WorldWideScience

Sample records for near-infrared photometric study

  1. Optical polarimetric and near-infrared photometric study of the RCW95 Galactic H II region

    Science.gov (United States)

    Vargas-González, J.; Roman-Lopes, A.; Santos, F. P.; Franco, G. A. P.; Santos, J. F. C.; Maia, F. F. S.; Sanmartim, D.

    2018-02-01

    We carried out an optical polarimetric study in the direction of the RCW 95 star-forming region in order to probe the sky-projected magnetic field structure by using the distribution of linear polarization segments which seem to be well aligned with the more extended cloud component. A mean polarization angle of θ = 49.8° ± 7.7°7 was derived. Through the spectral dependence analysis of polarization it was possible to obtain the total-to-selective extinction ratio (RV) by fitting the Serkowski function, resulting in a mean value of RV = 2.93 ± 0.47. The foreground polarization component was estimated and is in agreement with previous studies in this direction of the Galaxy. Further, near-infrared (NIR) images from Vista Variables in the Via Láctea (VVV) survey were collected to improve the study of the stellar population associated with the H II region. The Automated Stellar Cluster Analysis algorithm was employed to derive structural parameters for two clusters in the region, and a set of PAdova and TRieste Stellar Evolution Code (PARSEC) isochrones was superimposed on the decontaminated colour-magnitude diagrams to estimate an age of about 3 Myr for both clusters. Finally, from the NIR photometry study combined with spectra obtained with the Ohio State Infrared Imager and Spectrometer mounted at the Southern Astrophysics Research Telescope we derived the spectral classification of the main ionizing sources in the clusters associated with IRAS 15408-5356 and IRAS 15412-5359, both objects classified as O4V stars.

  2. OPTICAL–NEAR-INFRARED PHOTOMETRIC CALIBRATION OF M DWARF METALLICITY AND ITS APPLICATION

    International Nuclear Information System (INIS)

    Hejazi, N.; Robertis, M. M. De; Dawson, P. C.

    2015-01-01

    Based on a carefully constructed sample of dwarf stars, a new optical–near-infrared photometric calibration to estimate the metallicity of late-type K and early-to-mid-type M dwarfs is presented. The calibration sample has two parts; the first part includes 18 M dwarfs with metallicities determined by high-resolution spectroscopy and the second part contains 49 dwarfs with metallicities obtained through moderate-resolution spectra. By applying this calibration to a large sample of around 1.3 million M dwarfs from the Sloan Digital Sky Survey and 2MASS, the metallicity distribution of this sample is determined and compared with those of previous studies. Using photometric parallaxes, the Galactic heights of M dwarfs in the large sample are also estimated. Our results show that stars farther from the Galactic plane, on average, have lower metallicity, which can be attributed to the age–metallicity relation. A scarcity of metal-poor dwarf stars in the metallicity distribution relative to the Simple Closed Box Model indicates the existence of the “M dwarf problem,” similar to the previously known G and K dwarf problems. Several more complicated Galactic chemical evolution models which have been proposed to resolve the G and K dwarf problems are tested and it is shown that these models could, to some extent, mitigate the M dwarf problem as well

  3. Social Perception in Infancy: A Near Infrared Spectroscopy Study

    Science.gov (United States)

    Lloyd-Fox, Sarah; Blasi, Anna; Volein, Agnes; Everdell, Nick; Elwell, Claire E.; Johnson, Mark H.

    2009-01-01

    The capacity to engage and communicate in a social world is one of the defining characteristics of the human species. While the network of regions that compose the social brain have been the subject of extensive research in adults, there are limited techniques available for monitoring young infants. This study used near infrared spectroscopy to…

  4. Photometric activity of UX orionis stars and related objects in the near infrared and optical: CO Ori, RR Tau, UX Ori, and VV Ser

    Science.gov (United States)

    Shenavrin, V. I.; Rostopchina-Shakhovskaya, A. N.; Grinin, V. P.; Demidova, T. V.; Shakhovskoi, D. N.; Belan, S. P.

    2016-08-01

    This paper continues a study of the photometric activity of UX Ori stars in the optical and near-infrared ( JHKLM bands) initiated in 2000. For comparison, the list of program stars contains two Herbig Ae stars that are photometrically quiet in the optical: MWC480 andHD179218. Fadings ofUXOri stars in the optical ( V band) due to sporadic increases of the circumstellar extinction are also observed in the infrared (IR), but with decreasing amplitude. Two stars, RR Tau and UX Ori, displayed photometric events when V -band fadings were accompanied by an increase in IR fluxes. Among the two Herbig Ae stars that are photometrically quiet in the optical, MWC 480 proved to be fairly active in the IR. Unlike the UX Ori stars, the variation amplitude of MWC 480 increases from the J band to the M band. In the course of the observations, no deep fadings in the IR bands were detected. This indicates that eclipses of the program stars have a local nature, and are due to extinction variations in the innermost regions of the circumstellar disks. The results presented testify to an important role of the alignment of the circumstellar disks relative to the direction towards the observer in determining the observed IR variability of young stars.

  5. Near-Infrared Spectroscopic Study of Chlorite Minerals

    OpenAIRE

    Min Yang; Meifang Ye; Haihui Han; Guangli Ren; Ling Han; Zhuan Zhang

    2018-01-01

    The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS) spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR) spectroscopy, near-infrared (NIR) spectroscopy, and X-ray fluorescence (XRF) analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 we...

  6. Study of near infrared technology for intracranial hematoma detection

    Science.gov (United States)

    Zhang, Quan; Ma, Hong Y.; Nioka, Shoko; Chance, Britton

    2000-04-01

    Although intracranial hematoma detection only requires the continuous wave technique of near infrared spectroscopy (NIRS), previous studies have shown that there are still some problems in obtaining very accurate, reliable hematoma detection. Several of the most important limitations of NIR technology for hematoma detection such as the dynamic range of detection, hair absorption, optical contact, layered structure of the head, and depth of detection are reported in this article. A pulsed light source of variable intensity was designed and studied in order to overcome hair absorption and to increase the dynamic range and depth of detection. An adaptive elastic optical probe was made to improve the optical contact and decrease contact noise. A new microcontroller operated portable hematoma detector was developed. Due to the layered structure of the human head, simulation on a layered medium was analyzed experimentally. Model inhomogeneity tests and animal hematoma tests showed the effectiveness of the improved hematoma detector for intracranial hematoma detection.

  7. Functional near-infrared spectroscopy studies in children

    Directory of Open Access Journals (Sweden)

    Nagamitsu Shinichiro

    2012-03-01

    Full Text Available Abstract Psychosomatic and developmental behavioral medicine in pediatrics has been the subject of significant recent attention, with infants, school-age children, and adolescents frequently presenting with psychosomatic, behavioral, and psychiatric symptoms. These may be a consequence of insecurity of attachment, reduced self-confidence, and peer -relationship conflicts during their developmental stages. Developmental cognitive neuroscience has revealed significant associations between specific brain lesions and particular cognitive dysfunctions. Thus, identifying the biological deficits underlying such cognitive dysfunction may provide new insights into therapeutic prospects for the management of those symptoms in children. Recent advances in noninvasive neuroimaging techniques, and especially functional near-infrared spectroscopy (NIRS, have contributed significant findings to the field of developmental cognitive neuroscience in pediatrics. We present here a comprehensive review of functional NIRS studies of children who have developed normally and of children with psychosomatic and behavioral disorders.

  8. Study of deacetylation in chitinous materials using near infrared spectroscopy

    Science.gov (United States)

    Chen, Suming; Tsai, Chih-Cheng; Chen, Richie L. C.; Yang, I.-Chang; Hsiao, Hsien-Yi; Chen, Chia-Tseng; Yang, Ci-Wen

    2005-11-01

    Chitinous materials are important sources for bio-medical applications, and the process monitoring is one of key factors for the quality control of products. In this study, chitin and chitosan in suspension form were analyzed using near infrared (NIR) spectroscopy. Two models including multiple linear regression (MLR), modified partial least square regression (MPLSR) were adopted for studying the degree of deacetylation (DD) of chitinous materials in order to assure a better quality monitoring and control for chitosan production. During the process of the deacetylation, the real-time measurements of suspension were conducted. The MPLSR model with second derivative spectra in the range of 600-1000 and 1400-1500 nm yielded the best results, which were rc=0.991, SEC=0.019, RESC=1.4%, rp=0.990, SEP=0.022, RSEP=3.4%, RPD=9.4. The NIR measurements of DD status of chitinous suspension could be achieved by using the MLR and MPLSR models developed in this study. It provides great application potentials to the real-time and on-line quality monitoring of deacetylation process for the production of chitosan.

  9. The application of near infrared spectroscopy in nutritional intervention studies

    Directory of Open Access Journals (Sweden)

    Philippa A Jackson

    2013-08-01

    Full Text Available Functional near infrared spectroscopy (NIRS is a non-invasive optical imaging technique used to monitor cerebral blood flow (CBF and by proxy neuronal activation. The use of NIRS in nutritional intervention studies is a relatively novel application of this technique, with only a small, but growing, number of trials published to date. These trials—in which the effects on CBF following administration of dietary components such as caffeine, polyphenols and omega-3 polyunsaturated fatty acids are assessed—have successfully demonstrated NIRS as a sensitive measure of change in haemodynamic response during cognitive tasks in both acute and chronic treatment intervention paradigms. The existent research in this area has been limited by the constraints of the technique itself however advancements in the measurement technology, paired with studies endeavouring increased sophistication in number and locations of channels over the head should render the use of NIRS in nutritional interventions particularly valuable in advancing our understanding of the effects of nutrients and dietary components on the brain.

  10. Near-Infrared Spectroscopic Study of Chlorite Minerals

    Directory of Open Access Journals (Sweden)

    Min Yang

    2018-01-01

    Full Text Available The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR spectroscopy, near-infrared (NIR spectroscopy, and X-ray fluorescence (XRF analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 were recognized. Assignments of the two diagnostic features were made for two combination bands (ν+δAlAlO−OH and ν+δSiAlO−OH by regression with IR fundamental absorptions. Furthermore, the determinant factors of the NIR band position were found by comparing the band positions with relative components. The results showed that Fe/(Fe + Mg values are negatively correlated with the two NIR combination bands. The findings provide an interpretation of the NIR band formation and demonstrate a simple way to use NIR spectroscopy to discriminate between chlorites with different components. More importantly, spectroscopic detection of mineral chemical variations in chlorites provides geologists with a tool with which to collect information on hydrothermal alteration zones from hyperspectral-resolution remote sensing data.

  11. Near infrared spectroscopy in the study of polymorphic transformations

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Marcel [Department of Chemistry, Analytical Chemistry Unity, Faculty of Sciences, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona (Spain)]. E-mail: marcel.blanco@uab.es; Alcala, Manel [Department of Chemistry, Analytical Chemistry Unity, Faculty of Sciences, Autonomous University of Barcelona, E-08193 Bellaterra, Barcelona (Spain); Gonzalez, Josep M. [Laboratorios Menarini S.A., c/. Alfons XII, 587, E-08918 Badalona, Barcelona (Spain); Torras, Ester [Laboratorios Menarini S.A., c/. Alfons XII, 587, E-08918 Badalona, Barcelona (Spain)

    2006-05-17

    The potential of near infrared (NIR) spectroscopy for the characterization of polymorphs in the active principle of a commercial formulation prior to and after the manufacturing process was assessed. Polymorphism in active principles is extremely significant to the pharmaceutical industry. Polymorphic changes during the production of commercial pharmaceutical formulations can alter some properties of the resulting end-products. Multivariate curve resolution-alternating least squares (MCR-ALS) methodology was used to obtain the 'pure' NIR spectrum for the active principle without the need to pretreat samples. This methodology exposed the polymorphic transformation of Dexketoprofen Trometamol (DKP) in both laboratory and production samples obtained by wet granulation. No polymorphic transformation, however, was observed in samples obtained by direct compaction. These results were confirmed using by X-ray powder diffractometry (XRD) and differential scanning calorimetry (DSC) measurements. Pure crystalline polymorphs of DKP were available in the laboratory but amorphous form was not, nevertheless the developed methodology allows the identification of amorphous and crystal forms in spite of the lack of pure DKP.

  12. Authentication of Organic Feed by Near-Infrared Spectroscopy Combined with Chemometrics A Feasibilily Study

    NARCIS (Netherlands)

    Tres, A.; Veer, van der J.C.; Perez-Marin, M.D.; Ruth, van S.M.; Garrido-Varo, A.

    2012-01-01

    Organic products tend to retail at a higher price than their conventional counterparts, which makes them susceptible to fraud. In this study we evaluate the application of near-infrared spectroscopy (NIRS) as a rapid, cost-effective method to verify the organic identity of feed for laying hens. For

  13. Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate

    DEFF Research Database (Denmark)

    Wolf, Martin; Greisen, Gorm

    2009-01-01

    This article reviews tissue oximetry and imaging to study the preterm and newborn infant brain by near-infrared spectroscopy. These two technologies are now advanced; nearly 100 reports on their use in newborn infants have been published, and commercial instruments are available. The precision...

  14. Do Infants Recognize the Arcimboldo Images as Faces? Behavioral and Near-Infrared Spectroscopic Study

    Science.gov (United States)

    Kobayashi, Megumi; Otsuka, Yumiko; Nakato, Emi; Kanazawa, So; Yamaguchi, Masami K.; Kakigi, Ryusuke

    2012-01-01

    Arcimboldo images induce the perception of faces when shown upright despite the fact that only nonfacial objects such as vegetables and fruits are painted. In the current study, we examined whether infants recognize a face in the Arcimboldo images by using the preferential looking technique and near-infrared spectroscopy (NIRS). In the first…

  15. Optical and Near-infrared Study of Nova V2676 Oph 2012

    Energy Technology Data Exchange (ETDEWEB)

    Raj, A. [Korea Astronomy and Space Science Institute, Daejeon, 34055 (Korea, Republic of); Das, R. K. [Department of Astrophysics and Cosmology, S N Bose National Centre for Basic Sciences, Salt Lake, Kolkata 700106 (India); Walter, F. M., E-mail: ashish.raj@iiap.res.in [Department of Physics and Astronomy, Stony Brook University, Stony Brook, NY 11794-3800 (United States)

    2017-02-01

    We present optical spectrophotometric and near-infrared (NIR) photometric observations of the nova V2676 Oph covering the period from 2012 March 29 through 2015 May 8. The optical spectra and photometry of the nova have been taken from SMARTS and Asiago; the NIR photometry was obtained from SMARTS and Mt. Abu. The spectra were dominated by strong H i lines from the Balmer series, Fe ii, N i, and [O i] lines in the initial days, typical of an Fe ii type nova. The measured FWHM for the H β and H α lines was 800–1200 km s{sup −1}. There was pronounced dust formation starting 90 days after the outburst. The J − K color was the largest among recent dust-forming novae.

  16. A Near-Infrared Imaging Study of Seyfert Galaxies with Extended Emission line Regions

    Science.gov (United States)

    Alonso-Herrero, Almudena; Simpson, Chris; Ward, Martin J.; Wilson, Andrew S.

    1997-01-01

    We present a near-infrared J,H,K and L' band (1.25 - 3.80 mue) imaging study of a sample of Seyfert galaxies, including some of the best studied examples of these with extended emission line regions (EELR). The observed near-IR nuclear colors are consistent with mixture of emmisions from an old stellar population and unredening hot dust.

  17. Fullerene decomposition induced by near-infrared laser radiation studied by real-time turbidimetry

    Science.gov (United States)

    Juha, L.; Ehrenberg, B.; Couris, S.; Koudoumas, E.; Hamplová, V.; Pokorná, Z.; Müllerová, A.; Pavel, M.

    1999-11-01

    C 60 and C 70 fullerenes dissolved in toluene or n-hexane have been found to be decomposed by near-infrared Nd:YAG laser radiation even at moderate intensities ( λ=1064 nm, I=35-70 MW/cm 2) quite effectively. Formation of a fine precipitate, occurring during the photolysis, has been studied turbidimetrically. Cubic intensity dependence of the decomposition efficiency was found. The multiphoton dissociation of fullerenes leads to a formation of the fine black precipitate whose particles, overheated by the pulsed laser radiation, cause further decomposition of fullerene cages.

  18. [Near-infrared spectroscopy as an auxiliary tool in the study of child development].

    Science.gov (United States)

    Oliveira, Suelen Rosa de; Machado, Ana Carolina Cabral de Paula; Miranda, Débora Marques de; Campos, Flávio Dos Santos; Ribeiro, Cristina Oliveira; Magalhães, Lívia de Castro; Bouzada, Maria Cândida Ferrarez

    2015-01-01

    To investigate the applicability of Near-Infrared Spectroscopy (NIRS) for cortical hemodynamic assessment tool as an aid in the study of child development. Search was conducted in the PubMed and Lilacs databases using the following keywords: "psychomotor performance/child development/growth and development/neurodevelopment/spectroscopy/near-infrared" and their equivalents in Portuguese and Spanish. The review was performed according to criteria established by Cochrane and search was limited to 2003 to 2013. English, Portuguese and Spanish were included in the search. Of the 484 articles, 19 were selected: 17 cross-sectional and two longitudinal studies, published in non-Brazilian journals. The analyzed articles were grouped in functional and non-functional studies of child development. Functional studies addressed the object processing, social skills development, language and cognitive development. Non-functional studies discussed the relationship between cerebral oxygen saturation and neurological outcomes, and the comparison between the cortical hemodynamic response of preterm and term newborns. NIRS has become an increasingly feasible alternative and a potentially useful technique for studying functional activity of the infant brain. Copyright © 2015 Associação de Pediatria de São Paulo. Publicado por Elsevier Editora Ltda. All rights reserved.

  19. Dynamic analysis of temporal moisture profiles in heatset printing studied with near-infrared spectroscopy

    International Nuclear Information System (INIS)

    Tåg, C-M; Toiviainen, M; Juuti, M; Gane, P A C

    2010-01-01

    Dynamic analysis of the water transfer onto coated paper, and its permeation and absorption into the porous structure were studied online in a full-scale heatset web offset printing environment. The moisture content of the paper was investigated at five different positions during the printing process. Changes in the moisture content of the paper were studied as a function of the web temperature, printing speed and silicone application in the folding unit positioned after the hot air drying oven. Additionally, the influence of fountain solution composition on the pick-up by the paper was investigated. The water content of the fountain solution transferred to the paper from the printing units was observed as changes in near-infrared absorbance. A calibration data set enabled the subsequent quantification of the dynamic moisture content of the paper at the studied locations. An increase in the printing speed reduced the water transfer to the paper and an increase in web temperature resulted in a reduction in the moisture content. An increase in the dosage level of the water–silicone mixture was observed as a re-moistening effect of the paper. Differences in the drying strategy resulted in different moisture profiles depending on the type of fountain solution used. As a conclusion, the near-infrared signal provides an effective way to characterize the moisture dynamics online at different press units

  20. [Study of nondestructive and fast identification of fabric fibers using near infrared spectroscopy].

    Science.gov (United States)

    Yuan, Hong-Fu; Chang, Rui-Xue; Tian, Ling-Ling; Song, Chun-Feng; Yuan, Xue-Qin; Li, Xiao-Yu

    2010-05-01

    A fast and nondestructive identification method to distinguish different types of fabric fibers is proposed in the present paper. A total of 214 fabric fiber samples, including wool, cashmere, terylene, polyamide, polyurethane, silk, flax, linen, cotton, viscose, cotton-flax blending, terylene-cotton blending, and wool-cashmere blending, were collected from Beijing Textile Fibre Inspection Institute. They contain yarns, raw wool or cashmere, and various fabric straps with different colors and different braid patterns. Sample presentation for measuring near infrared spectra of various textile fibers was tried to reduce the impact from the ununiformity of polymorphous fabric structure. Spectral data were pretreated using multiplicative signal correction (MSC) to reduce the influence of spectral noise and baseline shift. Classification of 12 kinds of fabric fibers in various braid patterns was studied using minimum spanning tree method and soft independent modeling of class analogy (SIMCA) classification based on principal component analysis of NIR spectra. The minimum spanning tree for the spectra of total samples shows that the samples in the same type fall almost into one cluster, but there are overlaps between some two different clusters of fabric fibers with very similar chemical compositions, such as wool and cashmere. Complete discrimination between cashmere and wool has been achieved using SIMCA. The results show that nondestructive and fast identification of fabric fibers using near infrared spectral technique is potentially feasible.

  1. [Study on temperature correctional models of quantitative analysis with near infrared spectroscopy].

    Science.gov (United States)

    Zhang, Jun; Chen, Hua-cai; Chen, Xing-dan

    2005-06-01

    Effect of enviroment temperature on near infrared spectroscopic quantitative analysis was studied. The temperature correction model was calibrated with 45 wheat samples at different environment temperaturs and with the temperature as an external variable. The constant temperature model was calibated with 45 wheat samples at the same temperature. The predicted results of two models for the protein contents of wheat samples at different temperatures were compared. The results showed that the mean standard error of prediction (SEP) of the temperature correction model was 0.333, but the SEP of constant temperature (22 degrees C) model increased as the temperature difference enlarged, and the SEP is up to 0.602 when using this model at 4 degrees C. It was suggested that the temperature correctional model improves the analysis precision.

  2. Near infrared transillumination compared with radiography to detect and monitor proximal caries: A clinical retrospective study.

    Science.gov (United States)

    Abdelaziz, Marwa; Krejci, Ivo; Perneger, Thomas; Feilzer, Albert; Vazquez, Lydia

    2018-03-01

    To compare near infrared transillumination device, DIAGNOcam (DC) and bitewing radiography (BW) for the detection of proximal caries. This retrospective analysis of DC and BW images of 18 students in dental medicine who had consented to the anonymous use of their dental record. The data included BW and DC images performed for a check-up in 2013, and corresponding follow-up images performed in 2015. Two observers rated 376 proximal surfaces on a 4-level dentin lesion scale and reached a unanimous rating for each surface. Calculated measures of agreement for each assessment method over time provided the reproducibility of the information obtained by each method. Agreement between 2013 and 2015 within each method was excellent (intraclass correlation coefficient, BW: 0.86, DC: 0.90). Agreement between DC and BW was similar for dentin lesion detection, but was low for enamel caries detection; DC detected more enamel caries than BW. Agreement between DC and BW was modest (0.33 in 2013 and 0.36 in 2015), chiefly because DC identified more enamel caries. This study shows that DC is as reliable as BW to detect proximal dentin lesions. DC detects proximal enamel lesions at an earlier stage than BW. DC enables clinicians to differentiate lesions limited to the enamel from lesions that have reached the enamel dentin junction. Regular monitoring with DC should help provide individualized preventive measures and early non-invasive caries management. The early detection of enamel lesions with near infrared transillumination can help clinicians undertake early non invasive treatments to prevent or slow down the progression of initial proximal lesions. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. [Progress in application of near infrared reflectance spectroscopy to the study of ruminant nutrition].

    Science.gov (United States)

    Guo, Xu-Sheng; Shang, Zhan-Huan; Fang, Xiang-Wen; Long, Rui-Jun

    2009-03-01

    The near infrared reflectance spectroscopy (NIRS) technique has been widely used in the study of ruminant nutrition with many of its operational merits such as facility, shortcut and accuracy, etc. Study suggested that the standard error of cross-validation (SECV) ranges from 1.6% to 2.8% in predicting organic matter digestion of ruminant diet by using the NIRS technique; the chemical and biological compositions and the microbial protein proportion in the duodenal digesta can be predicted accurately using the NIRS. However, the kinetic parameters of degradation are not well predicted; The prediction of intake of stall feeding animals by using NIRS is similar to the determination of in vivo method, but the standard error of prediction is about 14% when using the NIRS to predict intake of grazing animals. All of the studies suggest that big progress has been made in using NIRS technique to predict feed digestion and evaluate the diet quality and intake of ruminant animals, which also suggest that the NIRS technique has a wide prospect in the study of ruminant nutrition.

  4. Gender difference in spontaneous deception: A hyperscanning study using functional near-infrared spectroscopy.

    Science.gov (United States)

    Zhang, Mingming; Liu, Tao; Pelowski, Matthew; Yu, Dongchuan

    2017-08-08

    Previous studies have demonstrated that the neural basis of deception involves a network of regions including the medial frontal cortex (MFC), superior temporal sulcus (STS), temporo-parietal junction (TPJ), etc. However, to test the actual activity of the brain in the act of deceptive practice itself, existing studies have mainly adopted paradigms of passive deception, where participants are told to lie in certain conditions, and have focused on intra-brain mechanisms in single participants. In order to examine the neural substrates underlying more natural, spontaneous deception in real social interactions, the present study employed a functional near-infrared spectroscopy (fNIRS) hyperscanning technique to simultaneously measure pairs of participants' fronto-temporal activations in a two-person gambling card-game. We demonstrated higher TPJ activation in deceptive compared to honest acts. Analysis of participants' inter-brain correlation further revealed that the STS is uniquely involved in deception but not in honesty, especially in females. These results suggest that the STS may play a critical role in spontaneous deception due to mentalizing requirements relating to modulating opponents' thoughts. To our knowledge, this study was the first to investigate such inter-brain correlates of deception in real face-to-face interactions, and thus is hoped to provide a new path for future complex social behavior research.

  5. [Study on rapid determination and analysis of rocket kerosene by near infrared spectrum and chemometrics].

    Science.gov (United States)

    Xia, Ben-Li; Cong, Ji-Xin; Li, Xia; Wang, Xuan-Jun

    2011-06-01

    The rocket kerosene quality properties such as density, distillation range, viscosity and iodine value were successfully measured based on their near-infrared spectrum (NIRS) and chemometrics. In the present paper, more than 70 rocket kerosene samples were determined by near infrared spectrum, the models were built using the partial least squares method within the appropriate wavelength range. The correlation coefficients (R2) of every rocket kerosene's quality properties ranged from 0.862 to 0.999. Ten unknown samples were determined with the model, and the result showed that the prediction accuracy of near infrared spectrum method accords with standard analysis requirements. The new method is well suitable for replacing the traditional standard method to rapidly determine the properties of the rocket kerosene.

  6. Model study of combined electrical and near-infrared neural stimulation on the bullfrog sciatic nerve.

    Science.gov (United States)

    You, Mengxian; Mou, Zongxia

    2017-07-01

    This paper implemented a model study of combined electrical and near-infrared (808 nm) neural stimulation (NINS) on the bullfrog sciatic nerve. The model includes a COMSOL model to calculate the electric-field distribution of the surrounding area of the nerve, a Monte Carlo model to simulate light transport and absorption in the bullfrog sciatic nerve during NINS, and a NEURON model to simulate the neural electrophysiology changes under electrical stimulus and laser irradiation. The optical thermal effect is considered the main mechanism during NINS. Therefore, thermal change during laser irradiation was calculated by the Monte Carlo method, and the temperature distribution was then transferred to the NEURON model to stimulate the sciatic nerve. The effects on thermal response by adjusting the laser spot size, energy of the beam, and the absorption coefficient of the nerve are analyzed. The effect of the ambient temperature on the electrical stimulation or laser stimulation and the interaction between laser irradiation and electrical stimulation are also studied. The results indicate that the needed stimulus threshold for neural activation or inhibition is reduced by laser irradiation. Additionally, the needed laser energy for blocking the action potential is reduced by electrical stimulus. Both electrical and laser stimulation are affected by the ambient temperature. These results provide references for subsequent animal experiments and could be of great help to future basic and applied studies of infrared neural stimulation (INS).

  7. Shelf life study of egg albumin in pasteurized and non-pasteurized eggs using visible-near infrared spectroscopy

    Science.gov (United States)

    A twelve week shelf life study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. The goal of the study was to correlate the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior eg...

  8. Dynamic time warping-based averaging framework for functional near-infrared spectroscopy brain imaging studies

    Science.gov (United States)

    Zhu, Li; Najafizadeh, Laleh

    2017-06-01

    We investigate the problem related to the averaging procedure in functional near-infrared spectroscopy (fNIRS) brain imaging studies. Typically, to reduce noise and to empower the signal strength associated with task-induced activities, recorded signals (e.g., in response to repeated stimuli or from a group of individuals) are averaged through a point-by-point conventional averaging technique. However, due to the existence of variable latencies in recorded activities, the use of the conventional averaging technique can lead to inaccuracies and loss of information in the averaged signal, which may result in inaccurate conclusions about the functionality of the brain. To improve the averaging accuracy in the presence of variable latencies, we present an averaging framework that employs dynamic time warping (DTW) to account for the temporal variation in the alignment of fNIRS signals to be averaged. As a proof of concept, we focus on the problem of localizing task-induced active brain regions. The framework is extensively tested on experimental data (obtained from both block design and event-related design experiments) as well as on simulated data. In all cases, it is shown that the DTW-based averaging technique outperforms the conventional-based averaging technique in estimating the location of task-induced active regions in the brain, suggesting that such advanced averaging methods should be employed in fNIRS brain imaging studies.

  9. Near-infrared spectroscopy based neurofeedback of prefrontal cortex activity: a proof-of-concept study

    Directory of Open Access Journals (Sweden)

    Beatrix Barth

    2016-12-01

    Full Text Available Neurofeedback is a promising tool for treatment and rehabilitation of several patient groups. In this proof of principle study, near-infrared spectroscopy (NIRS based neurofeedback of frontal cortical areas was investigated in healthy adults. Main aims were the assessment of learning, the effects on performance in a working memory (n-back task and the impact of applied strategies on regulation.13 healthy participants underwent 8 sessions of NIRS based neurofeedback within two weeks to learn to voluntarily up-regulate hemodynamic activity in prefrontal areas. An n-back task in pre-/post measurements was used to monitor neurocognitive changes. Mean oxygenated hemoglobin (O2Hb amplitudes over the course of the sessions as well as during the n-back task were evaluated. 12 out of 13 participants were able to regulate their frontal hemodynamic response via NIRS neurofeedback. However, no systematic learning effects were observed in frontal O2Hb amplitudes over the training course in our healthy sample. We found an impact of applied strategies in only 5 out of 13 subjects. Regarding the n-back task, neurofeedback appeared to induce more focused and specific brain activation compared to pre-training measurement. NIRS based neurofeedback is a feasible and potentially effective method, with an impact on activation patterns in a working memory task. Ceiling effects might explain the lack of a systematic learning pattern in healthy subjects. Clinical studies are needed to show effects in patients exhibiting pathological deviations in prefrontal function.

  10. Measurement of oxyhemoglobin concentration changes in interstitial cystitis female patients: A near-infrared spectroscopy study.

    Science.gov (United States)

    Matsumoto, Shinya; Matsumoto, Shinichi; Homma, Yukio

    2015-07-01

    To investigate brain activity related to bladder sensation in interstitial cystitis patients. A total of 10 interstitial cystitis patients (all women; mean age 68 years) and 10 healthy controls (all women; mean age 64 years) participated in the present study. Frontal lobe blood flow was measured non-invasively by using multichannel near-infrared spectroscopy with large and small bladder volumes (created by infusing water) up to the first desire to void. The frontal cortex of the right and left hemisphere was activated, and the activation was detected as an increase in oxyhemoglobin concentration. The increase during the first desire to void in the interstitial cystitis group was greater than that in the control group. In addition, this difference was particularly observed in Brodmann's areas 9, 44, 45 and 46, reportedly associated with micturition and sensory modulation. The present study shows that the frontal area is largely activated during bladder filling in interstitial cystitis patients. Our findings suggest that the major change in cerebral blood flow is related to the characteristic urinary symptoms of interstitial cystitis patients. © 2015 The Japanese Urological Association.

  11. Studying hemispheric lateralization during a Stroop task through near-infrared spectroscopy-based connectivity

    Science.gov (United States)

    Zhang, Lei; Sun, Jinyan; Sun, Bailei; Luo, Qingming; Gong, Hui

    2014-05-01

    Near-infrared spectroscopy (NIRS) is a developing and promising functional brain imaging technology. Developing data analysis methods to effectively extract meaningful information from collected data is the major bottleneck in popularizing this technology. In this study, we measured hemodynamic activity of the prefrontal cortex (PFC) during a color-word matching Stroop task using NIRS. Hemispheric lateralization was examined by employing traditional activation and novel NIRS-based connectivity analyses simultaneously. Wavelet transform coherence was used to assess intrahemispheric functional connectivity. Spearman correlation analysis was used to examine the relationship between behavioral performance and activation/functional connectivity, respectively. In agreement with activation analysis, functional connectivity analysis revealed leftward lateralization for the Stroop effect and correlation with behavioral performance. However, functional connectivity was more sensitive than activation for identifying hemispheric lateralization. Granger causality was used to evaluate the effective connectivity between hemispheres. The results showed increased information flow from the left to the right hemispheres for the incongruent versus the neutral task, indicating a leading role of the left PFC. This study demonstrates that the NIRS-based connectivity can reveal the functional architecture of the brain more comprehensively than traditional activation, helping to better utilize the advantages of NIRS.

  12. A review of performance of near-infrared fluorescence imaging devices used in clinical studies

    Science.gov (United States)

    Zhu, B

    2015-01-01

    Near-infrared fluorescence (NIRF) molecular imaging holds great promise as a new “point-of-care” medical imaging modality that can potentially provide the sensitivity of nuclear medicine techniques, but without the radioactivity that can otherwise place limitations of usage. Recently, NIRF imaging devices of a variety of designs have emerged in the market and in investigational clinical studies using indocyanine green (ICG) as a non-targeting NIRF contrast agent to demark the blood and lymphatic vasculatures both non-invasively and intraoperatively. Approved in the USA since 1956 for intravenous administration, ICG has been more recently used off label in intradermal or subcutaneous administrations for fluorescence imaging of the lymphatic vasculature and lymph nodes. Herein, we summarize the devices of a variety of designs, summarize their performance in lymphatic imaging in a tabular format and comment on necessary efforts to develop standards for device performance to compare and use these emerging devices in future, NIRF molecular imaging studies. PMID:25410320

  13. Comprehensive near infrared study of Jatropha oil esterification with ethanol for biodiesel production

    Science.gov (United States)

    Oliveira, Alianda Dantas de; Sá, Ananda Franco de; Pimentel, Maria Fernanda; Pacheco, José Geraldo A.; Pereira, Claudete Fernandes; Larrechi, Maria Soledad

    2017-01-01

    This work presents a comprehensive near infrared study for in-line monitoring of the esterification reaction of high acid oils, such as Jatropha curcas oil, using ethanol. Parallel reactions involved in the process were carried out to select a spectral region that characterizes the evolution of the esterification reaction. Using absorbance intensities at 5176 cm- 1, the conversion and kinetic behaviors of the esterification reaction were estimated. This method was applied to evaluate the influence of temperature and catalyst concentration on the estimates of initial reaction rate and ester conversion as responses to a 22 factorial experimental design. Employment of an alcohol/oil ratio of 16:1, catalyst concentration of 1.5% w/w, and temperatures at 65 °C or 75 °C, made it possible to reduce the initial acidity from 18% to 1.3% w/w, which is suitable for transesterification of high free fatty acid oils for biodiesel production. Using the proposed analytical method in the esterification reaction of raw materials with high free fatty acid content for biodiesel makes the monitoring process inexpensive, fast, simple, and practical.

  14. Self-face recognition in children with autism spectrum disorders: a near-infrared spectroscopy study.

    Science.gov (United States)

    Kita, Yosuke; Gunji, Atsuko; Inoue, Yuki; Goto, Takaaki; Sakihara, Kotoe; Kaga, Makiko; Inagaki, Masumi; Hosokawa, Toru

    2011-06-01

    It is assumed that children with autism spectrum disorders (ASD) have specificities for self-face recognition, which is known to be a basic cognitive ability for social development. In the present study, we investigated neurological substrates and potentially influential factors for self-face recognition of ASD patients using near-infrared spectroscopy (NIRS). The subjects were 11 healthy adult men, 13 normally developing boys, and 10 boys with ASD. Their hemodynamic activities in the frontal area and their scanning strategies (eye-movement) were examined during self-face recognition. Other factors such as ASD severities and self-consciousness were also evaluated by parents and patients, respectively. Oxygenated hemoglobin levels were higher in the regions corresponding to the right inferior frontal gyrus than in those corresponding to the left inferior frontal gyrus. In two groups of children these activities reflected ASD severities, such that the more serious ASD characteristics corresponded with lower activity levels. Moreover, higher levels of public self-consciousness intensified the activities, which were not influenced by the scanning strategies. These findings suggest that dysfunction in the right inferior frontal gyrus areas responsible for self-face recognition is one of the crucial neural substrates underlying ASD characteristics, which could potentially be used to evaluate psychological aspects such as public self-consciousness. Copyright © 2010 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  15. Near-infrared light curves of Type Ia supernovae: studying properties of the second maximum

    Science.gov (United States)

    Dhawan, S.; Leibundgut, B.; Spyromilio, J.; Maguire, K.

    2015-04-01

    Type Ia supernovae (SNe Ia) have been proposed to be much better distance indicators at near-infrared (NIR) compared to optical wavelengths - the effect of dust extinction is expected to be lower and it has been shown that SNe Ia behave more like `standard candles' at NIR wavelengths. To better understand the physical processes behind this increased uniformity, we have studied the Y, J and H-filter light curves of 91 SNe Ia from the literature. We show that the phases and luminosities of the first maximum in the NIR light curves are extremely uniform for our sample. The phase of the second maximum, the late-phase NIR luminosity and the optical light-curve shape are found to be strongly correlated, in particular more luminous SNe Ia reach the second maximum in the NIR filters at a later phase compared to fainter objects. We also find a strong correlation between the phase of the second maximum and the epoch at which the SN enters the Lira law phase in its optical colour curve (epochs ˜ 15 to 30 d after B-band maximum). The decline rate after the second maximum is very uniform in all NIR filters. We suggest that these observational parameters are linked to the nickel and iron mass in the explosion, providing evidence that the amount of nickel synthesized in the explosion is the dominating factor shaping the optical and NIR appearance of SNe Ia.

  16. A clinical study comparing digital radiography and near-infrared transillumination in caries detection.

    Science.gov (United States)

    Berg, Stephen C; Stahl, Jonathan Miles; Lien, Wen; Slack, Casey M; Vandewalle, Kraig S

    2018-01-01

    The purpose of this study was to compare the effectiveness of detecting proximal carious lesions utilizing a new near-infrared transillumination (NIRTI) system (CariVu, Dexis) to traditional digital bitewing radiography (BWXR). Thirty patients received four posterior BWXRs and all premolars and molars were individually imaged with the NIRTI device. Sixty-seven proximal carious lesions were classified based on their depth into enamel or dentin for both BWXR and NIRTI images. The caries depth classification between the two systems were strongly correlated (r s  = 0.66; Spearman range: 0.60-0.79 = strong) and significant (P proximal caries. The NIRTI system could serve as an adjunct diagnostic system that could be used in high-caries risk programs where patients are closely monitored with regimented follow-up appointments. NIRTI could also be beneficial with pregnant or pediatric patients, and in situations where radiography may not be available such as remote humanitarian missions. © 2017 Wiley Periodicals, Inc.

  17. Study of component distribution in pharmaceutical binary powder mixtures by near infrared chemical imaging

    Directory of Open Access Journals (Sweden)

    Manel Bautista

    2012-12-01

    Full Text Available Near infrared chemical imaging (NIR-CI has recently emerged as an effective technique for extracting spatial information from pharmaceutical products in an expeditious, non-destructive and non-invasive manner. These features have turned it into a useful tool for controlling various steps in drug production processes. Imaging techniques provide a vast amount of both spatial and spectral information that can be acquired in a very short time. Such a huge amount of data requires the use of efficient and fast methods to extract the relevant information. Chemometric methods have proved especially useful for this purpose. In this study, we assessed the usefulness of the correlation coefficient (CC between the spectra of samples, the pure spectra of the active pharmaceutical ingredient (API and we assessed the excipients to check for correct ingredient distribution in pharmaceutical binary preparations blended in the laboratory. Visual information about pharmaceutical component distribution can be obtained by using the CC. The performance of this model construction methodology for binary samples was compared with other various common multivariate methods including partial least squares, multivariate curve resolution and classical least squares. Based on the results, correlation coefficients are a powerful tool for the rapid assessment of correct component distribution and for quantitative analysis of pharmaceutical binary formulations. For samples of three or more components it has been shown that if the objective is only to determine uniformity of blending, then the CC image map is very good for this, and easy and fast to compute.

  18. Near-Infrared Transcranial Radiation for Major Depressive Disorder: Proof of Concept Study.

    Science.gov (United States)

    Cassano, Paolo; Cusin, Cristina; Mischoulon, David; Hamblin, Michael R; De Taboada, Luis; Pisoni, Angela; Chang, Trina; Yeung, Albert; Ionescu, Dawn F; Petrie, Samuel R; Nierenberg, Andrew A; Fava, Maurizio; Iosifescu, Dan V

    2015-01-01

    Transcranial near-infrared radiation (NIR) is an innovative treatment for major depressive disorder (MDD), but clinical evidence for its efficacy is limited. Our objective was to investigate the tolerability and efficacy of NIR in patients with MDD. We conducted a proof of concept, prospective, double-blind, randomized study of 6 sessions of NIR versus sham treatment for patients with MDD, using a crossover design. Four patients with MDD with mean age 47 ± 14 (SD) years (1 woman and 3 men) were exposed to irradiance of 700 mW/cm(2) and a fluence of 84 J/cm(2) for a total NIR energy of 2.40 kJ delivered per session for 6 sessions. Baseline mean HAM-D17 scores decreased from 19.8 ± 4.4 (SD) to 13 ± 5.35 (SD) after treatment (t = 7.905; df = 3; P = 0.004). Patients tolerated the treatment well without any serious adverse events. These findings confirm and extend the preliminary data on NIR as a novel intervention for patients with MDD, but further clinical trials are needed to better understand the efficacy of this new treatment. This trial is registered with ClinicalTrials.gov NCT01538199.

  19. Cortical activation pattern during shoulder simple versus vibration exercises: a functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sung Ho Jang

    2017-01-01

    Full Text Available To date, the cortical effect of exercise has not been fully elucidated. Using the functional near infrared spectroscopy, we attempted to compare the cortical effect between shoulder vibration exercise and shoulder simple exercise. Eight healthy subjects were recruited for this study. Two different exercise tasks (shoulder vibration exercise using the flexible pole and shoulder simple exercise were performed using a block paradigm. We measured the values of oxygenated hemoglobin in the four regions of interest: the primary sensory-motor cortex (SM1 total, arm somatotopy, and leg and trunk somatotopy, the premotor cortex, the supplementary motor area, and the prefrontal cortex. During shoulder vibration exercise and shoulder simple exercise, cortical activation was observed in SM1 (total, arm somatotopy, and leg and trunk somatotopy, premotor cortex, supplementary motor area, and prefrontal cortex. Higher oxygenated hemoglobin values were also observed in the areas of arm somatotopy of SM1 compared with those of other regions of interest. However, no significant difference in the arm somatotopy of SM1 was observed between the two exercises. By contrast, in the leg and trunk somatotopy of SM1, shoulder vibration exercise led to a significantly higher oxy-hemoglobin value than shoulder simple exercise. These two exercises may result in cortical activation effects for the motor areas relevant to the shoulder exercise, especially in the arm somatotopy of SM1. However, shoulder vibration exercise has an additional cortical activation effect for the leg and trunk somatotopy of SM1.

  20. Intact neurovascular coupling during executive function in migraine without aura: interictal near-infrared spectroscopy study

    DEFF Research Database (Denmark)

    Schytz, H W; Ciftçi, K; Akin, A

    2010-01-01

    An altered neurovascular coupling has been proposed in migraine. We aimed to investigate neurovascular coupling during a mental task interictally in patients with migraine without aura (MO) by near-infrared spectroscopy (NIRS). Twelve migraineurs and 12 healthy controls were included. Using NIRS,...

  1. Feasibility study of utilizing simplified near infrared imaging for detecting fruit fly larvae in intact fruit

    Science.gov (United States)

    Following the previous research to classify intact mangoes infested with oriental fruit fly from the control ones using near infrared (NIR) spectra acquired by a spot-type handheld NIR instrument, an attempt to improve the sensitivity of the system by employing NIR imaging technology was conducted. ...

  2. Near-infrared spectroscopic studies of self-forming lipids and nanovesicles

    Science.gov (United States)

    Bista, Rajan K.; Bruch, Reinhard F.

    2009-02-01

    Lipids and liposomes have remained an active research topic for several decades due to their significance as membrane model. Several vibrational spectroscopic techniques have been developed and employed to study the properties of lipids and liposomes. In this study, near-infrared (NIR) spectroscopy has been used to analyze a suite of synthesized PEGylated lipids trademarked as QuSomesTM. The three amphiphiles used in this study, differ in their apolar hydrophobic chain length and contain various units of polar polyethylene glycol (PEG) head groups. In contrast to conventional phospholipids, this new kind of lipids forms liposomes spontaneously upon hydration, without the supply of external activation energy. Whilst the NIR spectra of QuSomesTM show a common pattern, differences in the spectra are observed which enable the lipids to be distinguished. NIR absorption spectra of these new artificial lipids have been recorded in the spectral range of 4800-9000 cm-1 (~2100-1100 nm) by using a new miniaturized spectrometer based on micro-optical-electro-mechanical systems (MOEMS) technology. In particular, we have established specific band structures as "molecular fingerprints" corresponding to overtones and combinations vibrational modes involving mainly C-H and O-H functional groups for sample analysis of QuSomesTM. Moreover, we have demonstrated that the nanovesicles formed by such lipids in polar solvents show high stability and obey Beer's law at low concentration. The results reported in this study may find applications in various field including the development of lipids based drug delivery systems.

  3. Interhemispheric connectivity in amyotrophic lateral sclerosis: A near-infrared spectroscopy and diffusion tensor imaging study.

    Science.gov (United States)

    Kopitzki, Klaus; Oldag, Andreas; Sweeney-Reed, Catherine M; Machts, Judith; Veit, Maria; Kaufmann, Jörn; Hinrichs, Hermann; Heinze, Hans-Jochen; Kollewe, Katja; Petri, Susanne; Mohammadi, Bahram; Dengler, Reinhard; Kupsch, Andreas R; Vielhaber, Stefan

    2016-01-01

    Aim of the present study was to investigate potential impairment of non-motor areas in amyotrophic lateral sclerosis (ALS) using near-infrared spectroscopy (NIRS) and diffusion tensor imaging (DTI). In particular, we evaluated whether homotopic resting-state functional connectivity (rs-FC) of non-motor associated cortical areas correlates with clinical parameters and disease-specific degeneration of the corpus callosum (CC) in ALS. Interhemispheric homotopic rs-FC was assessed in 31 patients and 30 healthy controls (HCs) for 8 cortical sites, from prefrontal to occipital cortex, using NIRS. DTI was performed in a subgroup of 21 patients. All patients were evaluated for cognitive dysfunction in the executive, memory, and visuospatial domains. ALS patients displayed an altered spatial pattern of correlation between homotopic rs-FC values when compared to HCs ( p  = 0.000013). In patients without executive dysfunction a strong correlation existed between the rate of motor decline and homotopic rs-FC of the anterior temporal lobes (ATLs) (ρ = - 0.85, p  = 0.0004). Furthermore, antero-temporal homotopic rs-FC correlated with fractional anisotropy in the central corpus callosum (CC), corticospinal tracts (CSTs), and forceps minor as determined by DTI ( p  < 0.05). The present study further supports involvement of non-motor areas in ALS. Our results render homotopic rs-FC as assessed by NIRS a potential clinical marker for disease progression rate in ALS patients without executive dysfunction and a potential anatomical marker for ALS-specific degeneration of the CC and CSTs.

  4. Frontal activation and connectivity using near-infrared spectroscopy: verbal fluency language study.

    Science.gov (United States)

    Chaudhary, Ujwal; Hall, Michael; DeCerce, Joe; Rey, Gustavo; Godavarty, Anuradha

    2011-02-28

    Near infrared spectroscopy (NIRS) is an optical technique with high temporal resolution and reasonably good spatial resolution, which allows non invasive measurement of the blood oxygenation of tissue. The current work is focused in assessing and correlating brain activation, connectivity and cortical lateralization of the frontal cortex in response to language-based stimuli, using NIRS. Experimental studies were performed on 15 normal right-handed adults, wherein the participants were presented with a verbal fluency task. The hemodynamic responses in the pre- and anterior frontal cortex were assessed in response to a Word generation task in comparison to the baseline random Jaw movement and Rest conditions. The functional connectivity analysis was performed using zero-order correlations and the cortical lateralization was evaluated as well. An increase in oxy- and a decrease in deoxy-hemoglobin were observed during verbal fluency task in the frontal cortex. Unlike in the pre-frontal cortex, the hemodynamic response in the anterior frontal during verbal fluency task was not significantly different from that during random Jaw movement. Bilateral activation and symmetrical connectivity were observed in the pre-frontal cortex, independent of the stimuli presented. A left cortical dominance and asymmetry connectivity was observed in the anterior frontal during the verbal fluency task. The work is focused to target the pediatric epileptic populations in the future, where understanding the brain functionality (activation, connectivity, and dominance) in response to language is essential as a part of the pre-surgical evaluation in a clinical environment. Copyright © 2011 Elsevier Inc. All rights reserved.

  5. Near-infrared fluorescence sentinel lymph node detection in gastric cancer: A pilot study

    Science.gov (United States)

    Tummers, Quirijn R J G; Boogerd, Leonora S F; de Steur, Wobbe O; Verbeek, Floris P R; Boonstra, Martin C; Handgraaf, Henricus J M; Frangioni, John V; van de Velde, Cornelis J H; Hartgrink, Henk H; Vahrmeijer, Alexander L

    2016-01-01

    AIM: To investigate feasibility and accuracy of near-infrared fluorescence imaging using indocyanine green: nanocolloid for sentinel lymph node (SLN) detection in gastric cancer. METHODS: A prospective, single-institution, phase I feasibility trial was conducted. Patients suffering from gastric cancer and planned for gastrectomy were included. During surgery, a subserosal injection of 1.6 mL ICG:Nanocoll was administered around the tumor. NIR fluorescence imaging of the abdominal cavity was performed using the Mini-FLARE™ NIR fluorescence imaging system. Lymphatic pathways and SLNs were visualized. Of every detected SLN, the corresponding lymph node station, signal-to-background ratio and histopathological diagnosis was determined. Patients underwent standard-of-care gastrectomy. Detected SLNs outside the standard dissection planes were also resected and evaluated. RESULTS: Twenty-six patients were enrolled. Four patients were excluded because distant metastases were found during surgery or due to technical failure of the injection. In 21 of the remaining 22 patients, at least 1 SLN was detected by NIR Fluorescence imaging (mean 3.1 SLNs; range 1-6). In 8 of the 21 patients, tumor-positive LNs were found. Overall accuracy of the technique was 90% (70%-99%; 95%CI), which decreased by higher pT-stage (100%, 100%, 100%, 90%, 0% for respectively Tx, T1, T2, T3, T4 tumors). All NIR-negative SLNs were completely effaced by tumor. Mean fluorescence signal-to-background ratio of SLNs was 4.4 (range 1.4-19.8). In 8 of the 21 patients, SLNs outside the standard resection plane were identified, that contained malignant cells in 2 patients. CONCLUSION: This study shows successful use of ICG:Nanocoll as lymphatic tracer for SLN detection in gastric cancer. Moreover, tumor-containing LNs outside the standard dissection planes were identified. PMID:27053856

  6. Caffeine differentially alters cortical hemodynamic activity during working memory: a near infrared spectroscopy study

    OpenAIRE

    Heilbronner, Urs; Hinrichs, Hermann; Heinze, Hans-Jochen; Zaehle, Tino

    2015-01-01

    Background Caffeine is a widely used stimulant with potentially beneficial effects on cognition as well as vasoconstrictive properties. In functional magnetic imaging research, caffeine has gained attention as a potential enhancer of the blood oxygenation level-dependent (BOLD) response. In order to clarify changes of oxy- and deoxyhemoglobin (HbO and HbR) induced by caffeine during a cognitive task, we investigated a working memory (WM) paradigm (visual 2-back) using near-infrared spectrosco...

  7. Neonatal hemodynamic response to visual cortex activity: high-density near-infrared spectroscopy study

    OpenAIRE

    Liao, Steve M.; Gregg, Nick M.; White, Brian R.; Zeff, Benjamin W.; Bjerkaas, Katelin A.; Inder, Terrie E.; Culver, Joseph P.

    2010-01-01

    The neurodevelopmental outcome of neonatal intensive care unit (NICU) infants is a major clinical concern with many infants displaying neurobehavioral deficits in childhood. Functional neuroimaging may provide early recognition of neural deficits in high-risk infants. Near-infrared spectroscopy (NIRS) has the advantage of providing functional neuroimaging in infants at the bedside. However, limitations in traditional NIRS have included contamination from superficial vascular dynamics in the s...

  8. Study on evaluation of gamma oryzanol of germinated brown rice by near infrared spectroscopy

    OpenAIRE

    Kannapot Kaewsorn; Panmanas Sirisomboon

    2014-01-01

    Germinated brown rice (GBR) is rich in gamma oryzanol which increase its consumption popularity, particularly in the health food market. The objective of this research was to apply the near infrared spectroscopy (NIRS) for evaluation of gamma oryzanol of the germinated brown rice. The germinated brown rice samples were prepared from germinated rough rice (soaked for 24 and 48 h, incubated for 0, 6, 12, 18, 24, 30 and 36 h) and purchased from local supermarkets. The germinated brown rice sampl...

  9. High Resolution Near Infrared Spectrometer to Study the Zodiacal Light Spectrum

    Science.gov (United States)

    Kutyrev, Alexander; Arendt, R.; Dwek, E.; Moseley, S. H.; Silverberg, R.; Rapchun, D.

    2007-12-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 612, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I line at 5184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program. The project is supported by NASA ROSES-APRA grant.

  10. A PARAMETERIZED GALAXY CATALOG SIMULATOR FOR TESTING CLUSTER FINDING, MASS ESTIMATION, AND PHOTOMETRIC REDSHIFT ESTIMATION IN OPTICAL AND NEAR-INFRARED SURVEYS

    International Nuclear Information System (INIS)

    Song, Jeeseon; Mohr, Joseph J.; Barkhouse, Wayne A.; Rude, Cody; Warren, Michael S.; Dolag, Klaus

    2012-01-01

    We present a galaxy catalog simulator that converts N-body simulations with halo and subhalo catalogs into mock, multiband photometric catalogs. The simulator assigns galaxy properties to each subhalo in a way that reproduces the observed cluster galaxy halo occupation distribution, the radial and mass-dependent variation in fractions of blue galaxies, the luminosity functions in the cluster and the field, and the color-magnitude relation in clusters. Moreover, the evolution of these parameters is tuned to match existing observational constraints. Parameterizing an ensemble of cluster galaxy properties enables us to create mock catalogs with variations in those properties, which in turn allows us to quantify the sensitivity of cluster finding to current observational uncertainties in these properties. Field galaxies are sampled from existing multiband photometric surveys of similar depth. We present an application of the catalog simulator to characterize the selection function and contamination of a galaxy cluster finder that utilizes the cluster red sequence together with galaxy clustering on the sky. We estimate systematic uncertainties in the selection to be at the ≤15% level with current observational constraints on cluster galaxy populations and their evolution. We find the contamination in this cluster finder to be ∼35% to redshift z ∼ 0.6. In addition, we use the mock galaxy catalogs to test the optical mass indicator B gc and a red-sequence redshift estimator. We measure the intrinsic scatter of the B gc -mass relation to be approximately log normal with σ log10M ∼0.25 and we demonstrate photometric redshift accuracies for massive clusters at the ∼3% level out to z ∼ 0.7.

  11. Hydrogen peroxide vapor cross sections: A flow cell study using laser absorption in the near infrared

    Science.gov (United States)

    Rhodes, B. L.; Ronney, P. D.; DeSain, J. D.

    2018-01-01

    The absorption spectra of vapors of concentrated hydrogen peroxide/water mixtures (without a carrier gas) were characterized at wavelengths from 1390 to 1470 nm utilizing a near-infrared diode laser. Low pressures were employed to examine these spectral features near the Doppler-broadened limit. An advantageous portion of the spectra near 1420 nm containing several distinct H2O2 peaks and one well-known H2O peak (for calibration) was identified and the cross-sections of these peaks determined. These cross section values can be employed to measure vapor-phase concentrations of H2O2 in propulsion, atmospheric chemistry, and sterilization applications.

  12. Near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Virendra Jain

    2015-01-01

    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  13. Sleep apnea termination decreases cerebral blood volume: a near-infrared spectroscopy case study

    Science.gov (United States)

    Virtanen, Jaakko; Noponen, Tommi; Salmi, Tapani; Toppila, Jussi; Meriläinen, Pekka

    2009-07-01

    Medical near-infrared spectroscopy (NIRS) can be used to estimate cerebral haemodynamic changes non-invasively. Sleep apnea is a common sleep disorder where repetitive pauses in breathing decrease the quality of sleep and exposes the individual to various health problems. We have measured oxygenated and deoxygenated haemoglobin concentration changes during apneic events in sleep from the forehead of one subject using NIRS and used principal component analysis to extract extracerebral and cortical haemodynamic changes from NIRS signals. Comparison of NIRS signals with EEG, bioimpedance, and pulse oximetry data suggests that termination of apnea leads to decreases in cerebral blood volume and flow that may be related to neurological arousal via neurovascular coupling.

  14. A near infrared spectroscopic study of the interstellar gas in the starburst core of M82

    International Nuclear Information System (INIS)

    Lester, D.F.; Carr, J.; Joy, M.; Gaffney, N.

    1990-01-01

    Researchers used the McDonald Observatory Infrared Grating Spectrometer, to complete a program of spatially resolved spectroscopy of M82. The inner 300 pc of the starburst was observed with 4 inch (50 pc) resolution. Complete J, H and K band spectra with resolution 0.0035 micron (lambda/delta lambda=620 at K) were measured at the near-infrared nucleus of the galaxy. Measurements of selected spectral features including lines of FeII, HII and H2 were observed along the starburst ridge-line, so the relative distribution of the diagnostic features could be understood. This information was used to better define the extinction towards the starburst region, the excitation conditions in the gas, and to characterize the stellar populations there

  15. Optical properties of drying wood studied by time-resolved near-infrared spectroscopy.

    Science.gov (United States)

    Konagaya, Keiji; Inagaki, Tetsuya; Kitamura, Ryunosuke; Tsuchikawa, Satoru

    2016-05-02

    We measured the optical properties of drying wood with the moisture contents ranging from 10% to 200%. By using time-resolved near-infrared spectroscopy, the reduced scattering coefficient μs' and absorption coefficient μa were determined independent of each other, providing information on the chemical and structural changes, respectively, of wood on the nanometer scale. Scattering from dry pores dominated, which allowed us to determine the drying process of large pores during the period of constant drying rate, and the drying process of smaller pores during the period of decreasing drying rate. The surface layer and interior of the wood exhibit different moisture states, which affect the scattering properties of the wood.

  16. Feasibility study on estimation of rice weevil quantity in rice stock using near-infrared spectroscopy technique

    Directory of Open Access Journals (Sweden)

    Puttinun Jarruwat

    2014-07-01

    Full Text Available Thai rice is favored by large numbers of consumers of all continents because of its excellent taste, fragrant aroma and fine texture. Among all Thai rice varieties, Thai Hommali rice is the most preferred. Classification of rice as premium quality requires that almost all grain kernels of the rice be perfectly whole with only a small quantity of foreign particles. Of all the foreign particles found in rice, rice weevils can wreck severest havoc on the quality and quantity of rice such that premium grade rice is transformed into low grade rice. It is widely known that rice millers adopt the "overdose" fumigation practice to control the birth and propagation of rice weevils, the practice of which inevitably gives rise to pesticide residues on rice which end up in the body of consumers. However, if population concentration of rice weevils could be approximated, right amounts of chemicals for fumigation would be applied and thereby no overdose is required. The objective of this study is thus to estimate the quantity of rice weevils in both milled rice and brown rice of Thai Hommali rice variety using the near infrared spectroscopy (NIRS technique. Fourier transforms near infrared (FT-NIR spectrometer was used in this research and the near-infrared wavelength range was 780–2500 nm. A total of 20 levels of rice weevil infestation with an increment of 10 from 10 to 200 mature rice weevils were applied to 1680 rice samples. The spectral data and quantity of weevils are analyzed by partial least square regression (PLSR to establish the model for prediction. The results show that the model is able to estimate the quantity of weevils in milled Hommali rice and brown Hommali rice with high $R_{\\rm val}^{2}$ of 0.96 and 0.90, high RPD of 6.07 and 3.26 and small bias of 2.93 and 2.94, respectively.

  17. Simultaneous functional near-infrared brain imaging and event-related potential studies of Stroop effect

    Science.gov (United States)

    Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui

    2009-02-01

    Functional near-infrared brain imaging (fNIRI) and event-related potential (ERP) were used simultaneous to detect the prefrontal cortex (PFC) which is considered to execute cognitive control of the subjects while performing the Chinese characters color-word matching Stroop task with event-related design. The fNIRI instrument is a portable system operating at three wavelengths (735nm & 805nm &850nm) with continuous-wave. The event-related potentials were acquired by Neuroscan system. The locations of optodes corresponding to the electrodes were defined four areas symmetrically. In nine native Chinese-speaking fit volunteers, fNIRI measured the hemodynamic parameters (involving oxy-/deoxy- hemoglobin) changes when the characteristic waveforms (N500/P600) were recorded by ERP. The interference effect was obvious as a longer reaction time for incongruent than congruent and neutral stimulus. The responses of hemodynamic and electrophysiology were also stronger during incongruent compared to congruent and neutral trials, and these results are similar to those obtained with fNIRI or ERP separately. There are high correlations, even linear relationship, in the two kinds of signals. In conclusion, the multi-modality approach combining of fNIRI and ERP is feasible and could obtain more cognitive function information with hemodynamic and electrophysiology signals. It also provides a perspective to prove the neurovascular coupling mechanism.

  18. Caffeine differentially alters cortical hemodynamic activity during working memory: a near infrared spectroscopy study.

    Science.gov (United States)

    Heilbronner, Urs; Hinrichs, Hermann; Heinze, Hans-Jochen; Zaehle, Tino

    2015-10-01

    Caffeine is a widely used stimulant with potentially beneficial effects on cognition as well as vasoconstrictive properties. In functional magnetic imaging research, caffeine has gained attention as a potential enhancer of the blood oxygenation level-dependent (BOLD) response. In order to clarify changes of oxy- and deoxyhemoglobin (HbO and HbR) induced by caffeine during a cognitive task, we investigated a working memory (WM) paradigm (visual 2-back) using near-infrared spectroscopy (NIRS). Behaviorally, caffeine had no effect on the WM performance but influenced reaction times in the 0-back condition. NIRS data demonstrate caffeine-dependent alterations of the course of the hemodynamic response. The intake of 200 mg caffeine caused a significant decrease of the HbO response between 20 and 40 s after the onset of a 2-back task in the bilateral inferior frontal cortex (IFC). In parallel, the HbR response of the left IFC was significantly increased due to caffeine intake. In line with previous results, we did not detect an effect of caffeine on most aspects of behavior. Effects of caffeine on brain vasculature were detected as general reduction of HbO. Neuronal effects of caffeine are reflected in an increased concentration of HbR in the left hemisphere when performing a verbal memory task and suggest influences on metabolism.

  19. Neonatal hemodynamic response to visual cortex activity: high-density near-infrared spectroscopy study

    Science.gov (United States)

    Liao, Steve M.; Gregg, Nick M.; White, Brian R.; Zeff, Benjamin W.; Bjerkaas, Katelin A.; Inder, Terrie E.; Culver, Joseph P.

    2010-03-01

    The neurodevelopmental outcome of neonatal intensive care unit (NICU) infants is a major clinical concern with many infants displaying neurobehavioral deficits in childhood. Functional neuroimaging may provide early recognition of neural deficits in high-risk infants. Near-infrared spectroscopy (NIRS) has the advantage of providing functional neuroimaging in infants at the bedside. However, limitations in traditional NIRS have included contamination from superficial vascular dynamics in the scalp. Furthermore, controversy exists over the nature of normal vascular, responses in infants. To address these issues, we extend the use of novel high-density NIRS arrays with multiple source-detector distances and a superficial signal regression technique to infants. Evaluations of healthy term-born infants within the first three days of life are performed without sedation using a visual stimulus. We find that the regression technique significantly improves brain activation signal quality. Furthermore, in six out of eight infants, both oxy- and total hemoglobin increases while deoxyhemoglobin decreases, suggesting that, at term, the neurovascular coupling in the visual cortex is similar to that found in healthy adults. These results demonstrate the feasibility of using high-density NIRS arrays in infants to improve signal quality through superficial signal regression, and provide a foundation for further development of high-density NIRS as a clinical tool.

  20. STUDY OF CHARACTERISTICS OF SPECTRAL INTERFERENCE SIGNALS IN THE NEAR INFRARED SPECTRAL RANGE

    Directory of Open Access Journals (Sweden)

    I. P. Gurov

    2014-01-01

    Full Text Available Peculiarities of signals formation in spectral interferometry and optical coherence tomography are considered. Basic relations are given defining minimal depth coordinate value of an investigated object, where single period of spectral interference signal is acquired and a value of the wave length increment set according to the depth range, where spectral interference signals are registered. The estimate of resolving power of the spectral interfereometry and optical coherence tomography systems with tunable wave length is given taking into account a spectral range of wave length tuning. It is shown that the ratio of the wave length mean value and the range of the wave length tuning defines the resolving power in depth of an investigated object, while the maximum depth range, within which investigation of an object’s micro structure by the spectral optical coherence tomography is possible does not depend on the range of the wave length tuning being determined by the wave length (wave number tuning step. Numerical estimates of the parameters mentioned above are presented when using light sources in near infrared range, as well as relations and estimates of interference fringe visibility dependent on registered relative intensity of a measuring wave.

  1. Prefrontal cerebral blood volume patterns while playing video games--a near-infrared spectroscopy study.

    Science.gov (United States)

    Nagamitsu, Shinichiro; Nagano, Miki; Yamashita, Yushiro; Takashima, Sachio; Matsuishi, Toyojiro

    2006-06-01

    Video game playing is an attractive form of entertainment among school-age children. Although this activity reportedly has many adverse effects on child development, these effects remain controversial. To investigate the effect of video game playing on regional cerebral blood volume, we measured cerebral hemoglobin concentrations using near-infrared spectroscopy in 12 normal volunteers consisting of six children and six adults. A Hitachi Optical Topography system was used to measure hemoglobin changes. For all subjects, the video game Donkey Kong was played on a Game Boy device. After spectroscopic probes were positioned on the scalp near the target brain regions, the participants were asked to play the game for nine periods of 15s each, with 15-s rest intervals between these task periods. Significant increases in bilateral prefrontal total-hemoglobin concentrations were observed in four of the adults during video game playing. On the other hand, significant decreases in bilateral prefrontal total-hemoglobin concentrations were seen in two of the children. A significant positive correlation between mean oxy-hemoglobin changes in the prefrontal region and those in the bilateral motor cortex area was seen in adults. Playing video games gave rise to dynamic changes in cerebral blood volume in both age groups, while the difference in the prefrontal oxygenation patterns suggested an age-dependent utilization of different neural circuits during video game tasks.

  2. Monitoring brain temperature by time-resolved near-infrared spectroscopy: pilot study

    Science.gov (United States)

    Bakhsheshi, Mohammad Fazel; Diop, Mamadou; St. Lawrence, Keith; Lee, Ting-Yim

    2014-05-01

    Mild hypothermia (HT) is an effective neuroprotective strategy for a variety of acute brain injuries. However, the wide clinical adaptation of HT has been hampered by the lack of a reliable noninvasive method for measuring brain temperature, since core measurements have been shown to not always reflect brain temperature. The goal of this work was to develop a noninvasive optical technique for measuring brain temperature that exploits both the temperature dependency of water absorption and the high concentration of water in brain (80%-90%). Specifically, we demonstrate the potential of time-resolved near-infrared spectroscopy (TR-NIRS) to measure temperature in tissue-mimicking phantoms (in vitro) and deep brain tissue (in vivo) during heating and cooling, respectively. For deep brain tissue temperature monitoring, experiments were conducted on newborn piglets wherein hypothermia was induced by gradual whole body cooling. Brain temperature was concomitantly measured by TR-NIRS and a thermocouple probe implanted in the brain. Our proposed TR-NIRS method was able to measure the temperature of tissue-mimicking phantoms and brain tissues with a correlation of 0.82 and 0.66 to temperature measured with a thermometer, respectively. The mean difference between the TR-NIRS and thermometer measurements was 0.15°C±1.1°C for the in vitro experiments and 0.5°C±1.6°C for the in vivo measurements.

  3. A functional near-infrared spectroscopy study of the effects of configural properties on sustained attention.

    Science.gov (United States)

    de Joux, Neil R; Wilson, Kyle M; Russell, Paul N; Finkbeiner, Kristin M; Helton, William S

    2017-01-08

    Forty-five participants performed a vigilance task during which they were required to respond to a critical signal at a local feature level, while the global display was altered between groups (either a circle, a circle broken apart and reversed, or a reconnected figure). The shape in two of the groups formed a configurative whole (the circle and reconnected conditions), while the remaining shape had no complete global element (broken circle). Performance matched the results found in the previous experiments using this stimulus set, where a configural superiority effect was found to influence accuracy over time. Physiological data, measured using functional near-infrared spectroscopy, revealed elevated activation in the right pre-frontal cortex compared to the left pre-frontal cortex during the task. Additionally, bilateral activation was found in the conditions that formed configurative wholes, while hemispheric differences over time were found in the condition that did not. These findings suggest that configural aspects of stimuli may explain why non-typical laterality effects have been found in similar research. Copyright © 2016 Elsevier Ltd. All rights reserved.

  4. Study on evaluation of gamma oryzanol of germinated brown rice by near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Kannapot Kaewsorn

    2014-07-01

    Full Text Available Germinated brown rice (GBR is rich in gamma oryzanol which increase its consumption popularity, particularly in the health food market. The objective of this research was to apply the near infrared spectroscopy (NIRS for evaluation of gamma oryzanol of the germinated brown rice. The germinated brown rice samples were prepared from germinated rough rice (soaked for 24 and 48 h, incubated for 0, 6, 12, 18, 24, 30 and 36 h and purchased from local supermarkets. The germinated brown rice samples were subjected to NIR scanning before the evaluation of gamma oryzanol by using partial extraction methodology. The prediction model was established by partial least square regression (PLSR and validated by full cross validation method. The NIRS model established from various varieties of germinated brown rice bought from different markets by first derivatives+vector normalization pretreated spectra showed the optimal prediction with the correlation of determination (R2, root mean squared error of cross validation (RMSECV and bias of 0.934, 8.84 × 10-5 mg/100 g dry matter and 1.06 × 10-5 mg/100 g dry matter, respectively. This is the first report on the application of NIRS in the evaluation of gamma oryzanol of the germinated brown rice. This information is very useful to the germinated brown rice production factory and consumers.

  5. Quantitative wound healing studies using a portable, low cost, handheld near-infrared optical scanner: preliminary sensitivity and specificity analysis

    Science.gov (United States)

    Lei, Jiali; Rodriguez, Suset; Jayachandran, Maanasa; Solis, Elizabeth; Gonzalez, Stephanie; Perez-Clavijo, Francesco; Wigley, Stephen; Godavarty, Anuradha

    2016-03-01

    Lower extremity ulcers are devastating complications that are still un-recognized. To date, clinicians employ visual inspection of the wound site during its standard 4-week of healing process via monitoring of surface granulation. A novel ultra-portable near-infrared optical scanner (NIROS) has been developed at the Optical Imaging Laboratory that can perform non-contact 2D area imaging of the wound site. From preliminary studies it was observed that the nonhealing wounds had a greater absorption contrast with respect to the normal site, unlike in the healing wounds. Currently, non-contact near-infrared (NIR) imaging studies were carried out on 22 lower extremity wounds at two podiatric clinics, and the sensitivity and specificity of the scanner evaluated. A quantitative optical biometric was developed that differentiates healing from non-healing wounds, based on the threshold values obtained during ROC analysis. In addition, optical images of the wound obtained from weekly imaging studies are also assessed to determine the ability of the device to predict wound healing consistently on a periodic basis. This can potentially impact early intervention in the treatment of lower extremity ulcers when an objective and quantitative wound healing approach is developed. Lastly, the incorporation of MATLAB graphical user interface (GUI) to automate the process of image acquisition, image processing and image analysis realizes the potential of NIROS to perform non-contact and real-time imaging on lower extremity wounds.

  6. Transscrotal Near Infrared Spectroscopy as a Diagnostic Test for Testis Torsion in Pediatric Acute Scrotum: A Prospective Comparison to Gold Standard Diagnostic Test Study.

    Science.gov (United States)

    Schlomer, Bruce J; Keays, Melise A; Grimsby, Gwen M; Granberg, Candace F; DaJusta, Daniel G; Menon, Vani S; Ostrov, Lauren; Sheth, Kunj R; Hill, Martinez; Sanchez, Emma J; Harrison, Clanton B; Jacobs, Micah A; Huang, Rong; Burgu, Berk; Hennes, Halim; Baker, Linda A

    2017-09-01

    A rapid test for testicular torsion in children may obviate the delay for testicular ultrasound. In this study we assessed testicular tissue percent oxygen saturation (%StO2) measured by transscrotal near infrared spectroscopy as a diagnostic test for pediatric testicular torsion. This was a prospective comparison to a gold standard diagnostic test study that evaluated near infrared spectroscopy %StO2 readings to diagnose testicular torsion. The gold standard for torsion diagnosis was standard clinical care. From 2013 to 2015 males with acute scrotum for more than 1 month and who were less than 18 years old were recruited. Near infrared spectroscopy %StO2 readings were obtained for affected and unaffected testes. Near infrared spectroscopy Δ%StO2 was calculated as unaffected minus affected reading. The utility of near infrared spectroscopy Δ%StO2 to diagnose testis torsion was described with ROC curves. Of 154 eligible patients 121 had near infrared spectroscopy readings. Median near infrared spectroscopy Δ%StO2 in the 36 patients with torsion was 2.0 (IQR -4.2 to 9.8) vs -1.7 (IQR -8.7 to 2.0) in the 85 without torsion (p=0.004). AUC for near infrared spectroscopy as a diagnostic test was 0.66 (95% CI 0.55-0.78). Near infrared spectroscopy Δ%StO2 of 20 or greater had a positive predictive value of 100% and a sensitivity of 22.2%. Tanner stage 3-5 cases without scrotal edema or with pain for 12 hours or less had an AUC of 0.91 (95% CI 0.86-1.0) and 0.80 (95% CI 0.62-0.99), respectively. In all children near infrared spectroscopy readings had limited utility in diagnosing torsion. However, in Tanner 3-5 cases without scrotal edema or with pain 12 hours or less, near infrared spectroscopy discriminated well between torsion and nontorsion. Copyright © 2017 American Urological Association Education and Research, Inc. Published by Elsevier Inc. All rights reserved.

  7. Near-infrared spectroscopy for cocrystal screening. A comparative study with Raman spectroscopy.

    Science.gov (United States)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad; Cornett, Claus; Rasmussen, Morten A; van den Berg, Frans; de Diego, Heidi Lopez; Rantanen, Jukka

    2008-10-15

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative methods. In the case of saccharin, liquid-assisted cogrinding as well as cocrystallization from solution resulted in a stable 1:1 cocrystalline phase termed IND-SAC cocrystal. For l-aspartic acid, the solution-based method resulted in a polymorphic transition of indomethacin into the metastable alpha form retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis (PCA) was applied. Successful use of NIR/PCA was possible only through the inclusion of a set of reference mixtures of parent and guest molecules representing possible solid-state outcomes from the cocrystal screening. The practical hurdle related to the need for reference mixtures seems to restrict the applicability of NIR spectroscopy in cocrystal screening.

  8. Near-infrared luminescent cubic silicon carbide nanocrystals for in vivo biomarker applications: an ab initio Study

    Science.gov (United States)

    Gali, Adam; Zólyomi, Viktor; Somogyi, Bálint

    2013-03-01

    Small molecule-sized fluorescent emitters are needed as probes to image and track the locations of targeted nano-sized objects with minimal perturbation, and are much sought-after to probe biomolecules in living cells. For in vivo biological imaging, fluorescent biomarkers have to meet the following stringent requirements: (i) they should be non-toxic and bioinert, (ii) their hydrodynamical size should be sufficiently small for clearance, (iii) they should be photo-stable. Furthermore, it is highly desirable that (iv) they have intense, stable emission in the near-infrared range, and (v) they can be produced in relatively large amount for biological studies. Here we report time-density functional calculations on SiC-based QDs in the aspect of in vivo biological imaging applications. We find that Si-vacancy, divacancy, as well as single metal dopants such as Vanadium (V), Molybdenum (Mo) and Tungsten (W) in molecule-sized (1-2 nm) SiC QDs emit light efficiently in the near-infrared range. Furthermore, their emission wavelength varies on the size of host SiC QDs at less extent than that of pristine SiC QDs, thus sharper emission spectrum is expected even in a disperse size distribution of these QDs. These fluorescent SiC QDs are paramagnetic in the ground state. EU FP7 DIAMANT (Grant No. 270197)

  9. Validation of a near infrared microscopy method for the detection of animal products in feedingstuffs: results of a collaborative study.

    Science.gov (United States)

    Boix, A; Fernández Pierna, J A; von Holst, C; Baeten, V

    2012-01-01

    The performance characteristics of a near infrared microscopy (NIRM) method, when applied to the detection of animal products in feedingstuffs, were determined via a collaborative study. The method delivers qualitative results in terms of the presence or absence of animal particles in feed and differentiates animal from vegetable feed ingredients on the basis of the evaluation of near infrared spectra obtained from individual particles present in the sample. The specificity ranged from 86% to 100%. The limit of detection obtained on the analysis of the sediment fraction, prepared as for the European official method, was 0.1% processed animal proteins (PAPs) in feed, since all laboratories correctly identified the positive samples. This limit has to be increased up to 2% for the analysis of samples which are not sedimented. The required sensitivity for the official control is therefore achieved in the analysis of the sediment fraction of the samples where the method can be applied for the detection of the presence of animal meal. Criteria for the classification of samples, when fewer than five spectra are found, as being of animal origin needs to be set up in order to harmonise the approach taken by the laboratories when applying NIRM for the detection of the presence of animal meal in feed.

  10. Dehydration studies using a novel multichamber microscale fluid bed dryer with in-line near-infrared measurement

    DEFF Research Database (Denmark)

    Räsänen, Eetu; Rantanen, Jukka; Mannermaa, Jukka-Pekka

    2003-01-01

    The purpose of this research was to study the effect of two process parameters (temperature and moisture content) on dehydration behavior of different materials using a novel multichamber microscale fluid bed dryer with a process air control unit and in-line near-infrared (NIR) spectroscopy...... spectra and moisture contents of studied materials. During fluid bed drying, the stepwise dehydration of materials was observed by the water content difference of inlet and outlet air, the pressure difference over the bed, and the in-line NIR spectroscopy. The off-line analysis confirmed the state...... of solid materials. The temperature and the moisture content of the process air were demonstrated to be significant factors for the solid-state stability of theophylline. The presented setup is a material and cost-saving approach for studying the influence of different process parameters on dehydration...

  11. A tale of two methods: combining near-infrared spectroscopy with MRI for studies of brain oxygenation and metabolism.

    Science.gov (United States)

    Dunn, Jeff F; Nathoo, Nabeela; Yang, Runze

    2014-01-01

    Combining magnetic resonance imaging (MRI) with near-infrared spectroscopy (NIRS) leads to excellent synergies which can improve the interpretation of either method and can provide novel data with respect to measuring brain oxygenation and metabolism. MRI has good spatial resolution, can detect a range of physiological parameters and is sensitive to changes in deoxyhemoglobin content. NIRS has lower spatial resolution, but can detect, and with specific technologies, quantify, deoxyhemoglobin, oxyhemoglobin, total hemoglobin and cytochrome oxidase. This paper reviews the application of both methods, as a multimodal technology, for assessing changes in brain oxygenation that may occur with changes in functional activation state or metabolic rate. Examples of hypoxia and ischemia are shown. Data support the concept of reduced metabolic rate resulting from hypoxia/ischemia and that metabolic rate in brain is not close to oxygen limitation during normoxia. We show that multimodal MRI and NIRS can provide novel information for studies of brain metabolism.

  12. Role of excipients in hydrate formation kinetics of theophylline in wet masses studied by near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Jørgensen, Anna C; Airaksinen, Sari; Karjalainen, Milja

    2004-01-01

    . Anhydrous theophylline was chosen as the hydrate-forming model drug compound and two excipients, silicified microcrystalline cellulose (SMCC) and alpha-lactose monohydrate, with different water absorbing properties, were used in formulation. An early stage of wet massing was studied with anhydrous...... theophylline and its 1:1 (w/w) mixtures with alpha-lactose monohydrate and SMCC with 0.1g/g of purified water. The changes in the state of water were monitored using near-infrared spectroscopy, and the conversion of the crystal structure was verified using X-ray powder diffraction (XRPD). SMCC decreased...... the hydrate formation rate by absorbing water, but did not inhibit it. The results suggest that alpha-lactose monohydrate slightly increased the hydrate formation rate in comparison with a mass comprising only anhydrous theophylline....

  13. Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole

    2011-01-01

    of the NIRS and ABP signals (i.e. correlation in the frequency domain) detects impairment of CA, whereas gain (i.e. magnitude of ABP variability passing from systemic to cerebral circulation) estimates the degree of this impairment. So far, however, this method has not been validated. In 12 newborn piglets......Impaired cerebral autoregulation (CA) is common and is associated with brain damage in sick neonates. Frequency analysis using spontaneous changes in arterial blood pressure (ABP) and cerebral near-infrared spectroscopy (NIRS) has been used to measure CA in several clinical studies. Coherence......, we compared NIRS-derived measures of CA with a conventional measure of CA: cerebral blood flow was measured by laser Doppler flowmetry, and changes in ABP were induced by inflating a thoracic aorta balloon. CA capacity was calculated as %¿CVR/%¿ABP (i.e. percentage of full autoregulatory capacity...

  14. Applicability of near-infrared spectroscopy to measure cerebral autoregulation noninvasively in neonates: a validation study in piglets

    DEFF Research Database (Denmark)

    Holst Hahn, Gitte; Heiring, Christian; Pryds, Ole

    2011-01-01

    of the NIRS and ABP signals (i.e. correlation in the frequency domain) detects impairment of CA, whereas gain (i.e. magnitude of ABP variability passing from systemic to cerebral circulation) estimates the degree of this impairment. So far, however, this method has not been validated. In 12 newborn piglets......Impaired cerebral autoregulation (CA) is common and is associated with brain damage in sick neonates. Frequency analysis using spontaneous changes in arterial blood pressure (ABP) and cerebral near-infrared spectroscopy (NIRS) has been used to measure CA in several clinical studies. Coherence......, we compared NIRS-derived measures of CA with a conventional measure of CA: cerebral blood flow was measured by laser Doppler flowmetry, and changes in ABP were induced by inflating a thoracic aorta balloon. CA capacity was calculated as %ΔCVR/%ΔABP (i.e. percentage of full autoregulatory capacity...

  15. PREFRONTAL CORTEX ACTIVATION DURING STORY ENCODING/RETRIEVAL: A MULTI-CHANNEL FUNCTIONAL NEAR-INFRARED SPECTROSCOPY STUDY

    Directory of Open Access Journals (Sweden)

    Sara eBasso Moro

    2013-12-01

    Full Text Available Encoding, storage and retrieval constitute three fundamental stages in information processing and memory. They allow for the creation of new memory traces, the maintenance and the consolidation of these traces over time, and the access and recover of the stored information from short or long-term memory. Functional near-infrared spectroscopy (fNIRS is a non-invasive neuroimaging technique that measures concentration changes of oxygenated-hemoglobin (O2Hb and deoxygenated-hemoglobin (HHb in cortical microcirculation blood vessels by means of the characteristic absorption spectra of hemoglobin in the near-infrared range. In the present study, we monitored, using a sixteen-channel fNIRS system, the hemodynamic response during the encoding and retrieval processes (EP and RP, respectively over the prefrontal cortex (PFC of thirteen healthy subjects (27.2±2.6 y. while were performing the Logical Memory Test (LMT of the Wechsler Memory Scale. A LMT-related PFC activation was expected; specifically, it was hypothesized a neural dissociation between EP and RP. The results showed a heterogeneous O2Hb/HHb response over the mapped area during the EP and the RP, with a O2Hb progressive and prominent increment in ventrolateral PFC since the beginning of the EP. During the RP a broader activation, including the ventrolateral PFC, the dorsolateral PFC and the frontopolar cortex, was observed. This could be explained by the different contributions of the PFC regions in the EP and the RP. Considering the fNIRS applicability for the hemodynamic monitoring during the LMT performance, this study has demonstrated that fNIRS could be utilized as a valuable clinical diagnostic tool, and that it has the potential to be adopted in patients with cognitive disorders or slight working memory deficits.

  16. Enhanced Divergent Thinking and Creativity in Musicians: A Behavioral and Near-Infrared Spectroscopy Study

    Science.gov (United States)

    Gibson, Crystal; Folley, Bradley S.; Park, Sohee

    2009-01-01

    Empirical studies of creativity have focused on the importance of divergent thinking, which supports generating novel solutions to loosely defined problems. The present study examined creativity and frontal cortical activity in an externally-validated group of creative individuals (trained musicians) and demographically matched control…

  17. Reduced prefrontal activation during verbal fluency task in chronic insomnia disorder: a multichannel near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Sun JJ

    2017-06-01

    Full Text Available Jing-Jing Sun,1,2 Xiao-Min Liu,2 Chen-Yu Shen,2 Xiao-Qian Zhang,1,2 Gao-Xiang Sun,2 Kun Feng,2 Bo Xu,2 Xia-Jin Ren,1,2 Xiang-Yun Ma,1,2 Po-Zi Liu2 1Medical Center, Tsinghua University, Beijing, China, 2Department of Psychiatry, YuQuan Hospital, Tsinghua University, Beijing, China Purpose: Daytime complaints such as memory and attention deficits and failure to accomplish daily tasks are common in insomnia patients. However, objective psychological tests to detect cognitive impairment are equivocal. Neural function associated with cognitive performance may explain the discrepancy. The aim of this study was to investigate the hemodynamic response patterns of patients with chronic insomnia disorder (CID using the noninvasive and low-cost functional neuroimaging technique of multichannel near-infrared spectroscopy (NIRS in order to identify changes of neural function associated with cognitive performance.Patients and methods: Twenty-four CID patients and twenty-five healthy controls matched for age, right-hand dominance, educational level, and gender were examined during verbal fluency tasks (VFT using NIRS. A covariance analysis was conducted to analyze differences of oxygenated hemoglobin (oxy-Hb changes in prefrontal cortex (PFC between the two groups and reduce the influence of the severity of depression. Pearson correlation coeffcients were calculated to examine the relationship between the oxy-Hb changes, with the severity of insomnia and depressive symptoms assessed by the Pittsburgh Sleep Quality Index (PSQI and the Hamilton Rating Scale for Depression (HAMD.Results: The number of words generated during the VFT in CID groups showed no statistical differences with healthy controls. CID patients showed hypoactivation in the PFC during the cognitive task. In addition, we found that the function of left orbitofrontal cortex (OFC during the VFT was significantly negatively correlated with the PSQI scores and the function of right dorsolateral PFC

  18. Near Infrared Imaging as a Diagnostic Tool for Detecting Enamel Demineralization: An in vivo Study

    Science.gov (United States)

    Lucas, Seth Adam

    Background and Objectives: For decades there has been an effort to develop alternative optical methods of imaging dental decay utilizing non-ionizing radiation methods. The purpose of this in-vivo study was to demonstrate whether NIR can be used as a diagnostic tool to evaluate dental caries and to compare the sensitivity and specificity of this method with that of conventional methods, including bitewing x-rays and visual inspection. Materials and Methods: 31 test subjects (n=31) from the UCSF orthodontic clinic undergoing orthodontic treatment with planned premolar extractions were recruited. Calibrated examiners performed caries detection examinations using conventional methods: bitewing radiographs and visual inspection. These findings were compared with the results from NIR examinations: transillumination and reflectance. To confirm the results found in the two different detection methods, a gold standard was used. After teeth were extracted, polarized light microscopy and transverse microradiography were performed. Results: A total of 87 premolars were used in the study. NIR identified the occlusal lesions with a sensitivity of 71% and a specificity of 77%, whereas, the visual examination had a sensitivity of only 40% and a specifity of 39%. For interproximal lesions halfway to DEJ, specificity remained constant, but sensitivity improved to 100% for NIR and 75% for x-rays. Conclusions: The results of this preliminary study demonstrate that NIR is just as effective at detecting enamel interproximal lesions as standard dental x-rays. NIR was more effective at detecting occlusal lesions than visual examination alone. NIR shows promise as an alternative diagnostic tool to the conventional methods of x-rays and visual examination and provides a non-ionizing radiation technique.

  19. Near-infrared imaging loaded polymeric nanoparticles: in vitro and in vivo studies

    Science.gov (United States)

    Lei, Tingjun; Manchanda, Romila; Huang, Yen-Chih; Fernandez-Fernandez, Alicia; Bunetska, Karina; Milera, Andrew; Sarmiento, Azael; McGoron, Anthony J.

    2013-02-01

    Introduction: Recent research has focused on developing new biomaterials for delivery of imaging agents and drugs. In our study, we report a new biocompatible and biodegradable polymer, termed poly(glycerol-co-malic-dodecanoate) (PGMD), which was then used for synthesis of nanoparticles (NPs) and loading of NIR dyes. Methods: The PGMD polymer was synthesized via thermal condensation method and was characterized by FTIR. The NPs were synthesized via o/w single emulsion technique. IR820 was chosen as the NIR dye. The loading efficiency of IR820 in PGMD NPs was measured by spectrophotometer. The release of IR820 was estimated with a spectrofluorometer in different pH phosphate buffered saline. The cytotoxicity of NPs was estimated through a Sulforhodamine B colorimetric assay. A biodistribution and pharmacokinetics study of the NPs versus free IR820 was performed in a murine model (n=12) after i.v. injection. Plasma samples were collected at time points 15-30-60 minutes and 24 hours. Organ samples were also collected and measured at the 24-hour time point. Results and Discussion: Void PGMD NPs and IR820-PGMD NPs had mean sizes around 90 nm and 110 nm, respectively. FTIR showed that polyester bonds were forming in the PGMD polymer. The release of IR820 was increased in acidic buffer (pH=5.0) as compared to neutral buffer (pH=7.4), indicating that the release of IR820 is controllable. Cellular uptake studies showed comparable fluorescence of IR820-PGMD NPs to free IR820 (5 μM) after 24-hour exposure. IR820-PGMD NPs induced significant cancer cell killing after laser exposure due to the photothermal effect of the dye. In vivo studies showed that the IR820 in NPs formulation has a longer plasma half-life than free IR820, providing longer imaging collection times for cancer diagnostics, and potentially widening the window for hyperthermia applications. Conclusion: We expect that ease of synthesis and good biocompatibility make PGMD a good candidate for numerous imaging

  20. Near-infrared study of new embedded clusters in the Carina complex

    Science.gov (United States)

    Oliveira, R. A. P.; Bica, E.; Bonatto, C.

    2018-02-01

    We analyse the nature of a sample of stellar overdensities that we found projected on the Carina complex. This study is based on 2MASS photometry and involves the photometry decontamination of field stars, elaboration of intrinsic colour-magnitude diagrams J × (J - Ks), colour-colour diagrams (J - H) × (H - Ks) and radial density profiles, in order to determine the structure and the main astrophysical parameters of the best candidates. The verification of an overdensity as an embedded cluster requires a CMD consistent with a PMS content and MS stars, if any. From these results, we are able to verify if they are, in fact, embedded clusters. The results were, in general, rewarding: in a sample of 101 overdensities, the analysis provided 15 candidates, of which three were previously catalogued as clusters (CCCP-Cl 16, Treasure Chest and FSR 1555), and the 12 remaining are discoveries that provided significant results, with ages not above 4.5 Myr and distances compatible with the studied complex. The resulting values for the differential reddening of most candidates were relatively high, confirming that these clusters are still (partially or fully) embedded in the surrounding gas and dust, as a rule within a shell. Histograms with the distribution of the masses, ages and distances were also produced, to give an overview of the results. We conclude that all the 12 newly found embedded clusters are related to the Carina complex.

  1. Effect of low-level light therapy on diabetic foot ulcers: a near-infrared spectroscopy study

    Science.gov (United States)

    Salvi, Massimo; Rimini, Daniele; Molinari, Filippo; Bestente, Gianni; Bruno, Alberto

    2017-03-01

    Diabetic foot ulcer (DFU) is a diabetic complication due to peripheral vasculopathy and neuropathy. A promising technology for wound healing in DFU is low-level light therapy (LLLT). Despite several studies showing positive effects of LLLT on DFU, LLLT's physiological effects have not yet been studied. The objective of this study was to investigate vascular and nervous systems modification in DFU after LLLT. Two samples of 45 DFU patients and 11 healthy controls (HCs) were recruited. The total hemoglobin (totHb) concentration change was monitored before and after LLLT by near-infrared spectroscopy and analyzed in time and frequency domains. The spectral power of the totHb changes in the very-low frequency (VLF, 20 to 60 mHz) and low frequency (LF, 60 to 140 mHz) bandwidths was calculated. Data analysis revealed a mean increase of totHb concentration after LLLT in DFU patients, but not in HC. VLF/LF ratio decreased significantly after the LLLT period in DFU patients (indicating an increased activity of the autonomic nervous system), but not in HC. Eventually, different treatment intensities in LLLT therapy showed a different response in DFU. Overall, our results demonstrate that LLLT improves blood flow and autonomic nervous system regulation in DFU and the importance of light intensity in therapeutic protocols.

  2. Activation of olfactory cortex in newborn infants after odor stimulation: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Bartocci, M; Winberg, J; Ruggiero, C; Bergqvist, L L; Serra, G; Lagercrantz, H

    2000-07-01

    In mammals, perception of smells during the first hours of life is an essential prerequisite for adaptation of the newborn to the new extrauterine world. Functional magnetic resonance studies have shown that olfactory impression is processed in the lateral and anterior orbito-frontal gyri of the frontal lobe. Near-infrared spectroscopy (NIRS) can detect changes in oxygenated [Hb O2], and deoxygenated [Hb H] Hb during cortical activation. The aim of this study was to assess by NIRS olfactory cortex activity in newborn infants receiving olfactory stimuli. Twelve males and 11 females were studied when awake at 6 h to 8 d after birth. NIRS monitoring was carried out using two optodes placed above the left anterior orbito-frontal gyri. Each newborn was exposed for 30 s to two different smell stimuli-mother's colostrum and vanilla-and to a negative control, distilled water. Changes in Hb concentration were measured over the orbitofrontal region. During exposure to vanilla, [Hb O2] increased significantly over the left orbito-frontal area in all babies. The magnitude of the [Hb O2] increase over the illuminated region during colostrum exposure was inversely related to postnatal age. We conclude that monitoring Hb changes by NIRS can be valuable in assessing olfactory responsiveness in infants.

  3. Laser microscope-spectrum analyzer for studying intracellular accumulation of near infrared emitting photosensitizers in vitro

    Directory of Open Access Journals (Sweden)

    Yu. S. Maklygina

    2015-01-01

    Full Text Available Measuring system based on the binocular microscope for analysis of intracellular accumulation of infrared IR photosenstizers allowing to obtain graphic data about state of analyzed objects, location of fluorescence foci and to obtain details of spectral profile of fluorescence emission centers in IR spectral region was developed. According to image of fluorescence signal distribution the location of photosensitizer accumulation in the cell may be detected accurately and the spectrum of fluorescence signal of near IR-range in the targeted point may be obtained. The developed system is quite comprehensive because there is an opportunity to choose technical parameters, operating modes, measuring methods and analysis. The advantage of the developed microscope-spectrum analyzer is an opportunity to focus emission and create high power intensity on the irradiated area by means of laser source with small-angle beam spreading, all this allow to perform ultra-precise operations with cells. Particularly, tunable size of the diaphragm opening in the far field allows to register fluorescence signal on certain cell organoids. By means of developed system the studies of accumulation of the new bacteriochlorine photosensitizers on HeLa cell line were performed. The system allowed to register accumulation of cancer cells with definite sites of selectively accumulated photosensitizer. The sites of fluorescence were the centers of accumulation of bacteriochlorine photosensitizer, this suggests that studied photosensitizer has a tendency for local accumulation in cellular organoids. The authors suggested that the developed system allowed to perform the effective and rapid screening of new photosensitizers, particularly IR bacteriochlorine photosensitizers. 

  4. Calibration sampling paradox in near infrared spectroscopy: a case study of multi-component powder blend.

    Science.gov (United States)

    Karande, A D; Liew, C V; Heng, P W S

    2010-08-16

    The objective of this study was to illustrate the sampling paradox resulting from the different strategies of spectral acquisition while preparing and implementing the calibration models for prediction of blend components in multi-component cohesive blends. A D-optimal mixture design was used to create 24 blending runs of the formulation consisting of chlorpheniramine maleate, lactose, microcrystalline cellulose and magnesium stearate. Three strategies: (a) laboratory mixing and static spectral acquisition, (b) IBC mixing and static spectral acquisition and (c) IBC mixing and dynamic spectral acquisition were investigated for obtaining the most relevant and representative calibration samples. An optical head comprising a sapphire window mounted on the lid of the IBC was used for static and dynamic NIR spectral acquisition of the powder blends. For laboratory mixed samples, powders were blended for fixed period of 30 min and later on scanned for NIR spectra. For IBC mixed blends, the spectral acquisition was carried out in-line for 2 min and stopped for static spectral acquisition. The same cycle was repeated for the next 28 min. Partial least square (PLS) calibration models for each component were built and ranked according to their calibration statistics. Optimal calibration models were selected from each strategy for each component and used for in-line prediction of blend components of three independent test runs. Although excellent statistics were obtained for the PLS models from the three strategies, significant discrepancies were observed during prediction of the independent blends in real time. Models built using IBC mixed blends and dynamic spectral acquisition resulted in the most accurate predictions for all the blend components, whereas models prepared using static spectral acquisition (laboratory mixed and IBC) showed erroneous prediction results. The prediction performance differences between the models obtained using the different strategies could be

  5. High-resolution submillimeter and near-infrared studies of the transition disk around Sz 91

    Energy Technology Data Exchange (ETDEWEB)

    Tsukagoshi, Takashi; Momose, Munetake [College of Science, Ibaraki University, Bunkyo 2-1-1, Mito 310-8512 (Japan); Hashimoto, Jun [Department of Physics and Astronomy, The University of Oklahoma, 440 West Brooks Street, Norman, OK 73019 (United States); Kudo, Tomoyuki; Saito, Masao; Ohashi, Nagayoshi; Kawabe, Ryohei; Akiyama, Eiji [National Astronomical Observatory Japan (NAOJ), Osawa 2-21-1, Mitaka, Tokyo 181-8588 (Japan); Andrews, Sean; Wilner, David [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Kitamura, Yoshimi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Yoshinodai 3-1-1, Sagamihara, Kanagawa 229-8510 (Japan); Abe, Lyu [Lboratoire Lagrange (UMR 7293), Université de Nice-Sophia Antipolis, CNRS, Observatoire de la Côte d' Azur, 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Brandner, Wolfgang [Max Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D. [Department of Astrophysical Sciences, Princeton University, Peyton Hall, Ivy Lane, Princeton, NJ 08544 (United States); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Currie, Thayne [Department of Astronomy and Astrophysics, University of Toronto, 50 St. George Street M5S 3H4, Toronto, Ontario (Canada); Egner, Sebastian E.; Guyon, Olivier [Subaru Telescope, 650 North A' ohoku Place, Hilo, HI 96720 (United States); Goto, Miwa [Universitäts-Sternwarte München, Ludwig-Maximilians-Universität, Scheinerstr. 1, D-81679 München (Germany); Grady, Carol, E-mail: ttsuka@mx.ibaraki.ac.jp [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center, Greenbelt, MD 20771 (United States); and others

    2014-03-10

    To reveal the structures of a transition disk around a young stellar object in Lupus, Sz 91 , we have performed aperture synthesis 345 GHz continuum and CO(3-2) observations with the Submillimeter Array (∼1''-3'' resolution) and high-resolution imaging of polarized intensity at the K{sub s} -band using the HiCIAO instrument on the Subaru Telescope (0.''25 resolution). Our observations successfully resolved the inner and outer radii of the dust disk to be 65 and 170 AU, respectively, which indicates that Sz 91 is a transition disk source with one of the largest known inner holes. The model fitting analysis of the spectral energy distribution reveals an H{sub 2} mass of 2.4 × 10{sup –3} M {sub ☉} in the cold (T < 30 K) outer part at 65 AU 3 × 10{sup –9} M {sub ☉}) of hot (T ∼ 180 K) dust possibly remains inside the inner hole of the disk. The structure of the hot component could be interpreted as either an unresolved self-luminous companion body (not directly detected in our observations) or a narrow ring inside the inner hole. Significant CO(3-2) emission with a velocity gradient along the major axis of the dust disk is concentrated on the Sz 91 position, suggesting a rotating gas disk with a radius of 420 AU. The Sz 91 disk is possibly a rare disk in an evolutionary stage immediately after the formation of protoplanets because of the large inner hole and the lower disk mass than other transition disks studied thus far.

  6. Left Prefrontal Activity Reflects the Ability of Vicarious Fear Learning: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Qingguo Ma

    2013-01-01

    Full Text Available Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants’ hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being was receiving a classical fear conditioning. A neutral colored square paired with shocks (CSshock and another colored square paired with no shocks (CSno-shock were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CSshock compared with that exposed to CSno-shock. In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others’ mental state, is associated with social fear transmission.

  7. Left prefrontal activity reflects the ability of vicarious fear learning: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Ma, Qingguo; Huang, Yujing; Wang, Lei

    2013-01-01

    Fear could be acquired indirectly via social observation. However, it remains unclear which cortical substrate activities are involved in vicarious fear transmission. The present study was to examine empathy-related processes during fear learning by-proxy and to examine the activation of prefrontal cortex by using functional near-infrared spectroscopy. We simultaneously measured participants' hemodynamic responses and skin conductance responses when they were exposed to a movie. In this movie, a demonstrator (i.e., another human being) was receiving a classical fear conditioning. A neutral colored square paired with shocks (CS(shock)) and another colored square paired with no shocks (CS(no-shock)) were randomly presented in front of the demonstrator. Results showed that increased concentration of oxygenated hemoglobin in left prefrontal cortex was observed when participants watched a demonstrator seeing CS(shock) compared with that exposed to CS(no-shock). In addition, enhanced skin conductance responses showing a demonstrator's aversive experience during learning object-fear association were observed. The present study suggests that left prefrontal cortex, which may reflect speculation of others' mental state, is associated with social fear transmission.

  8. Association of Oxytocin and Parental Prefrontal Activation during Reunion with Infant: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Jun Ito

    2017-12-01

    Full Text Available Although previous studies have revealed the role of oxytocin (OT in parental behavior, the role of OT has not been investigated through the direct assessment of prefrontal brain activation during parenting. By using functional near-infrared spectroscopy, we aimed to show the relationship between parental [maternal (N = 15 and paternal (N = 21] OT levels and the activation of the prefrontal cortex (PFC, while holding their infants after separation. Baseline OT levels were measured in the subjects’ saliva samples before the experiment. Prefrontal brain activation was assessed in participants sitting alone on a chair (i.e., separation from their infant for 120 s and during the target period (i.e., holding their infant for 45 s, which was done in triplicate. The oxygen hemoglobin (oxy-Hb dissociation curve significantly increased in 9 out of 22 channels on the PFC when maternal and paternal samples were combined. However, only the fathers showed a correlation between salivary OT and oxy-Hb signal. Furthermore, while holding their infants, high-OT fathers showed left hemispheric dominance compared to low-OT fathers, while high-OT mothers showed right hemispheric dominance compared to low-OT mothers. This study showed that fathers with high-OT levels showed neural activation with left hemispheric dominance, while holding their infants, suggesting that increase of OT level might activate paternal PFC related to parenting behavior, although the same is not true for mothers.

  9. Developmental changes in frontal lobe function during a verbal fluency task: a multi-channel near-infrared spectroscopy study.

    Science.gov (United States)

    Tando, Tomoko; Kaga, Yoshimi; Ishii, Sayaka; Aoyagi, Kakuro; Sano, Fumikazu; Kanemura, Hideaki; Sugita, Kanji; Aihara, Masao

    2014-11-01

    Near-infrared spectroscopy (NIRS) is commonly used to investigate continuous changes of brain activation and has excellent time resolution. Verbal fluency task (VFT) is widely used as a neuropsychological test of frontal lobe function. The aim of this study was to investigate normal developmental change in frontal lobe function during VFT performance using multi-channel NIRS, specifically focusing on oxygenation hemoglobin (oxyHb) changes. The subjects were 9 adults and 37 childrens who were all healthy right-handed volunteers. Children were divided into four age groups (group A, 6-8 years; group B, 9-11 years; group C, 12-14 years; group D, 15-18 years). The [oxyHb] changes were measured with 22 channels of NIRS during VFT. We defined the frontopolar region as the region of interest for analysis, and calculated the Z-score to compare the data between groups. The task performance changed with age. There were significant differences between group A and other groups. The Z-score of [oxyHb] also significantly increased with age, when comparing adults to groups A and B. The task performances decreased with time in all groups. In contrast, [oxyHb] only continued to increase in the adult group. The verbal retrieval functions begin to mature in early adolescence and continue to grow up to adulthood. Copyright © 2014 The Japanese Society of Child Neurology. Published by Elsevier B.V. All rights reserved.

  10. Does shape discrimination by the mouth activate the parietal and occipital lobes? - near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Tomonori Kagawa

    Full Text Available A cross-modal association between somatosensory tactile sensation and parietal and occipital activities during Braille reading was initially discovered in tests with blind subjects, with sighted and blindfolded healthy subjects used as controls. However, the neural background of oral stereognosis remains unclear. In the present study, we investigated whether the parietal and occipital cortices are activated during shape discrimination by the mouth using functional near-infrared spectroscopy (fNIRS. Following presentation of the test piece shape, a sham discrimination trial without the test pieces induced posterior parietal lobe (BA7, extrastriate cortex (BA18, BA19, and striate cortex (BA17 activation as compared with the rest session, while shape discrimination of the test pieces markedly activated those areas as compared with the rest session. Furthermore, shape discrimination of the test pieces specifically activated the posterior parietal cortex (precuneus/BA7, extrastriate cortex (BA18, 19, and striate cortex (BA17, as compared with sham sessions without a test piece. We concluded that oral tactile sensation is recognized through tactile/visual cross-modal substrates in the parietal and occipital cortices during shape discrimination by the mouth.

  11. A comparative study of calibration transfer methods for determination of gasoline quality parameters in three different near infrared spectrometers.

    Science.gov (United States)

    Pereira, Claudete Fernandes; Pimentel, Maria Fernanda; Galvão, Roberto Kawakami Harrop; Honorato, Fernanda Araújo; Stragevitch, Luiz; Martins, Marcelo Nascimento

    2008-03-17

    This work presents a comparative study of calibration transfer among three near infrared spectrometers for determination of naphthenes and RON (Research Octane Number) in gasoline. Seven transfer methods are compared: direct standardization (DS), piecewise direct standardization (PDS), orthogonal signal correction (OSC), reverse standardization (RS), piecewise reverse standardization (PRS), slope and bias correction (SBC) and model updating (MU). Two pre-treatment procedures, namely standard normal variate (SNV) and multiplicative scatter correction (MSC), are also investigated. The choice of an appropriate number of transfer samples for each technique, as well as the effect of window size in PDS/PRS and OSC components, are discussed. A broad set of gasoline samples representative of the Northeastern states of Brazil is employed in the investigation. The results show that the use of calibration transfer yields prediction errors comparable to those obtained with complete recalibration of the secondary instrument. Overall, the results point to RS as the best method for the analytical problem under consideration. When storage and/or physical transportation of transfer samples are impractical, MU is more appropriate. The comprehensive investigation carried out in the present work will be of value for practitioners involved in networks of fuel monitoring.

  12. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    Science.gov (United States)

    Moghimi, Saba; Schudlo, Larissa; Chau, Tom; Guerguerian, Anne-Marie

    2015-01-01

    Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  13. NAHUAL: a near-infrared high-resolution spectrograph for the GTC optimized for studies of ultracool dwarfs

    Science.gov (United States)

    Martín, E. L.; Guenther, E.; Barrado y Navascués, D.; Esparza, P.; Manescau, A.; Laux, U.

    2005-12-01

    We present the status of an ongoing study for a high-resolution near-infrared echelle spectrograph for the 10.4-m GTC (Gran Telescopio de Canarias) which will soon start operating at the Observatorio del Roque de los Muchachos on the island of La Palma. The main science driver of this instrument, which we have baptized NAHUAL, is to carry out a high precision radial velocity survey of exoplanets around ultracool dwarfs. NAHUAL is being especially designed to achieve the highest possible accuracy for radial velocity measurements. The goal is to reach an accuracy of a few m/s. It is thus required that the instrument is cross-dispersed and that it covers simultaneously a wide wavelength range. Absorption cells will be placed in front of the slit which will allow a simultaneous self-reference similar to an iodine-cell in the optical regime. It is planned to place the instrument at one of the Nasmyth platform of the GTC behind the Adaptive Optics system. Our current design reaches a maximum spectral resolution of \\lambda /\\Delta \\lambda = 50 000 with a slit width of 0.175 arcsec, and gives nearly complete spectral coverage from 900 to 2400 nm.

  14. Measurement of glass transition temperature, residual heat of reaction and mixing ratio of epoxy resins using near infrared spectroscopy: a preliminary study

    DEFF Research Database (Denmark)

    Houmøller, Lars Plejdrup; Laursen, Peter Clemen

    2003-01-01

    As a measure of the degree of curing of epoxy resins, the glass transition temperature, Tg, and the residual heat of reaction, DeltaHr, are often used. In this study, near infrared spectroscopy and multivariate calibration (partial least squares regression (PLSR)) have been used to monitor the two...

  15. Co-Speech Gesture Production in an Animation-Narration Task by Bilinguals: A Near-Infrared Spectroscopy Study

    Science.gov (United States)

    Oi, Misato; Saito, Hirofumi; Li, Zongfeng; Zhao, Wenjun

    2013-01-01

    To examine the neural mechanism of co-speech gesture production, we measured brain activity of bilinguals during an animation-narration task using near-infrared spectroscopy. The task of the participants was to watch two stories via an animated cartoon, and then narrate the contents in their first language (Ll) and second language (L2),…

  16. Asymmetrical Brain Activity Induced by Voluntary Spatial Attention Depends on the Visual Hemifield: A Functional Near-Infrared Spectroscopy Study

    Science.gov (United States)

    Harasawa, Masamitsu; Shioiri, Satoshi

    2011-01-01

    The effect of the visual hemifield to which spatial attention was oriented on the activities of the posterior parietal and occipital visual cortices was examined using functional near-infrared spectroscopy in order to investigate the neural substrates of voluntary visuospatial attention. Our brain imaging data support the theory put forth in a…

  17. Biofeedback effect of hybrid assistive limb in stroke rehabilitation: A proof of concept study using functional near infrared spectroscopy.

    Directory of Open Access Journals (Sweden)

    Kazuya Saita

    Full Text Available Robot-assisted rehabilitation has been increasingly drawing attention in the field of neurorehabilitation. The hybrid assistive limb (HAL is an exoskeleton robot developed based on the "interactive biofeedback" theory, and several studies have shown its efficacy for patients with stroke. We aimed to investigate the mechanisms of the facilitative effect of neurorehabilitation using a single-joint HAL (HAL-SJ and functional near-infrared spectroscopy (fNIRS.Subacute stroke patients admitted to our hospital were assessed in this study for HAL eligibility. We evaluated motor-related cortical activity using an fNIRS system at baseline and immediately after HAL-SJ treatment on the same day. Cortical activity was determined through the relative changes in the hemoglobin concentrations. For statistical analysis, we compared the number of flexion/extension movements before and immediately after HAL-SJ treatment using paired t-test. fNIRS used both the methods of statistical parametric mapping and random effect analysis.We finally included 10 patients (eight men, two women; mean age: 66.8 ± 12.0 years. The mean number of flexion/extension movements within 15 s increased significantly from 4.2 ± 3.1 to 5.3 ± 4.1 immediately after training. fNIRS showed increased cortical activation in the primary motor cortex of the ipsilesional hemisphere immediately after HAL-SJ treatment compared to the baseline condition.This study is the first to support the concept of the biofeedback effect from the perspective of changes in cortical activity measured with an fNIRS system. The biofeedback effect of HAL immediately increased the task-related cortical activity, and this may address the functional recovery. Further studies are warranted to support our findings.

  18. Effects of aging on cerebral oxygenation during working-memory performance: a functional near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Anouk Vermeij

    Full Text Available Working memory is sensitive to aging-related decline. Evidence exists that aging is accompanied by a reorganization of the working-memory circuitry, but the underlying neurocognitive mechanisms are unclear. In this study, we examined aging-related changes in prefrontal activation during working-memory performance using functional Near-Infrared Spectroscopy (fNIRS, a noninvasive neuroimaging technique. Seventeen healthy young (21-32 years and 17 healthy older adults (64-81 years performed a verbal working-memory task (n-back. Oxygenated and deoxygenated hemoglobin concentration changes were registered by two fNIRS channels located over the left and right prefrontal cortex. Increased working-memory load resulted in worse performance compared to the control condition in older adults, but not in young participants. In both young and older adults, prefrontal activation increased with rising working-memory load. Young adults showed slight right-hemispheric dominance at low levels of working-memory load, while no hemispheric differences were apparent in older adults. Analysis of the time-activation curve during the high working-memory load condition revealed a continuous increase of the hemodynamic response in the young. In contrast to that, a quadratic pattern of activation was found in the older participants. Based on these results it could be hypothesized that young adults were better able to keep the prefrontal cortex recruited over a prolonged period of time. To conclude, already at low levels of working-memory load do older adults recruit both hemispheres, possibly in an attempt to compensate for the observed aging-related decline in performance. Also, our study shows that aging effects on the time course of the hemodynamic response must be taken into account in the interpretation of the results of neuroimaging studies that rely on blood oxygen levels, such as fMRI.

  19. Factors influencing executive function by physical activity level among young adults: a near-infrared spectroscopy study.

    Science.gov (United States)

    Matsuda, Kensuke; Ikeda, Shou; Mitsutake, Tsubasa; Nakahara, Masami; Nagai, Yoshiharu; Ikeda, Takuro; Horikawa, Etsuo

    2017-03-01

    [Purpose] Prevention of dementia requires early intervention against it. To ensure that early interventions are effective it is crucial to study the cognitive functions related to dementia in young adulthood. Moreover, it is needed not only to verify the cognitive function test but also to elucidate the actual brain activity and the influence of related factors on the brain activity. To investigate the factors influencing cognitive function among young adults and examine the differences in executive function by physical activity level. [Subjects and Methods] Forty healthy university students (mean age, 20.4 years) were classified into two groups by cognitive function score (HIGH and LOW), determined according to Trail Making Test performance and Stroop task processing time. We then assessed what factors were related to cognitive function by logistic regression analysis. Executive function was determined by brain blood flow using near-infrared spectroscopy during the Stroop task, and was then compared by physical activity levels (determined according to number of steps per hour). [Results] Full-scale Intelligence Quotient according to the 3rd Wechsler Adult Intelligent Scale and number of steps per hour influenced cognitive function score, with odds ratios of 1.104 and 1.012, respectively. Oxy-hemoglobin concentrations in areas related to executive function during the Stroop task were significantly higher among those in the high physical activity group than among those in the low physical activity group. [Conclusion] The study revealed that Full-scale Intelligence Quotient and a number of steps per hour are factors associated with the cognitive functions in young adulthood. In addition, activity in execution function related area was found to be significantly higher in the high physical activity group than in the low physical activity group, suggesting the importance of physical activity for enhancing young adulthood cognitive functions.

  20. Brain activity underlying the recovery of meaning from degraded speech: A functional near-infrared spectroscopy (fNIRS) study.

    Science.gov (United States)

    Wijayasiri, Pramudi; Hartley, Douglas E H; Wiggins, Ian M

    2017-08-01

    The purpose of this study was to establish whether functional near-infrared spectroscopy (fNIRS), an emerging brain-imaging technique based on optical principles, is suitable for studying the brain activity that underlies effortful listening. In an event-related fNIRS experiment, normally-hearing adults listened to sentences that were either clear or degraded (noise vocoded). These sentences were presented simultaneously with a non-speech distractor, and on each trial participants were instructed to attend either to the speech or to the distractor. The primary region of interest for the fNIRS measurements was the left inferior frontal gyrus (LIFG), a cortical region involved in higher-order language processing. The fNIRS results confirmed findings previously reported in the functional magnetic resonance imaging (fMRI) literature. Firstly, the LIFG exhibited an elevated response to degraded versus clear speech, but only when attention was directed towards the speech. This attention-dependent increase in frontal brain activation may be a neural marker for effortful listening. Secondly, during attentive listening to degraded speech, the haemodynamic response peaked significantly later in the LIFG than in superior temporal cortex, possibly reflecting the engagement of working memory to help reconstruct the meaning of degraded sentences. The homologous region in the right hemisphere may play an equivalent role to the LIFG in some left-handed individuals. In conclusion, fNIRS holds promise as a flexible tool to examine the neural signature of effortful listening. Copyright © 2017 Elsevier B.V. All rights reserved.

  1. Prospective observational study on assessing the hemodynamic relevance of patent ductus arteriosus with frequency domain near-infrared spectroscopy.

    Science.gov (United States)

    Schwarz, Christoph E; Preusche, Antonio; Wolf, Martin; Poets, Christian F; Franz, Axel R

    2018-02-16

    What constitutes a hemodynamically relevant patent ductus arteriosus (hrPDA) in preterm infants is unclear. Different clinical and echocardiographic parameters are used, but a gold standard definition is lacking. Our objective was to evaluate associations between regional cerebral tissue oxygen saturation (rcStO 2 ), fraction of tissue oxygen extraction (rcFtO 2 E) measured by frequency domain near-infrared spectroscopy (fd-NIRS) and their correlation to echocardiographic, Doppler-ultrasound, and clinical parameters in preterm infants with and without a hrPDA. In this prospective observational study, 22 infants standard deviation (normalised to a median Hb of 13.8 mg/dl) was 57 ±5% for rcStO 2 and 0.39 ±0.05 for rcFtO 2 E. Comparing no-hrPDA with hrPDA infants, there were no significant differences in mean rcStO 2 (58 ±5% vs. 54 ±5%; p = .102), but in mean rcFtO 2 E (0.38 ±0.05 vs. 0.43 ±0.05; p = .038). Echocardiographic parameter and Doppler indices did not correlate with cerebral oxygenation. Oxygen transport capacity of the blood may confound NIRS data interpretation. Cerebral oxygenation determined by fd-NIRS provided additional information for PDA treatment decisions not offered by routine investigations. Whether indicating PDA therapy based on echocardiography complemented by data on cerebral oxygenation results in better outcomes should be investigated in future studies.

  2. Social insecurity in relation to orbitofrontal activity in patients with eating disorders: a near-infrared spectroscopy study.

    Science.gov (United States)

    Katayama, Hiroto; Kohmura, Kunihiro; Tanaka, Satoshi; Imaeda, Miho; Kawano, Naoko; Noda, Yukihiro; Nishioka, Kazuo; Ando, Masahiko; Aleksic, Branko; Iidaka, Tetsuya; Ozaki, Norio

    2014-06-12

    Functional neuroimaging techniques are widely used to elucidate changes in brain activity, and various questionnaires are used to investigate psychopathological features in patients with eating disorders (ED). It is well known that social skills and interpersonal difficulties are strongly associated with the psychopathology of patients with ED. However, few studies have examined the association between brain activity and social relationships in patients with ED, particularly in patients with extremely low body weight. In this study, 22-channel near-infrared spectroscopy was used to quantify regional hemodynamic changes during a letter fluency task (LFT) in 20 female patients with ED with a mean body mass index of 14.0 kg/m(2) and 31 female controls (CTLs). Symptoms were assessed using the Eating Disorder Inventory-2 and Beck Depression Inventory. We hypothesized that frontal activity in patients with ED would be lower than in CTLs and would show different correlations with psychopathological features compared with CTLs. The LFT performance and score on the social insecurity subscale of the Eating Disorder Inventory-2 were significantly higher in the ED group than in the CTL group. The mean change in oxygenated hemoglobin (oxy-Hb) in bilateral frontal regions during the LFT was significantly smaller in the ED group than in the CTL group. Social insecurity score was positively correlated with the concentration of oxy-Hb in the bilateral orbitofrontal cortex in the ED group but not in the CTL group. These results suggest that activity of the orbitofrontal cortex is associated with social insecurity and disturbed in patients with ED. Therefore, disturbed orbitofrontal cortex activity may underlie the lack of insight and social isolation that is characteristic of patients with ED.

  3. Acoustic processing of temporally modulated sounds in infants: evidence from a combined near-infrared spectroscopy and EEG study

    Directory of Open Access Journals (Sweden)

    Silke eTelkemeyer

    2011-04-01

    Full Text Available Speech perception requires rapid extraction of the linguistic content from the acoustic signal. The ability to efficiently process rapid changes in auditory information is important for decoding speech and thereby crucial during language acquisition. Investigating functional networks of speech perception in infancy might elucidate neuronal ensembles supporting perceptual abilities that gate language acquisition. Interhemispheric specializations for language have been demonstrated in infants. How these asymmetries are shaped by basic temporal acoustic properties is under debate. We recently provided evidence that newborns process non-linguistic sounds sharing temporal features with language in a differential and lateralized fashion. The present study used the same material while measuring brain responses of 6 and 3 month old infants using simultaneous recordings of electroencephalography (EEG and near-infrared spectroscopy (NIRS. NIRS reveals that the lateralization observed in newborns remains constant over the first months of life. While fast acoustic modulations elicit bilateral neuronal activations, slow modulations lead to right-lateralized responses. Additionally, auditory evoked potentials and oscillatory EEG responses show differential responses for fast and slow modulations indicating a sensitivity for temporal acoustic variations. Oscillatory responses reveal an effect of development, that is, 6 but not 3 month old infants show stronger theta-band desynchronization for slowly modulated sounds. Whether this developmental effect is due to increasing fine-grained perception for spectrotemporal sounds in general remains speculative. Our findings support the notion that a more general specialization for acoustic properties can be considered the basis for lateralization of speech perception. The results show that concurrent assessment of vascular based imaging and electrophysiological responses have great potential in the research on language

  4. The role of prefrontal cortex during postural control in Parkinsonian syndromes a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Mahoney, Jeannette R; Holtzer, Roee; Izzetoglu, Meltem; Zemon, Vance; Verghese, Joe; Allali, Gilles

    2016-02-15

    Postural instability represents a main source of disability in Parkinsonian syndromes and its pathophysiology is poorly understood. Indirect probes (i.e., mental imagery) of brain involvement support the role of prefrontal cortex as a key cortical region for postural control in older adults with and without Parkinsonian syndromes. Using functional near infrared spectroscopy (fNIRs) as a direct online cortical probe, this study aimed to compare neural activation patterns in prefrontal cortex, postural stability, and their respective interactions, in (1) patients with Parkinsonian syndromes; (2) those with mild parkinsonian signs; (3) and healthy older adults. Among 269 non-demented older adults (76.41 ± 6.70 years, 56% women), 26 individuals presented with Parkinsonian syndromes (Unified Parkinson's disease rating scale (UPDRS): 11.08 ± 3.60), 117 had mild parkinsonian signs (UPDRS: 3.21 ± 2.49), and 126 individuals were included as a healthy control group. Participants were asked to stand upright and count silently for ten seconds while changes in oxygenated hemoglobin levels over prefrontal cortex were measured using fNIRs. We simultaneously evaluated postural stability with center of pressure velocity data recorded on an instrumented walkway. Compared to healthy controls and patients with mild parkinsonian signs, patients with Parkinsonian syndromes demonstrated significantly higher prefrontal oxygenation levels to maintain postural stability. The pattern of brain activation and postural control of participants with mild parkinsonian signs were similar to that of normal controls. These findings highlight the online role of the prefrontal cortex in postural control in patients with Parkinsonian syndromes and afford the opportunity to improve therapeutic options for postural instability. Copyright © 2016. Published by Elsevier B.V.

  5. Neural correlates of own- and other-race face recognition in children: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Ding, Xiao Pan; Fu, Genyue; Lee, Kang

    2014-01-15

    The present study used the functional Near-infrared Spectroscopy (fNIRS) methodology to investigate the neural correlates of elementary school children's own- and other-race face processing. An old-new paradigm was used to assess children's recognition ability of own- and other-race faces. FNIRS data revealed that other-race faces elicited significantly greater [oxy-Hb] changes than own-race faces in the right middle frontal gyrus and inferior frontal gyrus regions (BA9) and the left cuneus (BA18). With increased age, the [oxy-Hb] activity differences between own- and other-race faces, or the neural other-race effect (NORE), underwent significant changes in these two cortical areas: at younger ages, the neural response to the other-race faces was modestly greater than that to the own-race faces, but with increased age, the neural response to the own-race faces became increasingly greater than that to the other-race faces. Moreover, these areas had strong regional functional connectivity with a swath of the cortical regions in terms of the neural other-race effect that also changed with increased age. We also found significant and positive correlations between the behavioral other-race effect (reaction time) and the neural other-race effect in the right middle frontal gyrus and inferior frontal gyrus regions (BA9). These results taken together suggest that children, like adults, devote different amounts of neural resources to processing own- and other-race faces, but the size and direction of the neural other-race effect and associated functional regional connectivity change with increased age. © 2013.

  6. Variability in prefrontal hemodynamic response during exposure to repeated self-selected music excerpts, a near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Saba Moghimi

    Full Text Available Music-induced brain activity modulations in areas involved in emotion regulation may be useful in achieving therapeutic outcomes. Clinical applications of music may involve prolonged or repeated exposures to music. However, the variability of the observed brain activity patterns in repeated exposures to music is not well understood. We hypothesized that multiple exposures to the same music would elicit more consistent activity patterns than exposure to different music. In this study, the temporal and spatial variability of cerebral prefrontal hemodynamic response was investigated across multiple exposures to self-selected musical excerpts in 10 healthy adults. The hemodynamic changes were measured using prefrontal cortex near infrared spectroscopy and represented by instantaneous phase values. Based on spatial and temporal characteristics of these observed hemodynamic changes, we defined a consistency index to represent variability across these domains. The consistency index across repeated exposures to the same piece of music was compared to the consistency index corresponding to prefrontal activity from randomly matched non-identical musical excerpts. Consistency indexes were significantly different for identical versus non-identical musical excerpts when comparing a subset of repetitions. When all four exposures were compared, no significant difference was observed between the consistency indexes of randomly matched non-identical musical excerpts and the consistency index corresponding to repetitions of the same musical excerpts. This observation suggests the existence of only partial consistency between repeated exposures to the same musical excerpt, which may stem from the role of the prefrontal cortex in regulating other cognitive and emotional processes.

  7. Frontal and temporal cortical functional recovery after electroconvulsive therapy for depression: A longitudinal functional near-infrared spectroscopy study.

    Science.gov (United States)

    Hirano, Jinichi; Takamiya, Akihiro; Yamagata, Bun; Hotta, Syogo; Miyasaka, Yukiko; Pu, Shenghong; Iwanami, Akira; Uchida, Hiroyuki; Mimura, Masaru

    2017-08-01

    While the efficacy and tolerability of electroconvulsive therapy (ECT) for depression has been well established, the acute effects of ECT on brain function remain unclear. Particularly, although cognitive dysfunction has been consistently observed after ECT, little is known about the extent and time course of ECT-induced brain functional changes, as observed during cognitive tasks. Considering the acute antidepressant effects of ECT on depression, aberrant brain functional responses during cognitive tasks in patients with depression may improve immediately after this treatment. To clarify changes in cortical functional responses to cognitive tasks following ECT, we used task-related functional near-infrared spectroscopy (NIRS) to assess 30 patients with major depressive disorder or bipolar depression before and after an ECT series, as well as 108 healthy controls. Prior to ECT, patients exhibited significantly smaller [oxy-Hb] values in the bilateral frontal cortex during a letter verbal fluency task (VFT) compared with healthy controls. We found a significant increase in [oxy-Hb] values in the bilateral frontal cortex during the VFT after ECT in the patient group. A decrease in depression severity was significantly correlated with an increase in [oxy-Hb] values in the right ventrolateral prefrontal cortex following ECT. This is the first NIRS study to evaluate brain functional changes before vs. after ECT. Impaired functional responses, observed during the cognitive task in depressed patients, were normalized after ECT. Thus, recovery from abnormal functional responses to cognitive tasks in the frontal brain regions may be associated with the acute therapeutic effects of ECT for depression. Copyright © 2017 Elsevier Ltd. All rights reserved.

  8. [Application of near infrared spectroscopy in study of occlusal splints and resistance of masticatory muscles to fatigue pain].

    Science.gov (United States)

    Jiang, Ting; Huang, Dong-Xu

    2013-10-18

    To analyze the influence of occlusal splint on resistance capability of masticatory muscles to fatigue. In the study, 25 young male volunteers were randomly divided to 5 groups according to different splint placements: (1) no splint, (2) 1.5 mm thick soft splint, (3) 2 mm thick resin stability splint, (4) 4 mm thick resin stability splint, (5) buccolingual mock splint. Near infrared spectroscopy (NIRS) was used to measure blood oxygen content in human masticatory muscles during constant strong biting before and after the splint placement at seven time points: before, baseline after, 1 week after, and 2 weeks after splint placement, and immediately after, 1 week after, and 5 weeks after removing of splints. The strength of the biting force was maintained constantly at 30% level of the maximum biting force of each subject by biofeedback to the displayed value of an electro-myographic monitor. The time points of muscular fatigue and pain that appeared were recorded and the correlation between the subjective feeling and the NIRS measurement result was analyzed. The NIRS measurement curve had a point of inflection that had no significant difference with the time point of the muscle pain that appeared. Two weeks after placement of soft splint, the time point of the muscular fatigue and pain that appeared were 2.75 s and 8.00 s delayed respectively compared with that before placement of splint (P0.05) in the group of mock splint. The metabolic status of human masticatory muscles could be monitored in real time by using NIRS; soft splint delayed the appearing of muscle fatigue and muscle pain after two weeks of placement.

  9. [Study on discrimination of varieties of fire resistive coating for steel structure based on near-infrared spectroscopy].

    Science.gov (United States)

    Xue, Gang; Song, Wen-qi; Li, Shu-chao

    2015-01-01

    In order to achieve the rapid identification of fire resistive coating for steel structure of different brands in circulating, a new method for the fast discrimination of varieties of fire resistive coating for steel structure by means of near infrared spectroscopy was proposed. The raster scanning near infrared spectroscopy instrument and near infrared diffuse reflectance spectroscopy were applied to collect the spectral curve of different brands of fire resistive coating for steel structure and the spectral data were preprocessed with standard normal variate transformation(standard normal variate transformation, SNV) and Norris second derivative. The principal component analysis (principal component analysis, PCA)was used to near infrared spectra for cluster analysis. The analysis results showed that the cumulate reliabilities of PC1 to PC5 were 99. 791%. The 3-dimentional plot was drawn with the scores of PC1, PC2 and PC3 X 10, which appeared to provide the best clustering of the varieties of fire resistive coating for steel structure. A total of 150 fire resistive coating samples were divided into calibration set and validation set randomly, the calibration set had 125 samples with 25 samples of each variety, and the validation set had 25 samples with 5 samples of each variety. According to the principal component scores of unknown samples, Mahalanobis distance values between each variety and unknown samples were calculated to realize the discrimination of different varieties. The qualitative analysis model for external verification of unknown samples is a 10% recognition ration. The results demonstrated that this identification method can be used as a rapid, accurate method to identify the classification of fire resistive coating for steel structure and provide technical reference for market regulation.

  10. A case study of real-time monitoring of solid-state phase transformations in acoustically levitated particles using near infrared and Raman spectroscopy

    DEFF Research Database (Denmark)

    Rehder, Sönke; Wu, Jian-Xiong; Laackmann, Julian

    2013-01-01

    The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman spectrosc......The objective of this study was to monitor the amorphous-to-crystalline solid-state phase transformation kinetics of the model drug ibuprofen with spectroscopic methods during acoustic levitation. Chemical and physical information was obtained by real-time near infrared (NIRS) and Raman...... allowed direct determination of the recrystallisation kinetics of amorphous drugs and thus is a promising technique for monitoring solid-state phase transformations of adhesive small-sized samples during the early phase of drug development....

  11. Feasibility Study of Soil Quality Survey using Visible and Near Infrared Spectroscopy in Rice Paddy Fields in China

    Directory of Open Access Journals (Sweden)

    Hongyi Li

    2014-06-01

    Full Text Available Survey and monitoring of soil quality are needed to prevent soil degradation and are important for sustainable farming and food production. Conventional soil survey involves intensive soil sampling and laboratory analysis, which are time consuming and expensive. Visible and near infrared spectroscopy of soil has proved to be accurate, cheap and robust and has huge potential for survey of soil quality. To test its potential, 327 soil samples were taken from long-term paddy rice fields in four provinces in south of China and covered a wide range of soil types and texture. The samples were air-dried, ground and passed through a 2 mm sieve. They were then scanned by an ASD vis–NIR spectrometer with wavelength range from 350 to 2500 nm. Organic matter (OM, pH, total nitrogen (TN and available nitrogen (N_av were also measured on soil samples to build calibration models and also to validate the models’ accuracy. On the basis of the ratio of prediction deviation (RPD, which is standard deviation (SD of prediction divided by the root mean square error of prediction (RMSEP, the accuracy of leave-one-out cross-validation of soil N_av model was classified very good (RPD=1.96 and soil OM and TN was good (RPD=1.78 and RPD=1.81, respectively. However, the model accuracy of pH was poor due to non-direct soil spectral response for soil pH in vis–NIR spectroscopy. The independent validation results showed excellent accuracy for soil N_av (RPD=3.26, good accuracy for OM and TN (RPD=1.76 and RPD=1.78 and relative poor accuracy for soil pH (RPD=1.27. This feasibility study is encouraging for the application of vis–NIR surveys of soil quality accuracy at regional and national scales; it found good to excellent accuracy for some important soil properties in quality survey.

  12. Effect of Ocular Movements during Eye Movement Desensitization and Reprocessing (EMDR) Therapy: A Near-Infrared Spectroscopy Study.

    Science.gov (United States)

    Rimini, Daniele; Molinari, Filippo; Liboni, William; Balbo, Marina; Darò, Roberta; Viotti, Erika; Fernandez, Isabel

    2016-01-01

    Eye Movement Desensitization and Reprocessing (EMDR) is a psychotherapeutic treatment resolving emotional distress caused by traumatic events. With EMDR, information processing is facilitated by eye movements (EM) during the recall of a traumatic memory (RECALL). The aim of this study is to investigate the effects of ocular movements of EMDR on the hemodynamics of the prefrontal cortex (PFC). Two groups were recruited: a trial group (wEM) received a complete EMDR treatment, whereas a control group (woEM) received a therapy without EM. PFC hemodynamics was monitored by near-infrared spectroscopy during RECALL and during focusing on the worst image of the trauma (pre-RECALL). The parameters of oxy- (oxy-Hb), and deoxy-hemoglobin (deoxy-Hb) were acquired and analyzed in time domain, by calculating the slope within pre-RECALL and RECALL periods, and in the frequency domain, by calculating the mean power of oxy-Hb and deoxy-Hb in the very-low frequency (VLF, 20-40 mHz) and low frequency (LF, 40-140 mHz) bandwidths. We compared pre-RECALL with RECALL periods within subjects, and pre-RECALL and RECALL parameters of wEM with the corresponding of woEM. An effect of group on mean slope of oxy-Hb and deoxy-Hb in pre-RECALL and oxy-Hb in RECALL periods was observed. wEM showed a lower percentage of positive angular coefficients during pre-RECALL with respect to RECALL, on the opposite of woEM. In the frequency domain, wEM had significant difference in oxy-Hb and deoxy-Hb LF of left hemisphere, whereas woEM showed no difference. We observed the effect of EM on PFC oxygenation during EMDR, since wEM subjects showed a mean increase of oxy-Hb during RECALL and a decrease during pre-RECALL, as opposed to woEM. Frequency analysis evidenced a reduction of activity of sympathetic nervous system in wEM group during pre-RECALL. Our outcomes revealed a different hemodynamics induced by eye movements in wEM with respect to woEM group.

  13. Effect of Ocular Movements during Eye Movement Desensitization and Reprocessing (EMDR Therapy: A Near-Infrared Spectroscopy Study.

    Directory of Open Access Journals (Sweden)

    Daniele Rimini

    Full Text Available Eye Movement Desensitization and Reprocessing (EMDR is a psychotherapeutic treatment resolving emotional distress caused by traumatic events. With EMDR, information processing is facilitated by eye movements (EM during the recall of a traumatic memory (RECALL. The aim of this study is to investigate the effects of ocular movements of EMDR on the hemodynamics of the prefrontal cortex (PFC.Two groups were recruited: a trial group (wEM received a complete EMDR treatment, whereas a control group (woEM received a therapy without EM. PFC hemodynamics was monitored by near-infrared spectroscopy during RECALL and during focusing on the worst image of the trauma (pre-RECALL. The parameters of oxy- (oxy-Hb, and deoxy-hemoglobin (deoxy-Hb were acquired and analyzed in time domain, by calculating the slope within pre-RECALL and RECALL periods, and in the frequency domain, by calculating the mean power of oxy-Hb and deoxy-Hb in the very-low frequency (VLF, 20-40 mHz and low frequency (LF, 40-140 mHz bandwidths. We compared pre-RECALL with RECALL periods within subjects, and pre-RECALL and RECALL parameters of wEM with the corresponding of woEM.An effect of group on mean slope of oxy-Hb and deoxy-Hb in pre-RECALL and oxy-Hb in RECALL periods was observed. wEM showed a lower percentage of positive angular coefficients during pre-RECALL with respect to RECALL, on the opposite of woEM. In the frequency domain, wEM had significant difference in oxy-Hb and deoxy-Hb LF of left hemisphere, whereas woEM showed no difference.We observed the effect of EM on PFC oxygenation during EMDR, since wEM subjects showed a mean increase of oxy-Hb during RECALL and a decrease during pre-RECALL, as opposed to woEM. Frequency analysis evidenced a reduction of activity of sympathetic nervous system in wEM group during pre-RECALL. Our outcomes revealed a different hemodynamics induced by eye movements in wEM with respect to woEM group.

  14. Single-trial classification of motor imagery differing in task complexity: a functional near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Wolf Martin

    2011-06-01

    Full Text Available Abstract Background For brain computer interfaces (BCIs, which may be valuable in neurorehabilitation, brain signals derived from mental activation can be monitored by non-invasive methods, such as functional near-infrared spectroscopy (fNIRS. Single-trial classification is important for this purpose and this was the aim of the presented study. In particular, we aimed to investigate a combined approach: 1 offline single-trial classification of brain signals derived from a novel wireless fNIRS instrument; 2 to use motor imagery (MI as mental task thereby discriminating between MI signals in response to different tasks complexities, i.e. simple and complex MI tasks. Methods 12 subjects were asked to imagine either a simple finger-tapping task using their right thumb or a complex sequential finger-tapping task using all fingers of their right hand. fNIRS was recorded over secondary motor areas of the contralateral hemisphere. Using Fisher's linear discriminant analysis (FLDA and cross validation, we selected for each subject a best-performing feature combination consisting of 1 one out of three channel, 2 an analysis time interval ranging from 5-15 s after stimulation onset and 3 up to four Δ[O2Hb] signal features (Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis. Results The results of our single-trial classification showed that using the simple combination set of channels, time intervals and up to four Δ[O2Hb] signal features comprising Δ[O2Hb] mean signal amplitudes, variance, skewness and kurtosis, it was possible to discriminate single-trials of MI tasks differing in complexity, i.e. simple versus complex tasks (inter-task paired t-test p ≤ 0.001, over secondary motor areas with an average classification accuracy of 81%. Conclusions Although the classification accuracies look promising they are nevertheless subject of considerable subject-to-subject variability. In the discussion we address each of these aspects, their

  15. Spectrum of excess partial molar absorptivity. Part II: a near infrared spectroscopic study of aqueous Na-halides.

    Science.gov (United States)

    Sebe, Fumie; Nishikawa, Keiko; Koga, Yoshikata

    2012-04-07

    Our earlier thermodynamic studies suggested that F(-) and Cl(-) form hydration shells with the hydration number 14 ± 2 and 2.3 ± 0.6, respectively, and leave the bulk H(2)O away from hydration shells unperturbed. Br(-) and I(-), on the other hand, form hydrogen bonds directly with the momentarily existing hydrogen bond network of H(2)O, and retard the degree of entropy-volume cross fluctuation inherent in liquid H(2)O. The effect of the latter is stronger for I(-) than Br(-). Here we seek additional information about this qualitative difference between Cl(-) and (Br(-) and I(-)) pair by near infrared (NIR) spectroscopy. We analyze the ν(2) + ν(3) band of H(2)O in the range 4600-5500 cm(-1) of aqueous solutions of NaCl, NaBr and NaI, by a new approach. From observed absorbance, we calculate excess molar absorptivity, ε(E), excess over the additive contributions of solute and solvent. ε(E) thus contains information about the effect of inter-molecular interactions in the ν(2) + ν(3) spectrum. The spectrum of ε(E) shows three bands; two negative ones at 5263 and 4873 cm(-1), and the positive band at 5123 cm(-1). We then define and calculate the excess partial molar absorptivity of each salt, ε(E)(salt). From the behaviour of ε(E)(salt) we suggest that the negative band at 5263 cm(-1) represents free H(2)O without much hydrogen bonding under the influence of local electric field of ions. Furthermore, from a sudden change in the x(salt) (mole fraction of salt) dependence of ε(E)(salt), we suggest that there is an ion-pairing in x(salt) > 0.032, 0.036, and 0.04 for NaCl, NaBr and NaI respectively. The positive band of ε(E) at 5123 cm(-1) is attributed to a modestly organized hydrogen bond network of H(2)O (or liquid-likeness), and the x(salt) dependence of ε indicated a qualitative difference in the effect of Cl(-) from those of Br(-) and I(-). Namely, the values of ε(E)(salt) stay constant for Cl(-) but those for Br(-) and I(-) decrease smoothly on

  16. Changes in hemodynamics and tissue oxygenation saturation in the brain and skeletal muscle induced by speech therapy - a near-infrared spectroscopy study

    OpenAIRE

    Wolf, U; Scholkmann, F; Rosenberger, R; Wolf, M; Nelle, M

    2011-01-01

    Arts speech therapy (AST) is a therapeutic method within complementary medicine and has been practiced for decades for various medical conditions. It comprises listening and the recitation of different forms of speech exercises under the guidance of a licensed speech therapist. The aim of our study was to noninvasively investigate whether different types of recitation influence hemodynamics and oxygenation in the brain and skeletal leg muscle using near-infrared spectroscopy (NIRS). Seventeen...

  17. Different hemodynamic response of prefontal area for men and women to mental arithmetic: a near-infrared spectroscopy study

    Science.gov (United States)

    Yang, Hongyu; Zhou, Zhenyu; Liu, Yun; Ruan, Zongcai; Gong, Hui; Luo, Qingming; Lu, Zuhong

    2007-05-01

    A 16-channel near-infrared spectroscopy (NIRS) was used to measure concentration changes of oxygenated and deoxygenated hemoglobin (oxy-HB and deoxy-HB) in prefrontal area while the subjects were performing mental works. Thirty healthy college participants were administered two mental arithmetic tasks while the changes of concentration on oxy-HB and deoxy-HB were measured. Oxy-HB increased during the mental works, and the increases of oxy-HB were greater in male subjects than in female subjects during the difficult task. These results suggest that NIRS is sensitive to evaluate the oxy-HB activity of prefrontal cortex during mental works.

  18. Study on temperature and near-infrared driving characteristics of hydrogel actuator fabricated via molding and 3D printing.

    Science.gov (United States)

    Zhao, Qian; Liang, Yunhong; Ren, Lei; Qiu, Feng; Zhang, Zhihui; Ren, Luquan

    2018-02-01

    A hydrogel material system which was fit for molding and 3D printing was developed to fabricate bilayer hydrogel actuators with controllable temperature and near infrared laser responses. Polymerization on interface boundary of layered structure enhanced the bonding strength of hydrogel actuators. By utilizing anisotropic of microstructure along with thickness direction, bilayer hydrogel actuators fabricated via molding realized intelligent bending/shrinking responses, which guided the preparation of hydrogel ink for 3D printing. In-situ free radical polymerization under vacuum realized the solidification of printed hydrogel actuators with graphene oxide. Based on anisotropic swelling/deswelling behaviors of precise structure fabricated via 3D printing, the printed bilayer hydrogel actuators achieved temperature and near infrared laser responsive deformation. Changes of programmable printing path effectively resulted in corresponding deformation patterns. Combination of advantages of molding and 3D printing can promote the design and fabrication of hydrogel actuators with high mechanical strength, response speed and deformation ability. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. [Study on predicting total acid content and soluble sugar of tomato juice by near infrared optical fiber spectrometer technique].

    Science.gov (United States)

    Zhang, Bing-Fang; Yuan, Li-Bo; Zhang, Bing-Xiu

    2014-02-01

    In order to explore a simple, rapid and efficient tomato quality detection method, in the present experiment near infrared spectroscopy and optical fiber sensing technology were applied to quickly measure the nutrition ingredient content in tomato juice samples. The main instrument used in this experiment was near infrared optical fiber spectrometer in a wavelength range from 900 to 2 500 nm, which measured the absorbance of the tomato juice samples; A collection of one hundred and sixty-four tomato juice samples were selected as the standard samples, the spectra and the corresponding chemical value were measured. Partial least squares (PLS) was adopted to establish the mathematical model of the total acid and soluble sugar content in tomato juice samples, and the regression equation was statistically analysed. The total acid in tomato juice prediction correlation coefficient was 0.967, calibration standard deviation (RMSEC) was 0.133, standard error of prediction (RMSEP) was 0.103; the soluble sugar prediction correlation coefficient is 0.976, calibration standard deviation (RMSEC) was 0.463, and the standard error of prediction (RMSEP) was 0. 460. The above data achieved better forecasting results, which showed that the method of quantitative analysis of tomato fruit multicomponent content was feasible. The method is rapid, simple and can do multicomponent analysis on the same sample simultaneously. It is a promising sensor and gradually becoming a international research focus in sensor field.

  20. A semi-immersive virtual reality incremental swing balance task activates prefrontal cortex: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Basso Moro, Sara; Bisconti, Silvia; Muthalib, Makii; Spezialetti, Matteo; Cutini, Simone; Ferrari, Marco; Placidi, Giuseppe; Quaresima, Valentina

    2014-01-15

    Previous functional near-infrared spectroscopy (fNIRS) studies indicated that the prefrontal cortex (PFC) is involved in the maintenance of the postural balance after external perturbations. So far, no studies have been conducted to investigate the PFC hemodynamic response to virtual reality (VR) tasks that could be adopted in the field of functional neurorehabilitation. The aim of this fNIRS study was to assess PFC oxygenation response during an incremental and a control swing balance task (ISBT and CSBT, respectively) in a semi-immersive VR environment driven by a depth-sensing camera. It was hypothesized that: i) the PFC would be bilaterally activated in response to the increase of the ISBT difficulty, as this cortical region is involved in the allocation of attentional resources to maintain postural control; and ii) the PFC activation would be greater in the right than in the left hemisphere considering its dominance for visual control of body balance. To verify these hypotheses, 16 healthy male subjects were requested to stand barefoot while watching a 3 dimensional virtual representation of themselves projected onto a screen. They were asked to maintain their equilibrium on a virtual blue swing board susceptible to external destabilizing perturbations (i.e., randomizing the forward-backward direction of the impressed pulse force) during a 3-min ISBT (performed at four levels of difficulty) or during a 3-min CSBT (performed constantly at the lowest level of difficulty of the ISBT). The center of mass (COM), at each frame, was calculated and projected on the floor. When the subjects were unable to maintain the COM over the board, this became red (error). After each error, the time required to bring back the COM on the board was calculated (returning time). An eight-channel continuous wave fNIRS system was employed for measuring oxygenation changes (oxygenated-hemoglobin, O2Hb; deoxygenated-hemoglobin, HHb) related to the PFC activation (Brodmann Areas 10, 11

  1. Possible Influences on the Interpretation of Functional Domain (FD) Near-Infrared Spectroscopy (NIRS): An Explorative Study.

    Science.gov (United States)

    Celie, Bert M; Boone, Jan; Dumortier, Jasmien; Derave, Wim; De Backer, Tine; Bourgois, Jan G

    2016-02-01

    The influence of subcutaneous adipose tissue (ATT) and oxygen (O2) delivery has been poorly defined in frequency domain (FD) near-infrared spectroscopy (NIRS). Therefore, the aim of this study was to investigate the possible influence of these variables on all FD NIRS responses using a reliable protocol. Moreover, these influences were also investigated when using relative oxy- and deoxyhemoglobin and -myoglobin (oxy[Hb + Mb] and deoxy[Hb + Mb]) values (in %). A regression analysis was carried out for ATT and maximal-minimum oxy[Hb + Mb], deoxy[Hb + Mb], oxygen saturation (SmO2), and total hemoglobin (totHb) amplitudes during an incremental cyclic contraction protocol (ICCP) in a group of 45 participants. Moreover, the same analysis was carried out between subcutaneous ATT and the relative oxy- and deoxy[Hb + Mb] values (in %). In the second part of this study, a regression analysis was performed for peak forearm blood flow (FBF) during ICCP and the absolute and relative NIRS values in a group of 37 participants. Significant exponential correlation coefficients were found between ATT and deoxy[Hb + Mb] (r = 0.53; P < 0.001), oxy[Hb + Mb] (r = 0.57; P < 0.001), and SmO2 amplitudes (r = 0.57; P < 0.001). No significant relations were found between ATT and relative oxy[Hb + Mb] (r = 0.37; P = 0.07) and deoxy[Hb + Mb] (r = 0.09; P = 0.82). Significant positive correlation coefficients were found between force at exhaustion and maximal FBF (r = 0.66; P < 0.001), maximal differences in deoxy[Hb + Mb] (r = 0.353; P = 0.032) and totHb (r = 0.512; P = 0.002) while no significant correlation coefficients were found between these maximal force values and maximal differences in oxy[Hb + Mb] (r = -0.267; P = 0.111) and SmO2 (r = -0.267; P = 0.111). Significant linear correlation coefficients were found between FBF and deoxy[Hb + Mb] (r = 0.51; P

  2. A study of the stellar population in the Lynds 1641 dark cloud - deep near-infrared imaging

    International Nuclear Information System (INIS)

    Strom, K.M.; Margulis, M.; Strom, S.E.

    1989-01-01

    Deep H and K photometry of a selection of IRAS point sources in the L1641 cloud is presented. Using these data in combination with IRAS data and previously published near-infrared photometry for sources in this region, it is found that the L1641 cloud contains newly born stars embedded within cores of unusually large visual extinction. A comparison of the properties of cores in L1641 with those in the Taurus-Auriga star-forming complex reveals that L1641 contains cores with higher visual extinctions, larger ammonia (J, K) = (1, 1) line widths, greater kinetic temperatures, and probably higher optical depths at 100 microns than any cores in Taurus-Auriga. These results are qualitatively consistent with recent suggestions that the process of protostellar collapse in cores in the L1641 cloud is dominated by gravity while this process is dominated by magnetic fields in Taurus-Auriga. 20 refs

  3. THE VARIABLE NEAR-INFRARED COUNTERPART OF THE MICROQUASAR GRS 1758–258

    Energy Technology Data Exchange (ETDEWEB)

    Luque-Escamilla, Pedro L. [Departamento de Ingeniería Mecánica y Minera, EPSJ, Universidad de Jaén, Campus Las Lagunillas s/n, A3-008, 23071 Jaén (Spain); Martí, Josep [Departamento de Física, EPSJ, Universidad de Jaén, Campus Las Lagunillas s/n, A3-420, 23071 Jaén (Spain); Muñoz-Arjonilla, Álvaro J., E-mail: peter@ujaen.es, E-mail: jmarti@ujaen.es, E-mail: ajmunoz@ujaen.es [Grupo de Investigación FQM-322, Universidad de Jaén, Campus Las Lagunillas s/n, A3-065, 23071 Jaén (Spain)

    2014-12-10

    We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest in time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification.

  4. A study on the use of near-infrared spectroscopy for the rapid quantification of major compounds in Tanreqing injection

    Science.gov (United States)

    Li, Wenlong; Cheng, Zhiwei; Wang, Yuefei; Qu, Haibin

    2013-01-01

    In this paper we describe the strategy used in the development and validation of a near infrared spectroscopy method for the rapid determination of baicalin, chlorogenic acid, ursodeoxycholic acid (UDCA), chenodeoxycholic acid (CDCA), and the total solid contents (TSCs) in the Tanreqing injection. To increase the representativeness of calibration sample set, a concentrating-diluting method was adopted to artificially prepare samples. Partial least square regression (PLSR) was used to establish calibration models, with which the five quality indicators can be determined with satisfied accuracy and repeatability. In addition, the slope/bias (S/B) method was used for the models transfer between two different types of NIR instruments from the same manufacturer, which is contributing to enlarge the application range of the established models. With the presented method, a great deal of time, effort and money can be saved when large amounts of Tanreqing injection samples need to be analyzed in a relatively short period of time, which is of great significance to the traditional Chinese medicine (TCM) industries.

  5. Synthesis and Study of Shape-Memory Polymers Selectively Induced by Near-Infrared Lights via In Situ Copolymerization

    Directory of Open Access Journals (Sweden)

    Tianyu Fang

    2017-05-01

    Full Text Available Shape-memory polymers (SMPs selectively induced by near-infrared lights of 980 or 808 nm were synthesized via free radical copolymerization. Methyl methacrylate (MMA monomer, ethylene glycol dimethylacrylate (EGDMA as a cross-linker, and organic complexes of Yb(TTA2AAPhen or Nd(TTA2AAPhen containing a reactive ligand of acrylic acid (AA were copolymerized in situ. The dispersion of the organic complexes in the copolymer matrix was highly improved, while the transparency of the copolymers was negligibly influenced in comparison with the pristine cross-linked PMMA. In addition, the thermal resistance of the copolymers was enhanced with the complex loading, while their glass transition temperature, cross-linking level, and mechanical properties were to some extent reduced. Yb(TTA2AAPhen and Nd(TTA2AAPhen provided the prepared copolymers with selective photothermal effects and shape-memory functions for 980 and 808 nm NIR lights, respectively. Finally, smart optical devices which exhibited localized transparency or diffraction evolution procedures were demonstrated based on the prepared copolymers, owing to the combination of good transparency and selective light wavelength responsivity.

  6. Role of the prefrontal cortex in the cognitive control of reaching movements: near-infrared spectroscopy study

    Science.gov (United States)

    Goto, Kotaro; Hoshi, Yoko; Sata, Masashi; Kawahara, Masatoshi; Takahashi, Makoto; Murohashi, Harumitsu

    2011-12-01

    To elucidate the role of the prefrontal cortex in cognitive control of reaching movements, by multichannel near-infrared spectroscopy we examine changes in oxygenated hemoglobin (oxy-Hb) as an indicator of changes in regional cerebral blood flow in the bilateral dorsolateral (DLPFC), ventrolateral prefrontal cortex (VLPFC), and frontopolar cortex (FPC) during a reaching task with normal visual feedback (a consistent task) and a reaching task with flipped horizontal visual feedback (an inconsistent task). Subjects first perform 12 trials of the consistent task, and then perform six blocks of the inconsistent task, each of which consists of six trials. During the consistent task, oxy-Hb is increased only in the right VLPFC. During the first block of the inconsistent task, increases in oxy-Hb are observed in the bilateral DLPFC and the right VLPFC, whereas the increased oxy-Hb was gradually reduced as the block proceeded, which was accompanied by an improvement in the task performance. Eventually, there were no differences in the degree of change in oxy-Hb between the consistent and inconsistent tasks in the DLPFC and VLPFC. These findings suggest that the DLPFC is engaged in higher order cognitive control, while the right VLPFC is engaged in both higher and lower order cognitive controls.

  7. Study of atmospheric air AC glow discharge using optical emission spectroscopy and near infrared diode laser cavity ringdown spectroscopy

    Science.gov (United States)

    Srivastava, Nimisha; Wang, Chuji; Dibble, Theodore S.

    2008-11-01

    AC glow discharges were generated in atmospheric pressure by applying high voltage AC in the range of 3500-15000 V to a pair of stainless steel electrodes separated by an air gap. The discharges were characterized by optical emission spectroscopy (OES) and continuous wave cavity ringdown spectroscopy (cw-CRDS). The electronic (Tex), vibrational (Tv), and rotational (Tr) temperatures were measured. Spectral stimulations of the emission spectra of several vibronic bands of the 2^nd positive system of N2, the 1^st negative system of N2^+, the (0,1,2,3-0) bands of NO (A-X), and the (0-0) band of OH (A-X), which were obtained under various plasma operating conditions, show that Tr, Tv, and Tex are in the ranges of 2000 - 3800, 3500 - 5000, and 6000 - 10500^ K, respectively. Emission spectra show that OH concentration increases while NO concentration decreases with an increase of electrode spacing. The absorption spectra of H2O and OH overtone in the near infrared (NIR) were measured by the cw-CRDS with a telecommunications diode laser at wavelength near 1515 nm.

  8. Efficacy of an Amblyopia Treatment Program with Both Eyes Open: A Functional Near-Infrared Spectroscopy Study.

    Science.gov (United States)

    Iwata, Yo; Handa, Tomoya; Ishikawa, Hitoshi; Shoji, Nobuyuki; Shimizu, Kimiya

    2016-01-01

    To investigate the efficacy of an amblyopia treatment program with both eyes open. Ten subjects (mean age 20.5 ± 1.5 years) were enrolled. All subjects had un-remarkable ophthalmic examinations, but several subjects had minor refractive errors. Vision function was evaluated using the 3-D visual function trainer-ORTe. Brain measurements were made using functional near-infrared spectroscopy (fNIRS) to examine the oxygenated hemoglobin (HbO 2 ) concentration change upon visual stimulus presentation. The three conditions were as follows: both eyes open and both eyes stimulated, both eyes open and only one eye stimulated, and one eye open and one eye stimulated. Changes in HbO2 between the rest and stimulation phases were not statistically different between the unilateral and bilateral stimulation conditions with both eyes open. However, HbO 2 change was significantly higher in subjects with both eyes open than in subjects with one eye closed (P amblyopia treatment administered without occluding the healthy eye may provide the greatest therapeutic benefit. © 2016 Board of regents of the University of Wisconsin System, American Orthoptic Journal, Volume 66, 2016, ISSN 0065-955X, E-ISSN 1553-4448.

  9. Co-speech gesture production in an animation-narration task by bilinguals: a near-infrared spectroscopy study.

    Science.gov (United States)

    Oi, Misato; Saito, Hirofumi; Li, Zongfeng; Zhao, Wenjun

    2013-04-01

    To examine the neural mechanism of co-speech gesture production, we measured brain activity of bilinguals during an animation-narration task using near-infrared spectroscopy. The task of the participants was to watch two stories via an animated cartoon, and then narrate the contents in their first language (Ll) and second language (L2), respectively. The participants showed significantly more gestures in L2 than in L1. The number of gestures lowered at the ending part of the narration in L1, but not in L2. Analyses of concentration changes of oxygenated hemoglobin revealed that activation of the left inferior frontal gyrus (IFG) significantly increased during gesture production, while activation of the left posterior superior temporal sulcus (pSTS) significantly decreased in line with an increase in the left IFG. These brain activation patterns suggest that the left IFG is involved in the gesture production, and the left pSTS is modulated by the speech load. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Enhancing effect of cerebral blood volume by mild exercise in healthy young men: a near-infrared spectroscopy study.

    Science.gov (United States)

    Timinkul, Akkaranee; Kato, Morimasa; Omori, Takenori; Deocaris, Custer C; Ito, Akira; Kizuka, Tomohiro; Sakairi, Yosuke; Nishijima, Takeshi; Asada, Takashi; Soya, Hideaki

    2008-07-01

    A mechanism by which exercise improves brain function may be attributed to increase in cerebral blood volume (CBV) with physical activity. However, the exact exercise intensity that influences CBV is still uncertain. To clarify this issue, 10 healthy young male participants were asked to perform a graded cycling exercise to the point of exhaustion while their prefrontal cortex CBVs are being monitored using near-infrared spectroscopy. Overall responsive cerebral oxygenation showed a non-linear pattern with three distinct phases. The CBV-threshold (CBVT), an event where rapid oxygenation takes place, occurred at approximately 42% of the V O2max. The CBVT preceded the lactate threshold (LT), which was at approximately 55% of the V O2max. The V O2max was not predictive of the CBVT in among the subjects. Our results indicate that oxygenation of the prefrontal cortex increases during graded cycling even at exercise intensities below the LT, suggesting the potential role of mild exercise in enhancing CBV.

  11. Near-infrared spectroscopy of the bladder: a new technique for studying lower urinary tract function in health and disease

    Science.gov (United States)

    Shadgan, Babak; Afshar, Kourosh; Stothers, Lynn; Macnab, Andrew

    2010-02-01

    Background: Continuous wave near-infrared spectroscopy (NIRS) can monitor chromophore change in the bladder detrusor muscle during voiding; oxygenation and hemodynamic data derived differ in health and disease. Application of wireless NIRS for evaluation of voiding dysfunction would benefit children. Methods: Subjects: 20 children (4-17 yrs) [5 normal, 15 with urinary tract pathology]. Instrumentation: self-contained device weight 84 gm; 3 paired light emitting diodes (760/850 nm) in a spatially resolved configuration; source-detector separation distances (30, 35 and 40 mm); silicon photodiode detector; and Bluetooth®. Procedure: Transcutaneous monitoring (midline abdominal skin 2 cm above pubis) during spontaneous voiding (bladder contraction) of oxygenated (O2Hb), deoxygenated (HHb) and total hemoglobin (tHb) and tissue oxygen saturation index (TSI %) at 10 Hz. Results: All 20 trials produced clear graphic data with no movement effect evident. Comparison of patterns of chromophore change between normal and symptomatic subjects revealed trend differences in O2Hb and tHb. (Normal positive; Symptomatic negative, and TSI% fell in symptomatic group). Conclusions: Wireless NIRS is technically feasible in ambulant children. Negative trends in chromophore concentration and falls in TSI% suggest a hemodynamic impairment may underlie some forms of voiding dysfunction, with abnormal physiology involving the microcirculation possibly resulting in muscle fatigue during voiding.

  12. Near-infrared light emission of Er{sup 3+}-doped zirconium oxide thin films: An optical, structural and XPS study

    Energy Technology Data Exchange (ETDEWEB)

    Clabel H, J.L., E-mail: jlch@df.ufscar.br [Departamento de Física, UFSCar, Caixa Postal 676, São Carlos 13565-905, SP (Brazil); Rivera, V.A.G.; Siu Li, M.; Nunes, L.A.O. [Instituto de Física de São Carlos, USP, Caixa Postal 369, São Carlos 13560-970, SP (Brazil); Leite, E.R. [Laboratório Interdisciplinar de Eletroquímica e Cerâmicas, UFSCar, Caixa Postal 676, São Carlos 13565-905, SP (Brazil); Schreiner, W.H. [Departamento de Física, UFPR, Caixa Postal 19044, Curitiba 81531-980, PR (Brazil); Marega, E. [Instituto de Física de São Carlos, USP, Caixa Postal 369, São Carlos 13560-970, SP (Brazil)

    2015-01-15

    Highlights: • Near-infrared emission properties of Er{sup 3+}-doped zirconium oxide thin films. • Modified with a fixed content of zinc oxide. • The improved luminescence is a function of the oxygen flux. • Bandwidth of 6.8–7.6 nm very useful for applications of erbium-doped solid lasers. - Abstract: This paper investigates the near-infrared emission and structural properties of Er{sup 3+}-doped zirconium oxide thin films modified with a fixed content of zinc oxide. The films were obtained by electron beam deposition on Si(1 0 0) substrates, followed by a thermal treatment with or without a controlled oxygen flow. The samples were characterized by X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS) and energy dispersive X-ray spectroscopy (EDX). Scanning electron microscopy (SEM) was used to evaluate the surface morphology, distributions and size of the grains in the films. The results confirmed significant changes in these films from thermal treatment with or without oxygen flow. Fourier transform infrared spectroscopy (FTIR) was used to analyze the absorption bands of the films. The photoluminescence (PL) measurement and {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} lifetime was measured under 980 nm near-infrared excitation. The effects of thermal treatment as well as the concentration of Er{sub 2}O{sub 3} on the PL emission intensity and lifetime in the near-infrared region (from the {sup 4}I{sub 13/2} → {sup 4}I{sub 15/2} radiative transition) were studied. Thermal treatment under a controlled atmosphere increased the PL emission intensity due to a diminution of the residual OH groups, as confirmed by the XPS and analysis and FTIR spectroscopy. The film modified with 3 mol% of Er{sub 2}O{sub 3} content annealed in oxygen flow shows an emission intensity of two orders of magnitude greater than the annealed film without oxygen flow at 1550 nm, nevertheless, the bandwidth was practically the same (7.6 nm) in both cases.

  13. Near-infrared and optical studies of the highly obscured nova V1831 Aquilae (Nova Aquilae 2015)

    Science.gov (United States)

    Banerjee, D. P. K.; Srivastava, Mudit K.; Ashok, N. M.; Munari, U.; Hambsch, F.-J.; Righetti, G. L.; Maitan, A.

    2018-01-01

    Near-infrared (NIR) and optical photometry and spectroscopy are presented for the nova V1831 Aquilae, covering the early decline and dust-forming phases during the first ∼90 d after its discovery. The nova is highly reddened due to interstellar extinction. Based solely on the nature of the NIR spectrum, we are able to classify the nova to be of the Fe II class. The distance and extinction to the nova are estimated to be 6.1 ± 0.5 kpc and Av ∼ 9.02, respectively. Lower limits of the electron density, emission measure and ionized ejecta mass are made from a Case B analysis of the NIR Brackett lines, while the neutral gas mass is estimated from the optical [O I] lines. We discuss the cause of the rapid strengthening of the He I 1.0830-μm line during the early stages. V1831 Aql formed a modest amount of dust fairly early (∼19.2 d after discovery); the dust shell is not seen to be optically thick. Estimates of the dust temperature, dust mass and grain size are made. Dust formation commences around day 19.2 at a condensation temperature of 1461 ± 15 K, suggestive of a carbon composition, following which the temperature is seen to decrease gradually to 950 K. The dust mass shows a rapid initial increase, which we interpret as being due to an increase in the number of grains, followed by a period of constancy, suggesting the absence of grain destruction processes during this latter time. A discussion of the evolution of these parameters is made, including certain peculiarities seen in the grain radius evolution.

  14. [Study on the application of ridge regression to near-infrared spectroscopy quantitative analysis and optimum wavelength selection].

    Science.gov (United States)

    Zhang, Man; Liu, Xu-Hua; He, Xiong-Kui; Zhang, Lu-Da; Zhao, Long-Lian; Li, Jun-Hui

    2010-05-01

    In the present paper, taking 66 wheat samples for testing materials, ridge regression technology in near-infrared (NIR) spectroscopy quantitative analysis was researched. The NIR-ridge regression model for determination of protein content was established by NIR spectral data of 44 wheat samples to predict the protein content of the other 22 samples. The average relative error was 0.015 18 between the predictive results and Kjeldahl's values (chemical analysis values). And the predictive results were compared with those values derived through partial least squares (PLS) method, showing that ridge regression method was deserved to be chosen for NIR spectroscopy quantitative analysis. Furthermore, in order to reduce the disturbance to predictive capacity of the quantitative analysis model resulting from irrelevant information, one effective way is to screen the wavelength information. In order to select the spectral information with more content information and stronger relativity with the composition or the nature of the samples to improve the model's predictive accuracy, ridge regression was used to select wavelength information in this paper. The NIR-ridge regression model was established with the spectral information at 4 wavelength points, which were selected from 1 297 wavelength points, to predict the protein content of the 22 samples. The average relative error was 0.013 7 and the correlation coefficient reached 0.981 7 between the predictive results and Kjeldahl's values. The results showed that ridge regression was able to screen the essential wavelength information from a large amount of spectral information. It not only can simplify the model and effectively reduce the disturbance resulting from collinearity information, but also has practical significance for designing special NIR analysis instrument for analyzing specific component in some special samples.

  15. Origins of spatial working memory deficits in schizophrenia: an event-related FMRI and near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Junghee Lee

    2008-03-01

    Full Text Available Abnormal prefrontal functioning plays a central role in the working memory (WM deficits of schizophrenic patients, but the nature of the relationship between WM and prefrontal activation remains undetermined. Using two functional neuroimaging methods, we investigated the neural correlates of remembering and forgetting in schizophrenic and healthy participants. We focused on the brain activation during WM maintenance phase with event-related functional magnetic resonance imaging (fMRI. We also examined oxygenated hemoglobin changes in relation to memory performance with the near-infrared spectroscopy (NIRS using the same spatial WM task. Distinct types of correct and error trials were segregated for analysis. fMRI data indicated that prefrontal activation was increased during WM maintenance on correct trials in both schizophrenic and healthy subjects. However, a significant difference was observed in the functional asymmetry of frontal activation pattern. Healthy subjects showed increased activation in the right frontal, temporal and cingulate regions. Schizophrenic patients showed greater activation compared with control subjects in left frontal, temporal and parietal regions as well as in right frontal regions. We also observed increased 'false memory' errors in schizophrenic patients, associated with increased prefrontal activation and resembling the activation pattern observed on the correct trials. NIRS data replicated the fMRI results. Thus, increased frontal activity was correlated with the accuracy of WM in both healthy control and schizophrenic participants. The major difference between the two groups concerned functional asymmetry; healthy subjects recruited right frontal regions during spatial WM maintenance whereas schizophrenic subjects recruited a wider network in both hemispheres to achieve the same level of memory performance. Increased "false memory" errors and accompanying bilateral prefrontal activation in schizophrenia suggest

  16. AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. II. THE NEAR-INFRARED SPECTROSCOPIC CATALOG

    International Nuclear Information System (INIS)

    Shimonishi, Takashi; Onaka, Takashi; Kato, Daisuke; Sakon, Itsuki; Ita, Yoshifusa; Kawamura, Akiko; Kaneda, Hidehiro

    2013-01-01

    We performed a near-infrared spectroscopic survey toward an area of ∼10 deg 2 of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R ∼ 20) spectra in 2-5 μm for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11 μm, and 67% of the sources also have photometric data up to 24 μm. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5 μm can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the LMC in the near-infrared

  17. A New System of Faint Near-Infrared Standard Stars

    Science.gov (United States)

    Persson, S. E.; Murphy, D. C.; Krzeminski, W.; Roth, M.; Rieke, M. J.

    1998-11-01

    A new grid of 65 faint near-infrared standard stars is presented. They are spread around the sky, lie between 10th and 12th magnitude at K, and are measured in most cases to precisions better than 0.001 mag in the J, H, K, and K_s bands; the latter is a medium-band modified K. A secondary list of red stars suitable for determining color transformations between photometric systems is also presented.

  18. Advances in near-infrared measurements

    CERN Document Server

    Patonay, Gabor

    1991-01-01

    Advances in Near-Infrared Measurements, Volume 1 provides an overview of near-infrared spectroscopy. The book is comprised of six chapters that tackle various areas of near-infrared measurement. Chapter 1 discusses remote monitoring techniques in near-infrared spectroscopy with an emphasis on fiber optics. Chapter 2 covers the applications of fibers using Raman techniques, and Chapter 3 tackles the difficulties associated with near-infrared data analysis. The subsequent chapters present examples of the capabilities of near-infrared spectroscopy from various research groups. The text wi

  19. Atypical prefrontal cortical responses to joint/non-joint attention in children with autism spectrum disorder (ASD): A functional near-infrared spectroscopy study

    Science.gov (United States)

    Zhu, Huilin; Li, Jun; Fan, Yuebo; Li, Xinge; Huang, Dan; He, Sailing

    2015-01-01

    Autism spectrum disorder (ASD) is a neuro-developmental disorder, characterized by impairments in one’s capacity for joint attention. In this study, functional near-infrared spectroscopy (fNIRS) was applied to study the differences in activation and functional connectivity in the prefrontal cortex between children with autism spectrum disorder (ASD) and typically developing (TD) children. 21 ASD and 20 TD children were recruited to perform joint and non-joint attention tasks. Compared with TD children, children with ASD showed reduced activation and atypical functional connectivity pattern in the prefrontal cortex during joint attention. The atypical development of left prefrontal cortex might play an important role in social cognition defects of children with ASD. PMID:25798296

  20. A Study on the Application of Near Infrared Hyperspectral Chemical Imaging for Monitoring Moisture Content and Water Activity in Low Moisture Systems

    Directory of Open Access Journals (Sweden)

    Eva Achata

    2015-02-01

    Full Text Available Moisture content and water activity are key parameters in predicting the stability of low moisture content products. However, conventional methods for moisture content and water activity determination (e.g., loss on drying method, ‎Karl Fischer titration, dew point method are time consuming, demand specialized equipment and are not amenable to online processing. For this reason they are typically applied at-line on a limited number of samples. Near infrared hyperspectral chemical imaging is an emerging technique for spatially characterising the spectral properties of samples. Due to the fast acquisition of chemical images, many samples can be evaluated simultaneously, thus providing the potential for online evaluation of samples during processing. In this study, the potential of NIR chemical imaging for predicting the moisture content and water activity of a selection of low moisture content food systems is evaluated.

  1. A study on the application of near infrared hyperspectral chemical imaging for monitoring moisture content and water activity in low moisture systems.

    Science.gov (United States)

    Achata, Eva; Esquerre, Carlos; O'Donnell, Colm; Gowen, Aoife

    2015-02-03

    Moisture content and water activity are key parameters in predicting the stability of low moisture content products. However, conventional methods for moisture content and water activity determination (e.g., loss on drying method, ‎Karl Fischer titration, dew point method) are time consuming, demand specialized equipment and are not amenable to online processing. For this reason they are typically applied at-line on a limited number of samples. Near infrared hyperspectral chemical imaging is an emerging technique for spatially characterising the spectral properties of samples. Due to the fast acquisition of chemical images, many samples can be evaluated simultaneously, thus providing the potential for online evaluation of samples during processing. In this study, the potential of NIR chemical imaging for predicting the moisture content and water activity of a selection of low moisture content food systems is evaluated.

  2. Near infrared spectroscopy and exercise

    Energy Technology Data Exchange (ETDEWEB)

    Angus, Caroline

    2002-07-01

    Near infrared spectroscopy (NIRS) provides a non-invasive method for the continuous monitoring of changes in tissue oxygenation and blood volume during aerobic exercise. During incremental exercise in adult subjects there was a positive correlation between lactate threshold (measured by blood sampling) and changes in the rate of muscle deoxygenation (measured by NIRS). However, the 7% failure rate for the NIRS test mitigated against the general use of this method. NIRS did not provide a valid method for LT determination in an adolescent population. NIRS was then used to examine whether haemodynamic changes could be a contributing factor to the mechanism underlying the cross-transfer effect. During a one-legged incremental aerobic exercise test the muscle was more deoxygenated in the exercising leg than in the non-exercising leg, consistent with oxygen consumption outstripping blood flow to the exercising limb. However, muscle blood volume increased equally in both legs. This suggests that blood flow may be raised to similar levels in both the legs; although local factors may signal an increase in blood volume, this effect is expressed in both legs. Muscle blood flow and changes in muscle blood volume were then measured directly by NIRS during an incremental one-arm aerobic exercise test. There was no significant difference in either blood volume or blood flow in the two arms at the end of the test. In the non-exercising arm changes in blood flow and blood volume were measured throughout the protocol. At higher exercise intensities, blood volume continued to rise as muscle blood flow plateaued, indicating that blood volume changes become independent of changes in blood flow. Finally, the effect of different training regimes on changes in muscle blood volume was examined. Subjects were assigned to a training group; two-arm training, one-arm training or a control group. Training did not affect blood volume changes during two-arm exercise. However, during one

  3. Near infrared spectroscopy and exercise

    International Nuclear Information System (INIS)

    Angus, Caroline

    2002-01-01

    Near infrared spectroscopy (NIRS) provides a non-invasive method for the continuous monitoring of changes in tissue oxygenation and blood volume during aerobic exercise. During incremental exercise in adult subjects there was a positive correlation between lactate threshold (measured by blood sampling) and changes in the rate of muscle deoxygenation (measured by NIRS). However, the 7% failure rate for the NIRS test mitigated against the general use of this method. NIRS did not provide a valid method for LT determination in an adolescent population. NIRS was then used to examine whether haemodynamic changes could be a contributing factor to the mechanism underlying the cross-transfer effect. During a one-legged incremental aerobic exercise test the muscle was more deoxygenated in the exercising leg than in the non-exercising leg, consistent with oxygen consumption outstripping blood flow to the exercising limb. However, muscle blood volume increased equally in both legs. This suggests that blood flow may be raised to similar levels in both the legs; although local factors may signal an increase in blood volume, this effect is expressed in both legs. Muscle blood flow and changes in muscle blood volume were then measured directly by NIRS during an incremental one-arm aerobic exercise test. There was no significant difference in either blood volume or blood flow in the two arms at the end of the test. In the non-exercising arm changes in blood flow and blood volume were measured throughout the protocol. At higher exercise intensities, blood volume continued to rise as muscle blood flow plateaued, indicating that blood volume changes become independent of changes in blood flow. Finally, the effect of different training regimes on changes in muscle blood volume was examined. Subjects were assigned to a training group; two-arm training, one-arm training or a control group. Training did not affect blood volume changes during two-arm exercise. However, during one

  4. Strong visible and near infrared photoluminescence from ZnO nanorods/nanowires grown on single layer graphene studied using sub-band gap excitation

    Science.gov (United States)

    Biroju, Ravi K.; Giri, P. K.

    2017-07-01

    Fabrication and optoelectronic applications of graphene based hybrid 2D-1D semiconductor nanostructures have gained tremendous research interest in recent times. Herein, we present a systematic study on the origin and evolution of strong broad band visible and near infrared (NIR) photoluminescence (PL) from vertical ZnO nanorods (NRs) and nanowires (NWs) grown on single layer graphene using both above band gap and sub-band gap optical excitations. High resolution field emission scanning electron microscopy and X-ray diffraction studies are carried out to reveal the morphology and crystalline quality of as-grown and annealed ZnO NRs/NWs on graphene. Room temperature PL studies reveal that besides the UV and visible PL bands, a new near-infrared (NIR) PL emission band appears in the range between 815 nm and 886 nm (1.40-1.52 eV). X-ray photoelectron spectroscopy studies revealed excess oxygen content and unreacted metallic Zn in the as-grown ZnO nanostructures, owing to the low temperature growth by a physical vapor deposition method. Post-growth annealing at 700 °C in the Ar gas ambient results in the enhanced intensity of both visible and NIR PL bands. On the other hand, subsequent high vacuum annealing at 700 °C results in a drastic reduction in the visible PL band and complete suppression of the NIR PL band. PL decay dynamics of green emission in Ar annealed samples show tri-exponential decay on the nanosecond timescale including a very slow decay component (time constant ˜604.5 ns). Based on these results, the NIR PL band comprising two peaks centered at ˜820 nm and ˜860 nm is tentatively assigned to neutral and negatively charged oxygen interstitial (Oi) defects in ZnO, detected experimentally for the first time. The evidence for oxygen induced trap states on the ZnO NW surface is further substantiated by the slow photocurrent response of graphene-ZnO NRs/NWs. These results are important for tunable light emission, photodetection, and other cutting edge

  5. Laparoscopic sentinel lymph node identification in patients with colon carcinoma using a near-infrared dye: description of a new technique and feasibility study.

    Science.gov (United States)

    van der Pas, Martijn H G M; Ankersmit, Marjolein; Stockmann, Hein B A C; Silvis, Rob; van Grieken, Nicole C T; Bril, Herman; Meijerink, Wilhelmus J H J

    2013-04-01

    After promising results were obtained from studies in large animals, a technique using indocyanine green (ICG) is being introduced for sentinel lymph node (SLN) biopsy in colon cancer patients. Colon cancer patients without clinical signs of metastatic disease, presenting at the VU University Medical Center (Amsterdam, The Netherlands) or Kennemer Gasthuis (Haarlem, The Netherlands), were asked to participate in the study. During laparoscopy, a subserosal injection of 2.5 mg of ICG diluted in 1 mL of 0.9% NaCl plus 2% human albumin was performed using a percutaneously inserted long rigid or flexible needle. After injection, a near-infrared laparoscope (Olympus Corp., Tokyo, Japan) was used for lymph flow and SLN visualization. The SLNs were laparoscopically harvested and analyzed by a senior pathologist using multisectioning and immunohistochemistry. Fourteen patients were included (six women, eight men), with a median age of 75.5 (interquartile range [IQR], 67.8-81.0) years and a median body mass index of 25.1 (IQR, 22.7-26.0) kg/m(2). Median tumor diameter was 4.5 (IQR, 3.4-7.0) cm. At least one SLN was identified in all patients, with a median number of 2.0 (IQR, 2.0-3.3) SLNs. The median time between injection and identification of the SLN was 15.0 (IQR, 13.3-29.3) minutes. Positioning of the needle tip into the subserosal layer was found to be more effective using the flexible needle. When this flexible needle was used, less spill of dye was observed. All SLNs were negative. We observed four false-negative nodes, all after using a rigid needle. None of the patients showed an adverse reaction to the ICG injection. Preliminary results of laparoscopic sentinel node identification using a near-infrared dye show this procedure is safe and feasible. It was possible to detect lymph nodes in all patients. Large tumor size, drainage to adjacent lymphatic vessels, and the use of a rigid needle might contribute to false-negative nodes.

  6. Near-infrared receiver for advanced ophthalmology

    Science.gov (United States)

    Myers, Richard A.; Farrell, Richard; Zhang, Yuhua; Roorda, Austin

    2010-02-01

    We will present research on the development of an optical receiver module with a wide frequency bandwidth and excellent response to near-infrared radiation. This module is being produced to promote new imaging modalities, allowing retinal specialist to utilize established diagnostic instruments, such as scanning laser ophthalmoscopes (SLO) in a unique or more effective manner. In particular, it can be applied towards more accurate visual threshold studies in both the healthy and diseased eye. With this goal in mind, measurements of the targeted receiver's performance with and without additional amplification are presented, as is a survey of available APD detectors.

  7. Effects of aging on cerebral oxygenation during working-memory performance: a functional near-infrared spectroscopy study

    NARCIS (Netherlands)

    Vermeij, A.; van Beek, A.H.; Olde Rikkert, M.G.M.; Claassen, J.A.H.R.; Kessels, R.P.C.

    2012-01-01

    Working memory is sensitive to aging-related decline. Evidence exists that aging is accompanied by a reorganization of the working-memory circuitry, but the underlying neurocognitive mechanisms are unclear. In this study, we examined aging-related changes in prefrontal activation during

  8. Effects of Aging on Cerebral Oxygenation during Working-Memory Performance: A Functional Near-Infrared Spectroscopy Study

    NARCIS (Netherlands)

    Vermeij, A.; Beek, H.E.A. van; Olde Rikkert, M.G.M.; Kessels, R.P.C.

    2012-01-01

    Working memory is sensitive to aging-related decline. Evidence exists that aging is accompanied by a reorganization of the working-memory circuitry, but the underlying neurocognitive mechanisms are unclear. In this study, we examined aging-related changes in prefrontal activation during

  9. The many phases of massive galaxies : a near-infrared spectroscopic study of galaxies in the early universe

    NARCIS (Netherlands)

    Kriek, Mariska Therese

    2007-01-01

    A key issue in astronomy today is understanding the star-formation and assembly history of massive galaxies. Stellar population studies show that the bulk of the stars in low-redshift massive galaxies is formed at z~2 or even higher. Furthermore, there are strong indications that about 50% of the

  10. Evaluation of cerebral activity in the prefrontal cortex in mood [affective] disorders during animal-assisted therapy (AAT) by near-infrared spectroscopy (NIRS): a pilot study.

    Science.gov (United States)

    Aoki, Jun; Iwahashi, Kazuhiko; Ishigooka, Jun; Fukamauchi, Fumihiko; Numajiri, Maki; Ohtani, Nobuyo; Ohta, Mitsuaki

    2012-09-01

    Previous studies have shown the possibility that animal-assisted therapy (AAT) is useful for promoting the recovery of a patient's psychological, social, and physiological aspect. As a pilot study, we measured the effect that AAT had on cerebral activity using near-infrared spectroscopy (NIRS), and examined whether or not NIRS be used to evaluate the effect of AAT biologically and objectively. Two patients with mood [affective] disorders and a healthy subject participated in this study. We performed two AAT and the verbal fluency task (VFT). The NIRS signal during AAT showed great [oxy-Hb] increases in most of the prefrontal cortex (PFC) in the two patients. When the NIRS pattern during AAT was compared with that during VFT, greater or lesser differences were observed between them in all subjects. The present study suggested that AAT possibly causes biological and physiological changes in the PFC, and that AAT is useful for inducing the activity of the PFC in patients with depression who have generally been said to exhibit low cerebral activity in the PFC. In addition, the possibility was also suggested that the effect of AAT can be evaluated using NIRS physiologically and objectively.

  11. Reduced cortical microvascular oxygenation in multiple sclerosis: a blinded, case-controlled study using a novel quantitative near-infrared spectroscopy method

    Science.gov (United States)

    Yang, Runze; Dunn, Jeff F.

    2015-11-01

    Hypoxia (low oxygen) is associated with many brain disorders as well as inflammation, but the lack of widely available technology has limited our ability to study hypoxia in human brain. Multiple sclerosis (MS) is a poorly understood neurological disease with a significant inflammatory component which may cause hypoxia. We hypothesized that if hypoxia were to occur, there should be reduced microvascular hemoglobin saturation (StO2). In this study, we aimed to determine if reduced StO2 can be detected in MS using frequency domain near-infrared spectroscopy (fdNIRS). We measured fdNIRS data in cortex and assessed disability of 3 clinical isolated syndrome (CIS), 72 MS patients and 12 controls. Control StO2 was 63.5 ± 3% (mean ± SD). In MS patients, 42% of StO2 values were more than 2 × SD lower than the control mean. There was a significant relationship between StO2 and clinical disability. A reduced microvascular StO2 is supportive (although not conclusive) that there may be hypoxic regions in MS brain. This is the first study showing how quantitative NIRS can be used to detect reduced StO2 in patients with MS, opening the door to understanding how microvascular oxygenation impacts neurological conditions.

  12. Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD): a functional near infrared spectroscopy study.

    Science.gov (United States)

    Tian, Fenghua; Yennu, Amarnath; Smith-Osborne, Alexa; Gonzalez-Lima, F; North, Carol S; Liu, Hanli

    2014-01-01

    Neuroimaging studies of post-traumatic stress disorder (PTSD)-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS) was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related) forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval) of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.

  13. Reduced Prefrontal Cortex Activation in Children with Attention-Deficit/Hyperactivity Disorder during Go/No-Go Task: A Functional Near-Infrared Spectroscopy Study

    Directory of Open Access Journals (Sweden)

    Shuo Miao

    2017-06-01

    Full Text Available Objective: Attention-deficit/hyperactivity disorder (ADHD is one of the most common neuropsychiatric disorders in children and affects 3 to 5% of school-aged children. This study is to demonstrate whether functional near-infrared spectroscopy (fNIRS can detect the changes in the concentration of oxygenated hemoglobin (oxy-HB in children with ADHD and typically developing children (TD children.Method: In this study, 14 children with ADHD and 15 TD children were studied. Metabolic signals of functional blood oxygen were recorded by using fNIRS during go/no-go task. A statistic method is used to compare the fNIRS between the ADHD children and controls.Results: A significant oxy-HB increase in the left frontopolar cortex (FPC in control subjects but not in children with ADHD during inhibitory tasks. Moreover, ADHD children showed reduced activation in left FPC relative to TD children.Conclusion: Functional brain imaging using fNIRS showed reduced activation in the left prefrontal cortex (PFC of children with ADHD during the inhibition task. The fNIRS could be a promising tool for differentiating children with ADHD and TD children.

  14. Prefrontal responses to digit span memory phases in patients with post-traumatic stress disorder (PTSD: A functional near infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Fenghua Tian

    2014-01-01

    Full Text Available Neuroimaging studies of post-traumatic stress disorder (PTSD-related memory impairments have consistently implicated abnormal activities in the frontal and parietal lobes. However, most studies have used block designs and could not dissociate the multiple phases of working memory. In this study, the involvement of the prefrontal cortex in working memory phases was assessed among veterans with PTSD and age-/gender-matched healthy controls. Multichannel functional near infrared spectroscopy (fNIRS was utilized to measure prefrontal cortex hemodynamic activations during memory of neutral (i.e., not trauma-related forward and backward digit span tasks. An event-related experimental design was utilized to dissociate the different phases (i.e., encoding, maintenance and retrieval of working memory. The healthy controls showed robust hemodynamic activations during the encoding and retrieval processes. In contrast, the veterans with PTSD were found to have activations during the encoding process, but followed by distinct deactivations during the retrieval process. The PTSD participants, but not the controls, appeared to suppress prefrontal activity during memory retrieval. This deactivation was more pronounced in the right dorsolateral prefrontal cortex during the retrieval phase. These deactivations in PTSD patients might implicate an active inhibition of dorsolateral prefrontal neural activity during retrieval of working memory.

  15. Green approach to the extraction of major capsaicinoids from habanero pepper using near-infrared, microwave, ultrasound and Soxhlet methods, a comparative study.

    Science.gov (United States)

    Martínez, Joel; Rosas, Julieta; Pérez, Javier; Saavedra, Zenaida; Carranza, Vladimir; Alonso, Pedro

    2018-03-27

    A simple method for the extraction of two major capsaicinoids from habanero peppers, using near-infrared irradiation, microwave irradiation or ultrasound as the energy source and ethanol as the solvent, was compared with Soxhlet extraction. The extraction processes were monitored by gas chromatography/mass spectrometry. The new processes offer better overall yields and a higher ratio of capsaicin to dihydrocapsaicin than Soxhlet extraction. The physical effect of the different energy sources on the peppers was determined using scanning electron microscopy. Extraction of capsaicin and dihydrocapsaicin using near-infrared irradiation, which has not been previously reported, was shown to be a simple and efficient alternative extraction procedure.

  16. Effect of therapeutic touch on brain activation of preterm infants in response to sensory punctate stimulus: a near-infrared spectroscopy-based study.

    Science.gov (United States)

    Honda, Noritsugu; Ohgi, Shohei; Wada, Norihisa; Loo, Kek Khee; Higashimoto, Yuji; Fukuda, Kanji

    2013-05-01

    The purpose of this study was to determine whether therapeutic touch in preterm infants can ameliorate their sensory punctate stimulus response in terms of brain activation measured by near-infrared spectroscopy. The study included 10 preterm infants at 34-40 weeks' corrected age. Oxyhaemoglobin (Oxy-Hb) concentration, heart rate (HR), arterial oxygen saturation (SaO2) and body movements were recorded during low-intensity sensory punctate stimulation for 1 s with and without therapeutic touch by a neonatal development specialist nurse. Each stimulation was followed by a resting phase of 30 s. All measurements were performed with the infants asleep in the prone position. sensory punctate stimulus exposure significantly increased the oxy-Hb concentration but did not affect HR, SaO2 and body movements. The infants receiving therapeutic touch had significantly decreased oxy-Hb concentrations over time. Therapeutic touch in preterm infants can ameliorate their sensory punctate stimulus response in terms of brain activation, indicated by increased cerebral oxygenation. Therefore, therapeutic touch may have a protective effect on the autoregulation of cerebral blood flow during sensory punctate stimulus in neonates.

  17. Phonon Confinement Induced Non-Concomitant Near-Infrared Emission along a Single ZnO Nanowire: Spatial Evolution Study of Phononic and Photonic Properties

    Directory of Open Access Journals (Sweden)

    Po-Hsun Shih

    2017-10-01

    Full Text Available The impact of mixed defects on ZnO phononic and photonic properties at the nanoscale is only now being investigated. Here we report an effective strategy to study the distribution of defects along the growth direction of a single ZnO nanowire (NW, performed qualitatively as well as quantitatively using energy dispersive spectroscopy (EDS, confocal Raman-, and photoluminescence (PL-mapping technique. A non-concomitant near-infrared (NIR emission of 1.53 ± 0.01 eV was observed near the bottom region of 2.05 ± 0.05 μm along a single ZnO NW and could be successfully explained by the radiative recombination of shallowly trapped electrons V_O^(** with deeply trapped holes at V_Zn^''. A linear chain model modified from a phonon confinement model was used to describe the growth of short-range correlations between the mean distance of defects and its evolution with spatial position along the axial growth direction by fitting the E2H mode. Our results are expected to provide new insights into improving the study of the photonic and photonic properties of a single nanowire.

  18. Use of Multichannel Near Infrared Spectroscopy to Study Relationships Between Brain Regions and Neurocognitive Tasks of Selective/Divided Attention and 2-Back Working Memory.

    Science.gov (United States)

    Tomita, Nozomi; Imai, Shoji; Kanayama, Yusuke; Kawashima, Issaku; Kumano, Hiroaki

    2017-06-01

    While dichotic listening (DL) was originally intended to measure bottom-up selective attention, it has also become a tool for measuring top-down selective attention. This study investigated the brain regions related to top-down selective and divided attention DL tasks and a 2-back task using alphanumeric and Japanese numeric sounds. Thirty-six healthy participants underwent near-infrared spectroscopy scanning while performing a top-down selective attentional DL task, a top-down divided attentional DL task, and a 2-back task. Pearson's correlations were calculated to show relationships between oxy-Hb concentration in each brain region and the score of each cognitive task. Different brain regions were activated during the DL and 2-back tasks. Brain regions activated in the top-down selective attention DL task were the left inferior prefrontal gyrus and left pars opercularis. The left temporopolar area was activated in the top-down divided attention DL task, and the left frontopolar area and left dorsolateral prefrontal cortex were activated in the 2-back task. As further evidence for the finding that each task measured different cognitive and brain area functions, neither the percentages of correct answers for the three tasks nor the response times for the selective attentional task and the divided attentional task were correlated to one another. Thus, the DL and 2-back tasks used in this study can assess multiple areas of cognitive, brain-related dysfunction to explore their relationship to different psychiatric and neurodevelopmental disorders.

  19. Intense pulsed light, near infrared pulsed light, and fractional laser combination therapy for skin rejuvenation in Asian subjects: a prospective multi-center study in China.

    Science.gov (United States)

    Tao, Li; Wu, Jiaqiang; Qian, Hui; Lu, Zhong; Li, Yuanhong; Wang, Weizhen; Zhao, Xiaozhong; Tu, Ping; Yin, Rui; Xiang, Leihong

    2015-09-01

    Ablative skin rejuvenation therapies have limitations for Asian people, including post-inflammatory hyperpigmentation and long down time. Non-ablative lasers are safer but have limited efficacy. This study is to investigate the safety and efficacy of a combination therapy consisting of intense pulsed light (IPL), near infrared (NIR) light, and fractional erbium YAG (Er:YAG) laser for skin rejuvenation in Asian people. This study recruited 113 subjects from six sites in China. Subjects were randomly assigned to a full-face group, who received combination therapy, and split-face groups, in which one half of the face received combination therapy and the other half received IPL monotherapy. Each subject received five treatment sessions during a period of 90 days. Subjects were followed up at 1 and 3 months post last treatment. Three months after last treatment, the full-face group (n = 57) had a global improvement rate of 29 % and 29 % for wrinkles, 32 % for skin texture, 33 % for pigment spots, 28 % for pore size, respectively. For patients in the split-face groups (n = 54), monotherapy side had a global improvement rate of 23 % and 20 % for wrinkles, 27 % for skin texture, 25 % for pigment spots, 25 % for pore size, respectively. Both combination therapy and monotherapy resulted in significant improvements at the follow-up visits compared to baseline (P skin rejuvenation in Asian people.

  20. Hemodynamic and electrophysiological signals of conflict processing in the Chinese-character Stroop task: a simultaneous near-infrared spectroscopy and event-related potential study

    Science.gov (United States)

    Zhai, Jiahuan; Li, Ting; Zhang, Zhongxing; Gong, Hui

    2009-09-01

    A dual-modality method combining continuous-wave near-infrared spectroscopy (NIRS) and event-related potentials (ERPs) was developed for the Chinese-character color-word Stroop task, which included congruent, incongruent, and neutral stimuli. Sixteen native Chinese speakers participated in this study. Hemodynamic and electrophysiological signals in the prefrontal cortex (PFC) were monitored simultaneously by NIRS and ERP. The hemodynamic signals were represented by relative changes in oxy-, deoxy-, and total hemoglobin concentration, whereas the electrophysiological signals were characterized by the parameters P450, N500, and P600. Both types of signals measured at four regions of the PFC were analyzed and compared spatially and temporally among the three different stimuli. We found that P600 signals correlated significantly with the hemodynamic parameters, suggesting that the PFC executes conflict-solving function. Additionally, we observed that the change in deoxy-Hb concentration showed higher sensitivity in response to the Stroop task than other hemodynamic signals. Correlation between NIRS and ERP signals revealed that the vascular response reflects the cumulative effect of neural activities. Taken together, our findings demonstrate that this new dual-modality method is a useful approach to obtaining more information during cognitive and physiological studies.

  1. Altered strategy in short-term memory for pictures in children with attention-deficit/hyperactivity disorder: a near-infrared spectroscopy study.

    Science.gov (United States)

    Sanefuji, Masafumi; Yamashita, Hiroshi; Torisu, Hiroyuki; Takada, Yui; Imanaga, Hisako; Matsunaga, Mayumi; Ishizaki, Yoshito; Sakai, Yasunari; Yoshida, Keiko; Hara, Toshiro

    2014-07-30

    Strategy in short-term memory for serially presented pictures shifts gradually from a non-phonological to a phonological method as memory ability increases during typical childhood development. However, little is known about the development of this strategic change in children with attention-deficit/hyperactivity disorder (ADHD). To understand the neural basis of ADHD, we investigated short-term memory strategies using near-infrared spectroscopy. ADHD children aged from 6 to 12 years and age- and sex-matched control children were assessed in this study. Regional activity was monitored in the left ventrolateral prefrontal cortex to assess strategies used during short-term memory for visual or phonological objects. We examined the hypothesis that the strategic methods used would be correlated with memory ability. Higher memory ability and the phonological strategy were significantly correlated in the control group but not in the ADHD group. Intriguingly, ADHD children receiving methylphenidate treatment exhibited increased use of phonological strategy compared with those without. In conclusion, we found evidence of an altered strategy in short-term memory in ADHD children. The modulatory effect of methylphenidate indicates its therapeutic efficacy. Copyright © 2014 Elsevier Ireland Ltd. All rights reserved.

  2. HOW MOTIVATIONAL AND CALM MUSIC MAY AFFECT THE PREFRONTAL CORTEX AREA AND EMOTIONAL RESPONSES: A FUNCTIONAL NEAR-INFRARED SPECTROSCOPY (fNIRS) STUDY.

    Science.gov (United States)

    Bigliassi, Marcelo; Barreto-Silva, Vinícius; Altimari, Leandro R; Vandoni, Matteo; Codrons, Erwan; Buzzachera, Cosme F

    2015-02-01

    Using functional near-infrared spectroscopy, the present study investigated how listening to differently valenced music is associated with changes in hemoglobin concentrations in the prefrontal cortex area, indicating changes in neural activity. Thirty healthy people (15 men; M age = 24.8 yr., SD = 2.4; 15 women; M age = 25.2 yr., SD = 3.1) participated. Prefrontal cortex activation, emotional responses (heart rate variability), and self-reported affective ratings were measured while listening to calm and motivational music. The songs were presented in a random counterbalanced order and separated by periods of white noise. Mixed-model repeated-measures analysis of variance (ANOVA) evaluated the relationships for main effects and interactions. The results showed that music was associated with increased activation of the prefrontal cortex area. For both sexes, listening to the motivational song was associated with higher vagal withdrawal (lower HR) than the calm song. As expected, participants rated the motivational song with greater affective valence and higher arousal. Effects persisted longer in men than in women. These findings suggest that both the characteristics of music and sex differences may significantly affect the results of emotional neuroimaging in samples of young adults.

  3. Near-infrared magneto-optical study of excitonic states in single-walled carbon nanotubes under ultra-high magnetic fields

    International Nuclear Information System (INIS)

    Yokoi, H; Effendi, Mukhtar; Minami, N; Takeyama, S

    2011-01-01

    Singlet excitonic states at the first subband-edge in single-walled carbon nanotubes (SWCNTs) have been studied through near-infrared magneto-absorption spectroscopy under magnetic fields to 105.9 T. Well-resolved absorption spectra of stretch-aligned SWCNT(CoMoCAT)-gelatin films were obtained above 100 T. By the application of magnetic fields in parallel to the alignment of SWCNTs, peak shift toward the lower energy was observed for (8, 4) and (7, 6) tubes and the opposite behavior was observed for (7, 5) and (6, 5) tubes. Above 28.8 T, new peaks emerged at the higher energy side of the peak for the (8, 4) and (7, 6) tubes, and at the lower energy side of the peaks for the (7, 5) and (6, 5) tubes. The magnetic splitting between the existing peak and the new peak was symmetric for every tube, which is in line with the energy splitting due to the Aharonov-Bohm effect. Judging from the energetic positions where the new peaks emerged, the singlet dark excitonic state locates at the lower energy than the singlet bright one in the (7, 5) and (6, 5) tubes while it is suggested strongly that the bright one locates at the lower energy in the (8, 4) and (7, 6) tubes.

  4. Rheo-optical near-infrared (NIR) spectroscopy study of partially miscible polymer blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG).

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-03-05

    Tensile deformations of a partially miscible blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG) is studied by a rheo-optical characterization near-infrared (NIR) technique to probe deformation behavior during tensile deformation. Sets of NIR spectra of the polymer samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While deformations of the samples were readily captured as strain-dependent NIR spectra, the entire feature of the spectra was overwhelmed with the baseline fluctuation induced by the decrease in the sample thickness and subsequent change in the light scattering. Several pretreatment techniques, including multiplicative scatter collection (MSC) and null-space projection, are subjected to the NIR spectra prior to the determination of the sequential order of the spectral intensity changes by two-dimensional (2D) correlation analysis. The comparison of the MSC and null-space projection provided an interesting insight into the system, especially deformation-induced variation of light scattering observed during the tensile testing of the polymer sample. In addition, the sequential order determined with the 2D correlation spectra revealed that orientation of a specific part of PMMA chain occurs before that of the others because of the interaction between CO group of PMMA and terminal OH group of PEG. Copyright © 2017 Elsevier B.V. All rights reserved.

  5. Best facilitated cortical activation during different stepping, treadmill, and robot-assisted walking training paradigms and speeds: A functional near-infrared spectroscopy neuroimaging study.

    Science.gov (United States)

    Kim, Ha Yeon; Yang, Sung Phil; Park, Gyu Lee; Kim, Eun Joo; You, Joshua Sung Hyun

    2016-01-01

    Robot-assisted and treadmill-gait training are promising neurorehabilitation techniques, with advantages over conventional gait training, but the neural substrates underpinning locomotor control remain unknown particularly during different gait training modes and speeds. The present optical imaging study compared cortical activities during conventional stepping walking (SW), treadmill walking (TW), and robot-assisted walking (RW) at different speeds. Fourteen healthy subjects (6 women, mean age 30.06, years ± 4.53) completed three walking training modes (SW, TW, and RW) at various speeds (self-selected, 1.5, 2.0, 2.5, and 3.0  km/h). A functional near-infrared spectroscopy (fNIRS) system determined cerebral hemodynamic changes associated with cortical locomotor network areas in the primary sensorimotor cortex (SMC), premotor cortex (PMC), supplementary motor area (SMA), prefrontal cortex (PFC), and sensory association cortex (SAC). There was increased cortical activation in the SMC, PMC, and SMA during different walking training modes. More global locomotor network activation was observed during RW than TW or SW. As walking speed increased, multiple locomotor network activations were observed, and increased activation power spectrum. This is the first empirical evidence highlighting the neural substrates mediating dynamic locomotion for different gait training modes and speeds. Fast, robot-assisted gait training best facilitated cortical activation associated with locomotor control.

  6. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation.

    Science.gov (United States)

    Sun, Pei-Pei; Tan, Fu-Lun; Zhang, Zong; Jiang, Yi-Han; Zhao, Yang; Zhu, Chao-Zhe

    2018-01-01

    The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS.

  7. Rheo-optical near-infrared (NIR) spectroscopy study of partially miscible polymer blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG)

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2018-03-01

    Tensile deformations of a partially miscible blend of polymethyl methacrylate (PMMA) and polyethylene glycol (PEG) is studied by a rheo-optical characterization near-infrared (NIR) technique to probe deformation behavior during tensile deformation. Sets of NIR spectra of the polymer samples were collected by using an acousto-optic tunable filter (AOTF) NIR spectrometer coupled with a tensile testing machine as an excitation device. While deformations of the samples were readily captured as strain-dependent NIR spectra, the entire feature of the spectra was overwhelmed with the baseline fluctuation induced by the decrease in the sample thickness and subsequent change in the light scattering. Several pretreatment techniques, including multiplicative scatter collection (MSC) and null-space projection, are subjected to the NIR spectra prior to the determination of the sequential order of the spectral intensity changes by two-dimensional (2D) correlation analysis. The comparison of the MSC and null-space projection provided an interesting insight into the system, especially deformation-induced variation of light scattering observed during the tensile testing of the polymer sample. In addition, the sequential order determined with the 2D correlation spectra revealed that orientation of a specific part of PMMA chain occurs before that of the others because of the interaction between Cdbnd O group of PMMA and terminal sbnd OH group of PEG.

  8. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

    Directory of Open Access Journals (Sweden)

    Pei-Pei Sun

    2018-03-01

    Full Text Available The mirror neuron system (MNS, mainly including the premotor cortex (PMC, inferior frontal gyrus (IFG, superior parietal lobule (SPL, and rostral inferior parietal lobule (IPL, has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS.

  9. Feasibility of Functional Near-Infrared Spectroscopy (fNIRS) to Investigate the Mirror Neuron System: An Experimental Study in a Real-Life Situation

    Science.gov (United States)

    Sun, Pei-Pei; Tan, Fu-Lun; Zhang, Zong; Jiang, Yi-Han; Zhao, Yang; Zhu, Chao-Zhe

    2018-01-01

    The mirror neuron system (MNS), mainly including the premotor cortex (PMC), inferior frontal gyrus (IFG), superior parietal lobule (SPL), and rostral inferior parietal lobule (IPL), has attracted extensive attention as a possible neural mechanism of social interaction. Owing to high ecological validity, functional near-infrared spectroscopy (fNIRS) has become an ideal approach for exploring the MNS. Unfortunately, for the feasibility of fNIRS to detect the MNS, none of the four dominant regions were found in previous studies, implying a very limited capacity of fNIRS to investigate the MNS. Here, we adopted an experimental paradigm in a real-life situation to evaluate whether the MNS activity, including four dominant regions, can be detected by using fNIRS. Specifically, 30 right-handed subjects were asked to complete a table-setting task that included action execution and action observation. A double density probe configuration covered the four regions of the MNS in the left hemisphere. We used a traditional channel-based group analysis and also a ROI-based group analysis to find which regions are activated during both action execution and action observation. The results showed that the IFG, adjacent PMC, SPL, and IPL were involved in both conditions, indicating the feasibility of fNIRS to detect the MNS. Our findings provide a foundation for future research to explore the functional role of the MNS in social interaction and various disorders using fNIRS. PMID:29556185

  10. Assessment of tissue oxygen saturation during a vascular occlusion test using near-infrared spectroscopy: the role of probe spacing and measurement site studied in healthy volunteers

    NARCIS (Netherlands)

    Bezemer, R.; Lima, A.; Myers, D.; Klijn, E.; Heger, M.; Goedhart, P.T.; Bakker, J.; Ince, C.

    2009-01-01

    INTRODUCTION: To assess potential metabolic and microcirculatory alterations in critically ill patients, near-infrared spectroscopy (NIRS) has been used, in combination with a vascular occlusion test (VOT), for the non-invasive measurement of tissue oxygen saturation (StO2), oxygen consumption, and

  11. Association among SNAP-25 Gene "Dd"eI and "Mnl"I Polymorphisms and Hemodynamic Changes during Methylphenidate Use: A Functional Near-Infrared Spectroscopy Study

    Science.gov (United States)

    Oner, Ozgur; Akin, Ata; Herken, Hasan; Erdal, Mehmet Emin; Ciftci, Koray; Ay, Mustafa Ertan; Bicer, Duygu; Oncu, Bedriye; Bozkurt, Ozlem Hekim; Munir, Kerim; Yazgan, Yanki

    2011-01-01

    Objective: To investigate the interaction of treatment-related hemodynamic changes with genotype status for Synaptosomal associated protein 25 (SNAP-25) gene in participants with attention deficit hyperactivity disorder (ADHD) on and off single dose short-acting methylphenidate treatment with functional near-infrared spectroscopy (fNIRS). Method:…

  12. Validation and transferability study of a method based on near-infrared hyperspectral imaging for the detection and quantification of ergot bodies in cereals

    NARCIS (Netherlands)

    Vermeulen, Ph.; Fernández - Pierna, J.A.; Egmond, van H.P.; Zegers, J.; Dardenne, P.; Baeten, V.

    2013-01-01

    In recent years, near-infrared (NIR) hyperspectral imaging has proved its suitability for quality and safety control in the cereal sector by allowing spectroscopic images to be collected at single-kernel level, which is of great interest to cereal control laboratories. Contaminants in cereals

  13. Near-infrared and optical broadband surface photometry of 86 face-on disk dominated galaxies .4. Using color profiles to study stellar and dust content of galaxies

    NARCIS (Netherlands)

    deJong, RS

    The stellar and dust content of spiral galaxies as function of radius has been investigated using near-infrared and optical broadband surface photometry of 86 face-on spiral galaxies. Colors of galaxies correlate with the azimuthally averaged local surface brightness both within and among galaxies,

  14. A Brief Review on the Use of Functional Near-Infrared Spectroscopy (fNIRS) for Language Imaging Studies in Human Newborns and Adults

    Science.gov (United States)

    Quaresima, Valentina; Bisconti, Silvia; Ferrari, Marco

    2012-01-01

    Upon stimulation, real time maps of cortical hemodynamic responses can be obtained by non-invasive functional near-infrared spectroscopy (fNIRS) which measures changes in oxygenated and deoxygenated hemoglobin after positioning multiple sources and detectors over the human scalp. The current commercially available transportable fNIRS systems have…

  15. Differences in the Pattern of Hemodynamic Response to Self-Face and Stranger-Face Images in Adolescents with Anorexia Nervosa: A Near-Infrared Spectroscopic Study.

    Directory of Open Access Journals (Sweden)

    Takeshi Inoue

    Full Text Available There have been no reports concerning the self-face perception in patients with anorexia nervosa (AN. The purpose of this study was to compare the neuronal correlates of viewing self-face images (i.e. images of familiar face and stranger-face images (i.e. images of an unfamiliar face in female adolescents with and without AN. We used near-infrared spectroscopy (NIRS to measure hemodynamic responses while the participants viewed full-color photographs of self-face and stranger-face. Fifteen females with AN (mean age, 13.8 years and 15 age- and intelligence quotient (IQ-matched female controls without AN (mean age, 13.1 years participated in the study. The responses to photographs were compared with the baseline activation (response to white uniform blank. In the AN group, the concentration of oxygenated hemoglobin (oxy-Hb significantly increased in the right temporal area during the presentation of both the self-face and stranger-face images compared with the baseline level. In contrast, in the control group, the concentration of oxy-Hb significantly increased in the right temporal area only during the presentation of the self-face image. To our knowledge the present study is the first report to assess brain activities during self-face and stranger-face perception among female adolescents with AN. There were different patterns of brain activation in response to the sight of the self-face and stranger-face images in female adolescents with AN and controls.

  16. Differences in the Pattern of Hemodynamic Response to Self-Face and Stranger-Face Images in Adolescents with Anorexia Nervosa: A Near-Infrared Spectroscopic Study.

    Science.gov (United States)

    Inoue, Takeshi; Sakuta, Yuiko; Shimamura, Keiichi; Ichikawa, Hiroko; Kobayashi, Megumi; Otani, Ryoko; Yamaguchi, Masami K; Kanazawa, So; Kakigi, Ryusuke; Sakuta, Ryoichi

    2015-01-01

    There have been no reports concerning the self-face perception in patients with anorexia nervosa (AN). The purpose of this study was to compare the neuronal correlates of viewing self-face images (i.e. images of familiar face) and stranger-face images (i.e. images of an unfamiliar face) in female adolescents with and without AN. We used near-infrared spectroscopy (NIRS) to measure hemodynamic responses while the participants viewed full-color photographs of self-face and stranger-face. Fifteen females with AN (mean age, 13.8 years) and 15 age- and intelligence quotient (IQ)-matched female controls without AN (mean age, 13.1 years) participated in the study. The responses to photographs were compared with the baseline activation (response to white uniform blank). In the AN group, the concentration of oxygenated hemoglobin (oxy-Hb) significantly increased in the right temporal area during the presentation of both the self-face and stranger-face images compared with the baseline level. In contrast, in the control group, the concentration of oxy-Hb significantly increased in the right temporal area only during the presentation of the self-face image. To our knowledge the present study is the first report to assess brain activities during self-face and stranger-face perception among female adolescents with AN. There were different patterns of brain activation in response to the sight of the self-face and stranger-face images in female adolescents with AN and controls.

  17. Changes in cerebral blood flow during olfactory stimulation in patients with multiple chemical sensitivity: a multi-channel near-infrared spectroscopic study.

    Directory of Open Access Journals (Sweden)

    Kenichi Azuma

    Full Text Available Multiple chemical sensitivity (MCS is characterized by somatic distress upon exposure to odors. Patients with MCS process odors differently from controls. This odor-processing may be associated with activation in the prefrontal area connecting to the anterior cingulate cortex, which has been suggested as an area of odorant-related activation in MCS patients. In this study, activation was defined as a significant increase in regional cerebral blood flow (rCBF because of odorant stimulation. Using the well-designed card-type olfactory test kit, changes in rCBF in the prefrontal cortex (PFC were investigated after olfactory stimulation with several different odorants. Near-infrared spectroscopic (NIRS imaging was performed in 12 MCS patients and 11 controls. The olfactory stimulation test was continuously repeated 10 times. The study also included subjective assessment of physical and psychological status and the perception of irritating and hedonic odors. Significant changes in rCBF were observed in the PFC of MCS patients on both the right and left sides, as distinct from the center of the PFC, compared with controls. MCS patients adequately distinguished the non-odorant in 10 odor repetitions during the early stage of the olfactory stimulation test, but not in the late stage. In comparison to controls, autonomic perception and negative affectivity were poorer in MCS patients. These results suggest that prefrontal information processing associated with odor-processing neuronal circuits and memory and cognition processes from past experience of chemical exposure play significant roles in the pathology of this disorder.

  18. Neural correlates of a standardized version of the trail making test in young and elderly adults: a functional near-infrared spectroscopy study.

    Science.gov (United States)

    Müller, Laura D; Guhn, Anne; Zeller, Julia B M; Biehl, Stefanie C; Dresler, Thomas; Hahn, Tim; Fallgatter, Andreas J; Polak, Thomas; Deckert, Jürgen; Herrmann, Martin J

    2014-04-01

    The trail making test (TMT) is a widely applied diagnostic tool measuring executive functioning in order to discriminate between healthy and pathological aging processes. However, due to its paper-and-pencil nature it is difficult to adapt for functional brain imaging. Related neural underpinnings even in healthy aging are mostly unknown since no consistent administration for imaging is available. In this study a standardized implementation of the TMT for functional near-infrared spectroscopy (fNIRS) is proposed to investigate associated frontal cortex activation in healthy young (mean age 25.7 ± 3.02 years) and elderly adults (mean age 70.95 ± 3.55 years). The TMT consisted of a number condition (TMT-A), an alternating number and letter condition (TMT-B) as well as a control task. Behavioral results demonstrated that elderly participants performed slower but committed a similar number of errors compared to younger adults. The fNIRS results showed that particularly the TMT-B provoked bilateral activation in the ventro- and dorsolateral prefrontal cortex (vlPFC and dlPFC) as well as in premotor regions. Elderly participants displayed more significantly activated channels and a different activation pattern compared to younger participants especially manifesting in more bilateral dlPFC activation. In line with the hemispheric asymmetry reduction in elderly adults (HAROLD) model, the results were interpreted as an additional need for cognitive control resources in elderly participants. This study succeeded in implementing an appropriate version of the TMT for fNIRS and helps elucidating neural aging effects associated with this task. Copyright © 2014 Elsevier Ltd. All rights reserved.

  19. Near-infrared spectroscopy (NIRS neurofeedback as a treatment for children with attention deficit hyperactivity disorder (ADHD – a pilot study

    Directory of Open Access Journals (Sweden)

    Anna-Maria eMarx

    2015-01-01

    Full Text Available In this pilot study near-infrared spectroscopy (NIRS neurofeedback was investigated as a new method for the treatment of ADHD. Oxygenated hemoglobin in the prefrontal cortex of children with ADHD was measured and fed back. 12 sessions of NIRS-neurofeedback were compared to the intermediate outcome after 12 sessions of EEG-neurofeedback (slow cortical potentials, SCP and 12 sessions of EMG-feedback (muscular activity of left and right musculus supraspinatus. The task was either to increase or decrease hemodynamic activity in the prefrontal cortex (NIRS, to produce positive or negative shifts of SCP (EEG or to increase or decrease muscular activity (EMG. In each group nine children with ADHD, aged 7 to 10 years, took part. Changes in parents’ ratings of ADHD symptoms were assessed before and after the 12 sessions and compared within and between groups. For the NIRS-group additional teachers’ ratings of ADHD symptoms, parents’ and teachers’ ratings of associated behavioral symptoms, childrens’ self reports on quality of life and a computer based attention task were conducted before, 4 weeks and 6 months after training. As primary outcome, ADHD symptoms decreased significantly 4 weeks and 6 months after the NIRS training, according to parents’ ratings. In teachers’ ratings of ADHD symptoms there was a significant reduction 4 weeks after the training. The performance in the computer based attention test improved significantly. Within-group comparisons after 12 sessions of NIRS-, EEG- and EMG-training revealed a significant reduction in ADHD symptoms in the NIRS-group and a trend for EEG- and EMG-groups. No significant differences for symptom reduction were found between the groups. Despite the limitations of small groups and the comparison of a completed with two uncompleted interventions, the results of this pilot study are promising. NIRS-neurofeedback could be a time-effective treatment for ADHD and an interesting new option to

  20. Reduced prefrontal cortex activation in the color-word Stroop task for Chinese dyslexic children: a near-infrared spectroscopy study

    Energy Technology Data Exchange (ETDEWEB)

    Sun Jinyan; Zhai Jiahuan; Gong Hui [Britton Chance Center for Biomedical Photonics, Wuhan National Laboratory for Optoelectronics-Huazhong University of Science and Technology, Wuhan 430074 (China); Song Ranran; Zou Li, E-mail: huigong@mail.hust.edu.cn [Department of Child and Adolescent Health and Maternal Care, School of Public Health, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074 (China)

    2011-01-01

    Behavioral studies have investigated the performance of children with developmental dyslexia in conflict resolution, a function connected with the prefrontal cortex (PFC) closely. However, little is known about the prefrontal activation in conflict resolution for dyslexic children. In the present study, the involvement of the PFC in resolving conflict was evaluated for Chinese dyslexic children by means of near-infrared spectroscopy (NIRS). The NIRS instrument is a portable, continuous-wave system and can measure concentration changes of hemodynamic parameters (including oxy-, deoxy-, and total hemoglobin). Considering better sensitivity, the oxy-hemoglobin (oxy-Hb) was chosen to indicate the prefrontal activation. Ten dyslexic children and 11 normal children were recruited to perform the Chinese-character color-word Stroop task, which included the neutral and color (incongruent) tasks. In behavioral performance, both groups showed significant Stroop effect, longer response time or higher error rate for the color task. In particular, the Stroop interference effect was marginally larger for dyslexic children than normal children in response time. What's more, the two groups showed distinct pattern of oxy-Hb activation during the Stroop tasks. The normal group recruited the bilateral PFC to perform the tasks, while the dyslexic group couldn't activate the bilateral PFC in the difficult color task. Moreover, significantly less color Stroop effect was found in the left PFC for the dyslexic group, showing their disability in coping with the Stroop interference. These findings suggest that the PFC is dysfunctional in conflict resolution for Chinese dyslexic children and that NIRS can be an effective tool in neurological research and clinical application.

  1. Submaximal exercise testing with near-infrared spectroscopy in Myalgic Encephalomyelitis/Chronic Fatigue Syndrome patients compared to healthy controls: a case-control study.

    Science.gov (United States)

    Miller, Ruth R; Reid, W Darlene; Mattman, Andre; Yamabayashi, Cristiane; Steiner, Theodore; Parker, Shoshana; Gardy, Jennifer; Tang, Patrick; Patrick, David M

    2015-05-20

    Myalgic Encephalomyelitis/Chronic Fatigue Syndrome (ME/CFS) is a debilitating illness. Symptoms include profound fatigue and distinctive post-exertional malaise (PEM). We asked whether a submaximal exercise test would prove useful for identifying different patterns of tissue oxygen utilization in individuals with ME/CFS versus healthy subjects. Such a test has potential to aid with ME/CFS diagnosis, or to characterize patients' illness. A case-control study of 16 patients with ME/CFS compared to 16 healthy controls completing a 3-min handgrip protocol was performed. Response was measured using near-infrared spectroscopy, resulting in measurements of oxygenated (O2Hb) and deoxygenated hemoglobin (HHb) over wrist extensors and flexors. Changes in O2Hb (delta (d)O2Hb) and HHb (dHHb) absorbance between the first and last contraction were calculated, as were the force-time product of all contractions, measured as tension-time index (TTI), and ratings of perceived exertion (RPE). Individuals with ME/CFS demonstrated smaller dO2Hb and dHHb than controls. However, after adjusting for TTI and change in total hemoglobin (delta (d)tHb), differences in dO2Hb and dHHb were reduced, with large overlapping variances. RPE was significantly higher for cases than controls, particularly at rest. Relative to controls, participants with ME/CFS demonstrated higher RPE, lower TTI, and reduced dO2Hb and dHHb during repetitive handgrip exercise, although considerable variance was observed. With further study, submaximal exercise testing may prove useful for stratifying patients with a lower propensity for inducing PEM, and have the ability to establish baseline intensities for exercise prescription.

  2. Near-infrared spectroscopy versus magnetic resonance imaging to study brain perfusion in newborns with hypoxic-ischemic encephalopathy treated with hypothermia.

    Science.gov (United States)

    Wintermark, P; Hansen, A; Warfield, S K; Dukhovny, D; Soul, J S

    2014-01-15

    The measurement of brain perfusion may provide valuable information for assessment and treatment of newborns with hypoxic-ischemic encephalopathy (HIE). While arterial spin labeled perfusion (ASL) magnetic resonance imaging (MRI) provides noninvasive and direct measurements of regional cerebral blood flow (CBF) values, it is logistically challenging to obtain. Near-infrared spectroscopy (NIRS) might be an alternative, as it permits noninvasive and continuous monitoring of cerebral hemodynamics and oxygenation at the bedside. The purpose of this study is to determine the correlation between measurements of brain perfusion by NIRS and by MRI in term newborns with HIE treated with hypothermia. In this prospective cohort study, ASL-MRI and NIRS performed during hypothermia were used to assess brain perfusion in these newborns. Regional cerebral blood flow (CBF) values, measured from 1-2 MRI scans for each patient, were compared to mixed venous saturation values (SctO2) recorded by NIRS just before and after each MRI. Analysis included groupings into moderate versus severe HIE based on their initial background pattern of amplitude-integrated electroencephalogram. Twelve concomitant recordings were obtained of seven neonates. Strong correlation was found between SctO2 and CBF in asphyxiated newborns with severe HIE (r=0.88; p value=0.0085). Moreover, newborns with severe HIE had lower CBF (likely lower oxygen supply) and extracted less oxygen (likely lower oxygen demand or utilization) when comparing SctO2 and CBF to those with moderate HIE. NIRS is an effective bedside tool to monitor and understand brain perfusion changes in term asphyxiated newborns, which in conjunction with precise measurements of CBF obtained by MRI at particular times, may help tailor neuroprotective strategies in term newborns with HIE. Copyright © 2013 Elsevier Inc. All rights reserved.

  3. Reduced prefrontal cortex activation in the color-word Stroop task for Chinese dyslexic children: a near-infrared spectroscopy study

    International Nuclear Information System (INIS)

    Sun Jinyan; Zhai Jiahuan; Gong Hui; Song Ranran; Zou Li

    2011-01-01

    Behavioral studies have investigated the performance of children with developmental dyslexia in conflict resolution, a function connected with the prefrontal cortex (PFC) closely. However, little is known about the prefrontal activation in conflict resolution for dyslexic children. In the present study, the involvement of the PFC in resolving conflict was evaluated for Chinese dyslexic children by means of near-infrared spectroscopy (NIRS). The NIRS instrument is a portable, continuous-wave system and can measure concentration changes of hemodynamic parameters (including oxy-, deoxy-, and total hemoglobin). Considering better sensitivity, the oxy-hemoglobin (oxy-Hb) was chosen to indicate the prefrontal activation. Ten dyslexic children and 11 normal children were recruited to perform the Chinese-character color-word Stroop task, which included the neutral and color (incongruent) tasks. In behavioral performance, both groups showed significant Stroop effect, longer response time or higher error rate for the color task. In particular, the Stroop interference effect was marginally larger for dyslexic children than normal children in response time. What's more, the two groups showed distinct pattern of oxy-Hb activation during the Stroop tasks. The normal group recruited the bilateral PFC to perform the tasks, while the dyslexic group couldn't activate the bilateral PFC in the difficult color task. Moreover, significantly less color Stroop effect was found in the left PFC for the dyslexic group, showing their disability in coping with the Stroop interference. These findings suggest that the PFC is dysfunctional in conflict resolution for Chinese dyslexic children and that NIRS can be an effective tool in neurological research and clinical application.

  4. The neural correlates of biomechanical constraints in hand laterality judgment task performed from other person's perspective: A near-infrared spectroscopy study.

    Directory of Open Access Journals (Sweden)

    Shuang Meng

    Full Text Available Previous studies, mainly using a first-person perspective (1PP, have shown that the judgments of the hand laterality judgment (HLJ task are dependent on biomechanical constraints (BC. Specifically, differing reaction times (RT for hand pictures rotated medially or laterally around the mid sagittal plane are attributed to the BC effect on motor imagery. In contrast, we investigated whether the HLJ task is also subject to BC when performed from a third-person perspective (3PP as well as 1PP using near-infrared spectroscopy (NIRS to measure the brain activity of prefrontal cortex (PFC in right-handed participants assigned to 1PP or 3PP groups. The 1PP group judged whether a presented hand was their own left or right hand, and the 3PP group whether it was the other's left or right hand. Using their HLJ task error rates, the 1PP and 3PP groups were subdivided into an Error Group (EG and No Error Group (NEG. For the 1PP group, both EG and NEG showed a significant Hand Laterality × Orientation interaction for RT, indicating the BC effect on motor imagery. For the 3PP group, however, neither EG nor NEG showed the interaction, even though EG showed a significantly longer RT than NEG. These results suggest that the 3PP EG appropriately followed the 3PP task instruction, while the NEG might have taken 1PP. However, the 3PP EG NIRS profile of left PFC showed a significant Hand Laterality × Orientation interaction, while the 1PP EG did not. More noteworthy is that the left PFC activation of EG showed an interaction between the 1PP and 3PP groups when the left hand was presented. Furthermore, in the NEG, the PFC activation was not influenced by the BC in either the 1PP or 3PP condition. These results indicate that BC interferes with the HLJ task performed from the 1PP and 3PP.

  5. The neural correlates of biomechanical constraints in hand laterality judgment task performed from other person's perspective: A near-infrared spectroscopy study.

    Science.gov (United States)

    Meng, Shuang; Oi, Misato; Saito, Godai; Saito, Hirofumi

    2017-01-01

    Previous studies, mainly using a first-person perspective (1PP), have shown that the judgments of the hand laterality judgment (HLJ) task are dependent on biomechanical constraints (BC). Specifically, differing reaction times (RT) for hand pictures rotated medially or laterally around the mid sagittal plane are attributed to the BC effect on motor imagery. In contrast, we investigated whether the HLJ task is also subject to BC when performed from a third-person perspective (3PP) as well as 1PP using near-infrared spectroscopy (NIRS) to measure the brain activity of prefrontal cortex (PFC) in right-handed participants assigned to 1PP or 3PP groups. The 1PP group judged whether a presented hand was their own left or right hand, and the 3PP group whether it was the other's left or right hand. Using their HLJ task error rates, the 1PP and 3PP groups were subdivided into an Error Group (EG) and No Error Group (NEG). For the 1PP group, both EG and NEG showed a significant Hand Laterality × Orientation interaction for RT, indicating the BC effect on motor imagery. For the 3PP group, however, neither EG nor NEG showed the interaction, even though EG showed a significantly longer RT than NEG. These results suggest that the 3PP EG appropriately followed the 3PP task instruction, while the NEG might have taken 1PP. However, the 3PP EG NIRS profile of left PFC showed a significant Hand Laterality × Orientation interaction, while the 1PP EG did not. More noteworthy is that the left PFC activation of EG showed an interaction between the 1PP and 3PP groups when the left hand was presented. Furthermore, in the NEG, the PFC activation was not influenced by the BC in either the 1PP or 3PP condition. These results indicate that BC interferes with the HLJ task performed from the 1PP and 3PP.

  6. In vivo validation of a catheter-based near-infrared spectroscopy system for detection of lipid core coronary plaques: initial results of the SPECTACL study.

    Science.gov (United States)

    Waxman, Sergio; Dixon, Simon R; L'Allier, Philippe; Moses, Jeffrey W; Petersen, John L; Cutlip, Donald; Tardif, Jean-Claude; Nesto, Richard W; Muller, James E; Hendricks, Michael J; Sum, Stephen T; Gardner, Craig M; Goldstein, James A; Stone, Gregg W; Krucoff, Mitchell W

    2009-07-01

    To determine whether catheter-based near-infrared spectroscopy (NIRS) signals obtained with a novel catheter-based system from coronaries of patients are similar to those from autopsy specimens and to assess initial safety of NIRS device. An intravascular NIRS system for detection of lipid core-containing plaques (LCP) has been validated in human coronary autopsy specimens. The SPECTACL (SPECTroscopic Assessment of Coronary Lipid) trial was a parallel first-in-human multicenter study designed to demonstrate the applicability of the LCP detection algorithm in living patients. Intracoronary NIRS was performed in patients undergoing percutaneous coronary intervention. Acquired spectra were blindly compared with autopsy NIRS signals with multivariate statistics. To meet the end point of spectral similarity, at least two-thirds of the scans were required to have >80% of spectra similar to the autopsy spectra. A total of 106 patients were enrolled; there were no serious adverse events attributed to NIRS. Spectroscopic data could not be obtained in 17 (16%) patients due to technical limitations, leaving 89 patients for analysis. Spectra from 30 patients were unblinded to test the calibration of the LCP detection algorithm. Of the remaining 59 blinded cases, after excluding 11 due to inadequate data, spectral similarity was demonstrated in 40 of 48 spectrally adequate scans (83% success rate, 95% confidence interval: 70% to 93%, median spectral similarity/pullback: 96%, interquartile range 10%). The LCP was detected in 58% of 60 spectrally similar scans from both cohorts. This intravascular NIRS system safely obtained spectral data in patients that were similar to those from autopsy specimens. These results demonstrate the feasibility of invasive detection of coronary LCP with this novel system. (SPECTACL: SPECTroscopic Assessment of Coronary Lipid; NCT00330928).

  7. Hemodynamic signal changes accompanying execution and imagery of swallowing in patients with dysphagia: A multiple single-case near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Silvia Erika Kober

    2015-07-01

    Full Text Available In the present multiple case study we examined hemodynamic changes in the brain in response to motor execution (ME and motor imagery (MI of swallowing in dysphagia patients compared to healthy matched controls using near-infrared spectroscopy (NIRS. Two stroke patients with cerebral lesions in the right hemisphere, two stroke patients with lesions in the brainstem and two neurologically healthy control subjects actively swallowed saliva (ME and mentally imagined to swallow saliva (MI in a randomized order while changes in concentration of oxygenated hemoglobin (oxy-Hb and deoxygenated hemoglobin (deoxy-Hb were assessed. In line with recent findings in healthy young adults, MI and ME of swallowing led to the strongest NIRS signal change in the inferior frontal gyrus in stroke patients as well as in healthy elderly. We found differences in the topographical distribution and time course of the hemodynamic response in dependence on lesion location. Dysphagia patients with lesions in the brainstem showed bilateral hemodynamic signal changes in the inferior frontal gyrus during active swallowing comparable to healthy controls. In contrast, dysphagia patients with cerebral lesions in the right hemisphere showed more unilateral activation patterns during swallowing. Furthermore, patients with cerebral lesions showed a prolonged time course of the hemodynamic response during MI and ME of swallowing compared to healthy controls and patients with brainstem lesions. Brain activation patterns associated with ME and MI of swallowing were largely comparable, especially for changes in deoxy-Hb. Hence, the present results provide new evidence regarding timing and topographical distribution of the hemodynamic response during ME and MI of swallowing in dysphagia patients and may have practical impact on future dysphagia treatment.

  8. Temporal lobe and inferior frontal gyrus dysfunction in patients with schizophrenia during face-to-face conversation: a near-infrared spectroscopy study.

    Science.gov (United States)

    Takei, Yuichi; Suda, Masashi; Aoyama, Yoshiyuki; Yamaguchi, Miho; Sakurai, Noriko; Narita, Kosuke; Fukuda, Masato; Mikuni, Masahiko

    2013-11-01

    Schizophrenia (SC) is marked by poor social-role performance and social-skill deficits that are well reflected in daily conversation. Although the mechanism underlying these impairments has been investigated by functional neuroimaging, technical limitations have prevented the investigation of brain activation during conversation in typical clinical situations. To fill this research gap, this study investigated and compared frontal and temporal lobe activation in patients with SC during face-to-face conversation. Frontal and temporal lobe activation in 29 patients and 31 normal controls (NC) (n = 60) were measured during 180-s conversation periods by using near-infrared spectroscopy (NIRS). The grand average values of oxyhemoglobin concentration ([oxy-Hb]) changes during task performance were analyzed to determine their correlation with clinical variables and Positive and Negative Syndrome Scale (PANSS) subscores. Compared to NCs, patients with SC exhibited decreased performance in the conversation task and decreased activation in both the temporal lobes and the right inferior frontal gyrus (IFG) during task performance, as indicated by the grand average of [oxy-Hb] changes. The decreased activation in the left temporal lobe was negatively correlated with the PANSS disorganization and negative symptoms subscores and that in the right IFG was negatively correlated with illness duration, PANSS disorganization, and negative symptom subscores. These findings indicate that brain dysfunction in SC during conversation is related to functional deficits in both the temporal lobes and the right IFG and manifests primarily in the form of disorganized thinking and negative symptomatology. Copyright © 2013 Elsevier Ltd. All rights reserved.

  9. Infants’ neural responses to facial emotion in the prefrontal cortex are correlated with temperament: A functional near-infrared spectroscopy study

    Directory of Open Access Journals (Sweden)

    Miranda M Ravicz

    2015-07-01

    Full Text Available Accurate decoding of facial expressions is critical for human communication, particularly during infancy, before formal language has developed. Different facial emotions elicit distinct neural responses within the first months of life. However, there are broad individual differences in such responses, such that the same emotion can elicit different brain responses in different infants. In this study we sought to investigate such differences in the processing of emotional faces by analyzing infants’ cortical metabolic responses to face stimuli and examining whether individual differences in these responses might vary as a function of infant temperament.Seven-month-old infants (N = 24 were shown photographs of women portraying happy expressions, and neural activity was recorded using functional near-infrared spectroscopy (fNIRS. Temperament data were collected using the Revised Infant Behavior Questionnaire Short Form, which assesses the broad temperament factors of Surgency/Extraversion (S/E, Negative Emotionality (NE, and Orienting/Regulation (O/R. We observed that oxyhemoglobin (oxyHb responses to happy face stimuli were negatively correlated with infant temperament factors in channels over the left prefrontal cortex (uncorrected for multiple comparisons. To investigate the brain activity underlying this association, and to explore the use of fNIRS in measuring cortical asymmetry, we analyzed hemispheric asymmetry with respect to temperament groups. Results showed preferential activation of the left hemisphere in low-NE infants in response to smiling faces.These results suggest that individual differences in temperament are associated with differential prefrontal oxyHb responses to faces. Overall, these analyses contribute to our current understanding of face processing during infancy, demonstrate the use of fNIRS in measuring prefrontal asymmetry, and illuminate the neural correlates of face processing as modulated by temperament.

  10. Deriving Total Suspended Matter Concentration from the Near-Infrared-Based Inherent Optical Properties over Turbid Waters: A Case Study in Lake Taihu

    Directory of Open Access Journals (Sweden)

    Wei Shi

    2018-02-01

    Full Text Available Normalized water-leaving radiance spectra nLw(λ, particle backscattering coefficients bbp(λ in the near-infrared (NIR wavelengths, and total suspended matter (TSM concentrations over turbid waters are analytically correlated. To demonstrate the use of bbp(λ in the NIR wavelengths in coastal and inland waters, we used in situ optics and TSM data to develop two TSM algorithms from measurements of the Visible Infrared Imaging Radiometer Suite (VIIRS onboard the Suomi National Polar-orbiting Partnership (SNPP using backscattering coefficients at the two NIR bands bbp(745 and bbp(862 for Lake Taihu. The correlation coefficients between the modeled TSM concentrations from bbp(745 and bbp(862 and the in situ TSM are 0.93 and 0.92, respectively. A different in situ dataset acquired between 2012 and 2016 for Lake Taihu was used to validate the performance of the NIR TSM algorithms for VIIRS-SNPP observations. TSM concentrations derived from VIIRS-SNPP observations with these two NIR bbp(λ-based TSM algorithms matched well with in situ TSM concentrations in Lake Taihu between 2012 and 2016. The normalized root mean square errors (NRMSEs for the two NIR algorithms are 0.234 and 0.226, respectively. The two NIR-based TSM algorithms are used to compute the satellite-derived TSM concentrations to study the seasonal and interannual variability of the TSM concentration in Lake Taihu between 2012 and 2016. In fact, the NIR-based TSM algorithms are analytically based with minimal in situ data to tune the coefficients. They are not sensitive to the possible nLw(λ saturation in the visible bands for highly turbid waters, and have the potential to be used for estimation of TSM concentrations in turbid waters with similar NIR nLw(λ spectra as those in Lake Taihu.

  11. A Study on the Application of Near Infrared Hyperspectral Chemical Imaging for Monitoring Moisture Content and Water Activity in Low Moisture Systems

    OpenAIRE

    Achata, Eva; Esquerre, Carlos; O'Donnell, Colm; Gowen, Aoife

    2015-01-01

    Moisture content and water activity are key parameters in predicting the stability of low moisture content products. However, conventional methods for moisture content and water activity determination (e.g., loss on drying method, ‎Karl Fischer titration, dew point method) are time consuming, demand specialized equipment and are not amenable to online processing. For this reason they are typically applied at-line on a limited number of samples. Near infrared hyperspectral chemical imaging is ...

  12. Effectiveness of near-infrared transillumination in early caries diagnosis

    Directory of Open Access Journals (Sweden)

    Mirela Marinova-Takorova

    2016-11-01

    Full Text Available Early caries detection is essential for minimal intervention dentistry, since it could give the opportunity to reverse the process and eliminate or at least postpone the surgical treatment. The aim of the present study was to evaluate the effectiveness of near-infrared transillumination in early caries diagnosis for both occlusal and proximal lesions. Thirty-eight adult patients were included in the study. The results from the visual, radiological and near-infrared transillumination examination for proximal caries lesions were compared. The diagnostic abilities of these methods for occlusal lesions were assayed on 60 teeth. The three methods showed a very high level of correlation when there were caries lesions involving the enamel and dentin. Concerning proximal caries involving only the enamel, the visual--tactile diagnosis proved to be insufficiently sensitive even with the use of magnification. Radiographic examination and near-infrared transillumination correlated significantly, but the latter was more sensitive. Radiographic examination proved to be insufficiently sensitive for occlusal lesions. The results obtained with the near-infrared fluorescence correlated most with the visual–tactile examination. These results suggest that near-infrared transillumination is an effective method for diagnosis of lesions both involving only the enamel and involving the enamel and dentin. It could be used for both occlusal and proximal caries lesions and it could eventually substitute radiographic bitewings, especially in children and pregnant women, due to its efficiency as a diagnostic tool and the absence of radiation.

  13. A Road Map for the Generation of a Near-Infrared Guide Star ...

    Indian Academy of Sciences (India)

    methodology is applicable for the generation of a guide star catalog for any existing/upcoming near-infrared ... the computation of H and Ks band magnitudes is essential for the generation of the catalog. The stars are not perfect black ...... The photometric observations are in g, r, i, z and y filters. The limiting magnitude of.

  14. ENSEMBLE VARIABILITY OF NEAR-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Kouzuma, S.; Yamaoka, H.

    2012-01-01

    by some previous studies, most of our sample objects are probably radio-loud quasars. Finally, we also discuss the negative correlations seen in the near-infrared SFs.

  15. Designed blending for near infrared calibration.

    Science.gov (United States)

    Scheibelhofer, Otto; Grabner, Bianca; Bondi, Robert W; Igne, Benoît; Sacher, Stephan; Khinast, Johannes G

    2015-07-01

    Spectroscopic methods are increasingly used for monitoring pharmaceutical manufacturing unit operations that involve powder handling and processing. With that regard, chemometric models are required to interpret the obtained spectra. There are many ways to prepare artificial powder blend samples used in a chemometric model for predicting the chemical content. Basically, an infinite number of possible concentration levels exist in terms of the individual components. In our study, design of experiments for ternary mixtures was used to establish a suitable number of blend compositions that represents the entire mixture region of interest for a three component blend. Various experimental designs and their effect on the predictive power of a chemometric model for near infrared spectra were investigated. It was determined that a particular choice of experimental design could change the predictive power of a model, even with the same number of calibration experiments. © 2015 Wiley Periodicals, Inc. and the American Pharmacists Association.

  16. Is there a role for near-infrared technology in laparoscopic resection of pancreatic neuroendocrine tumors? Results of the COLPAN "colour-and-resect the pancreas" study.

    Science.gov (United States)

    Paiella, Salvatore; De Pastena, Matteo; Landoni, Luca; Esposito, Alessandro; Casetti, Luca; Miotto, Marco; Ramera, Marco; Salvia, Roberto; Secchettin, Erica; Bonamini, Deborah; Manzini, Gessica; D'Onofrio, Mirko; Marchegiani, Giovanni; Bassi, Claudio

    2017-11-01

    The intraoperative identification of pancreatic neuroendocrine tumors (PanNETs) is of utmost importance to drive their laparoscopic resection. Near-infrared (NIR) surgery has emerged as a new technique for localizing tumors or neoplastic tissue. This study aimed to explore the results of the application of NIR in the laparoscopic resection of PanNETs. Per protocol we enrolled ten subjects undergoing laparoscopic pancreatic surgery for PanNET from March 2016 to October 2016. During surgery, the patients were injected with indocyanine green dye (ICG, 25 mg given in 5 boli of 5 mg each). The switch-activation of NIR was performed to identify PanNETs. An ex-post analysis of the images was realized using ImageJ Software® to calculate the fluorescence signal. NIR imaging identified all ten PanNETs. Nine (90%) laparoscopic distal pancreatectomy with splenectomy and one (10%) laparoscopic enucleation were performed. The mean maximum tumor dimension was 2.4 cm (range 1-4 cm). Eight non-functioning PanNETs (80%) and two insulinomas (20%) were found at the final pathology. Nine out of ten (90%) PanNETs were detected after the second ICG bolus. The mean latency time was 80 s and the mean visibility time was 220 s. The peak of tumor visualization was reached 20 min after the last bolus. This finding was confirmed by the ex-post analysis of the fluorescence signal (mean signal-to-background ratio of 7.7, p = 0.001). NIR identified two additional lesions, which turned out to be normal lymph nodes at final pathology. A fluorescent signal was identified at the bed of the enucleation, and thus, a further exeresis was performed and final pathology revealed that is was residual neoplastic tissue. This explorative study shows that NIR with ICG can have a role in laparoscopic pancreatic resection of PanNETs. Further studies are needed to assess the proper setting and role of this new and promising technology.

  17. The assessment of Buerger's exercise on dorsal foot skin circulation in patients with vasculopathic diabetic foot ulcer by using wireless near-infrared spectroscope: a cohort prospective study.

    Science.gov (United States)

    Lin, Bor-Shyh; Chang, Chang-Cheng; Su, Chun-Lin; Li, Jhe-Ruei; Chen, Min-Ling; Chen, Mei-Yen; Huang, Yao-Kuang

    2018-01-08

    The improvement of peripheral circulation is crucial for the care of vasculopathic diabetic foot ulcer (DFU). Near-infrared spectroscopy (NIRS) was used to investigate the effects of Buerger's exercise on dorsal foot skin circulation with novel technique of measuring the absorption difference in wavelength of light between oxy-hemoglobin (HbO 2 ) and deoxy-hemoglobin (HbR). Patients with vasculopathic DFU who could tolerate Buerger's exercise three times a day at home for at least 8 weeks were enrolled (group A). They were divided into two subgroups: without previous percutaneous transluminal angioplasty (PTA) (group A1) vs. with previous PTA (group A2). Wireless NIRS were applied on patients' dorsal foot to assess the peripheral circulation in follow-up clinics. The patients' wound condition, follow-up time, and concentration of HbO 2 and total hemoglobin (HbT) before and after exercise rehabilitation program were documented. From May 2015 to February 2016, 14 patients with average age of 70.2 ± 11.2 were enrolled in this study (group A), including eight without previous PTA (group A1), and six with previous PTA (group A2). The concentration of HbO2 and HbT were significantly increased after exercise rehabilitation program training in group A (p = 0.024 in HbO 2 , p = 0.02 in HbT, n = 14) and group A2 (p = 0.021 in HbO 2 , p = 0.028 in HbT, n = 6), while the concentration in group A1 were improved with borderline significance after exercise (p = 0.055 in HbO 2 , p = 0.058 in HbT, n = 8). The majority of the ulcers were either completely healed (11/14 = 78.57%) or improving (3/14 = 21.43%). Buerger's exercise improved the peripheral circulation and wound condition in patients with vasculopathic DFU. The wireless apparatus is a novel and efficient tool to monitor rehabilitation program.

  18. Effects of near infrared laser radiation associated with photoabsorbing cream in preventing white spot lesions around orthodontic brackets: an in vitro study.

    Science.gov (United States)

    Lacerda, Ângela Sueli Soares Braga; Hanashiro, Fernando Seishim; de Sant'Anna, Giselle Rodrigues; Steagall Júnior, Washington; Barbosa, Patrícia Silva; de Souza-Zaroni, Wanessa Christine

    2014-12-01

    The present study aims to investigate the effect of a low-power infrared laser on the inhibition of bovine enamel demineralization around orthodontic brackets. Near infrared lasers have been suggested as alternative approaches because they may produce an increase in resistance to dental caries. Forty-eight blocks of enamel obtained from bovine incisor teeth were divided into six groups: Group 1 (control), without treatment; Group 2 (C), photoabsorbing cream; Group 3 (CF), photoabsorbing cream with fluoride; Group 4 (L), irradiation with low-level infrared laser (λ=830 nm) at an energy density of 4.47 J/cm2; Group 5 (L+C), photoabsorbing cream followed by low-level infrared laser irradiation; and Group 6 (L+CF), photoabsorbing cream with fluoride followed by low-level infrared laser irradiation. After these procedures, the enamel blocks received an assortment of orthodontic brackets and were then submitted to pH cycling to simulate a highly cariogenic challenge. The enamel surface demineralization around the orthodontic brackets, according to the different treatments, was quantified by fluorescence loss analysis by quantitative light-induced fluorescence (QLF). The fluorescence loss, expressed as ΔF (percentage of loss fluorescence), was statistically examined by analysis of variance and the Tukey test. The control group (-10.48±2.85) was statistically similar to Group C (-14.52±7.80), which presented the lowest values of ΔF when compared with Groups FC (-3.67±3.21), L (-2.79±1.68), CL (-1.05±0:50), and CFL (-0.60±0:43). However, Groups FC, L, CL, and CFL showed no statistically significant differences among them. It can be concluded that both the low-level infrared laser and photoabsorbing cream with fluoride were effective in inhibiting the development of caries in enamel around orthodontic brackets, even in situations of high cariogenic challenge.

  19. Breast phantom for mammary tissue characterization by near infrared spectroscopy

    International Nuclear Information System (INIS)

    Miranda, D A; Cristiano, K L; Gutiérrez, J C

    2013-01-01

    Breast cancer is a disease associated to a high morbidity and mortality in the entire world. In the study of early detection of breast cancer the development of phantom is so important. In this research we fabricate a breast phantom using a ballistic gel with special modifications to simulate a normal and abnormal human breast. Optical properties of woman breast in the near infrared region were modelled with the phantom we developed. The developed phantom was evaluated with near infrared spectroscopy in order to study its relation with breast tissue. A good optical behaviour was achieved with the model fabricated

  20. LaAlO3:Mn4+ as Near-Infrared Emitting Persistent Luminescence Phosphor for Medical Imaging: A Charge Compensation Study

    Directory of Open Access Journals (Sweden)

    Jiaren Du

    2017-12-01

    Full Text Available Mn4+-activated phosphors are emerging as a novel class of deep red/near-infrared emitting persistent luminescence materials for medical imaging as a promising alternative to Cr3+-doped nanomaterials. Currently, it remains a challenge to improve the afterglow and photoluminescence properties of these phosphors through a traditional high-temperature solid-state reaction method in air. Herein we propose a charge compensation strategy for enhancing the photoluminescence and afterglow performance of Mn4+-activated LaAlO3 phosphors. LaAlO3:Mn4+ (LAO:Mn4+ was synthesized by high-temperature solid-state reaction in air. The charge compensation strategies for LaAlO3:Mn4+ phosphors were systematically discussed. Interestingly, Cl−/Na+/Ca2+/Sr2+/Ba2+/Ge4+ co-dopants were all found to be beneficial for enhancing LaAlO3:Mn4+ luminescence and afterglow intensity. This strategy shows great promise and opens up new avenues for the exploration of more promising near-infrared emitting long persistent phosphors for medical imaging.

  1. Near infrared lasers in flow cytometry.

    Science.gov (United States)

    Telford, William G

    2015-07-01

    Technology development in flow cytometry has closely tracked laser technology, the light source that flow cytometers almost exclusively use to excite fluorescent probes. The original flow cytometers from the 1970s and 1980s used large water-cooled lasers to produce only one or two laser lines at a time. Modern cytometers can take advantage of the revolution in solid state laser technology to use almost any laser wavelength ranging from the ultraviolet to the near infrared. Commercial cytometers can now be equipped with many small solid state lasers, providing almost any wavelength needed for cellular analysis. Flow cytometers are now equipped to analyze 20 or more fluorescent probes simultaneously, requiring multiple laser wavelengths. Instrument developers are now trying to increase this number by designing fluorescent probes that can be excited by laser wavelength at the "edges" of the visible light range, in the near ultraviolet and near-infrared region. A variety of fluorescent probes have been developed that excite with violet and long wavelength ultraviolet light; however, the near-infrared range (660-800 nm) has yet seen only exploitation in flow cytometry. Fortunately, near-infrared laser diodes and other solid state laser technologies appropriate for flow cytometry have been in existence for some time, and can be readily incorporated into flow cytometers to accelerate fluorescent probe development. The near infrared region represents one of the last "frontiers" to maximize the number of fluorescent probes that can be analyzed by flow cytometry. In addition, near infrared fluorescent probes used in biomedical tracking and imaging could also be employed for flow cytometry with the correct laser wavelengths. This review describes the available technology, including lasers, fluorescent probes and detector technology optimal for near infrared signal detection. Published by Elsevier Inc.

  2. Visible/Near Infrared Spectroscopic Method for the Prediction of ...

    African Journals Online (AJOL)

    The aim of the present study was to predict the potential of visible and near infrared (Vis/NIR) Spectroscopy in estimating the amount of lycopene in intact tomato. Eight tomato varieties from loose and cluster type were selected and harvested at commercial ripening stage for the study. The tomato cultivars were prepared ...

  3. Psychological benefits 2 and 4 weeks after a single treatment with near infrared light to the forehead: a pilot study of 10 patients with major depression and anxiety

    Directory of Open Access Journals (Sweden)

    Teicher Martin H

    2009-12-01

    Full Text Available Abstract Background Many studies have reported beneficial effects from the application of near-infrared (NIR light photobiomodulation (PBM to the body, and one group has reported beneficial effects applying it to the brain in stroke patients. We have reported that the measurement of a patient's left and right hemispheric emotional valence (HEV may clarify data and guide lateralized treatments. We sought to test whether a NIR treatment could 1. improve the psychological status of patients, 2. show a relationship between immediate psychological improvements when HEV was taken into account, and 3. show an increase in frontal pole regional cerebral blood flow (rCBF, and 4. be applied without side effects. Methods We gave 10 patients, (5 M/5 F with major depression, including 9 with anxiety, 7 with a past history of substance abuse (6 with an opiate abuse and 1 with an alcohol abuse history, and 3 with post traumatic stress disorder, a baseline standard diagnostic interview, a Hamilton Depression Rating Scale (HAM-D, a Hamilton Anxiety Rating Scale (HAM-A, and a Positive and Negative Affect Scale (PANAS. We then gave four 4-minute treatments in a random order: NIR to left forehead at F3, to right forehead at F4, and placebo treatments (light off at the same sites. Immediately following each treatment we repeated the PANAS, and at 2-weeks and at 4-weeks post treatment we repeated all 3 rating scales. During all treatments we recorded total hemoglobin (cHb, as a measure of rCBF with a commercial NIR spectroscopy device over the left and the right frontal poles of the brain. Results At 2-weeks post treatment 6 of 10 patients had a remission (a score ≤ 10 on the HAM-D and 7 of 10 achieved this on the HAM-A. Patients experienced highly significant reductions in both HAM-D and HAM-A scores following treatment, with the greatest reductions occurring at 2 weeks. Mean rCBF across hemispheres increased from 0.011 units in the off condition to 0.043 units in

  4. Multicolour CCD Photometric Study of Galactic Star Clusters SAI 63 ...

    Indian Academy of Sciences (India)

    J. Astrophys. Astr. (2014) 35, 143–156 c Indian Academy of Sciences. Multicolour CCD Photometric Study of Galactic Star Clusters. SAI 63 and SAI 75. R. K. S. Yadav1,∗, S. I. Leonova2, R. Sagar1 & E. V. Glushkova2. 1Aryabhatta Research Institute of Observational Sciences (ARIES), Manora Peak,. Nainital 263 129, India.

  5. Erratum to: First Hα and Revised Photometric Studies of Contact ...

    Indian Academy of Sciences (India)

    Home; Journals; Journal of Astrophysics and Astronomy; Volume 37; Issue 4. Erratum to: First H α and Revised Photometric Studies of Contact Binary KP101231. Shanti Priya Devarapalli Rukmini Jagirdar. Erratum Volume 37 Issue 4 December 2016 Article ID 39 ...

  6. A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite--a mid-infrared and near-infrared study.

    Science.gov (United States)

    Cheng, Hongfei; Yang, Jing; Liu, Qinfu; Zhang, Jinshan; Frost, Ray L

    2010-11-01

    Mid-infrared (MIR) and near-infrared (NIR) spectroscopy have been compared and evaluated for differentiating kaolinite, coal bearing kaolinite and halloysite. Kaolinite, coal bearing kaolinite and halloysite are the three relative abundant minerals of the kaolin group, especially in China. In the MIR spectra, the differences are shown in the 3000-3600 cm⁻¹ between kaolinite and halloysite. It cannot obviously differentiate the kaolinite and halloysite, leaving alone kaolinite and coal bearing kaolinite. However, NIR, together with MIR, gives us the sufficient evidence to differentiate the kaolinite and halloysite, especially kaolinite and coal bearing kaolinite. There are obvious differences between kaolinite and halloysite in all range of their spectra, and they also show some difference between kaolinite and coal bearing kaolinite. Therefore, the reproducibility of measurement, signal to noise ratio and richness of qualitative information should be simultaneously considered for proper selection of a spectroscopic method for mineral analysis. Copyright © 2010 Elsevier B.V. All rights reserved.

  7. A comparative study of the use of powder X-ray diffraction, Raman and near infrared spectroscopy for quantification of binary polymorphic mixtures of piracetam.

    Science.gov (United States)

    Croker, Denise M; Hennigan, Michelle C; Maher, Anthony; Hu, Yun; Ryder, Alan G; Hodnett, Benjamin K

    2012-04-07

    Diffraction and spectroscopic methods were evaluated for quantitative analysis of binary powder mixtures of FII(6.403) and FIII(6.525) piracetam. The two polymorphs of piracetam could be distinguished using powder X-ray diffraction (PXRD), Raman and near-infrared (NIR) spectroscopy. The results demonstrated that Raman and NIR spectroscopy are most suitable for quantitative analysis of this polymorphic mixture. When the spectra are treated with the combination of multiplicative scatter correction (MSC) and second derivative data pretreatments, the partial least squared (PLS) regression model gave a root mean square error of calibration (RMSEC) of 0.94 and 0.99%, respectively. FIII(6.525) demonstrated some preferred orientation in PXRD analysis, making PXRD the least preferred method of quantification. Copyright © 2012 Elsevier B.V. All rights reserved.

  8. Photometric Study of Fourteen Low-mass Binaries

    Energy Technology Data Exchange (ETDEWEB)

    Korda, D.; Zasche, P.; Wolf, M.; Kučáková, H.; Vraštil, J. [Astronomical Institute, Charles University, Faculty of Mathematics and Physics, CZ-180 00, Praha 8, V Holešovičkách 2 (Czech Republic); Hoňková, K., E-mail: korda@sirrah.troja.mff.cuni.cz [Variable Star and Exoplanet Section of Czech Astronomical Society, Vsetínská 941/78, CZ-757 01, Valašské Meziříčí (Czech Republic)

    2017-07-01

    New CCD photometric observations of fourteen short-period low-mass eclipsing binaries (LMBs) in the photometric filters I, R, and V were used for a light curve analysis. A discrepancy remains between observed radii and those derived from the theoretical modeling for LMBs, in general. Mass calibration of all observed LMBs was performed using only the photometric indices. The light curve modeling of these selected systems was completed, yielding the new derived masses and radii for both components. We compared these systems with the compilation of other known double-lined LMB systems with uncertainties of masses and radii less then 5%, which includes 66 components of binaries where both spectroscopy and photometry were combined together. All of our systems are circular short-period binaries, and for some of them, the photospheric spots were also used. A purely photometric study of the light curves without spectroscopy seems unable to achieve high enough precision and accuracy in the masses and radii to act as meaningful test of the M–R relation for low-mass stars.

  9. Near infrared face recognition: A literature survey

    Czech Academy of Sciences Publication Activity Database

    Farokhi, Sajad; Flusser, Jan; Sheikh, U. U.

    2016-01-01

    Roč. 21, č. 1 (2016), s. 1-17 ISSN 1574-0137 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Literature survey * Biometrics * Face recognition * Near infrared * Illumination invariant Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0461834.pdf

  10. Completion of the GOYA Photometric Survey

    Science.gov (United States)

    Vallbe I Mumbrú, M.; Balcells, M.; Gallego, J.

    2007-12-01

    The Galaxy Origins and Young Assembly (GOYA) survey is designed to study the formation and evolution of 1benefit from half its guaranteed time. In preparation for the exploitation of EMIR, in 2000 we started a deep near-infrared photometric survey, for sample selection and characterisation. Now that this research has reached its final stages, we report here on its current status and its finalisation plans. Overall, this survey has images of ˜ 0.5 square degrees of high-latitude sky to limiting AB magnitude Ks=23.7 (3-σ, 1'' aperture) and corresponding depths at U, B, V, R, I and J. The sample of sources obtained is being extended to include fields available to Gemini-S, since a recent collaboration with the Flamingos-2 Early Science Survey Team grants GOYA privileged access to this pioneering near-infrared multi-object spectrograph.

  11. Quantum dot imaging in the second near-infrared optical window: studies on reflectance fluorescence imaging depths by effective fluence rate and multiple image acquisition

    Science.gov (United States)

    Jung, Yebin; Jeong, Sanghwa; Nayoun, Won; Ahn, Boeun; Kwag, Jungheon; Geol Kim, Sang; Kim, Sungjee

    2015-04-01

    Quantum dot (QD) imaging capability was investigated by the imaging depth at a near-infrared second optical window (SOW; 1000 to 1400 nm) using time-modulated pulsed laser excitations to control the effective fluence rate. Various media, such as liquid phantoms, tissues, and in vivo small animals, were used and the imaging depths were compared with our predicted values. The QD imaging depth under excitation of continuous 20 mW/cm2 laser was determined to be 10.3 mm for 2 wt% hemoglobin phantom medium and 5.85 mm for 1 wt% intralipid phantom, which were extended by more than two times on increasing the effective fluence rate to 2000 mW/cm2. Bovine liver and porcine skin tissues also showed similar enhancement in the contrast-to-noise ratio (CNR) values. A QD sample was inserted into the abdomen of a mouse. With a higher effective fluence rate, the CNR increased more than twofold and the QD sample became clearly visualized, which was completely undetectable under continuous excitation. Multiple acquisitions of QD images and averaging process pixel by pixel were performed to overcome the thermal noise issue of the detector in SOW, which yielded significant enhancement in the imaging capability, showing up to a 1.5 times increase in the CNR.

  12. Hydrogen/deuterium (H/D) exchange of gelatinized starch studied by two-dimensional (2D) near-infrared (NIR) correlation spectroscopy.

    Science.gov (United States)

    Shinzawa, Hideyuki; Mizukado, Junji

    2017-12-21

    Hydrogen/deuterium (H/D) exchange of gelatinized starch was probed by in-situ near-infrared (NIR) monitoring coupled with two-dimensional (2D) correlation spectroscopy. Gelatinized starch undergoes spontaneous H/D exchange in D 2 O. During the substitution, the exchange rate essentially becomes different depending on solvent accessibility of various parts of the molecule. Thus, by analyzing the change in the NIR feature observed during the substitution, it becomes possible to sort out local structure and dynamics of the system. 2D correlation analysis of the time-dependent NIR spectra reveals the presence of different local structure of the starch, each having different solvent accessibility. For example, during the H/D exchange, the D 2 O is first absorbed by starch molecules especially around the surface area between the starch and water, where the water molecules are weakly interacted with the starch molecules. This absorption is quickly followed by the development of HDO species. Further absorption of the D 2 O results in the penetration of the molecules inside the starch and eventually develops the relatively strong interaction between the HDO and starch molecules because of the presence of dominant starch molecules. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Persistent Luminescence Nanophosphor Involved Near-Infrared Optical Bioimaging for Investigation of Foodborne Probiotics Biodistribution in Vivo: A Proof-of-Concept Study.

    Science.gov (United States)

    Liu, Yaoyao; Liu, Jing-Min; Zhang, Dongdong; Ge, Kun; Wang, Peihua; Liu, Huilin; Fang, Guozhen; Wang, Shuo

    2017-09-20

    Probiotics has attracted great attention in food nutrition and safety research field, but thus far there are limited analytical techniques for visualized and real-time monitoring of the probiotics when they are ingested in vivo. Herein, the optical bioimaging technique has been introduced for investigation of foodborne probiotics biodistribution in vivo, employing the near-infrared (NIR) emitting persistent luminescence nanophosphors (PLNPs) of Cr 3+ -doped zinc gallogermanate (ZGGO) as the contrast nanoprobes. The ultrabrightness, super long afterglow, polydispersed size, low toxicity, and excellent photostability and biocompatibility of PLNPs were demonstrated to be qualified as a tracer for labeling probiotics via antibody (anti-Gram positive bacteria LTA antibody) recognition as well as contrast agent for long-term bioimaging the probiotics. In vivo optical bioimaging assay showed that the LTA antibody functionalized ZGGO nanoprobes that could be efficiently tagged to the probiobics were successfully applied for real-time monitoring and nondamaged probing of the biodistribution of probiotics inside the living body after oral administration. This work presents a proof-of-concept that exploited the bioimaging methodology for real-time and nondamaged researching the foodborne probiotics behaviors in vivo, which would open up a novel way of food safety detection and nutrition investigation.

  14. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid

    Science.gov (United States)

    Grabska, Justyna; Beć, Krzysztof B.; Ishigaki, Mika; Wójcik, Marek J.; Ozaki, Yukihiro

    2017-10-01

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5 · 10- 4 M in CCl4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000 cm- 1, is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications.

  15. Facial Vibrotactile Stimulation Activates the Parasympathetic Nervous System: Study of Salivary Secretion, Heart Rate, Pupillary Reflex, and Functional Near-Infrared Spectroscopy Activity

    Directory of Open Access Journals (Sweden)

    Hisao Hiraba

    2014-01-01

    Full Text Available We previously found that the greatest salivation response in healthy human subjects is produced by facial vibrotactile stimulation of 89 Hz frequency with 1.9 μm amplitude (89 Hz-S, as reported by Hiraba et al. (2012, 20011, and 2008. We assessed relationships between the blood flow to brain via functional near-infrared spectroscopy (fNIRS in the frontal cortex and autonomic parameters. We used the heart rate (HRV: heart rate variability analysis in RR intervals, pupil reflex, and salivation as parameters, but the interrelation between each parameter and fNIRS measures remains unknown. We were to investigate the relationship in response to established paradigms using simultaneously each parameter-fNIRS recording in healthy human subjects. Analysis of fNIRS was examined by a comparison of various values between before and after various stimuli (89 Hz-S, 114 Hz-S, listen to classic music, and “Ahh” vocalization. We confirmed that vibrotactile stimulation (89 Hz of the parotid glands led to the greatest salivation, greatest increase in heart rate variability, and the most constricted pupils. Furthermore, there were almost no detectable differences between fNIRS during 89 Hz-S and fNIRS during listening to classical music of fans. Thus, vibrotactile stimulation of 89 Hz seems to evoke parasympathetic activity.

  16. Moisture content determination in an antibody-drug conjugate freeze-dried medicine by near-infrared spectroscopy: A case study for release testing.

    Science.gov (United States)

    Clavaud, Matthieu; Roggo, Yves; Dégardin, Klara; Sacré, Pierre-Yves; Hubert, Philippe; Ziemons, Eric

    2016-11-30

    The use of Near-infrared spectroscopy (NIRS) as a fast and non-destructive technique was employed for moisture content (MC) determination in Antibody-drug conjugates (ADCs) in replacement to Karl Fischer (KF) method. The lab analysis of ADCs, high potent medicines, should be performed in conditions ensuring the operator's safety and using secured analytical tools like NIRS. A NIRS method was first developed and validated in compliance with current guidelines. The novelty of this work first lies in the large number of samples prepared for a wide moisture calibration range of 0.51%-4.01%. Then, the classical Partial Least Square (PLS) regression was used as chemometric tool for the computation of the model. Excellent predictive calibration results were shown. A coefficient of correlation (r) value of 0.99 was obtained. An intercept value of 0.02 and a slope of 0.99 were observed, while the root mean square error of calibration (RMSEC) and the root mean square error of prediction (RMSEP) were respectively 0.10% and 0.12%. In addition, instrumentation, model performances and robustness of the method were evaluated, demonstrating the validation results. Calibration transfer issue and impact of the number of samples were also evaluated. Consequently, a validation strategy was introduced as a basis for submission to the health authorities' for release and stability activities in a cGMP environment in replacement of the KF method. Copyright © 2016 Elsevier B.V. All rights reserved.

  17. Mechanisms of browning development in aggregates of marine organic matter formed under anoxic conditions: A study by mid-infrared and near-infrared spectroscopy

    Science.gov (United States)

    Mecozzi, Mauro; Acquistucci, Rita; Nisini, Laura; Conti, Marcelo Enrique

    2014-03-01

    In this paper we analyze some chemical aspects concerning the browning development associated to the aggregation of marine organic matter (MOM) occurring in anoxic conditions. Organic matter samples obtained by the degradation of different algal samples were daily taken to follow the evolution of the aggregation process and the associated browning process. These samples were examined by Fourier transform mid infrared (FTIR) and Fourier transform near infrared (FTNIR) spectroscopy and the colour changes occurring during the above mentioned aggregation process were measured by means of Colour Indices (CIs). Spectral Cross Correlation Analysis (SCCA) was applied to correlate changes in CI values to the structural changes of MOM observed by FTIR and FTNIR spectra which were also submitted to Two-Dimensional Hetero Correlation Analysis (2HDCORR). SCCA results showed that all biomolecules present in MOM aggregates such as carbohydrates, proteins and lipids are involved in the browning development. In particular, SCCA results of algal mixtures suggest that the observed yellow-brown colour can be linked to the development of non enzymatic (i.e. Maillard) browning reactions. SCCA results for MOM furthermore suggest that aggregates coming from brown algae also showed evidence of browning related to enzymatic reactions. In the end 2HDCORR results indicate that hydrogen bond interactions among different molecules of MOM can play a significant role in the browning development.

  18. Assessing the Driver’s Current Level of Working Memory Load with High Density Functional Near-infrared Spectroscopy: A Realistic Driving Simulator Study

    Directory of Open Access Journals (Sweden)

    Anirudh Unni

    2017-04-01

    Full Text Available Cognitive overload or underload results in a decrease in human performance which may result in fatal incidents while driving. We envision that driver assistive systems which adapt their functionality to the driver’s cognitive state could be a promising approach to reduce road accidents due to human errors. This research attempts to predict variations of cognitive working memory load levels in a natural driving scenario with multiple parallel tasks and to reveal predictive brain areas. We used a modified version of the n-back task to induce five different working memory load levels (from 0-back up to 4-back forcing the participants to continuously update, memorize, and recall the previous ‘n’ speed sequences and adjust their speed accordingly while they drove for approximately 60 min on a highway with concurrent traffic in a virtual reality driving simulator. We measured brain activation using multichannel whole head, high density functional near-infrared spectroscopy (fNIRS and predicted working memory load level from the fNIRS data by combining multivariate lasso regression and cross-validation. This allowed us to predict variations in working memory load in a continuous time-resolved manner with mean Pearson correlations between induced and predicted working memory load over 15 participants of 0.61 [standard error (SE 0.04] and a maximum of 0.8. Restricting the analysis to prefrontal sensors placed over the forehead reduced the mean correlation to 0.38 (SE 0.04, indicating additional information gained through whole head coverage. Moreover, working memory load predictions derived from peripheral heart rate parameters achieved much lower correlations (mean 0.21, SE 0.1. Importantly, whole head fNIRS sampling revealed increasing brain activation in bilateral inferior frontal and bilateral temporo-occipital brain areas with increasing working memory load levels suggesting that these areas are specifically involved in workload

  19. The Role of Alternating Bilateral Stimulation in Establishing Positive Cognition in EMDR Therapy: A Multi-Channel Near-Infrared Spectroscopy Study.

    Science.gov (United States)

    Amano, Tamaki; Toichi, Motomi

    2016-01-01

    Eye movement desensitisation and reprocessing (EMDR) is a standard method for treating post-traumatic stress disorder. EMDR treatment consists of desensitisation and resource development and installation (RDI) stages. Both protocols provide a positive alternating bilateral stimulation (BLS). The effect of desensitisation with BLS has been elucidated. However, a role for BLS in RDI remains unknown. Therefore, it is important to measure feelings as subjective data and physiological indicators as objective data to clarify the role of BLS in RDI. RDI was administered to 15 healthy volunteer subjects who experienced pleasant memories. Their oxygenated haemoglobin concentration ([oxy-Hb]), a sensitive index of brain activity, was measured from the prefrontal cortex (PFC) to the temporal cortex using multi-channel near-infrared spectroscopy during recall of a pleasant memory with or without BLS. The BLS used was alternating bilateral tactile stimulation with a vibration machine. The psychological evaluation suggested that RDI was successful. The results showed that, compared with non-BLS conditions, accessibility was increased and subjects were more relaxed under BLS conditions. A significant increase in [oxy-Hb] was detected in the right superior temporal sulcus (STS), and a decrease in the wide bilateral areas of the PFC was observed in response to BLS. The significant BLS-induced activation observed in the right STS, which is closely related to memory representation, suggests that BLS may help the recall of more representative pleasant memories. Furthermore, the significant reduction in the PFC, which is related to emotion regulation, suggests that BLS induces relaxation and comfortable feelings. These results indicate an important neural mechanism of RDI that emotional processing occurred rather than higher cognitive processing during this stage. Considering the neuroscientific evidence to date, BLS in RDI may enhance comfortable feelings about pleasant memories

  20. The Role of Alternating Bilateral Stimulation in Establishing Positive Cognition in EMDR Therapy: A Multi-Channel Near-Infrared Spectroscopy Study.

    Directory of Open Access Journals (Sweden)

    Tamaki Amano

    Full Text Available Eye movement desensitisation and reprocessing (EMDR is a standard method for treating post-traumatic stress disorder. EMDR treatment consists of desensitisation and resource development and installation (RDI stages. Both protocols provide a positive alternating bilateral stimulation (BLS. The effect of desensitisation with BLS has been elucidated. However, a role for BLS in RDI remains unknown. Therefore, it is important to measure feelings as subjective data and physiological indicators as objective data to clarify the role of BLS in RDI. RDI was administered to 15 healthy volunteer subjects who experienced pleasant memories. Their oxygenated haemoglobin concentration ([oxy-Hb], a sensitive index of brain activity, was measured from the prefrontal cortex (PFC to the temporal cortex using multi-channel near-infrared spectroscopy during recall of a pleasant memory with or without BLS. The BLS used was alternating bilateral tactile stimulation with a vibration machine. The psychological evaluation suggested that RDI was successful. The results showed that, compared with non-BLS conditions, accessibility was increased and subjects were more relaxed under BLS conditions. A significant increase in [oxy-Hb] was detected in the right superior temporal sulcus (STS, and a decrease in the wide bilateral areas of the PFC was observed in response to BLS. The significant BLS-induced activation observed in the right STS, which is closely related to memory representation, suggests that BLS may help the recall of more representative pleasant memories. Furthermore, the significant reduction in the PFC, which is related to emotion regulation, suggests that BLS induces relaxation and comfortable feelings. These results indicate an important neural mechanism of RDI that emotional processing occurred rather than higher cognitive processing during this stage. Considering the neuroscientific evidence to date, BLS in RDI may enhance comfortable feelings about pleasant

  1. Distinctive activation patterns under intrinsically versus extrinsically driven cognitive loads in prefrontal cortex: a near-infrared spectroscopy study using a driving video game.

    Science.gov (United States)

    Liu, Tao; Saito, Hirofumi; Oi, Misato

    2012-01-11

    To investigate the neural bases of intrinsically and extrinsically driven cognitive loads in daily life, we measured repetitively prefrontal activation in three (one control and two experimental) groups during a driving video game using near-infrared spectroscopy. The control group drove to goal four times with distinct route-maps illustrating default turning points. In contrast, the memory group drove the memorized default route without a route-map, and the emergency group drove with a route-map, but was instructed to change the default route by an extrinsically given verbal command (turn left or right) as an envisioned emergency. The predictability of a turning point in the route in each group was relatively different: due to extrinsic dictate of others in the emergency group, intrinsic memory in the memory group, and route-map aid in the control group. We analyzed concentration changes of oxygenated hemoglobin (CoxyHb) in the three critical periods (pre-turning, actual-turning, and post-turning). The emergency group showed a significantly increasing pattern of CoxyHb throughout the three periods, and a significant reduction in CoxyHb throughout the repetitive trials, but the memory group did not, even though both experimental groups showed higher activation than the control group in the pre-turning period. These results suggest that the prefrontal cortex differentiates the intrinsically (memory) and the extrinsically (dictate of others) driven cognitive loads according to the predictability of turning behavior, although the two types of cognitive loads commonly show increasing activation in the pre-turning period as the preparation effect. Copyright © 2011 Elsevier Ireland Ltd. All rights reserved.

  2. Spectra-structure correlations of saturated and unsaturated medium-chain fatty acids. Near-infrared and anharmonic DFT study of hexanoic acid and sorbic acid.

    Science.gov (United States)

    Grabska, Justyna; Beć, Krzysztof B; Ishigaki, Mika; Wójcik, Marek J; Ozaki, Yukihiro

    2017-10-05

    Quantum chemical reproduction of entire NIR spectra is a new trend, enabled by contemporary advances in the anharmonic approaches. At the same time, recent increase of the importance of NIR spectroscopy of biological samples raises high demand for gaining deeper understanding of NIR spectra of biomolecules, i.e. fatty acids. In this work we investigate saturated and unsaturated medium-chain fatty acids, hexanoic acid and sorbic acid, in the near-infrared region. By employing fully anharmonic density functional theory (DFT) calculations we reproduce the experimental NIR spectra of these systems, including the highly specific spectral features corresponding to the dimerization of fatty acids. Broad range of concentration levels from 5·10 -4 M in CCl 4 to pure samples are investigated. The major role of cyclic dimers can be evidenced for the vast majority of these samples. A highly specific NIR feature of fatty acids, the elevation of spectral baseline around 6500-4000cm -1 , is being explained by the contributions of combination bands resulting from the vibrations of hydrogen-bonded OH groups in the cyclic dimers. Based on the high agreement between the calculated and experimental NIR spectra, a detailed NIR band assignments are proposed for hexanoic acid and sorbic acid. Subsequently, the correlations between the structure and NIR spectra are elucidated, emphasizing the regions in which clear and universal traces of specific bands corresponding to saturated and unsaturated alkyl chains can be established, thus demonstrating the wavenumber regions highly valuable for structural identifications. Copyright © 2017 Elsevier B.V. All rights reserved.

  3. Comparative Variable Temperature Studies of Polyamide II with a Benchtop Fourier Transform and a Miniature Handheld Near-Infrared Spectrometer Using 2D-COS and PCMW-2D Analysis.

    Science.gov (United States)

    Unger, Miriam; Pfeifer, Frank; Siesler, Heinz W

    2016-07-01

    The main objective of this communication is to compare the performance of a miniaturized handheld near-infrared (NIR) spectrometer with a benchtop Fourier transform near-infrared (FT-NIR) spectrometer. Generally, NIR spectroscopy is an extremely powerful analytical tool to study hydrogen-bonding changes of amide functionalities in solid and liquid materials and therefore variable temperature NIR measurements of polyamide II (PAII) have been selected as a case study. The information content of the measurement data has been further enhanced by exploiting the potential of two-dimensional correlation spectroscopy (2D-COS) and the perturbation correlation moving window two-dimensional (PCMW2D) evaluation technique. The data provide valuable insights not only into the changes of the hydrogen-bonding structure and the recrystallization of the hydrocarbon segments of the investigated PAII but also in their sequential order. Furthermore, it has been demonstrated that the 2D-COS and PCMW2D results derived from the spectra measured with the miniaturized NIR instrument are equivalent to the information extracted from the data obtained with the high-performance FT-NIR instrument. © The Author(s) 2016.

  4. Photometric study of the M51 system

    International Nuclear Information System (INIS)

    Burkhead, M.S.

    1978-01-01

    Photoelectric and photographic data are presented for the two components of the M51 system, NGC 5194 and NGC 5195. The photoelectric observations (UBV and I) are presented as a series of drift scans with various diaphragm sizes covering the bright central and faint outer regions. These data indicate the complexity and the very large extent of the system. Colors and magnitudes of the spiral arms are presented. The I data in particular show the broad spiral features first shown photographically by Zwicky. Deep, integrated photographic plates (IIIa-J) also show the large, structured outer regions and the complex nature of the region between the two galaxies. Calibrated contour maps and integrated luminosities of the system are presented.The maximum detected extent of the system is 40 arcmin or 120kpc. If a M/L ratio of 10 is assumed, the mass in the outer envelope is equal to the mass obtained for the more familiar bright optical components.These data and their presentation in the form of photoelectric drift scans, composite photographs, contour maps, and three-dimensional plots show the marvelous complexity of the system. It would seem that the individual galaxies, NGC 5194 and NGC 5195, cannot be considered separately but must be studied in the context of their being members of the M51 system

  5. A genetically targetable near-infrared photosensitizer.

    Science.gov (United States)

    He, Jianjun; Wang, Yi; Missinato, Maria A; Onuoha, Ezenwa; Perkins, Lydia A; Watkins, Simon C; St Croix, Claudette M; Tsang, Michael; Bruchez, Marcel P

    2016-03-01

    Upon illumination, photosensitizer molecules produce reactive oxygen species that can be used for functional manipulation of living cells, including protein inactivation, targeted-damage introduction and cellular ablation. Photosensitizers used to date have been either exogenous, resulting in delivery and removal challenges, or genetically encoded proteins that form or bind a native photosensitizing molecule, resulting in a constitutively active photosensitizer inside the cell. We describe a genetically encoded fluorogen-activating protein (FAP) that binds a heavy atom-substituted fluorogenic dye, forming an 'on-demand' activated photosensitizer that produces singlet oxygen and fluorescence when activated with near-infrared light. This targeted and activated photosensitizer (TAPs) approach enables protein inactivation, targeted cell killing and rapid targeted lineage ablation in living larval and adult zebrafish. The near-infrared excitation and emission of this FAP-TAPs provides a new spectral range for photosensitizer proteins that could be useful for imaging, manipulation and cellular ablation deep within living organisms.

  6. Discrimination of mineral waters using near infrared spectroscopy and aquaphotomics

    Directory of Open Access Journals (Sweden)

    Munćan Jelena S.

    2014-01-01

    Full Text Available Despite that water is one of the most studied materials today its dynamic properties are still not well understood. Water state in human organism is of high importance for normal healthy functioning of human body. Different kinds of water are usually classified according to its present solutes, and concentrations of these solutes, but though it is known that water molecules can form clusters around present solutes, classification of waters based on types of water molecular organization and present clusters is not present in current literature. In this study we used multivariate analysis for classification of commercial mineral waters based on their near infrared spectra (NIR. Further, we applied Aquaphotomics, a new approach for interpretation of near infrared spectra of water, which gives insight into organization of water molecules in each of these waters.

  7. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  8. Near-infrared spectroscopic observations of massive young stellar object candidates in the central molecular zone

    Science.gov (United States)

    Nandakumar, G.; Schultheis, M.; Feldmeier-Krause, A.; Schödel, R.; Neumayer, N.; Matteucci, F.; Ryde, N.; Rojas-Arriagada, A.; Tej, A.

    2018-01-01

    Context. The central molecular zone (CMZ) is a 200 pc region around the Galactic centre. The study of star formation in the central part of the Milky Way is of great interest as it provides a template for the closest galactic nuclei. Aims: We present a spectroscopic follow-up of photometrically selected young stellar object (YSO) candidates in the CMZ of the Galactic centre. Our goal is to quantify the contamination of this YSO sample by reddened giant stars with circumstellar envelopes and to determine the star formation rate (SFR) in the CMZ. Methods: We obtained KMOS low-resolution near-infrared spectra (R 4000) between 2.0 and 2.5 μm of sources, many of which have been previously identified by mid-infrared photometric criteria as massive YSOs in the Galactic centre. Our final sample consists of 91 stars with good signal-to-noise ratio. We separated YSOs from cool late-type stars based on spectral features of CO and Brγ at 2.3 μm and 2.16 μm, respectively. We made use of spectral energy distribution (SED) model fits to the observed photometric data points from 1.25 to 24 μm to estimate approximate masses for the YSOs. Results: Using the spectroscopically identified YSOs in our sample, we confirm that existing colour-colour diagrams and colour-magnitude diagrams are unable to efficiently separate YSOs and cool late-type stars. In addition, we define a new colour-colour criterion that separates YSOs from cool late-type stars in the H-KS vs. H -[8.0] diagram. We use this new criterion to identify YSO candidates in the |l| Chile, programme number 097.C-0208(A).

  9. Exploring process dynamics by near infrared spectroscopy in lactic fermentations

    DEFF Research Database (Denmark)

    Svendsen, Carina; Cieplak, Tomasz; van der Berg, Franciscus Winfried J

    2016-01-01

    the chemical composition, physical/textural properties and/or microbial contamination. In this study lactic fermentation batches with the starter bacteria Streptococcus thermophilus and Lactobacillus delbrueckii subsp. bulgaricus are explored by in-line near infrared (NIR) spectroscopy. The dynamics obtained...... and absorption, where the scatter gives us information about the textural change happening, and the absorption gives us information about the biomass formation plus the conversion of sugar into lactic acid....

  10. Nanostructures graphene plasmon works close to near-infrared window

    DEFF Research Database (Denmark)

    Wang, Zhongli; Li, Tao; Almdal, Kristoffer

    Due to strong mode-confinement, long propagation-distance, and unique tunability, graphene plasmons have been widely explored in the mid-infrared and terahertz windows. However, it remains a big challenge to push graphene plasmons to shorter wavelengths in order to integrate graphene plasmon...... a promising way to promote graphene plasmons for both fundamental studies and potential applications in the near-infrared window....

  11. Noninvasive detection of gas exchange rate by near infrared spectroscopy

    Science.gov (United States)

    Xu, Guodong; Mao, Zongzhen; Wang, Bangde

    2008-12-01

    In order to study the relationship among the oxygen concentration in skeletal muscle tissues and the heart rate (HR), oxygen uptake (VO2), respiratory exchange ratio (RER) during incremental running exercises on a treadmill, a near-infrared spectroscopy muscle oxygen monitor system is employed to measure the relative change in muscle oxygenation, with the heart rate, oxygen uptake, production of carbon dioxide (VCO2) and respiratory exchange ratio are recorded synchronously. The results indicate parameters mentioned above present regular changes during the incremental exercise. High correlations are discovered between relative change of oxy-hemoglobin concentration and heart rate, oxygen uptake, respiratory exchange ratio at the significance level (P=0.01). This research might introduce a new measurement technology and/or a novel biological monitoring parameter to the evaluation of physical function status, control the training intensity, estimation of the effectiveness of exercise. Keywords: near-infrared spectroscopy; muscle oxygen concentration; heart rate; oxygen uptake; respiratory exchange ratio.

  12. Show me how you walk and I tell you how you feel - a functional near-infrared spectroscopy study on emotion perception based on human gait.

    Science.gov (United States)

    Schneider, Sabrina; Christensen, Andrea; Häußinger, Florian B; Fallgatter, Andreas J; Giese, Martin A; Ehlis, Ann-Christine

    2014-01-15

    The ability to recognize and adequately interpret emotional states in others plays a fundamental role in regulating social interaction. Body language presents an essential element of nonverbal communication which is often perceived prior to mimic expression. However, the neural networks that underlie the processing of emotionally expressive body movement and body posture are poorly understood. 33 healthy subjects have been investigated using the optically based imaging method functional near-infrared spectroscopy (fNIRS) during the performance of a newly developed emotion discrimination paradigm consisting of faceless avatars expressing fearful, angry, sad, happy or neutral gait patterns. Participants were instructed to judge (a) the presented emotional state (emotion task) and (b) the observed walking speed of the respective avatar (speed task). We measured increases in cortical oxygenated haemoglobin (O2HB) in response to visual stimulation during emotion discrimination. These O2HB concentration changes were enhanced for negative emotions in contrast to neutral gait sequences in right occipito-temporal and left temporal and temporo-parietal brain regions. Moreover, fearful and angry bodies elicited higher activation increases during the emotion task compared to the speed task. Haemodynamic responses were correlated with a number of behavioural measures, whereby a positive relationship between emotion regulation strategy preference and O2HB concentration increases after sad walks was mediated by the ability to accurately categorize sad walks. Our results support the idea of a distributed brain network involved in the recognition of bodily emotion expression that comprises visual association areas as well as body/movement perception specific cortical regions that are also sensitive to emotion. This network is activated less when the emotion is not intentionally processed (i.e. during the speed task). Furthermore, activity of this perceptive network is, mediated by

  13. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  14. Recent developments in near infrared instrumentation

    OpenAIRE

    Gregory Mosby

    2017-01-01

    The core questions that drive astronomy stem from an eagerness to understand the details of the universe and to learn our place within it. These questions range from the smallest scales: how are planets formed, how are stars formed? And they continue to the largest scales: how do galaxies form and how do they change with time? These questions can only be answered with the cutting edge instrumentation that has been developed over time to understand the universe from its light. Near infrared in...

  15. Astrometric and photometric study of the open cluster NGC 2323

    Directory of Open Access Journals (Sweden)

    Amin M.Y.

    2017-01-01

    Full Text Available We present a study of the open cluster NGC 2323 using astrometric and photometric data. In our study we used two methods that are able to separate open cluster’s stars from those that belong to the stellar background. Our results of calculations by these two methods indicate that: 1 according to the membership probability, NGC 2323 should contain 497 stars, 2 the cluster center should be at 07h 02m 48.s02 and -08° 20' 17''74,3 the limiting radius of NGC 2323 is 2.31 ± 0.04 pc, the surface number density at this radius is 98.16 stars pc −2, 4 the magnitude function has a maximum at about mv = 14 mag, 5 the total mass of NGC 2323 is estimated dynamically by using astrometric data to be 890 M_, and statistically by using photometric data to be 900 M_, and 6 the distance and age of the cluster are found to be equal to 900 ± 100 pc, and 140 ± 20 Myr, respectively. Finally the dynamical evolution parameter τ of the cluster is about 436.2.

  16. Near-infrared spectroscopy in the routine diagnostic work-up of patients with leg ischaemia

    NARCIS (Netherlands)

    Ubbink, D. T.; Koopman, B.

    2006-01-01

    OBJECTIVE: To examine the reproducibility and clinical applicability of near-infrared spectroscopy (NIRS) in patients with leg ischaemia. DESIGN: Prospective comparative diagnostic study. MATERIALS AND METHODS: Routinely measured peripheral blood pressure and microcirculatory parameters were

  17. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data

    DEFF Research Database (Denmark)

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte

    2015-01-01

    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which...... in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies....

  18. NEAR-INFRARED LINEAR POLARIZATION OF ULTRACOOL DWARFS

    International Nuclear Information System (INIS)

    Zapatero Osorio, M. R.; Bejar, V. J. S.; Rebolo, R.; Acosta-Pulido, J. A.; Manchado, A.; Pena Ramirez, K.; Goldman, B.; Caballero, J. A.

    2011-01-01

    We report on near-infrared J- and H-band linear polarimetric photometry of eight ultracool dwarfs (two late-M, five L0-L7.5, and one T2.5) with known evidence for photometric variability due to dust clouds, anomalous red infrared colors, or low-gravity atmospheres. The polarimetric data were acquired with the LIRIS instrument on the William Herschel Telescope. We also provide mid-infrared photometry in the interval 3.4-24 μm for some targets obtained with Spitzer and WISE, which has allowed us to confirm the peculiar red colors of five sources in the sample. We can impose modest upper limits of 0.9% and 1.8% on the linear polarization degree for seven targets with a confidence of 99%. Only one source, 2MASS J02411151-0326587 (L0), appears to be strongly polarized (P ∼ 3%) in the J band with a significance level of P/σ P ∼ 10. The likely origin of its linearly polarized light and rather red infrared colors may reside in a surrounding disk with an asymmetric distribution of grains. Given its proximity (66 ± 8 pc), this object becomes an excellent target for the direct detection of the disk.

  19. Precise Near-Infrared Radial Velocities

    Science.gov (United States)

    Plavchan, Peter; Gao, Peter; Gagne, Jonathan; Furlan, Elise; Brinkworth, Carolyn; Bottom, Michael; Tanner, Angelle; Anglada-Escude, Guillem; White, Russel; Davison, Cassy; Mills, Sean; Beichman, Chas; Johnson, John Asher; Ciardi, David; Wallace, Kent; Mennesson, Bertrand; Vasisht, Gautam; Prato, Lisa; Kane, Stephen; Crawford, Sam; Crawford, Tim; Sung, Keeyoon; Drouin, Brian; Lin, Sean; Leifer, Stephanie; Catanzarite, Joe; Henry, Todd; von Braun, Kaspar; Walp, Bernie; Geneser, Claire; Ogden, Nick; Stufflebeam, Andrew; Pohl, Garrett; Regan, Joe

    2016-01-01

    We present the results of two 2.3 μm near-infrared (NIR) radial velocity (RV) surveys to detect exoplanets around 36 nearby and young M dwarfs. We use the CSHELL spectrograph (R ~ 46,000) at the NASA InfraRed Telescope Facility (IRTF), combined with an isotopic methane absorption gas cell for common optical path relative wavelength calibration. We have developed a sophisticated RV forward modeling code that accounts for fringing and other instrumental artifacts present in the spectra. With a spectral grasp of only 5 nm, we are able to reach long-term radial velocity dispersions of ~20-30 m s-1 on our survey targets.

  20. Near-infrared spectroscopy for cocrystal screening

    DEFF Research Database (Denmark)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad

    2008-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those...... of pure references. In addition, Raman spectroscopy provided additional information on the crystal structure of the IND-SAC cocrystal. The broad spectral line shapes of NIR spectra make visual interpretation of the spectra difficult, and consequently, multivariate modeling by principal component analysis...

  1. Near Infrared (nir) Imaging for Nde

    Science.gov (United States)

    Diamond, G. G.; Pallav, P.; Hutchins, D. A.

    2008-02-01

    A novel application of near infrared (NIR) signals is presented, which can be used to provide images of many different materials and objects. It is effectively a very low cost non-ionising alternative to many applications currently being investigated using electromagnetic waves at other frequencies, such as THz and X-ray imaging. This alternative technique can be realised by very simple and inexpensive electronics and is inherently far more portable and easy to use. Transmission imaging results from this technique are presented from examples industrial quality control, food inspection and various security applications, and the results compared to existing techniques. In addition, this technique can be used in through-transmission mode on biological and medical samples, and images are presented that differentiate between not only flesh and bone, but also various types of soft tissue.

  2. Theoretical design of near - infrared organic compounds

    Science.gov (United States)

    Brymora, Katarzyna; Ducasse, Laurent; Dautel, Olivier; Lartigau-Dagron, Christine; Castet, FréDéRic

    The world follows the path of digital development faster than ever before. In consequence, the Human Machine Interfaces (HMI) market is growing as well and it requires some innovations. The goal of our work is to achieve an organic Infra-Red (IR) photodetectors hitting the performance requirements for HMI applications. The quantum chemical calculations are used to guide the synthesis and technology development. In this work, in the framework of density functional theory (DFT) and time-dependent density functional theory (TD-DFT), we consider a large variety of materials exploring small donor-acceptor-donor molecules and copolymers alternating donor and acceptor monomers. We provide a structure-property relationship in view of designing new Near-Infrared (NIR) absorbing organic molecules and polymers.

  3. Near Infrared Spectroscopy Systems for Tissue Oximetry

    DEFF Research Database (Denmark)

    Petersen, Søren Dahl

    We present exible silicon device platforms, which combine polyimide with polydimethylsiloxane in order to add flexibility and biocompatibility to the silicon devices. The device platforms are intended as tissue oximeters, using near infrared spectroscopy, but could potentially also be used...... for other medical applications. The tissue oximeters are realised by incorporation of pn-diodes into the silicon in order to form arrays of infrared detectors. These arrays can then be used for spatially resolved spectroscopy measurements, with the targeted end user being prematurely born infant children....... Monte Carlo simulations have been performed on a model of a neonatal head and they show only weak changing signals as function of changes in cerebral oxygenation. A mechanical and electrical analysis of the device platforms, both by analytical expressions and numerical simulation, indicated...

  4. COBE DIRBE near-infrared polarimetry of the zodiacal light: Initial results

    Science.gov (United States)

    Berriman, G. B.; Boggess, N. W.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Moseley, S. H.; Reach, W. T.; Silverberg, R. F.

    1994-01-01

    This Letter describes near-infrared polarimetry of the zodiacal light at 2.2 micrometers, measured with the Diffuse Infrared Background Experiment (DIRBE) aboard the Cosmic Background Explorer (COBE) spacecraft. The polarization is due to scattering of sunlight. The polarization vector is perpendicular to the scattering plane, and its observed amplitude on the ecliptic equator at an elongation of 90 deg and ecliptic longitude of 10 deg declines from 12.0 +/- 0.4% at 1.25 micrometers to 8.0 +/- 0.6% at 3.5 micrometers (cf. 16% in the visible); the principal source of uncertainty is photometric noise due to stars. The observed near-infrared colors at this location are redder than Solar, but at 3.5 micrometers this is due at least in part to the thermal emission contribution from the interplanetary dust. Mie theory calculations show that both polarizations and colors are important in constraining models of interplanetary dust.

  5. Transcranial red and near infrared light transmission in a cadaveric model.

    Directory of Open Access Journals (Sweden)

    Jared R Jagdeo

    Full Text Available BACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. STUDY DESIGN/MATERIALS AND METHODS: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. RESULTS: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. CONCLUSION: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.

  6. Near-infrared calibration transfer based on spectral regression

    Science.gov (United States)

    Peng, Jiangtao; Peng, Silong; Jiang, An; Tan, Jie

    2011-04-01

    A calibration transfer method for near-infrared (NIR) spectra based on spectral regression is proposed. Spectral regression method can reveal low dimensional manifold structure in high dimensional spectroscopic data and is suitable to transfer the NIR spectra of different instruments. A comparative study of the proposed method and piecewise direct standardization (PDS) for standardization on two benchmark NIR data sets is presented. Experimental results show that spectral regression method outperforms PDS and is quite competitive with PDS with background correction. When the standardization subset has sufficient samples, spectral regression method exhibits excellent performance.

  7. Near-infrared calibration transfer based on spectral regression.

    Science.gov (United States)

    Peng, Jiangtao; Peng, Silong; Jiang, An; Tan, Jie

    2011-04-01

    A calibration transfer method for near-infrared (NIR) spectra based on spectral regression is proposed. Spectral regression method can reveal low dimensional manifold structure in high dimensional spectroscopic data and is suitable to transfer the NIR spectra of different instruments. A comparative study of the proposed method and piecewise direct standardization (PDS) for standardization on two benchmark NIR data sets is presented. Experimental results show that spectral regression method outperforms PDS and is quite competitive with PDS with background correction. When the standardization subset has sufficient samples, spectral regression method exhibits excellent performance. Copyright © 2011 Elsevier B.V. All rights reserved.

  8. [Application of near-infrared spectroscopy in golf turfgrass management].

    Science.gov (United States)

    Li, Shu-Ying; Han, Jian-Guo

    2008-07-01

    The management of golf course is different from other turfs. Its particularity lies in its higher and more precise requirement during maintenance compare with other turfs. In case something happened to turf of golf course, more effective and higher speed detecting and resolution are required. Only the data about turf growth and environment were mastered precisely in time, the friendly environmental and scientific management goal could be completed effectively and economically. The near infrared spectroscopy is a new kind of effective, convenient and non-destructive analytical method in the turfgrass management of golf course in recent years. Many factors of turf-soil system in golf course could be determined by near infrared spectroscopy at the same time. In this paper, the existing literature that use of near infrared spectroscopy to study turfgrass and soil nutrient content, soil hygroscopic moisture, feasible fertilizer application time and rate, to fix the time and volume of irrigation, turfgrass visual quality evaluation, turfgrass disease prediction and prevention were reviewed. Most researchers considered the nutrition condition of turf impacted the visual and playing quality of golf course directly and then indirectly influenced most of assistant cultivation such as fertilization, mowing and irrigation and so on. The using of NIRS can detect the nutrient content of turfgrass effectively and estimate the nutrient is excessive or deficient quickly. And then the feasible time and rate of fertilizers can be decided. Comparing with the common judgment ways based on the season fertilization and visual estimation, the using of NIRS can reduce the application of fertilizers on the base of keeping the same turf quality simultaneously. NIRS can analysis many items of soil such as moisture, elements concentration, textures on the spot by the thousands. This method can get lots of cover-all data non-destructively. What's more, NIRS can analysis soil betimes quickly

  9. Development of a neurofeedback protocol targeting the frontal pole using near-infrared spectroscopy.

    Science.gov (United States)

    Kinoshita, Akihide; Takizawa, Ryu; Yahata, Noriaki; Homae, Fumitaka; Hashimoto, Ryuichiro; Sakakibara, Eisuke; Kawasaki, Shingo; Nishimura, Yukika; Koike, Shinsuke; Kasai, Kiyoto

    2016-11-01

    Neurofeedback has been studied with the aim of controlling cerebral activity. Near-infrared spectroscopy is a non-invasive neuroimaging technique used for measuring hemoglobin concentration changes in cortical surface areas with high temporal resolution. Thus, near-infrared spectroscopy may be useful for neurofeedback, which requires real-time feedback of repeated brain activation measurements. However, no study has specifically targeted neurofeedback, using near-infrared spectroscopy, in the frontal pole cortex. We developed an original near-infrared spectroscopy neurofeedback system targeting the frontal pole cortex. Over a single day of testing, each healthy participant (n = 24) received either correct or incorrect (Sham) feedback from near-infrared spectroscopy signals, based on a crossover design. Under correct feedback conditions, significant activation was observed in the frontal pole cortex (P = 0.000073). Additionally, self-evaluation of control and metacognitive beliefs were associated with near-infrared spectroscopy signals (P = 0.006). The neurofeedback system developed in this study might be useful for developing control of frontal pole cortex activation. © 2016 The Authors. Psychiatry and Clinical Neurosciences © 2016 Japanese Society of Psychiatry and Neurology.

  10. Prediction of tablets disintegration times using near-infrared diffuse reflectance spectroscopy as a nondestructive method.

    Science.gov (United States)

    Donoso, M; Ghaly, Evone S

    2005-01-01

    The goals of this study are to user near-infrared reflectance (NIR) spectroscopy to measure the disintegration time of a series of tablets compacted at different compressional forces, calibrate NIR data vs. laboratory equipment data, develop a model equation, validate the model, and test the model's predictive ability. Seven theophylline tablet formulations of the same composition but with different disintegration time values (0.224, 1.141, 2.797, 5.492, 9.397, 16.8, and 30.092 min) were prepared along with five placebo tablet formulations with different disintegration times. Laboratory disintegration time was compared to near-infrared diffuse reflectance data. Linear regression, quadratic, cubic, and partial least square techniques were used to determine the relationship between disintegration time and near-infrared spectra. The results demonstrated that an increase in disintegration time produced an increase in near-infrared absorbance. Series of model equations, which depended on the mathematical technique used for regression, were developed from the calibration of disintegration time using laboratory equipment vs. the near-infrared diffuse reflectance for each formulation. The results of NIR disintegration time were similar to laboratory tests. The near-infrared diffuse reflectance spectroscopy method is an alternative nondestructive method for measurement of disintegration time of tablets.

  11. Estudo da emissão de raios infravermelho próximo em processos de soldagem a arco Study of near-infrared emission on processes of arc welding

    Directory of Open Access Journals (Sweden)

    Carolina Pimenta Mota

    2011-03-01

    Full Text Available O estudo de boa parte dos fenômenos envolvidos no processo de soldagem necessita de auxílio visual e a luminosidade emitida pelo arco pode representar uma grande barreira. Uma das formas utilizadas atualmente para se obter a visualização do processo, sem a interferência do arco, consiste em iluminar o processo com o infravermelho próximo e utilizar filtros durante a aquisição das imagens. Assim, é importante investigar o comportamento do arco de soldagem em relação à sua emissão luminosa no espectro infravermelho. Desta forma, a proposta deste trabalho foi a realização de um estudo comparativo entre a emissão do arco de soldagem de radiação infravermelha próxima em dois processos largamente utilizados, TIG e MIG/MAG, focando também sua influência por parâmetros como a corrente de soldagem e a proteção gasosa utilizada. Com o uso de um sensor de luminosidade e a utilização de um sistema de lentes ópticas, foram realizados experimentos, adquirindo o espectro luminoso emitido pelo arco voltaico. Através dos resultados obtidos, ou seja, do valor numérico de energia luminosa do arco de soldagem (integração do espectro é possível se obter, com a utilização desta mesma metodologia, a energia luminosa no infravermelho próximo e, consequentemente, a intensidade luminosa, necessária para a sobreposição do arco durante a aquisição de imagens.Most of the phenomenon studied in the welding processes needs a vision system and the arc light emission can create a great barrier. Nowadays, one of the techniques used for visualizing the process, without arc interference, is the illumination of the process with near-infrared laser and the use of optic filters during the image acquisition. Thus, it is important to investigate the welding arc behavior in respect to its light emission within the near-infrared spectrum. Therefore, this work aims to perform a comparative study of the arc near infrared emission in one of the two

  12. Near Infrared Spectroscopy as a Hemodynamic Monitor in Critical Illness.

    Science.gov (United States)

    Ghanayem, Nancy S; Hoffman, George M

    2016-08-01

    The objectives of this review are to discuss the technology and clinical interpretation of near infrared spectroscopy oximetry and its clinical application in patients with congenital heart disease. MEDLINE and PubMed. Near infrared spectroscopy provides a continuous noninvasive assessment of tissue oxygenation. Over 20 years ago, near infrared spectroscopy was introduced into clinical practice for monitoring cerebral oxygenation during cardiopulmonary bypass in adults. Since that time, the utilization of near infrared spectroscopy has extended into the realm of pediatric cardiac surgery and is increasingly being used in the cardiac ICU to monitor tissue oxygenation perioperatively.

  13. A Near-Infrared Spectroscopy Study on Cortical Hemodynamic Responses to Normal and Whispered Speech in 3- to 7-Year-Old Children

    Science.gov (United States)

    Remijn, Gerard B.; Kikuchi, Mitsuru; Yoshimura, Yuko; Shitamichi, Kiyomi; Ueno, Sanae; Tsubokawa, Tsunehisa; Kojima, Haruyuki; Higashida, Haruhiro; Minabe, Yoshio

    2017-01-01

    Purpose: The purpose of this study was to assess cortical hemodynamic response patterns in 3- to 7-year-old children listening to two speech modes: normally vocalized and whispered speech. Understanding whispered speech requires processing of the relatively weak, noisy signal, as well as the cognitive ability to understand the speaker's reason for…

  14. Near-infrared neuroimaging with NinPy

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2009-05-01

    Full Text Available There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i the role of noninvasive diffuse optical imaging in measuring brain function, (ii the key computational requirements to support NIN experiments, (iii our collection of software tools to support near-infrared neuroimaging, called NinPy, and (iv future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html.

  15. Wound healing monitoring using near infrared fluorescent fibrinogen.

    Science.gov (United States)

    Pan, Chia-Pin; Shi, Yihui; Amin, Khalid; Greenberg, Charles S; Haroon, Zishan; Faris, Gregory W

    2010-07-27

    We demonstrate a method for imaging the wound healing process with near infrared fluorescent fibrinogen. Wound healing studies were performed on a rat punch biopsy model. Fibrinogen was conjugated with a near infrared fluorescent dye and injected into the tail vein. Fibrinogen is a useful protein for tracking wound healing because it is involved in fibrin clot formation and formation of new provisional matrix through transglutaminase's crosslinking activity. Strong fluorescence specific to the wound was observed and persisted for several days, indicating that the fibrinogen is converted to crosslinked fibrin. Administration of contrast agent simultaneously with wound creation led to primary labeling of the fibrin clot, indicating that the wound was in its early phase of healing. Administration on the following day showed labeling on the wound periphery, indicating location of formation of a new provisional matrix. This method may prove to be useful as a diagnostic for basic studies of the wound healing process, in drug development, or in clinical assessment of chronic wounds.

  16. Equal prefrontal cortex activation between males and females in a motor tasks and different visual imagery perspectives: a functional near-infrared spectroscopy (fNIRS study

    Directory of Open Access Journals (Sweden)

    Thiago F. Dias Kanthack

    2013-09-01

    Full Text Available The purpose of this study was to compare the prefrontal cortex (PFC blood flow variation and time on in males and females while performing a motor task and imagery perspectives. Eighteen right handed subjects (11 males and 7 females were volunteers to this study. All subjects went through three randomly conditions, a motor task condition (MT in which they had to do a simple finger tap. The other conditions included practicing imagery in first and third views. During all the conditions, the fNIRS device was attached to the subject forehead to obtain the blood flow; the total time in each task which was measured with a chronometer. No difference had been found in any condition for both sexes in the PFC and time, nor for all subjects integrated in the PFC. Therefore, we conclu-de that both imageries can be used to mentally train a motor task, and probably both sexes can be benefited.

  17. The nature of the charge carriers in polyazulene as studied by in situ electron spin resonance-UV-visible-near-infrared spectroscopy.

    Science.gov (United States)

    Osterholm, Anna; Petr, Andreas; Kvarnström, Carita; Ivaska, Ari; Dunsch, Lothar

    2008-11-13

    In situ spectroelectrochemistry is of high importance for the characterization of doping reactions in pi-conjugated polymers. In this paper we present the results of simultaneous ESR and UV-vis-NIR measurements performed in situ during electrochemical p- and n-doping of polyazulene (PAz). In previous studies on p-doping of PAz the assignment of the optical absorption bands to specific charge carriers have been somewhat controversial, therefore the aim of this study is to clarify the nature of the doping-induced charge carriers and their corresponding optical absorption bands by in situ ESR-UV-vis-NIR spectroelectrochemistry. PAz was polymerized in two different potential ranges in order to obtain films with different structures and morphologies. On the basis of our spectroelectrochemical results we propose that polarons and polaron pairs are formed during p-doping in the two different types of PAz films electrodeposited on ITO. For studying n-doping of PAz, a Pt electrode was used. The ESR signal first decreased in intensity at low doping levels and then increased in intensity at higher doping levels pointing to the formation of new paramagnetic species. At high negative potentials there occurred an additional line broadening of the ESR signal indicating the existence of rather localized negative charge carriers.

  18. Near-Infrared Intraoperative Chemiluminescence Imaging

    KAUST Repository

    Büchel, Gabriel E.

    2016-08-03

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9pmolcm-2 of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the invivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  19. Near-Infrared Intraoperative Chemiluminescence Imaging.

    Science.gov (United States)

    Büchel, Gabriel E; Carney, Brandon; Shaffer, Travis M; Tang, Jun; Austin, Christine; Arora, Manish; Zeglis, Brian M; Grimm, Jan; Eppinger, Jörg; Reiner, Thomas

    2016-09-20

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce(4+) in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9 pmol cm(-2) of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the in vivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Cerebral hemodynamics in patients with obstructive sleep apnea syndrome monitored with near-infrared spectroscopy (NIRS) during positive airways pressure (CPAP) therapy: a pilot study

    Science.gov (United States)

    Zhang, Zhongxing; Schneider, Maja; Laures, Marco; Fritschi, Ursula; Lehner, Isabella; Qi, Ming; Khatami, Ramin

    2014-03-01

    In obstructive sleep apnea syndrome (OSA) the periodic reduction or cessation of breathing due to narrowing or occlusion of the upper airway during sleep leads to daytime symptoms and increased cardiovascular risk, including stroke. The higher risk of stroke is related to the impairment in cerebral vascular autoregulation. Continuous positive airways pressure (CPAP) therapy at night is the most effective treatment for OSA. However, there is no suitable bedside monitoring method evaluating the treatment efficacy of CPAP therapy, especially to monitor the recovery of cerebral hemodynamics. NIRS is ideally suited for non-invasive monitoring the cerebral hemodynamics during sleep. In this study, we will for first time assess dynamic changes of cerebral hemodynamics during nocturnal CPAP therapy in 3 patients with OSA using NIRS. We found periodic oscillations in HbO2, HHb, tissue oxygenation index (TOI) and blood volume associated with periodic apnea events without CPAP in all OSA patients. These oscillations were gradually attenuated and finally eliminated with the stepwise increments of CPAP pressures. The oscillations were totally eliminated in blood volume earlier than in other hemodynamic parameters. These results suggested that 1) the cerebral hemodynamic oscillations induced by OSA events can effectively be attenuated by CPAP therapy, and 2) blood flow and blood volume recovered first during CPAP therapy, followed by the recovery of oxygen consumption. Our study suggested that NIRS is a useful tool to evaluate the efficacy of CPAP therapy in patients with OSA bedside and in real time.

  1. Do infants represent the face in a viewpoint-invariant manner? Neural adaptation study as measured by near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Megumi eKobayashi

    2011-11-01

    Full Text Available Recent adult fMRI studies reported that face sensitive cortical areas showed attenuated responses to the repeated presentation of an identical facial image compared to the presentation of different facial images (fMRI-adaptation effects: e.g., Andrews & Ewbank, 2004. Building upon this finding, the current study, employing the adaptation paradigm, used NIRS to explore the neural basis of face processing in infants. In Experiment 1, we compared hemodynamic responses in the bilateral temporal regions during the repeated presentation of the same face (the same-face condition and the sequential presentation of different faces (the different-face condition. We found that 1 hemodynamic responses in the channels around the T5 and T6 regions increased during the presentation of different faces compared to those during the presentation of different objects; and that 2 these channels showed significantly lower response in the same-face condition than in the different-face condition, demonstrating the neural adaptation effect in 5- to 8-month-olds as measured by NIRS. In Experiment 2, when faces in both the same-face and different-face conditions were changed in viewpoint, lower hemodynamic responses in the same-face condition were found in 7- to 8-month-olds but not in 5- to 6-month-olds. Our results suggest that faces are represented in a viewpoint-invariant manner in 7- and 8-month-old infants.

  2. Systematic review of clinical applications of monitoring muscle tissue oxygenation with near-infrared spectroscopy in vascular disease

    NARCIS (Netherlands)

    Boezeman, Reinout P E; Moll, Frans L.; Ünlü, Çağdaş; de Vries, Jean Paul P M

    2016-01-01

    Background: The use of wavelengths of the near-infrared region by near-infrared spectroscopy (NIRS) has been studied for several applications in vascular disease. This systematic review aims to explore the clinical relevance of monitoring muscle tissue oxygenation in vascular disease with NIRS.

  3. Cortical Activation during Action Observation, Action Execution, and Interpersonal Synchrony in Adults: A functional Near-Infrared Spectroscopy (fNIRS Study

    Directory of Open Access Journals (Sweden)

    Anjana N. Bhat

    2017-09-01

    Full Text Available Introduction: Humans engage in Interpersonal Synchrony (IPS as they synchronize their own actions with that of a social partner over time. When humans engage in imitation/IPS behaviors, multiple regions in the frontal, temporal, and parietal cortices are activated including the putative Mirror Neuron Systems (Iacoboni, 2005; Buxbaum et al., 2014. In the present study, we compared fNIRS-based cortical activation patterns across three conditions of action observation (“Watch” partner, action execution (“Do” on your own, and IPS (move “Together”.Methods: Fifteen typically developing adults completed a reach and cleanup task with the right arm while cortical activation was examined using a 24-channel, Hitachi fNIRS system. Each adult completed 8 trials across three conditions (Watch, Do, and Together. For each fNIRS channel, we obtained oxy hemoglobin (HbO2 and deoxy hemoglobin (HHb profiles. Spatial registration methods were applied to localize the cortical regions underneath each channel and to define six regions of interest (ROIs, right and left supero-anterior (SA or pre/post-central gyri, infero-posterior (IP or angular/supramarginal gyri, and infero-anterior (IA or superior/middle temporal gyri regions.Results: In terms of task-related differences, the majority of the ROIs were more active during Do and Together compared to Watch. Only the right/ipsilateral fronto-parietal and inferior parietal cortices had greater activation during Together compared to Do.Conclusions: The similarities in cortical activation between action execution and IPS suggest that neural control of IPS is more similar to its execution than observational aspects. To be clear, the more complex the actions performed, the more difficult the IPS behaviors. Secondly, IPS behaviors required slightly more right-sided activation (vs. execution/observation suggesting that IPS is a higher-order process involving more bilateral activation compared to its sub

  4. Feasibility of interstitial near-infrared radiance spectroscopy platform for ex vivo canine prostate studies: optical properties extraction, hemoglobin and water concentration, and gold nanoparticles detection

    Science.gov (United States)

    Grabtchak, Serge; Montgomery, Logan G.; Whelan, William M.

    2014-05-01

    The canine prostate is a close match for the human prostate and is used in research of prostate cancers. Determining accurately optical absorption and scattering properties of the gland in a wide spectral range (preferably in a minimally invasive way), linking optical properties to concentrations of major endogenous chromophores, and detecting the presence of localized optical inhomogeneities like inclusions of gold nanoparticles for therapeutic and diagnostic purposes, are among the major challenges for researchers. The goal of the article is to demonstrate a feasibility of the multifunctional radiance spectroscopy platform in providing the required information. For ex vivo canine prostate, extraction of the effective attenuation and diffusion coefficients using relative cw radiance measurements was demonstrated in the 650- to 900-nm range. The derived absorption coefficient was decomposed to contributions from 9.0 μM HbO2, 29.6 μM Hb, and 0.47 fractional volume of H2O. Detection of a localized inclusion containing ˜1.5.1010 gold nanorods (0.8 μg Au) at 10 mm distance from the urethra was achieved with the detector in the urethra and the light source in a virtual rectum position. The platform offers the framework for a systematic study of various chromophores in the prostate that can be used as comprehensive diagnostic markers.

  5. Role of the Frontal Cortex in Standing Postural Sway Tasks While Dual-Tasking: A Functional Near-Infrared Spectroscopy Study Examining Working Memory Capacity

    Directory of Open Access Journals (Sweden)

    Hiroyuki Fujita

    2016-01-01

    Full Text Available Posture control during a dual-task involves changing the distribution of attention resources between the cognitive and motor tasks and involves the frontal cortex working memory (WM. The present study aimed to better understand the impact of frontal lobe activity and WM capacity in postural control during a dual-task. High and low WM-span groups were compared using their reading span test scores. High and low WM capacity were compared based on cognitive and balance performance and hemoglobin oxygenation (oxyHb levels during standing during single (S-S, standing during dual (S-D, one leg standing during single (O-S, and one leg standing during dual (O-D tasks. For sway pass length, significant difference in only the O-D task was observed between both groups. oxyHb levels were markedly increased in the right dorsolateral prefrontal cortex and supplementary motor area in the high-span group during a dual-task. Therefore, WM capacity influenced the allocation of attentional resources and motor performance.

  6. Near infrared spectroscopy for qualitative comparison of pharmaceutical batches.

    Science.gov (United States)

    Roggo, Y; Roeseler, C; Ulmschneider, M

    2004-11-19

    Pharmaceuticals are produced according to current pharmacopoeias, which require quality parameters. Tablets of identical formulation, produced by different factories should have the same properties before and after storage. In this article, we analyzed samples having two different origins before and after storage (30 degrees C, 75% relative moisture). The aim of the study is to propose two approaches to understand the differences between origins and the storage effect by near infrared spectroscopy. In the first part, the main wavelengths are identified in transmittance and reflectance near infrared spectra in order to identify the major differences between the samples. In this paper, this approach is called fingerprinting. In the second part, principal component analysis (PCA) is computed to confirm the fingerprinting interpretation. The two interpretations show the differences between batches: physical aspect and moisture content. The manufacturing process is responsible for the physical differences between batches. During the storage, changes are due to the increase of moisture content and the decrease of the active content.

  7. Pulsed near-infrared photoacoustic spectroscopy of blood

    Science.gov (United States)

    Laufer, Jan G.; Elwell, Clare E.; Delpy, Dave T.; Beard, Paul C.

    2004-07-01

    The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between 2-3% to 100% in step increments using a membrane oxygenator and at each increment an independent measurement of oxygen saturation was made using a co-oximeter. An optical parametric oscillator laser system provided nanosecond excitation pulses at a number of wavelengths in the near-infrared spectrum (740-1040nm) which were incident on the cuvette. The resulting acoustic signals were detected using a broadband (15MHz) Fabry-Perot polymer film transducer. The optical transport coefficient and amplitude were determined from the acoustic signals as a function of wavelength. These data were then used to calculate the relative concentrations of oxy- and deoxyhaemoglobin, using their known specific absorption coefficients and an empirically determined wavelength dependence of optical scattering over the wavelength range investigated. From this, the oxygen saturation of the suspension was derived with an accuracy of +/-5% compared to the co-oximeter SO2 measurements.

  8. Cerebral saturation in cardiac arrest patients measured with near-infrared technology during pre-hospital advanced life support. Results from Copernicus I cohort study.

    Science.gov (United States)

    Genbrugge, Cornelia; De Deyne, Cathy; Eertmans, Ward; Kurt, Anseeuw; Dirk, Voet; Ilse, Mertens; Marc, Sabbe; Jan, Stroobants; Liesbeth, Bruckers; Dieter, Mesotten; Jans, Frank; Boer, Willem; Dens, Jo

    2018-03-23

    To date, monitoring options during pre-hospital advanced life support (ALS) are limited. Regional cerebral saturation (rSO 2 ) may provide more information concerning the brain during ALS. We hypothesized that an increase in rSO 2 during ALS in out-of hospital cardiac arrest (OHCA) patients is associated with return of spontaneous circulation (ROSC). A prospective, non-randomized multicenter study was conducted in the pre-hospital setting of six hospitals in Belgium. Cerebral saturation was measured during pre-hospital ALS by a medical emergency team in OHCA patients. Cerebral saturation was continuously measured until ALS efforts were terminated or until the patient with sustained ROSC (>20 minutes) arrived at the emergency department. To take the longitudinal nature of the data into account, a linear mixed model was used. The correlation between the repeated measures of a patient was handled by means of ​a random intercept and a random slope. Our primary analysis tested the association of rSO 2 with ROSC. Of the 329 patients 110 (33%) achieved ROSC. First measured rSO 2 was 30% ± 18 in the ROSC group and 24% ± 15 in the no-ROSC group (p = 0.004; mean ± SD). Higher mean rSO 2 values were observed in the ROSC group compared to the no-ROSC group (41% ± 13 versus 33% ± 13 respectively; p pre-hospital ALS as an additional marker to predict ROSC. An increase of at least 15% in rSO 2 during ALS is associated with a higher probability of ROSC. Copyright © 2018. Published by Elsevier B.V.

  9. Determination of fat, moisture, and protein in meat and meat products by using the FOSS FoodScan Near-Infrared Spectrophotometer with FOSS Artificial Neural Network Calibration Model and Associated Database: collaborative study.

    Science.gov (United States)

    Anderson, Shirley

    2007-01-01

    A collaborative study was conducted to evaluate the repeatability and reproducibility of the FOSS FoodScan near-infrared spectrophotometer with artificial neural network calibration model and database for the determination of fat, moisture, and protein in meat and meat products. Representative samples were homogenized by grinding according to AOAC Official Method 983.18. Approximately 180 g ground sample was placed in a 140 mm round sample dish, and the dish was placed in the FoodScan. The operator ID was entered, the meat product profile within the software was selected, and the scanning process was initiated by pressing the "start" button. Results were displayed for percent (g/100 g) fat, moisture, and protein. Ten blind duplicate samples were sent to 15 collaborators in the United States. The within-laboratory (repeatability) relative standard deviation (RSD(r)) ranged from 0.22 to 2.67% for fat, 0.23 to 0.92% for moisture, and 0.35 to 2.13% for protein. The between-laboratories (reproducibility) relative standard deviation (RSD(R)) ranged from 0.52 to 6.89% for fat, 0.39 to 1.55% for moisture, and 0.54 to 5.23% for protein. The method is recommended for Official First Action.

  10. Effect of different assumptions for brain water content on absolute measures of cerebral oxygenation determined by frequency-domain near-infrared spectroscopy in preterm infants: an observational study.

    Science.gov (United States)

    Demel, Anja; Wolf, Martin; Poets, Christian F; Franz, Axel R

    2014-08-19

    Brain-water content (BWC) decreases with maturation of the brain and potentially affects parameters of cerebral oxygenation determined by near-infrared spectroscopy (NIRS). Most commercially available devices do not take these maturational changes into account. The aim of this study was to determine the effect of different assumptions for BWC on parameters of cerebral oxygenation in preterm infants. Concentrations of oxy-, deoxy- and total hemoglobin and regional cerebral oxygen saturation (rcStO2) were calculated based on absolute coefficients of absorption and scattering determined by multi-distance Frequency-Domain-NIRS assuming BWCs of 75-95%, which may be encountered in newborn infants depending on gestational and postnatal age. This range of BWC gave rise to a linear modification of the assessed NIRS parameters with a maximum change of 10%. This may result in an absolute overestimation of rcStO2 by (median (range)) 4 (1-8)%, if the calculation is based on the lowest BWC (75%) in an extremely preterm infant with an anticipated BWC of 95%. Clinicians wishing to rely on parameters of cerebral oxygenation determined by NIRS should consider that maturational changes in BWC not taken into account by most devices may result in a deviation of cerebral oxygenation readings by up to 8% from the correct value.

  11. Negative affect is related to reduced differential neural responses to social and non-social stimuli in 5-to-8-month-old infants: A functional near-infrared spectroscopy-study.

    Science.gov (United States)

    van der Kant, Anne; Biro, Szilvia; Levelt, Claartje; Huijbregts, Stephan

    2017-12-14

    Both social perception and temperament in young infants have been related to social functioning later in life. Previous functional Near-Infrared Spectroscopy (fNIRS) data (Lloyd-Fox et al., 2009) showed larger blood-oxygenation changes for social compared to non-social stimuli in the posterior temporal cortex of five-month-old infants. We sought to replicate and extend these findings by using fNIRS to study the neural basis of social perception in relation to infant temperament (Negative Affect) in 37 five-to-eight-month-old infants. Infants watched short videos displaying either hand and facial movements of female actors (social dynamic condition) or moving toys and machinery (non-social dynamic condition), while fNIRS data were collected over temporal brain regions. Negative Affect was measured using the Infant Behavior Questionnaire. Results showed significantly larger blood-oxygenation changes in the right posterior-temporal region in the social compared to the non-social condition. Furthermore, this differential activation was smaller in infants showing higher Negative Affect. Our results replicate those of Lloyd-Fox et al. and confirmed that five-to-eight-month-old infants show cortical specialization for social perception. Furthermore, the decreased cortical sensitivity to social stimuli in infants showing high Negative Affect may be an early biomarker for later difficulties in social interaction. Copyright © 2017 The Authors. Published by Elsevier Ltd.. All rights reserved.

  12. NEAR-INFRARED SPECTROSCOPY OF POST-AGB STARS

    NARCIS (Netherlands)

    OUDMAIJER, RD; WATERS, LBFM; VANDERVEEN, WECJ; GEBALLE, TR

    The results of a medium resolution near-infrared spectral survey of 18 post-AGB candidate stars are presented. Most of the stars have near-infrared hydrogen lines in absorption, which is normal for their spectral types. Three stars, HD 101584, HD 179821 and HD 170756 have the CO first overtone bands

  13. Near-infrared spectroscopy during peripheral vascular surgery

    DEFF Research Database (Denmark)

    Eiberg, J P; Schroeder, T V; Vogt, K C

    1997-01-01

    Near-infrared spectroscopy was performed perioperatively on the dorsum of the foot in 14 patients who underwent infrainguinal bypass surgery using a prosthesis or the greater saphenous vein. Dual-wavelength continuous light spectroscopy was used to assess changes in tissue saturation before, during...... that near-infrared spectroscopy is appropriate for perioperative monitoring during vascular grafting....

  14. Prediction of pork quality attributes from near infrared reflectance spectra

    NARCIS (Netherlands)

    Geesink, G.H.; Schreutelkamp, F.H.; Frankhuizen, R.; Vedder, H.W.; Faber, N.M.; Kranen, R.W.; Gerritzen, M.A.

    2003-01-01

    Near infrared spectroscopy (NIRS) is one of the most promising techniques for large-scale meat quality evaluation. We investigated the potential of NIRS-based models to predict drip loss and shear force of pork samples. Near infrared reflectance spectra (1000¿2500 nm), water-holding capacity, shear

  15. AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS

    International Nuclear Information System (INIS)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Sloan, G. C.; Hedman, Matthew M.

    2015-01-01

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recovered that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online

  16. AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Paul N.; Tuthill, Peter G. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Nicholson, Philip D. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Sloan, G. C. [Cornell Center for Astrophyics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Hedman, Matthew M., E-mail: p.stewart@physics.usyd.edu.au [Department of Physics, University of Idaho, Moscow, ID 83844 (United States)

    2015-12-15

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recovered that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online.

  17. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Kilic, Mukremin; Kowalski, Piotr M.; Von Hippel, Ted

    2009-01-01

    We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we find that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.

  18. Photometric and Spectroscopic studies of Ap star Cyg V1584

    Directory of Open Access Journals (Sweden)

    D. M. Z Jassur

    2001-06-01

    Full Text Available   UBV photometric observations of Ap star Cyg V1584 have been presented. To find the rotational period of the star, a sinusoidal wave function has been fitted to the noramal points of UBV filters. Assuming that a circular hot spot located at the magnetic pole of the star is responsible for the observed light variations, both physical an geometrical parameters of the spot have been determined. Finally, the angle between the magnetic and the rotational axis has been calculated from combining the spectroscopic and photometric data and the magnetic structure of the star has been discussed.

  19. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    Science.gov (United States)

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  20. Near-infrared imaging of demineralization under sealants

    Science.gov (United States)

    Tom, Henry; Simon, Jacob C.; Chan, Kenneth H.; Darling, Cynthia L.; Fried, Daniel

    2014-07-01

    Previous studies have shown that near-infrared (NIR) reflectance and transillumination imaging can be used to acquire high contrast images of early caries lesions and composite restorative materials. The aim of the study was to determine the optimum NIR wavelengths for imaging demineralized areas under dental sealants. Fifteen natural human premolars and molars with occlusal lesions were used in this in vitro study. Images before and after application of sealants were acquired using NIR reflectance and NIR transillumination at wavelengths of 1300, 1460, and 1500 to 1700 nm. Images were also acquired using polarization sensitive optical coherence tomography (OCT) for comparison. The highest contrast for NIR reflectance was at 1460 nm and 1500 to 1700 nm. These NIR wavelengths are coincident with higher water absorption. The clear Delton sealant investigated was not visible in either copolarization or cross-polarization OCT images. The wavelength region between 1500 and 1700 nm yielded the highest contrast of lesions under sealants for NIR reflectance measurements.

  1. The effectiveness and safety of topical PhotoActif phosphatidylcholine-based anti-cellulite gel and LED (red and near-infrared) light on Grade II-III thigh cellulite: a randomized, double-blinded study.

    Science.gov (United States)

    Sasaki, Gordon H; Oberg, Kerby; Tucker, Barbara; Gaston, Margaret

    2007-06-01

    Cellulite of the upper lateral and posterior thighs and lower buttocks represents a common, physiological and unwanted condition whose etiologies and effective management are subjects of continued debate. The purpose of this controlled, double-blinded study is to evaluate the efficacy and safety of a novel phosphatidylcholine-based, cosmeceutical anti-cellulite gel combined with a light-emitting diode (LED) array at the wavelengths of red (660 nm) and near-infrared (950 nm), designed to counter the possible mechanisms that purportedly accentuate the presence of thigh cellulite. Nine healthy female volunteers with Grade II-III thigh cellulite were randomly treated twice daily with an active gel on one thigh and a placebo gel on the control thigh for 3 months. Twice weekly, each thigh was exposed for a 15-minute treatment with LED light for a total of 24 treatments. At 0, 6, and 12 weeks of the study the following clinical determinants were obtained: standardized digital photography, height and weight measurements, standardized thigh circumference tape measurements, pinch testing, body mass index (kg/m2), body fat analysis (Futrex-5500/XL near-infrared analyzer), and digital high-resolution ultrasound imaging of the dermal-adiposal border. In selected patients, full-thickness biopsies of the placebo and active-treated sites were obtained. At 18 months, repeat standardized digital photography, height and weight measurements, and body mass index measurements were obtained. At the end of 3 months, eight of nine thighs treated with the phosphatidylcholine-based, anti-cellulite gel and LED treatments were downgraded to a lower cellulite grade by clinical examination, digital photography, and pinch test assessment. Digital ultrasound at the dermal-adiposal interface demonstrated not only a statistically significant reduction of immediate hypodermal depth, but also less echo-like intrusions into the dermal layer. Three of six biopsies from thighs treated for 3 months with

  2. Effect of near-infrared rays on female menstrual pain in Korea.

    Science.gov (United States)

    Lee, Jin-Min; Kim, Kye-Ha

    2017-09-01

    Most Korean women who experience menstrual pain have reported taking pain medicine and making use of complementary alternative therapies. However, because some interventions may cause side effects, more effective pain-relieving measures need to be identified. This study using a non-equivalent group design, evaluated the effects of near-infrared rays on dysmenorrhea among Korean women. The experimental group wore a near-infrared ray abdominal belt for the duration of one menstrual cycle until the end of the menstrual period, while the control group used hot packs. The level of menstrual pain, menstrual pain duration, and pain medicine use were measured. The menstrual pain, average menstrual pain duration, and use of analgesics were reduced in the near-infrared rays group. The results of this study indicate that the near-infrared ray LED belt was effective in reducing menstrual pain, menstrual pain duration compared to the use of analgesics in Korean women with dysmenorrhea. Therefore, near-infrared rays may be used to relieve menstrual pain and improve the quality of life of women with dysmenorrhea in Korea. © 2017 John Wiley & Sons Australia, Ltd.

  3. A photometric study of the hot exoplanet WASP-19b

    Science.gov (United States)

    Lendl, M.; Gillon, M.; Queloz, D.; Alonso, R.; Fumel, A.; Jehin, E.; Naef, D.

    2013-04-01

    Context. The sample of hot Jupiters that have been studied in great detail is still growing. In particular, when the planet transits its host star, it is possible to measure the planetary radius and the planet mass (with radial velocity data). For the study of planetary atmospheres, it is essential to obtain transit and occultation measurements at multiple wavelengths. Aims: We aim to characterize the transiting hot Jupiter WASP-19b by deriving accurate and precise planetary parameters from a dedicated observing campaign of transits and occultations. Methods: We have obtained a total of 14 transit lightcurves in the r'-Gunn, I-Cousins, z'-Gunn, and I + z' filters and 10 occultation lightcurves in z'-Gunn using EulerCam on the Euler-Swiss telescope and TRAPPIST. We also obtained one lightcurve through the narrow-band NB1190 filter of HAWK-I on the VLT measuring an occultation at 1.19 μm. We performed a global MCMC analysis of all new data, together with some archive data in order to refine the planetary parameters and to measure the occultation depths in z'-band and at 1.19 μm. Results: We measure a planetary radius of Rp = 1.376 ± 0.046 RJ, a planetary mass of Mp = 1.165 ± 0.068 MJ, and find a very low eccentricity of e = 0.0077-0.0032+0.0068, compatible with a circular orbit. We have detected the z'-band occultation at 3σ significance and measure it to be δFocc,z' = 352 ± 116 ppm, more than a factor of 2 smaller than previously published. The occultation at 1.19 μm is only marginally constrained at δFocc,NB1190 = 1711-726+745 ppm. Conclusions: We show that the detection of occultations in the visible range is within reach, even for 1 m class telescopes if a considerable number of individual events are observed. Our results suggest an oxygen-dominated atmosphere of WASP-19b, making the planet an interesting test case for oxygen-rich planets without temperature inversion. Based on photometric observations made with HAWK-I on the ESO VLT/UT4 (Prog. ID 084.C

  4. [Effects of spectral pretreatment on the prediction of crystallinity of wood cellulose using near infrared spectroscopy].

    Science.gov (United States)

    Jiang, Ze-hui; Fei, Ben-hua; Yang, Zhong

    2007-03-01

    The crystallinity of wood has an important effect on the physical, mechanical and chemical properties of cellulose fibers. The aims of this study were to investigate the ability of near infrared spectroscopy (NIR) to predict the crystallinity of wood cellulose and the effect of spectral pretreatment on the prediction of crystallinity in wood cellulose using near infrared spectroscopy (NIR). Near infrared diffuse reflectance spectra were collected from wood powder with a fiber-optical probe and the crystallinity of wood was determined by X-ray diffractometer (XRD) in this experiment. The results showed that near infrared spectroscopy coupled with partial least square (PLS) regression could be correlated with the crystallinity of plantation wood, and the ability of NIR prediction based on original spectra was better than that based on the first derivative or second derivative treated spectra. There was a significant correlation between NIR spectra and XRD determined crystallinity with a correlationcoefficient of 0.950 and a low RMSEP. Near infrared spectroscopy coupled with multivariate data anlaysis has proven to be an accurate and fast method for rapid prediction of wood crystallinity.

  5. Brain plasticity and rehabilitation by using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Balconi Michela

    2016-04-01

    Full Text Available The present review elucidated the use of optical imaging technique (Near-Infrared Spectroscopy, NIRS to better explain the brain plasticity for learning mechanisms, rehabilitation and post-traumatic brain recovery. Some recent applications were discussed, with specific focus on the usability of integrated measures (such as electroencephalography, EEG-NIRS; Transcranial Magnet Stimulation, TMS-NIRS to study plasticity and its dynamic effects. NIRS-Neurofeedback and NIRS-BCI (Brain Computer Interface were also explored as possible tools to produce a specific long-lasting learning in relationship with a specific cognitive domain. Finally a proficient domain where NIRS was found to be useful to test neuroplasticity is the interpersonal brain-to-brain coupling, termed “hyperscanning”, a new emerging paradigm in neuroscience which measures brain activity from two or more people simultaneously.

  6. Anions for Near-Infrared Selective Organic Salt Photovoltaics.

    Science.gov (United States)

    Traverse, Christopher J; Young, Margaret; Suddard-Bangsund, John; Patrick, Tyler; Bates, Matthew; Chen, Pei; Wingate, Brian; Lunt, Sophia Y; Anctil, Annick; Lunt, Richard R

    2017-11-27

    Organic molecular salts are an emerging and highly tunable class of materials for organic and transparent photovoltaics. In this work, we demonstrate novel phenyl borate and carborane-based anions paired with a near-infrared (NIR)-selective heptamethine cation. We further explore the effects of anion structures and functional groups on both device performance and physical properties. Changing the functional groups on the anion significantly alters the open circuit voltage and yields a clear dependence on electron withdrawing groups. Anion exchange is also shown to selectively alter the solubility and film surface energy of the resulting molecular salt, enabling the potential fabrication of solution-deposited cascade or multi-junction devices from orthogonal solvents. This study further expands the catalog and properties of organic salts for inexpensive, and stable NIR-selective molecular salt photovoltaics.

  7. Dog behavior but not frontal brain reaction changes in repeated positive interactions with a human: a non-invasive pilot study using functional near-infrared spectroscopy (fNIRS).

    Science.gov (United States)

    Gygax, Lorenz; Reefmann, Nadine; Pilheden, Therese; Scholkmann, Felix; Keeling, Linda

    2015-03-15

    This study was conducted as a pilot test case to investigate potential behavioral and neural indicators of positive emotional states in dogs. These states were induced by subjecting each dog to three types of human interactions (verbal contact only, physical contact only, or both). Each stimulus was repeated 10 times, at 1-min intervals, alternating with a baseline phase (no interaction) while behavior was observed and frontal cortical brain activation was recorded by functional near-infrared spectroscopy (fNIRS). Dogs reacted similarly to all 3 stimuli with a consistent hemodynamic pattern. Regarding behavior, dogs lay on their back, explored the handler and performed lip-licking more during exposure to the stimuli than during the baseline. There was only weak evidence that the dogs' behavioral reactions differed between the 3 stimuli, but their behavior changed markedly with repetition. For example, the proportion of time a dog spent lying with its head resting on the floor increased, whereas the probability of exploring the handler and the proportion of time spent lip-licking decreased over time. In contrast, the hemodynamic reaction did not change with repetition. The dogs' reactions are consistent with the stimuli being positive. The contrast between the changes in behavior with repetition and the consistency of the hemodynamic frontal cortical reaction would be in keeping with the assumption that there was a decrease in arousal as dogs habituated to the repetitions, reflected by their change in behavior, whereas because the valence of the stimuli remains constant, there was no change in the frontal hemodynamic reaction. Copyright © 2014 Elsevier B.V. All rights reserved.

  8. Photometrics Laboratory

    Data.gov (United States)

    Federal Laboratory Consortium — Purpose:The Photometrics Laboratory provides the capability to measure, analyze and characterize radiometric and photometric properties of light sources and filters,...

  9. Large Magellanic Cloud Near-infrared Synoptic Survey. V. Period–Luminosity Relations of Miras

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenlong; Macri, Lucas M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); He, Shiyuan; Huang, Jianhua Z. [Department of Statistics, Texas A and M University, College Station, TX 77843 (United States); Kanbur, Shashi M. [Department of Physics, The State University of New York at Oswego, Oswego, NY 13126 (United States); Ngeow, Chow-Choong, E-mail: lmacri@tamu.edu [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China)

    2017-10-01

    We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHK{sub s}. We use densely sampled I -band observations from the OGLE project to generate template light curves in the near-infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period–Luminosity relations for oxygen-rich Miras with a scatter as low as 0.12 mag at K{sub s}. We study the Period–Luminosity–Color relations and the color excesses of carbon-rich Miras, which show evidence for a substantially different reddening law.

  10. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Pellicer, Adelina; Alderliesten, Thomas

    2015-01-01

    OBJECTIVE: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. DESIGN: Phase II randomised, single blinded, parallel clinical trial. SETTING: Eight tertiary neonatal intensive care unit...

  11. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    DEFF Research Database (Denmark)

    Hyttel-Sørensen, Simon; Pellicer, Adelina; Alderliesten, Thomas

    2015-01-01

    OBJECTIVE: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. DESIGN: Phase II randomised, single blinded, parallel clinical trial. SETTING: Eight tertiary neonatal intensive care units...

  12. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  13. Near-infrared radiation and scattering properties of coal fly ash particles cloud

    Energy Technology Data Exchange (ETDEWEB)

    Itaya, Y.; Nishio, N.; Hatano, S.; Kobayashi, N.; Kobayashi, J.; Mori, S. [Nagoya University, Aichi (Japan). Dept. of Chemical Engineering

    2006-07-15

    Radiation in near infrared region dominates the heat transfer in high temperature processes including particle dispersion such as coal gasification and pulverized coal combustion. The thermal radiation properties in near-infrared region of 0.8-2.2 mu m were studied for a cloud of coal ash particles. The monochromatic absorption as well as the directional behavior of scattering for the sample particles dispersed in liquid paraffin wax were measured spectroscopically at an atmospheric state by using FT-IR. The effect of the particles number density in the cloud and the thickness of the dispersion layer on the spectrum of absorption could be expressed in the property of the extinction efficiency. The spectral distribution of the extinction efficiency is dependent of wavelength in the near-infrared region. The contribution of scattering by ash particles can be ignored, or the forward scattering dominates the particle scattering in the radiative heat transfer in the cloud.

  14. Near-infrared reflectance analysis by Gauss-Jordan linear algebra

    International Nuclear Information System (INIS)

    Honigs, D.E.; Freelin, J.M.; Hieftje, G.M.; Hirschfeld, T.B.

    1983-01-01

    Near-infrared reflectance analysis is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored

  15. Low-cost near-infrared imaging device for inspection of historical manuscripts

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2004-01-01

    Near-infrared (NIR) or sometimes called black light is a waveform beyond visible light and it is not detectable by human eyes. However electronic sensors such as the type used in digital cameras are able to detect signals in the infrared band. To avoid distortion in the pictures obtained near-infrared is blocked by optical filters inserted in digital cameras. By carrying out minor modification allowing near-infrared signal to be imaged while blocking the visible signal, the camera is turned into a low-cost NIR imaging instrument. NIR imaging can be a useful tool in historical manuscript study or restoration. A few applications have been successfully demonstrated in laboratory experiment using the instrument available in MINT. However, due to unavailability of historical items, easily available texts and paintings are used in the demonstrations. This paper reports achievements of early work on the application of digital camera in the detection of damaged prints or writings. (Author)

  16. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  17. Experimental demonstration of graphene plasmons working close to the near-infrared window

    DEFF Research Database (Denmark)

    Wang, Zhongli; Li, Tao; Almdal, Kristoffer

    2016-01-01

    Due to strong mode confinement, long propagation distance, and unique tunability, graphene plasmons have been widely explored in the mid-infrared and terahertz windows. However, it remains a big challenge to push graphene plasmons to shorter wavelengths to integrate graphene plasmon concepts...... with existing mature technologies in the near-infrared region. We investigate localized graphene plasmons supported by graphene nanodisks and experimentally demonstrate graphene plasmon working at 2 μm with the aid of a fully scalable block copolymer self-assembly method. Our results show a promising way...... to promote graphene plasmons for both fundamental studies and potential applications in the near-infrared window....

  18. Avoiding Arterial Hypotension in Preterm Neonates (AHIP—A Single Center Randomised Controlled Study Investigating Simultaneous Near Infrared Spectroscopy Measurements of Cerebral and Peripheral Regional Tissue Oxygenation and Dedicated Interventions

    Directory of Open Access Journals (Sweden)

    Gerhard Pichler

    2018-02-01

    Full Text Available IntroductionUp to 50% of preterm infants admitted to intensive care units require cardiocirculatory support. The aim of the present study was to assess whether simultaneous monitoring of cerebral tissue oxygenation index (cTOI and peripheral tissue oxygenation index (pTOI using near-infrared spectroscopy (NIRS in combination with dedicated intervention guidelines may help avoiding arterial hypotension and catecholamine administration in preterm neonates.Study designPreterm neonates <37 weeks of gestation were included in a single center randomized controlled study. Blood pressure was measured non-invasively or invasively. In the NIRS group, simultaneous cTOI and pTOI monitoring was used starting within 6 h after birth for 24 h to calculate changes in cTOI/pTOI ratio over time. Depending on these changes, interventions including echocardiography, administration of volume or patent ductus arteriosus treatment were performed. In the control group, only routine monitoring and treatment were performed and NIRS signals were not visible. The primary outcome was burden of hypotension within 48 h after initiation of NIRS monitoring.Results49 preterm neonates were included in each group: NIRS group 33.1 (32.0–34.0 (median: 25–75 centile weeks of gestation and control group 33.4 (32.3–34.3 weeks of gestation. In the NIRS group, echocardiography was performed in 17 preterm neonates due to NIRS measurements, whereby six neonates received further treatment. Percentage of neonates with any hypotensive episode during the 48-h observational period was 32.6% in the NIRS group and 44.9% in the control group (p = 0.214. Burden of hypotension (i.e., %mmHg of mean arterial pressure < gestational age was 0.0 (0.0–2.1 mmHg h in the NIRS group and 0.4 (0.0–3.3 mmHg h in the control group (p = 0.313, with observed burden of hypotension being low in both groups. No severe adverse reactions were observed.ConclusionIn preterm neonates using

  19. Avoiding Arterial Hypotension in Preterm Neonates (AHIP)-A Single Center Randomised Controlled Study Investigating Simultaneous Near Infrared Spectroscopy Measurements of Cerebral and Peripheral Regional Tissue Oxygenation and Dedicated Interventions.

    Science.gov (United States)

    Pichler, Gerhard; Höller, Nina; Baik-Schneditz, Nariae; Schwaberger, Bernhard; Mileder, Lukas; Stadler, Jasmin; Avian, Alexander; Pansy, Jasmin; Urlesberger, Berndt

    2018-01-01

    Up to 50% of preterm infants admitted to intensive care units require cardiocirculatory support. The aim of the present study was to assess whether simultaneous monitoring of cerebral tissue oxygenation index (cTOI) and peripheral tissue oxygenation index (pTOI) using near-infrared spectroscopy (NIRS) in combination with dedicated intervention guidelines may help avoiding arterial hypotension and catecholamine administration in preterm neonates. Preterm neonates controlled study. Blood pressure was measured non-invasively or invasively. In the NIRS group, simultaneous cTOI and pTOI monitoring was used starting within 6 h after birth for 24 h to calculate changes in cTOI/pTOI ratio over time. Depending on these changes, interventions including echocardiography, administration of volume or patent ductus arteriosus treatment were performed. In the control group, only routine monitoring and treatment were performed and NIRS signals were not visible. The primary outcome was burden of hypotension within 48 h after initiation of NIRS monitoring. 49 preterm neonates were included in each group: NIRS group 33.1 (32.0-34.0) (median: 25-75 centile) weeks of gestation and control group 33.4 (32.3-34.3) weeks of gestation. In the NIRS group, echocardiography was performed in 17 preterm neonates due to NIRS measurements, whereby six neonates received further treatment. Percentage of neonates with any hypotensive episode during the 48-h observational period was 32.6% in the NIRS group and 44.9% in the control group ( p  = 0.214). Burden of hypotension (i.e., %mmHg of mean arterial pressure control group ( p  = 0.313), with observed burden of hypotension being low in both groups. No severe adverse reactions were observed. In preterm neonates using simultaneous peripheral and cerebral NIRS measurements for early detection of centralization followed by predefined interventions led to a non-significant reduction in burden of arterial hypotension. www

  20. [Rapid determination of fatty acids in soybean oils by transmission reflection-near infrared spectroscopy].

    Science.gov (United States)

    Song, Tao; Zhang, Feng-ping; Liu, Yao-min; Wu, Zong-wen; Suo, You-rui

    2012-08-01

    In the present research, a novel method was established for determination of five fatty acids in soybean oil by transmission reflection-near infrared spectroscopy. The optimum conditions of mathematics model of five components (C16:0, C18:0, C18:1, C18:2 and C18:3) were studied, including the sample set selection, chemical value analysis, the detection methods and condition. Chemical value was analyzed by gas chromatography. One hundred fifty eight samples were selected, 138 for modeling set, 10 for testing set and 10 for unknown sample set. All samples were placed in sample pools and scanned by transmission reflection-near infrared spectrum after sonicleaning for 10 minute. The 1100-2500 nm spectral region was analyzed. The acquisition interval was 2 nm. Modified partial least square method was chosen for calibration mode creating. Result demonstrated that the 1-VR of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.8839, 0.5830, 0.9001, 0.9776 and 0.9596, respectively. And the SECV of five fatty acids between the reference value of the modeling sample set and the near infrared spectrum predictive value were 0.42, 0.29, 0.83, 0.46 and 0.21, respectively. The standard error of the calibration (SECV) of five fatty acids between the reference value of testing sample set and the near infrared spectrum predictive value were 0.891, 0.790, 0.900, 0.976 and 0.942, respectively. It was proved that the near infrared spectrum predictive value was linear with chemical value and the mathematical model established for fatty acids of soybean oil was feasible. For validation, 10 unknown samples were selected for analysis by near infrared spectrum. The result demonstrated that the relative standard deviation between predict value and chemical value was less than 5.50%. That was to say that transmission reflection-near infrared spectroscopy had a good veracity in analysis of fatty acids of soybean oil.

  1. Characterization of the functional near-infrared spectroscopy response to nociception in a pediatric population.

    Science.gov (United States)

    Olbrecht, Vanessa A; Jiang, Yifei; Viola, Luigi; Walter, Charlotte M; Liu, Hanli; Kurth, Charles D

    2018-02-01

    Near-infrared spectroscopy can interrogate functional optical signal changes in regional brain oxygenation and blood volume to nociception analogous to functional magnetic resonance imaging. This exploratory study aimed to characterize the near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin from the brain in response to nociceptive stimulation of varying intensity and duration, and after analgesic and neuromuscular paralytic in a pediatric population. We enrolled children 6 months-21 years during propofol sedation before surgery. The near-infrared spectroscopy sensor was placed on the forehead and nociception was produced from an electrical current applied to the wrist. We determined the near-infrared spectroscopy signal response to increasing current intensity and duration, and after fentanyl, sevoflurane, and neuromuscular paralytic. Heart rate and arm movement during electrical stimulation was also recorded. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin were calculated as optical density*time (area under curve). During electrical stimulation, nociception was evident: tachycardia and arm withdrawal was observed that disappeared after fentanyl and sevoflurane, whereas after paralytic, tachycardia persisted while arm withdrawal disappeared. The near-infrared spectroscopy signals for oxy-, deoxy-, and total hemoglobin increased during stimulation and decreased after stimulation; the areas under the curves were greater for stimulations 30 mA vs 15 mA (13.9 [5.6-22.2], P = .0021; 5.6 [0.8-10.5], P = .0254, and 19.8 [10.5-29.1], P = .0002 for HbO 2 , Hb, and Hb T , respectively), 50 Hz vs 1 Hz (17.2 [5.8-28.6], P = .0046; 7.5 [0.7-14.3], P = .0314, and 21.9 [4.2-39.6], P = .0177 for HbO 2 , Hb, and Hb T , respectively) and 45 seconds vs 15 seconds (16.3 [3.4-29.2], P = .0188 and 22.0 [7.5-36.5], P = .0075 for HbO 2 and Hb T , respectively); the areas under the curves were attenuated by

  2. Biliary tract visualization using near-infrared imaging with indocyanine green during laparoscopic cholecystectomy : results of a systematic review

    NARCIS (Netherlands)

    Vlek, S L; van Dam, D A; Rubinstein, S M; Lange-de Klerk, E.S.M.; Schoonmade, L J; Tuynman, J.B.; Meijerink, W.J.H.J.; Ankersmit, M.

    2016-01-01

    BACKGROUND: Near-infrared imaging with indocyanine green (ICG) has been extensively investigated during laparoscopic cholecystectomy (LC). However, methods vary between studies, especially regarding patient selection, dosage and timing. The aim of this systematic review was to evaluate the potential

  3. Biliary tract visualization using near-infrared imaging with indocyanine green during laparoscopic cholecystectomy: results of a systematic review

    NARCIS (Netherlands)

    Vlek, S.L.; Dam, D.A. van; Rubinstein, S.M.; Lange-de Klerk, E.S. de; Schoonmade, L.J.; Tuynman, J.B.; Meijerink, W.J.H.J.; Ankersmit, M.

    2017-01-01

    BACKGROUND: Near-infrared imaging with indocyanine green (ICG) has been extensively investigated during laparoscopic cholecystectomy (LC). However, methods vary between studies, especially regarding patient selection, dosage and timing. The aim of this systematic review was to evaluate the potential

  4. Visualizing Veins With Near-Infrared Light to Facilitate Blood Withdrawal in Children

    NARCIS (Netherlands)

    Cuper, Natascha J.; Verdaasdonk, Rudolf M.; de Roode, Rowland; de Vooght, Karen M. K.; Viergever, Max A.; Kalkman, Cor J.; de Graaff, Jurgen C.

    Introduction. This study aims to evaluate for the first time the value of visualizing veins by a prototype of a near-infrared (NIR) vascular imaging system for venipuncture in children. Methods. An observational feasibility study of venipunctures in children (0-6 years) attending the clinical

  5. Process analytical chemistry in the distillation industry using near-infrared spectroscopy

    NARCIS (Netherlands)

    vandenBerg, F. W. J.; vanOsenbruggen, W. A.; Smilde, A. K.

    1997-01-01

    Process analytical chemistry is a subdiscipline of analytical chemistry devoted to chemical measurements on processes. This paper reports the results of a feasibility study on ethanol determination during the production of alcoholic beverages. In this study near-infrared spectroscopy will be used to

  6. Intraoperative near-infrared autofluorescence imaging of parathyroid glands.

    Science.gov (United States)

    Ladurner, Roland; Sommerey, Sandra; Arabi, Nora Al; Hallfeldt, Klaus K J; Stepp, Herbert; Gallwas, Julia K S

    2017-08-01

    To identify parathyroid glands intraoperatively by exposing their autofluorescence using near-infrared light. Fluorescence imaging was carried out during minimally invasive and open parathyroid and thyroid surgery. After identification, the parathyroid glands as well as the surrounding tissue were exposed to near-infrared (NIR) light with a wavelength of 690-770 nm using a modified Karl Storz near-infrared/indocyanine green (NIR/ICG) endoscopic system. Parathyroid tissue was expected to show near-infrared autofluorescence, captured in the blue channel of the camera. Whenever possible the visual identification of parathyroid tissue was confirmed histologically. In preliminary investigations, using the original NIR/ICG endoscopic system we noticed considerable interference of light in the blue channel overlying the autofluorescence. Therefore, we modified the light source by interposing additional filters. In a second series, we investigated 35 parathyroid glands from 25 patients. Twenty-seven glands were identified correctly based on NIR autofluorescence. Regarding the extent of autofluorescence, there were no noticeable differences between parathyroid adenomas, hyperplasia and normal parathyroid glands. In contrast, thyroid tissue, lymph nodes and adipose tissue revealed no substantial autofluorescence. Parathyroid tissue is characterized by showing autofluorescence in the near-infrared spectrum. This effect can be used to distinguish parathyroid glands from other cervical tissue entities.

  7. Potential use of visible and near-infrared spectroscopy for pine ...

    African Journals Online (AJOL)

    The correct identification of pine species is necessary for proper application of wood in forest-based industries, since the quality of each species' wood depends on factors intrinsic to the material. The aim of this study was to evaluate the potential use of near-infrared and visible spectroscopy in the discrimination of pine ...

  8. Abdominal near-infrared spectroscopy measurements are lower in preterm infants at risk for necrotizing enterocolitis

    Science.gov (United States)

    Near-infrared spectroscopy is a noninvasive method of measuring local tissue oxygenation (StO[2]). Abdominal StO[2] measurements in preterm piglets are directly correlated with changes in intestinal blood flow and markedly reduced by necrotizing enterocolitis. The objectives of this study were to us...

  9. Functional Near-Infrared Spectroscopy for the Assessment of Speech Related Tasks

    Science.gov (United States)

    Dieler, A. C.; Tupak, S. V.; Fallgatter, A. J.

    2012-01-01

    Over the past years functional near-infrared spectroscopy (fNIRS) has substantially contributed to the understanding of language and its neural correlates. In contrast to other imaging techniques, fNIRS is well suited to study language function in healthy and psychiatric populations due to its cheap and easy application in a quiet and natural…

  10. Recent advances in the use of non-destructive near infrared spectroscopy on intact olive fruits

    Science.gov (United States)

    The objective of this review is to illustrate the state of the art in the use of non-destructive near infrared (NIR) spectroscopy for quality evaluation of intact fruit in the olive industry. First, the most recent studies regarding the application of non-destructive NIR spectroscopy methods to asse...

  11. Development of near-infrared spectroscopy calibrations to measure quality characteristics in intact Brassicaceae germplasm

    Science.gov (United States)

    Determining seed quality parameters is an integral part of cultivar improvement and germplasm screening. However, quality tests are often time cnsuming, seed destructive, and can require large seed samples. This study describes the development of near-infrared spectroscopy (NIRS) calibrations to mea...

  12. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit

    Science.gov (United States)

    A rapid, robust, unbiased and inexpensive discriminant method capable of classifying olive fruit (Olea europaea L.) on the basis of the presence of hailstorm damage is economically important to the olive oil milling industry. Thus, in the present study, the feasibility of Near-Infrared (NIR) spectro...

  13. MOONS: a multi-object optical and near-infrared spectrograph for the VLT

    NARCIS (Netherlands)

    Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Evans, C.; Kaper, L.; Oliva, Ernesto; Vanzi, Leonardo; Abreu, Manuel; Atad-Ettedgui, Eli; Babusiaux, Carine; Bauer, Franz E.; Best, Philip; Bezawada, Naidu; Bryson, Ian R.; Cabral, Alexandre; Caputi, Karina; Centrone, Mauro; Chemla, Fanny; Cimatti, Andrea; Cioni, Maria-Rosa; Clementini, Gisella; Coelho, João.; Daddi, Emanuele; Dunlop, James S.; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fynbo, Johan; Garilli, Bianca; Glauser, Adrian M.; Guinouard, Isabelle; Hammer, Jean-François; Hastings, Peter R.; Hess, Hans-Joachim; Ivison, Rob J.; Jagourel, Pascal; Jarvis, Matt; Kauffman, G.; Lawrence, A.; Lee, D.; Li Causi, G.; Lilly, S.; Lorenzetti, D.; Maiolino, R.; Mannucci, F.; McLure, R.; Minniti, D.; Montgomery, D.; Muschielok, B.; Nandra, K.; Navarro, R.; Norberg, P.; Origlia, L.; Padilla, N.; Peacock, J.; Pedicini, F.; Pentericci, L.; Pragt, J.; Puech, M.; Randich, S.; Renzini, A.; Ryde, N.; Rodrigues, M.; Royer, F.; Saglia, R.; Sánchez, A.; Schnetler, H.; Sobral, D.; Speziali, R.; Todd, S.; Tolstoy, E.; Torres, M.; Venema, L.; Vitali, F.; Wegner, M.; Wells, M.; Wild, V.; Wright, G.

    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol field offered by

  14. MOONS: a multi-object optical and near-infrared spectrograph for the VLT

    NARCIS (Netherlands)

    Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Evans, C.; Kaper, L.; Oliva, E.; Vanzi, L.; Abreu, M.; Atad-Ettedgui, E.; Babusiaux, C.; Bauer, F.E.; Best, P.; Bezawada, N.; Bryson, I.R.; Cabral, A.; Caputi, K.; Centrone, M.; Chemla, F.; Cimatti, A.; Cioni, M.R.; Clementini, G.; Coelho, J.; Daddi, E.; Dunlop, J.S.; Feltzing, S.; Ferguson, A.; Flores, H.; Fontana, A.; Fynbo, J.; Garilli, B.; Glauser, A.M.; Guinouard, I.; Hammer, J.-F.; Hastings, P.R.; Hess, H.-J.; Ivison, R.J.; Jagourel, P.; Jarvis, M.; Kauffman, G.; Lawrence, A.; Lee, D.; Li Causi, G.; Lilly, S.; Lorenzetti, D.; Maiolino, R.; Mannucci, F.; McLure, R.; Minniti, D.; Montgomery, D.; Muschielok, B.; Nandra, K.; Navarro, R.; Norberg, P.; Origlia, L.; Padilla, N.; Peacock, J.; Pedicini, F.; Pentericci, L.; Pragt, J.; Puech, M.; Randich, S.; Renzini, A.; Ryde, N.; Rodrigues, M.; Royer, F.; Saglia, R.; Sánchez, A.; Schnetler, H.; Sobral, D.; Speziali, R.; Todd, S.; Tolstoy, E.; Torres, M.; Venema, L.; Vitali, F.; Wegner, M.; Wells, M.; Wild, V.; Wright, G.

    2012-01-01

    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol field offered by

  15. Targeted and Untargeted Detection of Skim Milk Powder Adulteration by Near-Infrared Spectroscopy

    NARCIS (Netherlands)

    Capuano, Edoardo; Boerrigter-Eenling, Rita; Koot, Alex; Ruth, van S.M.

    2015-01-01

    In the present study, near-infrared spectroscopy (NIRS) was explored as a fast and reliable screening method for the detection of adulteration of skim milk powder (SMP). Sixty genuine SMP were adulterated with acid whey (1–25 % w/w), starch (2 and 5 %) and maltodextrin (2 and 5 %) for a total of

  16. Regional calibration models for predicting loblolly pine tracheid properties using near-infrared spectroscopy

    Science.gov (United States)

    Mohamad Nabavi; Joseph Dahlen; Laurence Schimleck; Thomas L. Eberhardt; Cristian Montes

    2018-01-01

    This study developed regional calibration models for the prediction of loblolly pine (Pinus taeda) tracheid properties using near-infrared (NIR) spectroscopy. A total of 1842 pith-to-bark radial strips, aged 19–31 years, were acquired from 268 trees from 109 stands across the southeastern USA. Diffuse reflectance NIR spectra were collected at 10-mm...

  17. Fast determination of the resin and rubber content in Parthenium argentatum biomass using near infrared spectroscopy

    NARCIS (Netherlands)

    Suchat, S.; Pioch, D.; Palu, S.; Tardan, E.; Loo, van E.N.; Davrieux, F.

    2013-01-01

    Guayule (Parthenium argentatum), a plant native of semi-arid regions of northern Mexico and southern Texas, United States, is an under-used source of hypoallergenic latex, a solution to the serious latex allergy IgE problem worldwide. This study aimed to develop near infrared spectroscopy (NIRS)

  18. Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans

    DEFF Research Database (Denmark)

    Rostrup, Egill; Law, Ian; Pott, Frank

    2002-01-01

    Near-infrared spectroscopy (NIRS) enables continuous non-invasive quantification of blood and tissue oxygenation, and may be useful for quantification of cerebral blood volume (CBV) changes. In this study, changes in cerebral oxy- and deoxyhemoglobin were compared to corresponding changes in CBF ...

  19. DISCOVERING THE MISSING 2.2 < z < 3 QUASARS BY COMBINING OPTICAL VARIABILITY AND OPTICAL/NEAR-INFRARED COLORS

    International Nuclear Information System (INIS)

    Wu Xuebing; Wang Ran; Bian Fuyan; Jiang Linhua; Fan Xiaohui; Schmidt, Kasper B.

    2011-01-01

    The identification of quasars in the redshift range 2.2 < z < 3 is known to be very inefficient because the optical colors of such quasars are indistinguishable from those of stars. Recent studies have proposed using optical variability or near-infrared (near-IR) colors to improve the identification of the missing quasars in this redshift range. Here we present a case study combining both methods. We select a sample of 70 quasar candidates from variables in Sloan Digital Sky Survey (SDSS) Stripe 82, which are non-ultraviolet excess sources and have UKIDSS near-IR public data. They are clearly separated into two parts on the Y - K/g - z color-color diagram, and 59 of them meet or lie close to a newly proposed Y - K/g - z selection criterion for z < 4 quasars. Of these 59 sources, 44 were previously identified as quasars in SDSS DR7, and 35 of them are quasars at 2.2 < z < 3. We present spectroscopic observations of 14 of 15 remaining quasar candidates using the Bok 2.3 m telescope and the MMT 6.5 m telescope, and successfully identify all of them as new quasars at z = 2.36-2.88. We also apply this method to a sample of 643 variable quasar candidates with SDSS-UKIDSS nine-band photometric data selected from 1875 new quasar candidates in SDSS Stripe 82 given by Butler and Bloom based on the time-series selections, and find that 188 of them are probably new quasars with photometric redshifts at 2.2 < z < 3. Our results indicate that the combination of optical variability and optical/near-IR colors is probably the most efficient way to find 2.2 < z < 3 quasars and is very helpful for constructing a complete quasar sample. We discuss its implications for ongoing and upcoming large optical and near-IR sky surveys.

  20. Correction of moisture effects on near infrared calibration for the analysis of phenol content in eucalyptus wood extracts

    OpenAIRE

    Giordanengo, T.; Charpentier, J.P.; Roger, J.M.; Roussel, S.; Brancheriau, L.; Chaix, G.; Nom_exemple, Baillères H

    2008-01-01

    Methods based on near infrared spectroscopy used to assess wood properties are susceptible to variations in physical parameters (temperature, grain size, etc). As wood is a hygroscopically sensitive material, we studied the effects of moisure on near infrared absorbance and calibration to accurately determine the application potential of this technique under routine. A collection of Eucalyptus urophylla x E. grandis hybrid wood pieces were analysed to obtain reference calibration of polyp...

  1. Intraoperative near-infrared fluorescent imaging during robotic operations.

    Science.gov (United States)

    Macedo, Antonio Luiz de Vasconcellos; Schraibman, Vladimir

    2016-01-01

    The intraoperative identification of certain anatomical structures because they are small or visually occult may be challenging. The development of minimally invasive surgery brought additional difficulties to identify these structures due to the lack of complete tactile sensitivity. A number of different forms of intraoperative mapping have been tried. Recently, the near-infrared fluorescence imaging technology with indocyanine green has been added to robotic platforms. In addition, this technology has been tested in several types of operations, and has advantages such as safety, low cost and good results. Disadvantages are linked to contrast distribution in certain clinical scenarios. The intraoperative near-infrared fluorescent imaging is new and promising addition to robotic surgery. Several reports show the utility of this technology in several different procedures. The ideal dose, time and site for dye injection are not well defined. No high quality evidence-based comparative studies and long-term follow-up outcomes have been published so far. Initial results, however, are good and safe. RESUMO A identificação intraoperatória de certas estruturas anatômicas, por seu tamanho ou por elas serem ocultas à visão, pode ser desafiadora. O desenvolvimento da cirurgia minimamente invasiva trouxe dificuldades adicionais, pela falta da sensibilidade tátil completa. Diversas formas de detecção intraoperatória destas estruturas têm sido tentadas. Recentemente, a tecnologia de fluorescência infravermelha com verde de indocianina foi associada às plataformas robóticas. Além disso, essa tecnologia tem sido testada em uma variedade de cirurgias, e suas vantagens parecem estar ligadas a baixo custo, segurança e bons resultados. As desvantagens estão associadas à má distribuição do contraste em determinados cenários. A imagem intraoperatória por fluorescência infravermelha é uma nova e promissora adição à cirurgia robótica. Diversas séries mostram

  2. Modelling of nectarine drying under near infrared - Vacuum conditions.

    Science.gov (United States)

    Alaei, Behnam; Chayjan, Reza Amiri

    2015-01-01

    Drying of nectarine slices was performed to determine the thermal and physical properties in order to reduce product deterioration due to chemical reactions, facilitate storage and lower transportation costs. Because nectarine slices are sensitive to heat with long drying period, the selection of a suitable drying approach is a challenging task. Infrared-vacuum drying can be used as an appropriate method for susceptible materials with high moisture content such as nectarine slices. Modelling of nectarine slices drying was carried out in a thin layer near infraredvacuum conditions. Drying of the samples was implemented at the absolute pressures of 20, 40 and 60 kPa and drying temperatures of 50, 60 and 70°C. Drying behaviour of nectarine slices, as well as the effect of drying conditions on moisture loss trend, drying rate, effective diffusion coefficient, activation energy, shrinkage, colour and energy consumption of nectarine slices, dried in near infrared-vacuum dryer are discussed in this study. Six mathematical models were used to predict the moisture ratio of the samples in thin layer drying. The Midilli model had supremacy in prediction of nectarine slices drying behaviour. The maximum drying rates of the samples were between 0.014-0.047 gwater/gdry material·min. Effective moisture diffusivity of the samples was estimated in the ranges of 2.46·10-10 to 6.48·10-10 m2/s. Activation energy were computed between 31.28 and 35.23 kJ/mol. Minimum shrinkage (48.4%) and total colour difference (15.1) were achieved at temperature of 50°C and absolute pressure of 20 kPa. Energy consumption of the tests was estimated in the ranges of 0.129 to 0.247 kWh. Effective moisture diffusivity was increased with decrease of vacuum pressure and increase of drying temperature but effect of drying temperature on effective moisture diffusivity of nectarine slices was more than vacuum pressure. Activation energy was decreased with decrease in absolute pressure. Total colour

  3. Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Simon Juric

    2014-01-01

    Full Text Available Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature. The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.

  4. Near-infrared spectroscopy can reveal increases in brain activity related to animal-assisted therapy.

    Science.gov (United States)

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2017-08-01

    [Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19-21 years) of the Faculty of Agriculture, Saga University. Participants were shown a picture of a Tokara goat or shack (control) while prefrontal cortical oxygenated haemoglobin levels (representing neural activity) were measured by near-infrared spectroscopy. [Results] The prefrontal cortical near-infrared spectroscopy signal was significantly higher during viewing of the animal picture than during a rest condition or during viewing of the control picture. [Conclusion] Our results suggest that near-infrared spectroscopy can be used to objectively identify brain activity changes during human mentation regarding animals; furthermore, these preliminary results suggest the efficacy of animal-assisted therapy could be related to increased activation of the prefrontal cortex.

  5. High Contrast In vitro and In vivo Photoluminescence Bioimaging Using Near Infrared to Near Infrared Up-Conversion in Tm3+ and Yb3+ Doped Fluoride Nanophosphors

    Science.gov (United States)

    Nyk, Marcin; Kumar, Rajiv; Ohulchanskyy, Tymish Y.; Bergey, Earl J.; Prasad, Paras N.

    2012-01-01

    A new approach for photoluminescence imaging in vitro and in vivo has been shown, utilizing near infrared to near infrared (NIR-to-NIR) up-conversion in nanophosphors. This NIR-to-NIR up-conversion process provides deeper light penetration into biological specimen and results in high contrast optical imaging due to absence of an autofluorescence background and decreased light scattering. Aqueous dispersible fluoride (NaYF4) nanocrystals (20–30 nm size) co-doped with the rare earth ions, Tm3+ and Yb3+, were synthesized and characterized by TEM, XRD and photoluminescence (PL) spectroscopy. In vitro cellular uptake was shown by the PL microscopy visualizing the characteristic emission of Tm3+ at ~ 800 nm excited with 975 nm. No apparent cytotoxicity was observed. Subsequent animal imaging studies were performed using Balb-c mice injected intravenously with up-converting nanophosphors, demonstrating the high contrast PL imaging in vivo. PMID:18928324

  6. New applications of near infrared spectroscopy in the food industry

    International Nuclear Information System (INIS)

    Groenewald, C.A.

    1984-01-01

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories

  7. Near infrared spectroscopy of food systems using a supercontinuum laser

    DEFF Research Database (Denmark)

    Ringsted, Tine

    Mid-infrared and particularly near-infrared spectroscopy is extremely useful for food analysis because they measure chemical and physical properties fast and non-destructively. The advancement of a supercontinuum light source covering the near-infrared and parts of the ultraviolet and mid......)) can be obtained, (c) that the supercontinuum light is fiber compatible i.e. it can couple directly to fibers, and (d) that the fast repetition rate of the supercontinuum pulses makes it possible to do very fast measurements. For these reasons, the supercontinuum light stands out from the commonly...... applied near- and mid-infrared incandescent light bulbs. This thesis aim to explore the utility of using a supercontinuum source in two food applications. (1) The supercontinuum light was applied for the first time to barley seeds in transmission mode in the long wavelength near-infrared region from 2260...

  8. Design and testing of a new high-accuracy ultraviolet-visible-near-infrared spectrophotometer.

    Science.gov (United States)

    Zwinkels, J C; Gignac, D S

    1992-04-01

    A new high-accuracy spectrophotometer has been developed at the National Research Council of Canada to measure regular transmittance factors over the spectral range from 200 to 2500 nm. The most significant feature of this automated single-beam instrument is a highly collimated normal-incidence beam geometry, which eliminates the need for polarization corrections or for an averaging sphere for the calibration of regular-transmittance reference materials. The instrument also possesses a large uniformmeasurement beam that minimizes errors caused by sample nonuniformity. We describe the instrument's design and the testing, optimization, and verification procedures that have been carried out for measurements in the visible and near-infrared regions. Systematic errors that have been determined and corrected for include wavelength shifts, stray light, system drift, and nonlinearity. In the visible and near-infrared regions, the overall photometric accuracy is estimated to be 2.5 and 4.0 parts in 10(4), respectively. The wavelength scale is accurate to within +/-0.1 nm with a reproducibility of +/-0.03 nm over its entire design range from 200 to 2500 nm.

  9. Simulation of the fixed optical path difference of near infrared wind imaging interferometer

    Science.gov (United States)

    Rong, Piao; Zhang, Chunmin; Yan, Tingyu; Liu, Dongdong; Li, Yanfen

    2017-02-01

    As an important part of the earth, atmosphere plays a vital role in filtering the solar radiation, adjusting the temperature and organizing the water circulation and keeping human survival. The passive atmospheric wind measurement is based on the imaging interferometer technology and Doppler effect of electromagnetic wave. By using the wind imaging interferometer to get four interferograms of airglow emission lines, the atmospheric wind velocity, temperature, pressure and emission rate can be derived. Exploring the multi-functional and integrated innovation of detecting wind temperature, wind velocity and trace gas has become a research focus in the field. In the present paper, the impact factors of the fixed optical path difference(OPD) of near infrared wind imaging interferometer(NIWII) are analyzed and the optimum value of the fixed optical path difference is simulated, yielding the optimal results of the fixed optical path difference is 20 cm in near infrared wave band (the O2(a1Δg) airglow emission at 1.27 microns). This study aims at providing theoretical basis and technical support for the detection of stratosphere near infrared wind field and giving guidance for the design and development of near infrared wind imaging interferometer.

  10. Time-series surveys and pulsating stars: The near-infrared perspective

    Directory of Open Access Journals (Sweden)

    Matsunaga Noriyuki

    2017-01-01

    Full Text Available The purpose of this review is to discuss the advantages and problems of nearinfrared surveys in observing pulsating stars in the Milky Way. One of the advantages of near-infrared surveys, when compared to optical counterparts, is that the interstellar extinction is significantly smaller. As we see in this review, a significant volume of the Galactic disk can be reached by infrared surveys but not by optical ones. Towards highly obscured regions in the Galactic mid-plane, however, the interstellar extinction causes serious problems even with near-infrared data in understanding the observational results. After a review on previous and current near-infrared surveys, we discuss the effects of the interstellar extinction in optical (including Gaia to near-infrared broad bands based on a simple calculation using synthetic spectral energy distribution. We then review the recent results on classical Cepheids towards the Galactic center and the bulge, as a case study, to see the impact of the uncertainty in the extinction law. The extinction law, i.e. the wavelength dependency of the extinction, is not fully characterized, and its uncertainty makes it hard to make the correction. Its characterization is an urgent task in order to exploit the outcomes of ongoing large-scale surveys of pulsating stars, e.g. for drawing a map of pulsating stars across the Galactic disk.

  11. Analyzing near-infrared images for utility assessment

    Science.gov (United States)

    Salamati, Neda; Sadeghipoor, Zahra; Süsstrunk, Sabine

    2011-03-01

    Visual cognition is of significant importance in certain imaging applications, such as security and surveillance. In these applications, an important issue is to determine the cognition threshold, which is the maximum distortion level that can be applied to the images while still ensuring that enough information is conveyed to recognize the scene. The cognition task is usually studied with images that represent the scene in the visible part of the spectrum. In this paper, our goal is to evaluate the usefulness of another scene representation. To this end, we study the performance of near-infrared (NIR) images in cognition. Since surface reflections in the NIR part of the spectrum is material dependent, an object made of a specific material is more probable to have uniform response in the NIR images. Consequently, edges in the NIR images are likely to correspond to the physical boundaries of the objects, which are considered to be the most useful information for cognition. This feature of the NIR images leads to the hypothesis that NIR is better than a visible scene representation to be used in cognition tasks. To test this hypothesis, we compared the cognition thresholds of NIR and visible images performing a subjective study on 11 scenes. The images were compressed with different compression factors using JPEG2000 compression. The results of this subjective test show that recognizing 8 out of the 11 scenes is significantly easier based on the NIR images when compared to their visible counterparts.

  12. Near-infrared Mueller matrix imaging for colonic cancer detection

    Science.gov (United States)

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-03-01

    Mueller matrix imaging along with polar decomposition method was employed for the colonic cancer detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and cancerous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.

  13. Near-infrared absolute magnitudes of Type Ia Supernovae

    Science.gov (United States)

    Avelino, Arturo; Friedman, Andrew S.; Mandel, Kaisey; Kirshner, Robert; Challis, Peter

    2017-01-01

    Type Ia Supernovae light curves (SN Ia) in the near infrared (NIR) exhibit low dispersion in their peak luminosities and are less vulnerable to extinction by interstellar dust in their host galaxies. The increasing number of high quality NIR SNe Ia light curves, including the recent CfAIR2 sample obtained with PAIRITEL, provides updated evidence for their utility as standard candles for cosmology. Using NIR YJHKs light curves of ~150 nearby SNe Ia from the CfAIR2 and CSP samples, and from the literature, we determine the mean value and dispersion of the absolute magnitude in the range between -10 to 50 rest-frame days after the maximum luminosity in B band. We present the mean light-curve templates and Hubble diagram for YJHKs bands. This work contributes to a firm local anchor for supernova cosmology studies in the NIR which will help to reduce the systematic uncertainties due to host galaxy dust present in optical-only studies. This research is supported by NSF grants AST-156854, AST-1211196, Fundacion Mexico en Harvard, and CONACyT.

  14. Measurement of subcutaneous adipose tissue thickness by near-infrared

    International Nuclear Information System (INIS)

    Wang, Yu; Ying, Zeqiang; Hao, Dongmei; Zhang, Song; Yang, Yimin; Zeng, Yanjun

    2013-01-01

    Obesity is strongly associated with the risks of diabetes and cardiovascular disease, and there is a need to measure the subcutaneous adipose tissue (SAT) layer thickness and to understand the distribution of body fat. A device was designed to illuminate the body parts by near-infrared (NIR), measure the backscattered light, and predict the SAT layer thickness. The device was controlled by a single-chip microcontroller (SCM), and the thickness value was presented on a liquid crystal display (LCD). There were 30 subjects in this study, and the measurements were performed on 14 body parts for each subject. The paper investigated the impacts of pressure and skin colour on the measurement. Combining with principal component analysis (PCA) and support vector regression (SVR), the measurement accuracy of SAT layer thickness was 89.1 % with a mechanical caliper as reference. The measuring range was 5–11 mm. The study provides a non-invasive and low-cost technique to detect subcutaneous fat thickness, which is more accessible and affordable compared to other conventional techniques. The designed device can be used at home and in community.

  15. Mesenteric near-infrared spectroscopy and risk of gastrointestinal complications in infants undergoing surgery for congenital heart disease.

    Science.gov (United States)

    Iliopoulos, Ilias; Branco, Ricardo G; Brinkhuis, Nadine; Furck, Anke; LaRovere, Joan; Cooper, David S; Pathan, Nazima

    2016-04-01

    We hypothesised that lower mesenteric near-infrared spectroscopy values would be associated with a greater incidence of gastrointestinal complications in children weighing infrared spectroscopy, central venous oxygen saturation, and arterial blood gases for 48 hours post-operatively. Enteral feeding intake, gastrointestinal complications, and markers of organ dysfunction were monitored for 7 days. A total of 50 children, with median age of 16.7 (3.2-31.6) weeks, were studied. On admission, the average mesenteric near-infrared spectroscopy value was 71±18%, and the systemic oxygen saturation was 93±7.5%. Lower admission mesenteric near-infrared spectroscopy correlated with longer time to establish enteral feeds (r=-0.58, pinfrared spectroscopy (58±18% versus 73±17%, p=0.01) and higher mesenteric arteriovenous difference of oxygen at admission [39 (23-47) % versus 19 (4-27) %, p=0.02]. Based on multiple logistic regression, admission mesenteric near-infrared spectroscopy was independently associated with gastrointestinal complications (Odds ratio, 0.95; 95% confidence interval, 0.93-0.97; p=0.03). Admission mesenteric near-infrared spectroscopy showed an area under the receiver operating characteristic curve of 0.76 to identify children who developed gastrointestinal complications, with a suggested cut-off value of 72% (78% sensitivity, 68% specificity). In this pilot study, we conclude that admission mesenteric near-infrared spectroscopy is associated with gastrointestinal complications and enteral feeding tolerance in children after cardiac surgery.

  16. Near-infrared quantum dots for HER2 localization and imaging of cancer cells

    Directory of Open Access Journals (Sweden)

    Rizvi SB

    2014-03-01

    Full Text Available Sarwat B Rizvi,1 Sepideh Rouhi,1 Shohei Taniguchi,2 Shi Yu Yang,1 Mark Green,2 Mo Keshtgar,1,3 Alexander M Seifalian1,3 1UCL Centre for Nanotechnology and Regenerative Medicine, University College London, 2Department of Physics, King's College London, 3Royal Free London NHS Foundation Trust Hospital, London, UK Background: Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu is overexpressed in 25%–30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Methods: Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing, and MCF7 (HER2-underexpressing. Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. Results: In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 µg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells

  17. [The research progress in determining lignocellulosic content by near infrared reflectance spectroscopy technology].

    Science.gov (United States)

    Du, Juan; An, Dong; Xia, Tian; Huang, Yan-Hua; Li, Hong-Chao; Zhang, Yun-Wei

    2013-12-01

    Near infrared reflectance spectroscopy technology, as a new analytic method, can be used to determine the content of lignin, cellulose and hemi-cellulose which is faster, effective, easier to operate, and more accurate than the traditional wet chemical methods. Nowadays it has been widely used in measuring the composition of lignocelluloses in woody plant and herbaceous plant. The domestic and foreign research progress in determining the lignin, cellulose and hemi-cellulose content in woody plant ( wood and bamboo used as papermaking raw materials and wood served as potential biomass energy) and herbaceous plant (forage grass and energy grass) by near infrared reflectance spectroscopy technology is comprehensively summarized and the advances in method studies of measuring the composition of lignocelluloses by near infrared reflectance spectroscopy technology are summed up in three aspects, sample preparation, spectral data pretreatment and wavelength selection methods, and chemometric analysis respectively. Four outlooks are proposed combining the development statues of wood, forage grass and energy grass industry. First of all, the authors need to establish more feasible and applicable models for a variety of uses which can be used for more species from different areas, periods and anatomical parts. Secondly, comprehensive near infrared reflectance spectroscopy data base of grass products quality index needs to be improved to realize on-line quality and process control in grassproducts industry, which can guarantee the quality of the grass product. Thirdly, the near infrared reflectance spectroscopy quality index model of energy plant need to be built which can not only contribute to breed screening, but also improve the development of biomass industry. Besides, modeling approaches are required to be explored and perfected any further. Finally, the authors need to try our best to boost the advancement in the determination method of lignin, cellulose and hemi

  18. Carbon monoxide reduces near-infrared spectroscopy determined 'total' hemoglobin

    DEFF Research Database (Denmark)

    Niemann, Mads J; Sørensen, Henrik; Siebenmann, Christoph

    2017-01-01

    to normoxia (68.9 ± 6.9%; p determined ScO2 remained unchanged during CO/O2 and O2 inhalations but oxygenated and deoxygenated hemoglobin decreased (by 19.7 μM (median; IQR 2.8-34.8; p = .016) and 37.3 μM (30.8-46.6; p = .004), respectively) during inhalation of CO/O2 compared...... to inhalation of O2. Therefore, NIRO-200NX determined 'total' hemoglobin (sum of O2Hb and HHb) decreased (by 62.1 μM; 44.5-78.2; p = .001). In conclusion, exposure to CO did not increase MCAVmean, and neither NIRO-200NX nor INVOS-5100 detected a change in ScO2 when CO was added to inhalation of oxygen......Carbon monoxide (CO) increases middle cerebral artery mean flow velocity (MCAVmean), but the effect of CO on the near-infrared spectroscopy (NIRS) determined cerebral oxygenation (ScO2) is not detailed. In our study, 11 non-smoking subjects breathed 100% O2 through a closed circuit. A CO2 scrubber...

  19. The application of near infrared spectroscopy (NIR technique for

    Directory of Open Access Journals (Sweden)

    Sandor Barabassy

    2001-06-01

    Full Text Available The production of cow’s milk in Hungary fluctuates by 15-20 % annualy. Surplus milk is dried into powder and can also be converted to modified milk powders using techniques such as ultra filtration. From approximetely 20.000 tonnes, of all milk powder types, 3.000 tonnes, is converted using ultra filtration technology. Multivariable near infrared (NIR calibration was performed on powder mixtures of whole milk, skimmed milk, whey, retenate (protein concentrate and lactose for rapid fat, protein, lactose, water and ash content determination. More than 150 samples were prepared and measured in two NIRS labs (Scottish Agriculture College – SAC – Aberdeen and University of Horticulture and Food Science - UHFS – Budapest. The results obtained from the same samples were compared. The aims of the study were: 1. Rapid quantitative and qualitative determination of mixtures of milk powder products using NIR technique. 2. Comparison of the results achieved in Aberdeen (SAC and Budapest (UHFS institutes. The mass per cent varied between 0.0-2.8% for fat, 0.0-80% for protein, 6.6-100 % for lactose, 0.0-5.0 % for water and 0.0-8.0 % for ash. High correlation coefficients (0.97-0.99 were found for all five components.

  20. Monitoring osteoarthritis progression using near infrared (NIR) spectroscopy.

    Science.gov (United States)

    Afara, Isaac O; Prasadam, Indira; Arabshahi, Zohreh; Xiao, Yin; Oloyede, Adekunle

    2017-09-13

    We demonstrate in this study the potential of near infrared (NIR) spectroscopy as a tool for monitoring progression of cartilage degeneration in an animal model. Osteoarthritic degeneration was artificially induced in one joint in laboratory rats, and the animals were sacrificed at four time points: 1, 2, 4, and 6 weeks (3 animals/week). NIR spectra were acquired from both (injured and intact) knees. Subsequently, the joint samples were subjected to histological evaluation and glycosaminoglycan (GAG) content analysis, to assess disease severity based on the Mankin scoring system and to determine proteoglycan loss, respectively. Multivariate spectral techniques were then employed for classification (principal component analysis and support vector machines) and prediction (partial least squares regression) of the samples' Mankin scores and GAG content from their NIR spectra. Our results demonstrate that NIR spectroscopy is sensitive to degenerative changes in articular cartilage, and is capable of distinguishing between mild (weeks 1&2; Mankin 3) cartilage degeneration. In addition, the spectral data contains information that enables estimation of the tissue's Mankin score (error = 12.6%, R 2  = 86.2%) and GAG content (error = 7.6%, R 2  = 95%). We conclude that NIR spectroscopy is a viable tool for assessing cartilage degeneration post-injury, such as, post-traumatic osteoarthritis.

  1. Near-infrared spectroscopy for burning plasma diagnostic applications.

    Science.gov (United States)

    Soukhanovskii, V A

    2008-10-01

    Ultraviolet and visible (UV-VIS, 200-750 nm) atomic spectroscopy of neutral and ionized fuel species (H, D, T, and Li) and impurities (e.g., He, Be, C, and W) is a key element of plasma control and diagnosis on International Thermonuclear Experimental Reactor and future magnetically confined burning plasma experiments (BPXs). Spectroscopic diagnostic implementation and performance issues that arise in the BPX harsh nuclear environment in the UV-VIS range, e.g., degradation of first mirror reflectivity under charge-exchange atom bombardment (erosion) and impurity deposition, permanent and dynamic loss of window, and optical fiber transmission under intense neutron and gamma-ray fluxes, are either absent or not as severe in the near-infrared (NIR, 750-2000 nm) range. An initial survey of NIR diagnostic applications has been undertaken on the National Spherical Torus Experiment. It is demonstrated that NIR spectroscopy can be used for machine protection and plasma control applications, as well as contribute to plasma performance evaluation and physics studies. Emission intensity estimates demonstrate that NIR measurements are possible in the BPX plasma operating parameter range. Complications in the NIR range due to the parasitic background emissions are expected to occur at very high plasma densities, low impurity densities, and at high plasma-facing component temperatures.

  2. Subsurface thermal coagulation of tissues using near infrared lasers

    Science.gov (United States)

    Chang, Chun-Hung Jack

    Noninvasive laser therapy is currently limited primarily to cosmetic dermatological applications such as skin resurfacing, hair removal, tattoo removal and treatment of vascular birthmarks. In order to expand applications of noninvasive laser therapy, deeper optical penetration of laser radiation in tissue as well as more aggressive cooling of the tissue surface is necessary. The near-infrared laser wavelength of 1075 nm was found to be the optimal laser wavelength for creation of deep subsurface thermal lesions in liver tissue, ex vivo, with contact cooling, preserving a surface tissue layer of 2 mm. Monte Carlo light transport, heat transfer, and Arrhenius integral thermal damage simulations were conducted at this wavelength, showing good agreement between experiment and simulations. Building on the initial results, our goal is to develop new noninvasive laser therapies for application in urology, specifically for treatment of female stress urinary incontinence (SUI). Various laser balloon probes including side-firing and diffusing fibers were designed and tested for both transvaginal and transurethral approaches to treatment. The transvaginal approach showed the highest feasibility. To further increase optical penetration depth, various types and concentrations of optical clearing agents were also explored. Three cadavers studies were performed to investigate and demonstrate the feasibility of laser treatment for SUI.

  3. Miniature near-infrared (NIR) spectrometer engine for handheld applications

    Science.gov (United States)

    O'Brien, Nada A.; Hulse, Charles A.; Friedrich, Donald M.; Van Milligen, Fred J.; von Gunten, Marc K.; Pfeifer, Frank; Siesler, Heinz W.

    2012-06-01

    While substantial progress has been made recently towards the miniaturization of Raman, mid-infrared (IR), and near-infrared (NIR) spectrometers, there remains continued interest from end-users and product developers in pushing the technology envelope toward even smaller and lower cost analyzers. The potential of these instruments to revolutionize on-site and on-line applications can only be realized if the reduction in size does not compromise performance of the spectrometer beyond the practical need of a given application. In this paper, the working principle of a novel, extremely miniaturized NIR spectrometer will be presented. The ultra-compact spectrometer relies on thin-film linear variable filter (LVF) technology for the light dispersing element. We will also report on an environmental study whereby the contamination of soil by oil is determined quantitatively in the range of 0-12% by weight of oil contamination. The achieved analytical results will be discussed in terms of the instrument's competitiveness and suitability for on-site and in-the-field measurements.

  4. Near-infrared spectroscopy is feasible to discriminate hazelnut cultivars

    Directory of Open Access Journals (Sweden)

    Elisabetta Stella

    2013-09-01

    Full Text Available The study demonstrated the feasibility of the near infrared (NIR spectroscopy use for hazelnut-cultivar sorting. Hazelnut spectra were acquired from 600 fruit for each cultivar sample, two diffuse reflectance spectra were acquired from opposite sides of the same hazelnut. Spectral data were transformed into absorbance before the computations. A different variety of spectral pretreatments were applied to extract characteristics for the classification. An iterative Linear Discriminant Analysis (LDA algorithm was used to select a relatively small set of variables to correctly classify samples. The optimal group of features selected for each test was analyzed using Partial Least Squares Discriminant Analysis (PLS-DA. The spectral region most frequently chosen was the 1980-2060 nm range, which corresponds to best differentiation performance for a total minimum error rate lower than 1.00%. This wavelength range is generally associated with stretching and bending of the N-H functional group of amino acids and proteins. The feasibility of using NIR Spectroscopy to distinguish different hazelnut cultivars was demonstrated.

  5. Near-Infrared Spectroscopy for the Evaluation of Anesthetic Depth

    Directory of Open Access Journals (Sweden)

    Gabriela Hernandez-Meza

    2015-01-01

    Full Text Available The standard-of-care guidelines published by the American Society of Anesthesiologists (ASA recommend monitoring of pulse oximetry, blood pressure, heart rate, and end tidal CO2 during the use of anesthesia and sedation. This information can help to identify adverse events that may occur during procedures. However, these parameters are not specific to the effects of anesthetics or sedatives, and therefore they offer little, to no, real time information regarding the effects of those agents and do not give the clinician the lead-time necessary to prevent patient “awareness.” Since no “gold-standard” method is available to continuously, reliably, and effectively monitor the effects of sedatives and anesthetics, such a method is greatly needed. Investigation of the use of functional near-infrared spectroscopy (fNIRS as a method for anesthesia or sedation monitoring and for the assessment of the effects of various anesthetic drugs on cerebral oxygenation has started to be conducted. The objective of this paper is to provide a thorough review of the currently available published scientific studies regarding the use of fNIRS in the fields of anesthesia and sedation monitoring, comment on their findings, and discuss the future work required for the translation of this technology to the clinical setting.

  6. Near infrared technology in neuroscience: past, present and future.

    Science.gov (United States)

    Calderon-Arnulphi, Mateo; Alaraj, Ali; Slavin, Konstantin V

    2009-07-01

    To review past, present and future applications of near-infrared spectroscopy (NIRS) in clinical neuroscience. The literature and personal experience of the authors were critically reviewed in order to provide a balanced overview of the basic principles, clinical validation, previous experience and current use of NIRS in assessment of cerebral oxygenation in clinical neuroscience. Recent technological advancements in transcranial cerebral oximetry (TCCO) are opening up a new promising avenue in clinical neuroscience. With its non-invasive nature, high reliability and uniqueness of gathered data, NIRS represents a very special modality in the neuroscience intensive care unit, angiography suite and the operating room. The hurdles of using this technology in clinical practice are discussed in detail. In addition, we evaluate some known limitations of NIRS and current controversies around its use. Lastly, several commercially available cerebral oximeters are presented. Despite remarkable developments in the NIRS technology and proven reliability of the cerebral oxygenation monitoring approach, TCCO remains mostly an adjuvant tool for neuroscience applications. Newer NIRS technologies have become a source of quantitative information about brain oxygenation, cerebral blood volume and flow. However, the clinical significance of this new information in the context of clinical neuroscience will need to be determined and further validation studies will need to be performed.

  7. Near infrared hyperspectral imaging for forensic analysis of document forgery.

    Science.gov (United States)

    Silva, Carolina S; Pimentel, Maria Fernanda; Honorato, Ricardo S; Pasquini, Celio; Prats-Montalbán, José M; Ferrer, Alberto

    2014-10-21

    Hyperspectral images in the near infrared range (HSI-NIR) were evaluated as a nondestructive method to detect fraud in documents. Three different types of typical forgeries were simulated by (a) obliterating text, (b) adding text and (c) approaching the crossing lines problem. The simulated samples were imaged in the range of 928-2524 nm with spectral and spatial resolutions of 6.3 nm and 10 μm, respectively. After data pre-processing, different chemometric techniques were evaluated for each type of forgery. Principal component analysis (PCA) was performed to elucidate the first two types of adulteration, (a) and (b). Moreover, Multivariate Curve Resolution-Alternating Least Squares (MCR-ALS) was used in an attempt to improve the results of the type (a) obliteration and type (b) adding text problems. Finally, MCR-ALS and Partial Least Squares-Discriminant Analysis (PLS-DA), employed as a variable selection tool, were used to study the type (c) forgeries, i.e. crossing lines problem. Type (a) forgeries (obliterating text) were successfully identified in 43% of the samples using both the chemometric methods (PCA and MCR-ALS). Type (b) forgeries (adding text) were successfully identified in 82% of the samples using both the methods (PCA and MCR-ALS). Finally, type (c) forgeries (crossing lines) were successfully identified in 85% of the samples. The results demonstrate the potential of HSI-NIR associated with chemometric tools to support document forgery identification.

  8. Ghost maculopathy: an artifact on near-infrared reflectance and multicolor imaging masquerading as chorioretinal pathology.

    Science.gov (United States)

    Pang, Claudine E; Freund, K Bailey

    2014-07-01

    To describe the features of an artifact on near-infrared reflectance and MultiColor imaging, termed "ghost maculopathy," and to illustrate how it may masquerade as true chorioretinal pathology. This was a retrospective, observational case series. The authors studied 144 eyes of 72 consecutive patients in a vitreoretinal clinical practice, reviewing multimodal imaging including color and red-free fundus photography, fundus autofluorescence (FAF), near-infrared reflectance, MultiColor imaging, and spectral-domain optical coherence tomography (SD OCT). In 36 of 144 eyes (25%), there was an appearance of a hyper-reflective spot on near-infrared reflectance and MultiColor imaging, located at the macula, nasal or superonasal to the fovea, which did not correspond to any apparent lesion on color and red-free fundus photography, FAF, or SD OCT. This spot was termed the "ghost image" in this phenomenon of "ghost maculopathy." The ghost image was present consistently on near-infrared reflectance and MultiColor imaging in all 36 eyes at every imaging encounter, showing minimal and subtle variability in its shape and location within each eye; however, it showed large interindividual variability in size, shape, location, and reflectivity between different eyes. Nine eyes were found to have a similar hyper-reflective spot resembling that in ghost maculopathy, but corresponding SD OCT images were consistent with diagnoses of choroidal nevus, age-related macular degeneration, and multifocal choroiditis. All eyes with ghost maculopathy were found to be pseudophakic with a posterior chamber intraocular lens. Ghost maculopathy is the phenomenon of an imaging artifact appearing at the macula on near-infrared reflectance and MultiColor imaging that occurs predominantly in pseudophakic patients and may be mistaken for true chorioretinal pathology. Awareness of this artifact is prudent to avoid misinterpretation of clinical findings and possible unnecessary over-investigation. Copyright

  9. Near-infrared hyperspectral imaging of water evaporation dynamics for early detection of incipient caries.

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2014-10-01

    Incipient caries is characterized as demineralization of the tooth enamel reflecting in increased porosity of enamel structure. As a result, the demineralized enamel may contain increased amount of water, and exhibit different water evaporation dynamics than the sound enamel. The objective of this paper is to assess the applicability of water evaporation dynamics of sound and demineralized enamel for detection and quantification of incipient caries using near-infrared hyperspectral imaging. The time lapse of water evaporation from enamel samples with artificial and natural caries lesions of different stages was imaged by a near-infrared hyperspectral imaging system. Partial least squares regression was used to predict the water content from the acquired spectra. The water evaporation dynamics was characterized by a first order logarithmic drying model. The calculated time constants of the logarithmic drying model were used as the discriminative feature. The conducted measurements showed that demineralized enamel contains more water and exhibits significantly faster water evaporation than the sound enamel. By appropriate modelling of the water evaporation process from the enamel surface, the contrast between the sound and demineralized enamel observed in the individual near infrared spectral images can be substantially enhanced. The presented results indicate that near-infrared based prediction of water content combined with an appropriate drying model presents a strong foundation for development of novel diagnostic tools for incipient caries detection. The results of the study enhance the understanding of the water evaporation process from the sound and demineralized enamel and have significant implications for the detection of incipient caries by near-infrared hyperspectral imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  10. Near-infrared image guidance in cancer surgery

    NARCIS (Netherlands)

    Schaafsma, B.E.

    2017-01-01

    Intraoperative imaging using near-infrared (NIR) fluorescence is a fast developing imaging modality as it provides real-time visual information during surgery (Chapter 1). The ability to detect lymph nodes and tumours that need to be resected can assist the surgeon to improve surgery by reducing

  11. Near-infrared transillumination photography of intraocular tumours.

    Science.gov (United States)

    Krohn, Jørgen; Ulltang, Erlend; Kjersem, Bård

    2013-10-01

    To present a technique for near-infrared transillumination imaging of intraocular tumours based on the modifications of a conventional digital slit lamp camera system. The Haag-Streit Photo-Slit Lamp BX 900 (Haag-Streit AG) was used for transillumination photography by gently pressing the tip of the background illumination cable against the surface of the patient's eye. Thus the light from the flash unit was transmitted into the eye, leading to improved illumination and image resolution. The modification for near-infrared photography was done by replacing the original camera with a Canon EOS 30D (Canon Inc) converted by Advanced Camera Services Ltd. In this camera, the infrared blocking filter was exchanged for a 720 nm long-pass filter, so that the near-infrared part of the spectrum was recorded by the sensor. The technique was applied in eight patients: three with anterior choroidal melanoma, three with ciliary body melanoma and two with ocular pigment alterations. The good diagnostic quality of the photographs made it possible to evaluate the exact location and extent of the lesions in relation to pigmented intraocular landmarks such as the ora serrata and ciliary body. The photographic procedure did not lead to any complications. We recommend near-infrared transillumination photography as a supplementary diagnostic tool for the evaluation and documentation of anteriorly located intraocular tumours.

  12. Non-linear calibration models for near infrared spectroscopy

    DEFF Research Database (Denmark)

    Ni, Wangdong; Nørgaard, Lars; Mørup, Morten

    2014-01-01

    by ridge regression (RR). The performance of the different methods is demonstrated by their practical applications using three real-life near infrared (NIR) data sets. Different aspects of the various approaches including computational time, model interpretability, potential over-fitting using the non...

  13. Comparative hazard evaluation of near-infrared diode lasers.

    Science.gov (United States)

    Marshall, W J

    1994-05-01

    Hazard evaluation methods from various laser protection standards differ when applied to extended-source, near-infrared lasers. By way of example, various hazard analyses are applied to laser training systems, which incorporate diode lasers, specifically those that assist in training military or law enforcement personnel in the proper use of weapons by simulating actual firing by the substitution of a beam of near-infrared energy for bullets. A correct hazard evaluation of these lasers is necessary since simulators are designed to be directed toward personnel during normal use. The differences among laser standards are most apparent when determining the hazard class of a laser. Hazard classification is based on a comparison of the potential exposures with the maximum permissible exposures in the 1986 and 1993 versions of the American National Standard for the Safe Use of Lasers, Z136.1, and the accessible emission limits of the federal laser product performance standard. Necessary safety design features of a particular system depend on the hazard class. The ANSI Z136.1-1993 standard provides a simpler and more accurate hazard assessment of low-power, near-infrared, diode laser systems than the 1986 ANSI standard. Although a specific system is evaluated, the techniques described can be readily applied to other near-infrared lasers or laser training systems.

  14. Near-infrared spectroscopy for monitoring muscle oxygenation

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Piantadosi, C A

    2000-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...

  15. Near infrared photoacoustic detection of heptane in synthetic air

    DEFF Research Database (Denmark)

    Duggen, Lars; Albu, Mihaela; Willatzen, Morten

    2013-01-01

    Trace contaminations of n-heptane in synthetic air is measured in the parts-per-billion (ppb) range using near infrared photoacoustic detection. We describe the fundamental theory used in the design of the photoacoustic cell for trace gas analysis and determine the detection limit of the cell...

  16. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...

  17. Partial least squares−near infrared spectrometric determination of ...

    African Journals Online (AJOL)

    Partial least squares−near infrared spectrometric determination of ethanol in distilled alcoholic beverages. ... Derivative, mean centering and subtracting minimum value were used as data treatment techniques for noise reduction and baseline correction. Mean centering has given the best partial least squares model with ...

  18. Near infrared photoacoustic detection of heptane in synthetic air

    DEFF Research Database (Denmark)

    Duggen, Lars; Albu, Mihaela; Willatzen, Morten

    2013-01-01

    Trace contaminations of n-heptane in synthetic air is measured in the parts-per-billion (ppb) range using near infrared photoacoustic detection. We describe the fundamental theory used in the design of the photoacoustic cell for trace gas analysis and determine the detection limit of the cell...... diameter on the window generated signal and find good correlation with previously reported experimental results....

  19. Near-infrared spectroscopic tissue imaging for medical applications

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  20. Melanin microcavitation threshold in the near infrared

    Science.gov (United States)

    Schmidt, Morgan S.; Kennedy, Paul K.; Vincelette, Rebecca L.; Schuster, Kurt J.; Noojin, Gary D.; Wharmby, Andrew W.; Thomas, Robert J.; Rockwell, Benjamin A.

    2014-02-01

    Thresholds for microcavitation of isolated bovine and porcine melanosomes were determined using single nanosecond (ns) laser pulses in the NIR (1000 - 1319 nm) wavelength regime. Average fluence thresholds for microcavitation increased non-linearly with increasing wavelength. Average fluence thresholds were also measured for 10-ns pulses at 532 nm, and found to be comparable to visible ns pulse values published in previous reports. Fluence thresholds were used to calculate melanosome absorption coefficients, which decreased with increasing wavelength. This trend was found to be comparable to the decrease in retinal pigmented epithelial (RPE) layer absorption coefficients reported over the same wavelength region. Estimated corneal total intraocular energy (TIE) values were determined and compared to the current and proposed maximum permissible exposure (MPE) safe exposure levels. Results from this study support the proposed changes to the MPE levels.

  1. Subaru/MOIRCS Near-Infrared Imaging in the Proto-Cluster Region at z=3.1

    OpenAIRE

    Uchimoto, Yuka Katsuno; Suzuki, Ryuji; Tokoku, Chihiro; Ichikawa, Takashi; Konishi, Masahiro; Yoshikawa, Tomohiro; Omata, Koji; Nishimura, Tetsuo; Yamada, Toru; Tanaka, Ichi; Kajisawa, Masaru; Akiyama, Masayuki; Matsuda, Yuichi; Yamauchi, Ryosuke; Hayashino, Tomoki

    2008-01-01

    We present the results of deep near-infrared imaging observations of the z=3.1 proto-cluster region in the SSA22a field taken by MOIRCS mounted on the Subaru Telescope. We observed a 21.7 arcmin^2 field to the depths of J=24.5, H=24.3, and K=23.9 (5 sigma). We examine the distribution of the K-selected galaxies at z~3 by using the simple color cut for distant red galaxies (DRGs) as well as the photometric-redshift selection technique. The marginal density excess of DRGs and the photo-z select...

  2. Wide-area remote-sensing system of pollution and gas dispersal by near-infrared absorption based on low-loss optical fiber network

    Science.gov (United States)

    Inaba, H.

    1986-01-01

    An all optical remote sensing system utilizing long distance, ultralow loss optical fiber networks is studied and discussed for near infrared absorption measurements of combustible and/or explosive gases such as CH4 and C3H8 in our environment, including experimental results achieved in a diameter more than 20 km. The use of a near infrared wavelength range is emphasized.

  3. Near infrared spectroscopy: experience on esophageal atresia infants.

    Science.gov (United States)

    Conforti, Andrea; Giliberti, Paola; Mondi, Vito; Valfré, Laura; Sgro, Stefania; Picardo, Sergio; Bagolan, Pietro; Dotta, Andrea

    2014-07-01

    Near infrared spectroscopy (NIRS) gradually became the gold standard to guide anesthetic conduction during cardiac surgery, and nowadays, it is commonly utilized to monitor cerebral oxygenation during invasive procedures. Preterm babies also benefit from this non-invasive monitoring to prevent neurological sequelae. However, few data are available on NIRS perioperative changes in newborn operated on for major non-cardiac malformations. Aim of the present study is to evaluate the usefulness of NIRS assessment during and after esophageal atresia (EA) correction and its correlation with clinical behavior. All patients treated for EA from May 2011 were prospectively enrolled in the study. All infants underwent "open" correction of EA and cerebral and splanchnic NIRS was applied up to 48h after surgery. Body temperature, blood pressure, pH, paSO2, paCO2, and urine output, were recorded during NIRS registration. Mann-Whitney test and 1-way ANOVA (Kruskal-Wallis and Dunn's multiple comparison tests) were used as appropriate. Seventeen patients were enrolled into the study and 13 were available for the analysis. Four patients were excluded because of poor NIRS registration. Cerebral and renal NIRS values significantly decreased at 24h post-operatively (pNIRS remained stable during the study period. Urine output significantly decreased. Our data confirmed that perioperative monitoring of tissue oxygenation during neonatal esophageal surgery is feasible. Cerebral and renal NIRS evaluation, as for cardiac patients, may guide anesthetic conduction and postoperative care. Out data suggest a newly observed hemodynamic reorganization during esophageal surgery involving renal and, probably, splanchnic blood flow redistribution, demonstrated by the observed subsequent significant post-operative transitory decrease in urinary output. Reducing the decrement in cerebral and renal NIRS values may improve, and ideally eliminate, the well-known late sequelae linked to hemodynamic changes

  4. Photometric Uncertainties

    Science.gov (United States)

    Zou, Xiao-Duan; Li, Jian-Yang; Clark, Beth Ellen; Golish, Dathon

    2018-01-01

    The OSIRIS-REx spacecraft, launched in September, 2016, will study the asteroid Bennu and return a sample from its surface to Earth in 2023. Bennu is a near-Earth carbonaceous asteroid which will provide insight into the formation and evolution of the solar system. OSIRIS-REx will first approach Bennu in August 2018 and will study the asteroid for approximately two years before sampling. OSIRIS-REx will develop its photometric model (including Lommel-Seelinger, ROLO, McEwen, Minnaert and Akimov) of Bennu with OCAM and OVIRS during the Detailed Survey mission phase. The model developed during this phase will be used to photometrically correct the OCAM and OVIRS data.Here we present the analysis of the error for the photometric corrections. Based on our testing data sets, we find:1. The model uncertainties is only correct when we use the covariance matrix to calculate, because the parameters are highly correlated.2. No evidence of domination of any parameter in each model.3. And both model error and the data error contribute to the final correction error comparably.4. We tested the uncertainty module on fake and real data sets, and find that model performance depends on the data coverage and data quality. These tests gave us a better understanding of how different model behave in different case.5. L-S model is more reliable than others. Maybe because the simulated data are based on L-S model. However, the test on real data (SPDIF) does show slight advantage of L-S, too. ROLO is not reliable to use when calculating bond albedo. The uncertainty of McEwen model is big in most cases. Akimov performs unphysical on SOPIE 1 data.6. Better use L-S as our default choice, this conclusion is based mainly on our test on SOPIE data and IPDIF.

  5. Iterative maximum a posteriori (IMAP-DOAS for retrieval of strongly absorbing trace gases: Model studies for CH4 and CO2 retrieval from near infrared spectra of SCIAMACHY onboard ENVISAT

    Directory of Open Access Journals (Sweden)

    C. Frankenberg

    2005-01-01

    Full Text Available In the past, differential optical absorption spectroscopy (DOAS has mostly been employed for atmospheric trace gas retrieval in the UV/Vis spectral region. New spectrometers such as SCIAMACHY onboard ENVISAT also provide near infrared channels and thus allow for the detection of greenhouse gases like CH4, CO2, or N2O. However, modifications of the classical DOAS algorithm are necessary to account for the idiosyncrasies of this spectral region, i.e. the temperature and pressure dependence of the high resolution absorption lines. Furthermore, understanding the sensitivity of the measurement of these high resolution, strong absorption lines by means of a non-ideal device, i.e. having finite spectral resolution, is of special importance. This applies not only in the NIR, but can also prove to be an issue for the UV/Vis spectral region. This paper presents a modified iterative maximum a posteriori-DOAS (IMAP-DOAS algorithm based on optimal estimation theory introduced to the remote sensing community by rodgers76. This method directly iterates the vertical column densities of the absorbers of interest until the modeled total optical density fits the measurement. Although the discussion in this paper lays emphasis on satellite retrieval, the basic principles of the algorithm also hold for arbitrary measurement geometries. This new approach is applied to modeled spectra based on a comprehensive set of atmospheric temperature and pressure profiles. This analysis reveals that the sensitivity of measurement strongly depends on the prevailing pressure-height. The IMAP-DOAS algorithm properly accounts for the sensitivity of measurement on pressure due to pressure broadening of the absorption lines. Thus, biases in the retrieved vertical columns that would arise in classical algorithms, are obviated. Here, we analyse and quantify these systematic biases as well as errors due to variations in the temperature and pressure profiles, which is indispensable for

  6. A Cross-Sectional Survey of Near-Infrared Spectroscopy Use in Pediatric Cardiac ICUs in the United Kingdom, Ireland, Italy, and Germany.

    Science.gov (United States)

    Hoskote, Aparna U; Tume, Lyvonne N; Trieschmann, Uwe; Menzel, Christoph; Cogo, Paola; Brown, Katherine L; Broadhead, Michael W

    2016-01-01

    Despite the increasing use of near-infrared spectroscopy across pediatric cardiac ICUs, there is significant variability and equipoise with no universally accepted management algorithms. We aimed to explore the use of near-infrared spectroscopy in pediatric cardiac ICUs in the United Kingdom, Ireland, Italy, and Germany. A cross-sectional multicenter, multinational electronic survey of one consultant in each pediatric cardiac ICU. Pediatric cardiac ICUs in the United Kingdom and Ireland (n = 13), Italy (n = 12), and Germany (n = 33). Questionnaire targeted to establish use, targets, protocols/thresholds for intervention, and perceived usefulness of near-infrared spectroscopy monitoring. Overall, 42 of 58 pediatric cardiac ICUs (72%) responded: United Kingdom and Ireland, 11 of 13 (84.6%); Italy, 12 of 12 (100%); and Germany, 19 of 33 (57%, included all major centers). Near-infrared spectroscopy usage varied with 35% (15/42) reporting that near-infrared spectroscopy was not used at all (7/42) or occasionally (8/42); near-infrared spectroscopy use was much less common in the United Kingdom (46%) when compared with 78% in Germany and all (100%) in Italy. Only four units had a near-infrared spectroscopy protocol, and 18 specifically used near-infrared spectroscopy in high-risk patients; 37 respondents believed that near-infrared spectroscopy added value to standard monitoring and 23 believed that it gave an earlier indication of deterioration, but only 19 would respond based on near-infrared spectroscopy data alone. Targets for absolute values and critical thresholds for intervention varied widely between units. The reasons cited for not or occasionally using near-infrared spectroscopy were expense (n = 6), limited evidence and uncertainty on how it guides management (n = 4), difficulty in interpretation, and unreliability of data (n = 3). Amongst the regular or occasional near-infrared spectroscopy users (n = 35), 28 (66%) agreed that a multicenter study is warranted

  7. A multiwavelength frequency-domain near-infrared cerebral oximeter

    Science.gov (United States)

    Kurth, C. Dean; Thayer, William S.

    1999-03-01

    This study tests a multiwavelength frequency-domain near-infrared oximeter (fdNIRS) in an in vitro model of the human brain. The model is a solid plastic structure containing a vascular network perfused with blood in which haemoglobin oxygen saturation was measured by co-oximetry, providing a standard for comparison. Plastic shells of varying thickness (0.5-2 cm), with a vascular network of their own and encircling the brain model, were also added to simulate extracranial tissues of the infant, child and adult. The fdNIRS oximeter utilizes frequency-domain technology to monitor phaseshifts at 754 nm, 785 nm and 816 nm relative to a 780 nm reference to derive through photon transport and Beer-Lambert equations. We found a linear relationship between fdNIRS and co-oximetry with excellent correlation that fitted the line of identity in all experiments ( n = 7). The bias of fdNIRS oximetry was -2% and the precision was 6%. Blood temperature and fdNIRS source-detector distance did not affect fdNIRS oximetry. Low haemoglobin concentration altered the fdNIRS versus co-oximetry line slope and intercept, producing a 15% error at the extremes of . The infant- and child-like shells overlying the brain model did not alter fdNIRS oximetry, whereas the adult-like shell yielded an error as high as 32%. In conclusion, fdNIRS accurately measures in an in vitro brain model, although low haemoglobin concentration and extracranial tissue of adult thickness influence accuracy.

  8. A multiwavelength frequency-domain near-infrared cerebral oximeter

    International Nuclear Information System (INIS)

    Kurth, C.D.; Thayer, W.S.

    1999-01-01

    This study tests a multiwavelength frequency-domain near-infrared oximeter (fdNIRS) in an in vitro model of the human brain. The model is a solid plastic structure containing a vascular network perfused with blood in which haemoglobin oxygen saturation (SO 2 ) was measured by co-oximetry, providing a standard for comparison. Plastic shells of varying thickness (0.5-2 cm), with a vascular network of their own and encircling the brain model, were also added to simulate extracranial tissues of the infant, child and adult. The fdNIRS oximeter utilizes frequency-domain technology to monitor phaseshifts at 754 nm, 785 nm and 816 nm relative to a 780 nm reference to derive SO 2 through photon transport and Beer-Lambert equations. We found a linear relationship between fdNIRS SO 2 and co-oximetry SO 2 with excellent correlation (r 2 ≥0.95) that fitted the line of identity in all experiments (n=7). The bias of fdNIRS oximetry was -2% and the precision was 6%. Blood temperature and fdNIRS source-detector distance did not affect fdNIRS oximetry. Low haemoglobin concentration (6 g dl -1 ) altered the fdNIRS versus co-oximetry line slope and intercept, producing a 15% error at the extremes of SO 2 . The infant- and child-like shells overlying the brain model did not alter fdNIRS oximetry, whereas the adult-like shell yielded an error as high as 32%. In conclusion, fdNIRS accurately measures SO 2 in an in vitro brain model, although low haemoglobin concentration and extracranial tissue of adult thickness influence accuracy. (author)

  9. Study of the Microstructure Evolution of Low-pH Cements Based on Ordinary Portland Cement (OPC by Mid- and Near-Infrared Spectroscopy, and Their Influence on Corrosion of Steel Reinforcement

    Directory of Open Access Journals (Sweden)

    Juan García Olmo

    2013-06-01

    Full Text Available Low-pH cements are designed to be used in underground repositories for high level waste. When they are based on Ordinary Portland Cements (OPC, high mineral admixture contents must be used which significantly modify their microstructure properties and performance. This paper evaluates the microstructure evolution of low-pH cement pastes based on OPC plus silica fume and/or fly ashes, using Mid-Infrared and Near-Infrared spectroscopy to detect cement pastes mainly composed of high polymerized C-A-S-H gels with low C/S ratios. In addition, the lower pore solution pH of these special cementitious materials have been monitored with embedded metallic sensors. Besides, as the use of reinforced concrete can be required in underground repositories, the influence of low-pH cementitious materials on steel reinforcement corrosion was analysed. Due to their lower pore solution pH and their different pore solution chemical composition a clear influence on steel reinforcement corrosion was detected.

  10. Near-infrared spectroscopy can reveal increases in brain activity related to animal-assisted therapy

    OpenAIRE

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2017-01-01

    [Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19?21 years) of the Faculty of Agricultur...

  11. Spectra Transfer Between a Fourier Transform Near-Infrared Laboratory and a Miniaturized Handheld Near-Infrared Spectrometer.

    Science.gov (United States)

    Hoffmann, Uwe; Pfeifer, Frank; Hsuing, Chang; Siesler, Heinz W

    2016-05-01

    The aim of this contribution is to demonstrate the transfer of spectra that have been measured on two different laboratory Fourier transform near-infrared (FT-NIR) spectrometers to the format of a handheld instrument by measuring only a few samples with both spectrometer types. Thus, despite the extreme differences in spectral range and resolution, spectral data sets that have been collected and quantitative as well as qualitative calibrations that have been developed thereof, respectively, over a long period on a laboratory instrument can be conveniently transferred to the handheld system. Thus, the necessity to prepare completely new calibration samples and the effort required to develop calibration models when changing hardware platforms is minimized. The enabling procedure is based on piecewise direct standardization (PDS) and will be described for the data sets of a quantitative and a qualitative application case study. For this purpose the spectra measured on the FT-NIR laboratory spectrometers were used as "master" data and transferred to the "target" format of the handheld instrument. The quantitative test study refers to transmission spectra of three-component liquid solvent mixtures whereas the qualitative application example encompasses diffuse reflection spectra of six different current polymers. To prove the performance of the transfer procedure for quantitative applications, partial least squares (PLS-1) calibrations were developed for the individual components of the solvent mixtures with spectra transferred from the master to the target instrument and the cross-validation parameters were compared with the corresponding parameters obtained for spectra measured on the master and target instruments, respectively. To test the retention of the discrimination ability of the transferred polymer spectra sets principal component analyses (PCAs) were applied exemplarily for three of the six investigated polymers and their identification was demonstrated by

  12. Near Infrared and bolometric properties of Type Ia supernovae

    OpenAIRE

    Dhawan, Suhail

    2017-01-01

    Type Ia supernovae (SN Ia) are excellent tools for modern cosmology. Their calibrated peak luminosities have been used to discover the accelerated expansion of the universe. SN Ia are also interesting astrophysical sources as endpoints of stellar evolution. In this thesis, I analyse the near infrared and bolometric properties of SN Ia and use the properties of their light curves to derive estimates for global parameters, like the total Ni mass, and improve upon their use as distance indicator...

  13. Practical guide to interpretive near-infrared spectroscopy

    CERN Document Server

    Workman, Jr, Jerry

    2007-01-01

    Containing focused, comprehensive coverage, Practical Guide to Interpretive Near-Infrared Spectroscopy gives you the tools necessary to interpret NIR spectra. The authors present extensive tables, charts, and figures with NIR absorption band assignments and structural information for a broad range of functional groups, organic compounds, and polymers. They include visual spectral representation of all major compound functional groupings and NIR frequency ranges. Organized by functional group type and chemical structure, based on standard compound classification, the chapters are easy to

  14. Near infrared face recognition using Zernike moments and Hermite kernels

    Czech Academy of Sciences Publication Activity Database

    Farokhi, Sajad; Sheikh, U.U.; Flusser, Jan; Yang, Bo

    2015-01-01

    Roč. 316, č. 1 (2015), s. 234-245 ISSN 0020-0255 R&D Projects: GA ČR(CZ) GA13-29225S Keywords : face recognition * Zernike moments * Hermite kernel * Decision fusion * Near infrared Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.364, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0444205.pdf

  15. Near-infrared emission from mesoporous crystalline germanium

    Energy Technology Data Exchange (ETDEWEB)

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  16. Quantitative near-infrared spectroscopy on patients with peripheral vascular disease

    OpenAIRE

    Franceschini, MA; Fantini, S; Palumbo, R; Pasqualini, L; Vaudo, G; Franceschini, E; Gratton, E; Palumbo, B; Innocente, S; Mannarino, E

    1997-01-01

    We have used near-infrared spectroscopy to measure the hemoglobin saturation at rest and during exercise on patients affected by peripheral vascular disease (PVD). The instrument used in our study is a frequency-domain tissue oximeter which employs intensity modulated (110 MHz) laser diodes. We examined 9 subjects, 3 of which were controls and 6 were patients affected by stage II PVD. The optical probe was located on the calf muscle of the subjects. The measurement protocol consisted of: (1) ...

  17. Near-Infrared Mapping and Physical Properties of the Dwarf-Planet Ceres

    OpenAIRE

    Carry, Benoit; Dumas, Christophe; Fulchignoni, Marcello; Merline, William J.; Berthier, Jerome; Hestroffer, Daniel; Fusco, Thierry; Tamblyn, Peter

    2007-01-01

    We study the physical characteristics (shape, dimensions, spin axis direction, albedo maps, mineralogy) of the dwarf-planet Ceres based on high-angular resolution near-infrared observations. We analyze adaptive optics J/H/K imaging observations of Ceres performed at Keck II Observatory in September 2002 with an equivalent spatial resolution of ~50 km. The spectral behavior of the main geological features present on Ceres is compared with laboratory samples. Ceres' shape can be described by an...

  18. Calibration model transfer for near-infrared spectra based on canonical correlation analysis.

    Science.gov (United States)

    Fan, Wei; Liang, Yizeng; Yuan, Dalin; Wang, Jiajun

    2008-08-08

    In order to solve the calibration transformation problem in near-infrared (NIR) spectroscopy, a method based on canonical correlation analysis (CCA) for calibration model transfer is developed in this work. Two real NIR data sets were tested. A comparative study between the proposed method and piecewise direct standardization (PDS) was conducted. It is shown that the transfer results obtained with the proposed method based on CCA were better than those obtained by PDS when the subset had sufficient samples.

  19. In Vivo Tumor Angiogenesis Imaging Using Peptide-Based Near-Infrared Fluorescent Probes.

    Science.gov (United States)

    Huang, Rui; Conti, Peter S; Chen, Kai

    2016-01-01

    Near-infrared fluorescence (NIRF) imaging is an emerging imaging technique for studying diseases at the molecular level. Optical imaging with a near-infrared emitting fluorophore for targeting tumor angiogenesis offers a noninvasive method for early tumor detection and efficient monitoring of tumor response to anti-angiogenesis therapy. CD13 receptor, a zinc-dependent membrane-bound ectopeptidase, plays important roles in regulating tumor angiogenesis and the growth of new blood vessels. In this chapter, we use CD13 receptor as an example to demonstrate how to construct CD13-specific NGR-containing peptides via bioorthogonal click chemistry for visualizing and quantifying the CD13 receptor expression in vivo by means of NIRF optical imaging.

  20. Cooperative photometric redshift estimation

    NARCIS (Netherlands)

    Cavuoti, S.; Tortora, C.; Brescia, M.; Longo, G.; Radovich, M.; Napolitano, N. R.; Amaro, V.; Vellucci, C.

    2016-01-01

    In the modern galaxy surveys photometric redshifts play a central role in a broad range of studies, from gravitational lensing and dark matter distribution to galaxy evolution. Using a dataset of ~ 25,000 galaxies from the second data release of the Kilo Degree Survey (KiDS) we obtain photometric

  1. Clinical evaluation of near-infrared light transillumination in approximal dentin caries detection.

    Science.gov (United States)

    Ozkan, Gokhan; Guzel, Kadriye Gorkem Ulu

    2017-08-01

    The objective of this clinical study was to compare conventional caries detection techniques, pen-type laser fluorescence device, and near-infrared light transillumination method in approximal dentin caries lesions. The study included 157 patients, aged 12-18, without any cavity in the posterior teeth. Two calibrated examiners carried out the assessments of selected approximal caries sites independently. After the assessments, the unopened sites were excluded and a total of 161 approximal sites were included in the study. When both the examiners arrived at a consensus regarding the presence of dentin caries, the detected lesions were opened with a conical diamond burr, the cavity extent was examined and validated (gold standard). Sensitivity, specificity, negative predictive value, positive predictive value, accuracy, and area under the ROC curve (Az) values among the caries detection methods were calculated. Bitewing radiography and near-infrared (NIR) light transillumination methods showed the highest sensitivity (0.83-0.82) and accuracy (0.82-0.80) among the methods. Visual inspection showed the lowest sensitivity (0.54). Laser fluorescence device and visual inspection showed nearly equal performance. Near-infrared light transillumination can be used as an alternative method to approximal dentin caries detection. Visual inspection and laser fluorescence device alone should not be used for approximal dentin caries.

  2. Noninvasive measurement of postocclusive parameters in human forearm blood by near infrared spectroscopy

    Science.gov (United States)

    Rao, K. Prahlad; Radhakrishnan, S.; Reddy, M. Ramasubba

    2005-04-01

    Near infrared (NIR) light in the wavelength range from 700 to 900 nm can pass through skin, bone and other tissues relatively easily. As a result, NIR techniques allow a noninvasive assessment of hemoglobin saturation for a wide range of applications, such as in the study of muscle metabolism, the diagnosis of vascular disorders, brain imaging, and breast cancer detection. Near infrared Spectroscopy (NIRS) is an effective tool to measure the hemoglobin concentration in the tissues, which can discriminate optically the oxy- and deoxy- hemoglobin species because of their different near-infrared absorption spectra. We have developed an NIRS probe consisting of a laser diode of 830 nm wavelength and a PIN photodiode in reflectance mode. We have selected a set of healthy volunteers (mean age 30, range 26-40 years) for the study. The probe is placed on forearm of each subject and the backscattered light intensity is measured by occluding the blood flow at 210, 110 and 85 mmHg pressures. Recovery time, peak time and time after 50% release of the cuff pressure are determined from the optical densities during the post occlusive state of forearm. These parameters are useful for determining the transient increase in blood flow after the release of blood occlusion. Clinically, the functional aspects of blood flow in the limbs could be evaluated noninvasively by NIRS.

  3. Gold nanocages covered by smart polymers for controlled release with near-infrared light.

    Science.gov (United States)

    Yavuz, Mustafa S; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Song, Kwang H; Schwartz, Andrea G; Wang, Lihong V; Xia, Younan

    2009-12-01

    Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.

  4. Exploration of in vivo Effect Assessment Factor Monitoring by Near-infrared Spectroscopy during LITT

    Energy Technology Data Exchange (ETDEWEB)

    Qian Aiping; Hua Guoran; Zhang Hua [Department of Biomedical Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing, Jiangsu 210016 (China); Qian Zhiyu, E-mail: huagr@ntu.edu.cn

    2011-02-01

    By studying the variation trends of the absorption coefficient ({mu}{sub a}) and the reduced scattering coefficient ({mu}'{sub s}), which were monitored in vivo by functional near infrared spectroscopy (fNIRS) system in real time during laser induced interstitial thermotherapy (LITT), the optimized near infrared effect assessment factor would be explored. In vivo measurements of the absorption coefficient (u{sub a}) and the reduced scattering coefficient (u'{sub s}) were performed with a functional near infrared spectroscopy system during LITT. Fresh porcine liver tissue samples in vitro and the subcutaneous implanted rat liver cancers were examined in different laser doses and define heating times. The absorption coefficient obtained by the fNIRS increased in the pork liver experiments, but decreased in the rat liver cancer experiments. The reduced scattering coefficient increased in the pork liver experiments and the rat liver cancer experiments, it increased quickly at beginning, and gradually reached the stable state. Therefore, the reduced scattering coefficient is more suitable for reflecting the progress of damage during different biological tissues' LITT than the absorption coefficient. This conclusion will effectively guide the study of suitable therapy effect assessment system during LITT in real time.

  5. Exploration of in vivo Effect Assessment Factor Monitoring by Near-infrared Spectroscopy during LITT

    Science.gov (United States)

    Qian, Ai-ping; Hua, Guo-ran; Zhang, Hua; Qian, Zhi-yu

    2011-02-01

    By studying the variation trends of the absorption coefficient (μa) and the reduced scattering coefficient (μ's), which were monitored in vivo by functional near infrared spectroscopy (fNIRS) system in real time during laser induced interstitial thermotherapy (LITT), the optimized near infrared effect assessment factor would be explored. In vivo measurements of the absorption coefficient (ua) and the reduced scattering coefficient (u's) were performed with a functional near infrared spectroscopy system during LITT. Fresh porcine liver tissue samples in vitro and the subcutaneous implanted rat liver cancers were examined in different laser doses and define heating times. The absorption coefficient obtained by the fNIRS increased in the pork liver experiments, but decreased in the rat liver cancer experiments. The reduced scattering coefficient increased in the pork liver experiments and the rat liver cancer experiments, it increased quickly at beginning, and gradually reached the stable state. Therefore, the reduced scattering coefficient is more suitable for reflecting the progress of damage during different biological tissues' LITT than the absorption coefficient. This conclusion will effectively guide the study of suitable therapy effect assessment system during LITT in real time.

  6. Determination of flow properties of pharmaceutical powders by near infrared spectroscopy.

    Science.gov (United States)

    Sarraguça, Mafalda C; Cruz, Ana V; Soares, Sandra O; Amaral, Helena R; Costa, Paulo C; Lopes, João A

    2010-08-01

    The physical properties of pharmaceutical powders are of upmost importance in the pharmaceutical industry. The knowledge of their flow properties is of critical significance in operations such as blending, tablet compression, capsule filling, transportation, and in scale-up operations. Powders flow properties are measured using a number of parameters such as, angle of repose, compressibility index (Carr's index) and Hausner ratio. To estimate these properties, specific and expensive equipment with time-consuming analysis is required. Near infrared spectroscopy is a fast and low-cost analytical technique thoroughly used in the pharmaceutical industry in the quantification and qualification of products. To establish the potential of this technique to determine the parameters associated with the flow properties of pharmaceutical powders, blended powders based on paracetamol as the active pharmaceutical ingredient were constructed in pilot scale. Spectra were recorded on a Fourier-transform near infrared spectrometer in reflectance mode. The parameters studied were the angle of repose, aerated and tapped bulk density. The correlation between the reference method values and the near infrared spectrum was performed by partial least squares and optimized in terms of latent variables using cross-validation. The near infrared based properties predictions were compared with the reference methods results. Prediction errors, which varied between 2.35% for the angle of repose, 2.51% for the tapped density and 3.18% for the aerated density, show the potential of NIR spectroscopy in the determination of physical properties affecting the flowability of pharmaceutical powders. Copyright (c) 2010 Elsevier B.V. All rights reserved.

  7. Improved optical sub-systems for intraoperative near-infrared fluorescence imaging

    Science.gov (United States)

    Gioux, Sylvain; Degrand, Alec M.; Lee, Deborah S.; Yazdanfar, Siavash; Idoine, John D.; Lomnes, Stephen J.; Frangioni, John V.

    2005-11-01

    Near-infrared light propagation through living tissue provides promising opportunities for the development of non-invasive imaging techniques for human care. We have developed a Fluorescence-Assisted Resection and Exploration (FLARE) imaging system for surgery. The FLARE system uses invisible near-infrared light to help the surgeon visualize critical structures intraoperatively and in real-time. We present here the continued optimization of our imaging system from a research prototype to an efficient and ergonomic tool to be used during human surgery. New, hands-free operation enables the surgeon to zoom, focus, recall and save images through a footswitch. A LabVIEW curve-fitting algorithm, in combination with stepper motor control, provides auto-focus capability. Cardiac and/or respiratory gating minimizes motion artifacts of moving objects in the surgical field, and permits in-focus imaging during long fluorescence integration times. Automated subtraction of the near-infrared fluorescence signal from background reflections minimizes the effect of ambient illumination and improves the contrast to noise ratio with only moderate effects on intensity precision. Taken together, this study improves several optical components of the FLARE system, and helps ready it for human clinical testing.

  8. Defects diagnosis in laser brazing using near-infrared signals based on empirical mode decomposition

    Science.gov (United States)

    Cheng, Liyong; Mi, Gaoyang; Li, Shuo; Wang, Chunming; Hu, Xiyuan

    2018-03-01

    Real-time monitoring of laser welding plays a very important role in the modern automated production and online defects diagnosis is necessary to be implemented. In this study, the status of laser brazing was monitored in real time using an infrared photoelectric sensor. Four kinds of braze seams (including healthy weld, unfilled weld, hole weld and rough surface weld) along with corresponding near-infrared signals were obtained. Further, a new method called Empirical Mode Decomposition (EMD) was proposed to analyze the near-infrared signals. The results showed that the EMD method had a good performance in eliminating the noise on the near-infrared signals. And then, the correlation coefficient was developed for selecting the Intrinsic Mode Function (IMF) more sensitive to the weld defects. A more accurate signal was reconstructed with the selected IMF components. Simultaneously, the spectrum of selected IMF components was solved using fast Fourier transform, and the frequency characteristics were clearly revealed. The frequency energy of different frequency bands was computed to diagnose the defects. There was a significant difference in four types of weld defects. This approach has been proved to be an effective and efficient method for monitoring laser brazing defects.

  9. [Near infrared spectroscopy analysis method of maize hybrid seed purity discrimination].

    Science.gov (United States)

    Huang, Hua-Jun; Yan, Yan-Lu; Shen, Bing-Hui; Liu, Zhe; Gu, Jian-Cheng; Li, Shao-Ming; Zhu, De-Hai; Zhang, Xiao-Dong; Ma, Qin; Li, Lin; An, Dong

    2014-05-01

    Near infrared spectroscopy analysis method of discrimination of maize hybrid seed purity was studied with the sample of Nong Hua 101 (NH101) from different origins and years. Spectral acquisition time lasted for 10 months. Using Fourier transform (FT) near infrared spectroscopy instruments, including 23 days in different seasons (divided into five time periods), a total of 920 near infrared diffuse reflectance spectra of single corn grain of those samples were collected. Moving window average, first derivative and vector normalization were used to pretreat all original spectra, principal component analysis (PCA) and linear discriminant analysis (LDA) were applied to reduce data dimensionality, and the discrimination model was established based on biomimetic pattern recognition (BPR) method. Spectral distortion was calibrated by spectra pretreatment, which makes characteristics spatial distribution range of sample spectra set contract. The relative distance between hybrid and female parent increased by nearly 70-fold, and the discrimination model achieved the identification of hybrid and female parent seeds. Through the choice of representative samples, the model's response capacity to the changes in spectral acquisition time, place and environment, etc. was improved. Besides, the model's response capacity to the changes in time and site of seed production was also improved, and the robustness of the model was enhanced. The average correct acceptance rate (CAR) of the test set reached more than 95% while the average correct rejection rate (CRR) of the test set also reached 85%.

  10. Near-infrared laser irradiation improves the development of mouse pre-implantation embryos.

    Science.gov (United States)

    Yokoo, Masaki; Mori, Miho

    2017-05-27

    The aim of the present study was to assess the effects of near-infrared laser irradiation on the in vitro development of mouse embryos. Female ICR mice were superovulated with pregnant mare serum gonadotropin and human chorionic gonadotropin (hCG), and mated with male mice. Two-cell stage embryos were collected 40 h after administering hCG and cultured in M16 medium. Two-cell embryos (0 h after culture), 8-cell embryos (approx. 30 h after culture), morula (approx. 48 h after culture), and blastocysts (approx. 73 h after culture) were irradiated at 904 nm for 60 s. These embryos were cultured in a time-lapse monitoring system and the timing of blastocyst hatching was evaluated. Some of the irradiated blastocysts were transferred to the uterine horns of pseudopregnant recipients immediately after irradiation. Pregnancy rates, and offspring growth and fertility, were evaluated. Near-infrared laser irradiation increased the speed of in vitro mouse embryo development. In irradiated blastocysts, hatching was faster than in control (non-irradiated) blastocysts (18.4 vs. 28.2 h, P embryo development in vitro, and increases the live birth rate without affecting the normality of the offspring. Thus, the near-infrared laser method may enhance the quality of embryos and contribute to improvements in reproductive technologies in mammals. Copyright © 2017 Elsevier Inc. All rights reserved.

  11. Near-infrared spectroscopy and microstructure of the scales of Sabethes ( Sabethes albiprivus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Betina Westphal-Ferreira

    Full Text Available ABSTRACT Near-infrared spectroscopy and microstructure of the scales of Sabethes (Sabethes albiprivus (Diptera: Culicidae. Sabethes (Sabethes albiprivus Theobald individuals vary considerably in size and color of the reflections of the scales on their thorax, abdomen, antepronotal lobes and occiput. The goal of this study was to investigate and to characterize the differences in the color of the scales among preserved specimens and to analyze the differences in the microstructures of the scales that cover their bodies using near-infrared spectroscopy, and to evaluate whether the latter is efficient in distinguishing the populations. A total of 201 adult females were analyzed for the characterization of color patterns. In addition, absorbance spectra and scanning electron microscope images were obtained from them. As a result of color analysis, two variations were identified, one represented by specimens with yellow or green scales and the other with blue or purple scales. The same two variations were corroborated using NIRS. Analysis of the microstructure of the scales lining the mesonotum, occiput and antepronotal lobes resulted in the same variations. The three methodologies, near-infrared spectroscopy, scanning electron microscopy and coloration of the reflections of the scales revealed two variations within Sa. albiprivus.

  12. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    Science.gov (United States)

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  13. MUC1 aptamer based near infrared fluorescence probes for tumor diagnosis

    Science.gov (United States)

    Zhao, Juan; Ma, Yuxiang; Cui, Sisi; Cao, Jie; Achilefu, Samuel; Gu, Yueqing

    2013-02-01

    Mucin 1 (MUC1) is a cell surface mucin broadly expressed in mucosal tissues. The aberrant expression of MUC1 under-glycosylated forms has been reported in various carcinomas of the epithelium, such as breast, pancreatic and ovarian cancers. Using the Systematic Evolution of Ligands by Exponential Enrichment (SELEX) methodology, aptamers previously selected against MUC1 glycoprotein with high affinities and specificities. In this study, we developed two targeted near-infrared fluorescent probes for tumor in-vivo diagnostics using a MUC1 aptamer(APT) as targeted ligand and near-infrared fluorescent dye (ICG-Der-02) as labelling. MUC1 aptamer conjugated ICG-Der-02 (APT-ICG-Der-02) displayed a great selectivity to MUC1 positive cell line MCF7 and MCF7 xenograft-bearing nude mice. To improve the high targeting of the probe to the tumor cells, PEG, with high biocompatibility, non immunogenicity and long circulation, was conjugated to the probe .The new probe (APT-PEG-ICG-Der-02) showed better tumour uptake and clearance, and also displayed a great selectivity to MCF7 tumor-bearing nude mice. Data obtained demonstrate a high potential of the targeted near-infrared fluorescent probes in cancer early diagnosis.

  14. Quantitative Determination of Germinability of Puccinia striiformis f. sp. tritici Urediospores Using Near Infrared Spectroscopy Technology

    Directory of Open Access Journals (Sweden)

    Yaqiong Zhao

    2015-01-01

    Full Text Available Stripe rust caused by Puccinia striiformis f. sp. tritici (Pst is an important disease on wheat. In this study, quantitative determination of germinability of Pst urediospores was investigated by using near infrared reflectance spectroscopy (NIRS combined with quantitative partial least squares (QPLS and support vector regression (SVR. The near infrared spectra of the urediospore samples were acquired using FT-NIR MPA spectrometer and the germination rate of each sample was measured using traditional spore germination method. The best QPLS model was obtained with vector correction as the preprocessing method of the original spectra and 4000–12000 cm−1 as the modeling spectral region while the modeling ratio of the training set to the testing set was 4 : 1. The best SVR model was built when vector normalization was used as the preprocessing method, the modeling ratio was 5 : 1 and the modeling spectral region was 8000–11000 cm−1. The results showed that the effect of the best model built using QPLS or SVR was satisfactory. This indicated that quantitative determination of germinability of Pst urediospores using near infrared spectroscopy technology is feasible. A new method based on NIRS was provided for rapid, automatic, and nondestructive determination of germinability of Pst urediospores.

  15. [Rapid discriminating hogwash oil and edible vegetable oil using near infrared optical fiber spectrometer technique].

    Science.gov (United States)

    Zhang, Bing-Fang; Yuan, Li-Bo; Kong, Qing-Ming; Shen, Wei-Zheng; Zhang, Bing-Xiu; Liu, Cheng-Hai

    2014-10-01

    In the present study, a new method using near infrared spectroscopy combined with optical fiber sensing technology was applied to the analysis of hogwash oil in blended oil. The 50 samples were a blend of frying oil and "nine three" soybean oil according to a certain volume ratio. The near infrared transmission spectroscopies were collected and the quantitative analysis model of frying oil was established by partial least squares (PLS) and BP artificial neural network The coefficients of determina- tion of calibration sets were 0.908 and 0.934 respectively. The coefficients of determination of validation sets were 0.961 and 0.952, the root mean square error of calibrations (RMSEC) was 0.184 and 0.136, and the root mean square error of predictions (RMSEP) was all 0.111 6. They conform to the model application requirement. At the same time, frying oil and qualified edible oil were identified with the principal component analysis (PCA), and the accurate rate was 100%. The experiment proved that near infrared spectral technology not only can quickly and accurately identify hogwash oil, but also can quantitatively detect hog- wash oil. This method has a wide application prospect in the detection of oil.

  16. A Road Map for the Generation of a Near-Infrared Guide Star ...

    Indian Academy of Sciences (India)

    /fulltext/joaa/037/03/0024. Keywords. Stars--near-infrared magnitudes--adaptive optics. Abstract. The near-infrared instruments in the upcoming Thirty Meter Telescope (TMT) will be assisted by a multi conjugate Adaptive Optics (AO) system.

  17. Determination of plant silicon content with near infrared reflectance spectroscopy

    Directory of Open Access Journals (Sweden)

    Adriaan eSmis

    2014-09-01

    Full Text Available Silicon (Si is one of the most common elements in the earth bedrock, and its continental cycle is strongly biologically controlled. Yet, research on the biogeochemical cycle of Si in ecosystems is hampered by the time and cost associated with the currently used chemical analysis methods. Here, we assessed the suitability of Near Infrared Reflectance Spectroscopy (NIRS for measuring Si content in plant tissues. NIR spectra depend on the characteristics of the present bonds between H and N, C and O, which can be calibrated against concentrations of various compounds. Because Si in plants always occurs as hydrated condensates of orthosilicic acid (Si(OH4, linked to organic biomolecules, we hypothesized that NIRS is suitable for measuring Si content in plants across a range of plant species.We based our testing on 442 samples of 29 plant species belonging to a range of growth forms. We calibrated the NIRS method against a well-established plant Si analysis method by using partial least-squares regression. Si concentrations ranged from detection limit (0.24 ppmSi to 7.8% Si on dry weight and were well predicted by NIRS. The model fit with validation data was good across all plant species (n=141, R2=0.90, RMSEP=0.24, but improved when only graminoids were modeled (n=66, R2=0.95, RMSEP=0.10. A species specific model for the grass Deschampsia cespitosa showed even slightly better results than the model for all graminoids (n=16, R2=0.93, RMSEP=0.015.We show for the first time that NIRS is applicable for determining plant Si concentration across a range of plant species and growth forms, and represents a time- and cost-effective alternative to the chemical Si analysis methods. As NIRS can be applied concurrently to a range of plant organic constituents, it opens up unprecedented research possibilities for studying interrelations between Si and other plant compounds in vegetation, and for addressing the role of Si in ecosystems across a range of Si

  18. Effects of Near-Infrared Laser on Neural Cell Activity

    Science.gov (United States)

    Mochizuki-Oda, Noriko; Kataoka, Yosky; Yamada, Hisao; Awazu, Kunio

    2004-08-01

    Near-infrared laser has been used to relieve patients from various kinds of pain caused by postherpetic neuralgesia, myofascial dysfunction, surgical and traumatic wound, cancer, and rheumatoid arthritis. Clinically, He-Ne (λ=632.8 nm, 780 nm) and Ga-Al-As (805 ± 25 nm) lasers are used to irradiate trigger points or nerve ganglion. However the precise mechanisms of such biological actions of the laser have not yet been resolved. Since laser therapy is often effective to suppress the pain caused by hyperactive excitation of sensory neurons, interactions with laser light and neural cells are suggested. As neural excitation requires large amount of energy liberated from adenosine triphosphate (ATP), we examined the effect of 830-nm laser irradiation on the energy metabolism of the rat central nervous system and isolated mitochondria from brain. The diode laser was applied for 15 min with irradiance of 4.8 W/cm2 on a 2 mm-diameter spot at the brain surface. Tissue ATP content of the irradiated area in the cerebral cortex was 19 % higher than that of the non-treated area (opposite side of the cortex), whereas the ADP content showed no significant difference. Irradiation at another wavelength (652 nm) had no effect on either ATP or ADP contents. The temperature of the brain tissue was increased 4.5 - 5.0 °C during the irradiation of both 830-nm and 652-nm laser light. Direct irradiation of the mitochondrial suspension did not show any wavelength-dependent acceleration of respiration rate nor ATP synthesis. These results suggest that the increase in tissue ATP content did not result from the thermal effect, but from specific effect of the laser operated at 830 nm. Electrophysiological studies showed the hyperpolarization of membrane potential of isolated neurons and decrease in membrane resistance with irradiation of the laser, suggesting an activation of potassium channels. Intracellular ATP is reported to regulate some kinds of potassium channels. Possible mechanisms

  19. Study of organosulfurous compounds of oils by chromatographic method with help of flame-photometric detector

    Energy Technology Data Exchange (ETDEWEB)

    Yershov, V.A.; Nosova, V.S.; Shakirova, A.Kh.; Zhil' tsov, N.I.

    1979-01-01

    The possibility is indicated of determining in the gasoline fractions of oils of organosulfuric compounds by the method of gas-liquid chromatography with flame-photometric detector without their preliminary isolation. It was found that the organosulfuric compounds in gasoline fractions of the studied oils of West Siberia are missing and appear in petroleum products in the boiling point interval of 230-250/sup 0/C.

  20. First Hα and Revised Photometric Studies of Contact Binary ...

    Indian Academy of Sciences (India)

    the magnitudes and obtain the spectra respectively. The resultant spectra were then calibrated and normalized for further studies. 1IRAF is distributed by the National Optical Astronomy Observatory, which is operated by the. Association of Universities for Research in Astronomy(AURA) under cooperative agreement with.

  1. [Near-infrared Raman spectroscopy for diagnosis of gastric cancer].

    Science.gov (United States)

    Jin, Shaoqin; Mao, Hua

    2014-03-01

    To establish a method for early diagnosis of gastric cancer using near-infrared Raman spectroscopy. A rapid near-infrared Raman system was used to examine the tissue specimens of pathologically confirmed gastric cancer (33 cases), gastric precancerous lesions (27 cases), and normal gastric mucosa (45 cases). All the specimens were obtained from 105 patients undergoing gastrectomy or endoscopic biopsy of suspected gastric lesions. High-quality Raman spectra ranging from 700 to 1800 cm(-1) were acquired from the gastric tissues within 5 s. The distribution pattern of Raman spectra in gastric cancer differed significantly from those of gastric precancerous lesions and normal gastric mucosa, particularly in the spectral ranges of 853 cm(-1), 936 cm(-1), 1003 cm(-1), 1032 cm(-1), 1174 cm(-1), 1208 cm(-1), 1323 cm(-1), 1335 cm(-1), 1450 cm(-1), and 1655 cm(-1), which contained signals related to proteins, nucleic acids and lipids. The diagnostic decision algorithm based on the Raman peak intensity ratios of I1003/ I1337, I1003/I1445, I1003/I1655, and I1156/I1655 yielded remarkable differences in gastric cancer from gastric precancerous lesions and normal gastric mucosa, and the ratios were significantly higher in normal gastric tissues (Pinfrared Raman spectroscopy using PCA-LDA algorithms associated with leave- one-out and cross-validation method showed diagnostic sensitivities of 81.5%, 85.3%, and 100%, and specificities of 86.4%, 100%, and 97.4% for normal gastric mucosa, precancerous lesions and gastric cancer, respectively. near-infrared Raman spectroscopy in conjunction with intensity ratio algorithms shows the potential for noninvasive diagnosis and detection of gastric malignancy at the molecular level.

  2. Biliary tract visualization using near-infrared imaging with indocyanine green during laparoscopic cholecystectomy: results of a systematic review.

    Science.gov (United States)

    Vlek, S L; van Dam, D A; Rubinstein, S M; de Lange-de Klerk, E S M; Schoonmade, L J; Tuynman, J B; Meijerink, W J H J; Ankersmit, M

    2017-07-01

    Near-infrared imaging with indocyanine green (ICG) has been extensively investigated during laparoscopic cholecystectomy (LC). However, methods vary between studies, especially regarding patient selection, dosage and timing. The aim of this systematic review was to evaluate the potential of the near-infrared imaging technique with ICG to identify biliary structures during LC. A comprehensive systematic literature search was performed. Prospective trials examining the use of ICG during LC were included. Primary outcome was biliary tract visualization. Risk of bias was assessed using ROBINS-I. Secondly, a meta-analysis was performed comparing ICG to intraoperative cholangiography (IOC) for identification of biliary structures. GRADE was used to assess the quality of the evidence. Nineteen studies were included. Based upon the pooled data from 13 studies, cystic duct (Lusch et al. in J Endourol 28:261-266, 2014) visualization was 86.5% (95% CI 71.2-96.6%) prior to dissection of Calot's triangle with a 2.5-mg dosage of ICG and 96.5% (95% CI 93.9-98.4%) after dissection. The results were not appreciably different when the dosage was based upon bodyweight. There is moderate quality evidence that the CD is more frequently visualized using ICG than IOC (RR 1.16; 95% CI 1.00-1.35); however, this difference was not statistically significant. This systematic review provides equal results for biliary tract visualization with near-infrared imaging with ICG during LC compared to IOC. Near-infrared imaging with ICG has the potential to replace IOC for biliary mapping. However, methods of near-infrared imaging with ICG vary. Future research is necessary for optimization and standardization of the near-infrared ICG technique.

  3. Near-infrared organic materials and emerging applications

    CERN Document Server

    Wang, Zhi Yuan

    2013-01-01

    Highlighting emerging applications of near-infrared (NIR) organic materials that are currently receiving great attention due to their potential use in optical communications, biomedicine, and camouflage materials, this cutting-edge book reviews important recent advances in an accessible style suitable for researchers and graduates in the field on organic/polymer solar cells, optical communications, and advanced optoelectronics. A beacon in the field literature, this comprehensive work discusses several areas of research and development including thermal control and emission detectors in which

  4. Monitoring Key Parameters in Bioprocesses Using Near-Infrared Technology

    Directory of Open Access Journals (Sweden)

    Elena Tamburini

    2014-10-01

    Full Text Available Near-infrared spectroscopy (NIRS is known to be a rapid and non-destructive technique for process monitoring. Bioprocesses are usually complex, from both the chemical (ill-defined medium composition and physical (multiphase matrix aspects, which poses an additional challenge to the development of robust calibrations. We investigated the use of NIRS for on-line and in-line monitoring of cell, substrate and product concentrations, during aerobic and anaerobic bacterial fermentations, in different fermentation strategies. Calibration models were built up, then validated and used for the automated control of fermentation processes. The capability of NIR in-line to discriminate among differently shaped bacteria was tested.

  5. NIRS - Near infrared spectroscopy - investigations in neurovascular diseases

    DEFF Research Database (Denmark)

    Schytz, Henrik Winther

    2015-01-01

    The purpose of this thesis was to explore and develop methods, where continuous wave near infrared spectroscopy (CW-NIRS) can be applied in different neurovascular diseases, in order to find biological markers that are useful in clinical neurology. To develop a new method to detect changes...... to sympathetic activity was investigated in obstructive sleep apnoea (OSA) patients, who have increased sympathetic activity and risk of stroke. Following successful continuous positive airway pressure (CPAP) therapy, OSA patients decreased their LFOs amplitude, which was interpreted as a marker of decreased...

  6. Near-infrared spectroscopy. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy's (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program

  7. [Application of near infrared spectroscopy in analysis of wood properties].

    Science.gov (United States)

    Yao, Sheng; Pu, Jun-wen

    2009-04-01

    There is substantial interest in the improvement of wood properties through genetic selection or a change in silviculture prescription. Tree breeding purpose requires measurement of a large number of samples. However, traditional methods of assessing wood properties are both time consuming and destructive, limiting the numbers of samples that can be processed, so new method would be needed to find. Near infrared spectroscopy (NIR) is an advanced spectroscopic tool for nondestructive evaluation of wood and it can quickly, accurately estimate the properties of increment core, solid wood or wood meal. The present paper reviews the advances in the research on the wood chemistry properties and anatomical properties using NIR.

  8. Quantitative aspects of near-infrared Fourier transform Raman spectroscopy

    Science.gov (United States)

    Walder, F. T.; Smith, M. J.

    Three fundamental behaviors of vibrational spectroscopy data manipulation routinely associated with Fourier transform infrared (FTIR) spectroscopy are evaluated for near-infrared (NIR) Fourier transform Raman spectroscopy. Spectral reproducibility, spectral subtraction and sensitivity are examined relative to the NIR FT-Raman experiment. Quantitative predictive ability is compared for identical sets of samples containing mixtures of the three xylene isomers. Partial least-squares analysis is used to compare predictive ability. IR performance is found to be better than Raman, though the potential for method development using NIR FT-Raman is shown to be quite promising.

  9. Dual-beam near-infrared Hadamard spectrophotometer

    OpenAIRE

    da Silva, HEB; Pasquini, C

    2001-01-01

    A dual-beam Hadamard multiplexed spectrophotometer is described. The instrument is intended to work in the near-infrared region of the electromagnetic spectrum (900-1800 nm) and is based on the use of a linear Hadamard mask containing 255 multiplexing elements, Simple symmetric Czerny-Turner optics were employed based on 10 cm diameter, 20 cm focus spherical mirrors and a plane grating containing 295 grooves mm(-1). The dual-path system employs the multiplexed beam exiting from the mask, whic...

  10. Review of near-infrared methods for wound assessment

    Science.gov (United States)

    Sowa, Michael G.; Kuo, Wen-Chuan; Ko, Alex C.-T.; Armstrong, David G.

    2016-09-01

    Wound management is a challenging and costly problem that is growing in importance as people are living longer. Instrumental methods are increasingly being relied upon to provide objective measures of wound assessment to help guide management. Technologies that employ near-infrared (NIR) light form a prominent contingent among the existing and emerging technologies. We review some of these technologies. Some are already established, such as indocyanine green fluorescence angiography, while we also speculate on others that have the potential to be clinically relevant to wound monitoring and assessment. These various NIR-based technologies address clinical wound management needs along the entire healing trajectory of a wound.

  11. Near-infrared spectral imaging Michelson interferometer for astronomical applications

    Science.gov (United States)

    Wells, C. W.; Potter, A. E.; Morgan, T. H.

    1980-01-01

    The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.

  12. THE DISTANCE TO THE MASSIVE GALACTIC CLUSTER WESTERLUND 2 FROM A SPECTROSCOPIC AND HST PHOTOMETRIC STUDY

    International Nuclear Information System (INIS)

    Vargas Álvarez, Carlos A.; Kobulnicky, Henry A.; Bradley, David R.; Kannappan, Sheila J.; Norris, Mark A.; Cool, Richard J.; Miller, Brendan P.

    2013-01-01

    We present a spectroscopic and photometric determination of the distance to the young Galactic open cluster Westerlund 2 using WFPC2 imaging from the Hubble Space Telescope (HST) and ground-based optical spectroscopy. HST imaging in the F336W, F439W, F555W, and F814W filters resolved many sources previously undetected in ground-based observations and yielded photometry for 1136 stars. We identified 15 new O-type stars, along with two probable binary systems, including MSP 188 (O3 + O5.5). We fit reddened spectral energy distributions based on the Padova isochrones to the photometric data to determine individual reddening parameters R V and A V for O-type stars in Wd2. We find average values (R V ) = 3.77 ± 0.09 and (A V ) = 6.51 ± 0.38 mag, which result in a smaller distance than most other spectroscopic and photometric studies. After a statistical distance correction accounting for close unresolved binaries (factor of 1.08), our spectroscopic and photometric data on 29 O-type stars yield that Westerlund 2 has a distance (d) = 4.16 ± 0.07 (random) +0.26 (systematic) kpc. The cluster's age remains poorly constrained, with an upper limit of 3 Myr. Finally, we report evidence of a faint mid-IR polycyclic aromatic hydrocarbon ring surrounding the well-known binary candidate MSP 18, which appears to lie at the center of a secondary stellar grouping within Westerlund 2.

  13. Project NIRRVS: Precise Near-Infrared Radial Velocity Surveys

    Science.gov (United States)

    Plavchan, Peter

    2015-08-01

    We present precise radial velocity time-series from a 2.3 micron near-infrared survey to detect exoplanets around ~30 red, low mass, and young stars. We use the CSHELL spectrograph (R~46,000) at the NASA InfraRed Telescope Facility, combined with an isotopic methane absorption gas cell for common optical path relative wavelength calibration. We have developed a sophisticated RV forward modeling code that accounts for fringing and other instrumental artifacts present in the spectra. We are able to reach long-term radial velocity dispersions of ~30 m/s on our survey targets. With a spectral grasp of only 5 nm, this performance is near the expected photon and detector noise limit. We highlight future applications of our instrumentation and RV forward modeling code to iSHELL at IRTF (R~75,000). With iSHELL, we should be able to obtain a precision of less than 5 m/s in the near-infrared.

  14. Near Infrared Spectroscopy: fundamentals, practical aspects and analytical applications

    Directory of Open Access Journals (Sweden)

    Pasquini Celio

    2003-01-01

    Full Text Available This paper intends to review the basic theory of Near Infrared (NIR Spectroscopy and its applications in the field of Analytical Science. It is addressed to the reader who does not have a profound knowledge of vibrational spectroscopy but wants to be introduced to the analytical potentialities of this fascinating technique and, at same time, be conscious of its limitations. Essential theory background, an outline of modern instrument design, practical aspects, and applications in a number of different fields are presented. This work does not intend to supply an intensive bibliography but refers to the most recent, significant and representative material found in the technical literature. Because this paper has been produced as consequence of the First Workshop on Near Infrared Spectroscopy, whose venue was Campinas - Brazil, as a pre-conference activity of the XI National Meeting on Analytical Chemistry (ENQA, it also depicts the state of the art of NIR spectroscopy in Brazil, pointing out the current achievements and the need to take the technology to a level consistent with this country's economical activities.

  15. Patient identification using a near-infrared laser scanner

    Science.gov (United States)

    Manit, Jirapong; Bremer, Christina; Schweikard, Achim; Ernst, Floris

    2017-03-01

    We propose a new biometric approach where the tissue thickness of a person's forehead is used as a biometric feature. Given that the spatial registration of two 3D laser scans of the same human face usually produces a low error value, the principle of point cloud registration and its error metric can be applied to human classification techniques. However, by only considering the spatial error, it is not possible to reliably verify a person's identity. We propose to use a novel near-infrared laser-based head tracking system to determine an additional feature, the tissue thickness, and include this in the error metric. Using MRI as a ground truth, data from the foreheads of 30 subjects was collected from which a 4D reference point cloud was created for each subject. The measurements from the near-infrared system were registered with all reference point clouds using the ICP algorithm. Afterwards, the spatial and tissue thickness errors were extracted, forming a 2D feature space. For all subjects, the lowest feature distance resulted from the registration of a measurement and the reference point cloud of the same person. The combined registration error features yielded two clusters in the feature space, one from the same subject and another from the other subjects. When only the tissue thickness error was considered, these clusters were less distinct but still present. These findings could help to raise safety standards for head and neck cancer patients and lays the foundation for a future human identification technique.

  16. Optimal hemodynamic response model for functional near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad Kamran

    2015-06-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF is modeled by using two Gamma functions with six unknown parameters. The HRF model is supposed to be linear combination of HRF, baseline and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown. An objective function is developed as a square of the residuals with constraints on twelve free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using ten real and fifteen simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis, i.e., (t-value >tcritical and p-value < 0.05.

  17. Length-free near infrared measurement of newborn malnutrition

    Science.gov (United States)

    Mustafa, Fatin Hamimi; Bek, Emily J.; Huvanandana, Jacqueline; Jones, Peter W.; Carberry, Angela E.; Jeffery, Heather E.; Jin, Craig T.; McEwan, Alistair L.

    2016-11-01

    Under-nutrition in neonates can cause immediate mortality, impaired cognitive development and early onset adult disease. Body fat percentage measured using air-displacement-plethysmography has been found to better indicate under-nutrition than conventional birth weight percentiles. However, air-displacement-plethysmography equipment is expensive and non-portable, so is not suited for use in developing communities where the burden is often the greatest. We proposed a new body fat measurement technique using a length-free model with near-infrared spectroscopy measurements on a single site of the body - the thigh. To remove the need for length measurement, we developed a model with five discrete wavelengths and a sex parameter. The model was developed using air-displacement-plethysmography measurements in 52 neonates within 48 hours of birth. We identified instrumentation required in a low-cost LED-based screening device and incorporated a receptor device that can increase the amount of light collected. This near-infrared method may be suitable as a low cost screening tool for detecting body fat levels and monitoring nutritional interventions for malnutrition in neonates and young children in resource-constrained communities.

  18. A near-infrared genetically targetable and activatable photosensitizer

    Science.gov (United States)

    He, Jianjun; Wang, Yi; Missinato, Maria A.; Onuoha, Ezenwa; Perkins, Lydia A.; Watkins, Simon C.; St. Croix, Claudette M.; Tsang, Michael; Bruchez, Marcel P.

    2016-01-01

    Upon illumination, photosensitizer molecules produce reactive oxygen species (ROS) that can be utilized for functional manipulation of living cells, including protein inactivation, targeted damage introduction, and cellular ablation. Photosensitizers used to date have been either exogenous, resulting in delivery and removal challenges, or genetically encoded proteins that form or bind a native photosensitizing molecule, resulting in a constitutively active photosensitizer inside the cell. By binding a heavy-atom substituted fluorogenic dye with a genetically encoded Fluorogen Activating Protein (FAP), we demonstrate an ‘on-demand’ activated photosensitizer that produces singlet oxygen and fluorescence only when FAP-bound and activated with near infrared light. This Targeted and Activated Photosensitizer (TAPs) approach enables protein inactivation and targeted cell killing in cultured cells and rapid targeted lineage ablation in living larval and adult zebrafish. The near-infrared excitation and emission of this FAP-TAPs photosensitizer module provides a new spectral range for photosensitizer proteins, useful for imaging, manipulation and cellular ablation deep within living organisms. PMID:26808669

  19. Galaxy evolution and faint counts in the near-infrared.

    Science.gov (United States)

    Rocca-Volmerange, B.; Fioc, M.

    The contribution of distant galaxies to the diffuse near-infrared and submillimetric extragalactic backgrounds can be predicted with the help of a multispectral modelling of the faint galaxy counts. In particular, star-forming galaxies have to be taken into account as well as old evolved galaxies implying a coherent simulation of the stellar emission from the blue to the near-infrared with gas and dust contributions. For this reason, an extension of previous UV and visible models is worked out with a detailed synthesis population model for strong, short timescale starbursts in a dusty medium in the near IR (Lançon and Rocca-Volmerange, 1995) by using a spectral library of stars from 1.4 to 2.5 μm observed with the FTS instrument at the 3.60-m/CFHT and fitted on starburst spectra observed with the instrument. Then an extension of the authors' atlas of synthetic galaxies was carried out, the near-IR emission (K band) being carefully normalised to the blue (B, V or J+ bands) emission. Galaxy counts in the K band are modelled in various cosmologies. The comparison with observations raises questions to be discussed with results from visible counts.

  20. Single Pixel Black Phosphorus Photodetector for Near-Infrared Imaging.

    Science.gov (United States)

    Miao, Jinshui; Song, Bo; Xu, Zhihao; Cai, Le; Zhang, Suoming; Dong, Lixin; Wang, Chuan

    2018-01-01

    Infrared imaging systems have wide range of military or civil applications and 2D nanomaterials have recently emerged as potential sensing materials that may outperform conventional ones such as HgCdTe, InGaAs, and InSb. As an example, 2D black phosphorus (BP) thin film has a thickness-dependent direct bandgap with low shot noise and noncryogenic operation for visible to mid-infrared photodetection. In this paper, the use of a single-pixel photodetector made with few-layer BP thin film for near-infrared imaging applications is demonstrated. The imaging is achieved by combining the photodetector with a digital micromirror device to encode and subsequently reconstruct the image based on compressive sensing algorithm. Stationary images of a near-infrared laser spot (λ = 830 nm) with up to 64 × 64 pixels are captured using this single-pixel BP camera with 2000 times of measurements, which is only half of the total number of pixels. The imaging platform demonstrated in this work circumvents the grand challenges of scalable BP material growth for photodetector array fabrication and shows the efficacy of utilizing the outstanding performance of BP photodetector for future high-speed infrared camera applications. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Measuring the Hubble constant with Type Ia supernovae as near-infrared standard candles

    Science.gov (United States)

    Dhawan, Suhail; Jha, Saurabh W.; Leibundgut, Bruno

    2018-01-01

    The most precise local measurements of H0 rely on observations of Type Ia supernovae (SNe Ia) coupled with Cepheid distances to SN Ia host galaxies. Recent results have shown tension comparing H0 to the value inferred from CMB observations assuming ΛCDM, making it important to check for potential systematic uncertainties in either approach. To date, precise local H0 measurements have used SN Ia distances based on optical photometry, with corrections for light curve shape and colour. Here, we analyse SNe Ia as standard candles in the near-infrared (NIR), where luminosity variations in the supernovae and extinction by dust are both reduced relative to the optical. From a combined fit to 9 nearby calibrator SNe with host Cepheid distances from Riess et al. (2016) and 27 SNe in the Hubble flow, we estimate the absolute peak J magnitude MJ = -18.524 ± 0.041 mag and H0 = 72.8 ± 1.6 (statistical) ±2.7 (systematic) km s-1 Mpc-1. The 2.2% statistical uncertainty demonstrates that the NIR provides a compelling avenue to measuring SN Ia distances, and for our sample the intrinsic (unmodeled) peak J magnitude scatter is just 0.10 mag, even without light curve shape or colour corrections. Our results do not vary significantly with different sample selection criteria, though photometric calibration in the NIR may be a dominant systematic uncertainty. Our findings suggest that tension in the competing H0 distance ladders is likely not a result of supernova systematics that could be expected to vary between optical and NIR wavelengths, like dust extinction. We anticipate further improvements in H0 with a larger calibrator sample of SNe Ia with Cepheid distances, more Hubble flow SNe Ia with NIR light curves, and better use of the full NIR photometric data set beyond simply the peak J-band magnitude.

  2. Nonlinear femtosecond near infrared laser structuring in oxide glasses

    Science.gov (United States)

    Royon, Arnaud

    Three-dimensional femtosecond laser structuring has a growing interest because of its ease of implementation and the numerous possible applications in the domain of photonic components. Structures such as waveguides, diffraction gratings, optical memories or photonic crystals can be fabricated thanks to this technique. Its use with oxide glasses is promising because of several advantages; they are resistant to flux and ageing, their chemical composition can easily be changed to fit the well-defined requirements of an application. They can already be found in Raman amplifiers, optical fibers, fiber lasers, and other devices. This thesis is based on two axes. The first axis consists in characterizing the linear and nonlinear optical properties of bulk vitreous materials in order to optimize their composition with a particular application in view. Within this context, the nonlinear optical properties, their physical origins (electronic and nuclear) as well as their characteristic response times (from a few femtoseconds to a few hundreds of picoseconds) are described within the Born-Oppenheimer approximation. Fused silica and several sodium-borophosphate glasses containing different concentrations in niobium oxide have been studied. Results show that the nonlinear optical properties of fused silica are mainly from electronic origin, whereas in the sodium-borophosphate glasses, the contribution from nuclear origin becomes predominant when the concentration of niobium oxide exceeds 30%. The second axis is based on the structuring of materials. Three commercially available fused silica samples presenting different fabrication conditions (therefore distinct impurity levels) and irradiated with a near infrared femtosecond laser have been studied. The laser induced defects have been identified by means of several spectroscopic techniques. They show the formation of color centers as well as a densification inside the irradiated area. Their linear refractive index and

  3. Non-neuronal evoked and spontaneous hemodynamic changes in the anterior temporal region of the human head may lead to misinterpretations of functional near-infrared spectroscopy signals.

    Science.gov (United States)

    Zimeo Morais, Guilherne Augusto; Scholkmann, Felix; Balardin, Joana Bisol; Furucho, Rogério Akira; de Paula, Renan Costa Vieira; Biazoli, Claudinei Eduardo; Sato, João Ricardo

    2018-01-01

    Several functional near-infrared spectroscopy (fNIRS) studies report their findings based on changes of a single chromophore, usually concentration changes of oxygenated hemoglobin ([[Formula: see text

  4. “Self-absorption” phenomenon in near-infrared Fourier transform Raman spectroscopy of cellulosic and lignocellulosic materials

    Science.gov (United States)

    Umesh P. Agarwal; Nancy Kawai

    2005-01-01

    While cellulosic and lignocellulosic materials have been studied using conventional Raman spectroscopy, availability of near-infrared (NIR) Fourier transform (FT) Raman instrumentation has made studying these materials much more convenient. This is especially true because the problem of laser-induced fluorescence can be avoided or minimized in FT- Raman (NIR Raman)...

  5. Combined optimal-pathlengths method for near-infrared spectroscopy analysis

    International Nuclear Information System (INIS)

    Liu Rong; Xu Kexin; Lu Yanhui; Sun Huili

    2004-01-01

    Near-infrared (NIR) spectroscopy is a rapid, reagent-less and nondestructive analytical technique, which is being increasingly employed for quantitative application in chemistry, pharmaceutics and food industry, and for the optical analysis of biological tissue. The performance of NIR technology greatly depends on the abilities to control and acquire data from the instrument and to calibrate and analyse data. Optical pathlength is a key parameter of the NIR instrument, which has been thoroughly discussed in univariate quantitative analysis in the presence of photometric errors. Although multiple wavelengths can provide more chemical information, it is difficult to determine a single pathlength that is suitable for each wavelength region. A theoretical investigation of a selection procedure for multiple pathlengths, called the combined optimal-pathlengths (COP) method, is identified in this paper and an extensive comparison with the single pathlength method is also performed on simulated and experimental NIR spectral data sets. The results obtained show that the COP method can greatly improve the prediction accuracy in NIR spectroscopy quantitative analysis

  6. Porphyrin Based Near Infrared-Absorbing Materials for Organic Photovoltaics

    Science.gov (United States)

    Zhong, Qiwen

    The conservation and transformation of energy is essential to the survival of mankind, and thus concerns every modern society. Solar energy, as an everlasting source of energy, holds one of the key solutions to some of the most urgent problems the world now faces, such as global warming and the oil crisis. Advances in technologies utilizing clean, abundant solar energy, could be the steering wheel of our societies. Solar cells, one of the major advances in converting solar energy into electricity, are now capturing people's interest all over the globe. While solar cells have been commercially available for many years, the manufacturing of solar cells is quite expensive, limiting their broad based implementation. The cost of solar cell based electricity is 15-50 cents per kilowatt hour (¢/kwh), depending on the type of solar cell, compared to 0.7 ¢/kwh for fossil fuel based electricity. Clearly, decreasing the cost of electricity from solar cells is critical for their wide spread deployment. This will require a decrease in the cost of light absorbing materials and material processing used in fabricating the cells. Organic photovoltaics (OPVs) utilize organic materials such as polymers and small molecules. These devices have the advantage of being flexible and lower cost than conventional solar cells built from inorganic semiconductors (e.g. silicon). The low cost of OPVs is tied to lower materials and fabrication costs of organic cells. However, the current power conversion efficiencies of OPVs are still below 15%, while convention crystalline Si cells have efficiencies of 20-25%. A key limitation in OPVs today is their inability to utilize the near infrared (NIR) portion of the solar spectrum. This part of the spectrum comprises nearly half of the energy in sunlight that could be used to make electricity. The first and foremost step in conversion solar energy conversion is the absorption of light, which nature has provided us optimal model of, which is

  7. Signal-to-Noise Contribution of Principal Component Loads in Reconstructed Near-Infrared Raman Tissue Spectra

    NARCIS (Netherlands)

    Grimbergen, M. C. M.; van Swol, C. F. P.; Kendall, C.; Verdaasdonk, R. M.; Stone, N.; Bosch, J. L. H. R.

    The overall quality of Raman spectra in the near-infrared region, where biological samples are often studied, has benefited from various improvements to optical instrumentation over the past decade. However, obtaining ample spectral quality for analysis is still challenging due to device

  8. Task Dependent Prefrontal Dysfunction in Persons with Asperger's Disorder Investigated with Multi-Channel Near-Infrared Spectroscopy

    Science.gov (United States)

    Iwanami, Akira; Okajima, Yuka; Ota, Haruhisa; Tani, Masayuki; Yamada, Takashi; Hashimoro, Ryuichiro; Kanai, Chieko; Watanabe, Hiromi; Yamasue, Hidenori; Kawakubo, Yuki; Kato, Nobumasa

    2011-01-01

    Dysfunction of the prefrontal cortex has been previously reported in individuals with Asperger's disorder. In the present study, we used multi-channel near-infrared spectroscopy (NIRS) to detect changes in the oxygenated hemoglobin concentration ([oxy-Hb]) during two verbal fluency tasks. The subjects were 20 individuals with Asperger's disorder…

  9. Reduced Prefrontal Hemodynamic Response in Pediatric Obsessive-Compulsive Disorder as Measured by Near-Infrared Spectroscopy

    Science.gov (United States)

    Ota, Toyosaku; Iida, Junzo; Sawada, Masayuki; Suehiro, Yuko; Yamamuro, Kazuhiko; Matsuura, Hiroki; Tanaka, Shohei; Kishimoto, Naoko; Negoro, Hideki; Kishimoto, Toshifumi

    2013-01-01

    Recent developments in near-infrared spectroscopy (NIRS) have enabled non-invasive clarification of brain functions in psychiatric disorders. Functional neuroimaging studies of patients with obsessive-compulsive disorder (OCD) have suggested that the frontal cortex and subcortical structures may play a role in the pathophysiology of the disorder.…

  10. Prediction of pork quality with near infrared spectroscopy (NIRS): 1. Feasibility and robustness of NIRS measurements at laboratory scale

    NARCIS (Netherlands)

    Kapper, C.; Klont, R.E.; Verdonk, J.M.A.J.; Urlings, H.A.P.

    2012-01-01

    The objective was to study prediction of pork quality by near infrared spectroscopy (NIRS) technology in the laboratory. A total of 131 commercial pork loin samples were measured with NIRS. Predictive equations were developed for drip loss %, colour L*, a*, b* and pH ultimate (pHu). Equations with

  11. Effective rumen degradation of dry matter, crude protein and neutral detergent fibre in forage determined by near infrared reflectance spectroscopy

    DEFF Research Database (Denmark)

    Ohlsson, C; Houmøller, L P; Weisbjerg, Martin Riis

    2007-01-01

    The objective of the present study was to examine if near infrared reflectance spectroscopy (NIRS) could be used to predict degradation parameters and effective degradation from scans of original forage samples. Degradability of dry matter (DM), crude protein (CP) and neutral detergent fibre (NDF...

  12. Efficacy of a near-infrared light device in pediatric intravenous cannulation: a randomized controlled trial.

    Science.gov (United States)

    Perry, Andrew M; Caviness, Alison Chantal; Hsu, Deborah C

    2011-01-01

    To determine whether the use of a near-infrared light venipuncture aid (VeinViewer; Luminetx Corporation, Memphis, Tenn) would improve the rate of successful first-attempt placement of intravenous (IV) catheters in a high-volume pediatric emergency department (ED). Patients younger than 20 years with standard clinical indications for IV access were randomized to have IV placement by ED nurses (in 3 groups stratified by 5-year blocks of nursing experience) using traditional methods (standard group) or with the aid of the near-infrared light source (device group). If a vein could not be cannulated after 3 attempts, patients crossed over from one study arm to the other, and study nurses attempted placement with the alternative technique. The primary end point was first-attempt success rate for IV catheter placement. After completion of patient enrollment, a questionnaire was completed by study nurses as a qualitative assessment of the device. A total of 123 patients (median age, 3 years) were included in the study: 62 in the standard group and 61 in the device group. There was no significant difference in first-attempt success rate between the standard (79.0%, 95% confidence interval [CI], 66.8%-88.3%) and device (72.1%, 95% CI, 59.2%-82.9%) groups. Of the 19 study nurses, 14 completed the questionnaire of whom 70% expressed neutral or unfavorable assessments of the device in nondehydrated patients without chronic underlying medical conditions and 90% found the device a helpful tool for patients in whom IV access was difficult. First-attempt success rate for IV placement was nonsignificantly higher without than with the assistance of a near-infrared light device in a high-volume pediatric ED. Nurses placing IVs did report several benefits to use of the device with specific patient groups, and future research should be conducted to demonstrate the role of the device in these patients.

  13. Peering through the veil: near-infrared photometry and extinction for the Galactic nuclear star cluster. Accurate near infrared H, Ks, and L' photometry and the near-infrared extinction-law toward the central parsec of the Galaxy

    Science.gov (United States)

    Schödel, R.; Najarro, F.; Muzic, K.; Eckart, A.

    2010-02-01

    Context. The nuclear star cluster of the Galaxy is an important template for understanding its extragalactic counterparts, which can currently not be resolved into individual stars. Important drawbacks of observations of the Galactic center are, however, the presence of strong and spatially highly variable interstellar extinction and extreme crowding of the sources, which makes the use of adaptive optics techniques necessary. Both points pose serious obstacles to precise photometry that is needed for analyzing the stellar population. Aims: The aims of this work are to provide accurate photometry in multiple near-infrared broadband filters, to determine the power-law index of the extinction-law toward the central parsec of the Galaxy, to provide measurements of the absolute extinction toward the Galactic center, and finally to measure the spatial variability of extinction on arcsecond scales. Methods: We use observations of the central parsec of the Milky Way that were obtained with the near-infrared camera and adaptive optics system NAOS/CONICA at the ESO VLT unit telescope 4. The photometric method takes into account anisoplanatic effects and limits the corresponding systematic uncertainties to ≲2%. Absolute values for the extinction in the H, Ks, and L'-bands as well as of the power-law indices of the H to Ks and Ks to L' extinction-laws are measured based on the well-known properties of red clump stars. Extinction maps are derived based on H-Ks and Ks-L' colors. Results: We present Ks-band photometry for ~7700 stars, and additionally photometry for stars detected in the H and/or L'-bands. From a number of recently published values we compute a mean distance of the Galactic center of R0=8.03±0.15 kpc, which has an uncertainty of just 2%. Based on this R0 and on the RC method, we derive absolute mean extinction values toward the central parsec of the Galaxy of AH=4.48±0.13 mag, AKs=2.54±0.12 mag, and AL'=1.27±0.18 mag. We estimate values of the power

  14. Functional Near Infrared Spectroscopy: Watching the Brain in Flight

    Science.gov (United States)

    Harrivel, Angela; Hearn, Tristan A.

    2012-01-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neurological sensing technique applicable to optimizing human performance in transportation operations, such as commercial aviation. Cognitive state can be determined via pattern classification of functional activations measured with fNIRS. Operational application calls for further development of algorithms and filters for dynamic artifact removal. The concept of using the frequency domain phase shift signal to tune a Kalman filter is introduced to improve the quality of fNIRS signals in real-time. Hemoglobin concentration and phase shift traces were simulated for four different types of motion artifact to demonstrate the filter. Unwanted signal was reduced by at least 43%, and the contrast of the filtered oxygenated hemoglobin signal was increased by more than 100% overall. This filtering method is a good candidate for qualifying fNIRS signals in real time without auxiliary sensors.

  15. Near infrared spectroscopy in the development of solid dosage forms.

    Science.gov (United States)

    Räsänen, Eetu; Sandler, Niklas

    2007-02-01

    The use of near infrared (NIR) spectroscopy has rapidly grown partly due to demands of process analytical applications in the pharmaceutical industry. Furthermore, newest regulatory guidelines have advanced the increase of the use of NIR technologies. The non-destructive and non-invasive nature of measurements makes NIR a powerful tool in characterization of pharmaceutical solids. These benefits among others often make NIR advantageous over traditional analytical methods. However, in addition to NIR, a wide variety of other tools are naturally also available for analysis in pharmaceutical development and manufacturing, and those can often be more suitable for a given application. The versatility and rapidness of NIR will ensure its contribution to increased process understanding, better process control and improved quality of drug products. This review concentrates on the use of NIR spectroscopy from a process research perspective and highlights recent applications in the field.

  16. Neuroimaging with functional near infrared spectroscopy: From formation to interpretation

    Science.gov (United States)

    Herrera-Vega, Javier; Treviño-Palacios, Carlos G.; Orihuela-Espina, Felipe

    2017-09-01

    Functional Near Infrared Spectroscopy (fNIRS) is gaining momentum as a functional neuroimaging modality to investigate the cerebral hemodynamics subsequent to neural metabolism. As other neuroimaging modalities, it is neuroscience's tool to understand brain systems functions at behaviour and cognitive levels. To extract useful knowledge from functional neuroimages it is critical to understand the series of transformations applied during the process of the information retrieval and how they bound the interpretation. This process starts with the irradiation of the head tissues with infrared light to obtain the raw neuroimage and proceeds with computational and statistical analysis revealing hidden associations between pixels intensities and neural activity encoded to end up with the explanation of some particular aspect regarding brain function.To comprehend the overall process involved in fNIRS there is extensive literature addressing each individual step separately. This paper overviews the complete transformation sequence through image formation, reconstruction and analysis to provide an insight of the final functional interpretation.

  17. Near-infrared-responsive, superparamagnetic Au@Co nanochains

    Directory of Open Access Journals (Sweden)

    Varadee Vittur

    2017-08-01

    Full Text Available This manuscript describes a new type of nanomaterial, namely superparamagnetic Au@Co nanochains with optical extinctions in the near infrared (NIR. The Au@Co nanochains were synthesized via a one-pot galvanic replacement route involving a redox-transmetalation process in aqueous medium, where Au salt was reduced to form Au shells on Co seed templates, affording hollow Au@Co nanochains. The Au shells serve not only as a protective coating for the Co nanochain cores, but also to give rise to the optical properties of these unique nanostructures. Importantly, these bifunctional, magneto-optical Au@Co nanochains combine the advantages of nanophotonics (extinction at ca. 900 nm and nanomagnetism (superparamagnetism and provide a potentially useful new nanoarchitecture for biomedical or catalytic applications that can benefit from both activation by light and manipulation using an external magnetic field.

  18. Near-infrared photochemistry at interfaces based on upconverting nanoparticles.

    Science.gov (United States)

    Wu, Si; Butt, Hans-Jürgen

    2017-09-13

    Near-infrared (NIR) light is better suited than ultraviolet (UV) light for biomedical applications because it penetrates deeper into tissue and causes less photodamage to biological systems. The use of NIR light to control biointerfaces has attracted increasing interest. Here, we review NIR photoreactions at interfaces based on upconverting nanoparticles (UCNPs). UCNPs can convert NIR light to UV or visible light, which can then induce photoreactions of photosensitive compounds. This process is referred to as UCNP-assisted photochemistry. Recently, we and others demonstrated UCNP-assisted photochemistry at interfaces to control interfacial properties of nano-carriers, implants, emulsions, and cells. We introduce the fundamentals of UCNP-assisted photochemistry at interfaces, highlight its potential applications, and discuss remaining challenges.

  19. Gum Arabic authentication and mixture quantification by near infrared spectroscopy

    DEFF Research Database (Denmark)

    Dong, Yongjiang; Sørensen, Klavs Martin; He, Sailing

    2017-01-01

    A rapid and reliable method is developed for Gum Arabic authentication based on Near Infrared (NIR) spectroscopy and chemometric methods. On a large industrial collection of authentic gum Arabics, the two major Acacia gum species, Acacia senegal and Acacia seyal could be assigned perfectly...... by the NIR spectroscopic method. In addition, a partial least squares (PLS) regression model is calibrated to predict the blending percentage of the two pure gum types, producing an accuracy, root mean square error of cross validation (RMSECV) of 2.8%. Sampling of the Gum Arabic ‘tears’ is discussed......, and it was determined that subsamples from three ‘tears’ is required for a representative result. It is concluded that NIR spectroscopy is a very powerful and reliable method for authenticity testing of Gum Arabic species....

  20. Diverse Near-Infrared Resonant Gold Nanostructures for Biomedical Applications

    KAUST Repository

    Huang, Jianfeng

    2015-12-08

    The ability of near-infrared (NIR) light to penetrate tissues deeply and to target malignant sites with high specificity via precise temporal and spatial control of light illumination makes it useful for diagnosing and treating diseases. Owing to their unique biocompatibility, surface chemistry and optical properties, gold nanostructures offer advantages as in vivo NIR photosensitizers. This chapter describes the recent progress in the varied use of NIR-resonant gold nanostructures for NIR-light-mediated diagnostic and therapeutic applications. We begin by describing the unique biological, chemical and physical properties of gold nanostructures that make them excellent candidates for biomedical applications. From here, we make an account of the basic principles involved in the diagnostic and therapeutic applications where gold nanostructures have set foot. Finally, we review recent developments in the fabrication and use of diverse NIR-resonant gold nanostructures for cancer imaging and cancer therapy.

  1. Moisture determination in hygroscopic drug substances by near infrared spectroscopy.

    Science.gov (United States)

    Zhou, X; Hines, P; Borer, M W

    1998-06-01

    The moisture level in a hygroscopic drug substance was successfully determined by near infrared spectroscopy using coulometric Karl Fischer titration as the reference method. The importance of sample handling and proper application of the reference technique are stressed for this difficult sample type. Samples were prepared with moisture levels from 0.5 to 11.4% (w/w) and reflectance spectra were collected over the spectral range 1100-2500 nm. Calibration models were built using partial least squares (PLS) regression analysis. Optimum models were found by choosing proper spectral ranges and number of PLS factors. The best calibration models were built using first derivative spectra, a spectral range of 1850-1936 nm and 5 PLS factors. The corresponding standard error of prediction was 0.11% (w/w) water.

  2. Near-infrared Molecular Probes for In Vivo Imaging

    Science.gov (United States)

    Zhang, Xuan; Bloch, Sharon; Akers, Walter; Achilefu, Samuel

    2012-01-01

    Cellular and tissue imaging in the near-infrared (NIR) wavelengths between 700 and 900 nm is advantageous for in vivo because of the low absorption of biological molecules in this region. This Unit presents protocols for small animal imaging using planar and fluorescence lifetime imaging techniques. Included is an overview of NIR fluorescence imaging of cells and small animals using NIR organic fluorophores, nanoparticles, and multimodal imaging probes. The development, advantages, and application of NIR fluorescent probes that have been used for in vivo imaging are also summarized. The use of NIR agents in conjunction with visible dyes and considerations in selecting imaging agents are discussed. We conclude with practical considerations for the use of these dyes in cell and small animal imaging applications. PMID:22470154

  3. Gold nanoclusters with bright near-infrared photoluminescence.

    Science.gov (United States)

    Pramanik, Goutam; Humpolickova, Jana; Valenta, Jan; Kundu, Paromita; Bals, Sara; Bour, Petr; Dracinsky, Martin; Cigler, Petr

    2018-02-22

    The increase in nonradiative pathways with decreasing emission energy reduces the luminescence quantum yield (QY) of near-infrared photoluminescent (NIR PL) metal nanoclusters. Efficient surface ligand chemistry can significantly improve the luminescence QY of NIR PL metal nanoclusters. In contrast to the widely reported but modestly effective thiolate ligand-to-metal core charge transfer, we show that metal-to-ligand charge transfer (MLCT) can be used to greatly enhance the luminescence QY of NIR PL gold nanoclusters (AuNCs). We synthesized water-soluble and colloidally stable NIR PL AuNCs with unprecedentedly high QY (∼25%) upon introduction of triphenylphosphonium moieties into the surface capping layer. By using a combination of spectroscopic and theoretical methods, we provide evidence for gold core-to-ligand charge transfer occurring in AuNCs. We envision that this work can stimulate the development of these unusually bright AuNCs for promising optoelectronic, bioimaging, and other applications.

  4. Near-infrared spectroscopy for monitoring muscle oxygenation

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Piantadosi, C A

    2000-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...... algorithms allow assessment of the oxidation-reduction (redox) state of the copper moiety (CuA) of mitochondrial cytochrome c oxidase and, with the use of specific tracers, accurate assessment of regional blood flow. NIRS has demonstrated utility for monitoring changes in muscle oxygenation and blood flow...... during submaximal and maximal exercise and under pathophysiological conditions including cardiovascular disease and sepsis. During work, the extent to which skeletal muscles deoxygenate varies according to the type of muscle, type of exercise and blood flow response. In some instances, a strong...

  5. Design of planar chiral metamaterials for near-infrared regime

    Science.gov (United States)

    Kaya, Sabri; Turkmen, Mustafa; Topaktas, Omer

    2017-01-01

    Planar chiral metamaterials (PCMs) comprising double-layer dielectric-metal-dielectric resonant structures in the shape of a windmill are presented for near-infrared regime. The circular dichroism is retrieved from transmission spectra. Effects of used materials on circular dichroism characteristics of PCM arrays are investigated for the first time. The dependence of spectral characteristics on the geometrical parameters of the PCMs is analyzed by the finite-difference time-domain method. The observations indicated that the circular dichroism characteristics of the proposed PCM arrays are strongly dependent on the type of metal and dielectric materials. Due to the enhanced chiroptical near-field response and tunable spectral behavior, proposed PCM arrays may have potential for biosensing applications of chiral biomolecules.

  6. Predicting rapeseed oil content with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Roberta Rossato

    2013-12-01

    Full Text Available The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R² of 0.92, error of calibration (SEC of 0.78, and error of performance (SEP of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

  7. Is near-infrared spectroscopy clinically useful in the preterm infant?

    DEFF Research Database (Denmark)

    da Costa, Cristine Sortica; Greisen, Gorm; Austin, Topun

    2015-01-01

    Near-infrared spectroscopy (NIRS) has been used to study cerebral haemodynamics and oxygenation in the preterm infant for many years, but its use as a clinical tool has remained elusive. This has partly been due to the challenges of providing a continuous quantitative measurement that is valid...... and reliable, as well as demonstrating that interventions based on NIRS measurements improve clinical outcome. Recent studies investigating cerebral oxygenation targeted treatment, and defining optimal blood pressure based on an assessment of cerebrovascular reactivity, suggest ways in which this technology...

  8. Prediction of dissolution profiles by non-destructive near infrared spectroscopy in tablets subjected to different levels of strain.

    Science.gov (United States)

    Hernandez, Eduardo; Pawar, Pallavi; Keyvan, Golshid; Wang, Yifan; Velez, Natasha; Callegari, Gerardo; Cuitino, Alberto; Michniak-Kohn, Bozena; Muzzio, Fernando J; Romañach, Rodolfo J

    2016-01-05

    This study describes how the strain on formulation components affects dissolution and how near infrared spectroscopy can be used to predict dissolution. Strain (exposure to shear stress) applied during powder mixing affects the interaction between formulation components. Particles experience shear strain when they move relative to each other in a process affecting the properties of the final product. This stress affects the dissolution of oral solid dosages forms. However, dissolution testing destroys the entire tablet, making it impossible to further evaluate tablet properties when an out of specification result is obtained. Thus, a nondestructive technique such as near infrared spectroscopy is desirable to predict dissolution. The aim of this study was to predict dissolution on tablets with different levels of strain (shear) using near infrared spectroscopy in combination with multivariate data analysis. Shear was induced using a modified Couette cell on the powder mixture and tablets from these mixtures were produced using a tablet press emulator. Tablets produced with different strain levels were measured using near infrared spectroscopy. Spectra were obtained in diffuse reflectance mode and pretreated with baseline correction to maintain the physical and chemical information of the tablets. Dissolution profiles were obtained using USP Apparatus 2 as a reference method. Principal component analysis was used to study the sources of variation in the spectra obtained. Partial least squares 2 was used to predict dissolution on tablets with different levels of strain.

  9. Optimal hemodynamic response model for functional near-infrared spectroscopy.

    Science.gov (United States)

    Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

  10. UBVRI CCD photometric studies of open clusters Berkeley 15, Czernik 18 and NGC 2401.

    Science.gov (United States)

    Sujatha, S.; Babu, G. S. D.; Ananthamurthy, Sharath

    2004-12-01

    CCD photometric observations of three open clusters Berkeley 15 (=OCl 414), Czernik 18 (=OCl 426) and NGC 2401 (=OCl 588), obtained for the first time in UBVRI filters down to V=20 mag, are presented here. They are located at distances of 1259, 955 and 3467 parsecs with their respective ages estimated as ~5 x 109 years, ~0.8 to 1 x 109 years and ~1 x 109 years. While OCl 414 and OCl 426 are in the direction of the Auriga - Perseus constellations, OCl 588 is placed in the direction of Ophiuchus constellation in our Galaxy. The clusters studied here are of intermediate and old age category.

  11. A photometric study of globular clusters observed by the APOGEE survey

    Science.gov (United States)

    Mészáros, Szabolcs; García-Hernández, D. A.; Cassisi, Santi; Monelli, Matteo; Szigeti, László; Dell'Agli, Flavia; Derekas, Alíz; Masseron, Thomas; Shetrone, Matthew; Stetson, Peter; Zamora, Olga

    2018-04-01

    In this paper, we describe the photometric and spectroscopic properties of multiple populations in seven northern globular clusters. In this study, we employ precise ground-based photometry from the private collection of Stetson, space photometry from the Hubble Space Telescope (HST), literature abundances of Na and O, and Apache Point Observatory Galactic Evolution Experiment (APOGEE) survey abundances for Mg, Al, C, and N. Multiple populations are identified by their position in the CU, B, I -Vpseudo colour-magnitude diagram (pseudo-CMD) and confirmed with their chemical composition determined using abundances. We confirm the expectation from previous studies that the red giant branches (RGBs) in all seven clusters are split and the different branches have different chemical compositions. The Mg-Al anticorrelations were well explored by the APOGEE and Gaia-ESO surveys for most globular clusters, some clusters showing bimodal distributions, while others continuous distributions. Even though the structure (i.e. bimodal versus continuous) of Mg-Al can greatly vary, the Al-rich and Al-poor populations do not seem to have very different photometric properties, agreeing with theoretical calculations. There is no one-to-one correspondence between the Mg-Al anticorrelation shape (bimodal versus continuous) and the structure of the RGB seen in the HST pseudo-CMDs, with the HST photometric information usually implying more complex formation/evolution histories than the spectroscopic ones. We report on finding two second-generation horizontal branch (HB) stars in M5, and five second-generation asymptotic giant branch (AGB) stars in M92, which is the most metal-poor cluster to date in which second-generation AGB stars have been observed.

  12. Pharmaceutical Raw Material Identification Using Miniature Near-Infrared (MicroNIR) Spectroscopy and Supervised Pattern Recognition Using Support Vector Machine

    OpenAIRE

    Sun, Lan; Hsiung, Chang; Pederson, Christopher G.; Zou, Peng; Smith, Valton; von Gunten, Marc; O?Brien, Nada A.

    2016-01-01

    Near-infrared spectroscopy as a rapid and non-destructive analytical technique offers great advantages for pharmaceutical raw material identification (RMID) to fulfill the quality and safety requirements in pharmaceutical industry. In this study, we demonstrated the use of portable miniature near-infrared (MicroNIR) spectrometers for NIR-based pharmaceutical RMID and solved two challenges in this area, model transferability and large-scale classification, with the aid of support vector machin...

  13. Near infrared analysis (NIRA) as a method to simultaneously evaluate spectral featureless constituents in soils

    International Nuclear Information System (INIS)

    Ben-dor, E.; Banin, A.

    1995-01-01

    High resolution diffuse reflectance spectra (3113 spectral points) in the near infrared region (NIR) were recorded for 91 soil samples from Israel. Ten soil constituents (total iron [Fe2O3], aluminum [Al2O3]), silica [SiO2], potassium [K2O], and phosphorous [P3O2], loss on ignition residual [LOI], free iron oxides [Fed], aggregate size (1.5-2mm) fraction [F1], average aggregate size (mm) [AVGR], and sodium adsorption percentages [CNaP]) were measured by routine methods employed in soil laboratories. An empirical model to predict each property from its reflectance spectrum in the near infrared spectral region was developed by adapting the near infrared analysis (NIRA) technique. Several data manipulations were used in order to obtain optimum performance. The optimum performance of several soil constituents was found to be at 3113 spectral points (Al2O3, Fed, and K2O) and 310 spectral points (Fe2O3), whereas for others (SiO2, AVGR, and F1) even 25 spectral points provided sufficient performance. Strong support for the capability of NIRA was obtained by a careful examination of the possible correlation between spectrally active soil properties (clay content [CLAY], specific surface area [SSA], hygroscopic moisture [HIGF] and calcite [CaCO3]), which were studied elsewhere, and the featureless constituents studied here. A slight bias was found for the prediction of Al2O3 and Fed, and a greater bias was found for K2O, suggesting that further study regarding the prediction of these constituents is needed. It was concluded that NIRA is a very promising vehicle for rapid and nonrestrictive analysis of soil materials

  14. Shining new light on treating dementia: integrating EEG neurofeedback training and near infrared photobiomodulation (Conference Presentation)

    Science.gov (United States)

    Berman, Marvin H.

    2017-02-01

    Evidence from animal and human studies regarding the biological impact of near infrared light stimulation has significantly increased of late noting the disease modifying properties of photobiomodulation for improving physical and cognitive performance in subjects with a variety of neurodegenerative conditions. Concurrently we see a growing body of literature regarding the efficacy of operant conditioning of EEG amplitude and connectivity in remediating both cognitive and behavioral symptoms of both neuropsychiatric and neurodegenerative disorders including traumatic brain injury, ADHD, PTSD, and dementia. This presentation seeks to outline a treatment model combining these two treatment methods to stop the progression of neurodegeneration using pulsed (10hz), brief (5-20minutes) repeated (1-2x/daily) transcranial and intranasal photobiomodulation with 810nm and 1068nm near infrared phototherapy and operant conditioning of EEG amplitude and coherence. Our initial study on treating dementia with EEG biofeedback (N=37) showed neuroplasticity's potential for modifying cognitive and behavioral symptoms using the evidence from decades of neurological research that never felt the warm touch of a translational researcher's hand. The near infrared interventional studies clarified the order of treatment, i.e., tissue health and renewal were achieved, followed by neural connectivity enhancement. Significant improvements in both immediate and delayed recall and praxis memory as well as executive functioning and behavioral regulation were obtained with each intervention. The inferred synergistic impact of properly combining these approaches is what informs our current clinical applications and future research efforts examining the value of combined treatments for all dementias, parkinson's disease and age-related dry macular degeneration.

  15. Quantifying ternary mixtures of different solid-state forms of indomethacin by Raman and near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Heinz, Andrea; Savolainen, Marja; Rades, Thomas

    2007-01-01

    This study assessed the ability of vibrational spectroscopy combined with multivariate analysis to quantify ternary mixtures of different solid-state forms, including the amorphous form. Raman and near-infrared spectroscopy were used to quantify mixtures of alpha-, gamma-, and amorphous indometha......This study assessed the ability of vibrational spectroscopy combined with multivariate analysis to quantify ternary mixtures of different solid-state forms, including the amorphous form. Raman and near-infrared spectroscopy were used to quantify mixtures of alpha-, gamma-, and amorphous...... by mean centering proved to be the best approaches to pre-process the data. With four partial least squares factors, root mean square errors of prediction ranging from 5.3% to 6.5% for Raman spectroscopy and 4.0% to 5.9% for near-infrared spectroscopy were calculated. In addition, the effects of potential...... with a small sampling area when stationary sample holders were used, introduced the largest variation into both spectroscopic assays. The overall method errors were found to be very similar, resulting in relative standard deviations up to 12.0% for Raman spectroscopy and up to 13.0% for near-infrared...

  16. Near infrared spectroscopy for high-throughput characterization of Shea tree (Vitellaria paradoxa) nut fat profiles.

    Science.gov (United States)

    Davrieux, Fabrice; Allal, François; Piombo, Georges; Kelly, Bokary; Okulo, John B; Thiam, Massamba; Diallo, Ousmane B; Bouvet, Jean-Marc

    2010-07-14

    The Shea tree (Vitellaria paradoxa) is a major tree species in African agroforestry systems. Butter extracted from its nuts offers an opportunity for sustainable development in Sudanian countries and an attractive potential for the food and cosmetics industries. The purpose of this study was to develop near-infrared spectroscopy (NIRS) calibrations to characterize Shea nut fat profiles. Powders prepared from nuts collected from 624 trees in five African countries (Senegal, Mali, Burkina Faso, Ghana and Uganda) were analyzed for moisture content, fat content using solvent extraction, and fatty acid profiles using gas chromatography. Results confirmed the differences between East and West African Shea nut fat composition: eastern nuts had significantly higher fat and oleic acid contents. Near infrared reflectance spectra were recorded for each sample. Ten percent of the samples were randomly selected for validation and the remaining samples used for calibration. For each constituent, calibration equations were developed using modified partial least squares (MPLS) regression. The equation performances were evaluated using the ratio performance to deviation (RPD(p)) and R(p)(2) parameters, obtained by comparison of the validation set NIR predictions and corresponding laboratory values. Moisture (RPD(p) = 4.45; R(p)(2) = 0.95) and fat (RPD(p) = 5.6; R(p)(2) = 0.97) calibrations enabled accurate determination of these traits. NIR models for stearic (RPD(p) = 6.26; R(p)(2) = 0.98) and oleic (RPD(p) = 7.91; R(p)(2) = 0.99) acids were highly efficient and enabled sharp characterization of these two major Shea butter fatty acids. This study demonstrated the ability of near-infrared spectroscopy for high-throughput phenotyping of Shea nuts.

  17. Mitochondrial signal transduction in accelerated wound and retinal healing by near-infrared light therapy.

    Science.gov (United States)

    Eells, Janis T; Wong-Riley, Margaret T T; VerHoeve, James; Henry, Michele; Buchman, Ellen V; Kane, Mary P; Gould, Lisa J; Das, Rina; Jett, Marti; Hodgson, Brian D; Margolis, David; Whelan, Harry T

    2004-09-01

    Photobiomodulation by light in the red to near infrared range (630-1000 nm) using low energy lasers or light-emitting diode (LED) arrays has been shown to accelerate wound healing, improve recovery from ischemic injury in the heart and attenuate degeneration in the injured optic nerve. Recent evidence indicates that the therapeutic effects of red to near infrared light result, in part, from intracellular signaling mechanisms triggered by the interaction of NIR light with the mitochondrial photoacceptor molecule cytochrome c oxidase. We have demonstrated that NIR-LED photo-irradiation increases the production of cytochrome oxidase in cultured primary neurons and reverses the reduction of cytochrome oxidase activity produced by metabolic inhibitors. We have also shown that NIR-LED treatment prevents the development of oral mucositis in pediatric bone marrow transplant patients. Photobiomodulation improves wound healing in genetically diabetic mice by upregulating genes important in the promotion of wound healing. More recent studies have provided evidence for the therapeutic benefit of NIR-LED treatment in the survival and functional recovery of the retina and optic nerve in vivo after acute injury by the mitochondrial toxin, formic acid generated in the course of methanol intoxication. Gene discovery studies conducted using microarray technology documented a significant upregulation of gene expression in pathways involved in mitochondrial energy production and antioxidant cellular protection. These findings provide a link between the actions of red to near infrared light on mitochondrial oxidative metabolism in vitro and cell injury in vivo. Based on these findings and the strong evidence that mitochondrial dysfunction is involved in the pathogenesis of numerous diseases processes, we propose that NIR-LED photobiomodulation represents an innovative and non-invasive therapeutic approach for the treatment of tissue injury and disease processes in which mitochondrial

  18. Rapid biochemical methane potential prediction of urban organic waste with near-infrared reflectance spectroscopy

    DEFF Research Database (Denmark)

    Fitamo, Temesgen Mathewos; Triolo, Jin Mi; Boldrin, Alessio

    2017-01-01

    The anaerobic digestibility of various biomass feedstocks in biogas plants is determined with biochemical methane potential (BMP) assays. However, experimental BMP analysis is time-consuming, costly and challenging to optimise stock management and feeding to achieve improved biogas production....... The aim of the present study is to develop a fast and reliable model based on near-infrared reflectance spectroscopy (NIRS) for the BMP prediction of urban organic waste (UOW). The model comprised 87 UOW samples. Additionally, 88 plant biomass samples were included, to develop a combined model predicting...

  19. Determining the clay/organic carbon ratio by visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Hermansen, Cecilie

    /OC ratio directly would be valuable. Visible near infrared spectroscopy (vis-NIRS) is a cost-effective method for soil analysis and was tested here for the prediction of clay/OC ratio. Soil samples from two agricultural fields in Denmark (N=115) were analyzed. Partial Least Squares regression (full cross......-validation) was performed on 80% randomly selected samples to correlate soil spectra with OC, clay and clay/OC. The robustness of calibration models was tested on the remaining 20% of the samples. The soil from the two study sites vary greatly presenting clay/OC ratio between 1.20 and 10.43. Successful calibration results...

  20. Determination of diazepam in intact diazepam tablets using near infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Choi, H.C.; Kang, S.J.; Youn, M.O.; Lee, S.J.; Kim, H.J.; Kim, J.Y. [Korea Food and Drug Administration, Seoul (Korea); Cha, K.W. [Inha University, Inchon (Korea)

    2002-06-01

    A rapid and simple determination of diazepam in intact diazepam tablets has been investigated using the near infrared spectroscopy(NIRS) combined with partial least squares regression. The separate calibration curves of 2 mg and 5 mg diazepam tablets were studied, as well as the linearity, concentration range and reproducibility of those calibration curves were evaluated. The correlation coefficients of calibration curves of 2 mg and 5 mg diazepam tablets are 0.99416 and 0.9159, respectively and the standard errors of calibration curves(SEC) are 0.018% and 0.032%, respectively. (author). 13 refs., 4 tabs., 4 figs.

  1. Determination of fatty acid content in sheep milk by means of near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Táňa Lužová

    2014-01-01

    Full Text Available The study focused on the use of the Fourier transform near infrared spectroscopy in determining the content of selected fatty acids in raw non-homogenized sheep milk. The raw sheep milk sample spectra were scanned in reflectance mode using the FT NIR Antaris spectrophotometer. The reliable functional calibration models were created for estimation of the contents of myristic, oleic, lauric, palmitic, and stearic acids (with calibration correlation coefficients of R = 0.999; 0.999; 0.993; 0.992; 0.858 and with standard errors SEC = 0.056; 0.152; 0.066; 0.367; 1.36%.

  2. Perioperative use of cerebral and renal near-infrared spectroscopy in neonates

    DEFF Research Database (Denmark)

    Koch, Henrik W; Hansen, Tom G

    2016-01-01

    of NIRS in neonates and premature infants undergoing noncardiac surgeries. METHOD: Neonates were monitored with both cerebral and renal NIRS for 24 h after induction of anesthesia and compared with systemic blood pressure (BP), peripheral oxygen saturation (SpO2 ), and heart rate (HR). RESULTS: A total...... at detecting postoperative apnea. CONCLUSION: Near-infrared spectroscopy is an easily applicable technique that appears effective at detecting hypoxic events and postoperative apneas in neonates. The high incidences of regional hypoxia reported by NIRS in this study imply that there is a need for a more...

  3. Near-infrared luminescent copolymerized hybrid materials built from tin nanoclusters and PMMA.

    Science.gov (United States)

    Fan, Weiqiang; Feng, Jing; Song, Shuyan; Lei, Yongqian; Zhou, Liang; Zheng, Guoli; Dang, Song; Wang, Song; Zhang, Hongjie

    2010-10-01

    Novel near-infrared (NIR) luminescent copolymerized hybrid materials were prepared by covalently grafting and physically doping Ln complexes (Ln = Er, Sm, Yb, and Nd) into a copolymer matrix built from nanobuilding blocks. The structures of the obtained hybrid materials were investigated by Fourier transform infrared (FTIR) spectra, nuclear magnetic resonance (NMR), gel permeation chromatography (GPC), and thermogravimetric analysis (TGA). In the photoluminescence studies, the hybrid materials showed characteristic NIR luminescence of corresponding Ln(3+) ions through intramolecular energy transfer from ligands to Ln(3+) ions. Transparent films of these materials can be easily prepared through spin-coating on indium tin oxide (ITO) glasses taking advantage of the matrix nature.

  4. Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans

    DEFF Research Database (Denmark)

    Rostrup, Egill; Law, Ian; Pott, Frank

    2002-01-01

    Near-infrared spectroscopy (NIRS) enables continuous non-invasive quantification of blood and tissue oxygenation, and may be useful for quantification of cerebral blood volume (CBV) changes. In this study, changes in cerebral oxy- and deoxyhemoglobin were compared to corresponding changes in CBF......, increased by 37% during 6% CO(2) and decreased by 25% during hyperventilation. NIRS showed significant increases in oxygenation during hypercapnia, and a trend towards decreases during hyperventilation. Changes in CBV measured with both techniques were significantly correlated to CO(2) levels. However...

  5. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  6. Novel applications of near-infrared fluorescence imaging in orthopaedic surgery (Conference Presentation)

    Science.gov (United States)

    Henderson, Eric R.; DSouza, Alisha V.; Paulsen, Keith D.; Pogue, Brian W.

    2017-02-01

    Sarcomas are cancers of the bones, muscles, nerves, and fat that require complete surgical removal for cure. The primary surgical goal therefore is to remove the tumor with a zone of normal, non-cancerous tissue surrounding the tumor, considered a `negative' surgical margin. At present, surgeons rely on radiologic imaging and visual and tactile clues to gauge cancer depth and guide surgical excision. This can result in removal of too much or too little tissue, which can lead to unnecessary removal of vital structures or incomplete cancer removal, respectively. Both results can have negative effects on ultimate patient outcome, with positive margins reported in 23% of sarcoma surgeries. Near-infrared (NIR) fluorescence probes are molecules that when stimulated with specific, known frequencies of near-infrared light will emit light of another distinct frequency. NIR light penetrates human tissue reasonably well and therefore can be used to detect the presence and location of unseen structures labeled with NIR fluorescence probes through several centimeters of tissue. Intra-operative near-infrared (NIR) fluorescence probes have been effective for this purpose in brain tumor surgery and may be applicable to sarcoma surgery. Foundational research is needed to explore the potential of this affibody probe and perfusion probes to estimate margin thickness in sarcoma surgery. In this study we will determine if sarcoma labeling using NIR fluorescence probes is superior with perfusion probes or a novel affibody probe. We will also determine whether NIR fluorescence using perfusion probes or a novel affibody probe can be correlated accurately to margin thickness.

  7. Diffuse reflectance near infrared-chemometric methods development and validation of amoxicillin capsule formulations

    Directory of Open Access Journals (Sweden)

    Ahmed Nawaz Khan

    2016-01-01

    Full Text Available Objective: The aim of present study was to establish near infrared-chemometric methods that could be effectively used for quality profiling through identification and quantification of amoxicillin (AMOX in formulated capsule which were similar to commercial products. In order to evaluate a large number of market products easily and quickly, these methods were modeled. Materials and Methods: Thermo Scientific Antaris II near infrared analyzer with TQ Analyst Chemometric Software were used for the development and validation of the identification and quantification models. Several AMOX formulations were composed with four excipients microcrystalline cellulose, magnesium stearate, croscarmellose sodium and colloidal silicon dioxide. Development includes quadratic mixture formulation design, near infrared spectrum acquisition, spectral pretreatment and outlier detection. According to prescribed guidelines by International Conference on Harmonization (ICH and European Medicine Agency (EMA developed methods were validated in terms of specificity, accuracy, precision, linearity, and robustness. Results: On diffuse reflectance mode, an identification model based on discriminant analysis was successfully processed with 76 formulations; and same samples were also used for quantitative analysis using partial least square algorithm with four latent variables and 0.9937 correlation of coefficient followed by 2.17% root mean square error of calibration (RMSEC, 2.38% root mean square error of prediction (RMSEP, 2.43% root mean square error of cross-validation (RMSECV. Conclusion: Proposed model established a good relationship between the spectral information and AMOX identity as well as content. Resulted values show the performance of the proposed models which offers alternate choice for AMOX capsule evaluation, relative to that of well-established high-performance liquid chromatography method. Ultimately three commercial products were successfully evaluated

  8. Multifunctional organically modified silica nanoparticles for chemotherapy, adjuvant hyperthermia and near infrared imaging.

    Science.gov (United States)

    Nagesetti, Abhignyan; McGoron, Anthony J

    2016-11-01

    We report a novel system of organically modified silica nanoparticles (Ormosil) capable of near infrared fluorescence and chemotherapy with adjuvant hyperthermia for image guided cancer therapy. Ormosil nanoparticles were loaded with a chemotherapeutic, Doxorubicin (DOX) and cyanine dye, IR820. Ormosil particles had a mean diameter of 51.2±2.4 nanometers and surface charge of -40.5±0.8mV. DOX was loaded onto Ormosil particles via physical adsorption (FDSIR820) or covalent linkage (CDSIR820) to the silanol groups on the Ormosil surface. Both formulations retained DOX and IR820 over a period of 2 days in aqueous buffer, though CDSIR820 retained more DOX (93.2%) compared to FDSIR820 (77.0%) nanoparticles. Exposure to near infrared laser triggered DOX release from CDSIR820. Uptake of nanoparticles was determined by deconvolution microscopy in ovarian carcinoma cells (Skov-3). CDSIR820 localized in the cell lysosomes whereas cells incubated with FDSIR820 showed DOX fluorescence from the nucleus indicating leakage of DOX from the nanoparticle matrix. FDSIR820 nanoparticles showed severe toxicity in Skov-3 cells whereas CDSIR820 particles had the same cytotoxicity profile as bare (No DOX and IR820) Ormosil particles. Furthermore, exposure of CDSIR820 nanoparticles to Near Infrared laser at 808 nanometers resulted in generation of heat (to 43°C from 37°C) and resulted in enhanced cell killing compared to Free DOX treatment. Bio-distribution studies showed that CDSIR820 nanoparticles were primarily present in the organs of Reticuloendothelial (RES) system. Copyright © 2016 Elsevier B.V. All rights reserved.

  9. Ischemia monitoring in off-pump coronary artery bypass surgery using intravascular near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Zerkowski Hans-Reinhard

    2006-05-01

    Full Text Available Abstract Background In off-pump coronary artery bypass surgery, manipulations on the beating heart can lead to transient interruptions of myocardial oxygen supply, which can generate an accumulation of oxygen-dependent metabolites in coronary venous blood. The objective of this study was to evaluate the reliability of intravascular near-infrared spectroscopy as a monitoring method to detect possible ischemic events in off-pump coronary artery bypass procedures. Methods In 15 elective patients undergoing off-pump myocardial revascularization, intravascular near-infrared spectroscopic analysis of coronary venous blood was performed. NIR signals were transferred through a fiberoptic catheter for signal emission and collection. For data analysis and processing, a miniature spectrophotometer with multivariate statistical package was used. Signal acquisition and analysis were performed before and after revascularization. Spectroscopic data were compared with hemodynamic parameters, electrocardiogram, transesophageal echocardiography and laboratory findings. Results A conversion to extracorporeal circulation was not necessary. The mean number of grafts per patient was 3.1 ± 0.6. An intraoperative myocardial ischemia was not evident, as indicated by electrocardiogram and transesophageal echocardiography. Continuous spectroscopic analysis showed reproducible absorption spectra of coronary sinus blood. Due to uneventful intraoperative courses, clear ischemia-related changes could be detected in none of the patients. Conclusion Our initial results show that intravascular near-infrared spectroscopy can reliably be used for an online intraoperative ischemia monitoring in off-pump coronary artery bypass surgery. However, the method has to be further evaluated and standardized to determine the role of spectroscopy in off-pump coronary artery bypass surgery.

  10. Variations in Near-Infrared Emissivity of Venus Surface Observed by the Galileo Near-Infrared Mapping Spectrometer

    Science.gov (United States)

    Hashimoto, G. L.; Roos-Serote, M.; Sugita, S.

    2004-11-01

    We evaluate the spatial variation of venusian surface emissivity at a near-infrared wavelength using multispectral images obtained by the Near-Infrared Mapping Spectrometer (NIMS) on board the Galileo spacecraft. The Galileo made a close flyby to Venus in February 1990. During this flyby, NIMS observed the nightside of Venus with 17 spectral channels, which includes the well-known spectral windows at 1.18, 1.74, and 2.3 μ m. The surface emissivity is evaluated at 1.18 μ m, at which thermal radiation emitted from the planetary surface could be detected. To analyze the NIMS observations, synthetic spectra have been generated by means of a line-by-line radiative transfer program which includes both scattering and absorption. We used the discrete ordinate method to calculate the spectra of vertically inhomogeneous plane-parallel atmosphere. Gas opacity is calculated based on the method of Pollack et al. (1993), though binary absorption coefficients for continuum opacity are adjusted to achieve an acceptable fit to the NIMS data. We used Mie scattering theory and a cloud model developed by Pollack et al. (1993) to determine the single scattering albedo and scattering phase function of the cloud particles. The vertical temperature profile of Venus International Reference Atmosphere (VIRA) is used in all our calculations. The procedure of the analysis is the followings. We first made a correction for emission angle. Then, a modulation of emission by the cloud opacities is removed using simultaneously measured 1.74 and 2.3 μ m radiances. The resulting images are correlated with the topographic map of Magellan. To search for variations in surface emissivity, this cloud corrected images are divided by synthetic radiance maps that were created from the Magellan data. This work has been supported by The 21st Century COE Program of Origin and Evolution of Planetary Systems of Ministry of Education, Culture, Sports, Science and Technology (MEXT).

  11. Near-infrared-to-near-infrared down-shifting and upconversion luminescence of KY3F10 with single dopant of Nd3+ ion

    Science.gov (United States)

    Lin, Huihong; Yu, Ting; Tsang, Ming-Kiu; Bai, Gongxun; Zhang, Qinyuan; Hao, Jianhua

    2016-01-01

    We have studied the structural and near-infrared (NIR) luminescent properties of KY3F10 phosphors, singly doped with Nd3+ serving as both sensitizer and activator. With a single laser diode at the wavelength of 808 nm as a pump source, simultaneous NIR-to-NIR upconversion (UC) and down-shifting (DS) emissions are effectively achieved, due to the specific energy levels of Nd3+ dopant and the low phonon energy of the host. The luminescence mechanism related to energy transfer is discussed. The luminescence can be modulated through controlling the population of Nd3+:4F3/2 state in our experiment. Interestingly, both UC and DS emissions of the material fall within the dual biological window, suggesting that the prepared phosphors have potential applications in the bioimaging field.

  12. [Quality anlysis of the before redrying raw tobacco & after redrying sheet tobacco by using online near infrared spectroscopy].

    Science.gov (United States)

    Tang, Zhao-qi; Liu, Ying; Shu, Ru-xin; Yang, Kai; Zhao, Long-lian; Zhang, Lu-da; Zhang Ye-hui; Li, Jun-hui

    2014-12-01

    In this paper, the 7 different origin before redrying raw tobacco & after redrying sheet tobacco's online near infrared spectroscopy were collected from sorting & redrying production line specifically for "ZHONGHUA" brand. By using the projection model bulit by different origin tobacco's online spectroscopy and the method of variance and correlation analysis, we studied the uniformity and similarity quality characteristics change before and after the redrying of tobacco, which can provide support for understanding the quality of the tobacco material and cigarette product formulations. This study show that selecting about 10,000 by equally spaced sampling time from a huge number of online near infrared spectroscopy, for modeling are feasible, and representative. After manual sorting, threshing, and redrying, the uiformity of each origin tobacco near-infrared spectroscopy can be increased by 10%~35%, homogeneity of the tobacco leaf has been significantly improved. After redrying, the similar relationship embodied in the origin also have significant changes, overall it reduce significantly, that shows the quality differences embodied by origin significantly improve, which can provide greater space for formulations, it shows the need for high-quality Chinese cigarette production requires large amounts of financial and human resources to implement cured tobacco processing. The traditional means of chemical analysis, it takes a lot of time and effort, it is difficult to control the entire processing chain, Near Infrared Spectroscopy with its rapid, non-destructive advantage, not only can achieve real-time detection and quality control, but also can take full advantage of near-infrared spectroscopy information created in the production process, which is a very promising online analytical detection technology in many industries especially in the agricultural and food processing industries.

  13. FC-NIRS: A Functional Connectivity Analysis Tool for Near-Infrared Spectroscopy Data.

    Science.gov (United States)

    Xu, Jingping; Liu, Xiangyu; Zhang, Jinrui; Li, Zhen; Wang, Xindi; Fang, Fang; Niu, Haijing

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS), a promising noninvasive imaging technique, has recently become an increasingly popular tool in resting-state brain functional connectivity (FC) studies. However, the corresponding software packages for FC analysis are still lacking. To facilitate fNIRS-based human functional connectome studies, we developed a MATLAB software package called "functional connectivity analysis tool for near-infrared spectroscopy data" (FC-NIRS). This package includes the main functions of fNIRS data preprocessing, quality control, FC calculation, and network analysis. Because this software has a friendly graphical user interface (GUI), FC-NIRS allows researchers to perform data analysis in an easy, flexible, and quick way. Furthermore, FC-NIRS can accomplish batch processing during data processing and analysis, thereby greatly reducing the time cost of addressing a large number of datasets. Extensive experimental results using real human brain imaging confirm the viability of the toolbox. This novel toolbox is expected to substantially facilitate fNIRS-data-based human functional connectome studies.

  14. Discriminant analysis of milk adulteration based on near-infrared spectroscopy and pattern recognition

    Science.gov (United States)

    Liu, Rong; Lv, Guorong; He, Bin; Xu, Kexin

    2011-03-01

    Since the beginning of the 21st century, the issue of food safety is becoming a global concern. It is very important to develop a rapid, cost-effective, and widely available method for food adulteration detection. In this paper, near-infrared spectroscopy techniques and pattern recognition were applied to study the qualitative discriminant analysis method. The samples were prepared and adulterated with one of the three adulterants, urea, glucose and melamine with different concentrations. First, the spectral characteristics of milk and adulterant samples were analyzed. Then, pattern recognition methods were used for qualitative discriminant analysis of milk adulteration. Soft independent modeling of class analogy and partial least squares discriminant analysis (PLSDA) were used to construct discriminant models, respectively. Furthermore, the optimization method of the model was studied. The best spectral pretreatment methods and the optimal band were determined. In the optimal conditions, PLSDA models were constructed respectively for each type of adulterated sample sets (urea, melamine and glucose) and all the three types of adulterated sample sets. Results showed that, the discrimination accuracy of model achieved 93.2% in the classification of different adulterated and unadulterated milk samples. Thus, it can be concluded that near-infrared spectroscopy and PLSDA can be used to identify whether the milk has been adulterated or not and the type of adulterant used.

  15. [Feasibility of the extended application of near infrared universal quantitative models].

    Science.gov (United States)

    Lei, De-Qing; Hu, Chang-Qin; Feng, Yan-Chun; Feng, Fang

    2010-11-01

    Construction of a successful near infrared analysis model is a complex task. It spends a lot of manpower and material resources, and is restricted by sample collection and model optimization. So it is important to study on the extended application of the existing near infrared (NIR) models. In this paper, cephradine capsules universal quantitative model was used as an example to study on the feasibility of its extended application. Slope/bias correction and piecewise direct standardization correction methods were used to make the universal model to fit to predict the intermediates in manufacturing processes of cephradine capsules, such as the content of powder blend or granules. The results showed that the corrected NIR universal quantitative model can be used for process control although the results of the model correction by slope/bias or piecewise direct standardization were not as good as that of model updating. And it also indicated that the model corrected by slope/bias is better than that by piecewise direct standardization. Model correction provided a new application for NIR universal models in process control.

  16. Assessment of pesticide coating on cereal seeds by near infrared hyperspectral imaging

    Directory of Open Access Journals (Sweden)

    Ph. Vermeulen

    2017-01-01

    Full Text Available Classical chromatographic methods, such as ultra performance liquid chromatography (UPLC, are used as reference methods to assess seed quality and homogeneous pesticide coating of seeds. These methods have some important drawbacks since they are time consuming, expensive, destructive and require a substantial amount of solvent, among others. Near infrared (NIR spectroscopy seems to be an interesting alternative technique for the determination of the quality of seed treatment and avoids most of these drawbacks. The objective of this study was to assess the quality of pesticide coating treatment by near infrared hyperspectral imaging (NIR-HSI by analysing, on a seed-by-seed basis, several seeds simultaneously in comparison to NIR spectroscopy and UPLC as the reference method. To achieve this goal, discrimination—partial least squares discriminant analysis (PLS-DA—models and regression—partial least squares (PLS—models were developed. The results obtained by NIR-HSI are compared to the results obtained with NIR spectroscopy and UPLC instruments. This study has shown the potential of NIR hyperspectral imaging to assess the quality/homogeneity of the pesticide coating on seeds.

  17. Development of a nondestructive measurement system for mango fruit using near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Eizo Taira

    2017-09-01

    Full Text Available Near infrared spectroscopy has been widely used for the evaluation of chemical components in food and agricultural products. In this study, a portable near infrared (NIR spectrometer was developed to simultaneously evaluate the internal and external quality of tropical fruits. Mango fruits are grown in the southern part of Japan and have high economic value. In this region, sorting facilities are used to check the internal quality of each mango. However, most of the product is directly shipped to consumers, complicating quality assurance procedures. A portable NIR spectrometer is an affordable method for farmers to evaluate the internal and external quality of fruits. In this study, the soluble solid content (SSC and skin color of mangoes (Mangifera indica L. cv. Irwin were investigated using a portable NIR spectrometer. Calibration equations for SSC and skin color were developed using a partial least squares regression. The calibrations had a correlation coefficient of 0.90-0.95 in a wavelength range of 580–970 nm. Results showed that a portable NIR spectrometer is a useful and effective instrument to nondestructively analyze sugar content (as indicated by SSC and skin color in mangoes.

  18. Rapidly Simultaneous Determination of Six Effective Components in Cistanche tubulosa by Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Xinhong Wang

    2017-05-01

    Full Text Available Quantitative determination of multiple effective components in a given plant usually requires a very large amount of authentic natural products. In this study, we proposed a rapid and non-destructive method for the simultaneous determination of echinacoside, verbascoside, mannitol, sucrose, glucose and fructose in Cistanche tubulosa by near infrared spectroscopy (NIRS. Near infrared diffuse reflectance spectroscopy (DRS and high performance liquid chromatography (HPLC were conducted on 116 batches of C. tubulosa samples. The DRS data were processed using standard normal variety (SNV and multiplicative scatter correction (MSC methods. Partial least squares regression (PLSR was utilized to build calibration models for components-of-interest in C. tubulosa. All models were then assessed by calculating the root mean square error of calibration (RMSEC, correlation coefficient of calibration (r. The r values of all six calibration models were determined to be greater than 0.94, suggesting each model is reliable. Therefore, the quantitative NIR models reported in this study can be qualified to accurately quantify the contents of six medicinal components in C. tubulosa.

  19. Detection of the total viable counts in chicken based on visible/near-infrared spectroscopy

    Science.gov (United States)

    Jiang, Fachao; Long, Yuan; Tang, Xiuying; Zhao, Linlin; Peng, Yankun; Wang, Caiping

    2014-05-01

    The viable counts in chicken have significant effects on food safety. Exceeding standard index can have negative influence to the public. Visible-near infrared spectra have had rapid development in food safety recently. The objective of this study was to detect the total viable counts in chicken breast fillets.36 chicken breast fillets used in the study were stored in a refrigerator at 4°C for 9 days. Each day four samples were taken and Vis/NIR spectra were collected from each sample before detecting their total viable counts by standard method. The original data was processed in four main steps: Savitzky-Golay smoothing method, standard normalized variate (SNV), model calibrating and model validating. Prediction model was established using partial least squares regression (PLSR) method. Several statistical indicators such as root mean squared errors and coefficients were calculated for determination of calibration and validation accuracy respectively. As a result, the Rc, SEC, Rv and SEV, of the best model were obtained to be 0.8854, 0.7455, 0.9070 and 0.6045 respectively, which demonstrate that visible-near infrared spectra is a potential technique to detect the total viable counts(TVC) in chicken and the best wavelengths for the establishment of the calibration model are near 449nm.

  20. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  1. Preliminary tests on a new near-infrared continuous-wave tissue oximeter

    Science.gov (United States)

    Casavola, Claudia; Cicco, Giuseppe; Pirrelli, Anna; Lugara, Pietro M.

    2000-11-01

    We present a preliminary study, in vitro and in vivo, with a novel device for near-infrared tissue oximetry. The light sources used are two quasi-continuous-wave LEDs, emitting at 656 and 851 nm, and the detector is a photodiode. The data are acquired in back-scattering configuration, thus allowing the non-invasive characterization of thick tissues. Stability tests were performed by placing the optical probe on a tissue- like phantom and acquiring data for periods of time ranging from 5 to 40 minutes. No significant drifts in the DC signal were observed after a warm-up period of no more than 10 minutes. We performed reproducibility tests by repositioning the optical probe on the phantom for a number of times. We found a reproducibility better than 5% in the DC signal. We also present the results of a preliminary study conducted in vivo, on the calf muscle of human subjects. We report a comparison of the results obtained with the near-infrared oximeter with the values of blood oxygenation ctO2 measured with conventional chemical tests.

  2. Thermal consequences of colour and near-infrared reflectance.

    Science.gov (United States)

    Stuart-Fox, Devi; Newton, Elizabeth; Clusella-Trullas, Susana

    2017-07-05

    The importance of colour for temperature regulation in animals remains controversial. Colour can affect an animal's temperature because all else being equal, dark surfaces absorb more solar energy than do light surfaces, and that energy is converted into heat. However, in reality, the relationship between colour and thermoregulation is complex and varied because it depends on environmental conditions and the physical properties, behaviour and physiology of the animal. Furthermore, the thermal effects of colour depend as much on absorptance of near-infrared ((NIR), 700-2500 nm) as visible (300-700 nm) wavelengths of direct sunlight; yet the NIR is very rarely considered or measured. The few available data on NIR reflectance in animals indicate that the visible reflectance is often a poor predictor of NIR reflectance. Adaptive variation in animal coloration (visible reflectance) reflects a compromise between multiple competing functions such as camouflage, signalling and thermoregulation. By contrast, adaptive variation in NIR reflectance should primarily reflect thermoregulatory requirements because animal visual systems are generally insensitive to NIR wavelengths. Here, we assess evidence and identify key research questions regarding the thermoregulatory function of animal coloration, and specifically consider evidence for adaptive variation in NIR reflectance.This article is part of the themed issue 'Animal coloration: production, perception, function and application'. © 2017 The Author(s).

  3. In vivo near infrared (NIRS) sensor attachment using fibrin bioadhesive

    Science.gov (United States)

    Macnab, Andrew; Pagano, Roberto; Kwon, Brian; Dumont, Guy; Shadgan, Babak

    2018-02-01

    Background: `Tisseel' (Baxter Healthcare, Deerfield, IL) is a fibrin-based sealant that is commonly used during spine surgery to augment dural repairs. We wish to intra-operatively secure a near infrared spectroscopy (NIRS) sensor to the dura in order to monitor the tissue hemodynamics of the underlying spinal cord. To determine if `Tisseel' sealant adversely attenuates NIR photon transmission. Methods: We investigated `Tisseel' in both an in vitro and in vivo paradigm. For in vitro testing, we used a 1 mm pathlength cuvette containing either air or `Tisseel' interposed between a NIR light source (760 and 850 nm) and a photodiode detector and compared transmittance. For in vivo testing, a continuous wave (760 and 850 nm) spatiallyresolved NIRS device was placed over the triceps muscle using either conventional skin apposition (overlying adhesive bandage) or bioadhesion with `Tisseel'. Raw optical data and tissue saturation index (TSI%) collected at rest were compared. Results: In-vitro NIR light absorption by `Tisseel' was very high, with transmittance reduced by 95% compared to air. In-vivo muscle TSI% values were 80% with conventional attachment and 20% using fibrin glue. Conclusion: The optical properties of `Tisseel' significantly attenuate NIR light during in-vitro transmittance and critically compromise photon transmission in-vivo.

  4. Bundled-Optode Method in Functional Near-Infrared Spectroscopy.

    Directory of Open Access Journals (Sweden)

    Hoang-Dung Nguyen

    Full Text Available In this paper, a theory for detection of the absolute concentrations of oxy-hemoglobin (HbO and deoxy-hemoglobin (HbR from hemodynamic responses using a bundled-optode configuration in functional near-infrared spectroscopy (fNIRS is proposed. The proposed method is then applied to the identification of two fingers (i.e., little and thumb during their flexion and extension. This experiment involves a continuous-wave-type dual-wavelength (760 and 830 nm fNIRS and five healthy male subjects. The active brain locations of two finger movements are identified based on the analysis of the t- and p-values of the averaged HbOs, which are quite distinctive. Our experimental results, furthermore, revealed that the hemodynamic responses of two-finger movements are different: The mean, peak, and time-to-peak of little finger movements are higher than those of thumb movements. It is noteworthy that the developed method can be extended to 3-dimensional fNIRS imaging.

  5. Near Infrared Spectroscopy during pediatric cardiac surgery: errors and pitfalls.

    Science.gov (United States)

    Durandy, Y; Rubatti, M; Couturier, R

    2011-09-01

    As a result of improvements in early outcomes, long-term neurologicalal outcomes are becoming a major issue in pediatric cardiac surgery. The mechanisms of brain injury are numerous, but a vast majority of injuries are impervious to therapy and only a few are modifiable. The quality of perfusion during cardiac surgery is a modifiable factor and cerebral monitoring during bypass is the way to assess the quality of intra-operative cerebral perfusion. Near infrared spectroscopy (NIRS), as a diagnostic tool, has gained in popularity within the perfusion community. However, NIRS is becoming the standard of care before its scientific validation. This manuscript relates four clinical cases, demonstrating the limitations of NIRS monitoring during pediatric cardiac surgery as well as uncertainties about the interpretation of the recorded values. The clinical relevance of cerebral oxymetry is needed before the use of NIRS as a decision making tool. Multimodal brain monitoring with NIRS, trans-cranial Doppler and electroencephalogram are currently under way in several pediatric centers. The benefit of this time-consuming and expensive monitoring system has yet to be demonstrated.

  6. Immunosensing with Near-Infrared Plasmonic Optical Fiber Gratings.

    Science.gov (United States)

    Caucheteur, Christophe; Ribaut, Clotilde; Malachovska, Viera; Wattiez, Ruddy

    2017-01-01

    Surface Plasmon resonance (SPR) optical fiber biosensors constitute a miniaturized counterpart to the bulky prism configuration and offer remote operation in very small volumes of analyte. They are a cost-effective and relatively straightforward technique to yield in situ (or even possibly in vivo) molecular detection. They are usually obtained from a gold-coated fiber segment for which the core-guided light is brought into contact with the surrounding medium, either by etching (or side-polishing) or by using grating coupling. Recently, SPR generation was achieved in gold-coated tilted fiber Bragg gratings (TFBGs). These sensors probe the surrounding medium with near-infrared narrowband resonances, which enhances both the penetration depth of the evanescent field in the external medium and the wavelength resolution of the interrogation. They constitute the unique configuration able to probe all the fiber cladding modes individually, with high Q-factors. We use these unique spectral features in our work to sense proteins and extra-cellular membrane receptors that are both overexpressed in cancerous tissues. Impressive limit of detection (LOD) and sensitivity are reported, which paves the way for the further use of such immunosensors for cancer diagnosis.

  7. Distributed Software for Observations in the Near Infrared

    Science.gov (United States)

    Gavryusev, V.; Baffa, C.; Giani, E.

    We have developed an integrated system that performs astronomical observations in Near Infrared bands operating two-dimensional instruments at the Italian National Infrared Facility's \\htmllink{ARNICA}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/arnica/arnica.html} and \\htmllink{LONGSP}{http://helios.arcetri.astro.it:/home/idefix/Mosaic/ instr/longsp/longsp.html}. This software consists of several communicating processes, generally executed across a network, as well as on a single computer. The user interface is organized as widget-based X11 client. The interprocess communication is provided by sockets and uses TCP/IP. The processes denoted for control of hardware (telescope and other instruments) should be executed currently on a PC dedicated for this task under DESQview/X, while all other components (user interface, tools for the data analysis, etc.) can also work under UNIX\\@. The hardware independent part of software is based on the Athena Widget Set and is compiled by GNU C to provide maximum portability.

  8. Turbid Media Extinction Coefficient for Near-Infrared Laser Radiation

    International Nuclear Information System (INIS)

    Dreischuh, T; Gurdev, L; Vankov, O; Stoyanov, D; Avramov, L

    2015-01-01

    In this work, extended investigations are performed of the extinction coefficient of Intralipid-20% dilutions in distilled water depending on the Intralipid concentration, for laser radiation wavelengths in the red and near-infrared regions covering the so-called tissue optical window. The extinction is measured by using an approach we have developed recently based on the features of the spatial intensity distribution of laser-radiation beams propagating through semi-infinite turbid media. The measurements are conducted using separately two dilution- containing plexiglass boxes of different sizes and volumes, in order to prove the appropriateness of the assumption of semi-infinite turbid medium. The experimental results for the extinction are in agreement with our previous results and with empiric formulae found by other authors concerning the wavelength dependence of the scattering coefficient of Intralipid – 10% and Intralipid – 20%. They are also in agreement with known data of the water absorptance. It is estimated as well that the wavelengths around 1320 nm would be advantageous for deep harmless sensing and diagnostics of tissues

  9. Quantitative analysis of ice films by near-infrared spectroscopy

    Science.gov (United States)

    Keiser, Joseph T.

    1990-01-01

    One of the outstanding problems in the Space Transportation System is the possibility of the ice buildup on the external fuel tank surface while it is mounted on the launch pad. During the T-2 hours (and holding) period, the frost/ice thickness on the external tank is monitored/measured. However, after the resumption of the countdown time, the tank surface can only be monitored remotely. Currently, remote sensing is done with a TV camera coupled to a thermal imaging device. This device is capable of identifying the presence of ice, especially if it is covered with a layer of frost. However, it has difficulty identifying transparent ice, and, it is not capable of determining the thickness of ice in any case. Thus, there is a need for developing a technique for measuring the thickness of frost/ice on the tank surface during this two hour period before launch. The external tank surface is flooded with sunlight (natural or simulated) before launch. It may be possible, therefore, to analyze the diffuse reflection of sunlight from the external tank to determine the presence and thickness of ice. The purpose was to investigate the feasibility of this approach. A near-infrared spectrophotometer was used to record spectra of ice. It was determined that the optimum frequencies for monitoring the ice films were 1.03 and 1.255 microns.

  10. Near infrared hyperspectral imaging system for root phenotyping

    Science.gov (United States)

    Arnold, Thomas; Leitner, Raimund; Bodner, Gernot

    2017-05-01

    This paper presents the development and application of a hyper-spectral imaging system for root phenotyping. For sustainable plant production root systems optimized for growing conditions in the field are required. Therefore, the presented system is used for the research in the field of plant drought resistance. The system is used to acquire spatially resolved near infrared (NIR) spectroscopy data of rhizoboxes. In contrast to using visible light (380 nm-780 nm) the NIR wavelength range (900 nm-1700 nm) allows to discriminate essential features for the root segmentation and water distribution mappings. The increased image contrast in the NIR range allows roots to be segmented from soil and additional information, e.g. basic root-architecture, to be extracted. In addition, the water absorption bands in the NIR wavelength range can be used to determine the water content and to estimate the age of the roots. In this paper the hardware setup of the hyper-spectral root imaging system, the data analysis, the soil water content estimations and the root segmentation using different methods to optimize separation between roots and soil, both constituting complex materials of variable properties, are presented.

  11. Giant Planet Interior Physics from Near-Infrared Spectroscopy

    Science.gov (United States)

    Fortney, Jonathan J.; Thorngren, Daniel; Line, Michael R.; Morley, Caroline

    2017-10-01

    Transiting planets give us excellent probes of giant exoplanet structure (from mass and radius) and atmospheres (from transit and occultation spectroscopy). However, the combined power of these observations to understand how the planetary interior structure may impact its atmosphere has not yet been fully exploited. This will change with JWST. In particular, near-infrared wavelengths have less water opacity than mid-IR wavelengths, which allows us to probe thermal emission from deeper, hotter regions of the atmosphere. In some circumstances we should be able to see thermal emission coming from below the radiative-convective boundary in the atmosphere, including the adiabat itself. This adiabat continues into the planet’s very deep interior -- the specific entropy of this adiabat sets the planetary radius at a given mass. Hot internal adiabats, which we should be able to ``see” in thermal emission, should be present for the most inflated hot Jupiters, and planets like warm Neptunes that are strongly influenced by tidal heating (e.g. GJ 436b, Morley et al. 2017). Determining the flux coming from these atmospheric depths can be an important constraint on structure models of planets that have aimed to understand giant planet bulk metal enrichment, which is an important constraint on formation models. These flux detections can also provide novel and reasonably direct constraints on planetary tidal Q for eccentric planets. We highlight how we expect JWST to open up this new window into exoplanetary physics.

  12. Prediction of brain tissue temperature using near-infrared spectroscopy

    Science.gov (United States)

    Holper, Lisa; Mitra, Subhabrata; Bale, Gemma; Robertson, Nicola; Tachtsidis, Ilias

    2017-01-01

    Abstract. Broadband near-infrared spectroscopy (NIRS) can provide an endogenous indicator of tissue temperature based on the temperature dependence of the water absorption spectrum. We describe a first evaluation of the calibration and prediction of brain tissue temperature obtained during hypothermia in newborn piglets (animal dataset) and rewarming in newborn infants (human dataset) based on measured body (rectal) temperature. The calibration using partial least squares regression proved to be a reliable method to predict brain tissue temperature with respect to core body temperature in the wavelength interval of 720 to 880 nm with a strong mean predictive power of R2=0.713±0.157 (animal dataset) and R2=0.798±0.087 (human dataset). In addition, we applied regression receiver operating characteristic curves for the first time to evaluate the temperature prediction, which provided an overall mean error bias between NIRS predicted brain temperature and body temperature of 0.436±0.283°C (animal dataset) and 0.162±0.149°C (human dataset). We discuss main methodological aspects, particularly the well-known aspect of over- versus underestimation between brain and body temperature, which is relevant for potential clinical applications. PMID:28630878

  13. Quantifying cerebral hypoxia by near-infrared spectroscopy tissue oximetry

    DEFF Research Database (Denmark)

    Rasmussen, Martin B.; Eriksen, Vibeke R.; Andresen, Bjørn

    2017-01-01

    hypotension to investigate the influence of blood volume distribution on cerebral NIRS in a newborn piglet model. Hypotension was induced gradually by inflating a balloon-catheter in the inferior vena cava and the regional tissue oxygenation from NIRS (rStO2,NIRS) was then compared to a reference (rStO2,COX......Tissue oxygenation estimated by near-infrared spectroscopy (NIRS) is a volume-weighted mean of the arterial and venous hemoglobin oxygenation. In vivo validation assumes a fixed arterial-to-venous volume-ratio (AV-ratio). Regulatory cerebro-vascular mechanisms may change the AV-ratio. We used......) calculated from superior sagittal sinus and aortic blood sample co-oximetry with a fixed AV-ratio. Apparent changes in the AV-ratio and cerebral blood volume (CBV) were also calculated. The mean arterial blood pressure (MABP) range was 14 to 82 mmHg. PaCO2 and SaO2 were stable during measurements. rStO2,NIRS...

  14. Near-Infrared Spectroscopy of Small Protonated Water Clusters

    Science.gov (United States)

    Wagner, J. Philipp; McDonald, David C., II; McCoy, Anne B.; Duncan, Michael A.

    2017-06-01

    Small protonated water clusters and their argon tagged analogues of the general formula H^{+}(H_{2}O)_{n}Ar_{m} have been generated in a pulsed electric discharge source. Clusters containing n=1-8 water molecules were mass-selected and their absorptions in the near-infrared were probed with a tunable Nd/colonYAG pumped OPA/OPA laser system in the region from 4850-7350 cm^{-1}. A doublet corresponding to overtones of the free O-H stretches of the external waters was observed around 7200 cm^{-1} that was continuously decreasing in intensity with increasing cluster size. Broad, mostly featureless absorptions were found around 5300 cm^{-1} associated with stretch/bend combinations and with the hydrogen bonded waters in the core of the clusters. Vibrational assignments were substantiated by comparison to anharmonic frequency computations via second-order vibrational perturbation theory (VPT2) at the MP2/aug-cc-pVTZ level of theory.

  15. Portable visible and near-infrared spectrophotometer for triglyceride measurements.

    Science.gov (United States)

    Kobayashi, Takanori; Kato, Yukiko Hakariya; Tsukamoto, Megumi; Ikuta, Kazuyoshi; Sakudo, Akikazu

    2009-01-01

    An affordable and portable machine is required for the practical use of visible and near-infrared (Vis-NIR) spectroscopy. A portable fruit tester comprising a Vis-NIR spectrophotometer was modified for use in the transmittance mode and employed to quantify triglyceride levels in serum in combination with a chemometric analysis. Transmittance spectra collected in the 600- to 1100-nm region were subjected to a partial least-squares regression analysis and leave-out cross-validation to develop a chemometrics model for predicting triglyceride concentrations in serum. The model yielded a coefficient of determination in cross-validation (R2VAL) of 0.7831 with a standard error of cross-validation (SECV) of 43.68 mg/dl. The detection limit of the model was 148.79 mg/dl. Furthermore, masked samples predicted by the model yielded a coefficient of determination in prediction (R2PRED) of 0.6856 with a standard error of prediction (SEP) and detection limit of 61.54 and 159.38 mg/dl, respectively. The portable Vis-NIR spectrophotometer may prove convenient for the measurement of triglyceride concentrations in serum, although before practical use there remain obstacles, which are discussed.

  16. Moisture determination of tritium tracers utilizing near-infrared spectroscopy.

    Science.gov (United States)

    Marques, Rosemary; Waterhouse, David J; Helmy, Roy

    2016-06-15

    Tritium tracers are frequently used in biological assays during the drug discovery process because of their high specific activity and relative ease of synthesis. However, this high specific activity, along with other contributing factors, can lead to an increased rate of radiolytic decomposition. As a result, following long-term storage tritium tracers often require purification. Understanding the elements that cause radiolytic decomposition is extremely important to extend the storage life, and consequently reduce unnecessary inventory purifications. One of these elements is the presence of water in tritium tracers. Upon investigation, it was discovered that aside from the relatively common tritium/water exchange that could occur, residual water could also contribute significantly to the decomposition of tritium tracers. A near-infrared method was developed utilizing a portable device to measure the water content in tritium tracers rapidly and without sample destruction. This method proved to be quick, efficient, and achieved an error less than 5% compared to that of traditional Karl Fischer titration. Method validation was performed and good accuracy, linearity, limit of detection and quantitation were all established. Copyright © 2016 John Wiley & Sons, Ltd.

  17. The slope of the near-infrared extinction law

    Science.gov (United States)

    Stead, J. J.; Hoare, M. G.

    2009-12-01

    We determine the slope of the near-infrared extinction power law (Aλ ~ λ-α) for eight regions of the Galaxy between l ~ 27° and ~100°. UKIDSS Galactic Plane Survey data are compared, in colour-colour space, with Galactic population synthesis model data reddened using a series of power laws and convolved through the UKIDSS filter profiles. Monte Carlo simulations allow us to determine the best-fitting value of α and evaluate the uncertainty. All values are consistent with each other giving an average extinction power law of α = 2.14+0.04-0.05. This is much steeper than most laws previously derived in the literature from colour excess ratios, which are typically between 1.6 and 1.8. We show that this discrepancy is due to an inappropriate choice of filter wavelength in conversion from colour excess ratios to α and that effective rather than isophotal wavelengths are more appropriate. In addition, curved reddening tracks, which depend on the spectral type and filter system, should be used instead of straight vectors.

  18. Near-infrared (NIR) up-conversion optogenetics

    Science.gov (United States)

    Hososhima, Shoko; Yuasa, Hideya; Ishizuka, Toru; Hoque, Mohammad Razuanul; Yamashita, Takayuki; Yamanaka, Akihiro; Sugano, Eriko; Tomita, Hiroshi; Yawo, Hiromu

    2015-11-01

    Non-invasive remote control technologies designed to manipulate neural functions have been long-awaited for the comprehensive and quantitative understanding of neuronal network in the brain as well as for the therapy of neurological disorders. Recently, it has become possible for the neuronal activity to be optically manipulated using biological photo-reactive molecules such as channelrhodopsin (ChR)-2. However, ChR2 and its relatives are mostly reactive to visible light, which does not effectively penetrate through biological tissues. In contrast, near-infrared (NIR) light (650-1450 nm) penetrates deep into the tissues because biological systems are almost transparent to light within this so-called ‘imaging window’. Here we used lanthanide nanoparticles (LNPs), composed of rare-earth elements, as luminous bodies to activate ChRs since they absorb low-energy NIR light to emit high-energy visible light (up-conversion). Here, we created a new type of optogenetic system which consists of the donor LNPs and the acceptor ChRs. The NIR laser irradiation emitted visible light from LNPs, then induced the photo-reactive responses in the near-by cells that expressed ChRs. However, there remains room for large improvements in the energy efficiency of the LNP-ChR system.

  19. Near-infrared oxygen airglow from the Venus nightside

    Science.gov (United States)

    Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.

    1992-01-01

    Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.

  20. Near-infrared spectroscopy (NIRS) in a piglet model

    DEFF Research Database (Denmark)

    Clausen, Nicola Groes; Spielmann, Nelly; Ringer, Simone K.

    2017-01-01

    Near-infrared spectroscopy (NIRS) in a piglet model: readings are influenced by the colour of the cover Clausen NG1,2, Spielmann N1,3, Weiss M1,3, Ringer SK4 1Children’s Research Center, University Children’s Hospital of Zurich, Switzerland; 2Department of Anaesthesiology and Intensive Care, Odense...... from rSO2-UC and rSO2-SC (rSO2-UC2: 57.4 ± 6.8; rSO2-SC: 57.5 ± 6.4; rSO2-SD: 52 ± 5.9 %) (preadings can be influenced by covering of the sensors. The colour of the cover seems to be of importance....... This variability is likely to reflect a source of error rather than an actual change in rSO2 and should be considered, when interpreting rSO2 in a clinical setting. We suggest application of a black sensor cover to avoid the influence of light. Acknowledgement: An INVOS Oximetry monitor was provided with courtesy...