturated zone at “Vector” site, provide evidence for good protection of surface water resources from radioactivity sources (e.g., radioactive wastes to be disposed in the near-sursface facilities at “Vector” site.

  8. Application of the Instrumental Neutron Activation Analysis and High Performance Liquid Chromatography (HPLC) in the rare earth elements determination in reference geological materials

    International Nuclear Information System (INIS)

    Figueiredo, Ana M.G.; Moraes, Noemia M.P. de; Shihomatsu, Helena M.

    1997-01-01

    Instrumental Neutron Activation Analysis (INAA) and High Performance Liquid Chromatography (HPLC) were applied to the determination of rare earth elements (REE) in the geological reference materials AGV-1, G-2 and GSP-1 (USGS). Results obtained by both techniques showed good agreement with certified values, giving relative errors less than 10%. The La, Ce, Nd, Sm, Eu, Tb, Yb and Lu REE elements were determined. All the REE except Dy and Y were determined by HPLC. The reference material G94, employed in the International Proficiency Test for Analytical Geochemistry Laboratories (GeoTP1) was analysed. The results obtained are a contribution to REE contents in this sample. The INAA and HPLC application to the determination of REE in this kind of matrix is also discussed. (author). 10 refs., 1 fig., 5 tabs

  9. Geophysical imaging of near-surface structure using electromagnetic and seismic waves

    Science.gov (United States)

    Chen, Yongping

    This thesis includes three different studies of geophysical imaging: (1) inference of plume moments from tomograms with cross-hole radar; (2) simulated annealing inversion for near-surface shear-wave velocity structure with microtremor measurements; and (3) time-lapse GPR imaging of water movement in the vadose zone. Although these studies involve different geophysical approaches, they are linked by a common theme---using geophysical imaging to understand hydrologic phenomena or subsurface structure. My first study in this thesis is concerned with the identification of plume moments from geophysical tomograms. Previously geophysical imaging has been applied to characterize contaminant plume migration in groundwater, and to determine plume mass, extent, velocity, and shape. Although tomograms have been used for quantitative inference of plume moments, the reliability of these inferred moments is poorly understood. In general, tomograms represent blurry and blunted images of subsurface properties, as a consequence of limited data acquisition geometry, measurement error, and the effects of regularization. In this thesis, I investigated the effect of tomographic resolution on the inference of plume moments from tomograms. I presented a new approach to quantify the resolution of inferred moments, drawing on concepts from conventional geophysical image appraisal, and also image reconstruction from orthogonal moments. This new approach is demonstrated by synthetic examples in radar tomography. My results indicated that moments calculated from tomograms are subject to substantial error and bias. For example, for many practical survey geometries, crosshole radar tomography (1) is incapable of resolving the lateral center of mass, and (2) severely underpredicts total mass. The degree of bias and error varies spatially over the tomogram, in a complicated manner, as a result of spatially variable resolution. These findings have important implications for the quantitative use

  10. Uncertainty in Land Cover observations and its impact on near surface climate

    Science.gov (United States)

    Georgievski, Goran; Hagemann, Stefan

    2017-04-01

    , as well as plant productivity are also examined. The analysis of vegetation covered area indicates that the range of uncertainty might be about the same order of magnitude as the estimated historical anthropogenic LC change. For example, the area covered with managed grasses (crops and pasture in MPI-ESM PFT classification) varies from 17 to 26 million km2, and area covered with trees ranges from 15 million km2 up to 51 million km2. These uncertainties in vegetation distribution lead to noticeable variations in atmospheric temperature, humidity, cloud cover, circulation, and precipitation as well as local, regional and global climate forcing. For example, the amount of terrestrial ET ranges from 73 to 77 × 103 km3yr-1in MPI-ESM simulations and this range has about the same order of magnitude as the current estimate of the reduction of annual ET due to recent anthropogenic LC change. This and more impacts of LC uncertainty on the near surface climate will be presented and discussed in the context of LC change. Hartley, A.J., MacBean, N., Georgievski, G., Bontemps, S.: Uncertainty in plant functional type distributions and its impact on land surface models (in review with Remote Sensing of Environment Special Issue)

  11. Determination of indium in geological materials by electrothermal-atomization atomic absorption spectrometry with a tungsten-impregnated graphite furance

    Science.gov (United States)

    Zhou, L.; Chao, T.T.; Meier, A.L.

    1984-01-01

    The sample is fused with lithium metaborate and the melt is dissolved in 15% (v/v) hydrobromic acid. Iron(III) is reduced with ascorbic acid to avoid its coextraction with indium as the bromide into methyl isobutyl ketone. Impregnation of the graphite furnace with sodium tungstate, and the presence of lithium metaborate and ascorbic acid in the reaction medium improve the sensitivity and precision. The limits of determination are 0.025-16 mg kg-1 indium in the sample. For 22 geological reference samples containing more than 0.1 mg kg-1 indium, relative standard deviations ranged from 3.0 to 8.5% (average 5.7%). Recoveries of indium added to various samples ranged from 96.7 to 105.6% (average 100.2%). ?? 1984.

  12. Practical consideration in the selection of X-ray fluorescence tube targets for analysis of geological materials

    International Nuclear Information System (INIS)

    Attawiya, M.Y.; El-Behay, A.Z.; Khattab, F.M.

    1985-01-01

    Four X-ray fluorescence tubes with different targets (Cr, W, Mo and Rh) were compared for their suitability to analyze twelve of the most common major and trace elements in some geological samples. The major elements and Si, Al, Ca, K, Ti, and S. All elements having wavelengths higher than that of the iron K-absorption edge, gave significantly higher intensities of their characteristic fluorescence radiations when using a Cr-anode tube compared to W, Mo and Rh anode tubes. However, for the light elements (Si and Al) the Rh-anode tube of equal efficiency as the Cr-anode tube. The highest Ka-line intensity of Fe was obtained by the W-anode tube. The lowest detection limits (highest sensitivity) for the trace elements Rb, Sr, Zr, and Nb are obtained using both the Mo and Rh tubes. (author)

  13. Application and evaluation of the mass spectrometric isotope dilution technique in the determination of rare earths in geological materials

    International Nuclear Information System (INIS)

    Moraes, N.M.P. de.

    1988-01-01

    Establishment of the experimental procedures employed in the rare earth element determination of geological samples by mass spectrometric isotope dilution analysis is discussed in the present work. The procedures involve preparation and calibration of the isotope tracers isotope dilution, dissolution in a teflon pressure vessel, chemical separation and isotope analysis using a fully automated Micromass VG ISOTOPES model 354 thermal ionization mass spectrometer. For the initial chemical separation of total rare earths the cationic resin was employed and HC1 and HNO 3 acids as eluents. In the second step rare earths elements were separated into individual (La, Ce and Nd) and subgroups (Sm-Eu-Gd, Yb-Er-Dy) fractions using the same cationic resin and α-HIBA as eluent. Nine elements La, Ce, Nd, Sm, Eu, Gd, Dy, Er and Yb are determined by this method in the ''United States Geological Survey'' (USGS) standard samples GSP-1, AGV-1 and G-2, with an overall precision of +- 1 to 2% and an accuracy of 5%. The concentration of rare earth element determined in the standard sample PCC-1 showed that the total analytical blanks are in submicrogram levels. The concentration of rare earth elements in the same USGS standard samples were also determined by Instrumental neutron activation analysis, neutron activation analysis with chemical separation before irradiation and inductively coupled argon plasma spectroscopy. The chemical procedures employed for these methods are the same as that used for mass spectrometric isotope dilution. Based on the results obtained, each method was evaluated pointing out their merits and defects. The study clearly showed that the chemical procedure employed for all these techniques was satisfactory. (author) [pt

  14. Thermoluminescence studies in geology

    International Nuclear Information System (INIS)

    Sankaran, A.V.; Sunta, C.M.; Nambi, K.S.V.; Bapat, V.N.

    1980-01-01

    Even though the phenomenon of thermoluminescence is well studied, particularly over last 3 decades, its potentialities in the field of geology have not been adequately evaluated. In this report several useful applications of TL in mineralogy, petrogenesis, stratigraphy, tectonics, ore-prospecting and other branches have been identified with particular emphasis to the Indian scene. Important areas in the country that may provide the basic material for such studies are indicated at the end along with brief geological or mineralogical accounts. (auth.)

  15. Potential of near-surface geothermal heat - Experiences from the planning practice; Potential der oberflaechennahen Geothermie. Erfahrungen aus der Planungspraxis

    Energy Technology Data Exchange (ETDEWEB)

    Kuebert, Markus; Kuntz, David; Walker-Hertkorn, Simone [systherma GmbH, Planungsbuero fuer Erdwaermesysteme, Starzach-Felldorf (Germany)

    2010-07-01

    Near-surface geothermal applications as a heat source for ground source heat pump systems are an approved energy source in the area of residential buildings. Within the commercial range, the near-surface geothermal energy also can supply coldness in order to cool buildings. In the contribution under consideration, a flow chart of a geothermal project is presented by examining the feasibility up to the acceptance of work. With this approach it is possible to exhaust optimally the geothermal potential at a location including the trades and planners involved. In particular, the significance of the preliminary design for the entire later smooth course of the project is to be stated. Practical examples for possible operational areas of the geothermal energy and to their borders are described.

  16. Ground penetrating radar documents short-term near-surface hydrological changes around Old Faithful Geyser, Yellowstone National Park, USA

    Science.gov (United States)

    Lynne, Bridget Y.; Heasler, Henry; Jaworowski, Cheryl; Smith, Gary J.; Smith, Isaac J.; Foley, Duncan

    2018-04-01

    In April 2015, Ground Penetrating Radar (GPR) was used to characterize the shallow subsurface (images were collected between two eruptions of Old Faithful Geyser. Each set of time-sequence GPR recordings consisted of four transects aligned to provide coverage near the potential location of the inferred 15 m deep geyser chamber. However, the deepest penetration we could achieve with a 200 MHz GPR antennae was 5 m. Seven time-sequence events were collected over a 48-minute interval to image changes in the near-surface, during pre- and post-eruptive cycles. Time-sequence GPR images revealed a series of possible micro-fractures in a highly porous siliceous sinter in the near-surface that fill and drain repetitively, immediately after an eruption and during the recharge period prior to the next main eruptive event.

  17. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    Energy Technology Data Exchange (ETDEWEB)

    Khan, Salahuddin; Jayabalan, J., E-mail: jjaya@rrcat.gov.in; Chari, Rama; Pal, Suparna [Laser Physics Applications Section, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India); Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M. [Semiconductor Physics and Devices Lab., Solid State Laser Division, Raja Ramanna Centre for Advanced Technology, Indore 452013 (India)

    2014-08-18

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  18. Quantum beats from the coherent interaction of hole states with surface state in near-surface quantum well

    International Nuclear Information System (INIS)

    Khan, Salahuddin; Jayabalan, J.; Chari, Rama; Pal, Suparna; Porwal, Sanjay; Sharma, Tarun Kumar; Oak, S. M.

    2014-01-01

    We report tunneling assisted beating of carriers in a near-surface single GaAsP/AlGaAs quantum well using transient reflectivity measurement. The observed damped oscillating signal has a period of 120 ± 6 fs which corresponds to the energy difference between lh1 and hh2 hole states in the quantum well. Comparing the transient reflectivity signal at different photon energies and with a buried quantum well sample, we show that the beating is caused by the coherent coupling between surface state and the hole states (lh1 and hh2) in the near-surface quantum well. The dependence of decay of coherence of these tunneling carriers on the excitation fluence is also reported. This observation on the coherent tunneling of carrier is important for future quantum device applications.

  19. Search for an anomalous near-surface yield deficit in Rutherford backscattering spectra from implanted germanium and silicon

    International Nuclear Information System (INIS)

    Lawson, E.M.; Appleton, B.R.

    1983-09-01

    Rutherford backscattering and channelling analysis of high-dose, room-temperature, ion-implanted germanium has revealed an anomalous near-surface yield deficit. Implant dose and species dependencies and the effect of annealing have been examined. A marked loss of implanted impurity was also noted. The yield deficit is attributed to the absorption of oxygen and other light mass contaminants into a highly porous implanted layer upon exposure to air. Loss of implant species is attributed to enhanced sputtering effects

  20. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Science.gov (United States)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin

    2017-06-01

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  1. Molecular dynamics simulation of temperature effects on low energy near-surface cascades and surface damage in Cu

    Energy Technology Data Exchange (ETDEWEB)

    Zhu, Guo; Sun, Jiangping; Guo, Xiongxiong; Zou, Xixi; Zhang, Libin; Gan, Zhiyin, E-mail: ganzhiyin@126.com

    2017-06-15

    The temperature effects on near-surface cascades and surface damage in Cu(0 0 1) surface under 500 eV argon ion bombardment were studied using molecular dynamics (MD) method. In present MD model, substrate system was fully relaxed for 1 ns and a read-restart scheme was introduced to save total computation time. The temperature dependence of damage production was calculated. The evolution of near-surface cascades and spatial distribution of adatoms at varying temperature were analyzed and compared. It was found that near-surface vacancies increased with temperature, which was mainly due to the fact that more atoms initially located in top two layers became adatoms with the decrease of surface binding energy. Moreover, with the increase of temperature, displacement cascades altered from channeling-like structure to branching structure, and the length of collision sequence decreased gradually, because a larger portion of energy of primary knock-on atom (PKA) was scattered out of focused chain. Furthermore, increasing temperature reduced the anisotropy of distribution of adatoms, which can be ascribed to that regular registry of surface lattice atoms was changed with the increase of thermal vibration amplitude of surface atoms.

  2. U-tube based near-surface environmental monitoring in the Shenhua carbon dioxide capture and storage (CCS) project.

    Science.gov (United States)

    Li, Qi; Song, Ranran; Shi, Hui; Ma, Jianli; Liu, Xuehao; Li, Xiaochun

    2018-04-01

    The CO 2 injected into deep formations during implementation of carbon dioxide (CO 2 ) capture and storage (CCS) technology may leak and migrate into shallow aquifers or ground surfaces through a variety of pathways over a long period. The leaked CO 2 can threaten shallow environments as well as human health. Therefore, almost all monitoring programs for CCS projects around the world contain near-surface monitoring. This paper presents a U-tube based near-surface monitoring technology focusing on its first application in the Shenhua CCS demonstration project, located in the Ordos Basin, Inner Mongolia, China. First, background information on the site monitoring program of the Shenhua CCS demonstration project was provided. Then, the principle of fluid sampling and the monitoring methods were summarized for the U-tube sampler system, and the monitoring data were analyzed in detail. The U-tube based monitoring results showed that the U-tube sampler system is accurate, flexible, and representative of the subsurface fluid sampling process. The monitoring indicators for the subsurface water and soil gas at the Shenhua CCS site indicate good stratification characteristics. The concentration level of each monitoring indicator decreases with increasing depth. Finally, the significance of this near-surface environmental monitoring technology for CO 2 leakage assessments was preliminarily confirmed at the Shenhua CCS site. The application potential of the U-tube based monitoring technology was also demonstrated during the subsurface environmental monitoring of other CCS projects.

  3. Time-lapse changes in velocity and anisotropy in Japan's near surface after the 2011 Tohoku earthquake

    Science.gov (United States)

    Snieder, R.; Nakata, N.

    2012-12-01

    A strong-motion recording network, KiK-net, helps us to monitor temporal changes in the near surface in Japan. Each KiK-net station has two seismometers at the free surface and in a borehole a few hundred meters deep, and we can retrieve a traveling wave from the borehole receiver to the surface receiver by applying deconvolution based seismic interferometry. KiK-net recorded the 2011 Tohoku earthquake, which is one of the largest earthquakes in recent history, and seismicity around the time of the main shock. Using records of these seismicity and computing mean values of near-surface shear-wave velocities in the periods of January 1--March 10 and March 12--May 26 in 2011, we detect about a 5% reduction in the velocity after the Tohoku earthquake. The area of the velocity reduction is about 1,200 km wide, which is much wider than earlier studies reporting velocity reductions after larger earthquakes. The reduction partly recovers with time. We can also estimate the azimuthal anisotropy by detecting shear-wave splitting after applying seismic interferometry. Estimating mean values over the same periods as the velocity, we find the strength of anisotropy increased in most parts of northeastern Japan, but fast shear-wave polarization directions in the near surface did not significantly change. The changes in anisotropy and velocity are generally correlated, especially in the northeastern Honshu (the main island in Japan).

  4. 3D Dynamics of the Near-Surface Layer of the Ocean in the Presence of Freshwater Influx

    Science.gov (United States)

    Dean, C.; Soloviev, A.

    2015-12-01

    Freshwater inflow due to convective rains or river runoff produces lenses of freshened water in the near surface layer of the ocean. These lenses are localized in space and typically involve both salinity and temperature anomalies. Due to significant density anomalies, strong pressure gradients develop, which result in lateral spreading of freshwater lenses in a form resembling gravity currents. Gravity currents inherently involve three-dimensional dynamics. The gravity current head can include the Kelvin-Helmholtz billows with vertical density inversions. In this work, we have conducted a series of numerical experiments using computational fluid dynamics tools. These numerical simulations were designed to elucidate the relationship between vertical mixing and horizontal advection of salinity under various environmental conditions and potential impact on the pollution transport including oil spills. The near-surface data from the field experiments in the Gulf of Mexico during the SCOPE experiment were available for validation of numerical simulations. In particular, we observed a freshwater layer within a few-meter depth range and, in some cases, a density inversion at the edge of the freshwater lens, which is consistent with the results of numerical simulations. In conclusion, we discuss applicability of these results to the interpretation of Aquarius and SMOS sea surface salinity satellite measurements. The results of this study indicate that 3D dynamics of the near-surface layer of the ocean are essential in the presence of freshwater inflow.

  5. Modelling for Near-Surface Transport Dynamics of Hydrogen of Plasma Facing Materials by use of Cellular Automaton

    International Nuclear Information System (INIS)

    Shimura, K.; Terai, T.; Yamawaki, M.

    2003-01-01

    In this study, the kinetics of desorption of adsorbed hydrogen from an ideal metallic surface is modelled in Cellular Automaton (CA). The modelling is achieved by downgrading the surface to one dimension. The model consists of two parts that are surface migration and desorption. The former is attained by randomly sorting the particles at each time, the latter is realised by modelling the thermally-activated process. For the verification of this model, thermal desorption is simulated then the comparison with the chemical kinetics is carried out. Excellent agreement is observed from the result. The results show that this model is reasonable to express the recombinative desorption of two chemisorbed adatoms. Though, the application of this model is limited to the second-order reaction case. But it can be believed that the groundwork of modelling the transport dynamics of hydrogen through the surface under complex conditions is established

  6. Disposal of disused sealed sources and approach for safety assessment of near surface disposal facilities (national practice of Ukraine)

    International Nuclear Information System (INIS)

    Alekseeva, Z.; Letuchy, A.; Tkachenko, N.V.

    2003-01-01

    The main sources of wastes are 13 units of nuclear power plants under operation at 4 NPP sites (operational wastes and spent sealed sources), uranium-mining industry, area of Chernobyl exclusion zone contaminated as a result of ChNPP accident, and over 8000 small users of sources of ionising radiation in different fields of scientific, medical and industrial applications. The management of spent sources is carried out basing on the technology from the early sixties. In accordance with this scheme accepted sources are disposed of either in the near surface concrete vaults or in borehole facilities of typical design. Radioisotope devices and gamma units are placed into near surface vaults and sealed sources in capsules into borehole repositories respectively. Isotope content of radwaste in the repositories is multifarious including Co-60, Cs-137, Sr-90, Ir-192, Tl-204, Po-210, Ra-226, Pu-239, Am-241, H-3, Cf-252. A new programme for waste management has been adopted. It envisions the modifying of the 'Radon' facilities for long-term storage safety assessment and relocation of respective types of waste in 'Vector' repositories.Vector Complex will be built in the site which is located within the exclusion zone 10Km SW of the Chernobyl NPP. In Vector Complex two types of disposal facilities are designed to be in operation: 1) Near surface repositories for short lived LLRW and ILRW disposal in reinforced concrete containers. Repositories will be provided with multi layer waterproofing barriers - concrete slab on layer composed of mixture of sand and clay. Every layer of radwaste is supposed to be filled with 1cm clay layer following disposal; 2) Repositories for disposal of bulky radioactive waste without cans into concrete vaults. Approaches to safety assessment are discussed. Safety criteria for waste disposal in near surface repositories are established in Radiation Protection Standards (NRBU-97) and Addendum 'Radiation protection against sources of potential exposure

  7. Description of climate, surface hydrology, and near-surface hydrogeology. Preliminary site description. Forsmark area - version 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Per-Olof [Artesia Grundvattenkonsult AB, Stockholm (Sweden); Werner, Kent [SWECO VIAK AB/Golder Associates AB, Stockholm (Sweden); Bosson, Emma; Berglund, Sten [Swedish Nuclear Fuel and Waste Management Co., Stockholm (Sweden); Juston, John [DBE Sweden, Uppsala (Sweden)

    2005-06-15

    The Swedish Nuclear Fuel and Waste Management Company (SKB) is conducting site investigations at two different locations, the Forsmark and Simpevarp areas, with the objective of siting a geological repository for spent nuclear fuel. The results from the investigations at the sites are used as a basic input to the development of Site Descriptive Models (SDM). The SDM shall summarise the current state of knowledge of the site, and provide parameters and models to be used in further analyses within Safety Assessment, Repository Design and Environmental Impact Assessment. The present report is a background report describing the meteorological conditions and the modelling of surface hydrology and near-surface hydrogeology in support of the Forsmark version 1.2 SDM based on the data available in the Forsmark 1.2 'data freeze' (July 31, 2004). The groundwater is very shallow, with groundwater levels within one meter below ground as an annual mean for almost all groundwater monitoring wells. Also, the annual groundwater level amplitude is less than 1.5 m for most wells. The shallow groundwater levels mean that there is a strong interaction between evapotranspiration, soil moisture and groundwater. In the modelling, surface water and near-surface groundwater divides are assumed to coincide. The small-scale topography implies that many local, shallow groundwater flow systems are formed in the Quaternary deposits, overlaying more large-scale flow systems associated with groundwater flows at greater depths. Groundwater level time series from wells in till and bedrock within the same areas show a considerably higher groundwater level in the till than in the bedrock. The observed differences in levels are not fully consistent with the good hydraulic contact between overburden and bedrock indicated by the hydraulic tests in the Quaternary deposits. However, the relatively lower groundwater levels in the bedrock may be caused by the horizontal to sub-horizontal highly

  8. Review of Electrical and Gravity Methods of Near-Surface Exploration for Groundwater

    Directory of Open Access Journals (Sweden)

    W. O. Raji

    2014-12-01

    Full Text Available The theory and practice of electrical and gravity methods of geophysics for groundwater exploration was reviewed with illustrations and data examples. With the goal of reducing cases of borehole/water-well failure attributed to the lack of the knowledge of the methods of geophysics for groundwater exploration and development, the paper reviews the basic concepts, field procedures for data acquisition, data processing, and interpretation as applied to the subject matter. Given a case study of groundwater exploration in University of Ilorin Campus, the three important techniques of electrical method of groundwater exploration are explained and illustrated using field data obtained in a previous study. Interpretation of resistivity data shows that an area measuring low resistivity (high conductivity, having thick pile of unconsolidated rock, and underlained by fracture crystalline is a ‘bright spot’ for citing borehole for groundwater abstraction in a basement complex area. Further to this, gravity method of groundwater exploration was discussed with field data from Wokbedilo community in Ethopia. Bouguer and reduced gravity anomaly results were presented as maps and contours to demonstrate how gravity data can be inverted to map groundwater aquifers and subsurface geological structures during groundwater exploration.

  9. Near-surface hydrogeological model of Laxemar. Open repository - Laxemar 1.2

    Energy Technology Data Exchange (ETDEWEB)

    Bosson, Emma

    2006-07-15

    This report presents the methodology and the results from the modelling of an open final repository for spent nuclear fuel in Laxemar. Thus, the present work analyses the hydrological effects of the planned repository during the construction and operational phases when it is open, i.e. air-filled, and hence may cause a disturbance of the hydrological conditions in the surroundings. The numerical modelling is based on the conceptual and descriptive model presented in the version 1.2 Site Descriptive Model (SDM) for Laxemar. The modelling was divided into three steps. The first step was to update the L1.2 version model for hydrology and near surface hydrogeology, the main updates were related to the hydraulic properties of the bedrock and the size of the model area. The next step was to describe the conditions for the introductory construction by implementing the access tunnel and shafts to the model. The third step aimed at describing the consequences on the surface hydrology caused by an open repository. A sensitivity analysis that aimed to investigate the sensitivity of the model to the properties of the upper bedrock and the properties in the interface between the Quaternary deposits and the bedrock was performed as a part of steps two and three. The model covers an area of 19 km{sup 2}. In the Quaternary deposits, the surface water divides are assumed to coincide with the groundwater divides, thus a no-flow boundary condition is used at the horizontal boundaries. The transient top boundary condition uses meteorological data gathered at a local SKB station at Aespoe during 2004. The bottom boundary condition and the horizontal boundary condition in the bedrock is a steady state head boundary condition taken from the open repository modelling of the bedrock performed as a parallel activity with the modelling tool DarcyTools. The vertical extent of the model is from the ground surface to 150 m below sea level. Since the repository will be built at 450 m below sea

  10. Geologic Time.

    Science.gov (United States)

    Newman, William L.

    One of a series of general interest publications on science topics, the booklet provides those interested in geologic time with an introduction to the subject. Separate sections discuss the relative time scale, major divisions in geologic time, index fossils used as guides for telling the age of rocks, the atomic scale, and the age of the earth.…

  11. Stochastic and deterministic models to evaluate the critical distance of a near surface repository for the disposal of intermediate and low level radioactive wastes

    Energy Technology Data Exchange (ETDEWEB)

    Alves, A.S.M., E-mail: asergi@eletronuclear.gov.br [Eletrobrás Termonuclear – Eletronuclear S.A. , Rua da Candelária 65, 7° andar, GSN.T, 20091-906 Rio de Janeiro, RJ (Brazil); Melo, P.F. Frutuoso e, E-mail: frutuoso@nuclear.ufrj.br [Graduate Program of Nuclear Engineering, COPPE, Federal University of Rio de Janeiro, Av. Horácio Macedo 2030, Bloco G, sala 206, 21941-914 Rio de Janeiro, RJ (Brazil); Passos, E.M., E-mail: epassos@eletronuclear.gov.br [Eletrobrás Termonuclear – Eletronuclear S.A. , Rua da Candelária 65, 7° andar, GSN.T, 20091-906 Rio de Janeiro, RJ (Brazil); Fontes, G.S., E-mail: gsfontes@hotmail.com [Instituto Militar de Engenharia – IME, Praça General Tibúrcio 80, 22290-270 Rio de Janeiro, RJ (Brazil)

    2015-06-15

    Highlights: • The water infiltration scenario is evaluated for a near surface repository. • The main objective is the determination of the critical distance of the repository. • The column liquid height in the repository is governed by an Ito stochastic equation. • Practical results are obtained for the Abadia de Goiás repository in Brazil. - Abstract: The aim of this paper is to present the stochastic and deterministic models developed for the evaluation of the critical distance of a near surface repository for the disposal of intermediate (ILW) and low level (LLW) radioactive wastes. The critical distance of a repository is defined as the distance between the repository and a well in which the water activity concentration is able to cause a radiological dose to a member of the public equal to the dose limit set by the regulatory body. The mathematical models are developed based on the Richards equation for the liquid flow in the porous media and on the solute transport equation in this medium. The release of radioactive material from the repository to the environment is considered through its base and its flow is determined by Darcy's Law. The deterministic model is obtained from the stochastic approach by neglecting the influence of the Gaussian white noise on the rainfall and the equations are solved analytically with the help of conventional calculus (non-stochastic calculus). The equations of the stochastic model are solved analytically based on the Ito stochastic calculus and numerically by using the Euler–Maruyama method. The impact on the value of the critical distance of the Abadia de Goiás repository is analyzed, taken as a study case, when the deterministic methodology is replaced by the stochastic one, considered more appropriate for modeling rainfall as a stochastic process.

  12. Fundamentals of Structural Geology

    Science.gov (United States)

    Pollard, David D.; Fletcher, Raymond C.

    2005-09-01

    Fundamentals of Structural Geology provides a new framework for the investigation of geological structures by integrating field mapping and mechanical analysis. Assuming a basic knowledge of physical geology, introductory calculus and physics, it emphasizes the observational data, modern mapping technology, principles of continuum mechanics, and the mathematical and computational skills, necessary to quantitatively map, describe, model, and explain deformation in Earth's lithosphere. By starting from the fundamental conservation laws of mass and momentum, the constitutive laws of material behavior, and the kinematic relationships for strain and rate of deformation, the authors demonstrate the relevance of solid and fluid mechanics to structural geology. This book offers a modern quantitative approach to structural geology for advanced students and researchers in structural geology and tectonics. It is supported by a website hosting images from the book, additional colour images, student exercises and MATLAB scripts. Solutions to the exercises are available to instructors. The book integrates field mapping using modern technology with the analysis of structures based on a complete mechanics MATLAB is used to visualize physical fields and analytical results and MATLAB scripts can be downloaded from the website to recreate textbook graphics and enable students to explore their choice of parameters and boundary conditions The supplementary website hosts color images of outcrop photographs used in the text, supplementary color images, and images of textbook figures for classroom presentations The textbook website also includes student exercises designed to instill the fundamental relationships, and to encourage the visualization of the evolution of geological structures; solutions are available to instructors

  13. Soil radium, soil gas radon and indoor radon empirical relationships to assist in post-closure impact assessment related to near-surface radioactive waste disposal.

    Science.gov (United States)

    Appleton, J D; Cave, M R; Miles, J C H; Sumerling, T J

    2011-03-01

    Least squares (LS), Theil's (TS) and weighted total least squares (WTLS) regression analysis methods are used to develop empirical relationships between radium in the ground, radon in soil and radon in dwellings to assist in the post-closure assessment of indoor radon related to near-surface radioactive waste disposal at the Low Level Waste Repository in England. The data sets used are (i) estimated ²²⁶Ra in the < 2 mm fraction of topsoils (eRa226) derived from equivalent uranium (eU) from airborne gamma spectrometry data, (ii) eRa226 derived from measurements of uranium in soil geochemical samples, (iii) soil gas radon and (iv) indoor radon data. For models comparing indoor radon and (i) eRa226 derived from airborne eU data and (ii) soil gas radon data, some of the geological groupings have significant slopes. For these groupings there is reasonable agreement in slope and intercept between the three regression analysis methods (LS, TS and WTLS). Relationships between radon in dwellings and radium in the ground or radon in soil differ depending on the characteristics of the underlying geological units, with more permeable units having steeper slopes and higher indoor radon concentrations for a given radium or soil gas radon concentration in the ground. The regression models comparing indoor radon with soil gas radon have intercepts close to 5 Bq m⁻³ whilst the intercepts for those comparing indoor radon with eRa226 from airborne eU vary from about 20 Bq m⁻³ for a moderately permeable geological unit to about 40 Bq m⁻³ for highly permeable limestone, implying unrealistically high contributions to indoor radon from sources other than the ground. An intercept value of 5 Bq m⁻³ is assumed as an appropriate mean value for the UK for sources of indoor radon other than radon from the ground, based on examination of UK data. Comparison with published data used to derive an average indoor radon: soil ²²⁶Ra ratio shows that whereas the published data are

  14. Determination of platinum-group elements in the geological standard reference materials by isotope dilution-ICPMS

    Energy Technology Data Exchange (ETDEWEB)

    Mingyue, Hu; Hongliao, He [National Research Center for Geoanalysis, Beijing (China)

    2005-10-15

    Platinum group elements (PGEs) includes platinum, palladium, iridium, osmium, rhodium and ruthenium. It has very high economic and scientific value in the field of geoscience and environmental science. But the analysis data referred by the different lab are very disperse because of the difficulty of the determination of PGEs. It makes very difficult to fix the value of the PGEs in the standard reference materials. In the article, the values of the PGEs in the standard reference materials of ocean sediment are determined by isotope dilution technique and dependable values of these elements are provided. (authors)

  15. Determination of platinum-group elements in the geological standard reference materials by isotope dilution-ICPMS

    International Nuclear Information System (INIS)

    Hu Mingyue; He Hongliao

    2005-01-01

    Platinum group elements (PGEs) includes platinum, palladium, iridium, osmium, rhodium and ruthenium. It has very high economic and scientific value in the field of geoscience and environmental science. But the analysis data referred by the different lab are very disperse because of the difficulty of the determination of PGEs. It makes very difficult to fix the value of the PGEs in the standard reference materials. In the article, the values of the PGEs in the standard reference materials of ocean sediment are determined by isotope dilution technique and dependable values of these elements are provided. (authors)

  16. Soil Iodine Determination in Deccan Syneclise, India: Implications for Near Surface Geochemical Hydrocarbon Prospecting

    International Nuclear Information System (INIS)

    Mani, Devleena; Kumar, T. Satish; Rasheed, M. A.; Patil, D. J.; Dayal, A. M.; Rao, T. Gnaneshwar; Balaram, V.

    2011-01-01

    The association of iodine with organic matter in sedimentary basins is well documented. High iodine concentration in soils overlying oil and gas fields and areas with hydrocarbon microseepage has been observed and used as a geochemical exploratory tool for hydrocarbons in a few studies. In this study, we measure iodine concentration in soil samples collected from parts of Deccan Syneclise in the west central India to investigate its potential application as a geochemical indicator for hydrocarbons. The Deccan Syneclise consists of rifted depositional sites with Gondwana–Mesozoic sediments up to 3.5 km concealed under the Deccan Traps and is considered prospective for hydrocarbons. The concentration of iodine in soil samples is determined using ICP-MS and the values range between 1.1 and 19.3 ppm. High iodine values are characteristic of the northern part of the sampled region. The total organic carbon (TOC) content of the soil samples range between 0.1 and 1.3%. The TOC correlates poorly with the soil iodine (r 2 < 1), indicating a lack of association of iodine with the surficial organic matter and the possibility of interaction between the seeping hydrocarbons and soil iodine. Further, the distribution pattern of iodine compares well with two surface geochemical indicators: the adsorbed light gaseous hydrocarbons (methane through butane) and the propane-oxidizing bacterial populations in the soil. The integration of geochemical observations show the occurrence of elevated values in the northern part of the study area, which is also coincident with the presence of exposed dyke swarms that probably serve as conduits for hydrocarbon microseepage. The corroboration of iodine with existing geological, geophysical, and geochemical data suggests its efficacy as one of the potential tool in surface geochemical exploration of hydrocarbons. Our study supports Deccan Syneclise to be promising in terms of its hydrocarbon prospects.

  17. Determination of gold, indium, tellurium and thallium in the same sample digest of geological materials by atomic-absorption spectroscopy and two-step solvent extraction

    Science.gov (United States)

    Hubert, A.E.; Chao, T.T.

    1985-01-01

    A rock, soil, or stream-sediment sample is decomposed with hydrofluoric acid, aqua regia, and hydrobromic acid-bromine solution. Gold, thallium, indium and tellurium are separated and concentrated from the sample digest by a two-step MIBK extraction at two concentrations of hydrobromic add. Gold and thallium are first extracted from 0.1M hydrobromic acid medium, then indium and tellurium are extracted from 3M hydrobromic acid in the presence of ascorbic acid to eliminate iron interference. The elements are then determined by flame atomic-absorption spectrophotometry. The two-step solvent extraction can also be used in conjunction with electrothermal atomic-absorption methods to lower the detection limits for all four metals in geological materials. ?? 1985.

  18. Determination of copper in geological materials by X-ray fluorescence; Determinacion de cobre en materiales geologicos mediante fluorescencia de rayos X

    Energy Technology Data Exchange (ETDEWEB)

    Roca, M; Bayon, A

    1981-07-01

    X-ray fluorescence has been applied to the determination of copper content of geological materials in the concentration range of 0.01 to % CuO. A molybdenum target tube Is used, samples being presented in finely-ground powder form. Various methods for the correction for background and Instrumental copper interferences have been considered. To correct for matrix effects different tube scattered primary radiations have been tested as references or internal standards. MoK(41 - (C) provides the most suitable results. The use of influence empirical coefficients for the effect of iron on copper and of mass absorption coefficients has also been considered. For samples with a high content of lead, several procedures to correct for I t s influence have been investigated. Comparison between data obtained by X-ray fluorescence and wet-chemical techniques indicated good agreement. (Author) 6 refs.

  19. Proceedings of 1.International scientific and technological conference 'Modern problems of geophysics, geology, development, processing and use of Kazakhstan hydrocarbon raw materials'. v. 1-2

    International Nuclear Information System (INIS)

    2000-01-01

    Proceedings of reports presented on 1.International scientific and technological conference 'Modern problems of geophysics, geology, development, processing and use of Kazakhstan hydrocarbon raw materials', devoted to the 20th anniversary of the Atyrau Institute of Oil and Gas (Atyrau, 2000, 18-19 December) are published in 2 volumes. The problems and new methods for prediction of oil and gas as well as different resources in both the coastal lands and the shelf of the Caspian Sea are considered. Scientific problems of drilling and repair of oil and gas wells are highlighted. Results of fundamental and applied studies on problems of oil and oil products processing, its transportation through pipelines with taking into account rheological and physico-chemical properties of oils mining on western fields of the Republic are cited. The points of ecological safety guarantee, reliability of mechanisms and machines operation and others problems are widely discussed

  20. Sorption of plutonium and americium on repository, backfill and geological materials relevant to the JNFL low-level radioactive waste repository at Rokkasho-Mura

    International Nuclear Information System (INIS)

    Baston, G.M.N.; Berry, J.A.; Brownsword, M.; Heath, T.G.; Tweed, C.J.; Williams, S.J.

    1995-01-01

    An integrated program of batch sorption experiments and mathematical modeling has been carried out to study the sorption of plutonium and americium on a series of repository, backfill and geological materials relevant to the JNFL low-level radioactive waste repository at Rokkasho-Mura. The sorption of plutonium and americium on samples of concrete, mortar, sand/bentonite, tuff, sandstone and cover soil has been investigated. In addition, specimens of bitumen, cation and anion exchange resins, and polyester were chemically degraded. The resulting degradation product solutions, alongside solutions of humic and isosaccharinic acids were used to study the effects on plutonium sorption onto concrete, sand/bentonite and sandstone. The sorption behavior of plutonium and americium has been modeled using the geochemical speciation program HARPHRQ in conjunction with the HATCHES database

  1. Curve resolution and figures of merit estimation for determination of trace elements in geological materials by inductively coupled plasma atomic emission spectrometry

    International Nuclear Information System (INIS)

    Lorber, A.; Harel, A.; Goldbart, Z.; Brenner, I.B.

    1987-01-01

    In geochemical analysis using inductively coupled plasma atomic emission spectrometry (ICP-AES), spectral interferences and background enhancement in response to sample concomitants are the main cause of deterioration of the limit of detection (LOD) and inaccuracy of the determination at the trace and minor element levels. In this account, the authors describe the chemometric procedure of curve resolution for compensating for these sources of error. A newly developed method for calculating figures of merit is used to evaluate the correction procedure, test the statistical significance of the determined concentration, and determine LODs for each sample. The technique involves scanning the vicinity of the spectral line of the analyte. With prior knowledge of potential spectral interferences, deconvolution of the overlapped response is possible. Analytical data for a wide range of geological standard reference materials demonstrate the effectiveness of the chemometric techniques. Separation of 0.002 nm spectral coincidence, employing a 0.02 nm resolution spectrometer, is demonstrated

  2. Determination of Barium and selected rare-earth elements in geological materials employing a HpGe detector by radioisotope excited x-ray fluorescence

    International Nuclear Information System (INIS)

    LaBrecque, J.J.; Preiss, I.L.

    1984-01-01

    The laterite material (geological) from Cerro Impacto was first studied by air radiometric techniques in the 1970's and was found to have an abnormally high radioactive background. Further studies showed this deposit to be rich in thorium, columbium, barium and rare-earth elements (mostly La, Ce, Pr and Nd). A similar work has been reported for the analysis of Brazil's lateritic material from Morro do Ferro to determine elemental compositions (including barium and rare-earth elements) and its relationship to the mobilization of thorium from the deposit using a Co-57 radioisotope source. The objective of this work was to develop an analytical method to determine barium and rare-earth element present in Venezuelan lateritic material from Cerro Impacto. We have employed a method before, employing a Si(Li) detector, but due to the low detection efficiencies in the rare-earth K-lines region (about 30 KeV - 40 KeV), we have decided to study the improvement in sensitivities and detection limits using an hyperpure germanium detector

  3. Contribution to the study of cementitious and clayey materials behaviour in the context of deep geological disposal: transport aspect, durability and thermo-hydro-mechanical behaviour

    International Nuclear Information System (INIS)

    Galle, C.

    2011-07-01

    Deep geological formation disposal is the reference solution in France for the management of medium and high activities radioactive waste. In this context, to demonstrate the feasibility of such a disposal, it is necessary to evaluate the long-term performances and the behaviour of the materials engaged in the elaboration of engineered barrier systems (EBS) and waste package elements. The studies mentioned and synthesized in this HDR thesis focused mainly on the convective transport of gas (under pressure gradient) in cementitious matrices, by coupling microstructure aspect (porosity/pores sizes distribution) and hydric environment (water saturation). Works on physico-chemical durability allowed the description of the chemical degradation of cement-based materials in extreme conditions using ammonium nitrate, to increase the materials damaging processes in order to identify functional margins. In relationship with the interim storage management phase, studies related to the behaviour and characterization of concrete submitted to high temperatures (up to 400 C) were also described. Finally, results concerning the gas (H 2 ) overpressure resistance of engineered barriers made of compacted clays were summarized. (author)

  4. Numerical results for near surface time domain electromagnetic exploration: a full waveform approach

    Science.gov (United States)

    Sun, H.; Li, K.; Li, X., Sr.; Liu, Y., Sr.; Wen, J., Sr.

    2015-12-01

    Time domain or Transient electromagnetic (TEM) survey including types with airborne, semi-airborne and ground play important roles in applicants such as geological surveys, ground water/aquifer assess [Meju et al., 2000; Cox et al., 2010], metal ore exploration [Yang and Oldenburg, 2012], prediction of water bearing structures in tunnels [Xue et al., 2007; Sun et al., 2012], UXO exploration [Pasion et al., 2007; Gasperikova et al., 2009] etc. The common practice is introducing a current into a transmitting (Tx) loop and acquire the induced electromagnetic field after the current is cut off [Zhdanov and Keller, 1994]. The current waveforms are different depending on instruments. Rectangle is the most widely used excitation current source especially in ground TEM. Triangle and half sine are commonly used in airborne and semi-airborne TEM investigation. In most instruments, only the off time responses are acquired and used in later analysis and data inversion. Very few airborne instruments acquire the on time and off time responses together. Although these systems acquire the on time data, they usually do not use them in the interpretation.This abstract shows a novel full waveform time domain electromagnetic method and our recent modeling results. The benefits comes from our new algorithm in modeling full waveform time domain electromagnetic problems. We introduced the current density into the Maxwell's equation as the transmitting source. This approach allows arbitrary waveforms, such as triangle, half-sine, trapezoidal waves or scatter record from equipment, being used in modeling. Here, we simulate the establishing and induced diffusion process of the electromagnetic field in the earth. The traditional time domain electromagnetic with pure secondary fields can also be extracted from our modeling results. The real time responses excited by a loop source can be calculated using the algorithm. We analyze the full time gates responses of homogeneous half space and two

  5. Quantitative assessment of radionuclide retention in the near-surface system at Forsmark. Development of a reactive transport model using Forsmark 1.2 data

    International Nuclear Information System (INIS)

    Grandia, Fidel; Sena, Clara; Arcos, David; Molinero, Jorge; Duro, Lara; Bruno, Jordi

    2007-12-01

    The main objective of this work is to assess the migration behaviour of selected long-lived radionuclides through the near-surface system of Forsmark, with special focus on the evaluation of the capacity of the Quaternary deposits and sediments for radionuclide retention. The work reported here is based on data and information from Forsmark Site Descriptive Model version 1.2. From the geological point of view, the near-surface systems in the Forsmark area consist of Quaternary deposits and sediments that overlay the granitic bedrock. Glacial till is the more abundant outcropping Quaternary deposit and the remainder is made of clayey deposits. These types of near-surface sediments show distinctive hydraulic and geochemical features. The main reactive mineral in the till deposits, for the time horizons considered in this work, is calcium carbonate together with minor amounts of clay minerals (e.g. illite). The till deposits forms aquifers with relatively high hydraulic conductivities. In contrast, glacial and post-glacial clays are basically composed of illite with low to very low amounts of calcium carbonate, and containing organic matter-rich layers (gyttja), which can promote reducing conditions in the porewaters. All these clays exhibits relatively low hydraulic conductivity values. Five radionuclides have been selected for conceptualization and qualitative evaluation of retention process: U as an actinide, Se as a redox-sensitive radionuclide, Cs as a monovalent cation, Sr as a divalent cation, and I as an anion radionuclide. Overall, radionuclide retention capacity in the surface systems at Forsmark can be provided by sorption on charged surfaces of clays and oxyhydroxides, co-precipitation with sulphates, sulphides, oxyhydroxides and carbonates, and sorption on organic matter. Two-dimensional coupled hydrogeological and reactive solute transport models have been developed to simulate the geochemical behaviour of U, Cs and Sr. These three radionuclides have

  6. Backfill barriers: the use of engineered barriers based on geologic materials to assure isolation of radioactive wastes in a repository

    International Nuclear Information System (INIS)

    Apps, J.A.; Cook, N.G.W.

    1981-06-01

    A preliminary assessment is made to show that canisters fabricated of nickel-iron alloys, and surrounded by a suitable backfill, may produce an engineered barrier where the canister material is thermodynamically stable with respect to its environment. As similar conditions exist in nature, the performance of such systems as barriers to isolate radionuclides can be predicted over very long periods, of the order of 10 6 years

  7. Chemistry-transport coupling and retroactive effects on material properties within the context of a deep geological repository

    International Nuclear Information System (INIS)

    Bildstein, O.

    2010-06-01

    The author gives an overview of his research and teaching activities. His researches first dealt with the development of a simulation of the chemistry/transport coupling and of the retroactive effects on transport parameters, then with the chemistry/transport modelling and its coupling with mechanics, and finally with the multi-scale investigation of porous materials. Perspectives are discussed and publications are indicated

  8. Simultaneous observation of seasonal variations of beryllium-7 and typical POPs in near-surface atmospheric aerosols in Guangzhou, China

    Science.gov (United States)

    Pan, Jing; Yang, Yong-Liang; Zhang, Gan; Shi, Jing-Lei; Zhu, Xiao-Hua; Li, Yong; Yu, Han-Qing

    2011-07-01

    Near-surface atmospheric aerosol samples were collected at the sampling frequency of 2-3 d per week for one year from August 2006 to August 2007 at a low latitude station in Tianhe District, Guangzhou, Guangdong Province of southern China. The samples were analyzed for cosmogenic nuclide 7Be and persistent organic pollutants, i.e. organochlorine pesticides (OCPs), polychlorinated biphenyls (PCBs), and polybrominated diphenyl ethers (PBDEs). The annual average 7Be concentration was 2.59 mBq m -3, with the maximum occurred in May (8.45 mBq m -3) and minimum in late August and early September (0.07 mBq m -3). Winter and spring were the seasons in which the 7Be concentrations were high while summer and autumn were the lower 7Be seasons. Spring peaks in 7Be in the near-surface atmospheric aerosols may have associated with the "spring leak maximum" episode. The annual average ∑OCPs concentration was 345.6 pg m -3, ∑ 33PCBs 317.6 pg m -3, and ∑ 31PBDEs 609.0 pg m -3. The variation trends in the time-series of 7Be, OCPs, PCBs, and PBDEs in near-surface atmospheric aerosol showed both common features and differences. Significant correlations ( R2 = 0.957 and 0.811. respectively, p = 0.01) were observed between the monthly average 7Be concentrations and those of ∑PCBs and ∑PBDEs in summer, autumn, and early winter. The difference between the seasonal variation features of OCPs and PCBs (and PBDEs) could be attributed to the different source functions and physical-chemical properties which could control the behaviors of these compounds in air-aerosol partitions as well as atmospheric transport.

  9. A strategy for accommodating residual stresses in the assessment of repair weldments based upon measurement of near surface stresses

    International Nuclear Information System (INIS)

    Mcdonald, E.J.; Hallam, K.R.; Flewitt, P.E.J.

    2005-01-01

    On many occasions repairs are undertaken to ferritic steel weldments on plant either during construction or to remove service induced defects. These repaired weldments are subsequently put into service with or without a post-weld heat treatment. In either case, but particularly for the latter, there is a need to accommodate the associated residual stresses in structural integrity assessments such as those based upon the R6 failure avoidance procedure. Although in some circumstances the residual macro-stresses developed within weldments of components and structures can be calculated this is not so readily achieved in the case of residual stresses introduced by repair welds. There is a range of physical and mechanical techniques available to undertake the measurement of macro-residual stresses. Of these X-ray diffraction has the advantage that it is essentially non-destructive and offers the potential for evaluating stresses, which exist in the near surface layer. Although for many structural integrity assessments both the magnitude and distribution of residual stresses have to be accommodated it is not practical to make destructive measurements on weld repaired components and structures to establish the through section distribution of stresses. An approach is to derive a description of the appropriate macro-stresses by a combination of measurement and calculation on trial ferritic steel repair weldments. Surface measurements on the plant can then be made to establish the relationship between the repaired component or structure and the trial weld and thereby improve confidence in predicted stresses and their distribution from the near-surface measured values. Hence X-ray diffraction measurements at the near-surface of the plant weldment can be used to underwrite the quality of the repair by confirming the magnitude and distribution of residual stresses used for the integrity assessment to demonstrate continued safe operation

  10. Effect of Saturated Near Surface on Nitrate and Ammonia Nitrogen Losses in Surface Runoff at the Loess Soil Hillslope

    Directory of Open Access Journals (Sweden)

    Yu-bin Zhang

    2010-01-01

    Full Text Available Water pollution from agricultural fields is a global problem and cause of eutrophication of surface waters. A laboratory study was designed to evaluate the effects of near-surface hydraulic gradients on NO3–N and NH4–N losses in surface runoff from soil boxes at 27% slope undersimulated rainfall of a loess soil hillslope. Experimental treatments included two near-surface hydraulic gradients (free drainage, FD; saturation, SA, three fertilizer application rates (control, no fertilizer input; low, 120 kg N ha-1; high, 240 kg N ha-1, and simulated rainfall of 100 mm h-1 was applied for 70 min. The results showed that saturated near-surface soil moisture had dramatic effects on NO3–N and NH4–N losses and water quality. Under the low fertilizer treatment, average NO3–N concentrations in runoff water of SA averaged 2.2 times greater than that of FD, 1.6 times greater for NH4–N. Under the high fertilizer treatment, NO3–N concentrations in runoff water from SA averaged 5.7 times greater than that of FD, 4.3 times greater for NH4–N. Nitrogen loss formed with NO3–N is dominant during the event, but not NH4–N. Under the SA condition, the total loss of NO3–N from low fertilizer treatment was 34.2 to 42.3% of applied nitrogen, while under the FD treatment that was 3.9 to 6.9%. However, the total loss of NH4–N was less than 1% of applied nitrogen. These results showed that saturated condition could make significant contribution to water quality problems.

  11. Studies of defects in the near-surface region and at interfaces using low energy positron beams

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.

    1995-01-01

    Positron Annihilation Spectroscopy (PAS) is a powerful probe to study open-volume defects in solids. Its success is due to the propensity of positrons to seek out low-density regions of a solid, such as vacancies and voids, and the emissions of gamma rays from their annihilations that carry information about the local electronic environment. The development of low-energy positron beams allows probing of defects to depths of few microns, and can successfully characterize defects in the near-surface and interface regions of several technologically important systems. This review focuses on recent studies conducted on semiconductor-based systems

  12. Development of Ge/NbSi detectors for EDELWEISS-II with identification of near-surface events

    International Nuclear Information System (INIS)

    Juillard, A.; Marnieros, S.; Dolgorouky, Y.; Berge, L.; Collin, S.; Fiorucci, S.; Lalu, F.; Dumoulin, L.

    2006-01-01

    The actual limitation of Ge ionization heat cryogenic detectors for direct WIMP detection such as EDELWEISS arises from incomplete charge collection for near-surface events. We present results on Ge/NbSi detectors that are fitted with segmented electrodes and two NbSi Anderson insulator thermometric layers. Three such bolometers were studied in the low-background cryostat of the EDELWEISS collaboration in the LSM: analysis of the athermal signals allows us to identify and reject events occurring in the first millimeter under the electrodes

  13. Fast electric field waveforms and near-surface electric field images of lightning discharges detected on Mt. Aragats in Armenia

    International Nuclear Information System (INIS)

    Chilingarian, A.; Khanikyants, Y.; Kozliner, L.; Soghomonyan, S.

    2016-01-01

    We present the observational data on fast electric waveforms that are detected at 3200 m altitudes above sea level on Mt. Aragats in Armenia during thunderstorms. We analyse the relations of these forms with count rates of particle flux (during Thunderstorm Ground Enhancements -TGEs); to the slow disturbance of the near-surface electrostatic field; and to the lightning location data from the World Wide Lightning Location Network (WWLLN). An observed negative lightning that decreases a negative charge overhead often abruptly terminates TGEs. By analysing the recorded fast electric field waveforms and comparing them with similar classified waveforms reported previously, we could identify the type and polarity of the observed lightnings. (author)

  14. ''Over the horizon'' SANS: Measurements on near-surface Poiseuille shear-induced ordering of dilute solutions of threadlike micelles

    International Nuclear Information System (INIS)

    Hamilton, W.A.; Butler, P.D.; Hayter, J.B.; Magid, L.J.; Kreke, P.J.

    1995-01-01

    Although the behavior of a fluid under shear near a surface can be expected to be critically important to its drag and lubrication properties, most shear measurements to date have been of the bulk. This paper outlines the use of a specially developed Poiseuille shear cell at grazing incidence to measure the small-angle neutron scattering (SANS) signal from the first few tens of microns in the interfacial region. The authors illustrate the technique with measurements made on the near-surface ordering in flow past a quartz surface of dilute surfactant solutions comprising highly extended self-assembling ''threadlike'' micelles

  15. Risk-based approach to long-term safety assessment for near surface disposal of radioactive waste in Korea

    International Nuclear Information System (INIS)

    Jeong, C.W.; Kim, K.I.; Lee, J.I.

    2000-01-01

    This paper presents the Korean regulatory approach to safety assessment consistent with probabilistic, risk-based long-term safety requirements for near surface disposal facilities. The approach is based on: (1) From the standpoint of risk limitation, normal processes and probabilistic disruptive events should be integrated in a similar manner in terms of potential exposures; and (2) The uncertainties inherent in the safety assessment should be reduced using appropriate exposure scenarios. In addition, this paper emphasizes the necessity of international guidance for quantifying potential exposures and the corresponding risks from radioactive waste disposal. (author)

  16. Development of Ge/NbSi detectors for EDELWEISS-II with identification of near-surface events

    Energy Technology Data Exchange (ETDEWEB)

    Juillard, A. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France)]. E-mail: juillard@csnsm.in2p3.fr; Marnieros, S. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Dolgorouky, Y. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Berge, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Collin, S. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Fiorucci, S. [C.E.A, Centre d' etudes Nucleaires de Saclay, DSM/DAPNIA, Gif. Yvette, Cedex 91191n (France); Lalu, F. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France); Dumoulin, L. [Centre de Spectrometrie Nucleaire et de Spectrometrie de Masse (CSNSM), IN2P3/CNRS, Bat 108, Orsay Campus 91405 (France)

    2006-04-15

    The actual limitation of Ge ionization heat cryogenic detectors for direct WIMP detection such as EDELWEISS arises from incomplete charge collection for near-surface events. We present results on Ge/NbSi detectors that are fitted with segmented electrodes and two NbSi Anderson insulator thermometric layers. Three such bolometers were studied in the low-background cryostat of the EDELWEISS collaboration in the LSM: analysis of the athermal signals allows us to identify and reject events occurring in the first millimeter under the electrodes.

  17. Evaluation of near-surface attenuation of S-waves based on PS logging and vertical array seismic observation

    International Nuclear Information System (INIS)

    Kobayashi, Genyu

    2014-01-01

    As a result of the lessons learned from the experience of Kashiwazaki-Kariwa NPP due to the 2007 Niigata Chuetsu Oki Earthquake, it has become clear that a rational method of near-surface attenuation characteristics covering a depth range from engineering bedrock to seismic bedrock urgently needs to be established. JNES performed PS logging and vertical array seismic ground motion observation at a soil ground site (SODB 1. site), sedimentary rock site, and an igneous rock site (SODB 2. site), and proposed an evaluation method of attenuation characteristics (site characteristics) for the deep underground. (author)

  18. Studies of defects in the near-surface region and at interfaces using low energy positron beams

    International Nuclear Information System (INIS)

    Asoka-Kumar, P.

    1997-01-01

    Positron annihilation spectroscopy (PAS) is a powerful probe to study open-volume defects in solids. Its success is due to the propensity of positrons to seek out low-density regions of a solid, such as vacancies and voids, and the emissions of gamma rays from their annihilations that carry information about the local electronic environment. The development of low-energy positron beams allows probing of defects to depths of few microns, and can successfully characterize defects in the near-surface and interface regions of several technologically important systems. This review focuses on recent studies conducted on semiconductor-based systems. (author)

  19. Preliminary thermal and thermomechanical modeling for the near surface test facility heater experiments at Hanford. Volume II: Appendix D

    International Nuclear Information System (INIS)

    Chan, T.; Remer, J.S.

    1978-12-01

    Appendix D is a complete set of figures illustrating the detailed calculations necessary for designing the heater experiments at the Near Surface Test Facility (NSTF) at Hanford, Washington. The discussion of the thermal and thermomechanical modeling that yielded these calculations is presented in Volume 1. A summary of the figures and the models they illustrate is given in table D1. The most important figures have also been included in the discussion in Volume 1, and Table D2 lists the figure numbers in this volume that correspond to figure numbers used there

  20. Sensitivity analysis for near-surface disposal in argillaceous media using NAMMU-HYROCOIN Level 3-Test case 1

    International Nuclear Information System (INIS)

    Miller, D.R.; Paige, R.W.

    1988-07-01

    HYDROCOIN is an international project for comparing groundwater flow models and modelling strategies. Level 3 of the project concerns the application of groundwater flow models to repository performance assessment with emphasis on the treatment of sensitivity and uncertainty in models and data. Level 3, test case 1 concerns sensitivity analysis of the groundwater flow around a radioactive waste repository situated in a near surface argillaceous formation. Work on this test case has been carried out by Harwell and will be reported in full in the near future. This report presents the results obtained using the computer program NAMMU. (author)

  1. Monte Carlo and molecular dynamics simulations of near-surface phenomena. Quarterly report 3. quarter 1987

    International Nuclear Information System (INIS)

    Valkealahti, Seppo.

    1987-10-01

    Monte Carlo simulation is used to investigate positron and electron slowing down in solid matter. The description of elastic scattering is based on accurate cross sections of effective crystalline atom potentials. Inelastic processes are described separately for each energby level y Gryzinski's excitation function. Various materials are studied and several electron and positron slowing down parameters and distributions are extracted. The results are used to analyze and interprete a number of recent experiments utilizing keV electron and positron beams. Molecular dynamics simulation methods are used to study (i) damage production in aluminum (110) surfaces due to low-energy argon ion bombardment and (ii) the premelting effects of solid noble gas surfaces. Appropriately constructed pair potentials were assigned between the particles and an electronic friction term proportional to the velocity was used for energetic ions. Of particular interest in (i) are the defect and implanted atom distributions, which are compared against recent experiments. In (ii) the simulations show the equilibrium existence of liquid-like layers on the densely packed surfaces well below the bulk melting temperature. In (i) the mean vacancy concentration depth depends only slightly on the incident angle. The total number of vacancies is almost independent of the incident ion dose for very oblique angles of incidence (0>45 deg C). Vancancy profile is found to have a clear peak in the topmost atomic layers and a broader tail deep in the material. The interstitial and Ar + ion profiles are clearly deeper in the material than the vacancy profile. In (ii), a layer-by-layer premelting of Lennard-Jones (111) surfaces is observed. Also the (100) surfaces premelt, but the disordering mechanism for the loosely packed (110) surfaces is roughening. Furthermore, a general rule seems to be that melting proceeds along the directions of high packing densities

  2. Homogeneous near surface activity distribution by double energy activation for TLA

    International Nuclear Information System (INIS)

    Takacs, S.; Ditroi, F.; Tarkanyi, F.

    2007-01-01

    Thin layer activation (TLA) is a versatile tool for activating thin surface layers in order to study real-time the surface loss by wear, corrosion or erosion processes of the activated parts, without disassembling or stopping running mechanical structures or equipment. The research problem is the determination of the irradiation parameters to produce point-like or large area optimal activity-depth distribution in the sample. Different activity-depth profiles can be produced depending on the type of the investigated material and the nuclear reaction used. To produce activity that is independent of the depth up to a certain depth is desirable when the material removed from the surface by wear, corrosion or erosion can be collected completely. By applying dual energy irradiation the thickness of this quasi-constant activity layer can be increased or the deviation of the activity distribution from a constant value can be minimized. In the main, parts made of metals and alloys are suitable for direct activation, but by using secondary particle implantation the wear of other materials can also be studied in a surface range a few micrometers thick. In most practical cases activation of a point-like spot (several mm 2 ) is enough to monitor the wear, corrosion or erosion, but for special problems relatively large surfaces areas of complicated spatial geometry need to be activated uniformly. Two ways are available for fulfilling this task, (1) production of large area beam spot or scanning the beam over the surface in question from the accelerator side, or (2) a programmed 3D movement of the sample from the target side. Taking into account the large variability of tasks occurring in practice, the latter method was chosen as the routine solution in our cyclotron laboratory

  3. Mapping of near surface fold structures with GPR and ERT near Steinbrunn (Northern Burgenland, Austria)

    Science.gov (United States)

    Kreutzer, Ingrid; Chwatal, Werner; Häusler, Hermann; Scheibz, Jürgen; Steirer, Fritz

    2014-05-01

    . Therefore we assume that the mapped fold shape structures underlie almost the entire investigation area of about one square kilometre in size. Considering the very shallow facies of the Upper Pannonian deposits and compared to fold structures documented in the neighbouring coal mine of Neufeld (Häusler, 2012b), the geophysical investigations of these buckling structures support the hypothesis of a tectonic origin. Exner, U., Draganits, E., Grasemann, B., 2009. Folding in Miocene, unconsolidated clastic sediments (Vienna basin, Austria) - gravitational versus tectonic forces, Trabajos de Geología, Universidad de Oviedo, 29, 269-272, Oviedo. Grundtner, M.-L., Harzhauser, M., Mandic, O., Draganits, E., Gier, S., Exner, U., Wagreich, M., 2009. Zur Sedimentologie der Sandgrube Steinbrunn (Pannonium, Österreich), Jahrbuch der Geologischen Bundesanstalt, 149, 441-451, Wien. Häusler, H., 2012a. Contribution to the discussion of folded Pannonian strata in the Southern Vienna Basin, Geophysical Research Abstracts, Vol. 14, EGU2012-5201, EGU General Assembly 2012, Vienna. Häusler, H., 2012b. Folded Pannonian beds along the Austroalpine frame of the southern Vienna Basin, PANGEO Austria 2012 (10th anniversary), 15.-20. Sept. 2012, Abstracts, 55-56, Salzburg.

  4. Near surface mechanical properties of optical single crystals and surface response to deterministic microgrinding

    Science.gov (United States)

    Randi, Joseph A., III

    2005-12-01

    This thesis makes use of microindentation, nanoindentation and nanoscratching methods to better understand the mechanical properties of single crystalline silicon, calcium fluoride, and magnesium fluoride. These properties are measured and are used to predict the material's response to material removal, specifically by grinding and polishing, which is a combination of elastic, plastic and fracture processes. The hardness anisotropy during Knoop microindentation, hardness from nanoindentation, and scratch morphology from nanoscratching are reported. This information is related to the surface microroughness from grinding. We show that mechanical property relationships that predict the surface roughness from lapping and deterministic microgrinding of optical glasses are applicable to single crystals. We show the range of hardness from some of the more common crystallographic faces. Magnesium fluoride, having a tetragonal structure, has 2-fold hardness anisotropy. Nanoindentation, as expected provides higher hardness than microindentation, but anisotropy is not observed. Nanoscratching provides the scratch profile during loading, after the load has been removed, and the coefficient of friction during the loading. Ductile and brittle mode scratching is present with brittle mode cracking being orientation specific. Subsurface damage (SSD) measurements are made using a novel process known as the MRF technique. Magnetorheological finishing is used to polish spots into the ground surface where SSD can be viewed. SSD is measured using an optical microscope and knowledge of the spot profile. This technique is calibrated with a previous technique and implemented to accurately measure SSD in single crystals. The data collected are compared to the surface microroughness of the ground surface, resulting in an upper bound relationship. The results indicate that SSD is always less than 1.4 times the peak-to-valley surface microroughness for single crystals regardless of the

  5. Discussion on some issues for near surface disposal of L/I LW sandy soil

    International Nuclear Information System (INIS)

    Yu Mingde

    2006-01-01

    It is possible that very low level waste (VLLW) is defined from among LLW and disposed of through a simple/easy engineering method. Enhancing the barrier-function of buffer/backfill material will be favorable in a long-term way for controlling long-lived α-nuclides in near field. Designing the trench cover must suit measures to local conditions and lay stress on the key points. For long-term and efficacious supervision on L/I LW disposal facilities, it is very important to change managing ideologies. (authors)

  6. Near surface geotechnical and geophysical data cross validated for site characterization applications. The cases of selected accelerometric stations in Crete island (Greece)

    Science.gov (United States)

    Loupasakis, Constantinos; Tsangaratos, Paraskevas; Rozos, Dimitrios; Rondoyianni, Theodora; Vafidis, Antonis; Steiakakis, Emanouil; Agioutantis, Zacharias; Savvaidis, Alexandros; Soupios, Pantelis; Papadopoulos, Ioannis; Papadopoulos, Nikos; Sarris, Apostolos; Mangriotis, Maria-Dafni; Dikmen, Unal

    2015-04-01

    The near surface ground conditions are highly important for the design of civil constructions. These conditions determine primarily the ability of the foundation formations to bear loads, the stress - strain relations and the corresponding deformations, as well as the soil amplification and corresponding peak ground motion in case of dynamic loading. The static and dynamic geotechnical parameters as well as the ground-type/soil-category can be determined by combining geotechnical and geophysical methods, such as engineering geological surface mapping, geotechnical drilling, in situ and laboratory testing and geophysical investigations. The above mentioned methods were combined for the site characterization in selected sites of the Hellenic Accelerometric Network (HAN) in the area of Crete Island. The combination of the geotechnical and geophysical methods in thirteen (13) sites provided sufficient information about their limitations, setting up the minimum tests requirements in relation to the type of the geological formations. The reduced accuracy of the surface mapping in urban sites, the uncertainties introduced by the geophysical survey in sites with complex geology and the 1-D data provided by the geotechnical drills are some of the causes affecting the right order and the quantity of the necessary investigation methods. Through this study the gradual improvement on the accuracy of the site characterization data in regards to the applied investigation techniques is presented by providing characteristic examples from the total number of thirteen sites. As an example of the gradual improvement of the knowledge about the ground conditions the case of AGN1 strong motion station, located at Agios Nikolaos city (Eastern Crete), is briefly presented. According to the medium scale geological map of IGME the station was supposed to be founded over limestone. The detailed geological mapping reveled that a few meters of loose alluvial deposits occupy the area, expected

  7. Hydraulic/mechanical modeling of smectitic materials for HMC analytical evaluation of the long term performance of TRU geological repository - 59090

    International Nuclear Information System (INIS)

    Kobayashi, Ichizo; Owada, Hitoshi; Ishii, Tomoko

    2012-01-01

    Aiming at evaluation of the long term performance of transuranic (TRU) geological repositories, the hydraulic/ mechanical/chemical (HMC) analysis method has been studied. In this phase of research (four years) the hydraulic/mechanical modeling of smectitic materials for HMC analyses has been studied. In this paper, new experimental methods for investigation of the hydraulic/mechanical behavior of smectitic materials were developed. For hydraulic modeling, the measurement method of the specific surface area of compacted smectitic materials was developed using X-ray diffraction (XRD). The results of the method were applied to the Kozeny-Carman law. Since the specific surface area represents the microstructure of smectitic materials such as the degree of swelling, it was found that the Kozeny-Carman law using measured specific surface area of compacted smectitic materials was useful in evaluating the hydraulic performance of smectitic materials. Moreover, since the Kozeny-Carman law can take the alteration of content of pore water into consideration by not only a coefficient of viscosity but also by changes in specific surface area, the Kozeny-Carman law will be more suitable to chemical and mechanical couple analyses than the ordinary Darcy's law. For the mechanical modeling, the procedure of one dimensional exhausting compression test was developed. The tests gave the dry density and compression stress relation in the state of full-saturation of smectitic materials with varying water content. The relations between the dry density and compression stress in the state of fully saturation were termed fully saturation lines. The group of iso-grams of degree of saturation and water content were also given with this test. It was found that the fully-saturation line is consistent with swelling deformation-pressure relation in the equilibrium state. The results indicated that the swelling deformation-pressure relation does not depend on the saturation manner, such as the

  8. Ground Simulations of Near-Surface Plasma Field and Charging at the Lunar Terminator

    Science.gov (United States)

    Polansky, J.; Ding, N.; Wang, J.; Craven, P.; Schneider, T.; Vaughn, J.

    2012-12-01

    Charging in the lunar terminator region is the most complex and is still not well understood. In this region, the surface potential is sensitively influenced by both solar illumination and plasma flow. The combined effects from localized shadow generated by low sun elevation angles and localized wake generated by plasma flow over the rugged terrain can generate strongly differentially charged surfaces. Few models currently exist that can accurately resolve the combined effects of plasma flow and solar illumination over realistic lunar terminator topographies. This paper presents an experimental investigation of lunar surface charging at the terminator region in simulated plasma environments in a vacuum chamber. The solar wind plasma flow is simulated using an electron bombardment gridded Argon ion source. An electrostatic Langmuir probe, nude Faraday probes, a floating emissive probe, and retarding potential analyzer are used to quantify the plasma flow field. Surface potentials of both conducting and dielectric materials immersed in the plasma flow are measured with a Trek surface potential probe. The conducting material surface potential will simultaneously be measured with a high impedance voltmeter to calibrate the Trek probe. Measurement results will be presented for flat surfaces and objects-on-surface for various angles of attack of the plasma flow. The implications on the generation of localized plasma wake and surface charging at the lunar terminator will be discussed. (This research is supported by the NASA Lunar Advanced Science and Exploration Research program.)

  9. Abundance and composition of near surface microplastics and plastic debris in the Stockholm Archipelago, Baltic Sea.

    Science.gov (United States)

    Gewert, Berit; Ogonowski, Martin; Barth, Andreas; MacLeod, Matthew

    2017-07-15

    We collected plastic debris in the Stockholm Archipelago using a manta trawl, and additionally along a transect in the Baltic Sea from the island of Gotland to Stockholm in a citizen science study. The samples were concentrated by filtration and organic material was digested using hydrogen peroxide. Suspected plastic material was isolated by visual sorting and 59 of these were selected to be characterized with Fourier transform infrared spectroscopy. Polypropylene and polyethylene were the most abundant plastics identified among the samples (53% and 24% respectively). We found nearly ten times higher abundance of plastics near central Stockholm than in offshore areas (4.2×10 5 plastics km -2 compared to 4.7×10 4 plastics km -2 ). The abundance of plastic debris near Stockholm was similar to urban areas in California, USA, and the overall abundance in the Stockholm Archipelago was similar to plastic abundance reported in the northwestern Mediterranean Sea. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  10. Thermal conductivity of rocksalt and other geologic materials from the site of the proposed waste isolation pilot plant

    International Nuclear Information System (INIS)

    Sweet, J.N.; McCreight, J.E.

    1979-01-01

    The measurements first reported by Acton on the thermal conductivity of samples taken from a borehole at the site of the proposed nuclear waste isolation pilot plant (WIPP) near Carlsbad, NM, have been extended to include additional samples and higher temperature measurements. Samples for our measurements were taken from several depths of three wells, including the well AEC 8 from which Acton obtained his samples. These samples ranged from relatively pure rocksalt (NaCl) with small amounts of interstitial anhydrite to essentially nonsalt samples composed of gypsum or clay. The measurements in this latest series were conducted at Sandia using the longitudinal heat flow apparatus described by Acton, at the Los Alamos Scientific Laboratory (LASL) using a transient line source technique, and at Dynatech Corp., Cambridge, MA using a linear heat flow comparative technique. On the basis of these experiments, we have concluded that the thermal conductivity of materials found at the site can be predicted to an accuracy approx. +- 30% from knowledge of the composition and grain size of these materials

  11. Thermal conductivity of rocksalt and other geologic materials from the site of the proposed waste isolation pilot plant

    International Nuclear Information System (INIS)

    Sweet, J.N.; McCreight, J.E.

    1980-01-01

    The measurements first reported by Acton on the thermal conductivity of samples taken from a borehole at the site of the proposed nuclear waste isolation pilot plant (WIPP) near Carlsbad, NM, have been extended to include additional samples and higher temperature measurements. Samples for measurements were taken from several depths of three wells, including the well AEC 8 from which Acton obtained his samples. These samples ranged from relatively pure rocksalt (NaCl) with small amounts of interstitial anhydrite to essentially nonsalt samples composed of gypsum or clay. The measurements in this latest series were conducted at Sandia, the Los Alamos Scientific Laboratory (LASL), and at Dynatech Corp. In general, the data from the three laboratories agreed reasonably well for similar coarse grained translucent rock salt samples, with the LASL and Sandia results typically being about 20% higher than those of Dynatceh. On the basis of these experiments, it is concluded that the thermal conductivity of materials found at the site can be predicted to an accuracy +-30% from knowledge of the composition and grain size of these materials

  12. Multi-method Near-surface Geophysical Surveys for Site Response and Earthquake Damage Assessments at School Sites in Washington, USA

    Science.gov (United States)

    Cakir, R.; Walsh, T. J.; Norman, D. K.

    2017-12-01

    We, Washington Geological Survey (WGS), have been performing multi-method near surface geophysical surveys to help assess potential earthquake damage at public schools in Washington. We have been conducting active and passive seismic surveys, and estimating Shear-wave velocity (Vs) profiles, then determining the NEHRP soil classifications based on Vs30m values at school sites in Washington. The survey methods we have used: 1D and 2D MASW and MAM, P- and S-wave refraction, horizontal-to-vertical spectral ratio (H/V), and 2ST-SPAC to measure Vs and Vp at shallow (0-70m) and greater depths at the sites. We have also run Ground Penetrating Radar (GPR) surveys at the sites to check possible horizontal subsurface variations along and between the seismic survey lines and the actual locations of the school buildings. The seismic survey results were then used to calculate Vs30m for determining the NEHRP soil classifications at school sites, thus soil amplification effects on the ground motions. Resulting shear-wave velocity profiles generated from these studies can also be used for site response and liquefaction potential studies, as well as for improvement efforts of the national Vs30m database, essential information for ShakeMap and ground motion modeling efforts in Washington and Pacific Northwest. To estimate casualties, nonstructural, and structural losses caused by the potential earthquakes in the region, we used these seismic site characterization results associated with structural engineering evaluations based on ASCE41 or FEMA 154 (Rapid Visual Screening) as inputs in FEMA Hazus-Advanced Engineering Building Module (AEBM) analysis. Compelling example surveys will be presented for the school sites in western and eastern Washington.

  13. Geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to investigate their suitability for possible storage of radioactive waste material as of September 1977

    International Nuclear Information System (INIS)

    1977-01-01

    The results from a geologic investigation of the Virgin River Valley salt deposits, Clark County, southeastern Nevada, to examine their suitability for further study and consideration in connection with the possible storage of radioactive waste material are given. The results indicate that (1) approximately one-half of the salt body underlies the Overton Arm of Lake Mead and that the dry land portion of the salt body that has a thickness of 1,000 feet or more covers an area of about four and one-half square miles; (2) current tectonic activity in the area of the salt deposits is believed to be confined to seismic events associated with crustal adjustments following the filling of Lake Mead; (3) detailed information on the hydrology of the salt deposit area is not available at present but it is reported that a groundwater study by the U.S. Geological Survey is now in progress; (4) there is no evidence of exploitable minerals in the salt deposit area other than evaporites such as salt, gypsum, and possibly sand and gravel; (5) the salt deposit area is located inside the Lake Mead Recreation Area, outlined on the accompanying Location Plat, and several Federal, State, and Local agencies share regulatory responsibilities for the activities in the area; (6) other salt deposit areas of Arizona and Nevada, such as the Detrital Valley, Red Lake Dome, Luke Dome, and Mormon Mesa area, and several playa lake areas of central Nevada may merit further study; and (7) additional information, as outlined, is needed to more thoroughly evaluate the salt deposits of the Virgin River Valley and other areas referred to above

  14. Effects of surface orientation on lifetime of near-surface nanoscale He bubble in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Cui, Jiechao; Fu, Baoqin; Wu, Zhangwen; Hou, Qing, E-mail: qhou@scu.edu.cn

    2017-02-15

    In multiscale modeling of the morphological evolution of plasma facing materials in nuclear fusion reactors, the knowledge of the timescales of the involved physical processes is important. In the present study, a new method based on molecular dynamics simulations was developed to extract the lifetime of helium bubbles near tungsten surfaces. It was found that the lifetime of a helium bubble can be described by the Arrhenius equation. However, the lifetime of a helium bubble depends on the thickness of tungsten film above the helium bubble in the substrate and the bubble size. The influence of surface orientations on the lifetime of helium bubbles was also observed, and the performance of helium bubbles on the (1 1 1) surface is very different from on the (0 0 1) and (0 1 1) surfaces. The role of the helium bubble lifetime in other simulation techniques, such as in kinetic Monte Carlo methods and rate theory, is discussed.

  15. Properties of concrete for use in near surface low-level waste disposal facilities

    International Nuclear Information System (INIS)

    Rogers, V.; Shuman, R.; Nielson, K.; Conner, J.

    1989-01-01

    The majority of alternative low-level waste disposal technologies strive to isolate the radioactive waste from the environment through the implementation of engineered man-made barriers. Of the materials used in the construction of these barriers, concrete is, by far, the most prevalent. As alternative facility designs are developed, it will be necessary to assess the features and long-term performance of the technologies. Reliable assessments will depend, in part, on an accurate understanding of the engineered barriers used in construction. Towards these ends an investigation into the properties and behavior of two types of concrete was conducted. Results are presented. Two concrete mix designs were used in the investigation. The first of these employs a Type II cement with a microsilica (silica fume) admixture. The second concrete mix uses a Type V cement with a pozzolan admixture and has approximately four percent entrained air

  16. Operational safety of near surface waste disposal facilities in the Republic of Moldova

    International Nuclear Information System (INIS)

    Ursulean, I.; Balaban, V.

    2000-01-01

    Over the last few years, the Republic of Moldova, with assistance from the IAEA, undertook the establishment of the legislative and normative basis consisting of a regulatory body infrastructure, including a monitoring optimization strategy concerning radioactive waste management safety. At present the following work is underway: the introduction of a new law 'About Radiation Safety and Population Protection', the re-implementation of a normative base, and the incorporation of the IAEA Basic Safety Standards through the national legislation. Presently in the Republic of Moldova, there exists a system of radioactive waste management, comprising collection, disposal, transportation and storage. This system consists of the radioactive material users, the designated disposal facility and the regulatory bodies. (author)

  17. A strategy for evaluating the long-term stability of hole-plugging materials in their geological environments

    International Nuclear Information System (INIS)

    Lambert, S.J.

    1980-01-01

    Material used to plug boreholes will not in general be in chemical equilibrium with its host rock. Adverse long-term performance of a plug can involve changes in phase assemblage in the plug/rock system which are difficult to observe at low temperatures in real time. The thermodynamics of multiphase equilibria provides a technique of predicting what phase changes might occur. The thermodynamic treatment of plug/rock systems utilizes (1) a formulation of possible chemical reactions among phases in the system and (2) determinations of changes in values of Gibbs' free energies for the hypothetical reactions, to identify the theoretically-permitted reactions which could degrade plug performance. Time-dependent prediction of phase changes requires a knowledge of rate laws and constants for specific reactions whose mechanisms are well known

  18. Strategy for evaluating the long-term stability of hole-plugging materials in their geological environments

    International Nuclear Information System (INIS)

    Lambert, S.J.

    1980-01-01

    Material used to plug boreholes will not in general be in chemical equilibrium with its host rock. Adverse long-term performance of a plug can involve changes in phase assemblage in the plug/rock system which are difficult to observe at low temperatures in real time. The thermodynamics of multiphase equilibria provides a technique of predicting what phase changes might occur. The thermodynamic treatment of plug/rock systems utilizes (1) a formulation of possible chemical reactions among phases in the system and (2) determinations of changes in values of Gibbs' free energies for the hypothetical reactions, to identify the theoretically-permitted reactions which could degrade plug performance. Time-dependent prediction of phase changes requires a knowledge of rate laws and constants for specific reactions whose mechanisms are well known

  19. Imprints left by natural radioactivity in geological materials: uranium fission tracks and thermoluminescence applications in earth sciences

    International Nuclear Information System (INIS)

    Broquet, P.; Chambaudet, A.; Rebetez, M.; Charlet, J.M.

    1994-01-01

    In a rock, all minerals which contain uranium are host to a number of spontaneous fission phenomena forming a single damaged area called a ''latent track'', observations of which may lead to dating, uranium mapping and finding paleo-geo-thermometers (thermal history, used in oil exploration). The radioactive elements during the decay process release energy which is trapped as electrons into the physical or chemical defects of the crystalline lattice; this energy can be later released by heating the mineral (thermic stimulated luminescence); the thermoluminescence is characterized by a glow which spectrum constitutes a typical feature of the mineral, its crystallization conditions and the subsequent evolution of the material. Natural and induced glow curve may be produced. 6 figs., 52 refs

  20. Application of an argon-nitrogen inductively-coupled radiofrequency plasma (ICP) to the analysis of geological and related materials for their rare earth contents

    Science.gov (United States)

    Brenner, I. B.; Watson, A. E.; Steele, T. W.; Jones, E. A.; Goncalves, M.

    An account is given of the development of a procedure for the determination of the rare earth (RE) elements in a large variety of geological materials employing a medium power argon-nitrogen ICP coupled with a 3.4m Ebert spectrograph. The effects of the carrier and intermediate gas flow rates, height of observation and power on RE spectral line intensities have been studied. The line-to-background ratio of the RE analyte was found to increase with observation height and passed through a maximum at 12-14 mm above the top of the work coil. The method eventually developed allows the direct determination of the lanthanides and yttrium at the 50-200 μg g -1 levels using a single solution prepared by fusing 0.2-1 g samples with Na 2O 2 or LiBO 2 and dissolving the melt in 4-10% (v/v) HNO 3, or by treating the samples with HF-HClO 4-HNO 3 mixtures. For lower contents of the RE elements, they can be separated from matrix concomitants by ion exchange employing AG50W-X8 resin. A large variety of silicate and phosphate reference materials was analysed using scandium as the internal standard. The relative standard deviations vary from about 1.5-15%. No matrix effects were observed despite the large compositional variation of the samples analysed.

  1. The presence of radioactive materials in soil, sand and sediment samples of Potenga sea beach area, Chittagong, Bangladesh: Geological characteristics and environmental implication

    Science.gov (United States)

    Yasmin, Sabina; Barua, Bijoy Sonker; Uddin Khandaker, Mayeen; Kamal, Masud; Abdur Rashid, Md.; Abdul Sani, S. F.; Ahmed, H.; Nikouravan, Bijan; Bradley, D. A.

    2018-03-01

    Accurate quantification of naturally occurring radioactive materials in soil provides information on geological characteristics, possibility of petroleum and mineral exploration, radiation hazards to the dwelling populace etc. Of practical significance, the earth surface media (soil, sand and sediment) collected from the densely populated coastal area of Chittagong city, Bangladesh were analysed using a high purity germanium γ-ray spectrometer with low background radiation environment. The mean activities of 226Ra (238U), 232Th and 40K in the studied materials show higher values than the respective world average of 33, 36 and 474 Bq/kg reported by the UNSCEAR (2000). The deduced mass concentrations of the primordial radionuclides 238U, 232Th and 40K in the investigated samples are corresponding to the granite rocks, crustal minerals and typical rocks respectively. The estimated mean value of 232Th/238U for soil (3.98) and sediment (3.94) are in-line with the continental crustal average concentration of 3.82 for typical rock range reported by the National Council on Radiation Protection and Measurements (NCRP). But the tonalites and more silicic rocks elevate the mean value of 232Th/238U for sand samples amounting to 4.69. This indicates a significant fractionation during weathering or associated with the metasomatic activity in the investigated area of sand collection.

  2. Durability test of geomembrane liners presumed to avail near surface disposal facilities for low-level waste generated from research, industrial and medical facilities

    International Nuclear Information System (INIS)

    Nakata, Hisakazu; Amazawa, Hiroya; Sakai, Akihiro; Kurosawa, Ryohei; Sakamoto, Yoshiaki; Kanno, Naohiro; Kashima, Takahiro

    2014-02-01

    The Low-level Radioactive Waste Disposal Project Center will construct near surface disposal facilities for radioactive wastes from research, industrial and medical facilities. The disposal facilities consist of “concrete pit type” for low-level radioactive wastes and “trench type” for very low level radioactive wastes. As for the trench type disposal facility, two kinds of facility designs are on projects – one for a normal trench type disposal facility without any of engineered barriers and the other for a trench type disposal facility with geomembrane liners that could prevent from causing environmental effects of non radioactive toxic materials contained in the waste packages. The disposal facility should be designed taking basic properties of durability on geomembrane liners into account, for it is exposed to natural environment on a long-term basis. This study examined mechanical strength and permeability properties to assess the durability on the basis of an indoor accelerated exposure experiment targeting the liner materials presumed to avail the conceptual design so far. Its results will be used for the basic and detailed design henceforth by confirming the empirical degradation characteristic with the progress of the exposure time. (author)

  3. Near-surface geophysical investigations inside the cloister of the historical palace 'Palazzo dei Celestini' in Lecce, Italy

    International Nuclear Information System (INIS)

    Nuzzo, Luigia; Quarta, Tatiana

    2010-01-01

    Non-invasive geophysical investigations are usually the only way to gain information on subsurface properties that can affect the stability of historical structures and accelerate degradation processes. A combined multi-frequency ground-penetrating radar (GPR) geoelectrical and induced polarization (IP) survey was performed in the cloister of 'Palazzo dei Celestini', Lecce, southern Italy, in order to investigate possible subsurface causes of deterioration. The historical palace was originally a convent connected to the Basilica of 'Santa Croce' and is now the head office of the Province of Lecce Administration and the Prefecture. Built in Pietra Leccese, a fine-grained calcarenite, Santa Croce and Palazzo dei Celestini is the most famous baroque architectural complex of the historical centre of Lecce. The high capillarity of the building material causes deterioration problems especially at some altars of the church and in the lower portion of the walls and pillars of the monumental building. The integrated geophysical survey yielded a detailed description of the shallow stratigraphical and hydro-geological setting of the area and an accurate location of ancient and modern drainage systems. The geophysical information was essential for identifying natural or anthropogenic causes of the local increase in subsoil moisture that could accelerate the degradation process and for developing effective remediation activities

  4. Safety assessment methodologies and their application in development of near surface waste disposal facilities - the ASAM project

    International Nuclear Information System (INIS)

    Metcalf, P.

    2003-01-01

    The scope of ASAM project covers near surface disposal facilities for all types of low and intermediate level wastes with emphasis of the post-closure safety assessment.The objectives are to explore practical application to a range of disposal facilities for a number of purposes e.g. development of design concepts, safety re-assessment, upgrading safety and to develop practical approaches to assist regulators, operators and other experts in review of safety assessment. The task of the Co-ordination Group are: reassessment of existing facilities - use of safety assessment in decision making on selection of options (volunteer site Hungary); disused sealed sources - evaluation of disposability of disused sealed sources in near surface facilities (volunteer site Saratov, Russia); mining and minerals processing waste - evaluation of long-term safety (volunteer site pmc S. Africa). An agreement on the scope and objectives of the project are reached and the further consideration, such as human intrusion/institutional control/security; waste from oil/gas industry; very low level waste; categorization of sealed sources coordinated with other IAEA activities are outlined

  5. Charge Dynamics in near-Surface, Variable-Density Ensembles of Nitrogen-Vacancy Centers in Diamond.

    Science.gov (United States)

    Dhomkar, Siddharth; Jayakumar, Harishankar; Zangara, Pablo R; Meriles, Carlos A

    2018-06-13

    Although the spin properties of superficial shallow nitrogen-vacancy (NV) centers have been the subject of extensive scrutiny, considerably less attention has been devoted to studying the dynamics of NV charge conversion near the diamond surface. Using multi