WorldWideScience

Sample records for near-infrared integral field

  1. SPECTRAL TYPING OF LATE-TYPE STELLAR COMPANIONS TO YOUNG STARS FROM LOW-DISPERSION NEAR-INFRARED INTEGRAL FIELD UNIT DATA

    Energy Technology Data Exchange (ETDEWEB)

    Roberts, Lewis C.; Beichman, Charles A.; Burruss, Rick; Ligon, E. Robert; Lockhart, Thomas G.; Roberts, Jennifer E.; Shao, Michael [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Rice, Emily L.; Brenner, Douglas; Oppenheimer, Ben R. [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Crepp, Justin R.; Dekany, Richard G.; Hillenbrand, Lynne A.; Hinkley, Sasha [California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); King, David; Parry, Ian R. [Institute of Astronomy, University of Cambridge, Madingley Road, Cambridge CB3 OHA (United Kingdom); Metchev, Stanimir [Department of Physics and Astronomy, State University of New York, Stony Brook, NY 11794-3800 (United States); Pueyo, Laurent; Sivaramakrishnan, Anand; Soummer, Remi, E-mail: lewis.c.roberts@jpl.nasa.gov [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States); and others

    2012-07-15

    We used the Project 1640 near-infrared coronagraph and integral field spectrograph to observe 19 young solar-type stars. Five of these stars are known binary stars and we detected the late-type secondaries and were able to measure their JH spectra with a resolution of R {approx} 30. The reduced, extracted, and calibrated spectra were compared to template spectra from the IRTF spectral library. With this comparison, we test the accuracy and consistency of spectral-type determination with the low-resolution near-infrared spectra from P1640. Additionally, we determine effective temperature and surface gravity of the companions by fitting synthetic spectra calculated with the PHOENIX model atmosphere code. We also present several new epochs of astrometry of each of the systems. Together, these data increase our knowledge and understanding of the stellar make up of these systems. In addition to the astronomical results, the analysis presented helps validate the Project 1640 data reduction and spectral extraction processes and the utility of low-resolution, near-infrared spectra for characterizing late-type companions in multiple systems.

  2. Analysis of near-field components of a plasmonic optical antenna and their contribution to quantum dot infrared photodetector enhancement.

    Science.gov (United States)

    Gu, Guiru; Vaillancourt, Jarrod; Lu, Xuejun

    2014-10-20

    In this paper, we analyze near-field vector components of a metallic circular disk array (MCDA) plasmonic optical antenna and their contribution to quantum dot infrared photodetector (QDIP) enhancement. The near-field vector components of the MCDA optical antenna and their distribution in the QD active region are simulated. The near-field overlap integral with the QD active region is calculated at different wavelengths and compared with the QDIP enhancement spectrum. The x-component (E(x)) of the near-field vector shows a larger intensity overlap integral and stronger correlation with the QDIP enhancement than E(z) and thus is determined to be the major near-field component to the QDIP enhancement.

  3. [Design of flat field holographic concave grating for near-infrared spectrophotometer].

    Science.gov (United States)

    Xiang, Xian-Yi; Wen, Zhi-Yu

    2008-07-01

    Near-infrared spectrum analysis can be used to determine the nature or test quantitatively some chemical compositions by detecting molecular double frequency and multiple frequency absorption. It has been used in agriculture, biology, petrifaction, foodstuff, medicament, spinning and other fields. Near-infrared spectrophotometer is the main apparatus for near-infrared spectrum analysis, and the grating is the most important part of the apparatus. Based on holographic concave grating theory and optic design software CODE V, a flat field holographic concave grating for near-infrared spectrophotometer was designed from primary structure, which relied on global optimization of the software. The contradiction between wide spectrum bound and limited spectrum extension was resolved, aberrations were reduced successfully, spectrum information was utilized fully, and the optic structure of spectrometer was highly efficient. Using CODE V software, complex high-order aberration equations need not be solved, the result can be evaluated quickly, flat field and resolving power can be kept in balance, and the work efficiency is also enhanced. A paradigm of flat field holographic concave grating is given, it works between 900 nm to 1 700 nm, the diameter of the concave grating is 25 mm, and F/ # is 1. 5. The design result was analyzed and evaluated. It was showed that if the slit source, whose width is 50 microm, is used to reconstruction, the theoretic resolution capacity is better than 6.3 nm.

  4. Data requirements for integrated near field models

    International Nuclear Information System (INIS)

    Wilems, R.E.; Pearson, F.J. Jr.; Faust, C.R.; Brecher, A.

    1981-01-01

    The coupled nature of the various processes in the near field require that integrated models be employed to assess long term performance of the waste package and repository. The nature of the integrated near field models being compiled under the SCEPTER program are discussed. The interfaces between these near field models and far field models are described. Finally, near field data requirements are outlined in sufficient detail to indicate overall programmatic guidance for data gathering activities

  5. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    International Nuclear Information System (INIS)

    Onken, Christopher A.; Ferrarese, Laura; Valluri, Monica; Brown, Jonathan S.; McGregor, Peter J.; Peterson, Bradley M.; Pogge, Richard W.; Bentz, Misty C.; Vestergaard, Marianne; Storchi-Bergmann, Thaisa; Riffel, Rogemar A.

    2014-01-01

    We present a revised measurement of the mass of the central black hole (M BH ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ 2 is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M BH ∼ 3.76 ± 1.15 × 10 7 M ☉ (1σ error) and Y H ∼ 0.34 ± 0.03 M ☉ /L ☉ (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57 −0.37 +0.45 ×10 7 M ⊙ ) and gas kinematics (3.0 −2.2 +0.75 ×10 7 M ⊙ ; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y H = 0.4 ± 0.2 M ☉ /L ☉ . The NIFS kinematics give a central bulge velocity dispersion σ c = 116 ± 3 km s –1 , bringing this object slightly closer to the M BH -σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  6. The black hole mass of NGC 4151. II. Stellar dynamical measurement from near-infrared integral field spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Onken, Christopher A.; Ferrarese, Laura [Herzberg Institute of Astrophysics, National Research Council of Canada, 5071 West Saanich Road, Victoria, BC V9E 2E7 (Canada); Valluri, Monica; Brown, Jonathan S. [Department of Astronomy, University of Michigan, 500 Church Street, Ann Arbor, MI 48109-1042 (United States); McGregor, Peter J. [Research School of Astronomy and Astrophysics, The Australian National University, Canberra, ACT 2611 (Australia); Peterson, Bradley M.; Pogge, Richard W. [Department of Astronomy, The Ohio State University, 140 West 18th Avenue, Columbus, OH 43210 (United States); Bentz, Misty C. [Department of Physics and Astronomy, Georgia State University, 25 Park Place, Office 610, Atlanta, GA 30303 (United States); Vestergaard, Marianne [Dark Cosmology Centre, The Niels Bohr Institute, Copenhagen University, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Storchi-Bergmann, Thaisa [Universidade Federal do Rio Grande do Sul, Instituto de Física, CP 15051, Porto Alegre 91501-970, RS (Brazil); Riffel, Rogemar A., E-mail: christopher.onken@anu.edu.au, E-mail: mvalluri@umich.edu [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil)

    2014-08-10

    We present a revised measurement of the mass of the central black hole (M{sub BH} ) in the Seyfert 1 galaxy NGC 4151. The new stellar dynamical mass measurement is derived by applying an axisymmetric orbit-superposition code to near-infrared integral field data obtained using adaptive optics with the Gemini Near-infrared Integral Field Spectrograph (NIFS). When our models attempt to fit both the NIFS kinematics and additional low spatial resolution kinematics, our results depend sensitively on how χ{sup 2} is computed—probably a consequence of complex bar kinematics that manifest immediately outside the nuclear region. The most robust results are obtained when only the high spatial resolution kinematic constraints in the nuclear region are included in the fit. Our best estimates for the black hole mass and H-band mass-to-light ratio are M{sub BH} ∼ 3.76 ± 1.15 × 10{sup 7} M{sub ☉} (1σ error) and Y{sub H} ∼ 0.34 ± 0.03 M{sub ☉}/L{sub ☉} (3σ error), respectively (the quoted errors reflect the model uncertainties). Our black hole mass measurement is consistent with estimates from both reverberation mapping (3.57{sub −0.37}{sup +0.45}×10{sup 7} M{sub ⊙}) and gas kinematics (3.0{sub −2.2}{sup +0.75}×10{sup 7} M{sub ⊙}; 1σ errors), and our best-fit mass-to-light ratio is consistent with the photometric estimate of Y{sub H} = 0.4 ± 0.2 M{sub ☉}/L{sub ☉}. The NIFS kinematics give a central bulge velocity dispersion σ{sub c} = 116 ± 3 km s{sup –1}, bringing this object slightly closer to the M{sub BH}-σ relation for quiescent galaxies. Although NGC 4151 is one of only a few Seyfert 1 galaxies in which it is possible to obtain a direct dynamical black hole mass measurement—and thus, an independent calibration of the reverberation mapping mass scale—the complex bar kinematics makes it less than ideally suited for this purpose.

  7. Photographic infrared spectroscopy and near infrared photometry of Be stars

    International Nuclear Information System (INIS)

    Swings, J.P.

    1976-01-01

    Two topics are tackled in this presentation: spectroscopy and photometry. The following definitions are chosen: photographic infrared spectroscopy (wavelengths Hα<=lambda<1.2 μ); near infrared photometry (wavebands: 1.6 μ<=lambda<=20 μ). Near infrared spectroscopy and photometry of classical and peculiar Be stars are discussed and some future developments in the field are outlined. (Auth.)

  8. Near-infrared observations of IRAS minisurvey galaxies

    International Nuclear Information System (INIS)

    Carico, D.P.; Soifer, B.T.; Elias, J.H.; Matthews, K.; Neugebauer, G.; Beichman, C.; Persson, C.J.; Persson, S.E.

    1987-01-01

    Near infrared photometry at J, H, and K was obtained for 82 galaxies from the IRAS minisurvey. The near infrared colors of these galaxies cover a larger range in J-H and H-K than do normal field spiral galaxies, and evidence is presented of a tighter correlation between the near and far infrared emission in far infrared bright galaxies than exists between the far infrared and the visible emission. These results suggest the presence of dust in the far infrared bright galaxies, with hot dust emission contributing to the 2.2 micron emission, and extinction by dust affecting both the near infrared colors and the visible luminosities. In addition, there is some indication that the infrared emission in many of the minisurvey galaxies is coming from a strong nuclear component

  9. Mid-infrared integrated photonics on silicon: a perspective

    Directory of Open Access Journals (Sweden)

    Lin Hongtao

    2017-12-01

    Full Text Available The emergence of silicon photonics over the past two decades has established silicon as a preferred substrate platform for photonic integration. While most silicon-based photonic components have so far been realized in the near-infrared (near-IR telecommunication bands, the mid-infrared (mid-IR, 2–20-μm wavelength band presents a significant growth opportunity for integrated photonics. In this review, we offer our perspective on the burgeoning field of mid-IR integrated photonics on silicon. A comprehensive survey on the state-of-the-art of key photonic devices such as waveguides, light sources, modulators, and detectors is presented. Furthermore, on-chip spectroscopic chemical sensing is quantitatively analyzed as an example of mid-IR photonic system integration based on these basic building blocks, and the constituent component choices are discussed and contrasted in the context of system performance and integration technologies.

  10. Monolithic photonic integration for visible and short near-infrared wavelengths: technologies and platforms for bio and life science applications

    Science.gov (United States)

    Porcel, Marco A. G.; Artundo, Iñigo; Domenech, J. David; Geuzebroek, Douwe; Sunarto, Rino; Hoofman, Romano

    2018-04-01

    This tutorial aims to provide a general overview on the state-of-the-art of photonic integrated circuits (PICs) in the visible and short near-infrared (NIR) wavelength ranges, mostly focusing in silicon nitride (SiN) substrates, and a guide to the necessary steps in the design toward the fabrication of such PICs. The focus is put on bio- and life sciences, given the adequacy and, thus, a large number of applications in this field.

  11. Towards phonon photonics: scattering-type near-field optical microscopy reveals phonon-enhanced near-field interaction

    International Nuclear Information System (INIS)

    Hillenbrand, Rainer

    2004-01-01

    Diffraction limits the spatial resolution in classical microscopy or the dimensions of optical circuits to about half the illumination wavelength. Scanning near-field microscopy can overcome this limitation by exploiting the evanescent near fields existing close to any illuminated object. We use a scattering-type near-field optical microscope (s-SNOM) that uses the illuminated metal tip of an atomic force microscope (AFM) to act as scattering near-field probe. The presented images are direct evidence that the s-SNOM enables optical imaging at a spatial resolution on a 10 nm scale, independent of the wavelength used (λ=633 nm and 10 μm). Operating the microscope at specific mid-infrared frequencies we found a tip-induced phonon-polariton resonance on flat polar crystals such as SiC and Si 3 N 4 . Being a spectral fingerprint of any polar material such phonon-enhanced near-field interaction has enormous applicability in nondestructive, material-specific infrared microscopy at nanoscale resolution. The potential of s-SNOM to study eigenfields of surface polaritons in nanostructures opens the door to the development of phonon photonics--a proposed infrared nanotechnology that uses localized or propagating surface phonon polaritons for probing, manipulating and guiding infrared light in nanoscale devices, analogous to plasmon photonics

  12. Near field ice detection using infrared based optical imaging technology

    Science.gov (United States)

    Abdel-Moati, Hazem; Morris, Jonathan; Zeng, Yousheng; Corie, Martin Wesley; Yanni, Victor Garas

    2018-02-01

    If not detected and characterized, icebergs can potentially pose a hazard to oil and gas exploration, development and production operations in arctic environments as well as commercial shipping channels. In general, very large bergs are tracked and predicted using models or satellite imagery. Small and medium bergs are detectable using conventional marine radar. As icebergs decay they shed bergy bits and growlers, which are much smaller and more difficult to detect. Their low profile above the water surface, in addition to occasional relatively high seas, makes them invisible to conventional marine radar. Visual inspection is the most common method used to detect bergy bits and growlers, but the effectiveness of visual inspections is reduced by operator fatigue and low light conditions. The potential hazard from bergy bits and growlers is further increased by short detection range (<1 km). As such, there is a need for robust and autonomous near-field detection of such smaller icebergs. This paper presents a review of iceberg detection technology and explores applications for infrared imagers in the field. Preliminary experiments are performed and recommendations are made for future work, including a proposed imager design which would be suited for near field ice detection.

  13. Advances in near-infrared measurements

    CERN Document Server

    Patonay, Gabor

    1991-01-01

    Advances in Near-Infrared Measurements, Volume 1 provides an overview of near-infrared spectroscopy. The book is comprised of six chapters that tackle various areas of near-infrared measurement. Chapter 1 discusses remote monitoring techniques in near-infrared spectroscopy with an emphasis on fiber optics. Chapter 2 covers the applications of fibers using Raman techniques, and Chapter 3 tackles the difficulties associated with near-infrared data analysis. The subsequent chapters present examples of the capabilities of near-infrared spectroscopy from various research groups. The text wi

  14. Fast Near-Field Calculation for Volume Integral Equations for Layered Media

    DEFF Research Database (Denmark)

    Kim, Oleksiy S.; Meincke, Peter; Breinbjerg, Olav

    2005-01-01

    . Afterwards, the scattered electric field can be easily computed at a regular rectangular grid on any horizontal plane us-ing a 2-dimensional FFT. This approach provides significant speedup in the near-field calculation in comparison to a straightforward numerical evaluation of the ra-diation integral since......An efficient technique based on the Fast Fourier Transform (FFT) for calculating near-field scattering by dielectric objects in layered media is presented. A higher or-der method of moments technique is employed to solve the volume integral equation for the unknown induced volume current density...

  15. Andromeda (M31) optical and infrared disk survey. I. Insights in wide-field near-IR surface photometry

    International Nuclear Information System (INIS)

    Sick, Jonathan; Courteau, Stéphane; Cuillandre, Jean-Charles; McDonald, Michael; De Jong, Roelof; Tully, R. Brent

    2014-01-01

    We present wide-field near-infrared J and K s images of the Andromeda Galaxy (M31) taken with WIRCam at the Canada-France-Hawaii Telescope as part of the Andromeda Optical and Infrared Disk Survey. This data set allows simultaneous observations of resolved stars and near-infrared (NIR) surface brightness across M31's entire bulge and disk (within R = 22 kpc), permitting a direct test of the stellar composition of near-infrared light in a nearby galaxy. Here we develop NIR observation and reduction methods to recover a uniform surface brightness map across the 3° × 1° disk of M31 with 27 WIRCam fields. Two sky-target nodding strategies are tested, and we find that strictly minimizing sky sampling latency cannot improve background subtraction accuracy to better than 2% of the background level due to spatio-temporal variations in the NIR skyglow. We fully describe our WIRCam reduction pipeline and advocate using flats built from night-sky images over a single night, rather than dome flats that do not capture the WIRCam illumination field. Contamination from scattered light and thermal background in sky flats has a negligible effect on the surface brightness shape compared to the stochastic differences in background shape between sky and galaxy disk fields, which are ∼0.3% of the background level. The most dramatic calibration step is the introduction of scalar sky offsets to each image that optimizes surface brightness continuity. Sky offsets reduce the mean surface brightness difference between observation blocks from 1% to <0.1% of the background level, though the absolute background level remains statistically uncertain to 0.15% of the background level. We present our WIRCam reduction pipeline and performance analysis to give specific recommendations for the improvement of NIR wide-field imaging methods.

  16. The second Herschel-ATLAS Data Release - III. Optical and near-infrared counterparts in the North Galactic Plane field

    Science.gov (United States)

    Furlanetto, C.; Dye, S.; Bourne, N.; Maddox, S.; Dunne, L.; Eales, S.; Valiante, E.; Smith, M. W.; Smith, D. J. B.; Ivison, R. J.; Ibar, E.

    2018-05-01

    This paper forms part of the second major public data release of the Herschel Astrophysical Terahertz Large Area Survey (H-ATLAS). In this work, we describe the identification of optical and near-infrared counterparts to the submillimetre detected sources in the 177 deg2 North Galactic Plane (NGP) field. We used the likelihood ratio method to identify counterparts in the Sloan Digital Sky Survey and in the United Kingdom InfraRed Telescope Imaging Deep Sky Survey within a search radius of 10 arcsec of the H-ATLAS sources with a 4σ detection at 250 μm. We obtained reliable (R ≥ 0.8) optical counterparts with r performance of the likelihood ratio method to identify optical and near-infrared counterparts taking into account the depth and area of both input catalogues. Using catalogues with the same surface density of objects in the overlapping ˜25 deg2 area, we obtained that the reliable fraction in the near-infrared (54.8 per cent) is significantly higher than in the optical (36.4 per cent). Finally, using deep radio data which covers a small region of the NGP field, we found that 80-90 per cent of our reliable identifications are correct.

  17. Near-Infrared to Visible Organic Upconversion Devices Based on Organic Light-Emitting Field Effect Transistors.

    Science.gov (United States)

    Li, Dongwei; Hu, Yongsheng; Zhang, Nan; Lv, Ying; Lin, Jie; Guo, Xiaoyang; Fan, Yi; Luo, Jinsong; Liu, Xingyuan

    2017-10-18

    The near-infrared (NIR) to visible upconversion devices have attracted great attention because of their potential applications in the fields of night vision, medical imaging, and military security. Herein, a novel all-organic upconversion device architecture has been first proposed and developed by incorporating a NIR absorption layer between the carrier transport layer and the emission layer in heterostructured organic light-emitting field effect transistors (OLEFETs). The as-prepared devices show a typical photon-to-photon upconversion efficiency as high as 7% (maximum of 28.7% under low incident NIR power intensity) and millisecond-scale response time, which are the highest upconversion efficiency and one of the fastest response time among organic upconversion devices as referred to the previous reports up to now. The high upconversion performance mainly originates from the gain mechanism of field-effect transistor structures and the unique advantage of OLEFETs to balance between the photodetection and light emission. Meanwhile, the strategy of OLEFETs also offers the advantage of high integration so that no extra OLED is needed in the organic upconversion devices. The results would pave way for low-cost, flexible and portable organic upconversion devices with high efficiency and simplified processing.

  18. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    International Nuclear Information System (INIS)

    Pueyo, Laurent; Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny; Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric; Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil; Monnier, John D.; Crepp, Justin; Parry, Ian; Beichman, Charles; Soummer, Rémi

    2012-01-01

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 μm interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A V = 8-12, with an effective temperature of ∼4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  19. CONSTRAINING MASS RATIO AND EXTINCTION IN THE FU ORIONIS BINARY SYSTEM WITH INFRARED INTEGRAL FIELD SPECTROSCOPY

    Energy Technology Data Exchange (ETDEWEB)

    Pueyo, Laurent [Johns Hopkins University, Department of Physics and Astronomy, 366 Bloomberg Center 3400 N. Charles Street, Baltimore, MD 21218 (United States); Hillenbrand, Lynne; Hinkley, Sasha; Dekany, Richard; Roberts, Jenny [Department of Astronomy, California Institute of Technology, 1200 East California Boulevard, Pasadena, CA 91125 (United States); Vasisht, Gautam; Roberts, Lewis C. Jr.; Shao, Mike; Burruss, Rick; Cady, Eric [Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States); Oppenheimer, Ben R.; Brenner, Douglas; Zimmerman, Neil [American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Monnier, John D. [Department of Astronomy, University of Michigan, 941 Dennison Building, 500 Church Street, Ann Arbor, MI 48109-1090 (United States); Crepp, Justin [Department of Physics, 225 Nieuwland Science Hall, University of Notre Dame, Notre Dame, IN 46556 (United States); Parry, Ian [University of Cambridge, Institute of Astronomy, Madingley Road, Cambridge, CB3, OHA (United Kingdom); Beichman, Charles [NASA Exoplanet Science Institute, 770 South Wilson Avenue, Pasadena, CA 91225 (United States); Soummer, Remi [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-09-20

    We report low-resolution near-infrared spectroscopic observations of the eruptive star FU Orionis using the Integral Field Spectrograph (IFS) Project 1640 installed at the Palomar Hale telescope. This work focuses on elucidating the nature of the faint source, located 0.''5 south of FU Ori, and identified in 2003 as FU Ori S. We first use our observations in conjunction with published data to demonstrate that the two stars are indeed physically associated and form a true binary pair. We then proceed to extract J- and H-band spectro-photometry using the damped LOCI algorithm, a reduction method tailored for high contrast science with IFS. This is the first communication reporting the high accuracy of this technique, pioneered by the Project 1640 team, on a faint astronomical source. We use our low-resolution near-infrared spectrum in conjunction with 10.2 {mu}m interferometric data to constrain the infrared excess of FU Ori S. We then focus on estimating the bulk physical properties of FU Ori S. Our models lead to estimates of an object heavily reddened, A{sub V} = 8-12, with an effective temperature of {approx}4000-6500 K. Finally, we put these results in the context of the FU Ori N-S system and argue that our analysis provides evidence that FU Ori S might be the more massive component of this binary system.

  20. MIRIS observation of near-infrared diffuse Galactic light

    Science.gov (United States)

    Onishi, Yosuke; Sano, Kei; Matsuura, Shuji; Jeong, Woong-Seob; Pyo, Jeonghyun; Kim, Il-Jong; Seo, Hyun Jong; Han, Wonyong; Lee, DaeHee; Moon, Bongkon; Park, Wonkee; Park, Younsik; Kim, MinGyu; Matsumoto, Toshio; Matsuhara, Hideo; Nakagawa, Takao; Tsumura, Kohji; Shirahata, Mai; Arai, Toshiaki; Ienaka, Nobuyuki

    2018-06-01

    We report near-infrared (IR) observations of high Galactic latitude clouds to investigate diffuse Galactic light (DGL), which is starlight scattered by interstellar dust grains. The observations were performed at 1.1 and 1.6 μm with a wide-field camera instrument, the Multi-purpose Infra-Red Imaging System (MIRIS) onboard the Korean satellite STSAT-3. The DGL brightness is measured by correlating the near-IR images with a far-IR 100 μm map of interstellar dust thermal emission. The wide-field observation of DGL provides the most accurate DGL measurement achieved to-date. We also find a linear correlation between optical and near-IR DGL in the MBM32 field. To study interstellar dust properties in MBM32, we adopt recent dust models with and without μm-sized very large grains and predict the DGL spectra, taking into account the reddening effect of the interstellar radiation field. The result shows that the observed color of the near-IR DGL is closer to the model spectra without very large grains. This may imply that dust growth in the observed MBM32 field is not active owing to the low density of its interstellar medium.

  1. Investigation of acoustic field near to elastic thin plate using integral method

    Directory of Open Access Journals (Sweden)

    В.І. Токарев

    2004-01-01

    Full Text Available  Investigation of acoustic field near to elastic thin plate using  integral method The influence of boundary conditions on sound wave propagation, radiation and transmission through thin elastic plate is investigated. Necessary for that numerical model was found using the Helmholtz equation and equation of oscilated plate by means of integral formulation of the solution for acoustic fields near to elastic thin plate and for bending waves of small amplitudes.

  2. A NEAR-INFRARED SPECTROSCOPIC STUDY OF YOUNG FIELD ULTRACOOL DWARFS

    Energy Technology Data Exchange (ETDEWEB)

    Allers, K. N. [Department of Physics and Astronomy, Bucknell University, Lewisburg, PA 17837 (United States); Liu, Michael C., E-mail: k.allers@bucknell.edu [Institute for Astronomy, University of Hawaii, 2680 Woodlawn Drive, Honolulu, HI 96822 (United States)

    2013-08-01

    We present a near-infrared (0.9-2.4 {mu}m) spectroscopic study of 73 field ultracool dwarfs having spectroscopic and/or kinematic evidence of youth ( Almost-Equal-To 10-300 Myr). Our sample is composed of 48 low-resolution (R Almost-Equal-To 100) spectra and 41 moderate-resolution spectra (R {approx}> 750-2000). First, we establish a method for spectral typing M5-L7 dwarfs at near-IR wavelengths that is independent of gravity. We find that both visual and index-based classification in the near-IR provides consistent spectral types with optical spectral types, though with a small systematic offset in the case of visual classification at J and K band. Second, we examine features in the spectra of {approx}10 Myr ultracool dwarfs to define a set of gravity-sensitive indices based on FeH, VO, K I, Na I, and H-band continuum shape. We then create an index-based method for classifying the gravities of M6-L5 dwarfs that provides consistent results with gravity classifications from optical spectroscopy. Our index-based classification can distinguish between young and dusty objects. Guided by the resulting classifications, we propose a set of low-gravity spectral standards for the near-IR. Finally, we estimate the ages corresponding to our gravity classifications.

  3. Feasibility of field portable near infrared (NIR) spectroscopy to determine cyanide concentrations in soil

    Science.gov (United States)

    Sut, Magdalena; Fischer, Thomas; Repmann, Frank; Raab, Thomas

    2013-04-01

    In Germany, at more than 1000 sites, soil is polluted with an anthropogenic contaminant in form of iron-cyanide complexes. These contaminations are caused by former Manufactured Gas Plants (MGPs), where electricity for lighting was produced in the process of coal gasification. The production of manufactured gas was restrained in 1950, which caused cessation of MGPs. Our study describes the application of Polychromix Handheld Field Portable Near-Infrared (NIR) Analyzer to predict the cyanide concentrations in soil. In recent times, when the soil remediation is of major importance, there is a need to develop rapid and non-destructive methods for contaminant determination in the field. In situ analysis enables determination of 'hot spots', is cheap and time saving in comparison to laboratory methods. This paper presents a novel usage of NIR spectroscopy, where a calibration model was developed, using multivariate calibration algorithms, in order to determine NIR spectral response to the cyanide concentration in soil samples. As a control, the contaminant concentration was determined using conventional Flow Injection Analysis (FIA). The experiments revealed that portable near-infrared spectrometers could be a reliable device for identification of contamination 'hot spots', where cyanide concentration are higher than 2400 mg kg-1 in the field and >1750 mg kg-1 after sample preparation in the laboratory, but cannot replace traditional laboratory analyses due to high limits of detection.

  4. Scanning near-field infrared microscopy on semiconductor structures

    Energy Technology Data Exchange (ETDEWEB)

    Jacob, Rainer

    2011-01-15

    Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from

  5. Scanning near-field infrared microscopy on semiconductor structures

    International Nuclear Information System (INIS)

    Jacob, Rainer

    2011-01-01

    Near-field optical microscopy has attracted remarkable attention, as it is the only technique that allows the investigation of local optical properties with a resolution far below the diffraction limit. Especially, the scattering-type near-field optical microscopy allows the nondestructive examination of surfaces without restrictions to the applicable wavelengths. However, its usability is limited by the availability of appropriate light sources. In the context of this work, this limit was overcome by the development of a scattering-type near-field microscope that uses a widely tunable free-electron laser as primary light source. In the theoretical part, it is shown that an optical near-field contrast can be expected when materials with different dielectric functions are combined. It is derived that these differences yield different scattering cross-sections for the coupled system of the probe and the sample. Those cross-sections define the strength of the near-field signal that can be measured for different materials. Hence, an optical contrast can be expected, when different scattering cross-sections are probed. This principle also applies to vertically stacked or even buried materials, as shown in this thesis experimentally for two sample systems. In the first example, the different dielectric functions were obtained by locally changing the carrier concentration in silicon by the implantation of boron. It is shown that the concentration of free charge-carriers can be deduced from the near-field contrast between implanted and pure silicon. For this purpose, two different experimental approaches were used, a non-interferometric one by using variable wavelengths and an interferometric one with a fixed wavelength. As those techniques yield complementary information, they can be used to quantitatively determine the effective carrier concentration. Both approaches yield consistent results for the carrier concentration, which excellently agrees with predictions from

  6. Rapid Measurement of Soil Carbon in Rice Paddy Field of Lombok Island Indonesia Using Near Infrared Technology

    Science.gov (United States)

    Kusumo, B. H.; Sukartono, S.; Bustan, B.

    2018-02-01

    Measuring soil organic carbon (C) using conventional analysis is tedious procedure, time consuming and expensive. It is needed simple procedure which is cheap and saves time. Near infrared technology offers rapid procedure as it works based on the soil spectral reflectance and without any chemicals. The aim of this research is to test whether this technology able to rapidly measure soil organic C in rice paddy field. Soil samples were collected from rice paddy field of Lombok Island Indonesia, and the coordinates of the samples were recorded. Parts of the samples were analysed using conventional analysis (Walkley and Black) and some other parts were scanned using near infrared spectroscopy (NIRS) for soil spectral collection. Partial Least Square Regression (PLSR) Models were developed using data of soil C analysed using conventional analysis and data from soil spectral reflectance. The models were moderately successful to measure soil C in rice paddy field of Lombok Island. This shows that the NIR technology can be further used to monitor the C change in rice paddy soil.

  7. WTS: A near-infrared transit survey

    Directory of Open Access Journals (Sweden)

    Hodgkin Simon

    2013-04-01

    Full Text Available The WFCAM Transit Survey is a transiting planet survey running on the United Kingdom Infrared Telescope targeting M dwarf stars in the near infrared. The survey has been operating since 2007 and gathering photometric time series of about 15000 M dwarf stars brighter than J = 17 mag. We identified and followed-up planet candidates from the most complete field and found two hot Jupiters around non-M dwarf hosts (WTS-1b & WTS-2b but found no planets around the M dwarfs.

  8. Tunable magnetization of infrared epsilon-near-zero media via field-effect modulation

    Science.gov (United States)

    Salary, Mohammad Mahdi; Mosallaei, Hossein

    2018-04-01

    In this letter, we demonstrate that field effect modulation enables electrical tuning of the effective permeability of epsilon-near-zero (ENZ) media at infrared frequencies. In particular, hexagonal silicon carbide (6H-SiC) is incorporated as an epsilon-near-zero host in a gated 6H-SiC/SiO2/Si heterostructure. The change in the applied voltage leads to a change in the carrier concentration of the accumulation layer formed at the interface of 6H-SiC and SiO2 which can alter the effective permeability of the heterostructure by virtue of the photonic doping effect. We will rigorously model and analyze the structure by linking charge transport and electromagnetic models. The presented mechanism allows for tuning the impedance and magnetization of ENZ materials in real-time while capturing extreme cases of epsilon-and-mu-near-zero and magnetic conductor. As such, it can be used for various applications such as real-time engineering of thermal emission, dynamic switching, reconfigurable tunneling, and holography.

  9. Efficient perovskite/organic integrated solar cells with extended photoresponse to 930 nm and enhanced near-infrared external quantum efficiency of over 50.

    Science.gov (United States)

    Guo, Qiang; Liu, Hao; Shi, Zhenzhen; Wang, Fuzhi; Zhou, Erjun; Bian, Xingming; Zhang, Bing; Alsaedi, Ahmed; Hayat, Tasawar; Tan, Zhan'ao

    2018-02-15

    Enhancing the light-harvesting activity is an effective way to improve the power conversion efficiency of solar cells. Although rapid enhancement in the PCE up to a value of 22.1% has been achieved for perovskite solar cells, only part of the sunlight, i.e., with wavelengths below 800-850 nm is utilized due to the limited bandgap of the perovskite materials, resulting in most of the near infrared light being wasted. To broaden the photoresponse of perovskite solar cells, we demonstrate an efficient perovskite/organic integrated solar cell containing both CH 3 NH 3 PbI 3 perovskite and PBDTTT-E-T:IEICO organic photoactive layers. By integrating a low band gap PBDTTT-E-T:IEICO active layer on a perovskite layer, the maximum wavelength for light harvesting of the ISC increased to 930 nm, sharply increasing the utilization of near infrared radiation. In addition, the external quantum efficiency of the integrated device exceeded 50% in the near infrared range. The MAPbI 3 /PBDTTT-E-T:IEICO ISCs show an enhanced short-circuit current density of over 24 mA cm -2 , which is the highest existing value among perovskite/organic integrated solar cells and much higher than the traditional MAPbI 3 based perovskite solar cells. The results reveal that a perovskite/organic integrated structure is a promising strategy to extend and enhance sunlight utilization for perovskite solar cells.

  10. Near-Field Spectroscopy with Nanoparticles Deposited by AFM

    Science.gov (United States)

    Anderson, Mark S.

    2008-01-01

    An alternative approach to apertureless near-field optical spectroscopy involving an atomic-force microscope (AFM) entails less complexity of equipment than does a prior approach. The alternative approach has been demonstrated to be applicable to apertureless near-field optical spectroscopy of the type using an AFM and surface enhanced Raman scattering (SERS), and is expected to be equally applicable in cases in which infrared or fluorescence spectroscopy is used. Apertureless near-field optical spectroscopy is a means of performing spatially resolved analyses of chemical compositions of surface regions of nanostructured materials. In apertureless near-field spectroscopy, it is common practice to utilize nanostructured probe tips or nanoparticles (usually of gold) having shapes and dimensions chosen to exploit plasmon resonances so as to increase spectroscopic-signal strengths. To implement the particular prior approach to which the present approach is an alternative, it is necessary to integrate a Raman spectrometer with an AFM and to utilize a special SERS-active probe tip. The resulting instrumentation system is complex, and the tasks of designing and constructing the system and using the system to acquire spectro-chemical information from nanometer-scale regions on a surface are correspondingly demanding.

  11. Image-guided cancer surgery using near-infrared fluorescence

    Science.gov (United States)

    Vahrmeijer, Alexander L.; Hutteman, Merlijn; van der Vorst, Joost R.; van de Velde, C.J.H.; Frangioni, John V.

    2013-01-01

    Paradigm shifts in surgery arise when surgeons are empowered to perform surgery faster, better, and/or less expensively. Optical imaging that exploits invisible near-infrared fluorescent light has the potential to improve cancer surgery outcomes while minimizing anesthesia time and lowering healthcare costs. Because of this, the last few years have witnessed an explosion of proof-of-concept clinical trials in the field. In this review, we introduce the concept of near-infrared fluorescence imaging for cancer surgery, review the clinical trial literature to date, outline the key issues pertaining to imaging system and contrast agent optimization, discuss limitations and leverage, and provide a framework for making the technology available for the routine care of cancer patients in the near future. PMID:23881033

  12. Novel concepts in near-field optics: from magnetic near-field to optical forces

    Science.gov (United States)

    Yang, Honghua

    Driven by the progress in nanotechnology, imaging and spectroscopy tools with nanometer spatial resolution are needed for in situ material characterizations. Near-field optics provides a unique way to selectively excite and detect elementary electronic and vibrational interactions at the nanometer scale, through interactions of light with matter in the near-field region. This dissertation discusses the development and applications of near-field optical imaging techniques, including plasmonic material characterization, optical spectral nano-imaging and magnetic field detection using scattering-type scanning near-field optical microscopy (s-SNOM), and exploring new modalities of optical spectroscopy based on optical gradient force detection. Firstly, the optical dielectric functions of one of the most common plasmonic materials---silver is measured with ellipsometry, and analyzed with the Drude model over a broad spectral range from visible to mid-infrared. This work was motivated by the conflicting results of previous measurements, and the need for accurate values for a wide range of applications of silver in plasmonics, optical antennas, and metamaterials. This measurement provides a reference for dielectric functions of silver used in metamaterials, plasmonics, and nanophotonics. Secondly, I implemented an infrared s-SNOM instrument for spectroscopic nano-imaging at both room temperature and low temperature. As one of the first cryogenic s-SNOM instruments, the novel design concept and key specifications are discussed. Initial low-temperature and high-temperature performances of the instrument are examined by imaging of optical conductivity of vanadium oxides (VO2 and V2O 3) across their phase transitions. The spectroscopic imaging capability is demonstrated on chemical vibrational resonances of Poly(methyl methacrylate) (PMMA) and other samples. The third part of this dissertation explores imaging of optical magnetic fields. As a proof-of-principle, the magnetic

  13. Silicon Nitride Photonic Integration Platforms for Visible, Near-Infrared and Mid-Infrared Applications

    Science.gov (United States)

    Micó, Gloria; Pastor, Daniel; Pérez, Daniel; Doménech, José David; Fernández, Juan; Baños, Rocío; Alemany, Rubén; Sánchez, Ana M.; Cirera, Josep M.; Mas, Roser

    2017-01-01

    Silicon nitride photonics is on the rise owing to the broadband nature of the material, allowing applications of biophotonics, tele/datacom, optical signal processing and sensing, from visible, through near to mid-infrared wavelengths. In this paper, a review of the state of the art of silicon nitride strip waveguide platforms is provided, alongside the experimental results on the development of a versatile 300 nm guiding film height silicon nitride platform. PMID:28895906

  14. Near-infrared Thermal Emission Detections of a Number of Hot Jupiters and the Systematics of Ground-based Near-infrared Photometry

    Science.gov (United States)

    Croll, Bryce; Albert, Loic; Jayawardhana, Ray; Cushing, Michael; Moutou, Claire; Lafreniere, David; Johnson, John Asher; Bonomo, Aldo S.; Deleuil, Magali; Fortney, Jonathan

    2015-03-01

    We present detections of the near-infrared thermal emission of three hot Jupiters and one brown dwarf using the Wide-field Infrared Camera (WIRCam) on the Canada-France-Hawaii Telescope (CFHT). These include Ks-band secondary eclipse detections of the hot Jupiters WASP-3b and Qatar-1b and the brown dwarf KELT-1b. We also report Y-band, K CONT-band, and two new and one reanalyzed Ks-band detections of the thermal emission of the hot Jupiter WASP-12b. We present a new reduction pipeline for CFHT/WIRCam data, which is optimized for high precision photometry. We also describe novel techniques for constraining systematic errors in ground-based near-infrared photometry, so as to return reliable secondary eclipse depths and uncertainties. We discuss the noise properties of our ground-based photometry for wavelengths spanning the near-infrared (the YJHK bands), for faint and bright stars, and for the same object on several occasions. For the hot Jupiters WASP-3b and WASP-12b we demonstrate the repeatability of our eclipse depth measurements in the Ks band; we therefore place stringent limits on the systematics of ground-based, near-infrared photometry, and also rule out violent weather changes in the deep, high pressure atmospheres of these two hot Jupiters at the epochs of our observations. Based on observations obtained with WIRCam, a joint project of Canada-France-Hawaii Telescope (CFHT), Taiwan, Korea, Canada, France, at the CFHT, which is operated by the National Research Council (NRC) of Canada, the Institute National des Sciences de l'Univers of the Centre National de la Recherche Scientifique of France, and the University of Hawaii.

  15. ON THE NEAR-INFRARED IDENTIFICATION OF THE INTEGRAL SOURCE IGR J16328–4726

    Energy Technology Data Exchange (ETDEWEB)

    Persi, P.; Fiocchi, M.; Bazzano, A.; Ubertini, P.; Parisi, P. [INAF/IAPS-Roma, Via fosso del cavaliere, 100, I-00133 Roma (Italy); Tapia, M. [Instituto de Astronomía, Universidad Nacional Autónoma de México, Ensenada, B.C. (Mexico); Roth, M., E-mail: paolo.persi@iaps.inaf.it [Las Campanas Observatory, Carnegie Institution of Washington, La Serena (Chile)

    2015-07-15

    The aim of this work is to identify the infrared (IR) counterpart of the Galactic high-mass X-ray binary IGR J16328–4726 discovered by the INTEGRAL satellite, and to derive the extinction and distance to the system. We present new deep sub-arcsecond JHK{sub s} imaging and low-resolution near-IR spectroscopy in the 1.5 and 2.4 μm range of IGR J16328–4726. We report the presence of two near-IR stellar sources separated by about 1.″8 at the location of the unresolved 2MASS source J16323791–4723409, previously considered to be the near-IR counterpart of the X-ray source. From the analysis of their near-IR colors and spectra as well as accurate positions, we uniquely identify the true IR counterpart of IGR J16328–4726. Our 1.5–2.4 μm spectrum of this star is consistent with the published classification O8Iafpe. Assuming this, and in combination with new JHK{sub s} photometry, a reddening A{sub V} = 23.6 ± 0.7 and a distance of 7.2 ± 0.3 kpc from the Sun are derived.

  16. The DENIS & 2MASS Near Infrared Surveys

    OpenAIRE

    Mamon, Gary

    1996-01-01

    The DENIS and 2MASS near infrared surveys are presented. Their applications in extragalactic astronomy and cosmology are listed. The prospects for a rapid spectroscopic followup survey of a near infrared selected sample of nearly $10^5$ galaxies are illustrated with Monte-Carlo simulations.

  17. Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range

    Energy Technology Data Exchange (ETDEWEB)

    Aseev, Pavel, E-mail: pavel.aseev@upm.es; Rodriguez, Paul E. D. Soto; Gómez, Víctor J.; Alvi, Naveed ul Hassan; Calleja, Enrique [Instituto de Sistemas Optoelectrónicos y Microtecnología, Universidad Politécnica de Madrid, Ciudad Universitaria s/n, 28040 Madrid (Spain); Mánuel, José M.; Jiménez, Juan J.; García, Rafael [Departamente Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz (Spain); Morales, Francisco M. [Departamente Ciencia de los Materiales e Ingeniería Metalúrgica y Química Inorgánica, Facultad de Ciencias, Universidad de Cádiz, Puerto Real, 11510 Cádiz (Spain); IMEYMAT: Institute of Research on Electron Microscopy and Materials of the University of Cádiz, 11510 Cádiz (Spain); Senichev, Alexander [Max Planck Institute of Microstructure Physics, Weinberg 2, 06120 Halle (Germany); Lienau, Christoph [Institute of Physics and Center of Interface Science, Carl von Ossietzky Universität Oldenburg, Ammerländer Heerstr. 114-118, 26129 Oldenburg (Germany); and others

    2015-02-16

    The authors report compact and chemically homogeneous In-rich InGaN layers directly grown on Si (111) by plasma-assisted molecular beam epitaxy. High structural and optical quality is evidenced by transmission electron microscopy, near-field scanning optical microscopy, and X-ray diffraction. Photoluminescence emission in the near-infrared is observed up to room temperature covering the important 1.3 and 1.55 μm telecom wavelength bands. The n-InGaN/p-Si interface is ohmic due to the absence of any insulating buffer layers. This qualitatively extends the application fields of III-nitrides and allows their integration with established Si technology.

  18. Near-infrared emitting In-rich InGaN layers grown directly on Si: Towards the whole composition range

    International Nuclear Information System (INIS)

    Aseev, Pavel; Rodriguez, Paul E. D. Soto; Gómez, Víctor J.; Alvi, Naveed ul Hassan; Calleja, Enrique; Mánuel, José M.; Jiménez, Juan J.; García, Rafael; Morales, Francisco M.; Senichev, Alexander; Lienau, Christoph

    2015-01-01

    The authors report compact and chemically homogeneous In-rich InGaN layers directly grown on Si (111) by plasma-assisted molecular beam epitaxy. High structural and optical quality is evidenced by transmission electron microscopy, near-field scanning optical microscopy, and X-ray diffraction. Photoluminescence emission in the near-infrared is observed up to room temperature covering the important 1.3 and 1.55 μm telecom wavelength bands. The n-InGaN/p-Si interface is ohmic due to the absence of any insulating buffer layers. This qualitatively extends the application fields of III-nitrides and allows their integration with established Si technology

  19. Near infrared detection of ammonium minerals.

    Science.gov (United States)

    Krohn, M.D.; Altaner, S.P.

    1987-01-01

    Diagnostic near-infrared spectral features have been identified for minerals with ammonium (NH4+) bound in the crystal structure. Near-infrared detection of NH4-bearing minerals may provide useful information for prospecting for certain ore deposits and may provide a better understanding of the nitrogen cycle within geologic environments.-from Authors

  20. Stanford MFEL and Near Infrared Science Center

    Science.gov (United States)

    2011-01-28

    are incorporated into glass catadioptric lenses that are mounted and sealed at each end of the stainless steel microscope. In addition to the self...highly effective in preventing biofilm formation , as well as in killing biofilms that are already present. b) Peer-Reviewed publications (in reversed...Multiphoton Microscopy in the Biomedical Sciences VII, SPIE, vol. 6442 (2007). 3. On Image formation in Near-field Infrared Microscopy, D. M

  1. Brown carbon absorption in the red and near-infrared spectral region

    Science.gov (United States)

    Hoffer, András; Tóth, Ádám; Pósfai, Mihály; Eddy Chung, Chul; Gelencsér, András

    2017-06-01

    Black carbon (BC) aerosols have often been assumed to be the only light-absorbing carbonaceous particles in the red and near-infrared spectral regions of solar radiation in the atmosphere. Here we report that tar balls (a specific type of organic aerosol particles from biomass burning) do absorb red and near-infrared radiation significantly. Tar balls were produced in a laboratory experiment, and their chemical and optical properties were measured. The absorption of these particles in the range between 470 and 950 nm was measured with an aethalometer, which is widely used to measure atmospheric aerosol absorption. We find that the absorption coefficient of tar balls at 880 nm is more than 10 % of that at 470 nm. The considerable absorption of red and infrared light by tar balls also follows from their relatively low absorption Ångström coefficient (and significant mass absorption coefficient) in the spectral range between 470 and 950 nm. Our results support the previous finding that tar balls may play an important role in global warming. Due to the non-negligible absorption of tar balls in the near-infrared region, the absorption measured in the field at near-infrared wavelengths cannot solely be due to soot particles.

  2. Thermal management in MoS{sub 2} based integrated device using near-field radiation

    Energy Technology Data Exchange (ETDEWEB)

    Peng, Jiebin [Department of Physics, National University of Singapore, Singapore 117546 (Singapore); Zhang, Gang, E-mail: zhangg@ihpc.a-star.edu.sg [Institute of High Performance Computing, A*STAR, Singapore 138632 (Singapore); Li, Baowen [Department of Mechanical Engineering, University of Colorado, Boulder, Colorado 80309 (United States)

    2015-09-28

    Recently, wafer-scale growth of monolayer MoS{sub 2} films with spatial homogeneity is realized on SiO{sub 2} substrate. Together with the latest reported high mobility, MoS{sub 2} based integrated electronic devices are expected to be fabricated in the near future. Owing to the low lattice thermal conductivity in monolayer MoS{sub 2}, and the increased transistor density accompanied with the increased power density, heat dissipation will become a crucial issue for these integrated devices. In this letter, using the formalism of fluctuation electrodynamics, we explored the near-field radiative heat transfer from a monolayer MoS{sub 2} to graphene. We demonstrate that in resonance, the maximum heat transfer via near-field radiation between MoS{sub 2} and graphene can be ten times higher than the in-plane lattice thermal conduction for MoS{sub 2} sheet. Therefore, an efficient thermal management strategy for MoS{sub 2} integrated device is proposed: Graphene sheet is brought into close proximity, 10–20 nm from MoS{sub 2} device; heat energy transfer from MoS{sub 2} to graphene via near-field radiation; this amount of heat energy then be conducted to contact due to ultra-high lattice thermal conductivity of graphene. Our work sheds light for developing cooling strategy for nano devices constructing with low thermal conductivity materials.

  3. Ultradeep Near-Infrared ISAAC Observations of the Hubble Deep Field South: Observations, Reduction, Multicolor Catalog, and Photometric Redshifts

    Science.gov (United States)

    Labbé, Ivo; Franx, Marijn; Rudnick, Gregory; Schreiber, Natascha M. Förster; Rix, Hans-Walter; Moorwood, Alan; van Dokkum, Pieter G.; van der Werf, Paul; Röttgering, Huub; van Starkenburg, Lottie; van der Wel, Arjen; Kuijken, Konrad; Daddi, Emanuele

    2003-03-01

    We present deep near-infrared (NIR) Js-, H-, and Ks-band ISAAC imaging of the Wide Field Planetary Camera 2 (WFPC2) field of the Hubble Deep Field South (HDF-S). The 2.5‧×2.5‧ high Galactic latitude field was observed with the Very Large Telescope under the best seeing conditions, with integration times amounting to 33.6 hr in Js, 32.3 hr in H, and 35.6 hr in Ks. We reach total AB magnitudes for point sources of 26.8, 26.2, and 26.2, respectively (3 σ), which make it the deepest ground-based NIR observation to date and the deepest Ks-band data in any field. The effective seeing of the co-added images is ~0.45" in Js, ~0.48" in H, and ~0.46" in Ks. Using published WFPC2 optical data, we constructed a Ks-limited multicolor catalog containing 833 sources down to Ktots,AB2.3 (in Johnson magnitudes). Because they are extremely faint in the observed optical, they would be missed by ultraviolet-optical selection techniques, such as the U-dropout method. Based on service mode observations collected at the European Southern Observatory, Paranal, Chile (ESO Program 164.O-0612). Also based on observations with the NASA/ESA Hubble Space Telescope, obtained at the Space Telescope Science Institute, which is operated by the Association of Universities for Research in Astronomy (AURA), Inc., under NASA contract NAS 5-26555.

  4. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review

    OpenAIRE

    Wang, Pei; Yu, Zhiguo

    2015-01-01

    Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination. Keywords: Near infrared spectroscopy, Herbal medicine, Species...

  5. Towards a Low-Cost Mobile Subcutaneous Vein Detection Solution Using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Simon Juric

    2014-01-01

    Full Text Available Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature. The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.

  6. Towards a low-cost mobile subcutaneous vein detection solution using near-infrared spectroscopy.

    Science.gov (United States)

    Juric, Simon; Flis, Vojko; Debevc, Matjaz; Holzinger, Andreas; Zalik, Borut

    2014-01-01

    Excessive venipunctures are both time- and resource-consuming events, which cause anxiety, pain, and distress in patients, or can lead to severe harmful injuries. We propose a low-cost mobile health solution for subcutaneous vein detection using near-infrared spectroscopy, along with an assessment of the current state of the art in this field. The first objective of this study was to get a deeper overview of the research topic, through the initial team discussions and a detailed literature review (using both academic and grey literature). The second objective, that is, identifying the commercial systems employing near-infrared spectroscopy, was conducted using the PubMed database. The goal of the third objective was to identify and evaluate (using the IEEE Xplore database) the research efforts in the field of low-cost near-infrared imaging in general, as a basis for the conceptual model of the upcoming prototype. Although the reviewed commercial devices have demonstrated usefulness and value for peripheral veins visualization, other evaluated clinical outcomes are less conclusive. Previous studies regarding low-cost near-infrared systems demonstrated the general feasibility of developing cost-effective vein detection systems; however, their limitations are restricting their applicability to clinical practice. Finally, based on the current findings, we outline the future research direction.

  7. Near-infrared neuroimaging with NinPy

    Directory of Open Access Journals (Sweden)

    Gary E Strangman

    2009-05-01

    Full Text Available There has been substantial recent growth in the use of non-invasive optical brain imaging in studies of human brain function in health and disease. Near-infrared neuroimaging (NIN is one of the most promising of these techniques and, although NIN hardware continues to evolve at a rapid pace, software tools supporting optical data acquisition, image processing, statistical modeling and visualization remain less refined. Python, a modular and computationally efficient development language, can support functional neuroimaging studies of diverse design and implementation. In particular, Python's easily readable syntax and modular architecture allow swift prototyping followed by efficient transition to stable production systems. As an introduction to our ongoing efforts to develop Python software tools for structural and functional neuroimaging, we discuss: (i the role of noninvasive diffuse optical imaging in measuring brain function, (ii the key computational requirements to support NIN experiments, (iii our collection of software tools to support near-infrared neuroimaging, called NinPy, and (iv future extensions of these tools that will allow integration of optical with other structural and functional neuroimaging data sources. Source code for the software discussed here will be made available at www.nmr.mgh.harvard.edu/Neural_SystemsGroup/software.html.

  8. Dual stacked partial least squares for analysis of near-infrared spectra

    Energy Technology Data Exchange (ETDEWEB)

    Bi, Yiming [Institute of Automation, Chinese Academy of Sciences, 100190 Beijing (China); Xie, Qiong, E-mail: yimbi@163.com [Institute of Automation, Chinese Academy of Sciences, 100190 Beijing (China); Peng, Silong; Tang, Liang; Hu, Yong; Tan, Jie [Institute of Automation, Chinese Academy of Sciences, 100190 Beijing (China); Zhao, Yuhui [School of Economics and Business, Northeastern University at Qinhuangdao, 066000 Qinhuangdao City (China); Li, Changwen [Food Research Institute of Tianjin Tasly Group, 300410 Tianjin (China)

    2013-08-20

    Graphical abstract: -- Highlights: •Dual stacking steps are used for multivariate calibration of near-infrared spectra. •A selective weighting strategy is introduced that only a subset of all available sub-models is used for model fusion. •Using two public near-infrared datasets, the proposed method achieved competitive results. •The method can be widely applied in many fields, such as Mid-infrared spectra data and Raman spectra data. -- Abstract: A new ensemble learning algorithm is presented for quantitative analysis of near-infrared spectra. The algorithm contains two steps of stacked regression and Partial Least Squares (PLS), termed Dual Stacked Partial Least Squares (DSPLS) algorithm. First, several sub-models were generated from the whole calibration set. The inner-stack step was implemented on sub-intervals of the spectrum. Then the outer-stack step was used to combine these sub-models. Several combination rules of the outer-stack step were analyzed for the proposed DSPLS algorithm. In addition, a novel selective weighting rule was also involved to select a subset of all available sub-models. Experiments on two public near-infrared datasets demonstrate that the proposed DSPLS with selective weighting rule provided superior prediction performance and outperformed the conventional PLS algorithm. Compared with the single model, the new ensemble model can provide more robust prediction result and can be considered an alternative choice for quantitative analytical applications.

  9. Dual stacked partial least squares for analysis of near-infrared spectra

    International Nuclear Information System (INIS)

    Bi, Yiming; Xie, Qiong; Peng, Silong; Tang, Liang; Hu, Yong; Tan, Jie; Zhao, Yuhui; Li, Changwen

    2013-01-01

    Graphical abstract: -- Highlights: •Dual stacking steps are used for multivariate calibration of near-infrared spectra. •A selective weighting strategy is introduced that only a subset of all available sub-models is used for model fusion. •Using two public near-infrared datasets, the proposed method achieved competitive results. •The method can be widely applied in many fields, such as Mid-infrared spectra data and Raman spectra data. -- Abstract: A new ensemble learning algorithm is presented for quantitative analysis of near-infrared spectra. The algorithm contains two steps of stacked regression and Partial Least Squares (PLS), termed Dual Stacked Partial Least Squares (DSPLS) algorithm. First, several sub-models were generated from the whole calibration set. The inner-stack step was implemented on sub-intervals of the spectrum. Then the outer-stack step was used to combine these sub-models. Several combination rules of the outer-stack step were analyzed for the proposed DSPLS algorithm. In addition, a novel selective weighting rule was also involved to select a subset of all available sub-models. Experiments on two public near-infrared datasets demonstrate that the proposed DSPLS with selective weighting rule provided superior prediction performance and outperformed the conventional PLS algorithm. Compared with the single model, the new ensemble model can provide more robust prediction result and can be considered an alternative choice for quantitative analytical applications

  10. Near infrared and visible face recognition based on decision fusion of LBP and DCT features

    Science.gov (United States)

    Xie, Zhihua; Zhang, Shuai; Liu, Guodong; Xiong, Jinquan

    2018-03-01

    Visible face recognition systems, being vulnerable to illumination, expression, and pose, can not achieve robust performance in unconstrained situations. Meanwhile, near infrared face images, being light- independent, can avoid or limit the drawbacks of face recognition in visible light, but its main challenges are low resolution and signal noise ratio (SNR). Therefore, near infrared and visible fusion face recognition has become an important direction in the field of unconstrained face recognition research. In order to extract the discriminative complementary features between near infrared and visible images, in this paper, we proposed a novel near infrared and visible face fusion recognition algorithm based on DCT and LBP features. Firstly, the effective features in near-infrared face image are extracted by the low frequency part of DCT coefficients and the partition histograms of LBP operator. Secondly, the LBP features of visible-light face image are extracted to compensate for the lacking detail features of the near-infrared face image. Then, the LBP features of visible-light face image, the DCT and LBP features of near-infrared face image are sent to each classifier for labeling. Finally, decision level fusion strategy is used to obtain the final recognition result. The visible and near infrared face recognition is tested on HITSZ Lab2 visible and near infrared face database. The experiment results show that the proposed method extracts the complementary features of near-infrared and visible face images and improves the robustness of unconstrained face recognition. Especially for the circumstance of small training samples, the recognition rate of proposed method can reach 96.13%, which has improved significantly than 92.75 % of the method based on statistical feature fusion.

  11. Ultrafast stimulated Raman spectroscopy in the near-infrared region

    International Nuclear Information System (INIS)

    Takaya, Tomohisa

    2016-01-01

    A number of electronic transitions in the near-infrared wavelength region are associated with migration or delocalization of electrons in large molecules or molecular systems. Time-resolved near-infrared Raman spectroscopy will be a powerful tool for investigating the structural dynamic of samples with delocalized electrons. However, the sensitivity of near-infrared spontaneous Raman spectrometers is significantly low due to an extremely small probability of Raman scattering and a low sensitivity of near-infrared detectors. Nonlinear Raman spectroscopy is one of the techniques that can overcome the sensitivity problems and enable us to obtain time-resolved Raman spectra in resonance with near-IR transitions. In this article, the author introduces recent progress of ultrafast time-resolved near-infrared stimulated Raman spectroscopy. Optical setup, spectral and temporal resolution, and applications of the spectrometer are described. (author)

  12. Polarized near-infrared autofluorescence imaging combined with near-infrared diffuse reflectance imaging for improving colonic cancer detection.

    Science.gov (United States)

    Shao, Xiaozhuo; Zheng, Wei; Huang, Zhiwei

    2010-11-08

    We evaluate the diagnostic feasibility of the integrated polarized near-infrared (NIR) autofluorescence (AF) and NIR diffuse reflectance (DR) imaging technique developed for colonic cancer detection. A total of 48 paired colonic tissue specimens (normal vs. cancer) were measured using the integrated NIR DR (850-1100 nm) and NIR AF imaging at the 785 nm laser excitation. The results showed that NIR AF intensities of cancer tissues are significantly lower than those of normal tissues (ppolarization conditions gives a higher diagnostic accuracy (of ~92-94%) compared to non-polarized NIR AF imaging or NIR DR imaging. Further, the ratio imaging of NIR DR to NIR AF with polarization provides the best diagnostic accuracy (of ~96%) among the NIR AF and NIR DR imaging techniques. This work suggests that the integrated NIR AF/DR imaging under polarization condition has the potential to improve the early diagnosis and detection of malignant lesions in the colon.

  13. Visible/near-infrared spectral diversity from in situ observations of the Bagnold Dune Field sands in Gale Crater, Mars

    Science.gov (United States)

    Johnson, Jeffrey R.; Achilles, Cherie; Bell, James F.; Bender, Steve; Cloutis, Edward; Ehlmann, Bethany; Fraeman, Abigail; Gasnault, Olivier; Hamilton, Victoria E.; Le Mouélic, Stéphane; Maurice, Sylvestre; Pinet, Patrick; Thompson, Lucy; Wellington, Danika; Wiens, Roger C.

    2017-12-01

    As part of the Bagnold Dune campaign conducted by Mars Science Laboratory rover Curiosity, visible/near-infrared reflectance spectra of dune sands were acquired using Mast Camera (Mastcam) multispectral imaging (445-1013 nm) and Chemistry and Camera (ChemCam) passive point spectroscopy (400-840 nm). By comparing spectra from pristine and rover-disturbed ripple crests and troughs within the dune field, and through analysis of sieved grain size fractions, constraints on mineral segregation from grain sorting could be determined. In general, the dune areas exhibited low relative reflectance, a weak 530 nm absorption band, an absorption band near 620 nm, and a spectral downturn after 685 nm consistent with olivine-bearing sands. The finest grain size fractions occurred within ripple troughs and in the subsurface and typically exhibited the strongest 530 nm bands, highest relative reflectances, and weakest red/near-infrared ratios, consistent with a combination of crystalline and amorphous ferric materials. Coarser-grained samples were the darkest and bluest and exhibited weaker 530 nm bands, lower relative reflectances, and stronger downturns in the near-infrared, consistent with greater proportions of mafic minerals such as olivine and pyroxene. These grains were typically segregated along ripple crests and among the upper surfaces of grain flows in disturbed sands. Sieved dune sands exhibited progressive decreases in reflectance with increasing grain size, as observed in laboratory spectra of olivine size separates. The continuum of spectral features observed between the coarse- and fine-grained dune sands suggests that mafic grains, ferric materials, and air fall dust mix in variable proportions depending on aeolian activity and grain sorting.

  14. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review

    Directory of Open Access Journals (Sweden)

    Pei Wang

    2015-10-01

    Full Text Available Near infrared (NIR spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination. Keywords: Near infrared spectroscopy, Herbal medicine, Species authentication, Geographical origin discrimination, Quality control

  15. Application of near-infrared spectroscopy to preservative-treated wood

    Science.gov (United States)

    Chi-Leung So; Stan T. Lebow; Thomas L. Eberhardt; Leslie H. Groom; Todd F. Shupe

    2009-01-01

    Near infrared (NIR) spectroscopy is now a widely-used technique in the field of forest products, especially for physical and mechanical property determinations. This technique is also ideal for the chemical analysis of wood. There has been a growing need to find a rapid, inexpensive and reliable method to distinguish between preservative-treated and untreated waste...

  16. Infrared problems in field perturbation theory

    International Nuclear Information System (INIS)

    David, Francois.

    1982-12-01

    The work presented mainly covers questions related to the presence of ''infrared'' divergences in perturbation expansions of the Green functions of certain massless field theories. It is important to determine the mathematical status of perturbation expansions in field theory in order to define the region in which they are valid. Renormalization and the symmetry of a theory are important factors in infrared problems. The main object of this thesis resides in the mathematical techniques employed: integral representations of the Feynman amplitudes; methods for desingularization, regularization and dimensional renormalization. Nonlinear two dimensional space-time sigma models describing Goldstone's low energy boson dynamics associated with a breaking of continuous symmetry are studied. Random surface models are then investigated followed by infrared divergences in super-renormalizable theories. Finally, nonperturbation effects in massless theories are studied by expanding the two-dimensional nonlinear sigma model in 1/N [fr

  17. NEAR-INFRARED SPECTROSCOPY OF POST-AGB STARS

    NARCIS (Netherlands)

    OUDMAIJER, RD; WATERS, LBFM; VANDERVEEN, WECJ; GEBALLE, TR

    The results of a medium resolution near-infrared spectral survey of 18 post-AGB candidate stars are presented. Most of the stars have near-infrared hydrogen lines in absorption, which is normal for their spectral types. Three stars, HD 101584, HD 179821 and HD 170756 have the CO first overtone bands

  18. NEAR-INFRARED POLARIMETRY OF A NORMAL SPIRAL GALAXY VIEWED THROUGH THE TAURUS MOLECULAR CLOUD COMPLEX

    International Nuclear Information System (INIS)

    Clemens, Dan P.; Cashman, L. R.; Pavel, M. D.

    2013-01-01

    Few normal galaxies have been probed using near-infrared polarimetry, even though it reveals magnetic fields in the cool interstellar medium better than either optical or radio polarimetry. Deep H-band (1.6 μm) linear imaging polarimetry toward Taurus serendipitously included the galaxy 2MASX J04412715+2433110 with adequate sensitivity and resolution to map polarization across nearly its full extent. The observations revealed the galaxy to be a steeply inclined (∼75°) disk type with a diameter, encompassing 90% of the Petrosian flux, of 4.2 kpc at a distance of 53 Mpc. Because the sight line passes through the Taurus Molecular Cloud complex, the foreground polarization needed to be measured and removed. The foreground extinction A V of 2.00 ± 0.10 mag and reddening E(H – K) of 0.125 ± 0.009 mag were also assessed and removed, based on analysis of Two Micron All Sky Survey, UKIRT Infrared Deep Sky Survey, Spitzer, and Wide-field Infrared Survey Explorer photometry using the Near-Infrared Color Excess, NICE-Revisited, and Rayleigh-Jeans Color Excess methods. Corrected for the polarized foreground, the galaxy polarization values range from 0% to 3%. The polarizations are dominated by a disk-parallel magnetic field geometry, especially to the northeast, while either a vertical field or single scattering of bulge light produces disk-normal polarizations to the southwest. The multi-kiloparsec coherence of the magnetic field revealed by the infrared polarimetry is in close agreement with short-wavelength radio synchrotron observations of edge-on galaxies, indicating that both cool and warm interstellar media of disk galaxies may be threaded by common magnetic fields.

  19. Quantification of SOC and Clay Content Using Visible Near-Infrared Reflectance–Mid-Infrared Reflectance Spectroscopy With Jack-Knifing Partial Least Squares Regression

    DEFF Research Database (Denmark)

    Peng, Yi; Knadel, Maria; Gislum, René

    2014-01-01

    A total of 125 soil samples were collected from a Danish field varying in soil texture from sandy to loamy. Visible near-infrared reflectance (Vis-NIR) and mid-infrared reflectance (MIR) spectroscopy combined with chemometric methods were used to predict soil organic carbon (SOC) and clay content...

  20. The near infrared polarization of NGC 7023

    International Nuclear Information System (INIS)

    Sellgren, K.

    1984-01-01

    NGC 7023 is a visual reflection nebula whose low optical depth at near infrared wavelengths suggests it may be well-suited to analysis of the near infrared scattering properties of dust. While processes other than scattered light dominate the near infrared emission of NGC 7023, a detectable scattered light component remains, as can be demonstrated by polarization measurements. Polarization at 2.2 μm has been detected at two positions in NGC 7023. The polarization angles at these two positions are perpendicular to the line between each nebular position and the star which illuminates the visual reflection nebulosity, indicating that the polarization mechanism is most likely the scattering of starlight from this star. (author)

  1. Iron variation within a granitic pluton as determined by near-infrared reflectance

    Science.gov (United States)

    Baird, A. K.

    1984-01-01

    One-hundred fifty-one previously chemically analyzed samples of tonalite from the Lakeview Mountains pluton, southern California batholith, were analyzed for their iron content using near-infrared spectrophotometry. Compared to the earlier analyses of the same sample set by X-ray fluorescence spectrography, the infrared data have higher analytical variance but clearly define patterns of compositional zonation in the pluton which are closely similar to those patterns obtained from X-ray data; petrogenetic interpretations for the pluton would be the same from either data set. Infrared spectral data can be obtained directly in the field with relatively simple instruments and field measurements can be made to average local heterogeneities that often mask significant plutonic variations.

  2. ENSEMBLE VARIABILITY OF NEAR-INFRARED-SELECTED ACTIVE GALACTIC NUCLEI

    International Nuclear Information System (INIS)

    Kouzuma, S.; Yamaoka, H.

    2012-01-01

    We present the properties of the ensemble variability V for nearly 5000 near-infrared active galactic nuclei (AGNs) selected from the catalog of Quasars and Active Galactic Nuclei (13th Edition) and the SDSS-DR7 quasar catalog. From three near-infrared point source catalogs, namely, Two Micron All Sky Survey (2MASS), Deep Near Infrared Survey (DENIS), and UKIDSS/LAS catalogs, we extract 2MASS-DENIS and 2MASS-UKIDSS counterparts for cataloged AGNs by cross-identification between catalogs. We further select variable AGNs based on an optimal criterion for selecting the variable sources. The sample objects are divided into subsets according to whether near-infrared light originates by optical emission or by near-infrared emission in the rest frame; and we examine the correlations of the ensemble variability with the rest-frame wavelength, redshift, luminosity, and rest-frame time lag. In addition, we also examine the correlations of variability amplitude with optical variability, radio intensity, and radio-to-optical flux ratio. The rest-frame optical variability of our samples shows negative correlations with luminosity and positive correlations with rest-frame time lag (i.e., the structure function, SF), and this result is consistent with previous analyses. However, no well-known negative correlation exists between the rest-frame wavelength and optical variability. This inconsistency might be due to a biased sampling of high-redshift AGNs. Near-infrared variability in the rest frame is anticorrelated with the rest-frame wavelength, which is consistent with previous suggestions. However, correlations of near-infrared variability with luminosity and rest-frame time lag are the opposite of these correlations of the optical variability; that is, the near-infrared variability is positively correlated with luminosity but negatively correlated with the rest-frame time lag. Because these trends are qualitatively consistent with the properties of radio-loud quasars reported

  3. Partial Least Square with Savitzky Golay Derivative in Predicting Blood Hemoglobin Using Near Infrared Spectrum

    Directory of Open Access Journals (Sweden)

    Mohd Idrus Mohd Nazrul Effendy

    2018-01-01

    Full Text Available Near infrared spectroscopy (NIRS is a reliable technique that widely used in medical fields. Partial least square was developed to predict blood hemoglobin concentration using NIRS. The aims of this paper are (i to develop predictive model for near infrared spectroscopic analysis in blood hemoglobin prediction, (ii to establish relationship between blood hemoglobin and near infrared spectrum using a predictive model, (iii to evaluate the predictive accuracy of a predictive model based on root mean squared error (RMSE and coefficient of determination rp2. Partial least square with first order Savitzky Golay (SG derivative preprocessing (PLS-SGd1 showed the higher performance of predictions with RMSE = 0.7965 and rp2= 0.9206 in K-fold cross validation. Optimum number of latent variable (LV and frame length (f were 32 and 27 nm, respectively. These findings suggest that the relationship between blood hemoglobin and near infrared spectrum is strong, and the partial least square with first order SG derivative is able to predict the blood hemoglobin using near infrared spectral data.

  4. DARKNESS: A Microwave Kinetic Inductance Detector Integral Field Spectrograph for High-contrast Astronomy

    Science.gov (United States)

    Meeker, Seth R.; Mazin, Benjamin A.; Walter, Alex B.; Strader, Paschal; Fruitwala, Neelay; Bockstiegel, Clint; Szypryt, Paul; Ulbricht, Gerhard; Coiffard, Grégoire; Bumble, Bruce; Cancelo, Gustavo; Zmuda, Ted; Treptow, Ken; Wilcer, Neal; Collura, Giulia; Dodkins, Rupert; Lipartito, Isabel; Zobrist, Nicholas; Bottom, Michael; Shelton, J. Chris; Mawet, Dimitri; van Eyken, Julian C.; Vasisht, Gautam; Serabyn, Eugene

    2018-06-01

    We present DARKNESS (the DARK-speckle Near-infrared Energy-resolving Superconducting Spectrophotometer), the first of several planned integral field spectrographs to use optical/near-infrared Microwave Kinetic Inductance Detectors (MKIDs) for high-contrast imaging. The photon counting and simultaneous low-resolution spectroscopy provided by MKIDs will enable real-time speckle control techniques and post-processing speckle suppression at frame rates capable of resolving the atmospheric speckles that currently limit high-contrast imaging from the ground. DARKNESS is now operational behind the PALM-3000 extreme adaptive optics system and the Stellar Double Coronagraph at Palomar Observatory. Here, we describe the motivation, design, and characterization of the instrument, early on-sky results, and future prospects.

  5. Quantitative Near-field Microscopy of Heterogeneous and Correlated Electron Oxides

    Science.gov (United States)

    McLeod, Alexander Swinton

    Scanning near-field optical microscopy (SNOM) is a novel scanning probe microscopy technique capable of circumventing the conventional diffraction limit of light, affording unparalleled optical resolution (down to 10 nanometers) even for radiation in the infrared and terahertz energy regimes, with light wavelengths exceeding 10 micrometers. However, although this technique has been developed and employed for more than a decade to a qualitatively impressive effect, researchers have lacked a practically quantitative grasp of its capabilities, and its application scope has so far remained restricted by implementations limited to ambient atmospheric conditions. The two-fold objective of this dissertation work has been to address both these shortcomings. The first half of the dissertation presents a realistic, semi-analytic, and benchmarked theoretical description of probe-sample near-field interactions that form the basis of SNOM. Owing its name to the efficient nano-focusing of light at a sharp metallic apex, the "lightning rod model" of probe-sample near-field interactions is mathematically developed from a flexible and realistic scattering formalism. Powerful and practical applications are demonstrated through the accurate prediction of spectroscopic near-field optical contrasts, as well as the "inversion" of these spectroscopic contrasts into a quantitative description of material optical properties. Thus enabled, this thesis work proceeds to present quantitative applications of infrared near-field spectroscopy to investigate nano-resolved chemical compositions in a diverse host of samples, including technologically relevant lithium ion battery materials, astrophysical planetary materials, and invaluable returned extraterrestrial samples. The second half of the dissertation presents the design, construction, and demonstration of a sophisticated low-temperature scanning near-field infrared microscope. This instrument operates in an ultra-high vacuum environment

  6. MOONS: a multi-object optical and near-infrared spectrograph for the VLT

    NARCIS (Netherlands)

    Cirasuolo, M.; Afonso, J.; Bender, R.; Bonifacio, P.; Evans, C.; Kaper, L.; Oliva, Ernesto; Vanzi, Leonardo; Abreu, Manuel; Atad-Ettedgui, Eli; Babusiaux, Carine; Bauer, Franz E.; Best, Philip; Bezawada, Naidu; Bryson, Ian R.; Cabral, Alexandre; Caputi, Karina; Centrone, Mauro; Chemla, Fanny; Cimatti, Andrea; Cioni, Maria-Rosa; Clementini, Gisella; Coelho, João.; Daddi, Emanuele; Dunlop, James S.; Feltzing, Sofia; Ferguson, Annette; Flores, Hector; Fontana, Adriano; Fynbo, Johan; Garilli, Bianca; Glauser, Adrian M.; Guinouard, Isabelle; Hammer, Jean-François; Hastings, Peter R.; Hess, Hans-Joachim; Ivison, Rob J.; Jagourel, Pascal; Jarvis, Matt; Kauffman, G.; Lawrence, A.; Lee, D.; Li Causi, G.; Lilly, S.; Lorenzetti, D.; Maiolino, R.; Mannucci, F.; McLure, R.; Minniti, D.; Montgomery, D.; Muschielok, B.; Nandra, K.; Navarro, R.; Norberg, P.; Origlia, L.; Padilla, N.; Peacock, J.; Pedicini, F.; Pentericci, L.; Pragt, J.; Puech, M.; Randich, S.; Renzini, A.; Ryde, N.; Rodrigues, M.; Royer, F.; Saglia, R.; Sánchez, A.; Schnetler, H.; Sobral, D.; Speziali, R.; Todd, S.; Tolstoy, E.; Torres, M.; Venema, L.; Vitali, F.; Wegner, M.; Wells, M.; Wild, V.; Wright, G.

    MOONS is a new conceptual design for a Multi-Object Optical and Near-infrared Spectrograph for the Very Large Telescope (VLT), selected by ESO for a Phase A study. The baseline design consists of ~1000 fibers deployable over a field of view of ~500 square arcmin, the largest patrol field offered by

  7. Distortion of Magnetic Fields in a Starless Core: Near-infrared Polarimetry of FeSt 1–457

    Energy Technology Data Exchange (ETDEWEB)

    Kandori, Ryo; Tamura, Motohide; Kusakabe, Nobuhiko [Department of Astronomy, The University of Tokyo, 7-3-1, Hongo, Bunkyo-ku, Tokyo 113-0033 (Japan); Nakajima, Yasushi [Hitotsubashi University, 2-1 Naka, Kunitachi, Tokyo 186-8601 (Japan); Kwon, Jungmi [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, 3-1-1 Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210 (Japan); Nagayama, Takahiro [Kagoshima University, 1-21-35 Korimoto, Kagoshima 890-0065 (Japan); Nagata, Tetsuya [Kyoto University, Kitashirakawa-Oiwake-cho, Sakyo-ku, Kyoto 606-8502 (Japan); Tomisaka, Kohji; Tatematsu, Ken’ichi, E-mail: r.kandori@nao.ac.jp [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2017-08-10

    Magnetic fields are believed to play an important role in controlling the stability and contraction of the dense condensations of gas and dust that lead to the formation of stars and planetary systems. In the present study, the magnetic field of FeSt 1–457, a cold starless molecular cloud core, was mapped on the basis of the polarized near-infrared light from 185 background stars after being dichroically absorbed by dust aligned with the magnetic field in the core. A distinct “hourglass-shaped” magnetic field was identified in the region of the core, and was interpreted as the first evidence of a magnetic field structure distorted by mass condensation in a starless core. The steep curvature of the magnetic field lines obtained in the present study indicates that the distortion was mainly created during the formation phase of the dense core. The derived mass-to-magnetic flux ratio indicates that the core is in a magnetically supercritical state. However, the stability of the core can be considered to be in a nearly critical state if the additional contributions from the thermal and turbulent support are included. Further diffusion of the magnetic field and/or turbulent dissipation would cause the onset of the dynamical collapse of the core. The geometrical relationship between the direction of the magnetic field lines and the elongation of the core was found to be in good agreement with theoretical predictions for the formation of Sun-like stars under the influence of a magnetic field.

  8. Near-infrared transillumination photography of intraocular tumours.

    Science.gov (United States)

    Krohn, Jørgen; Ulltang, Erlend; Kjersem, Bård

    2013-10-01

    To present a technique for near-infrared transillumination imaging of intraocular tumours based on the modifications of a conventional digital slit lamp camera system. The Haag-Streit Photo-Slit Lamp BX 900 (Haag-Streit AG) was used for transillumination photography by gently pressing the tip of the background illumination cable against the surface of the patient's eye. Thus the light from the flash unit was transmitted into the eye, leading to improved illumination and image resolution. The modification for near-infrared photography was done by replacing the original camera with a Canon EOS 30D (Canon Inc) converted by Advanced Camera Services Ltd. In this camera, the infrared blocking filter was exchanged for a 720 nm long-pass filter, so that the near-infrared part of the spectrum was recorded by the sensor. The technique was applied in eight patients: three with anterior choroidal melanoma, three with ciliary body melanoma and two with ocular pigment alterations. The good diagnostic quality of the photographs made it possible to evaluate the exact location and extent of the lesions in relation to pigmented intraocular landmarks such as the ora serrata and ciliary body. The photographic procedure did not lead to any complications. We recommend near-infrared transillumination photography as a supplementary diagnostic tool for the evaluation and documentation of anteriorly located intraocular tumours.

  9. A near-infrared confocal scanner

    International Nuclear Information System (INIS)

    Lee, Seungwoo; Yoo, Hongki

    2014-01-01

    In the semiconductor industry, manufacturing of three-dimensional (3D) packages or 3D integrated circuits is a high-performance technique that requires combining several functions in a small volume. Through-silicon vias, which are vertical electrical connections extending through a wafer, can be used to direct signals between stacked chips, thus increasing areal density by stacking and connecting multiple patterned chips. While defect detection is essential in the semiconductor manufacturing process, it is difficult to identify defects within a wafer or to monitor the bonding results between bonded surfaces because silicon and many other semiconductor materials are opaque to visible wavelengths. In this context, near-infrared (NIR) imaging is a promising non-destructive method to detect defects within silicon chips, to inspect bonding between chips and to monitor the chip alignment since NIR transmits through silicon. In addition, a confocal scanner provides high-contrast, optically-sectioned images of the specimen due to its ability to reject out-of-focus noise. In this study, we report an NIR confocal scanner that rapidly acquires high-resolution images with a large field of view through silicon. Two orthogonal line-scanning images can be acquired without rotating the system or the specimen by utilizing two orthogonally configured resonant scanning mirrors. This NIR confocal scanner can be efficiently used as an in-line inspection system when manufacturing semiconductor devices by rapidly detecting defects on and beneath the surface. (paper)

  10. Near-infrared spectroscopic tissue imaging for medical applications

    Science.gov (United States)

    Demos, Stavros [Livermore, CA; Staggs, Michael C [Tracy, CA

    2006-12-12

    Near infrared imaging using elastic light scattering and tissue autofluorescence are explored for medical applications. The approach involves imaging using cross-polarized elastic light scattering and tissue autofluorescence in the Near Infra-Red (NIR) coupled with image processing and inter-image operations to differentiate human tissue components.

  11. Energetic molecular outflow near AFGL 961: millimeter-wave and infrared observations

    International Nuclear Information System (INIS)

    Lada, C.J.; Gautier, T.N. III

    1982-01-01

    We report detailed millimeter-wave and near-infrared spectroscopy of the dynamically active region around the infrared source AFGL 961, near the Rosette nebula. Millimeter-wave 12 CO observations are used to study the high-velocity molecular flow around AFGL 961. These observations show that the high-velocity flow has a maximum extent of at least 6' or 2.9 pc at the distance of AFGL 961. The flow is found to be anisotropic, with redshifted high-velocity emission considerably more extended than blueshifted high-velocity emission. However, the flow does not appear to be as highly collimated as some other sources of high-velocity bipolar outflow. We also find the emission profiles to be asymmetric in velocity such that the integrated intensity of the redshifted high-velocity emission is on average 2.5 times greater than that of the blueshifted emission. The mass of the gas involved in the flow is determined to be approximately 19 M/sub sun/, and the kinetic energy of this gas is estimated to be about 8 x 10 46 ergs. These observations are interpreted as evidence that an energetic bipolar outflow of molecular gas is occurring near AFGL 961. The momentum of the outflowing molecular gas is large, and it is shown that this places strong constraints on possible physical mechanisms which may be driving the outflow. The near-infrared spectrum of AFGL 961 from 1.4-2.4 μm was obtained in order to study the conditions immediately around the infrared source which may be driving the molecular outflow

  12. Near-infrared observations of the far-infrared source V region in NGC 6334

    International Nuclear Information System (INIS)

    Fischer, J.; Joyce, R.R.; Simon, M.; Simon, T.

    1982-01-01

    We have observed a very red near-infrared source at the center of NGC 6334 FIRS V, a far-infrared source suspected of variability by McBreen et al. The near-infrared source has deep ice and silicate absorption bands, and its half-power size at 20 μm is approx.15'' x 10''. Over the past 2 years we have observed no variability in the near-infrared flux. We have also detected an extended source of H 2 line emission in this region. The total luminosity in the H 2 v-1--0 S(1) line, uncorrected for extinction along the line of sight, is 0.3 L/sub sun/. Detection of emission in high-velocity wings of the J = 1--0 12 CO line suggests that the H 2 emission is associated with a supersonic gas flow

  13. [Research progress and application prospect of near infrared spectroscopy in soil nutrition analysis].

    Science.gov (United States)

    Ding, Hai-quan; Lu, Qi-peng

    2012-01-01

    "Digital agriculture" or "precision agriculture" is an important direction of modern agriculture technique. It is the combination of the modern information technique and traditional agriculture and becomes a hotspot field in international agriculture research in recent years. As a nondestructive, real-time, effective and exact analysis technique, near infrared spectroscopy, by which precision agriculture could be carried out, has vast prospect in agrology and gradually gained the recognition. The present paper intends to review the basic theory of near infrared spectroscopy and its applications in the field of agrology, pointing out that the direction of NIR in agrology should based on portable NIR spectrograph in order to acquire qualitative or quantitative information from real-time measuring in field. In addition, NIRS could be combined with space remote sensing to macroscopically control the way crop is growing and the nutrition crops need, to change the current state of our country's agriculture radically.

  14. Inhomogeneous ozone doping and heat induced defects in graphene studied by infrared near-field microscopy

    Science.gov (United States)

    Wang, Wenjie; Zhang, Jiawei; Deng, Haiming; Liu, Megnkun; Xu, Du

    With the potential use of surface plasmon such as transfer data many orders faster than traditional wires, it has been very popular in research. The fact is that the wavelength of of plasmon is much shorter than the one of free space radiation. The UV ozone doping level can be fine controlled in room temperature creating selected plasmon circuit. We study inhomogeneous graphene plasmonics in ozone doped graphene using scattering-type scanning near-field infrared microscopy and spectroscopy. The single layer and bilayer graphene are doped with different dosage of ozone under UV exposure, which lead to surface inhomogeneity and inhomogeneous graphene plasmon polarition excitation under tip. After annealing the ozone doped graphene in air, the inhomogeneous doping induced plasmons disappear, together with the occurrence of local defects after high temperature annealing.

  15. Near Infrared Spectroscopy as a Hemodynamic Monitor in Critical Illness.

    Science.gov (United States)

    Ghanayem, Nancy S; Hoffman, George M

    2016-08-01

    The objectives of this review are to discuss the technology and clinical interpretation of near infrared spectroscopy oximetry and its clinical application in patients with congenital heart disease. MEDLINE and PubMed. Near infrared spectroscopy provides a continuous noninvasive assessment of tissue oxygenation. Over 20 years ago, near infrared spectroscopy was introduced into clinical practice for monitoring cerebral oxygenation during cardiopulmonary bypass in adults. Since that time, the utilization of near infrared spectroscopy has extended into the realm of pediatric cardiac surgery and is increasingly being used in the cardiac ICU to monitor tissue oxygenation perioperatively.

  16. Caloric stimulation with near infrared radiation does not induce paradoxical nystagmus.

    Science.gov (United States)

    Walther, L E; Asenov, D R; Di Martino, E

    2011-04-01

    Near infrared radiation can be used for warm stimulation in caloric irrigation of the equilibrium organ. Aim of this study was to determine whether near infrared radiation offers effective stimulation of the vestibular organ, whether it is well tolerated by the patients and especially whether it is a viable alternative to warm air stimulation in patients with defects of the tympanic membrane and radical mastoid cavities. Patients with perforations of the tympanic membrane (n = 15) and with radical mastoid cavities (n = 13) were tested both with near infrared radiation and warm dry air. A caloric-induced nystagmus could be seen equally effectively and rapidly in all patients. Contrary to stimulation with warm dry air, no paradoxical nystagmus was observed following caloric irrigation with a warm stimulus (near infrared radiation). Results of a questionnaire showed excellent patient acceptance of near infrared stimulation with no arousal effects or unpleasant feeling. In conclusion, near infrared radiation proved to be an alternative method of caloric irrigation to warm dry air in patients with tympanic membrane defects and radical mastoid cavities. Near infrared radiation is pleasant, quick, contact free, sterile and quiet. With this method an effective caloric warm stimulus is available. If near infrared radiation is used for caloric stimulus no evaporative heat loss occurs.

  17. UltraVISTA : a new ultra-deep near-infrared survey in COSMOS

    NARCIS (Netherlands)

    McCracken, H. J.; Milvang-Jensen, B.; Dunlop, J.; Franx, M.; Fynbo, J. P. U.; Le Fevre, O.; Holt, J.; Caputi, K. I.; Goranova, Y.; Buitrago, F.; Emerson, J. P.; Freudling, W.; Hudelot, P.; Lopez-Sanjuan, C.; Magnard, F.; Mellier, Y.; Moller, P.; Nilsson, K. K.; Sutherland, W.; Tasca, L.; Zabl, J.

    In this paper we describe the first data release of the UltraVISTA near-infrared imaging survey of the COSMOS field. We summarise the key goals and design of the survey and provide a detailed description of our data reduction techniques. We provide stacked, sky-subtracted images in YJHK(s) and

  18. Characterization of long-range plasmonic waveguides at visible to near-infrared regime

    Directory of Open Access Journals (Sweden)

    Sheng-Ting Huang

    2017-12-01

    Full Text Available Long-range surface plasmon polariton waveguides composed with thin gold stripes embedded in SU-8 polymer cladding with various stripe widths were fabricated. Material properties of the polymer cladding layer, gold thin film, and the device structures were discussed. Optical properties based on modal propagation were characterized at visible to near-infrared wavelengths. The measured propagation losses of waveguide widths from 3 to 9 μm at 633, 785, and 1550 nm are 7.5-18.8, 6.8-12.5, and 1.9-3.9 dB/mm, respectively. Guiding mode properties such as overlap integrals between the simulated and the measured fields and the polarization extinction ratios of the waveguides with different stripe widths were investigated at the telecommunication wavelength. Good accordance between the measurement and simulation results was presented.

  19. Eye safety related to near infrared radiation exposure to biometric devices.

    Science.gov (United States)

    Kourkoumelis, Nikolaos; Tzaphlidou, Margaret

    2011-03-01

    Biometrics has become an emerging field of technology due to its intrinsic security features concerning the identification of individuals by means of measurable biological characteristics. Two of the most promising biometric modalities are iris and retina recognition, which primarily use nonionizing radiation in the infrared region. Illumination of the eye is achieved by infrared light emitting diodes (LEDs). Even if few LED sources are capable of causing direct eye damage as they emit incoherent light, there is a growing concern about the possible use of LED arrays that might pose a potential threat. Exposure to intense coherent infrared radiation has been proven to have significant effects on living tissues. The purpose of this study is to explore the biological effects arising from exposing the eye to near infrared radiation with reference to international legislation.

  20. Imaging of phase change materials below a capping layer using correlative infrared near-field microscopy and electron microscopy

    Science.gov (United States)

    Lewin, M.; Hauer, B.; Bornhöfft, M.; Jung, L.; Benke, J.; Michel, A.-K. U.; Mayer, J.; Wuttig, M.; Taubner, T.

    2015-10-01

    Phase Change Materials (PCM) show two stable states in the solid phase with significantly different optical and electronic properties. They can be switched reversibly between those two states and are promising candidates for future non-volatile memory applications. The development of phase change devices demands characterization tools, yielding information about the switching process at high spatial resolution. Scattering-type Scanning Near-field Optical Microscopy (s-SNOM) allows for spectroscopic analyses of the different optical properties of the PCMs on the nm-scale. By correlating the optical s-SNOM images with transmission electron microscopy images of the same sample, we unambiguously demonstrate the correlation of the infrared optical contrast with the structural state of the phase change material. The investigated sample consists of sandwiched amorphous and crystalline regions of Ag 4 In 3 Sb 67 Te 26 below a 100 nm thick ( ZnS ) 80 - ( SiO2 ) 20 capping layer. Our results demonstrate the sensitivity of s-SNOM to small dielectric near-field contrasts even below a comparably thick capping layer ( 100 nm ).

  1. GEMINI NEAR INFRARED FIELD SPECTROGRAPH OBSERVATIONS OF THE SEYFERT 2 GALAXY MRK 573: IN SITU ACCELERATION OF IONIZED AND MOLECULAR GAS OFF FUELING FLOWS

    Energy Technology Data Exchange (ETDEWEB)

    Fischer, Travis C.; Straughn, A. N. [Astrophysics Science Division, Goddard Space Flight Center, Code 665, Greenbelt, MD 20771 (United States); Machuca, C.; Crenshaw, D. M.; Baron, F.; Revalski, M.; Pope, C. L. [Department of Physics and Astronomy, Georgia State University, Astronomy Offices, 25 Park Place, Suite 605, Atlanta, GA 30303 (United States); Diniz, M. R.; Riffel, R. A. [Departamento de Física, Centro de Ciências Naturais e Exatas, Universidade Federal de Santa Maria, 97105-900 Santa Maria, RS (Brazil); Kraemer, S. B. [Institute for Astrophysics and Computational Sciences, Department of Physics, The Catholic University of America, Washington, DC 20064 (United States); Schmitt, H. R. [Naval Research Laboratory, Washington, DC 20375 (United States); Storchi-Bergmann, T., E-mail: travis.c.fischer@nasa.gov [Departamento de Astronomia, Universidade Federal do Rio Grande do Sul, IF, CP 15051, 91501-970 Porto Alegre, RS (Brazil)

    2017-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in a ∼700 × 2100 pc{sup 2} circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  2. Gemini Near Infrared Field Spectrograph Observations of the Seyfert 2 Galaxy MRK 573: In Situ Acceleration of Ionized and Molecular Gas Off Fueling Flows

    Science.gov (United States)

    Fischer, Travis C.; Machuca, C.; Diniz, M. R.; Crenshaw, D. M.; Kraemer, S. B.; Riffel, R. A.; Schmitt, H. R.; Baron, F.; Storchi-Bergmann, T.; Straughn, A. N.; hide

    2016-01-01

    We present near-infrared and optical emission-line and stellar kinematics of the Seyfert 2 galaxy Mrk 573 using the Near-Infrared Field Spectrograph (NIFS) at Gemini North and Dual Imaging Spectrograph at Apache Point Observatory, respectively. By obtaining full kinematic maps of the infrared ionized and molecular gas and stellar kinematics in approximately 700 x 2100 pc(exp 2) circumnuclear region of Mrk 573, we find that kinematics within the Narrow-Line Region are largely due to a combination of both rotation and in situ acceleration of material originating in the host disk. Combining these observations with large-scale, optical long-slit spectroscopy that traces ionized gas emission out to several kpcs, we find that rotation kinematics dominate the majority of the gas. We find that outflowing gas extends to distances less than 1 kpc, suggesting that outflows in Seyfert galaxies may not be powerful enough to evacuate their entire bulges.

  3. Near-Infrared Spectroscopic Study of Chlorite Minerals

    OpenAIRE

    Min Yang; Meifang Ye; Haihui Han; Guangli Ren; Ling Han; Zhuan Zhang

    2018-01-01

    The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS) spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR) spectroscopy, near-infrared (NIR) spectroscopy, and X-ray fluorescence (XRF) analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 we...

  4. THE MAGNETIC FIELD OF L1544. I. NEAR-INFRARED POLARIMETRY AND THE NON-UNIFORM ENVELOPE

    Energy Technology Data Exchange (ETDEWEB)

    Clemens, Dan P. [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States); Tassis, K. [Department of Physics and ITCP, University of Crete, 71003, Heraklion (Greece); Goldsmith, Paul F., E-mail: clemens@bu.edu, E-mail: tassis@physics.uoc.gr, E-mail: paul.f.goldsmith@jpl.nasa.gov [Jet Propulsion Laboratory, M/S 169-504, 4800 Oak Grove Drive, Pasadena, CA 91109 (United States)

    2016-12-20

    The magnetic field ( B -field) of the starless dark cloud L1544 has been studied using near-infrared (NIR) background starlight polarimetry (BSP) and archival data in order to characterize the properties of the plane-of-sky B -field. NIR linear polarization measurements of over 1700 stars were obtained in the H band and 201 of these were also measured in the K band. The NIR BSP properties are correlated with reddening, as traced using the Rayleigh–Jeans color excess ( H – M ) method, and with thermal dust emission from the L1544 cloud and envelope seen in Herschel maps. The NIR polarization position angles change at the location of the cloud and exhibit their lowest dispersion there, offering strong evidence that NIR polarization traces the plane-of-sky B -field of L1544. In this paper, the uniformity of the plane-of-sky B -field in the envelope region of L1544 is quantitatively assessed. This allows evaluation of the approach of assuming uniform field geometry when measuring relative mass-to-flux ratios in the cloud envelope and core based on averaging of the radio Zeeman observations in the envelope, as done by Crutcher et al. In L1544, the NIR BSP shows the envelope B -field to be significantly non-uniform and likely not suitable for averaging Zeeman properties without treating intrinsic variations. Deeper analyses of the NIR BSP and related data sets, including estimates of the B -field strength and testing how it varies with position and gas density, are the subjects of later papers in this series.

  5. Infrared divergences for free quantum fields in cosmological spacetimes

    Science.gov (United States)

    Higuchi, Atsushi; Rendell, Nicola

    2018-06-01

    We investigate the nature of infrared divergences for the free graviton and inflaton two-point functions in flat Friedman–Lemaître–Robertson–Walker spacetime. These divergences arise because the momentum integral for these two-point functions diverges in the infrared. It is straightforward to see that the power of the momentum in the integrand can be increased by 2 in the infrared using large gauge transformations, which are sufficient for rendering these two-point functions infrared finite for slow-roll inflation. In other words, if the integrand of the momentum integral for these two-point functions behaves like , where p is the momentum, in the infrared, then it can be made to behave like by large gauge transformations. On the other hand, it is known that, if one smears these two-point functions in a gauge-invariant manner, the power of the momentum in the integrand is changed from to . This fact suggests that the power of the momentum in the integrand for these two-point functions can be increased by 4 using large gauge transformations. In this paper we show that this is indeed the case. Thus, the two-point functions for the graviton and inflaton fields can be made finite by large gauge transformations for a large class of potentials and states in single-field inflation.

  6. NEAR-INFRARED VARIABILITY IN YOUNG STARS IN CYGNUS OB7

    Energy Technology Data Exchange (ETDEWEB)

    Rice, Thomas S. [Department of Astronomy, Harvard University, 60 Garden Street, Cambridge, MA 02138 (United States); Wolk, Scott J. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin [Institute for Astronomy, University of Hawaii at Manoa, 640 N Aohoku Pl, Hilo, HI 96720 (United States)

    2012-08-10

    We present the first results from a 124 night J, H, K near-infrared monitoring campaign of the dark cloud L 1003 in Cygnus OB7, an active star-forming region. Using three seasons of UKIRT observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. On the basis of near-infrared excesses from disks, we identify 30 pre-main-sequence stars, including 24 which are newly discovered. We analyze those stars and find that the NIR excesses are significantly variable. All 9200 stars were monitored for photometric variability; among the field star population, {approx}160 exhibited near-infrared variability (1.7% of the sample). Of the 30 young stellar objects (YSOs), 28 of them (93%) are variable at a significant level. Of the 30 YSOs, twenty-five have near-infrared excess consistent with simple disk-plus-star classical T Tauri models. Nine of these (36%) drift in color space over the course of these observations and/or since Two Micron All Sky Survey observations such that they cross the boundary defining the NIR excess criteria; effectively, they have a transient near-infrared excess. Thus, time-series JHK observations can be used to obtain a more complete sample of disk-bearing stars than single-epoch JHK observations. About half of the YSOs have color-space variations parallel to either the classical T Tauri star locus or a hybrid track which includes the dust reddening trajectory. This indicates that the NIR variability in YSOs that possess accretion disks arises from a combination of variable extinction and changes in the inner accretion disk: either in accretion rate, central hole size, and/or the inclination of the inner disk. While some variability may be due to stellar rotation, the level of variability on the individual stars can exceed a magnitude. This is a strong empirical suggestion that protoplanetary disks are quite dynamic and exhibit more complex activity on short

  7. Near-Infrared Quantum Cutting Long Persistent Luminescence

    OpenAIRE

    Zou, Zehua; Feng, Lin; Cao, Cheng; Zhang, Jiachi; Wang, Yuhua

    2016-01-01

    By combining the unique features of the quantum cutting luminescence and long persistent luminescence, we design a new concept called ?near-infrared quantum cutting long persistent luminescence (NQPL)?, which makes it possible for us to obtain highly efficient (>100%) near-infrared long persistent luminescence in theory. Guided by the NQPL concept, we fabricate the first NQPL phosphor Ca2Ga2GeO7:Pr3+,Yb3+. It reveals that both the two-step energy transfer of model (I) and the one-step energy ...

  8. Comparison of Two Methodologies for Calibrating Satellite Instruments in the Visible and Near-Infrared

    Science.gov (United States)

    Barnes, Robert A.; Brown, Steven W.; Lykke, Keith R.; Guenther, Bruce; Butler, James J.; Schwarting, Thomas; Turpie, Kevin; Moyer, David; DeLuccia, Frank; Moeller, Christopher

    2015-01-01

    Traditionally, satellite instruments that measure Earth-reflected solar radiation in the visible and near infrared wavelength regions have been calibrated for radiance responsivity in a two-step method. In the first step, the relative spectral response (RSR) of the instrument is determined using a nearly monochromatic light source such as a lamp-illuminated monochromator. These sources do not typically fill the field-of-view of the instrument nor act as calibrated sources of light. Consequently, they only provide a relative (not absolute) spectral response for the instrument. In the second step, the instrument views a calibrated source of broadband light, such as a lamp-illuminated integrating sphere. The RSR and the sphere absolute spectral radiance are combined to determine the absolute spectral radiance responsivity (ASR) of the instrument. More recently, a full-aperture absolute calibration approach using widely tunable monochromatic lasers has been developed. Using these sources, the ASR of an instrument can be determined in a single step on a wavelength-by-wavelength basis. From these monochromatic ASRs, the responses of the instrument bands to broadband radiance sources can be calculated directly, eliminating the need for calibrated broadband light sources such as lamp-illuminated integrating spheres. In this work, the traditional broadband source-based calibration of the Suomi National Preparatory Project (SNPP) Visible Infrared Imaging Radiometer Suite (VIIRS) sensor is compared with the laser-based calibration of the sensor. Finally, the impact of the new full-aperture laser-based calibration approach on the on-orbit performance of the sensor is considered.

  9. Infrared behavior of massless field theories

    International Nuclear Information System (INIS)

    Sapirstein, J.R.

    1979-01-01

    Typical infrared effects in several gauge field theories with massless particles are investigated in perturbation theory. It is first shown that divergences occurring in individual Feynman graphs arising from integrations over the long-wavelength modes of the fields cancel when the graphs are grouped together in a particular way, in a generalization of the Bloch-Nordsieck treatment of QED. As one of the requirements of finiteness is renormalization of the vector propagator off shell, the charge in these theories is not directly related to classical experiment. In an effort to find the meaning of charge the low-energy theorem is considered. Although in lowest order the graphs reproduce the Thompson limit, it is found that loop corrections are singular in the low-energy limit; a simple definition of the charge is thus precluded. Finally, the behavior of the quark color magnetic moment is treated. An apparent infrared singularity of this moment is shown to be due to an improper use of perturbation theory, and is removed and replaced with a finite, field-dependent moment, by use of Furry picture propagators

  10. Near-infrared sub-bandgap all-silicon photodetectors: state of the art and perspectives.

    Science.gov (United States)

    Casalino, Maurizio; Coppola, Giuseppe; Iodice, Mario; Rendina, Ivo; Sirleto, Luigi

    2010-01-01

    Due to recent breakthroughs, silicon photonics is now the most active discipline within the field of integrated optics and, at the same time, a present reality with commercial products available on the market. Silicon photodiodes are excellent detectors at visible wavelengths, but the development of high-performance photodetectors on silicon CMOS platforms at wavelengths of interest for telecommunications has remained an imperative but unaccomplished task so far. In recent years, however, a number of near-infrared all-silicon photodetectors have been proposed and demonstrated for optical interconnect and power-monitoring applications. In this paper, a review of the state of the art is presented. Devices based on mid-bandgap absorption, surface-state absorption, internal photoemission absorption and two-photon absorption are reported, their working principles elucidated and their performance discussed and compared.

  11. Near-Infrared Sub-Bandgap All-Silicon Photodetectors: State of the Art and Perspectives

    Directory of Open Access Journals (Sweden)

    Luigi Sirleto

    2010-11-01

    Full Text Available Due to recent breakthroughs, silicon photonics is now the most active discipline within the field of integrated optics and, at the same time, a present reality with commercial products available on the market. Silicon photodiodes are excellent detectors at visible wavelengths, but the development of high-performance photodetectors on silicon CMOS platforms at wavelengths of interest for telecommunications has remained an imperative but unaccomplished task so far. In recent years, however, a number of near-infrared all-silicon photodetectors have been proposed and demonstrated for optical interconnect and power-monitoring applications. In this paper, a review of the state of the art is presented. Devices based on mid-bandgap absorption, surface-state absorption, internal photoemission absorption and two-photon absorption are reported, their working principles elucidated and their performance discussed and compared.

  12. Design of planar chiral metamaterials for near-infrared regime

    Science.gov (United States)

    Kaya, Sabri; Turkmen, Mustafa; Topaktas, Omer

    2017-01-01

    Planar chiral metamaterials (PCMs) comprising double-layer dielectric-metal-dielectric resonant structures in the shape of a windmill are presented for near-infrared regime. The circular dichroism is retrieved from transmission spectra. Effects of used materials on circular dichroism characteristics of PCM arrays are investigated for the first time. The dependence of spectral characteristics on the geometrical parameters of the PCMs is analyzed by the finite-difference time-domain method. The observations indicated that the circular dichroism characteristics of the proposed PCM arrays are strongly dependent on the type of metal and dielectric materials. Due to the enhanced chiroptical near-field response and tunable spectral behavior, proposed PCM arrays may have potential for biosensing applications of chiral biomolecules.

  13. Near-infrared light-controlled tunable grating based on graphene/elastomer composites

    Science.gov (United States)

    Wang, Fei; Jia, Shuhai; Wang, Yonglin; Tang, Zhenhua

    2018-02-01

    A near-infrared (nIR) light actuated tunable transmission optical grating based on graphene nanoplatelet (GNP)/polydimethylsiloxane (PDMS) and PDMS is proposed. A simple fabrication protocol is studied that allows integration of the grating with the actuation mechanism; both components are made from soft elastomers, and this ensure the tunability and the light-driven operation of the grating. The resulting grating structure demonstrates continuous period tunability of 2.7% under an actuation power density of 220 mW cm-2 within a period of 3 s and also demonstrates a time-independent characteristic. The proposed infrared activated grating can be developed for wireless remote light splitting in bio/chemical sensing and optical telecommunications applications.

  14. AKARI INFRARED CAMERA SURVEY OF THE LARGE MAGELLANIC CLOUD. II. THE NEAR-INFRARED SPECTROSCOPIC CATALOG

    International Nuclear Information System (INIS)

    Shimonishi, Takashi; Onaka, Takashi; Kato, Daisuke; Sakon, Itsuki; Ita, Yoshifusa; Kawamura, Akiko; Kaneda, Hidehiro

    2013-01-01

    We performed a near-infrared spectroscopic survey toward an area of ∼10 deg 2 of the Large Magellanic Cloud (LMC) with the infrared satellite AKARI. Observations were carried out as part of the AKARI Large-area Survey of the Large Magellanic Cloud (LSLMC). The slitless multi-object spectroscopic capability of the AKARI/IRC enabled us to obtain low-resolution (R ∼ 20) spectra in 2-5 μm for a large number of point sources in the LMC. As a result of the survey, we extracted about 2000 infrared spectra of point sources. The data are organized as a near-infrared spectroscopic catalog. The catalog includes various infrared objects such as young stellar objects (YSOs), asymptotic giant branch (AGB) stars, supergiants, and so on. It is shown that 97% of the catalog sources have corresponding photometric data in the wavelength range from 1.2 to 11 μm, and 67% of the sources also have photometric data up to 24 μm. The catalog allows us to investigate near-infrared spectral features of sources by comparison with their infrared spectral energy distributions. In addition, it is estimated that about 10% of the catalog sources are observed at more than two different epochs. This enables us to study a spectroscopic variability of sources by using the present catalog. Initial results of source classifications for the LSLMC samples are presented. We classified 659 LSLMC spectra based on their near-infrared spectral features by visual inspection. As a result, it is shown that the present catalog includes 7 YSOs, 160 C-rich AGBs, 8 C-rich AGB candidates, 85 O-rich AGBs, 122 blue and yellow supergiants, 150 red super giants, and 128 unclassified sources. Distributions of the classified sources on the color-color and color-magnitude diagrams are discussed in the text. Continuous wavelength coverage and high spectroscopic sensitivity in 2-5 μm can only be achieved by space observations. This is an unprecedented large-scale spectroscopic survey toward the LMC in the near-infrared

  15. The near-infrared continua of BL Lacertae objects

    International Nuclear Information System (INIS)

    Allen, D.A.; Ward, M.J.; Hyland, A.R.

    1982-01-01

    Accurate photometry at J, H and K (1.2 to 2.2 μm) has been secured of 53 BL Lac objects. A power-law continuum is an exceptionally good fit to the data, and the colours are distinct from those of quasars. There is no indication of the additional infrared continuum seen in quasars and which is believed to arise in circumnuclear dust. We argue that dust is very scarce in the nuclei of BL Lac objects, and thus we expect gas to be equally scarce. Hence we attribute the lack of optical emission lines to an absence of ionized nuclear gas. We further argue that BL Lac objects could underlie quasars, the latter exhibiting line and thermal continuum emission at ultraviolet, optical and near-infrared wavelengths due to the presence of circumnuclear gas and dust. The strong-lined optically violent variable quasars have colours typical of BL Lac objects rather than quasars, and may represent intermediate cases. The JHK colours of the BL Lac objects overlap with those of the empty-radio-field infrared sources. Such objects probably represent the redder extreme of a range of spectral indices in BL Lac objects. (author)

  16. Spot fat reduction by red and near infrared LED phototherapy

    Science.gov (United States)

    Lim, Sungkyoo; Park, Eal-Whan

    2018-02-01

    Low level light therapy (LLLT) using light from red and near infrared LEDs or Lasers have been reported effective as noninvasive methods for reducing spot fat. A total of 55 subjects were randomly divided into test groups and control groups for abdominal fat reduction clinical trial using red and near infrared LED phototherapy devices. Red and near infrared light with irradiance of 10 mW/cm2 were irradiated over the abdominal area to the test group for 30 minutes followed by 30 minutes of aerobic exercise, 3 times a week for 4 weeks. Control group used sham devices for 30 minutes and followed by 30 minutes of aerobic exercise. It is expected that red and near infrared LED phototherapy combined with aerobic exercise would be effective and safe for abdominal fat reduction without any side effects.

  17. Transcranial red and near infrared light transmission in a cadaveric model.

    Directory of Open Access Journals (Sweden)

    Jared R Jagdeo

    Full Text Available BACKGROUND AND OBJECTIVE: Low level light therapy has garnered significant interest within the past decade. The exact molecular mechanisms of how red and near infrared light result in physiologic modulation are not fully understood. Heme moieties and copper within cells are red and near infrared light photoreceptors that induce the mitochondrial respiratory chain component cytochrome C oxidase, resulting in a cascade linked to cytoprotection and cellular metabolism. The copper centers in cytochrome C oxidase have a broad absorption range that peaks around 830 nm. Several in vitro and in vivo animal and human models exist that have demonstrated the benefits of red light and near infrared light for various conditions. Clinical applications for low level light therapy are varied. One study in particular demonstrated improved durable functional outcomes status post-stroke in patients treated with near infrared low level light therapy compared to sham treatment [1]. Despite previous data suggesting the beneficial effect in treating multiple conditions, including stroke, with low level light therapy, limited data exists that measures transmission in a human model. STUDY DESIGN/MATERIALS AND METHODS: To investigate this idea, we measured the transmission of near infrared light energy, using red light for purposes of comparison, through intact cadaver soft tissue, skull bones, and brain using a commercially available LED device at 830 nm and 633 nm. RESULTS: Our results demonstrate that near infrared measurably penetrates soft tissue, bone and brain parenchyma in the formalin preserved cadaveric model, in comparison to negligible red light transmission in the same conditions. CONCLUSION: These findings indicate that near infrared light can penetrate formalin fixed soft tissue, bone and brain and implicate that benefits observed in clinical studies are potentially related to direct action of near infrared light on neural tissue.

  18. Characterization methods of integrated optics for mid-infrared interferometry

    Science.gov (United States)

    Labadie, Lucas; Kern, Pierre Y.; Schanen-Duport, Isabelle; Broquin, Jean-Emmanuel

    2004-10-01

    his article deals with one of the important instrumentation challenges of the stellar interferometry mission IRSI-Darwin of the European Space Agency: the necessity to have a reliable and performant system for beam combination has enlightened the advantages of an integrated optics solution, which is already in use for ground-base interferometry in the near infrared. Integrated optics provides also interesting features in terms of filtering, which is a main issue for the deep null to be reached by Darwin. However, Darwin will operate in the mid infrared range from 4 microns to 20 microns where no integrated optics functions are available on-the-shelf. This requires extending the integrated optics concept and the undergoing technology in this spectral range. This work has started with the IODA project (Integrated Optics for Darwin) under ESA contract and aims to provide a first component for interferometry. In this paper are presented the guidelines of the characterization work that is implemented to test and validate the performances of a component at each step of the development phase. We present also an example of characterization experiment used within the frame of this work, is theoretical approach and some results.

  19. Effectiveness of near-infrared transillumination in early caries diagnosis

    Directory of Open Access Journals (Sweden)

    Mirela Marinova-Takorova

    2016-11-01

    Full Text Available Early caries detection is essential for minimal intervention dentistry, since it could give the opportunity to reverse the process and eliminate or at least postpone the surgical treatment. The aim of the present study was to evaluate the effectiveness of near-infrared transillumination in early caries diagnosis for both occlusal and proximal lesions. Thirty-eight adult patients were included in the study. The results from the visual, radiological and near-infrared transillumination examination for proximal caries lesions were compared. The diagnostic abilities of these methods for occlusal lesions were assayed on 60 teeth. The three methods showed a very high level of correlation when there were caries lesions involving the enamel and dentin. Concerning proximal caries involving only the enamel, the visual--tactile diagnosis proved to be insufficiently sensitive even with the use of magnification. Radiographic examination and near-infrared transillumination correlated significantly, but the latter was more sensitive. Radiographic examination proved to be insufficiently sensitive for occlusal lesions. The results obtained with the near-infrared fluorescence correlated most with the visual–tactile examination. These results suggest that near-infrared transillumination is an effective method for diagnosis of lesions both involving only the enamel and involving the enamel and dentin. It could be used for both occlusal and proximal caries lesions and it could eventually substitute radiographic bitewings, especially in children and pregnant women, due to its efficiency as a diagnostic tool and the absence of radiation.

  20. Photoacoustic determination of glucose concentration in whole blood by a near-infrared laser diode

    Science.gov (United States)

    Zhao, Zuomin; Myllylae, Risto A.

    2001-06-01

    The near-infrared photoacoustic technique is recognized as a potential method for the non-invasive determination of human glucose, because near-infrared light can incident a few millimeters into human tissue, where it produces an acoustic wave capable of carrying information about the composition of the tissue. This paper demonstrates a photoacoustic glucose measurement in a blood sample as a step toward a non-invasive measurement. The experimental apparatus consists of a near-infrared laser diode operating with 4 micro joules pulse energy at 905 nm, a roller pump connected to a silicon plastic tube and a cuvette for circulating the blood sample. In addition, the apparatus comprises a PZT piezoelectric transducer integrated with a battery-powered preamplifier to receive the photoacoustic signal. During the experiment, a glucose solution is mixed into a human blood sample to change its concentration. Although the absorption coefficient of glucose is much smaller than that of blood in the near-infrared region, the osmotic and hydrophilic properties of glucose decrease the reduced scattering coefficient of blood caused by the dissolved glucose surrounding the blood cells. This changes the distribution of the absorbed optical energy in blood, which, in turn, produces a change in the photoacoustic signal. Our experiment demonstrates that signal amplitudes in fresh and stored blood samples in crease about 7% and 10%, respectively, when the glucose concentration reaches the upper limit of the physiological region (500 mg/dl).

  1. [Near infrared light irradiator using halogen lamp].

    Science.gov (United States)

    Ide, Yasuo

    2012-07-01

    The practical electric light bulb was invented by Thomas Alva Edison in 1879. Halogen lamp is the toughest and brightest electric light bulb. With light filter, it is used as a source of near infrared light. Super Lizer and Alphabeam are made as near infrared light irradiator using halogen lamp. The light emmited by Super Lizer is linear polarized near infrared light. The wave length is from 600 to 1,600 nm and strongest at about 1,000 nm. Concerning Super Lizer, there is evidence of analgesic effects and normalization of the sympathetic nervous system. Super Lizer has four types of probes. SG type is used for stellate ganglion irradiation. B type is used for narrow area irradiation. C and D types are for broad area irradiation. The output of Alphabeam is not polarized. The wave length is from 700 to 1,600 nm and the strongest length is about 1,000nm. Standard attachment is used for spot irradiation. Small attachment is used for stellate ganglion irradiation. Wide attachment is used for broad area irradiation. The effects of Alphabeam are thought to be similar to that of Super Lizer.

  2. Automatic monitoring of ecosystem structure and functions using integrated low-cost near surface sensors

    Science.gov (United States)

    Kim, J.; Ryu, Y.; Jiang, C.; Hwang, Y.

    2016-12-01

    Near surface sensors are able to acquire more reliable and detailed information with higher temporal resolution than satellite observations. Conventional near surface sensors usually work individually, and thus they require considerable manpower from data collection through information extraction and sharing. Recent advances of Internet of Things (IoT) provides unprecedented opportunities to integrate various low-cost sensors as an intelligent near surface observation system for monitoring ecosystem structure and functions. In this study, we developed a Smart Surface Sensing System (4S), which can automatically collect, transfer, process and analyze data, and then publish time series results on public-available website. The system is composed of micro-computer Raspberry pi, micro-controller Arduino, multi-spectral spectrometers made from Light Emitting Diode (LED), visible and near infrared cameras, and Internet module. All components are connected with each other and Raspberry pi intelligently controls the automatic data production chain. We did intensive tests and calibrations in-lab. Then, we conducted in-situ observations at a rice paddy field and a deciduous broadleaf forest. During the whole growth season, 4S obtained landscape images, spectral reflectance in red, green, blue, and near infrared, normalized difference vegetation index (NDVI), fraction of photosynthetically active radiation (fPAR), and leaf area index (LAI) continuously. Also We compared 4S data with other independent measurements. NDVI obtained from 4S agreed well with Jaz hyperspectrometer at both diurnal and seasonal scales (R2 = 0.92, RMSE = 0.059), and 4S derived fPAR and LAI were comparable to LAI-2200 and destructive measurements in both magnitude and seasonal trajectory. We believe that the integrated low-cost near surface sensor could help research community monitoring ecosystem structure and functions closer and easier through a network system.

  3. Thermal Infrared and Visible to Near-Infrared Spectral Analysis of Chert and Amorphous Silica

    Science.gov (United States)

    McDowell, M. L.; Hamilton, V. E.; Cady, S. L.; Knauth, P.

    2009-03-01

    We look in detail at the thermal infrared and visible to near-infrared spectra of various forms of chert and amorphous silica and compare the spectral variations between samples with variations in physical and chemical characteristics.

  4. On the age and metallicity estimation of spiral galaxies using optical and near-infrared photometry

    NARCIS (Netherlands)

    Lee, Hyun-Chul; Worthey, Guy; Trager, Scott C.; Faber, S. M.

    2007-01-01

    In integrated light, some color-color diagrams that use optical and near-infrared photometry show surprisingly orthogonal grids as age and metallicity are varied, and they are coming into common usage for estimating the average age and metallicity of spiral galaxies. In this paper we reconstruct

  5. Optical and near-infrared IFU spectroscopy of the nuclear region of the AGN-starburst galaxy NGC 7582

    Science.gov (United States)

    Ricci, T. V.; Steiner, J. E.; May, D.; Garcia-Rissmann, A.; Menezes, R. B.

    2018-02-01

    NGC 7582 is an SB(s)ab galaxy which displays evidences of simultaneous nuclear activity and star formation in its centre. Previous optical observations revealed, besides the H II regions, an ionization cone and a gas disc in its central part. Hubble Space Telescope (HST) images in both optical and infrared bands show the active galactic nuclei (AGNs) and a few compact structures that are possibly associated with young stellar clusters. In order to study in detail both the AGN and evidence for star formation, we analyse optical (Gemini Multi-Object Spectrograph) and near-infrared (Spectrograph for Integral Field Observations in the Near Infrared) archival data cubes. We detected five nebulae with strong He II λ4686 emission in the same region where an outflow is detected in the [O III] λ5007 kinematic map. We interpreted this result as clouds that are exposed to high-energy photons emerging from the AGN throughout the ionization cone. We also detected Wolf-Rayet features which are related to emission of one of the compact clusters seen in the HST image. Broad Hα and Br γ components are detected at the position of the nucleus. [Fe II] λ1.644 μm, H2λ2.122 μm and Br γ flux maps show two blobs, one north and the other south from the nucleus, that seem to be associated with five previously detected mid-infrared sources. Two of the five He II nebulae are partially ionized by photons from starbursts. However, we conclude that the main source of excitation of these blobs is the AGN jet/disc. The jet orientation indicates that the accretion disc is nearly orthogonal to the dusty torus.

  6. In vivo near-infrared dual-axis confocal microendoscopy in the human lower gastrointestinal tract

    Science.gov (United States)

    Piyawattanametha, Wibool; Ra, Hyejun; Qiu, Zhen; Friedland, Shai; Liu, Jonathan T. C.; Loewke, Kevin; Kino, Gordon S.; Solgaard, Olav; Wang, Thomas D.; Mandella, Michael J.; Contag, Christopher H.

    2012-02-01

    Near-infrared confocal microendoscopy is a promising technique for deep in vivo imaging of tissues and can generate high-resolution cross-sectional images at the micron-scale. We demonstrate the use of a dual-axis confocal (DAC) near-infrared fluorescence microendoscope with a 5.5-mm outer diameter for obtaining clinical images of human colorectal mucosa. High-speed two-dimensional en face scanning was achieved through a microelectromechanical systems (MEMS) scanner while a micromotor was used for adjusting the axial focus. In vivo images of human patients are collected at 5 frames/sec with a field of view of 362×212 μm2 and a maximum imaging depth of 140 μm. During routine endoscopy, indocyanine green (ICG) was topically applied a nonspecific optical contrasting agent to regions of the human colon. The DAC microendoscope was then used to obtain microanatomic images of the mucosa by detecting near-infrared fluorescence from ICG. These results suggest that DAC microendoscopy may have utility for visualizing the anatomical and, perhaps, functional changes associated with colorectal pathology for the early detection of colorectal cancer.

  7. Imaging of solid tumor using near-infrared emitting purple bacteria

    International Nuclear Information System (INIS)

    Moon, Sung Min; Min, Jung Joon; Kim, Sun A; Choy, Hyon E.; Bom, Hee Seung

    2005-01-01

    Rhodobacter sphaeroides 2.4.1 is α-3 purple nonsulfur eubacterium with an extensive metabolism. Under anaerobic conditions, it is able to grow by photosynthesis, respiration and fermentation. When grown photosynthetically, it uses wavelengths of light in the near-infrared and contains a reaction center that is the peripheral light-harvesting (LH2) complex. These molecules absorb and emit near-infrared light. Using this near-infrared fluorescent bacterial we investigated its targeting capacity of solid tumor in small animals. R. sphaeroides 2.4.1 strains were cultured in sistrons minimal medium A (SIS) at 32 C. Xenograft tumor model has been established by subcutaneous injection of CT26 mouse colon cancer cell line. 1X10 8 Rhodobacter sphaeroides cells suspended in 100 ul of PBS were injected via tail vein with 1-cc insulin syringe into tumor bearing mouse. In vivo fluorescence imaging has been done after 20 min to 30 days of purple bacteria using indocyanine (ICG) emission filter (Em=810∼835 nm). Near-infrared imaging signal from Rhodobacter sphaeroides was initially detected at liver for 3 days but at the necrotic region of tumor mass thereafter. Total photon flux measured 5.5X10 8 (p/s/cm 2 /sr) at Day 1. Also it was increased to 7.8X10 8 (p/s/cm 2 /sr) at 12 day. One of important characteristic is that the signal appeared only at central necrosis area. It has been monitored for 36 day. We successfully imaged cancer with near-infrared fluorescence bacteria. Our result indicate that near-infrared fluorescence purple bacteria are able to be used to monitor bacterial trafficking in living tumor models

  8. Shining new light on treating dementia: integrating EEG neurofeedback training and near infrared photobiomodulation (Conference Presentation)

    Science.gov (United States)

    Berman, Marvin H.

    2017-02-01

    Evidence from animal and human studies regarding the biological impact of near infrared light stimulation has significantly increased of late noting the disease modifying properties of photobiomodulation for improving physical and cognitive performance in subjects with a variety of neurodegenerative conditions. Concurrently we see a growing body of literature regarding the efficacy of operant conditioning of EEG amplitude and connectivity in remediating both cognitive and behavioral symptoms of both neuropsychiatric and neurodegenerative disorders including traumatic brain injury, ADHD, PTSD, and dementia. This presentation seeks to outline a treatment model combining these two treatment methods to stop the progression of neurodegeneration using pulsed (10hz), brief (5-20minutes) repeated (1-2x/daily) transcranial and intranasal photobiomodulation with 810nm and 1068nm near infrared phototherapy and operant conditioning of EEG amplitude and coherence. Our initial study on treating dementia with EEG biofeedback (N=37) showed neuroplasticity's potential for modifying cognitive and behavioral symptoms using the evidence from decades of neurological research that never felt the warm touch of a translational researcher's hand. The near infrared interventional studies clarified the order of treatment, i.e., tissue health and renewal were achieved, followed by neural connectivity enhancement. Significant improvements in both immediate and delayed recall and praxis memory as well as executive functioning and behavioral regulation were obtained with each intervention. The inferred synergistic impact of properly combining these approaches is what informs our current clinical applications and future research efforts examining the value of combined treatments for all dementias, parkinson's disease and age-related dry macular degeneration.

  9. DERIVING METALLICITIES FROM THE INTEGRATED SPECTRA OF EXTRAGALACTIC GLOBULAR CLUSTERS USING THE NEAR-INFRARED CALCIUM TRIPLET

    International Nuclear Information System (INIS)

    Foster, Caroline; Forbes, Duncan A.; Proctor, Robert N.; Spitler, Lee R.; Strader, Jay; Brodie, Jean P.

    2010-01-01

    The Ca II triplet (CaT) feature in the near-infrared has been employed as a metallicity indicator for individual stars as well as integrated light of Galactic globular clusters (GCs) and galaxies with varying degrees of success, and sometimes puzzling results. Using the DEIMOS multi-object spectrograph on Keck we obtain a sample of 144 integrated light spectra of GCs around the brightest group galaxy NGC 1407 to test whether the CaT index can be used as a metallicity indicator for extragalactic GCs. Different sets of single stellar population models make different predictions for the behavior of the CaT as a function of metallicity. In this work, the metallicities of the GCs around NGC 1407 are obtained from CaT index values using an empirical conversion. The measured CaT/metallicity distributions show unexpected features, the most remarkable being that the brightest red and blue GCs have similar CaT values despite their large difference in mean color. Suggested explanations for this behavior in the NGC 1407 GC system are (1) the CaT may be affected by a population of hot blue stars, (2) the CaT may saturate earlier than predicted by the models, and/or (3) color may not trace metallicity linearly. Until these possibilities are understood, the use of the CaT as a metallicity indicator for the integrated spectra of extragalactic GCs will remain problematic.

  10. First Near-infrared Imaging Polarimetry of Young Stellar Objects in the Circinus Molecular Cloud

    Science.gov (United States)

    Kwon, Jungmi; Nakagawa, Takao; Tamura, Motohide; Hough, James H.; Choi, Minho; Kandori, Ryo; Nagata, Tetsuya; Kang, Miju

    2018-02-01

    We present the results of near-infrared (NIR) linear imaging polarimetry in the J, H, and K s bands of the low-mass star cluster-forming region in the Circinus Molecular Cloud Complex. Using aperture polarimetry of point-like sources, positive detection of 314, 421, and 164 sources in the J, H, and K s bands, respectively, was determined from among 749 sources whose photometric magnitudes were measured. For the source classification of the 133 point-like sources whose polarization could be measured in all 3 bands, a color–color diagram was used. While most of the NIR polarizations of point-like sources are well-aligned and can be explained by dichroic polarization produced by aligned interstellar dust grains in the cloud, 123 highly polarized sources have also been identified with some criteria. The projected direction on the sky of the magnetic field in the Cir-MMS region is indicated by the mean polarization position angles (70°) of the point-like sources in the observed region, corresponding to approximately 1.6× 1.6 pc2. In addition, the magnetic field direction is compared with the outflow orientations associated with Infrared Astronomy Satellite sources, in which two sources were found to be aligned with each other and one source was not. We also show prominent polarization nebulosities over the Cir-MMS region for the first time. Our polarization data have revealed one clear infrared reflection nebula (IRN) and several candidate IRNe in the Cir-MMS field. In addition, the illuminating sources of the IRNe are identified with near- and mid-infrared sources.

  11. Classical field configurations and infrared slavery

    Science.gov (United States)

    Swanson, Mark S.

    1987-09-01

    The problem of determining the energy of two spinor particles interacting through massless-particle exchange is analyzed using the path-integral method. A form for the long-range interaction energy is obtained by analyzing an abridged vertex derived from the parent theory. This abridged vertex describes the radiation of zero-momentum particles by pointlike sources. A path-integral formalism for calculating the energy of the radiation field associated with this abridged vertex is developed and applications are made to determine the energy necessary for adiabatic separation of two sources in quantum electrodynamics and for an SU(2) Yang-Mills theory. The latter theory is shown to be consistent with confinement via infrared slavery.

  12. Near-infrared dental imaging using scanning fiber endoscope

    Science.gov (United States)

    Zhou, Yaxuan; Lee, Robert; Sadr, Alireza; Seibel, Eric J.

    2018-02-01

    Near-infrared (NIR) wavelength range of 1300-1500nm has the potential to outperform or augment other dental imaging modalities such as fluorescence imaging, owing to its lower scattering coefficient in enamel and trans- parency on stains and non-cariogenic plaque. However, cameras in this wavelength range are bulky and expensive, which lead to difficulties for in-vivo use and commercialization. Thus, we have proposed a new imaging device combining the scanning fiber endoscopy (SFE) and NIR imaging technology. The NIR SFE system has the advantage of miniature size (1.6 mm), flexible shaft, video frame rate (7Hz) and expandable wide field-of-view (60 degrees). Eleven extracted human teeth with or without occlusal caries were scanned by micro-computed X-ray tomography (micro-CT) to obtain 3D micro-CT images, which serve as the standard for comparison. NIR images in reflection mode were then taken on all the occlusal surfaces, using 1310nm super luminescent diode and 1460nm laser diode respectively. Qualitative comparison was performed between near-infrared im- ages and micro-CT images. Enamel demineralization in NIR appeared as areas of increased reflectivity, and distinguished from non-carious staining at the base of occlusal fissures or developmental defects on cusps. This preliminary work presented proof for practicability of combining NIR imaging technology with SFE for reliable and noninvasive dental imaging with miniaturization and low cost.

  13. Near-field optical microscope using a silicon-nitride probe

    NARCIS (Netherlands)

    van Hulst, N.F.; Moers, M.H.P.; Moers, M.H.P.; Noordman, O.F.J.; Noordman, O.F.J.; Tack, R.G.; Segerink, Franciscus B.; Bölger, B.; Bölger, B.

    1993-01-01

    Operation of an alternative near-field optical microscope is presented. The microscope uses a microfabricated silicon- nitride probe with integrated cantilever, as originally developed for force microscopy. The cantilever allows routine close contact near-field imaging o­n arbitrary surfaces without

  14. Authenticity assessment of banknotes using portable near infrared spectrometer and chemometrics.

    Science.gov (United States)

    da Silva Oliveira, Vanessa; Honorato, Ricardo Saldanha; Honorato, Fernanda Araújo; Pereira, Claudete Fernandes

    2018-05-01

    Spectra recorded using a portable near infrared (NIR) spectrometer, Soft Independent Modeling of Class Analogy (SIMCA) and Linear Discriminant Analysis (LDA) associated to Successive Projections Algorithm (SPA) models were applied to identify counterfeit and authentic Brazilian Real (R$20, R$50 and R$100) banknotes, enabling a simple field analysis. NIR spectra (950-1650nm) were recorded from seven different areas of the banknotes (two with fluorescent ink, one over watermark, three with intaglio printing process and one over the serial numbers with typography printing). SIMCA and SPA-LDA models were built using 1st derivative preprocessed spectral data from one of the intaglio areas. For the SIMCA models, all authentic (300) banknotes were correctly classified and the counterfeits (227) were not classified. For the two classes SPA-LDA models (authentic and counterfeit currencies), all the test samples were correctly classified into their respective class. The number of selected variables by SPA varied from two to nineteen for R$20, R$50 and R$100 currencies. These results show that the use of the portable near-infrared with SIMCA or SPA-LDA models can be a completely effective, fast, and non-destructive way to identify authenticity of banknotes as well as permitting field analysis. Copyright © 2018 Elsevier B.V. All rights reserved.

  15. Monolithic beam steering in a mid-infrared, surface-emitting, photonic integrated circuit.

    Science.gov (United States)

    Slivken, Steven; Wu, Donghai; Razeghi, Manijeh

    2017-08-16

    The mid-infrared (2.5 < λ < 25 μm) spectral region is utilized for many purposes, such as chemical/biological sensing, free space communications, and illuminators/countermeasures. Compared to near-infrared optical systems, however, mid-infrared component technology is still rather crude, with isolated components exhibiting limited functionality. In this manuscript, we make a significant leap forward in mid-infrared technology by developing a platform which can combine functions of multiple mid-infrared optical elements, including an integrated light source. In a single device, we demonstrate wide wavelength tuning (240 nm) and beam steering (17.9 degrees) in the mid-infrared with a significantly reduced beam divergence (down to 0.5 degrees). The architecture is also set up to be manufacturable and testable on a wafer scale, requiring no cleaved facets or special mirror coating to function.

  16. NEAR-INFRARED PERIODIC AND OTHER VARIABLE FIELD STARS IN THE FIELD OF THE CYGNUS OB7 STAR-FORMING REGION

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Rice, Thomas S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin A. [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-04-15

    We present a subset of the results of a three-season, 124 night, near-infrared monitoring campaign of the dark clouds Lynds 1003 and Lynds 1004 in the Cygnus OB7 star-forming region. In this paper, we focus on the field star population. Using three seasons of UKIRT J, H, and K-band observations spanning 1.5 years, we obtained high-quality photometry on 9200 stars down to J = 17 mag, with photometric uncertainty better than 0.04 mag. After excluding known disk-bearing stars we identify 149 variables-1.6% of the sample. Of these, about 60 are strictly periodic, with periods predominantly <2 days. We conclude this group is dominated by eclipsing binaries. A few stars have long period signals of between 20 and 60 days. About 25 stars have weak modulated signals, but it was not clear if these were periodic. Some of the stars in this group may be diskless young stellar objects with relatively large variability due to cool starspots. The remaining {approx}60 stars showed variations which appear to be purely stochastic.

  17. Micro- and nano-scale optical devices for high density photonic integrated circuits at near-infrared wavelengths

    Science.gov (United States)

    Chatterjee, Rohit

    In this research work, we explore fundamental silicon-based active and passive photonic devices that can be integrated together to form functional photonic integrated circuits. The devices which include power splitters, switches and lenses are studied starting from their physics, their design and fabrication techniques and finally from an experimental standpoint. The experimental results reveal high performance devices that are compatible with standard CMOS fabrication processes and can be easily integrated with other devices for near infrared telecom applications. In Chapter 2, a novel method for optical switching using nanomechanical proximity perturbation technique is described and demonstrated. The method which is experimentally demonstrated employs relatively low powers, small chip footprint and is compatible with standard CMOS fabrication processes. Further, in Chapter 3, this method is applied to develop a hitless bypass switch aimed at solving an important issue in current wavelength division multiplexing systems namely hitless switching of reconfigurable optical add drop multiplexers. Experimental results are presented to demonstrate the application of the nanomechanical proximity perturbation technique to practical situations. In Chapter 4, a fundamental photonic component namely the power splitter is described. Power splitters are important components for any photonic integrated circuits because they help split the power from a single light source to multiple devices on the same chip so that different operations can be performed simultaneously. The power splitters demonstrated in this chapter are based on multimode interference principles resulting in highly compact low loss and highly uniform power splitting to split the power of the light from a single channel to two and four channels. These devices can further be scaled to achieve higher order splitting such as 1x16 and 1x32 power splits. Finally in Chapter 5 we overcome challenges in device

  18. Near-infrared reflectance analysis by Gauss-Jordan linear algebra

    International Nuclear Information System (INIS)

    Honigs, D.E.; Freelin, J.M.; Hieftje, G.M.; Hirschfeld, T.B.

    1983-01-01

    Near-infrared reflectance analysis is an analytical technique that uses the near-infrared diffuse reflectance of a sample at several discrete wavelengths to predict the concentration of one or more of the chemical species in that sample. However, because near-infrared bands from solid samples are both abundant and broad, the reflectance at a given wavelength usually contains contributions from several sample components, requiring extensive calculations on overlapped bands. In the present study, these calculations have been performed using an approach similar to that employed in multi-component spectrophotometry, but with Gauss-Jordan linear algebra serving as the computational vehicle. Using this approach, correlations for percent protein in wheat flour and percent benzene in hydrocarbons have been obtained and are evaluated. The advantages of a linear-algebra approach over the common one employing stepwise regression are explored

  19. Near-infrared branding efficiently correlates light and electron microscopy.

    Science.gov (United States)

    Bishop, Derron; Nikić, Ivana; Brinkoetter, Mary; Knecht, Sharmon; Potz, Stephanie; Kerschensteiner, Martin; Misgeld, Thomas

    2011-06-05

    The correlation of light and electron microscopy of complex tissues remains a major challenge. Here we report near-infrared branding (NIRB), which facilitates such correlation by using a pulsed, near-infrared laser to create defined fiducial marks in three dimensions in fixed tissue. As these marks are fluorescent and can be photo-oxidized to generate electron contrast, they can guide re-identification of previously imaged structures as small as dendritic spines by electron microscopy.

  20. Dynamic Softening or Stiffening a Supramolecular Hydrogel by Ultraviolet or Near-Infrared Light.

    Science.gov (United States)

    Zheng, Zhao; Hu, Jingjing; Wang, Hui; Huang, Junlin; Yu, Yihua; Zhang, Qiang; Cheng, Yiyun

    2017-07-26

    The development of light-responsive hydrogels that exhibit switchable size and mechanical properties with temporal and spatial resolution is of great importance in many fields. However, it remains challenging to prepare smart hydrogels that dramatically change their properties in response to both ultraviolet (UV) and near-infrared (NIR) lights. Here, we designed a dual-light responsive supramolecular gel by integrating UV light-switchable host-guest recognition, temperature responsiveness, and NIR photothermal ability in the gel. The gel could rapidly self-heal and is capable of both softening and stiffening controlled by UV and NIR lights, respectively. Besides stiffness modulation, the bending direction of the gel can be controlled by UV or NIR light irradiation. The smart gel makes it possible to generate dynamic materials that respond to both UV and NIR lights and represents a useful tool that might be used to modulate cellular microenvironments with spatiotemporal resolution.

  1. Near-infrared scintillation of xenon by 63Ni beta decay

    Science.gov (United States)

    Yoshimizu, Norimasa; Lal, Amit; Pollock, Clifford R.

    2006-07-01

    The near-infrared scintillation of xenon gas by the β decay of 37MBq of Ni63 was studied, in the interest of its use in integrated devices for applications such as optical beacons and wavelength calibration. The emission was imaged and analyzed using Spencer's theory of electron penetration using xenon scattering cross sections derived from Thomas-Fermi theory. The total emission was approximately 2×105photons/s at 20kPa and 1×105photons/s at 100kPa. Spectral data show three dominant peaks at 823, 828, and 882nm as well as the formation of metastable states.

  2. Leaf Chlorophyll Content Estimation of Winter Wheat Based on Visible and Near-Infrared Sensors.

    Science.gov (United States)

    Zhang, Jianfeng; Han, Wenting; Huang, Lvwen; Zhang, Zhiyong; Ma, Yimian; Hu, Yamin

    2016-03-25

    The leaf chlorophyll content is one of the most important factors for the growth of winter wheat. Visual and near-infrared sensors are a quick and non-destructive testing technology for the estimation of crop leaf chlorophyll content. In this paper, a new approach is developed for leaf chlorophyll content estimation of winter wheat based on visible and near-infrared sensors. First, the sliding window smoothing (SWS) was integrated with the multiplicative scatter correction (MSC) or the standard normal variable transformation (SNV) to preprocess the reflectance spectra images of wheat leaves. Then, a model for the relationship between the leaf relative chlorophyll content and the reflectance spectra was developed using the partial least squares (PLS) and the back propagation neural network. A total of 300 samples from areas surrounding Yangling, China, were used for the experimental studies. The samples of visible and near-infrared spectroscopy at the wavelength of 450,900 nm were preprocessed using SWS, MSC and SNV. The experimental results indicate that the preprocessing using SWS and SNV and then modeling using PLS can achieve the most accurate estimation, with the correlation coefficient at 0.8492 and the root mean square error at 1.7216. Thus, the proposed approach can be widely used for winter wheat chlorophyll content analysis.

  3. Vibrational Spectroscopy of Intramolecular Hydrogen Bonds in the Infrared and Near-Infrared Regions

    DEFF Research Database (Denmark)

    Schrøder, Sidsel Dahl

    and 1,4-diaminobutane). Experimentally, the hydrogen bonds have been studied with vibrational spectroscopy in the infrared and near-infrared regions. The focus is primarily on spectra recorded in the near-infrared regions, which in these studies are dominated by O-H and N-H stretching overtones....... Overtone spectra have been recorded with intracavity laser photoacoustic laser spectroscopy and conventional long path absorption spectroscopy. Theoretically, a combination of electronic structure calculations and local mode models have been employed to guide the assignment of bands in the vibrational......,4-diaminobutane, no sign of intramolecular N-H···N hydrogen bonds were identified in the overtone spectra. However, theoretical analyzes indicate that intramolecular N-H···N hydrogen bonds are present in all three diamines if two hydrogen atoms on one of the methylene groups are substituted with triuoromethyl...

  4. NEAR-INFRARED POLARIZATION SOURCE CATALOG OF THE NORTHEASTERN REGIONS OF THE LARGE MAGELLANIC CLOUD

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Jaeyeong; Pak, Soojong [School of Space Research, Kyung Hee University, 1 Seocheon-dong, Giheung-gu, Yongin, Gyeonggi-do 446-701 (Korea, Republic of); Jeong, Woong-Seob; Park, Won-Kee [Korea Astronomy and Space Science Institute, 776 Daedeok-daero, Yuseong-gu, Daejeon 305-348 (Korea, Republic of); Tamura, Motohide, E-mail: jaeyeong@khu.ac.kr, E-mail: jeongws@kasi.re.kr [The University of Tokyo/National Astronomical Observatory of Japan/Astrobiology Center, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-01-15

    We present a near-infrared band-merged photometric and polarimetric catalog for the 39′ × 69′ fields in the northeastern part of the Large Magellanic Cloud (LMC), which were observed using SIRPOL, an imaging polarimeter of the InfraRed Survey Facility. This catalog lists 1858 sources brighter than 14 mag in the H band with a polarization signal-to-noise ratio greater than three in the J, H, or K{sub s} bands. Based on the relationship between the extinction and the polarization degree, we argue that the polarization mostly arises from dichroic extinctions caused by local interstellar dust in the LMC. This catalog allows us to map polarization structures to examine the global geometry of the local magnetic field, and to show a statistical analysis of the polarization of each field to understand its polarization properties. In the selected fields with coherent polarization position angles, we estimate magnetic field strengths in the range of 3−25 μG using the Chandrasekhar–Fermi method. This implies the presence of large-scale magnetic fields on a scale of around 100 parsecs. When comparing mid- and far-infrared dust emission maps, we confirmed that the polarization patterns are well aligned with molecular clouds around the star-forming regions.

  5. iHWG-μNIR: a miniaturised near-infrared gas sensor based on substrate-integrated hollow waveguides coupled to a micro-NIR-spectrophotometer.

    Science.gov (United States)

    Rohwedder, J J R; Pasquini, C; Fortes, P R; Raimundo, I M; Wilk, A; Mizaikoff, B

    2014-07-21

    A miniaturised gas analyser is described and evaluated based on the use of a substrate-integrated hollow waveguide (iHWG) coupled to a microsized near-infrared spectrophotometer comprising a linear variable filter and an array of InGaAs detectors. This gas sensing system was applied to analyse surrogate samples of natural fuel gas containing methane, ethane, propane and butane, quantified by using multivariate regression models based on partial least square (PLS) algorithms and Savitzky-Golay 1(st) derivative data preprocessing. The external validation of the obtained models reveals root mean square errors of prediction of 0.37, 0.36, 0.67 and 0.37% (v/v), for methane, ethane, propane and butane, respectively. The developed sensing system provides particularly rapid response times upon composition changes of the gaseous sample (approximately 2 s) due the minute volume of the iHWG-based measurement cell. The sensing system developed in this study is fully portable with a hand-held sized analyser footprint, and thus ideally suited for field analysis. Last but not least, the obtained results corroborate the potential of NIR-iHWG analysers for monitoring the quality of natural gas and petrochemical gaseous products.

  6. Time-series surveys and pulsating stars: The near-infrared perspective

    Directory of Open Access Journals (Sweden)

    Matsunaga Noriyuki

    2017-01-01

    Full Text Available The purpose of this review is to discuss the advantages and problems of nearinfrared surveys in observing pulsating stars in the Milky Way. One of the advantages of near-infrared surveys, when compared to optical counterparts, is that the interstellar extinction is significantly smaller. As we see in this review, a significant volume of the Galactic disk can be reached by infrared surveys but not by optical ones. Towards highly obscured regions in the Galactic mid-plane, however, the interstellar extinction causes serious problems even with near-infrared data in understanding the observational results. After a review on previous and current near-infrared surveys, we discuss the effects of the interstellar extinction in optical (including Gaia to near-infrared broad bands based on a simple calculation using synthetic spectral energy distribution. We then review the recent results on classical Cepheids towards the Galactic center and the bulge, as a case study, to see the impact of the uncertainty in the extinction law. The extinction law, i.e. the wavelength dependency of the extinction, is not fully characterized, and its uncertainty makes it hard to make the correction. Its characterization is an urgent task in order to exploit the outcomes of ongoing large-scale surveys of pulsating stars, e.g. for drawing a map of pulsating stars across the Galactic disk.

  7. Species authentication and geographical origin discrimination of herbal medicines by near infrared spectroscopy: A review.

    Science.gov (United States)

    Wang, Pei; Yu, Zhiguo

    2015-10-01

    Near infrared (NIR) spectroscopy as a rapid and nondestructive analytical technique, integrated with chemometrics, is a powerful process analytical tool for the pharmaceutical industry and is becoming an attractive complementary technique for herbal medicine analysis. This review mainly focuses on the recent applications of NIR spectroscopy in species authentication of herbal medicines and their geographical origin discrimination.

  8. Apertureless near-field scanning optical microscope working with or without laser source.

    Science.gov (United States)

    Formanek, F; De Wilde, Y; Aigouy, L; Chen, Y

    2004-01-01

    An apertureless near-field scanning optical microscope (ANSOM), used indifferent configurations, is presented. Our versatile home-made setup, based on a sharp tungsten tip glued onto a quartz tuning fork and working in tapping mode, allows to perform imaging over a broad spectral range. We have recorded optical images in the visible (wavelength, lambda = 655 nm) and in the infrared (lambda = 10.6 microm), proving that the setup routinely achieves an optical resolution of images recorded in the visible (lambda = 655 nm) in an inverted configuration where the tip does not perturb the focused spot of the illumination laser. Approach curves as well as image profiles have revealed that on demodulating the optical signal at higher harmonics, we can obtain an effective probe sharpening which results in an improvement of the resolution. Finally, we have presented optical images recorded in the infrared without any illumination, that is, the usual laser source is replaced by a simple heating of the sample. This has shown that the ANSOM can be used as a near-field thermal optical microscope (NTOM) to probe the near field generated by the thermal emission of the sample.

  9. Rapid electrostatics-assisted layer-by-layer assembly of near-infrared-active colloidal photonic crystals.

    Science.gov (United States)

    Askar, Khalid; Leo, Sin-Yen; Xu, Can; Liu, Danielle; Jiang, Peng

    2016-11-15

    Here we report a rapid and scalable bottom-up technique for layer-by-layer (LBL) assembling near-infrared-active colloidal photonic crystals consisting of large (⩾1μm) silica microspheres. By combining a new electrostatics-assisted colloidal transferring approach with spontaneous colloidal crystallization at an air/water interface, we have demonstrated that the crystal transfer speed of traditional Langmuir-Blodgett-based colloidal assembly technologies can be enhanced by nearly 2 orders of magnitude. Importantly, the crystalline quality of the resultant photonic crystals is not compromised by this rapid colloidal assembly approach. They exhibit thickness-dependent near-infrared stop bands and well-defined Fabry-Perot fringes in the specular transmission and reflection spectra, which match well with the theoretical calculations using a scalar-wave approximation model and Fabry-Perot analysis. This simple yet scalable bottom-up technology can significantly improve the throughput in assembling large-area, multilayer colloidal crystals, which are of great technological importance in a variety of optical and non-optical applications ranging from all-optical integrated circuits to tissue engineering. Copyright © 2016 Elsevier Inc. All rights reserved.

  10. Rapid assessment of selected free amino acids during Edam cheese ripening by near infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Jiří Mlček

    2013-01-01

    Full Text Available The study focuses on rapid determination of free amino acids produced during the ripening of cheese, by using near infrared spectroscopy. Analyses of 96 samples of Edam cheese (30% and 45% of fat in dry matter were performed at monthly intervals up to the ripening age of 6 months. In total, 19 amino acids were analysed with infrared spectrometer using two different methods, either in the regime of reflectance in the integrating sphere of the apparatus or using a fibre optic apparatus with the fibre optic probe. Reference data based on high-performance liquid chromatography were used for calibration of the spectrophotometer. Calibration models were developed using a partial least square algorithm and tested by means of cross-validation. When measured with the integrating sphere and with the probe, the values of correlation coefficients ranged from 0.835 to 0.993 and from 0.739 to 0.995, respectively. Paired t-test did not show significant differences between the reference and predicted values (P < 0.05. The results of this new calibration method showed the possibility of near infrared technology for fast determination of free amino acids, which occur during the ripening of Edam cheese. The content of free amino acids allow us to prepare Edam cheese quickly and efficiently for sale or to prepare the material for processed cheese.

  11. Research on capability of detecting ballistic missile by near space infrared system

    Science.gov (United States)

    Lu, Li; Sheng, Wen; Jiang, Wei; Jiang, Feng

    2018-01-01

    The infrared detection technology of ballistic missile based on near space platform can effectively make up the shortcomings of high-cost of traditional early warning satellites and the limited earth curvature of ground-based early warning radar. In terms of target detection capability, aiming at the problem that the formula of the action distance based on contrast performance ignores the background emissivity in the calculation process and the formula is only valid for the monochromatic light, an improved formula of the detecting range based on contrast performance is proposed. The near space infrared imaging system parameters are introduced, the expression of the contrastive action distance formula based on the target detection of the near space platform is deduced. The detection range of the near space infrared system for the booster stage ballistic missile skin, the tail nozzle and the tail flame is calculated. The simulation results show that the near-space infrared system has the best effect on the detection of tail-flame radiation.

  12. Near-infrared-responsive, superparamagnetic Au@Co nanochains

    Directory of Open Access Journals (Sweden)

    Varadee Vittur

    2017-08-01

    Full Text Available This manuscript describes a new type of nanomaterial, namely superparamagnetic Au@Co nanochains with optical extinctions in the near infrared (NIR. The Au@Co nanochains were synthesized via a one-pot galvanic replacement route involving a redox-transmetalation process in aqueous medium, where Au salt was reduced to form Au shells on Co seed templates, affording hollow Au@Co nanochains. The Au shells serve not only as a protective coating for the Co nanochain cores, but also to give rise to the optical properties of these unique nanostructures. Importantly, these bifunctional, magneto-optical Au@Co nanochains combine the advantages of nanophotonics (extinction at ca. 900 nm and nanomagnetism (superparamagnetism and provide a potentially useful new nanoarchitecture for biomedical or catalytic applications that can benefit from both activation by light and manipulation using an external magnetic field.

  13. Functional near-infrared spectroscopy studies in children

    Directory of Open Access Journals (Sweden)

    Nagamitsu Shinichiro

    2012-03-01

    Full Text Available Abstract Psychosomatic and developmental behavioral medicine in pediatrics has been the subject of significant recent attention, with infants, school-age children, and adolescents frequently presenting with psychosomatic, behavioral, and psychiatric symptoms. These may be a consequence of insecurity of attachment, reduced self-confidence, and peer -relationship conflicts during their developmental stages. Developmental cognitive neuroscience has revealed significant associations between specific brain lesions and particular cognitive dysfunctions. Thus, identifying the biological deficits underlying such cognitive dysfunction may provide new insights into therapeutic prospects for the management of those symptoms in children. Recent advances in noninvasive neuroimaging techniques, and especially functional near-infrared spectroscopy (NIRS, have contributed significant findings to the field of developmental cognitive neuroscience in pediatrics. We present here a comprehensive review of functional NIRS studies of children who have developed normally and of children with psychosomatic and behavioral disorders.

  14. Geological characterization of remote field sites using visible and infrared spectroscopy: Results from the 1999 Marsokhod field test

    Science.gov (United States)

    Johnson, J. R.; Ruff, S.W.; Moersch, J.; Roush, T.; Horton, K.; Bishop, J.; Cabrol, N.A.; Cockell, C.; Gazis, P.; Newsom, Horton E.; Stoker, C.

    2001-01-01

    Upcoming Mars Surveyor lander missions will include extensive spectroscopic capabilities designed to improve interpretations of the mineralogy and geology of landing sites on Mars. The 1999 Marsokhod Field Experiment (MFE) was a Mars rover simulation designed in part to investigate the utility of visible/near-infrared and thermal infrared field spectrometers to contribute to the remote geological exploration of a Mars analog field site in the California Mojave Desert. The experiment simultaneously investigated the abilities of an off-site science team to effectively analyze and acquire useful imaging and spectroscopic data and to communicate efficiently with rover engineers and an on-site field team to provide meaningful input to rover operations and traverse planning. Experiences gained during the MFE regarding effective communication between different mission operation teams will be useful to upcoming Mars mission teams. Field spectra acquired during the MFE mission exhibited features interpreted at the time as indicative of carbonates (both dolomitic and calcitic), mafic rocks and associated weathering products, and silicic rocks with desert varnish-like coatings. The visible/near-infrared spectra also suggested the presence of organic compounds, including chlorophyll in one rock. Postmission laboratory petrologic and spectral analyses of returned samples confirmed that all rocks identified as carbonates using field measurements alone were calc-silicates and that chlorophyll associated with endolithic organisms was present in the one rock for which it was predicted. Rocks classified from field spectra as silicics and weathered mafics were recognized in the laboratory as metamorphosed monzonites and diorite schists. This discrepancy was likely due to rock coatings sampled by the field spectrometers compared to fresh rock interiors analyzed petrographically, in addition to somewhat different surfaces analyzed by laboratory thermal spectroscopy compared to field

  15. Near-infrared Mueller matrix imaging for colonic cancer detection

    Science.gov (United States)

    Wang, Jianfeng; Zheng, Wei; Lin, Kan; Huang, Zhiwei

    2016-03-01

    Mueller matrix imaging along with polar decomposition method was employed for the colonic cancer detection by polarized light in the near-infrared spectral range (700-1100 nm). A high-speed (colonic tissues (i.e., normal and caner) were acquired. Polar decomposition was further implemented on the 16 images to derive the diattentuation, depolarization, and the retardance images. The decomposed images showed clear margin between the normal and cancerous colon tissue samples. The work shows the potential of near-infrared Mueller matrix imaging for the early diagnosis and detection of malignant lesions in the colon.

  16. Non-thermal near-infrared exposure photobiomodulates cellular responses to ionizing radiation in human full thickness skin models.

    Science.gov (United States)

    König, Anke; Zöller, Nadja; Kippenberger, Stefan; Bernd, August; Kaufmann, Roland; Layer, Paul G; Heselich, Anja

    2018-01-01

    Ionizing and near-infrared radiation are both part of the therapeutic spectrum in cancer treatment. During cancer therapy ionizing radiation is typically used for non-invasive reduction of malignant tissue, while near-infrared photobiomodulation is utilized in palliative medical approaches, e.g. for pain reduction or impairment of wound healing. Furthermore, near-infrared is part of the solar wavelength spectrum. A combined exposure of these two irradiation qualities - either intentionally during medical treatment or unintentionally due to solar exposure - is therefore presumable for cancer patients. Several studies in different model organisms and cell cultures show a strong impact of near-infrared pretreatment on ionizing radiation-induced stress response. To investigate the risks of non-thermal near-infrared (NIR) pretreatment in patients, a human in vitro full thickness skin models (FTSM) was evaluated for radiation research. FTSM were pretreated with therapy-relevant doses of NIR followed by X-radiation, and then examined for DNA-double-strand break (DSB) repair, cell proliferation and apoptosis. Double-treated FTSM revealed a clear influence of NIR on X-radiation-induced stress responses in cells in their typical tissue environment. Furthermore, over a 24h time period, double-treated FTSM presented a significant persistence of DSBs, as compared to samples exclusively irradiated by X-rays. In addition, NIR pretreatment inhibited apoptosis induction of integrated fibroblasts, and counteracted the radiation-induced proliferation inhibition of basal keratinocytes. Our work suggests that cancer patients treated with X-rays should be prevented from uncontrolled NIR irradiation. On the other hand, controlled double-treatment could provide an alternative therapy approach, exposing the patient to less radiation. Copyright © 2017. Published by Elsevier B.V.

  17. Near-field thermal radiation between hyperbolic metamaterials: Graphite and carbon nanotubes

    Energy Technology Data Exchange (ETDEWEB)

    Liu, X. L.; Zhang, R. Z.; Zhang, Z. M., E-mail: zhuomin.zhang@me.gatech.edu [G. W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, Georgia 30332 (United States)

    2013-11-18

    The near-field radiative heat transfer for two hyperbolic metamaterials, namely, graphite and vertically aligned carbon nanotubes (CNTs), is investigated. Graphite is a naturally existing uniaxial medium, while CNT arrays can be modeled as an effective anisotropic medium. Different hyperbolic modes can be separately supported by these materials in certain infrared regions, resulting in a strong enhancement in near-field heat transfer. It is predicted that the heat flux between two CNT arrays can exceed that between SiC plates at any vacuum gap distance and is about 10 times higher with a 10 nm gap.

  18. TESTING THE HYPOTHESIS THAT METHANOL MASER RINGS TRACE CIRCUMSTELLAR DISKS: HIGH-RESOLUTION NEAR-INFRARED AND MID-INFRARED IMAGING

    International Nuclear Information System (INIS)

    De Buizer, James M.; Bartkiewicz, Anna; Szymczak, Marian

    2012-01-01

    Milliarcsecond very long baseline interferometry maps of regions containing 6.7 GHz methanol maser emission have lead to the recent discovery of ring-like distributions of maser spots and the plausible hypothesis that they may be tracing circumstellar disks around forming high-mass stars. We aimed to test this hypothesis by imaging these regions in the near- and mid-infrared at high spatial resolution and compare the observed emission to the expected infrared morphologies as inferred from the geometries of the maser rings. In the near-infrared we used the Gemini North adaptive optics system of ALTAIR/NIRI, while in the mid-infrared we used the combination of the Gemini South instrument T-ReCS and super-resolution techniques. Resultant images had a resolution of ∼150 mas in both the near-infrared and mid-infrared. We discuss the expected distribution of circumstellar material around young and massive accreting (proto)stars and what infrared emission geometries would be expected for the different maser ring orientations under the assumption that the masers are coming from within circumstellar disks. Based upon the observed infrared emission geometries for the four targets in our sample and the results of spectral energy distribution modeling of the massive young stellar objects associated with the maser rings, we do not find compelling evidence in support of the hypothesis that methanol masers rings reside in circumstellar disks.

  19. Optical field emission from resonant gold nanorods driven by femtosecond mid-infrared pulses

    Energy Technology Data Exchange (ETDEWEB)

    Kusa, F. [Department of Applied Physics, Tokyo University of Agriculture and Technology, 2-24-16 Nakacho, Koganei Tokyo 184-8588 (Japan); Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan); Echternkamp, K. E.; Herink, G.; Ropers, C. [4th Physical Institute – Solids and Nanostructures, University of Göttingen, 37077 Göttingen (Germany); Ashihara, S., E-mail: ashihara@iis.u-tokyo.ac.jp [Institute of Industrial Science, the University of Tokyo, 4-6-1 Komaba, Meguro-ku, Tokyo 153-8505 (Japan)

    2015-07-15

    We demonstrate strong-field photoelectron emission from gold nanorods driven by femtosecond mid-infrared optical pulses. The maximum photoelectron yield is reached at the localized surface plasmon resonance, indicating that the photoemission is governed by the resonantly-enhanced optical near-field. The wavelength- and field-dependent photoemission yield allows for a noninvasive determination of local field enhancements, and we obtain intensity enhancement factors close to 1300, in good agreement with finite-difference time domain computations.

  20. Near infrared fluorescent chlorophyll nanoscale liposomes for sentinel lymph node mapping

    Science.gov (United States)

    Fan, Lina; Wu, Qiang; Chu, Maoquan

    2012-01-01

    Background Sentinel lymph node (SLN) mapping using in vivo near infrared fluorescence imaging has attracted great attention during the past few years. Here we report on the early use of poorly water-soluble chlorophyll with near infrared fluorescence extracted from the leaf of Chimonanthus salicifolius, for mouse axillary SLN mapping. Methods and results To improve the water solubility and SLN targeting of the chlorophyll, we encapsulated the chlorophyll in nanoscale liposomes. The liposome-coated chlorophyll nanocomposites obtained were spherical in shape and had an average diameter of 21.7 ± 6.0 nm. The nanocomposites dispersed well in water, and in aqueous suspension they exhibited brighter near infrared fluorescence than chlorophyll alone. After incubation of the nanocomposites with normal liver cells (QSG-7701) and macrophage cells (Ana-1) for no more than 48 hours, there was no obvious reduction in cell viability. When the nanocomposites were injected intradermally into the paw of a mouse, the axillary SLN was found to be strongly fluorescent and was easily visualized in real time without a requirement for surgery. The intensity of the near infrared fluorescence emitted by the SLN was obviously brighter than that emitted by the SLN of another mouse that had been intradermally injected with chlorophyll alone. Conclusion Our data show that the liposome-coated chlorophyll nanocomposites could have great potential for clinical SLN mapping due to their lack of toxicity, bright near infrared fluorescence, and small diameter. PMID:22787402

  1. THz near-field imaging of biological tissues employing synchrotronradiation

    Energy Technology Data Exchange (ETDEWEB)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried,Daniel

    2004-12-23

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  2. Planar and channel waveguides in fused silica fabricated by multi-energy C ion in the visible and near-infrared band

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Tao; Huang, Qing; Liu, Peng; Guo, Sha-Sha; Zhang, Lian; Zhou, Yu-Fan [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China); Wang, Xue-Lin, E-mail: xuelinwang@sdu.edu.cn [School of Physics, State Key Laboratory of Crystal Materials and Key Laboratory of Particle Physics and Particle Irradiation (MOE), Shandong University, Jinan 250100 (China)

    2013-07-15

    Fused quartz is a key material in fabrication of integrated devices, which transmits extends from ultraviolet to infrared. We report the fabrication of planar and channel waveguides in fused quartz using multi-energy C ion at energies of (5 + 5.5 + 6) MeV and fluences of (1 + 1 + 1.5) × 10{sup 15} ions/cm{sup 2}. The guiding modes at the wavelength of 633 nm (He–Ne laser) and 1539 nm (diode laser) were detected using the prism-coupling method, and the modes were stable after annealing in air. The refractive index profiles of planar and channel waveguides at the wavelength of 633 nm and 1539 nm were typical “well + barrier” distributions, which were reconstructed using the reflectivity calculation method (RCM) software and intensity calculation method (ICM), respectively. For comparison to the experimental results, the finite difference beam propagation method (FD-BPM) was used to simulate the guiding modes of the waveguides. We measured the near-field intensity distributions for the visible (633 nm) and near-infrared (1300 nm, 1539 nm and 1620 nm) wavelength regions, suggesting that the modes can be effective transmission in the wavelength range for optical fiber communications.

  3. Observation of near-infrared surface brightness of the large Magellanic cloud

    International Nuclear Information System (INIS)

    Hayakawa, Satio; Koizumi, Yutaka; Matsumoto, Toshio; Murakami, Hiroshi; Uyama, Kiichiro.

    1981-01-01

    The near-infrared surface brightness of the large Magellanic cloud was observed by an infrared telescope carried by a balloon. The balloon flight was made at Australian Balloon Launching Station. The brightness distribution of 2.4 Mu m radiation was obtained. A part of Bar was bright, and the expansion of the contour at the east end of Bar corresponded to the 30 Dor region. Many near-infrared sources distribute in this region. Discussions on the color and brightness of the center of Bar and the 30 Dor region are presented. (Kato, T.)

  4. Near-infrared spectroscopy during peripheral vascular surgery

    DEFF Research Database (Denmark)

    Eiberg, J P; Schroeder, T V; Vogt, K C

    1997-01-01

    Near-infrared spectroscopy was performed perioperatively on the dorsum of the foot in 14 patients who underwent infrainguinal bypass surgery using a prosthesis or the greater saphenous vein. Dual-wavelength continuous light spectroscopy was used to assess changes in tissue saturation before, duri...

  5. Broadband integrated mid infrared light sources as enabling technology for point of care mid-infrared spectroscopy

    Science.gov (United States)

    2017-08-20

    AFRL-AFOSR-JP-TR-2017-0061 Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy Alex...mid-infrared light sources as enabling technology for point-of-care mid-infrared spectroscopy 5a.  CONTRACT NUMBER 5b.  GRANT NUMBER FA2386-16-1-4037...Broadband integrated mid-infrared light sources as enabling technology for point-of-care mid- infrared spectroscopy ” Date: 16th August 2017 Name

  6. Near-infrared polarimetry of the edge-on galaxy NGC 891

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, J. D.; Clemens, D. P., E-mail: montgojo@bu.edu, E-mail: clemens@bu.edu [Institute for Astrophysical Research, Boston University, 725 Commonwealth Avenue, Boston, MA 02215 (United States)

    2014-05-01

    The edge-on galaxy NGC 891 was probed using near-infrared (NIR) imaging polarimetry in the H band (1.6 μm) with the Mimir instrument on the 1.8 m Perkins Telescope. Polarization was detected with a signal-to-noise ratio greater than three out to a surface brightness of 18.8 mag arcsec{sup –2}. The unweighted average and dispersion in polarization percentage (P) across the full disk were 0.7% and 0.3%, respectively, and the same quantities for polarization position angle (P.A.) were 12° and 19°, respectively. At least one polarization null point, where P falls nearly to zero, was detected in the northeast disk but not the southwest disk. Several other asymmetries in P between the northern and southern disk were found and may be related to spiral structure. Profiles of P and P.A. along the minor axis of NGC 891 suggest a transition from magnetic (B) field tracing dichroic polarization near the disk mid-plane to scattering dominated polarization off the disk mid-plane. A comparison between NIR P.A. and radio (3.6 cm) synchrotron polarization P.A. values revealed similar B-field orientations in the central-northeast region, which suggests that the hot plasma and cold, star-forming interstellar medium may share a common B-field. Disk-perpendicular polarizations previously seen at optical wavelengths are likely caused by scattered light from the bright galaxy center and are unlikely to be tracing poloidal B-fields in the outer disk.

  7. New applications of near infrared spectroscopy in the food industry

    Energy Technology Data Exchange (ETDEWEB)

    Groenewald, C.A. (Peter Rassloff Instruments and Services, Norwood, South Africa)

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories.

  8. New applications of near infrared spectroscopy in the food industry

    International Nuclear Information System (INIS)

    Groenewald, C.A.

    1984-01-01

    The near infrared spectroscopic method of analysis was initially developed for rapid analyses of protein in wheat. A brief explanation of the theory and history of near infrared spectroscopic analysis will be given. Research was done on the application of near infrared spectroscopic (NIR) in the food industry. Especially exciting was the breakthrough achieved in applying NIR to determine the dry solid content of bread. Such application could revolutionise the baking industry. Results will also be presented of research done on the application of NIR techniques for the determination of protein and fat in bread based on dry matter; hardness in wheat; absorption and sedimentation in pasta products; and use in process control in snack products manufacture. The limitations that were found in the application of NIR analysis will also be covered. The developments in NIR technology may result in these methods becoming standard practice in many food laboratories

  9. The effect of near-infrared MLS laser radiation on cell membrane structure and radical generation.

    Science.gov (United States)

    Kujawa, Jolanta; Pasternak, Kamila; Zavodnik, Ilya; Irzmański, Robert; Wróbel, Dominika; Bryszewska, Maria

    2014-09-01

    The therapeutic effects of low-power laser radiation of different wavelengths and light doses are well known, but the biochemical mechanism of the interaction of laser light with living cells is not fully understood. We have investigated the effect of MLS (Multiwave Locked System) laser near-infrared irradiation on cell membrane structure, functional properties, and free radical generation using human red blood cells and breast cancer MCF-4 cells. The cells were irradiated with low-intensity MLS near-infrared (simultaneously 808 nm, continuous emission and 905 nm, pulse emission, pulse-wave frequency, 1,000 or 2,000 Hz) laser light at light doses from 0 to 15 J (average power density 212.5 mW/cm(2), spot size was 3.18 cm(2)) at 22 °C, the activity membrane bound acetylcholinesterase, cell stability, anti-oxidative activity, and free radical generation were the parameters used in characterizing the structural and functional changes of the cell. Near-infrared low-intensity laser radiation changed the acetylcholinesterase activity of the red blood cell membrane in a dose-dependent manner: There was a considerable increase of maximal enzymatic rate and Michaelis constant due to changes in the membrane structure. Integral parameters such as erythrocyte stability, membrane lipid peroxidation, or methemoglobin levels remained unchanged. Anti-oxidative capacity of the red blood cells increased after MLS laser irradiation. This irradiation induced a time-dependent increase in free radical generation in MCF-4 cells. Low-intensity near-infrared MLS laser radiation induces free radical generation and changes enzymatic and anti-oxidative activities of cellular components. Free radical generation may be the mechanism of the biomodulative effect of laser radiation.

  10. Low-cost near-infrared imaging device for inspection of historical manuscripts

    International Nuclear Information System (INIS)

    Mohd Ashhar Khalid

    2004-01-01

    Near-infrared (NIR) or sometimes called black light is a waveform beyond visible light and it is not detectable by human eyes. However electronic sensors such as the type used in digital cameras are able to detect signals in the infrared band. To avoid distortion in the pictures obtained near-infrared is blocked by optical filters inserted in digital cameras. By carrying out minor modification allowing near-infrared signal to be imaged while blocking the visible signal, the camera is turned into a low-cost NIR imaging instrument. NIR imaging can be a useful tool in historical manuscript study or restoration. A few applications have been successfully demonstrated in laboratory experiment using the instrument available in MINT. However, due to unavailability of historical items, easily available texts and paintings are used in the demonstrations. This paper reports achievements of early work on the application of digital camera in the detection of damaged prints or writings. (Author)

  11. Imperial College near infrared spectroscopy neuroimaging analysis framework.

    Science.gov (United States)

    Orihuela-Espina, Felipe; Leff, Daniel R; James, David R C; Darzi, Ara W; Yang, Guang-Zhong

    2018-01-01

    This paper describes the Imperial College near infrared spectroscopy neuroimaging analysis (ICNNA) software tool for functional near infrared spectroscopy neuroimaging data. ICNNA is a MATLAB-based object-oriented framework encompassing an application programming interface and a graphical user interface. ICNNA incorporates reconstruction based on the modified Beer-Lambert law and basic processing and data validation capabilities. Emphasis is placed on the full experiment rather than individual neuroimages as the central element of analysis. The software offers three types of analyses including classical statistical methods based on comparison of changes in relative concentrations of hemoglobin between the task and baseline periods, graph theory-based metrics of connectivity and, distinctively, an analysis approach based on manifold embedding. This paper presents the different capabilities of ICNNA in its current version.

  12. THE VARIABLE NEAR-INFRARED COUNTERPART OF THE MICROQUASAR GRS 1758–258

    International Nuclear Information System (INIS)

    Luque-Escamilla, Pedro L.; Martí, Josep; Muñoz-Arjonilla, Álvaro J.

    2014-01-01

    We present a new study of the microquasar system GRS 1758–258 in the near-infrared domain based on archival observations with the Hubble Space Telescope and the NICMOS camera. In addition to confirming the near-infrared counterpart pointed out by Muñoz-Arjonilla et al., we show that this object displays significant photometric variability. From its average magnitudes, we also find that GRS 1758–258 fits well within the correlation between the optical/near-infrared and X-ray luminosity known to exist for low-mass, black-hole candidate X-ray binaries in a hard state. Moreover, the spectral energy distribution built using all radio, near-infrared, and X-ray data available closest in time to the NICMOS observations can be reasonably interpreted in terms of a self-absorbed radio jet and an irradiated accretion disk model around a stellar-mass black hole. All these facts match the expected behavior of a compact binary system and strengthen our confidence in the counterpart identification

  13. Hybrid tandem quantum dot/organic photovoltaic cells with complementary near infrared absorption

    KAUST Repository

    Kim, Taesoo

    2017-06-01

    Monolithically integrated hybrid tandem solar cells that effectively combine solution-processed colloidal quantum dot (CQD) and organic bulk heterojunction subcells to achieve tandem performance that surpasses the individual subcell efficiencies have not been demonstrated to date. In this work, we demonstrate hybrid tandem cells with a low bandgap PbS CQD subcell harvesting the visible and near-infrared photons and a polymer:fullerene—poly (diketopyrrolopyrrole-terthiophene) (PDPP3T):[6,6]-phenyl-C60-butyric acid methyl ester (PC61BM)—top cell absorbing effectively the red and near-infrared photons of the solar spectrum in a complementary fashion. The two subcells are connected in series via an interconnecting layer (ICL) composed of a metal oxide layer, a conjugated polyelectrolyte, and an ultrathin layer of Au. The ultrathin layer of Au forms nano-islands in the ICL, reducing the series resistance, increasing the shunt resistance, and enhancing the device fill-factor. The hybrid tandems reach a power conversion efficiency (PCE) of 7.9%, significantly higher than the PCE of the corresponding individual single cells, representing one of the highest efficiencies reported to date for hybrid tandem solar cells based on CQD and polymer subcells.

  14. Spectral classification by the near infrared photometric parameters

    International Nuclear Information System (INIS)

    Tignanelli, H.L.; Feinstein, A.

    1985-01-01

    From the analysis of the measurements of KM-type stars done in the near infrared (1 to 3.5 microns: the JHKL bands of Johnsons's system), with an 83 cm reflector and a PbS detector at La Plata Observatory, we try to establish a new photometric classification system that discriminates luminosity class by means of certain parameters defined by infrared colours and infrared magnitudes. Data compiled and homogenized by J.Koornneef of southern bright stars in those bands were also included. The results give us information about the spectral types and reddening of those stars. We also indicate how to calculate the radiation excess that those stars could have. (author)

  15. Near-infrared image guidance in cancer surgery

    NARCIS (Netherlands)

    Schaafsma, B.E.

    2017-01-01

    Intraoperative imaging using near-infrared (NIR) fluorescence is a fast developing imaging modality as it provides real-time visual information during surgery (Chapter 1). The ability to detect lymph nodes and tumours that need to be resected can assist the surgeon to improve surgery by reducing

  16. Food Safety Evaluation Based on Near Infrared Spectroscopy and Imaging: A Review.

    Science.gov (United States)

    Fu, Xiaping; Ying, Yibin

    2016-08-17

    In recent years, due to the increasing consciousness of food safety and human health, much progress has been made in developing rapid and nondestructive techniques for the evaluation of food hazards, food authentication, and traceability. Near infrared (NIR) spectroscopy and imaging techniques have gained wide acceptance in many fields because of their advantages over other analytical techniques. Following a brief introduction of NIR spectroscopy and imaging basics, this review mainly focuses on recent NIR spectroscopy and imaging applications for food safety evaluation, including (1) chemical hazards detection; (2) microbiological hazards detection; (3) physical hazards detection; (4) new technology-induced food safety concerns; and (5) food traceability. The review shows NIR spectroscopy and imaging to be effective tools that will play indispensable roles for food safety evaluation. In addition, on-line/real-time applications of these techniques promise to be a huge growth field in the near future.

  17. Highlighting the DNA damage response with ultrashort laser pulses in the near infrared and kinetic modeling

    Directory of Open Access Journals (Sweden)

    Elisa eFerrando-May

    2013-07-01

    Full Text Available Our understanding of the mechanisms governing the response to DNA damage in higher eucaryotes crucially depends on our ability to dissect the temporal and spatial organization of the cellular machinery responsible for maintaining genomic integrity. To achieve this goal, we need experimental tools to inflict DNA lesions with high spatial precision at pre-defined locations, and to visualize the ensuing reactions with adequate temporal resolution. Near-infrared femtosecond laser pulses focused through high-aperture objective lenses of advanced scanning microscopes offer the advantage of inducing DNA damage in a 3D-confined volume of subnuclear dimensions. This high spatial resolution results from the highly nonlinear nature of the excitation process. Here we review recent progress based on the increasing availability of widely tunable and user-friendly technology of ultrafast lasers in the near infrared. We present a critical evaluation of this approach for DNA microdamage as compared to the currently prevalent use of UV or VIS laser irradiation, the latter in combination with photosensitizers. Current and future applications in the field of DNA repair and DNA-damage dependent chromatin dynamics are outlined. Finally, we discuss the requirement for proper simulation and quantitative modeling. We focus in particular on approaches to measure the effect of DNA damage on the mobility of nuclear proteins and consider the pros and cons of frequently used analysis models for FRAP and photoactivation and their applicability to nonlinear photoperturbation experiments.

  18. THE MAGNETIC FIELD IN TAURUS PROBED BY INFRARED POLARIZATION

    International Nuclear Information System (INIS)

    Chapman, Nicholas L.; Goldsmith, Paul F.; Pineda, Jorge L.; Li Di; Clemens, D. P.; Krco, Marko

    2011-01-01

    We present maps of the plane-of-sky magnetic field within two regions of the Taurus molecular cloud: one in the dense core L1495/B213 filament and the other in a diffuse region to the west. The field is measured from the polarization of background starlight seen through the cloud. In total, we measured 287 high-quality near-infrared polarization vectors in these regions. In L1495/B213, the percent polarization increases with column density up to A V ∼ 9 mag, the limits of our data. The radiative torques model for grain alignment can explain this behavior, but models that invoke turbulence are inconsistent with the data. We also combine our data with published optical and near-infrared polarization measurements in Taurus. Using this large sample, we estimate the strength of the plane-of-sky component of the magnetic field in nine subregions. This estimation is done with two different techniques that use the observed dispersion in polarization angles. Our values range from 5 to 82 μG and tend to be higher in denser regions. In all subregions, the critical index of the mass-to-magnetic flux ratio is sub-unity, implying that Taurus is magnetically supported on large scales (∼2 pc). Within the region observed, the B213 filament takes a sharp turn to the north and the direction of the magnetic field also takes a sharp turn, switching from being perpendicular to the filament to becoming parallel. This behavior can be understood if we are observing the rim of a bubble. We argue that it has resulted from a supernova remnant associated with a recently discovered nearby gamma-ray pulsar.

  19. Twenty years of functional near-infrared spectroscopy: introduction for the special issue.

    Science.gov (United States)

    Boas, David A; Elwell, Clare E; Ferrari, Marco; Taga, Gentaro

    2014-01-15

    Papers from four different groups were published in 1993 demonstrating the ability of functional near infrared spectroscopy (fNIRS) to non-invasively measure hemoglobin concentration responses to brain function in humans. This special issue commemorates the first 20years of fNIRS research. The 9 reviews and 49 contributed papers provide a comprehensive survey of the exciting advances driving the field forward and of the myriad of applications that will benefit from fNIRS. Copyright © 2013 Elsevier Inc. All rights reserved.

  20. Near-opposition martian limb-darkening: Quantification and implication for visible-near-infrared bidirectional reflectance studies.

    Science.gov (United States)

    de Grenier, Muriel; Pinet, Patrick C.

    1995-06-01

    A nearly global coverage of the martian eastern hemisphere, acquired under small phase angles and varying observational geometries conditions, has been produced from 1988 opposition by spectral (0.5-1 μm) imaging data obtained at the Pic du Midi Observatory in France. From this data set, the methodology presented here permits a systematic analysis of martian photometric behavior at a regional scale of 100-300 km in the visible and near-infrared. The quantification of limb-darkening as a function of wavelength and surface albedo gives access in martian regional properties as a function of wavelength and surface albedo and results in the production of visible and near-infrared geometric albedo maps. A linear relation between the limb darkening parameter k and geometric albedo exists in the near infrared. Based on laboratory studies, it suggests a spectral response of particulate type for the martian soil. Conversely, in the visible, the value of k parameter is 0.6 independent of albedo and is consistent with a single scattering photometric behavior in the surface layer. However, the observed change in the martian photometry from single to multiple scattering may be partially due to a large contribution of atmospheric scattering above 0.7 μm. In the absence of a multitemporal dataset analysis, it must be emphasized that the present results are a priori only pertinent to the atmospheric and surface conditions existing on Mars at the time of observation. However, this analysis may contribute to characterize some physical properties, such as surface roughness. In the near-infrared, for bright terrains, k tends to 0.8 and agrees with the presence of very fine particulate materials. Photometry of dark areas is more irregular (0.48 duricrust. Finally, we evaluate the influence of reflectance geometrical effects on the multispectral and spectroscopic data of the martian surface.

  1. Brain plasticity and rehabilitation by using Near-Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Balconi Michela

    2016-04-01

    Full Text Available The present review elucidated the use of optical imaging technique (Near-Infrared Spectroscopy, NIRS to better explain the brain plasticity for learning mechanisms, rehabilitation and post-traumatic brain recovery. Some recent applications were discussed, with specific focus on the usability of integrated measures (such as electroencephalography, EEG-NIRS; Transcranial Magnet Stimulation, TMS-NIRS to study plasticity and its dynamic effects. NIRS-Neurofeedback and NIRS-BCI (Brain Computer Interface were also explored as possible tools to produce a specific long-lasting learning in relationship with a specific cognitive domain. Finally a proficient domain where NIRS was found to be useful to test neuroplasticity is the interpersonal brain-to-brain coupling, termed “hyperscanning”, a new emerging paradigm in neuroscience which measures brain activity from two or more people simultaneously.

  2. Near-infrared light emitting device using semiconductor nanocrystals

    Energy Technology Data Exchange (ETDEWEB)

    Supran, Geoffrey J.S.; Song, Katherine W.; Hwang, Gyuweon; Correa, Raoul Emile; Shirasaki, Yasuhiro; Bawendi, Moungi G.; Bulovic, Vladimir; Scherer, Jennifer

    2018-04-03

    A near-infrared light emitting device can include semiconductor nanocrystals that emit at wavelengths beyond 1 .mu.m. The semiconductor nanocrystals can include a core and an overcoating on a surface of the core.

  3. Near-infrared quantum dots for HER2 localization and imaging of cancer cells.

    Science.gov (United States)

    Rizvi, Sarwat B; Rouhi, Sepideh; Taniguchi, Shohei; Yang, Shi Yu; Green, Mark; Keshtgar, Mo; Seifalian, Alexander M

    2014-01-01

    Quantum dots are fluorescent nanoparticles with unique photophysical properties that allow them to be used as diagnostic, therapeutic, and theranostic agents, particularly in medical and surgical oncology. Near-infrared-emitting quantum dots can be visualized in deep tissues because the biological window is transparent to these wavelengths. Their small sizes and free surface reactive groups that can be conjugated to biomolecules make them ideal probes for in vivo cancer localization, targeted chemotherapy, and image-guided cancer surgery. The human epidermal growth factor receptor 2 gene (HER2/neu) is overexpressed in 25%-30% of breast cancers. The current methods of detection for HER2 status, including immunohistochemistry and fluorescence in situ hybridization, are used ex vivo and cannot be used in vivo. In this paper, we demonstrate the application of near-infrared-emitting quantum dots for HER2 localization in fixed and live cancer cells as a first step prior to their in vivo application. Near-infrared-emitting quantum dots were characterized and their in vitro toxicity was established using three cancer cell lines, ie, HepG2, SK-BR-3 (HER2-overexpressing), and MCF7 (HER2-underexpressing). Mouse antihuman anti-HER2 monoclonal antibody was conjugated to the near-infrared-emitting quantum dots. In vitro toxicity studies showed biocompatibility of SK-BR-3 and MCF7 cell lines with near-infrared-emitting quantum dots at a concentration of 60 μg/mL after one hour and 24 hours of exposure. Near-infrared-emitting quantum dot antiHER2-antibody bioconjugates successfully localized HER2 receptors on SK-BR-3 cells. Near-infrared-emitting quantum dot bioconjugates can be used for rapid localization of HER2 receptors and can potentially be used for targeted therapy as well as image-guided surgery.

  4. A NEW GAS CELL FOR HIGH-PRECISION DOPPLER MEASUREMENTS IN THE NEAR-INFRARED

    International Nuclear Information System (INIS)

    Valdivielso, L.; Esparza, P.; MartIn, E. L.; Maukonen, D.; Peale, R. E.

    2010-01-01

    High-resolution spectroscopy in the near-infrared could become the leading method for discovering extra-solar planets around very low mass stars and brown dwarfs. In order to help to achieve an accuracy of ∼m s -1 , we are developing a gas cell which consists of a mixture of gases whose absorption spectral lines span all over the near-infrared region. We present the most promising mixture, made of acetylene, nitrous oxide, ammonia, chloromethanes, and hydrocarbons. The mixture is contained in a small size 13 cm long gas cell and covers most of the H and K bands. It also shows small absorptions in the J band, but they are few and not sharp enough for near-infrared wavelength calibration. We describe the working method and experiments, and compare our results with the state of the art for near-infrared gas cells.

  5. The Kepler and K2 Near-Infrared Transit Survey (KNITS)

    Science.gov (United States)

    Colon, Knicole; Rodriguez, Joseph E.; Barentsen, Geert; Cardoso, Jose Vinicius de Miranda; Vanderburg, Andrew

    2018-01-01

    NASA's Kepler mission discovered a plethora of transiting exoplanets after observing a single region of the Galaxy for four years. After a second reaction wheel failed, NASA's Kepler spacecraft was repurposed as K2 to observe different fields along the ecliptic in ~80 day campaigns. To date, K2 has discovered ~130 exoplanets along with another ~400 candidates. The exoplanets that have been confirmed or validated from Kepler and K2 have been primarily subject to spectroscopic observations, high-resolution imaging, or statistical methods. However, most of these, along with all the remaining candidate exoplanets, have had no follow-up transit photometry. In addition, recent studies have shown that for single-planet systems, statistical validation alone can be unreliable and additional follow-up observations are required to reveal the true nature of the system. I will present the latest results from an ongoing program to use the 3.5-meter WIYN telescope at Kitt Peak National Observatory for near-infrared transit photometry of Kepler and K2 exoplanets and candidates. Our program of high-precision, high-cadence, high-spatial-resolution near-infrared transit photometry is providing new measurements of the transit ephemerides and planetary radii as well as weeding out false positives lurking within the candidate lists. To date, 25 K2 and 5 Kepler targets have been observed with WIYN. I will also describe upcoming observations with WIYN that will take place in January 2018 as part of a campaign to observe exoplanet transits in the near-infrared simultaneously with the Kepler spacecraft during K2 Campaign 16. Our program ultimately provides a vetted sample of exoplanets that could be targeted in the future by NASA’s James Webb Space Telescope (JWST) and also demonstrates WIYN’s capabilities for observations of exoplanets to be discovered by NASA's all-sky Transiting Exoplanet Survey Satellite (TESS).Data presented herein were obtained at the WIYN Observatory from

  6. An extraordinary directive radiation based on optical antimatter at near infrared.

    Science.gov (United States)

    Mocella, Vito; Dardano, Principia; Rendina, Ivo; Cabrini, Stefano

    2010-11-22

    In this paper we discuss and experimentally demonstrate that in a quasi- zero-average-refractive-index (QZAI) metamaterial, in correspondence of a divergent source in near infrared (λ = 1.55 μm) the light scattered out is extremely directive (Δθ(out) = 0.06°), coupling with diffraction order of the alternating complementary media grating. With a high degree of accuracy the measurements prove also the excellent vertical confinement of the beam even in the air region of the metamaterial, in absence of any simple vertical confinement mechanism. This extremely sensitive device works on a large contact area and open news perspective to integrated spectroscopy.

  7. Search for near-infrared counterparts of IRAS embedded sources in the M17 SW giant molecular cloud

    International Nuclear Information System (INIS)

    Elmegreen, D.M.; Phillips, J.; Beck, K.; Thomas, H.; Howard, J.

    1988-01-01

    Wide-field near-infrared and blue band plates of the region containing the M17 giant molecular cloud complex have been blinked to locate bright near-infrared stars that may be embedded in the M17 SW giant molecular cloud. Twenty such stars coincided with the positions of IRAS point sources that appeared embedded based on color-color diagrams. Some of these stars may be the sources of the infrared luminosities. Of the 20 stars, seven were too faint to appear on the B band plate. The optical magnitudes and colors determined from the plate image diameters were measured for the other 13 coincident stars; they are most likely upper main-sequence or pre-main-sequence stars with extinctions of 7 mag. The IRAS luminosity-temperature diagram indicates that the embedded sources in M17 are more massive than those in the Orion cloud. 35 references

  8. Silicon based near infrared photodetector using self-assembled organic crystalline nano-pillars

    Energy Technology Data Exchange (ETDEWEB)

    Ajiki, Yoshiharu, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Micromachine Center, 67 Kanda Sakumagashi, Chiyoda-ku, Tokyo 100-0026 (Japan); Kan, Tetsuo [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Yahiro, Masayuki; Hamada, Akiko; Adachi, Chihaya [Center for Organic Photonics and Electronics Research (OPERA), Kyushu University, 744 Motooka, Nishi, Fukuoka 819-0395 (Japan); Adachi, Junji [Office for Strategic Research Planning, Kyushu University, 6-10-1 Hakozaki, Higashi, Fukuoka 812-8581 (Japan); Matsumoto, Kiyoshi [IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); Shimoyama, Isao, E-mail: yoshiharu-ajiki@ot.olympus.co.jp, E-mail: isao@i.u-tokyo.ac.jp [Department of Mechano-Informatics, Graduate School of Information Science and Technology, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan); IRT Research Initiative, The University of Tokyo, 7-3-1 Hongo, Bunkyo, Tokyo 113-8656 (Japan)

    2016-04-11

    We propose a silicon (Si) based near-infrared photodetector using self-assembled organic crystalline nano-pillars, which were formed on an n-type Si substrate and were covered with an Au thin-film. These structures act as antennas for near-infrared light, resulting in an enhancement of the light absorption on the Au film. Because the Schottky junction is formed between the Au/n-type Si, the electron excited by the absorbed light can be detected as photocurrent. The optical measurement revealed that the nano-pillar structures enhanced the responsivity for the near-infrared light by 89 (14.5 mA/W) and 16 (0.433 mA/W) times compared with those of the photodetector without nano-pillars at the wavelengths of 1.2 and 1.3 μm, respectively. Moreover, no polarization dependency of the responsivity was observed, and the acceptable incident angle ranged from 0° to 30°. These broad responses were likely to be due to the organic nano-pillar structures' having variation in their orientation, which is advantageous for near-infrared detector uses.

  9. Near infrared spectra of Wolf-Rayet stars

    International Nuclear Information System (INIS)

    Bappu, M.K.V.; Ganesh, K.S.; Scaria, K.K.

    1977-01-01

    The near-infrared spectra of three Wolf-Rayet stars of the carbon sequence and five of the nitrogen sequence have been studied. Wavelength identifications and intensity scans are presented to show the emission line characteristics of these objects in the 6800 A to 8200 A domain of the spectrum. (author)

  10. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: ULTRA-DEEP J AND K{sub S} IMAGING IN THE EXTENDED CHANDRA DEEP FIELD-SOUTH

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Hsieh, Chih-Chiang; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P. [Institute of Astrophysics and Astronomy, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Yan Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States)

    2012-12-15

    We present ultra-deep J and K{sub S} imaging observations covering a 30' Multiplication-Sign 30' area of the Extended Chandra Deep Field-South (ECDFS) carried out by our Taiwan ECDFS Near-Infrared Survey (TENIS). The median 5{sigma} limiting magnitudes for all detected objects in the ECDFS reach 24.5 and 23.9 mag (AB) for J and K{sub S} , respectively. In the inner 400 arcmin{sup 2} region where the sensitivity is more uniform, objects as faint as 25.6 and 25.0 mag are detected at 5{sigma}. Thus, this is by far the deepest J and K{sub S} data sets available for the ECDFS. To combine TENIS with the Spitzer IRAC data for obtaining better spectral energy distributions of high-redshift objects, we developed a novel deconvolution technique (IRACLEAN) to accurately estimate the IRAC fluxes. IRACLEAN can minimize the effect of blending in the IRAC images caused by the large point-spread functions and reduce the confusion noise. We applied IRACLEAN to the images from the Spitzer IRAC/MUSYC Public Legacy in the ECDFS survey (SIMPLE) and generated a J+K{sub S} -selected multi-wavelength catalog including the photometry of both the TENIS near-infrared and the SIMPLE IRAC data. We publicly release the data products derived from this work, including the J and K{sub S} images and the J+K{sub S} -selected multi-wavelength catalog.

  11. NEAR-INFRARED CIRCULAR AND LINEAR POLARIMETRY OF MONOCEROS R2

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Jungmi; Tamura, Motohide [Department of Astronomy, Graduate School of Science, The University of Tokyo, 113-0033 (Japan); Hough, James H. [University of Hertfordshire, Hatfield, Herts AL10 9AB (United Kingdom); Nagata, Tetsuya [Kyoto University, Sakyo-ku, Kyoto 606-8502 (Japan); Kusakabe, Nobuhiko [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan)

    2016-09-01

    We have conducted simultaneous JHK{sub s}-band imaging circular and linear polarimetry of the Monoceros R2 (Mon R2) cluster. We present results from deep and wide near-infrared linear polarimetry of the Mon R2 region. Prominent and extended polarized nebulosities over the Mon R2 field are revisited, and an infrared reflection nebula associated with the Mon R2 cluster and two local reflection nebulae, vdB 67 and vdB 69, is detected. We also present results from deep imaging circular polarimetry in the same region. For the first time, the observations show relatively high degrees of circular polarization (CP) in Mon R2, with as much as approximately 10% in the K{sub s} band. The maximum CP extent of a ring-like nebula around the Mon R2 cluster is approximately 0.60 pc, while that of a western nebula, around vdB 67, is approximately 0.24 pc. The extended size of the CP is larger than those seen in the Orion region around IRc2, while the maximum degree of CP of ∼10% is smaller than those of ∼17% seen in the Orion region. Nonetheless, both the CP size and degree of this region are among the largest in our infrared CP survey of star-forming regions. We have also investigated the time variability of the degree of the polarization of several infrared sources and found possible variations in three sources.

  12. Characterization and Performance of the Cananea Near-infrared Camera (CANICA)

    Science.gov (United States)

    Devaraj, R.; Mayya, Y. D.; Carrasco, L.; Luna, A.

    2018-05-01

    We present details of characterization and imaging performance of the Cananea Near-infrared Camera (CANICA) at the 2.1 m telescope of the Guillermo Haro Astrophysical Observatory (OAGH) located in Cananea, Sonora, México. CANICA has a HAWAII array with a HgCdTe detector of 1024 × 1024 pixels covering a field of view of 5.5 × 5.5 arcmin2 with a plate scale of 0.32 arcsec/pixel. The camera characterization involved measuring key detector parameters: conversion gain, dark current, readout noise, and linearity. The pixels in the detector have a full-well-depth of 100,000 e‑ with the conversion gain measured to be 5.8 e‑/ADU. The time-dependent dark current was estimated to be 1.2 e‑/sec. Readout noise for correlated double sampled (CDS) technique was measured to be 30 e‑/pixel. The detector shows 10% non-linearity close to the full-well-depth. The non-linearity was corrected within 1% levels for the CDS images. Full-field imaging performance was evaluated by measuring the point spread function, zeropoints, throughput, and limiting magnitude. The average zeropoint value in each filter are J = 20.52, H = 20.63, and K = 20.23. The saturation limit of the detector is about sixth magnitude in all the primary broadbands. CANICA on the 2.1 m OAGH telescope reaches background-limited magnitudes of J = 18.5, H = 17.6, and K = 16.0 for a signal-to-noise ratio of 10 with an integration time of 900 s.

  13. Scattering of electromagnetic waves from a cone with conformal mapping: Application to scanning near-field optical microscope

    Science.gov (United States)

    Chui, S. T.; Chen, Xinzhong; Liu, Mengkun; Lin, Zhifang; Zi, Jian

    2018-02-01

    We study the response of a conical metallic surface to an external electromagnetic (em) field by representing the fields in basis functions containing the integrable singularity at the tip of the cone. A fast analytical solution is obtained by the conformal mapping between the cone and a round disk. We apply our calculation to the scattering-type scanning near-field optical microscope (s-SNOM) and successfully quantify the elastic light scattering from a vibrating metallic tip over a uniform sample. We find that the field-induced charge distribution consists of localized terms at the tip and the base and an extended bulk term along the body of the cone far away from the tip. In recent s-SNOM experiments at the visible and infrared range (600 nm to 1 μ m ) the fundamental of the demodulated near-field signal is found to be much larger than the higher harmonics whereas at THz range (100 μ m to 3 mm) the fundamental becomes comparable to the higher harmonics. We find that the localized tip charge dominates the contribution to the higher harmonics and becomes larger for the THz experiments, thus providing an intuitive understanding of the origin of the near-field signals. We demonstrate the application of our method by extracting a two-dimensional effective dielectric constant map from the s-SNOM image of a finite metallic disk, where the variation comes from the charge density induced by the em field.

  14. Multi-channel near infrared spectroradiometer

    International Nuclear Information System (INIS)

    Joseph, G.B.; Biddles, B.J.; D'silva, R.A.; Picot, A.J.; Ackerman, M.J.

    1988-01-01

    A multichannel spectroradiometer has been developed by Sira Ltd. for the study of rapidly varying events in the near infrared. The instrument is being used in the examination of gun flashes, rocket motor exhaust efflux analysis and ordnance or pyrotechnic flash studies. The spectral range of about 1.4 to 5.2 microns is covered in two bands with the first order dispersion from a pair of ruled blazed gratings being imaged onto a pair of detector arrays. Data may be logged at a rate of 1000 complete spectra per second

  15. Analysis of Leucaena mimosine, Acacia tannins and total phenols by near infrared reflectance spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Prasad, M N.V. [Hyderabad Univ. (India). Dept. of Plant Sciences

    1995-11-01

    The mimosine contents of Leucaena foliage, Acacia tannins and total phenols from leaf, bark and pod were analyzed by a near infrared relectance spectrophotometer (Compscan 3000). A calibration equation (linear summation regression) was developed with near infrared spectral analysis software, using 30 spectra from old and young leaves of Leucaena and 23 spectra from different samples of Acacia. The near infrared analyzer calculated that the percentages of mimosine, total phenols and tannins are closely comparable to laboratory results. (author)

  16. Near infrared face recognition: A literature survey

    Czech Academy of Sciences Publication Activity Database

    Farokhi, Sajad; Flusser, Jan; Sheikh, U. U.

    2016-01-01

    Roč. 21, č. 1 (2016), s. 1-17 ISSN 1574-0137 R&D Projects: GA ČR GA15-16928S Institutional support: RVO:67985556 Keywords : Literature survey * Biometrics * Face recognition * Near infrared * Illumination invariant Subject RIV: JD - Computer Applications, Robotics http://library.utia.cas.cz/separaty/2016/ZOI/flusser-0461834.pdf

  17. THz near-field imaging of biological tissues employing synchrotron radiation

    International Nuclear Information System (INIS)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2004-01-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking onto the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical wave guides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about lambda/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 mu-m at about 12 wave numbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin

  18. Large Magellanic Cloud Near-infrared Synoptic Survey. V. Period–Luminosity Relations of Miras

    International Nuclear Information System (INIS)

    Yuan, Wenlong; Macri, Lucas M.; He, Shiyuan; Huang, Jianhua Z.; Kanbur, Shashi M.; Ngeow, Chow-Choong

    2017-01-01

    We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHK s . We use densely sampled I -band observations from the OGLE project to generate template light curves in the near-infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period–Luminosity relations for oxygen-rich Miras with a scatter as low as 0.12 mag at K s . We study the Period–Luminosity–Color relations and the color excesses of carbon-rich Miras, which show evidence for a substantially different reddening law.

  19. Near-infrared mapping of ARP 299 (IC 694-NGC 3690) - colliding galaxies unveiled

    International Nuclear Information System (INIS)

    Telesco, C.M.; Decher, R.; Gatley, I.; Edinburgh Royal Observatory, England)

    1985-01-01

    Near-infrared maps and multicolor photometry of the interacting galaxies IC 694 and NGC 3690 which form Arp 299 (= Markarian 171) are presented. These data reveal for the first time the distribution of nuclei and old red stars in a cataclysmically interacting system. The nuclei are considerably offset from the visual centroids of the galaxies but not from the mass centroids. The near-infrared colors of the most active regions are strongly affected by extinction, emission form hot dust, and bremsstrahlung. Near-infrared emission is also identified with secondary regions of star formation, probably resulting from the galaxies interaction. 24 references

  20. Determining the clay/organic carbon ratio by visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Peng, Yi; Hermansen, Cecilie

    /OC ratio directly would be valuable. Visible near infrared spectroscopy (vis-NIRS) is a cost-effective method for soil analysis and was tested here for the prediction of clay/OC ratio. Soil samples from two agricultural fields in Denmark (N=115) were analyzed. Partial Least Squares regression (full cross......The recently presented Dexter et al. (2008) threshold (ratio of clay to organic carbon (OC) of 10 kg/kg-1) is a good indicator for soil functional properties. However, the conventional analysis of OC and clay are costly and time consuming, thus an alternative method to quantify OC, clay or clay...

  1. Probing thermal evanescent waves with a scattering-type near-field microscope

    International Nuclear Information System (INIS)

    Kajihara, Y; Kosaka, K; Komiyama, S

    2011-01-01

    Long wavelength infrared (LWIR) waves contain many important spectra of matters like molecular motions. Thus, probing spontaneous LWIR radiation without external illumination would reveal detailed mesoscopic phenomena that cannot be probed by any other measurement methods. Here we developed a scattering-type scanning near-field optical microscope (s-SNOM) and demonstrated passive near-field microscopy at 14.5 µm wavelength. Our s-SNOM consists of an atomic force microscope and a confocal microscope equipped with a highly sensitive LWIR detector, called a charge-sensitive infrared phototransistor (CSIP). In our s-SNOM, photons scattered by a tungsten probe are collected by an objective of the confocal LWIR microscope and are finally detected by the CSIP. To suppress the far-field background, we vertically modulated the probe and demodulated the signal with a lock-in amplifier. With the s-SNOM, a clear passive image of 3 µm pitch Au/SiC gratings was successfully obtained and the spatial resolution was estimated to be 60 nm (λ/240). The radiation from Au and GaAs was suggested to be due to thermally excited charge/current fluctuations and surface phonons, respectively. This s-SNOM has the potential to observe mesoscopic phenomena such as molecular motions, biomolecular protein interactions and semiconductor conditions in the future

  2. THE MID-INFRARED AND NEAR-ULTRAVIOLET EXCESS EMISSIONS OF QUIESCENT GALAXIES ON THE RED SEQUENCE

    International Nuclear Information System (INIS)

    Ko, Jongwan; Lee, Jong Chul; Hwang, Ho Seong; Sohn, Young-Jong

    2013-01-01

    We study the mid-infrared (IR) and near-ultraviolet (UV) excess emissions of spectroscopically selected quiescent galaxies on the optical red sequence. We use the Wide-field Infrared Survey Explorer mid-IR and Galaxy Evolution Explorer near-UV data for a spectroscopic sample of galaxies in the Sloan Digital Sky Survey Data Release 7 to study the possible connection between quiescent red-sequence galaxies with and without mid-IR/near-UV excess. Among 648 12 μm detected quiescent red-sequence galaxies without Hα emission, 26% and 55% show near-UV and mid-IR excess emissions, respectively. When we consider only bright (M r n 4000 than those without mid-IR and near-UV excess emissions. We also find that mid-IR weighted mean stellar ages of quiescent red-sequence galaxies with mid-IR excess are larger than those with near-UV excess, and smaller than those without mid-IR and near-UV excess. The environmental dependence of the fraction of quiescent red-sequence galaxies with mid-IR and near-UV excess seems strong even though the trends of quiescent red-sequence galaxies with near-UV excess differ from those with mid-IR excess. These results indicate that the recent star formation traced by near-UV (∼< 1 Gyr) and mid-IR (∼< 2 Gyr) excess is not negligible among nearby, quiescent, red, early-type galaxies. We suggest a possible evolutionary scenario of quiescent red-sequence galaxies from quiescent red-sequence galaxies with near-UV excess to those with mid-IR excess to those without near-UV and mid-IR excess.

  3. Near-infrared light absorption by brown carbon in the ambient atmosphere

    Science.gov (United States)

    Chung, C.; Hoffer, A.; Beres, N. D.; Moosmüller, H.; Liu, C.; Green, M.; Kim, S. W.; Engelbrecht, J. P.; Gelencser, A.

    2017-12-01

    Organic aerosols have been assumed to have little-to-no absorption in the red and near-infrared spectral regions of solar radiation, even though a class of organic aerosols were shown to absorb significantly in these spectral regions. Here, we show that ambient atmospheric data from commonly-used 7-wavelength aethalometers contain evidence of abundant near-infrared light absorption by organic aerosol. This evidence comes from the absorption Ångström exponent over 880 950 nm, which often exceeds values explainable by fresh or coated black carbon, or mineral dust. This evidence is not due to an artifact from the instrument random errors or biases, either. The best explanation for these large 880/950 nm absorption Ångström exponent values in the aethalometer data is near-infrared light absorption by tar balls. Tar balls are among common particles from forest fire.

  4. [Near infrared spectroscopy study on water content in turbine oil].

    Science.gov (United States)

    Chen, Bin; Liu, Ge; Zhang, Xian-Ming

    2013-11-01

    Near infrared (NIR) spectroscopy combined with successive projections algorithm (SPA) was investigated for determination of water content in turbine oil. Through the 57 samples of different water content in turbine oil scanned applying near infrared (NIR) spectroscopy, with the water content in the turbine oil of 0-0.156%, different pretreatment methods such as the original spectra, first derivative spectra and differential polynomial least squares fitting algorithm Savitzky-Golay (SG), and successive projections algorithm (SPA) were applied for the extraction of effective wavelengths, the correlation coefficient (R) and root mean square error (RMSE) were used as the model evaluation indices, accordingly water content in turbine oil was investigated. The results indicated that the original spectra with different water content in turbine oil were pretreated by the performance of first derivative + SG pretreatments, then the selected effective wavelengths were used as the inputs of least square support vector machine (LS-SVM). A total of 16 variables selected by SPA were employed to construct the model of SPA and least square support vector machine (SPA-LS-SVM). There is 9 as The correlation coefficient was 0.975 9 and the root of mean square error of validation set was 2.655 8 x 10(-3) using the model, and it is feasible to determine the water content in oil using near infrared spectroscopy and SPA-LS-SVM, and an excellent prediction precision was obtained. This study supplied a new and alternative approach to the further application of near infrared spectroscopy in on-line monitoring of contamination such as water content in oil.

  5. The Development of Novel Near-Infrared (NIR Tetraarylazadipyrromethene Fluorescent Dyes

    Directory of Open Access Journals (Sweden)

    Young-Tae Chang

    2013-05-01

    Full Text Available Novel structures of an near-infrared (NIR tetraarylazadipyrromethene (aza-BODIPY series have been prepared. We designed the core structure containing two amido groups at the para-position of the aromatic rings. The amido group was incorporated to secure insensitivity to pH and to ensure a bathochromic shift to the NIR region. Forty members of aza-BODIPY compounds were synthesized by substitution of the acetyl group with commercial amines on the alpha bromide. The physicochemical properties and photostability were investigated and the fluorescence emission maxima (745~755 nm were found to be in the near infrared (NIR range of fluorescence.

  6. Breast phantom for mammary tissue characterization by near infrared spectroscopy

    International Nuclear Information System (INIS)

    Miranda, D A; Cristiano, K L; Gutiérrez, J C

    2013-01-01

    Breast cancer is a disease associated to a high morbidity and mortality in the entire world. In the study of early detection of breast cancer the development of phantom is so important. In this research we fabricate a breast phantom using a ballistic gel with special modifications to simulate a normal and abnormal human breast. Optical properties of woman breast in the near infrared region were modelled with the phantom we developed. The developed phantom was evaluated with near infrared spectroscopy in order to study its relation with breast tissue. A good optical behaviour was achieved with the model fabricated

  7. Developing Wide-Field Spatio-Spectral Interferometry for Far-Infrared Space Applications

    Science.gov (United States)

    Leisawitz, David; Bolcar, Matthew R.; Lyon, Richard G.; Maher, Stephen F.; Memarsadeghi, Nargess; Rinehart, Stephen A.; Sinukoff, Evan J.

    2012-01-01

    Interferometry is an affordable way to bring the benefits of high resolution to space far-IR astrophysics. We summarize an ongoing effort to develop and learn the practical limitations of an interferometric technique that will enable the acquisition of high-resolution far-IR integral field spectroscopic data with a single instrument in a future space-based interferometer. This technique was central to the Space Infrared Interferometric Telescope (SPIRIT) and Submillimeter Probe of the Evolution of Cosmic Structure (SPECS) space mission design concepts, and it will first be used on the Balloon Experimental Twin Telescope for Infrared Interferometry (BETTII). Our experimental approach combines data from a laboratory optical interferometer (the Wide-field Imaging Interferometry Testbed, WIIT), computational optical system modeling, and spatio-spectral synthesis algorithm development. We summarize recent experimental results and future plans.

  8. The evaluation of non-ionizing radiation (near-infrared radiation) based medical imaging application: Diabetes foot

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Young Jin [Dept. of Radiological Science, Dongseo University, Busan (Korea, Republic of); Shin, Cheol Won; Ahn, Sung Min; Hong, Jun Yong; Ahn, Yun Jin; Lim, Cheong Hwan [Dept. of Radiological Science, Hanseo University, Seosan (Korea, Republic of)

    2016-09-15

    Near-infrared radiation (NIR) is non-ionizing, non-invasive, and deep tissue penetration in biological material, thereby increasing research interests as a medical imaging technique in the world. However, the use of current near-infrared medical image is extremely limited in Korea (ROK) since it is not well known among radiologic technologists and radiological researchers. Therefore to strengthen the knowledge for NIR medical imaging is necessary so as to prepare a qualified radiological professionals to serve medical images in high-quality on the clinical sites. In this study, an overview of the features and principles of N IR imaging was demonstrated. The latest research topics and worldwide research trends were introduced for radiologic technologist to reinforce their technical skills. In particular, wound care and diabetic foot which have high feasibility for clinical translation were introduced in order to contribute to accelerating NIR research for developing the field of radiological science.

  9. The evaluation of non-ionizing radiation (near-infrared radiation) based medical imaging application: Diabetes foot

    International Nuclear Information System (INIS)

    Jung, Young Jin; Shin, Cheol Won; Ahn, Sung Min; Hong, Jun Yong; Ahn, Yun Jin; Lim, Cheong Hwan

    2016-01-01

    Near-infrared radiation (NIR) is non-ionizing, non-invasive, and deep tissue penetration in biological material, thereby increasing research interests as a medical imaging technique in the world. However, the use of current near-infrared medical image is extremely limited in Korea (ROK) since it is not well known among radiologic technologists and radiological researchers. Therefore to strengthen the knowledge for NIR medical imaging is necessary so as to prepare a qualified radiological professionals to serve medical images in high-quality on the clinical sites. In this study, an overview of the features and principles of N IR imaging was demonstrated. The latest research topics and worldwide research trends were introduced for radiologic technologist to reinforce their technical skills. In particular, wound care and diabetic foot which have high feasibility for clinical translation were introduced in order to contribute to accelerating NIR research for developing the field of radiological science

  10. Large Magellanic Cloud Near-infrared Synoptic Survey. V. Period–Luminosity Relations of Miras

    Energy Technology Data Exchange (ETDEWEB)

    Yuan, Wenlong; Macri, Lucas M. [George P. and Cynthia W. Mitchell Institute for Fundamental Physics and Astronomy, Department of Physics and Astronomy, Texas A and M University, College Station, TX 77843 (United States); He, Shiyuan; Huang, Jianhua Z. [Department of Statistics, Texas A and M University, College Station, TX 77843 (United States); Kanbur, Shashi M. [Department of Physics, The State University of New York at Oswego, Oswego, NY 13126 (United States); Ngeow, Chow-Choong, E-mail: lmacri@tamu.edu [Graduate Institute of Astronomy, National Central University, Jhongli 32001, Taiwan (China)

    2017-10-01

    We study the near-infrared properties of 690 Mira candidates in the central region of the Large Magellanic Cloud, based on time-series observations at JHK{sub s}. We use densely sampled I -band observations from the OGLE project to generate template light curves in the near-infrared and derive robust mean magnitudes at those wavelengths. We obtain near-infrared Period–Luminosity relations for oxygen-rich Miras with a scatter as low as 0.12 mag at K{sub s}. We study the Period–Luminosity–Color relations and the color excesses of carbon-rich Miras, which show evidence for a substantially different reddening law.

  11. Near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Virendra Jain

    2015-01-01

    Full Text Available Tissue ischaemia can be a significant contributor to increased morbidity and mortality. Conventional oxygenation monitoring modalities measure systemic oxygenation, but regional tissue oxygenation is not monitored. Near-infrared spectroscopy (NIRS is a non-invasive monitor for measuring regional oxygen saturation which provides real-time information. There has been increased interest in the clinical application of NIRS following numerous studies that show improved outcome in various clinical situations especially cardiac surgery. Its use has shown improved neurological outcome and decreased postoperative stay in cardiac surgery. Its usefulness has been investigated in various high risk surgeries such as carotid endarterectomy, thoracic surgeries, paediatric population and has shown promising results. There is however, limited data supporting its role in neurosurgical population. We strongly feel, it might play a key role in future. It has significant advantages over other neuromonitoring modalities, but more technological advances are needed before it can be used more widely into clinical practice.

  12. Near-infrared magneto-optical study of excitonic states in single-walled carbon nanotubes under ultra-high magnetic fields

    International Nuclear Information System (INIS)

    Yokoi, H; Effendi, Mukhtar; Minami, N; Takeyama, S

    2011-01-01

    Singlet excitonic states at the first subband-edge in single-walled carbon nanotubes (SWCNTs) have been studied through near-infrared magneto-absorption spectroscopy under magnetic fields to 105.9 T. Well-resolved absorption spectra of stretch-aligned SWCNT(CoMoCAT)-gelatin films were obtained above 100 T. By the application of magnetic fields in parallel to the alignment of SWCNTs, peak shift toward the lower energy was observed for (8, 4) and (7, 6) tubes and the opposite behavior was observed for (7, 5) and (6, 5) tubes. Above 28.8 T, new peaks emerged at the higher energy side of the peak for the (8, 4) and (7, 6) tubes, and at the lower energy side of the peaks for the (7, 5) and (6, 5) tubes. The magnetic splitting between the existing peak and the new peak was symmetric for every tube, which is in line with the energy splitting due to the Aharonov-Bohm effect. Judging from the energetic positions where the new peaks emerged, the singlet dark excitonic state locates at the lower energy than the singlet bright one in the (7, 5) and (6, 5) tubes while it is suggested strongly that the bright one locates at the lower energy in the (8, 4) and (7, 6) tubes.

  13. NanoComposite Polymers for High Resolution Near Infrared Detectors

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop nanocomposite materials with tuned refractive index in the near infra red spectral range as an index-matched immersion lens for high resolution infra-red...

  14. low-Cost, High-Performance Alternatives for Target Temperature Monitoring Using the Near-Infrared Spectrum

    Energy Technology Data Exchange (ETDEWEB)

    Virgo, Mathew [Argonne National Lab. (ANL), Argonne, IL (United States); Quigley, Kevin J. [Argonne National Lab. (ANL), Argonne, IL (United States); Chemerisov, Sergey [Argonne National Lab. (ANL), Argonne, IL (United States); Vandegrift, George F. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2017-02-01

    A process is being developed for commercial production of the medical isotope Mo-99 through a photo-nuclear reaction on a Mo-100 target using a highpower electron accelerator. This process requires temperature monitoring of the window through which a high-current electron beam is transmitted to the target. For this purpose, we evaluated two near infrared technologies: the OMEGA Engineering iR2 pyrometer and the Ocean Optics Maya2000 spectrometer with infrared-enhanced charge-coupled device (CCD) sensor. Measuring in the near infrared spectrum, in contrast to the long-wavelength infrared spectrum, offers a few immediate advantages: (1) ordinary glass or quartz optical elements can be used; (2) alignment can be performed without heating the target; and (3) emissivity corrections to temperature are typically less than 10%. If spatial resolution is not required, the infrared pyrometer is attractive because of its accuracy, low cost, and simplicity. If spatial resolution is required, we make recommendations for near-infrared imaging based on our data augmented by calculations

  15. Prediction of tablets disintegration times using near-infrared diffuse reflectance spectroscopy as a nondestructive method.

    Science.gov (United States)

    Donoso, M; Ghaly, Evone S

    2005-01-01

    The goals of this study are to user near-infrared reflectance (NIR) spectroscopy to measure the disintegration time of a series of tablets compacted at different compressional forces, calibrate NIR data vs. laboratory equipment data, develop a model equation, validate the model, and test the model's predictive ability. Seven theophylline tablet formulations of the same composition but with different disintegration time values (0.224, 1.141, 2.797, 5.492, 9.397, 16.8, and 30.092 min) were prepared along with five placebo tablet formulations with different disintegration times. Laboratory disintegration time was compared to near-infrared diffuse reflectance data. Linear regression, quadratic, cubic, and partial least square techniques were used to determine the relationship between disintegration time and near-infrared spectra. The results demonstrated that an increase in disintegration time produced an increase in near-infrared absorbance. Series of model equations, which depended on the mathematical technique used for regression, were developed from the calibration of disintegration time using laboratory equipment vs. the near-infrared diffuse reflectance for each formulation. The results of NIR disintegration time were similar to laboratory tests. The near-infrared diffuse reflectance spectroscopy method is an alternative nondestructive method for measurement of disintegration time of tablets.

  16. Janus and Huygens Dipoles: Near-Field Directionality Beyond Spin-Momentum Locking

    Science.gov (United States)

    Picardi, Michela F.; Zayats, Anatoly V.; Rodríguez-Fortuño, Francisco J.

    2018-03-01

    Unidirectional scattering from circularly polarized dipoles has been demonstrated in near-field optics, where the quantum spin-Hall effect of light translates into spin-momentum locking. By considering the whole electromagnetic field, instead of its spin component alone, near-field directionality can be achieved beyond spin-momentum locking. This unveils the existence of the Janus dipole, with side-dependent topologically protected coupling to waveguides, and reveals the near-field directionality of Huygens dipoles, generalizing Kerker's condition. Circular dipoles, together with Huygens and Janus sources, form the complete set of all possible directional dipolar sources in the far- and near-field. This allows the designing of directional emission, scattering, and waveguiding, fundamental for quantum optical technology, integrated nanophotonics, and new metasurface designs.

  17. Apertureless near-field vibrational imaging of block-copolymer nanostructures with ultrahigh spatial resolution.

    Science.gov (United States)

    Raschke, Markus B; Molina, Leopoldo; Elsaesser, Thomas; Kim, Dong Ha; Knoll, Wolfgang; Hinrichs, Karsten

    2005-10-14

    Nanodomains formed by microphase separation in thin films of the diblock copolymers poly(styrene-b-2-vinylpyridine) (PS-b-P2VP) and poly(styrene-b-ethyleneoxide) (PS-b-PEO) were imaged by means of infrared scattering-type near-field microscopy. When probing at 3.39 mum (2950 cm(-1)), contrast is obtained due to spectral differences between the C--H stretching vibrational resonances of the respective polymer constituents. An all-optical spatial resolution better than 10 nm was achieved, which corresponds to a sensitivity of just several thousand C--H groups facilitated by the local-field enhancement at the sharp metallic probe tips. The results demonstrate that infrared spectroscopy with access to intramolecular dimensions is within reach.

  18. Some variations of the Kristallin-I near-field model

    International Nuclear Information System (INIS)

    Smith, P.A.; Curti, E.

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because they are thought unlikely to occur to a significant degree, or because they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. (author) figs., tabs., refs

  19. Hierarchical Models for Type Ia Supernova Light Curves in the Optical and Near Infrared

    Science.gov (United States)

    Mandel, Kaisey; Narayan, G.; Kirshner, R. P.

    2011-01-01

    I have constructed a comprehensive statistical model for Type Ia supernova optical and near infrared light curves. Since the near infrared light curves are excellent standard candles and are less sensitive to dust extinction and reddening, the combination of near infrared and optical data better constrains the host galaxy extinction and improves the precision of distance predictions to SN Ia. A hierarchical probabilistic model coherently accounts for multiple random and uncertain effects, including photometric error, intrinsic supernova light curve variations and correlations across phase and wavelength, dust extinction and reddening, peculiar velocity dispersion and distances. An improved BayeSN MCMC code is implemented for computing probabilistic inferences for individual supernovae and the SN Ia and host galaxy dust populations. I use this hierarchical model to analyze nearby Type Ia supernovae with optical and near infared data from the PAIRITEL, CfA3, and CSP samples and the literature. Using cross-validation to test the robustness of the model predictions, I find that the rms Hubble diagram scatter of predicted distance moduli is 0.11 mag for SN with optical and near infrared data versus 0.15 mag for SN with only optical data. Accounting for the dispersion expected from random peculiar velocities, the rms intrinsic prediction error is 0.08-0.10 mag for SN with both optical and near infrared light curves. I discuss results for the inferred intrinsic correlation structures of the optical-NIR SN Ia light curves and the host galaxy dust distribution captured by the hierarchical model. The continued observation and analysis of Type Ia SN in the optical and near infrared is important for improving their utility as precise and accurate cosmological distance indicators.

  20. Ring-patterned plasmonic photonic crystal thermal light source for miniaturized near-infrared spectrometers

    Science.gov (United States)

    Labib, Shady R.; Elsayed, Ahmed A.; Sabry, Yasser M.; Khalil, Diaa

    2018-02-01

    There is a growing number of spectroscopy applications in the near-infrared (NIR) range including gas sensing, food analysis, pharmaceutical and industrial applications that requires highly efficient, more compact and low-cost miniaturized spectrometers. One of the key components for such systems is the wideband light source that can be fabricated using Silicon technology and hence integrated with other components on the same chip. In this work, we report a ring-patterned plasmonic photonic crystal (PC) thermal light source for miniaturized near-infrared spectrometers. The design is based on silicon and tuned to achieve wavelength selectivity in the emitted spectrum. The design is optimized by using Rigorous Coupled-Wave Analysis (RCWA) simulation, which is used to compute the power reflectance and transmittance that are used to predict the emissivity of the structure. The design consists of a PC of silicon rings coated with platinum. The period of the structure is about 2 μm and the silicon is highly-doped with n-type doping level in the order of 1019-1020 cm-3 to enhance the free-carrier absorption. The ring etching depth, diameter and shell thickness are optimized to increase its emissivity within a specific wavelength range of interest. The simulation results show an emissivity exceeding 0.9 in the NIR range up to 2.5 μm, while the emissivity is decreased significantly for longer wavelengths suppressing the emission out of the range of interest, and hence increasing the efficiency for the source. The reported results open the door for black body radiation engineering in integrated silicon sources for spectrometer miniaturization.

  1. Dilute bismides for near and mid-infrared applications

    DEFF Research Database (Denmark)

    Song, Yuxin; Gu, Yi; Ye, Hong

    2013-01-01

    Dilute bismides are a group of emerging materials with unique properties. Incorporation of a small amount of Bi in common III–V host materials results in large band-gap reduction and strong spin-orbit splitting, leading to potential applications in near-infrared (NIR) and mid-infrared (MIR......) optoelectronics. Recent progresses on molecular beam epitaxy (MBE) of novel III-Sb-Bi, i.e. GaSbBi and InSbBi thin films from our group are summarised in this paper. Quantum well structures based on GaSbBi and InGaAsBi aiming for the optical communication window were grown and characterized....

  2. Near-infrared scintillation of liquid argon

    Energy Technology Data Exchange (ETDEWEB)

    Alexander, T. [Fermilab; Escobar, C. O. [Campinas State U.; Lippincott, W. H. [Fermilab; Rubinov, P. [Fermilab

    2016-03-03

    Since the 1970s it has been known that noble gases scintillate in the near infrared (NIR) region of the spectrum (0.7 $\\mu$m < $\\lambda$; < 1.5$\\mu$m). More controversial has been the question of the NIR light yield for condensed noble gases. We first present the motivation for using the NIR scintillation in liquid argon detectors, then briefly review early as well as more recent efforts and finally show encouraging preliminary results of a test performed at Fermilab.

  3. NEAR-INFRARED LINEAR POLARIZATION OF ULTRACOOL DWARFS

    International Nuclear Information System (INIS)

    Zapatero Osorio, M. R.; Bejar, V. J. S.; Rebolo, R.; Acosta-Pulido, J. A.; Manchado, A.; Pena Ramirez, K.; Goldman, B.; Caballero, J. A.

    2011-01-01

    We report on near-infrared J- and H-band linear polarimetric photometry of eight ultracool dwarfs (two late-M, five L0-L7.5, and one T2.5) with known evidence for photometric variability due to dust clouds, anomalous red infrared colors, or low-gravity atmospheres. The polarimetric data were acquired with the LIRIS instrument on the William Herschel Telescope. We also provide mid-infrared photometry in the interval 3.4-24 μm for some targets obtained with Spitzer and WISE, which has allowed us to confirm the peculiar red colors of five sources in the sample. We can impose modest upper limits of 0.9% and 1.8% on the linear polarization degree for seven targets with a confidence of 99%. Only one source, 2MASS J02411151-0326587 (L0), appears to be strongly polarized (P ∼ 3%) in the J band with a significance level of P/σ P ∼ 10. The likely origin of its linearly polarized light and rather red infrared colors may reside in a surrounding disk with an asymmetric distribution of grains. Given its proximity (66 ± 8 pc), this object becomes an excellent target for the direct detection of the disk.

  4. ARNICA, the Arcetri near-infrared camera: Astronomical performance assessment.

    Science.gov (United States)

    Hunt, L. K.; Lisi, F.; Testi, L.; Baffa, C.; Borelli, S.; Maiolino, R.; Moriondo, G.; Stanga, R. M.

    1996-01-01

    The Arcetri near-infrared camera ARNICA was built as a users' instrument for the Infrared Telescope at Gornergrat (TIRGO), and is based on a 256x256 NICMOS 3 detector. In this paper, we discuss ARNICA's optical and astronomical performance at the TIRGO and at the William Herschel Telescope on La Palma. Optical performance is evaluated in terms of plate scale, distortion, point spread function, and ghosting. Astronomical performance is characterized by camera efficiency, sensitivity, and spatial uniformity of the photometry.

  5. Near-Field Enhanced Photochemistry of Single Molecules in a Scanning Tunneling Microscope Junction.

    Science.gov (United States)

    Böckmann, Hannes; Gawinkowski, Sylwester; Waluk, Jacek; Raschke, Markus B; Wolf, Martin; Kumagai, Takashi

    2018-01-10

    Optical near-field excitation of metallic nanostructures can be used to enhance photochemical reactions. The enhancement under visible light illumination is of particular interest because it can facilitate the use of sunlight to promote photocatalytic chemical and energy conversion. However, few studies have yet addressed optical near-field induced chemistry, in particular at the single-molecule level. In this Letter, we report the near-field enhanced tautomerization of porphycene on a Cu(111) surface in a scanning tunneling microscope (STM) junction. The light-induced tautomerization is mediated by photogenerated carriers in the Cu substrate. It is revealed that the reaction cross section is significantly enhanced in the presence of a Au tip compared to the far-field induced process. The strong enhancement occurs in the red and near-infrared spectral range for Au tips, whereas a W tip shows a much weaker enhancement, suggesting that excitation of the localized plasmon resonance contributes to the process. Additionally, using the precise tip-surface distance control of the STM, the near-field enhanced tautomerization is examined in and out of the tunneling regime. Our results suggest that the enhancement is attributed to the increased carrier generation rate via decay of the excited near-field in the STM junction. Additionally, optically excited tunneling electrons also contribute to the process in the tunneling regime.

  6. The Araucaria Project. The distance to the Sculptor group galaxy NGC 7793 from near-infrared photometry of Cepheid variables

    Directory of Open Access Journals (Sweden)

    Zgirski Bartlomiej

    2017-01-01

    Full Text Available We performed deep near-infrared J and K photometry of a field in the Sculptor Group spiral galaxy NGC 7793 using ESO VLT and HAWK-I instrument. We produced a sample of 14 Cepheids whose locations and periods of pulsation were known from our previous paper on distance determination to this galaxy based on V and I bands. We determined mean J and K magnitudes based on measurements from two nights and produced period-luminosity relations for both filters. Using those near-infrared dependencies together with relations for bands V and I obtained before, we were able to obtain true distance modulus for NGC 7793. We also calculated the mean reddening affecting our Cepheids.

  7. Recent Characterization of the Night-Sky Irradiance in the Visible/Near-Infrared Spectral Band

    Science.gov (United States)

    Moore, Carolynn; Wood, Michael; Bender, Edward; Hart, Steve

    2018-01-01

    The U.S. Army RDECOM CERDEC NVESD has made numerous characterizations of the night sky over the past 45 years. Up until the last four years, the measurement devices were highly detector-limited, which led to low spectral resolution, marginal sensitivity in no-moon conditions, and the need for inferential analysis of the resulting data. In 2014, however, the PhotoResearch Model PR-745 spectro-radiometer established a new state of the art for measurement of the integrated night-sky irradiance over the Visible-to-Near-Infrared (VNIR) spectral band (400-1050nm). This has enabled characterization of no-moon night-sky irradiance with a spectral bandwidth less than 15 nanometers, even when this irradiance is attenuated by heavy clouds or forest canopy. Since 2014, we have conducted a series of night-sky data collections at remote sites across the United States. The resulting data has provided new insights into natural radiance variations, cultural lighting impacts, and the spectrally-varying attenuation caused by cloud cover and forest canopy. Several new metrics have also been developed to provide insight into these newly-found components and temporal variations. The observations, findings and conclusions of the above efforts will be presented, including planned near-term efforts to further characterize the night-sky irradiance in the Visible/Near-Infrared spectral band.

  8. Alternative method to trace sediment sources in a subtropical rural catchment of southern Brazil by using near-infrared spectroscopy

    Science.gov (United States)

    Tiecher, Tales; Caner, Laurent; Gomes Minella, Jean Paolo; Henrique Ciotti, Lucas; Antônio Bender, Marcos; dos Santos Rheinheimer, Danilo

    2014-05-01

    Conventional fingerprinting methods based on geochemical composition still require a time-consuming and critical preliminary sample preparation. Thus, fingerprinting characteristics that can be measured in a rapid and cheap way requiring a minimal sample preparation, such as spectroscopy methods, should be used. The present study aimed to evaluate the sediment sources contribution in a rural catchment by using conventional method based on geochemical composition and on an alternative method based on near-infrared spectroscopy. This study was carried out in a rural catchment with an area of 1,19 km2 located in southern Brazil. The sediment sources evaluated were crop fields (n=20), unpaved roads (n=10) and stream channels (n=10). Thirty suspended sediment samples were collected from eight significant storm runoff events between 2009 and 2011. Sources and sediment samples were dried at 50oC and sieved at 63 µm. The total concentration of Ag, As, B, Ba, Be, Ca, Cd, Co, Cr, Cu, Fe, K, La, Li, Mg, Mn, Mo, Na, Ni, P, Pb, Sb, Se, Sr, Ti, Tl, V and Zn were estimated by ICP-OES after microwave assisted digestion with concentrated HNO3 and HCl. Total organic carbon (TOC) was estimated by wet oxidation with K2Cr2O7 and H2SO4. The near-infrared spectra scan range was 4000 to 10000 cm-1 at a resolution of 2 cm-1, with 100 co added scans per spectrum. The steps used in the conventional method were: i) tracer selection based on Kruskal-Wallis test, ii) selection of the best set of tracers using discriminant analyses and finally iii) the use of a mixed linear model to calculate the sediment sources contribution. The steps used in the alternative method were i) principal component analyses to reduce the number of variables, ii) discriminant analyses to determine the tracer potential of the near-infrared spectroscopy, and finally iii) the use of past least square based on 48 mixtures of the sediment sources in various weight proportions to calculate the sediment sources

  9. Near-field millimeter - wave imaging of nonmetallic materials

    International Nuclear Information System (INIS)

    Gopalsami, N.; Bakhtiari, S.; Raptis, A.C.

    1996-01-01

    A near-field millimeter-wave (mm-wave) imaging system has been designed and built in the 94-GHz range for on-line inspection of nonmetallic (dielectric) materials. The imaging system consists of a transceiver block coupled to an antenna that scans the material to be imaged; a reflector plate is placed behind the material. A quadrature IF mixer in the transceiver block enables measurement of in-phase and quadrature-phase components of reflected signals with respect to the transmitted signal. All transceiver components, with the exception of the Gunn-diode oscillator and antenna, were fabricated in uniform blocks and integrated and packaged into a compact unit (12.7 x 10.2 x 2.5 cm). The objective of this work is to test the applicability of a near-field compact mm-wave sensor for on-line inspection of sheetlike materials such as paper, fabrics, and plastics. This paper presents initial near-field mm-wave images of paper and fabric samples containing known artifacts

  10. Hybrid active pixel sensors in infrared astronomy

    International Nuclear Information System (INIS)

    Finger, Gert; Dorn, Reinhold J.; Meyer, Manfred; Mehrgan, Leander; Stegmeier, Joerg; Moorwood, Alan

    2005-01-01

    Infrared astronomy is currently benefiting from three main technologies providing high-performance hybrid active pixel sensors. In the near infrared from 1 to 5 μm two technologies, both aiming for buttable 2Kx2K mosaics, are competing, namely InSb and HgCdTe grown by LPE or MBE on Al 2 O 3 , Si or CdZnTe substrates. Blocked impurity band Si:As arrays cover the mid infrared spectral range from 8 to 28 μm. Adaptive optics combined with multiple integral field units feeding high-resolution spectrographs drive the requirements for the array format of infrared sensors used at ground-based infrared observatories. The pixel performance is now approaching fundamental limits. In view of this development, a detection limit for the photon flux of the ideal detector will be derived, depending only on the temperature and the impedance of the detector. It will be shown that this limit is approximated by state of the art infrared arrays for long on-chip integrations. Different detector materials are compared and strategies to populate large focal planes are discussed. The need for the development of small-format low noise sensors for adaptive optics and interferometry will be pointed out

  11. The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy

    International Nuclear Information System (INIS)

    Leggett, S. K.; Tremblin, P.; Esplin, T. L.; Luhman, K. L.; Morley, Caroline V.

    2017-01-01

    The survey of the mid-infrared sky by the Wide-field Infrared Survey Explorer ( WISE ) led to the discovery of extremely cold, low-mass brown dwarfs, classified as Y dwarfs, which extend the T class to lower temperatures. Twenty-four Y dwarfs are known at the time of writing. Here we present improved parallaxes for four of these, determined using Spitzer images. We give new photometry for four late-type T and three Y dwarfs and new spectra of three Y dwarfs, obtained at Gemini Observatory. We also present previously unpublished photometry taken from HST , ESO, Spitzer , and WISE archives of 11 late-type T and 9 Y dwarfs. The near-infrared data are put onto the same photometric system, forming a homogeneous data set for the coolest brown dwarfs. We compare recent models to our photometric and spectroscopic data set. We confirm that nonequilibrium atmospheric chemistry is important for these objects. Nonequilibrium cloud-free models reproduce well the near-infrared spectra and mid-infrared photometry for the warmer Y dwarfs with 425 ≤ T eff (K) ≤ 450. A small amount of cloud cover may improve the model fits in the near-infrared for the Y dwarfs with 325 ≤ T eff (K) ≤ 375. Neither cloudy nor cloud-free models reproduce the near-infrared photometry for the T eff = 250 K Y dwarf W0855. We use the mid-infrared region, where most of the flux originates, to constrain our models of W0855. We find that W0855 likely has a mass of 1.5–8 Jupiter masses and an age of 0.3–6 Gyr. The Y dwarfs with measured parallaxes are within 20 pc of the Sun and have tangential velocities typical of the thin disk. The metallicities and ages we derive for the sample are generally solar-like. We estimate that the known Y dwarfs are 3 to 20 Jupiter-mass objects with ages of 0.6–8.5 Gyr.

  12. The Y-type Brown Dwarfs: Estimates of Mass and Age from New Astrometry, Homogenized Photometry, and Near-infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Leggett, S. K. [Gemini Observatory, Northern Operations Center, 670 N. A’ohoku Place, Hilo, HI 96720 (United States); Tremblin, P. [Maison de la Simulation, CEA-CNRS-INRIA-UPS-UVSQ, USR 3441, Centre d’étude de Saclay, F-91191 Gif-Sur-Yvette (France); Esplin, T. L.; Luhman, K. L. [Department of Astronomy and Astrophysics, The Pennsylvania State University, University Park, PA 16802 (United States); Morley, Caroline V., E-mail: sleggett@gemini.edu [Harvard-Smithsonian Center for Astrophysics, Harvard University, Cambridge, MA 02138 (United States)

    2017-06-20

    The survey of the mid-infrared sky by the Wide-field Infrared Survey Explorer ( WISE ) led to the discovery of extremely cold, low-mass brown dwarfs, classified as Y dwarfs, which extend the T class to lower temperatures. Twenty-four Y dwarfs are known at the time of writing. Here we present improved parallaxes for four of these, determined using Spitzer images. We give new photometry for four late-type T and three Y dwarfs and new spectra of three Y dwarfs, obtained at Gemini Observatory. We also present previously unpublished photometry taken from HST , ESO, Spitzer , and WISE archives of 11 late-type T and 9 Y dwarfs. The near-infrared data are put onto the same photometric system, forming a homogeneous data set for the coolest brown dwarfs. We compare recent models to our photometric and spectroscopic data set. We confirm that nonequilibrium atmospheric chemistry is important for these objects. Nonequilibrium cloud-free models reproduce well the near-infrared spectra and mid-infrared photometry for the warmer Y dwarfs with 425 ≤ T {sub eff} (K) ≤ 450. A small amount of cloud cover may improve the model fits in the near-infrared for the Y dwarfs with 325 ≤ T {sub eff} (K) ≤ 375. Neither cloudy nor cloud-free models reproduce the near-infrared photometry for the T {sub eff} = 250 K Y dwarf W0855. We use the mid-infrared region, where most of the flux originates, to constrain our models of W0855. We find that W0855 likely has a mass of 1.5–8 Jupiter masses and an age of 0.3–6 Gyr. The Y dwarfs with measured parallaxes are within 20 pc of the Sun and have tangential velocities typical of the thin disk. The metallicities and ages we derive for the sample are generally solar-like. We estimate that the known Y dwarfs are 3 to 20 Jupiter-mass objects with ages of 0.6–8.5 Gyr.

  13. Near-Infrared Mapping Spectrometer for investigation of Jupiter and its satellites

    International Nuclear Information System (INIS)

    Aptaker, I.M.

    1988-01-01

    The Near-Infrared-Mapping Spectrometer (NIMS) is one of the science instruments in the Galileo mission, which will explore Jupiter and its satellites in the mid-1990's. The NIMS experiment will map geological units on the surfaces of the Jovian satellites and characterize their mineral content; and, for the atmosphere of Jupiter, investigate cloud properties and the spatial and temporal variability of molecular abundances. The optics are gold-coated reflective and consist of a telescope and a grating spectrometer. The balance of the instrument includes a 17-detector (silicon and indium antimonide) focal plane array, a tuning fork chopper, microprocessor-controlled electronics, and a passive radiative cooler. A wobbling secondary mirror in the telescope provides 20 pixels in one dimension of spatial scanning in a pushbroom mode with 0.5 mr x 0.5 mr instantaneous field of view. The spectral range is 0.7-5.2 microns; resolution is 0.025 micron. NIMS is the first infrared experiment to combine both spatial and spectral mapping capability in one instrument

  14. Near-infrared polarization and color of Comet Halley: What can we learn about the grains

    International Nuclear Information System (INIS)

    Brooke, T.Y.; Knacke, R.F.

    1988-01-01

    The near infrared polarization and JHK colors of light scattered by dust grains in comet Halley were measured over a wide range in phase angle and heliocentric distance. Colors were redder than solar with no statistically significant variation with phase angle, heliocentric distance, or pre- and post-perihelion. This suggests that the grain population did not change drastically over time and that the data may be combined and modeled. However, short term variations in visible polarization and dust albedo were seen in Halley. Also, near infrared colors became systematically bluer after the observations were completed. The near infrared colors of Halley fall in the range of those of other comets. The near infrared polarization is similar to the visible polarization of Halley and other comets in showing a negative branch at small phase angles and an approximately linear rise toward positive values at larger phase angles. Mie theory calculations and a size distribution based on spacecraft data were used to model the near infrared polarization and color of comet Halley. Numerous lines of evidence point to the presence of dark, absorbing, probably carbonaceous materials in comets

  15. TIFR Near Infrared Imaging Camera-II on the 3.6 m Devasthal Optical Telescope

    Science.gov (United States)

    Baug, T.; Ojha, D. K.; Ghosh, S. K.; Sharma, S.; Pandey, A. K.; Kumar, Brijesh; Ghosh, Arpan; Ninan, J. P.; Naik, M. B.; D’Costa, S. L. A.; Poojary, S. S.; Sandimani, P. R.; Shah, H.; Krishna Reddy, B.; Pandey, S. B.; Chand, H.

    Tata Institute of Fundamental Research (TIFR) Near Infrared Imaging Camera-II (TIRCAM2) is a closed-cycle Helium cryo-cooled imaging camera equipped with a Raytheon 512×512 pixels InSb Aladdin III Quadrant focal plane array (FPA) having sensitivity to photons in the 1-5μm wavelength band. In this paper, we present the performance of the camera on the newly installed 3.6m Devasthal Optical Telescope (DOT) based on the calibration observations carried out during 2017 May 11-14 and 2017 October 7-31. After the preliminary characterization, the camera has been released to the Indian and Belgian astronomical community for science observations since 2017 May. The camera offers a field-of-view (FoV) of ˜86.5‧‧×86.5‧‧ on the DOT with a pixel scale of 0.169‧‧. The seeing at the telescope site in the near-infrared (NIR) bands is typically sub-arcsecond with the best seeing of ˜0.45‧‧ realized in the NIR K-band on 2017 October 16. The camera is found to be capable of deep observations in the J, H and K bands comparable to other 4m class telescopes available world-wide. Another highlight of this camera is the observational capability for sources up to Wide-field Infrared Survey Explorer (WISE) W1-band (3.4μm) magnitudes of 9.2 in the narrow L-band (nbL; λcen˜ 3.59μm). Hence, the camera could be a good complementary instrument to observe the bright nbL-band sources that are saturated in the Spitzer-Infrared Array Camera (IRAC) ([3.6] ≲ 7.92 mag) and the WISE W1-band ([3.4] ≲ 8.1 mag). Sources with strong polycyclic aromatic hydrocarbon (PAH) emission at 3.3μm are also detected. Details of the observations and estimated parameters are presented in this paper.

  16. The geochemistry of the near-field

    International Nuclear Information System (INIS)

    McKinley, I.G.

    1985-10-01

    This report describes a study of the Swiss disposal concept used in 'Project Gewaehr 1985' safety analysis. The main components of the near-field of a high level waste repository are the waste glass matrix, the thick steel canister and the surrounding backfill of compressed bentonite. In this report it is concluded that mineralogical alteration of the backfill will be negligibly small over the million year period considered. Its physical and chemical properties can thus be relied on for such a period. The canister will retain its integrity for > 10/sup 3/ y and thereafter will act as an Eh/pH buffer. The near-field buffers ensure more alkaline and reducing conditions than in the far-field. Complete degradation of the glass matrix will take > 10/sup 5/ years and nuclide release will be limited by their congruent dissolution although it may be further constrained by low solubility. Diffusion of dissolved nuclides through the backfill is so slow that many species decay to insignificance within it. The large uptake capacity of the bentonite also significantly extends the release duration for longer lived, non-solubility limited nuclides thus decreasing output mixima. Possible perturbing factors such as radiolysis and hydrogen production by anoxic corrosion are of little importance but modelling of speciation/solubility in the near-field and, in particular, colloid formation and mobility are identified as areas in which more work is required. Although the main analysis aims to err on the side of conservatism, the extent of such pessimism is assessed in a 'realistic' appraisal of the near-field. This suggests that the engineered barriers will prevent any radiologically significant releases over periods in excess of a million years which would strengthen their role in the multiple barrier safety concept. (author)

  17. A brief review on the history of human functional near-infrared spectroscopy (fNIRS) development and fields of application.

    Science.gov (United States)

    Ferrari, Marco; Quaresima, Valentina

    2012-11-01

    This review is aimed at celebrating the upcoming 20th anniversary of the birth of human functional near-infrared spectroscopy (fNIRS). After the discovery in 1992 that the functional activation of the human cerebral cortex (due to oxygenation and hemodynamic changes) can be explored by NIRS, human functional brain mapping research has gained a new dimension. fNIRS or optical topography, or near-infrared imaging or diffuse optical imaging is used mainly to detect simultaneous changes in optical properties of the human cortex from multiple measurement sites and displays the results in the form of a map or image over a specific area. In order to place current fNIRS research in its proper context, this paper presents a brief historical overview of the events that have shaped the present status of fNIRS. In particular, technological progresses of fNIRS are highlighted (i.e., from single-site to multi-site functional cortical measurements (images)), introduction of the commercial multi-channel systems, recent commercial wireless instrumentation and more advanced prototypes. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Largely Improved Near-Infrared Silicon-Photosensing by the Piezo-Phototronic Effect.

    Science.gov (United States)

    Dai, Yejing; Wang, Xingfu; Peng, Wenbo; Zou, Haiyang; Yu, Ruomeng; Ding, Yong; Wu, Changsheng; Wang, Zhong Lin

    2017-07-25

    Although silicon (Si) devices are the backbone of modern (opto-)electronics, infrared Si-photosensing suffers from low-efficiency due to its limitation in light-absorption. Here, we demonstrate a large improvement in the performance, equivalent to a 366-fold enhancement in photoresponsivity, of a Si-based near-infrared (NIR) photodetector (PD) by introducing the piezo-phototronic effect via a deposited CdS layer. By externally applying a -0.15‰ compressive strain to the heterojunction, carrier-dynamics modulation at the local junction can be induced by the piezoelectric polarization, and the photoresponsivity and detectivity of the PD exhibit an enhancement of two orders of magnitude, with the peak values up to 19.4 A/W and 1.8 × 10 12 cm Hz 1/2 /W, respectively. The obtained maximum responsivity is considerably larger than those of commercial Si and InGaAs PDs in the NIR waveband. Meanwhile, the rise time and fall time are reduced by 84.6% and 76.1% under the external compressive strain. This work provides a cost-effective approach to achieve high-performance NIR photosensing by the piezo-phototronic effect for high-integration Si-based optoelectronic systems.

  19. Dilute nitride based double-barrier quantum-well infrared photodetector operating in the near infrared

    International Nuclear Information System (INIS)

    Luna, E.; Hopkinson, M.; Ulloa, J. M.; Guzman, A.; Munoz, E.

    2003-01-01

    Near-infrared detection is reported for a double-barrier quantum-well infrared photodetector based on a 30-A GaAs 1-y N y (y≅0.01) quantum well. The growth procedure using plasma-assisted molecular-beam epitaxy is described. The as-grown sample exhibits a detection wavelength of 1.64 μm at 25 K. The detection peak strengthens and redshifts to 1.67 μm following rapid thermal annealing at 850 deg. C for 30 s. The detection peak position is consistent with the calculated band structure based on the band-anticrossing model for nitrogen incorporation into GaAs

  20. Electromagnetically induced transparency in metamaterials at near-infrared frequency

    DEFF Research Database (Denmark)

    Zhang, Jingjing; Xiao, Sanshui; Jeppesen, Claus

    2010-01-01

    We employ a planar metamaterial structure composed of a splitring-resonator (SRR) and paired nano-rods to experimentally realize a spectral response at near-infrared frequencies resembling that of electromagnetically induced transparency. A narrow transparency window associated with low loss...

  1. Cerebral near infrared spectroscopy oximetry in extremely preterm infants

    DEFF Research Database (Denmark)

    Hyttel-Sorensen, Simon; Pellicer, Adelina; Alderliesten, Thomas

    2015-01-01

    OBJECTIVE: To determine if it is possible to stabilise the cerebral oxygenation of extremely preterm infants monitored by cerebral near infrared spectroscopy (NIRS) oximetry. DESIGN: Phase II randomised, single blinded, parallel clinical trial. SETTING: Eight tertiary neonatal intensive care unit...

  2. [Application of near-infrared spectroscopy in golf turfgrass management].

    Science.gov (United States)

    Li, Shu-Ying; Han, Jian-Guo

    2008-07-01

    The management of golf course is different from other turfs. Its particularity lies in its higher and more precise requirement during maintenance compare with other turfs. In case something happened to turf of golf course, more effective and higher speed detecting and resolution are required. Only the data about turf growth and environment were mastered precisely in time, the friendly environmental and scientific management goal could be completed effectively and economically. The near infrared spectroscopy is a new kind of effective, convenient and non-destructive analytical method in the turfgrass management of golf course in recent years. Many factors of turf-soil system in golf course could be determined by near infrared spectroscopy at the same time. In this paper, the existing literature that use of near infrared spectroscopy to study turfgrass and soil nutrient content, soil hygroscopic moisture, feasible fertilizer application time and rate, to fix the time and volume of irrigation, turfgrass visual quality evaluation, turfgrass disease prediction and prevention were reviewed. Most researchers considered the nutrition condition of turf impacted the visual and playing quality of golf course directly and then indirectly influenced most of assistant cultivation such as fertilization, mowing and irrigation and so on. The using of NIRS can detect the nutrient content of turfgrass effectively and estimate the nutrient is excessive or deficient quickly. And then the feasible time and rate of fertilizers can be decided. Comparing with the common judgment ways based on the season fertilization and visual estimation, the using of NIRS can reduce the application of fertilizers on the base of keeping the same turf quality simultaneously. NIRS can analysis many items of soil such as moisture, elements concentration, textures on the spot by the thousands. This method can get lots of cover-all data non-destructively. What's more, NIRS can analysis soil betimes quickly

  3. Design of a multiband near-infrared sky brightness monitor using an InSb detector.

    Science.gov (United States)

    Dong, Shu-Cheng; Wang, Jian; Tang, Qi-Jie; Jiang, Feng-Xin; Chen, Jin-Ting; Zhang, Yi-Hao; Wang, Zhi-Yue; Chen, Jie; Zhang, Hong-Fei; Jiang, Hai-Jiao; Zhu, Qing-Feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  4. Design of a multiband near-infrared sky brightness monitor using an InSb detector

    Science.gov (United States)

    Dong, Shu-cheng; Wang, Jian; Tang, Qi-jie; Jiang, Feng-xin; Chen, Jin-ting; Zhang, Yi-hao; Wang, Zhi-yue; Chen, Jie; Zhang, Hong-fei; Jiang, Hai-jiao; Zhu, Qing-feng; Jiang, Peng; Ji, Tuo

    2018-02-01

    Infrared sky background level is an important parameter of infrared astronomy observations from the ground, particularly for a candidate site of an infrared capable observatory since low background level is required for such a site. The Chinese astronomical community is looking for a suitable site for a future 12 m telescope, which is designed for working in both optical and infrared wavelengths. However, none of the proposed sites has been tested for infrared observations. Nevertheless, infrared sky background measurements are also important during the design of infrared observing instruments. Based on the requirement, in order to supplement the current site survey data and guide the design of future infrared instruments, a multiband near-infrared sky brightness monitor (MNISBM) based on an InSb sensor is designed in this paper. The MNISBM consists of an optical system, mechanical structure and control system, detector and cooler, high gain readout electronics, and operational software. It is completed and tested in the laboratory. The results show that the sensitivity of the MNISBM meets the requirements of the measurement of near-infrared sky background level of several well-known astronomical infrared observing sites.

  5. Near-Infrared Confocal Laser Reflectance Cytoarchitectural Imaging of the Substantia Nigra and Cerebellum in the Fresh Human Cadaver.

    Science.gov (United States)

    Cheyuo, Cletus; Grand, Walter; Balos, Lucia L

    2017-01-01

    Cytoarchitectural neuroimaging remains critical for diagnosis of many brain diseases. Fluorescent dye-enhanced, near-infrared confocal in situ cellular imaging of the brain has been reported. However, impermeability of the blood-brain barrier to most fluorescent dyes limits clinical utility of this modality. The differential degree of reflectance from brain tissue with unenhanced near-infrared imaging may represent an alternative technique for in situ cytoarchitectural neuroimaging. We assessed the utility of unenhanced near-infrared confocal laser reflectance imaging of the cytoarchitecture of the cerebellum and substantia nigra in 2 fresh human cadaver brains using a confocal near-infrared laser probe. Cellular images based on near-infrared differential reflectance were captured at depths of 20-180 μm from the brain surface. Parts of the cerebellum and substantia nigra imaged using the probe were subsequently excised and stained with hematoxylin and eosin for histologic correlation. Near-infrared reflectance imaging revealed the 3-layered cytoarchitecture of the cerebellum, with Purkinje cells appearing hyperreflectant. In the substantia nigra, neurons appeared hyporeflectant with hyperreflectant neuromelanin cytoplasmic inclusions. Cytoarchitecture of the cerebellum and substantia nigra revealed on near-infrared imaging closely correlated with the histology on hematoxylin-eosin staining. We showed that unenhanced near-infrared reflectance imaging of fresh human cadaver brain can reliably identify and distinguish neurons and detailed cytoarchitecture of the cerebellum and substantia nigra. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Assessing soil water repellency of a sandy field with visible near infrared spectroscopy

    DEFF Research Database (Denmark)

    Knadel, Maria; Masis Melendez, Federico; de Jonge, Lis Wollesen

    2016-01-01

    . A lower prediction error of the WR model for soils dried at 105°C (1.93 mN m–1) than at 60°C (2.52 mN m–1) can be explained by a lower range of WR values for the soils dried at 105°C. Moreover, a higher temperature reduced the number of absorption bands related to OM, indicating a degradation......Soil water repellency (WR) is a widespread phenomenon caused by aggregated organic matter (OM) and layers of hydrophobic organic substances coating the surface of soil particles. These substances have a very low surface free energy, reducing a soil’s water attraction. There is focus on WR due...... to its effects on germination, root growth, liquid–vapour dynamics, surface erosion and leaching of chemicals through fingered flow paths. However, common techniques for measuring WR are time-consuming and expensive. Meanwhile, it is well established that visible near infrared (vis-NIR) spectroscopy...

  7. Influence of earlobe thickness on near infrared spectroscopy

    Science.gov (United States)

    Jiang, Jingying; Wang, Tianpei; Li, Si; Li, Lin; Liu, Jiajia; Xu, Kexin

    2017-03-01

    Near-infrared spectroscopy has been recognized as a potential technology for noninvasive blood glucose sensing. However, the detected spectral signal is unstable mainly because of (1) the weak light absorption of glucose itself within NIR range, (2) the influence of temperature and individual differences of biotissue. Our previous results demonstrated that the synergistic effect of both transmittance and reflectance could enhance the strength of the detection signal. In this talk, we design a set of experiments to analyze the effect of earlobe thickness on Near Infrared spectroscopic measurement by using home-made optical fiber probe within the wavelength of 1000-1600nm. Firstly, we made a MC simulation of single-layer skin model and five-layer skin model to get the diffused transmittance spectra and diffused reflectance spectra under different optaical path lengths. And then we obtain the spectra of the earlobes from different volunteers by the same way. The experimental results showed that with the increase of the thickness,the light intensity of diffused transmittance decreases, and the light intensity of diffused reflectance remaines substantially unchanged.

  8. Design of a Solar Greenhouse with Energy Delivery by the Conversion of Near Infrared Radiation - Part 1 Optics and PV-cells

    NARCIS (Netherlands)

    Gert-Jan Swinkels; Piet Sonneveld; G.P.A. Bot

    2009-01-01

    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the

  9. Design of a Solar Greenhouse with energy Delivery by the Conversion of Near Infrared Radiation. Part 1. Optics and PV-Cells

    NARCIS (Netherlands)

    Sonneveld, P.J.; Swinkels, G.L.A.M.; Bot, G.P.A.

    2009-01-01

    In this paper the design and development of a new type of greenhouse with an integrated filter for reflecting near infrared radiation (NIR) and a solar energy delivery system is described. Especially the optical parts as the spectral selective film, the properties of the circular reflector and the

  10. Near-Infrared Spectroscopic Study of Chlorite Minerals

    Directory of Open Access Journals (Sweden)

    Min Yang

    2018-01-01

    Full Text Available The mineral chemistry of twenty chlorite samples from the United States Geological Survey (USGS spectral library and two other regions, having a wide range of Fe and Mg contents and relatively constant Al and Si contents, was studied via infrared (IR spectroscopy, near-infrared (NIR spectroscopy, and X-ray fluorescence (XRF analysis. Five absorption features of the twenty samples near 4525, 4440, 4361, 4270, and 4182 cm−1 were observed, and two diagnostic features at 4440 and 4280 cm−1 were recognized. Assignments of the two diagnostic features were made for two combination bands (ν+δAlAlO−OH and ν+δSiAlO−OH by regression with IR fundamental absorptions. Furthermore, the determinant factors of the NIR band position were found by comparing the band positions with relative components. The results showed that Fe/(Fe + Mg values are negatively correlated with the two NIR combination bands. The findings provide an interpretation of the NIR band formation and demonstrate a simple way to use NIR spectroscopy to discriminate between chlorites with different components. More importantly, spectroscopic detection of mineral chemical variations in chlorites provides geologists with a tool with which to collect information on hydrothermal alteration zones from hyperspectral-resolution remote sensing data.

  11. Pulsed near-infrared photoacoustic spectroscopy of blood

    Science.gov (United States)

    Laufer, Jan G.; Elwell, Clare E.; Delpy, Dave T.; Beard, Paul C.

    2004-07-01

    The aim of this study was to use pulsed near infrared photoacoustic spectroscopy to determine the oxygen saturation (SO2) of a saline suspension of red blood cells in vitro. The photoacoustic measurements were made in a cuvette which formed part of a larger circuit through which the red blood cell suspension was circulated. Oxygen saturation of the red blood cell suspension was altered between 2-3% to 100% in step increments using a membrane oxygenator and at each increment an independent measurement of oxygen saturation was made using a co-oximeter. An optical parametric oscillator laser system provided nanosecond excitation pulses at a number of wavelengths in the near-infrared spectrum (740-1040nm) which were incident on the cuvette. The resulting acoustic signals were detected using a broadband (15MHz) Fabry-Perot polymer film transducer. The optical transport coefficient and amplitude were determined from the acoustic signals as a function of wavelength. These data were then used to calculate the relative concentrations of oxy- and deoxyhaemoglobin, using their known specific absorption coefficients and an empirically determined wavelength dependence of optical scattering over the wavelength range investigated. From this, the oxygen saturation of the suspension was derived with an accuracy of +/-5% compared to the co-oximeter SO2 measurements.

  12. The Formation of Massive Stars: from Herschel to Near-Infrared

    Directory of Open Access Journals (Sweden)

    Paolo Persi

    2014-12-01

    Full Text Available We have studied a number of selected high mass star forming regions, including high resolution near-infrared broad- and narrow-band imaging, Herschel (70, 160, 250, 350 and 500 μm and Spitzer (3.6, 4.5, 5.8 and 8.0 m images. The preliminary results of one of this region, IRAS 19388+2357(MOL110 are discussed. In this region a dense core has been detected in the far-infrared, and a young stellar cluster has been found around this core. Combining near-IR data with Spitzer and Herschel photometry we have derived the spectral energy distribution of Mol110. Finally comparing our H2 and Kc narrow-band images, we have found an H2 jet in this region.

  13. Observations of the Hubble Deep Field with the Infrared Space Observatory .4. Association of sources with Hubble Deep Field galaxies

    DEFF Research Database (Denmark)

    Mann, R.G.; Oliver, S.J.; Serjeant, S.B.G.

    1997-01-01

    We discuss the identification of sources detected by the Infrared Space Observatory (ISO) at 6.7 and 15 mu m in the Hubble Deep Field (HDF) region. We conservatively associate ISO sources with objects in existing optical and near-infrared HDF catalogues using the likelihood ratio method, confirming...... these results (and, in one case, clarifying them) with independent visual searches, We find 15 ISO sources to be reliably associated with bright [I-814(AB) HDF, and one with an I-814(AB)=19.9 star, while a further 11 are associated with objects in the Hubble Flanking Fields (10 galaxies...... and one star), Amongst optically bright HDF galaxies, ISO tends to detect luminous, star-forming galaxies at fairly high redshift and with disturbed morphologies, in preference to nearby ellipticals....

  14. Near-infrared photometric study of open star cluster IC 1805

    International Nuclear Information System (INIS)

    Sagar, R.; Yu, Q.Z.

    1990-01-01

    The JHK magnitudes of 29 stars in the region of open star cluster IC 1805 were measured. These, and the existing infrared and optical observations, indicate a normal interstellar extinction law in the direction of the cluster. Further, most of the early-type stars have near-infrared fluxes as expected from their spectral types. Patchy distribution of ionized gas and dust appears to be the cause of nonuniform extinction across the cluster face. 36 refs

  15. Near-infrared spectroscopy can reveal increases in brain activity related to animal-assisted therapy.

    Science.gov (United States)

    Morita, Yuka; Ebara, Fumio; Morita, Yoshimitsu; Horikawa, Etsuo

    2017-08-01

    [Purpose] Previous studies have indicated that animal-assisted therapy can promote recovery of psychological, social, and physiological function in mental disorders. This study was designed as a pilot evaluation of the use of near-infrared spectroscopy to objectively identify changes in brain activity that could mediate the effect of animal-assisted therapy. [Subjects and Methods] The participants were 20 healthy students (10 males and 10 females; age 19-21 years) of the Faculty of Agriculture, Saga University. Participants were shown a picture of a Tokara goat or shack (control) while prefrontal cortical oxygenated haemoglobin levels (representing neural activity) were measured by near-infrared spectroscopy. [Results] The prefrontal cortical near-infrared spectroscopy signal was significantly higher during viewing of the animal picture than during a rest condition or during viewing of the control picture. [Conclusion] Our results suggest that near-infrared spectroscopy can be used to objectively identify brain activity changes during human mentation regarding animals; furthermore, these preliminary results suggest the efficacy of animal-assisted therapy could be related to increased activation of the prefrontal cortex.

  16. Functional Near Infrared Spectroscopy: Enabling Routine Functional Brain Imaging.

    Science.gov (United States)

    Yücel, Meryem A; Selb, Juliette J; Huppert, Theodore J; Franceschini, Maria Angela; Boas, David A

    2017-12-01

    Functional Near-Infrared Spectroscopy (fNIRS) maps human brain function by measuring and imaging local changes in hemoglobin concentrations in the brain that arise from the modulation of cerebral blood flow and oxygen metabolism by neural activity. Since its advent over 20 years ago, researchers have exploited and continuously advanced the ability of near infrared light to penetrate through the scalp and skull in order to non-invasively monitor changes in cerebral hemoglobin concentrations that reflect brain activity. We review recent advances in signal processing and hardware that significantly improve the capabilities of fNIRS by reducing the impact of confounding signals to improve statistical robustness of the brain signals and by enhancing the density, spatial coverage, and wearability of measuring devices respectively. We then summarize the application areas that are experiencing rapid growth as fNIRS begins to enable routine functional brain imaging.

  17. Embedded clusters in NGC1808 central starburst - Near-infrared imaging and spectroscopy

    OpenAIRE

    Galliano, E.; Alloin, D.

    2008-01-01

    In the course of a mid-infrared imaging campaign of close-by active galaxies, we discovered the mid-infrared counterparts of bright compact radio sources in the central star-forming region of NGC1808. We aim at confirming that these sources are deeply embedded, young star clusters and at deriving some of their intrinsic properties. To complement the mid-infrared data, we have collected a set of near-infrared data with ISAAC at the VLT: J, Ks, and L' images, as well as low-resolution, long-sli...

  18. COBE DIRBE near-infrared polarimetry of the zodiacal light: Initial results

    Science.gov (United States)

    Berriman, G. B.; Boggess, N. W.; Hauser, M. G.; Kelsall, T.; Lisse, C. M.; Moseley, S. H.; Reach, W. T.; Silverberg, R. F.

    1994-01-01

    This Letter describes near-infrared polarimetry of the zodiacal light at 2.2 micrometers, measured with the Diffuse Infrared Background Experiment (DIRBE) aboard the Cosmic Background Explorer (COBE) spacecraft. The polarization is due to scattering of sunlight. The polarization vector is perpendicular to the scattering plane, and its observed amplitude on the ecliptic equator at an elongation of 90 deg and ecliptic longitude of 10 deg declines from 12.0 +/- 0.4% at 1.25 micrometers to 8.0 +/- 0.6% at 3.5 micrometers (cf. 16% in the visible); the principal source of uncertainty is photometric noise due to stars. The observed near-infrared colors at this location are redder than Solar, but at 3.5 micrometers this is due at least in part to the thermal emission contribution from the interplanetary dust. Mie theory calculations show that both polarizations and colors are important in constraining models of interplanetary dust.

  19. High Resolution Near Infrared Spectrometer to Study the Zodiacal Light Spectrum

    Science.gov (United States)

    Kutyrev, Alexander; Arendt, R.; Dwek, E.; Moseley, S. H.; Silverberg, R.; Rapchun, D.

    2007-12-01

    We are developing a near infrared spectrometer for measuring solar absorption lines in the zodiacal light in the near infrared region. R. Reynolds at el. (2004, ApJ 612, 1206) demonstrated that observing single Fraunhofer line can be a powerful tool for extracting zodiacal light parameters based on their measurements of the profile of the Mg I line at 5184 A. We are extending this technique to the near infrared with the primary goal of measuring the absolute intensity of the zodiacal light. This measurement will provide the crucial information needed to accurately subtract zodiacal emission from the DIRBE measurements to get a much higher quality measurement of the extragalactic IR background. The instrument design is based on a dual Fabry-Perot interferometer with a narrow band filter. Its double etalon design allows to achieve high spectral contrast to reject the bright out of band telluric OH emission. High spectral contrast is absolutely necessary to achieve detection limits needed to accurately measure the intensity of the absorption line. We present the design, estimated performance of the instrument with the expected results of the observing program. The project is supported by NASA ROSES-APRA grant.

  20. Fully integrated high-speed intravascular optical coherence tomography/near-infrared fluorescence structural/molecular imaging in vivo using a clinically available near-infrared fluorescence-emitting indocyanine green to detect inflamed lipid-rich atheromata in coronary-sized vessels.

    Science.gov (United States)

    Lee, Sunki; Lee, Min Woo; Cho, Han Saem; Song, Joon Woo; Nam, Hyeong Soo; Oh, Dong Joo; Park, Kyeongsoon; Oh, Wang-Yuhl; Yoo, Hongki; Kim, Jin Won

    2014-08-01

    Lipid-rich inflamed coronary plaques are prone to rupture. The purpose of this study was to assess lipid-rich inflamed plaques in vivo using fully integrated high-speed optical coherence tomography (OCT)/near-infrared fluorescence (NIRF) molecular imaging with a Food and Drug Administration-approved indocyanine green (ICG). An integrated high-speed intravascular OCT/NIRF imaging catheter and a dual-modal OCT/NIRF system were constructed based on a clinical OCT platform. For imaging lipid-rich inflamed plaques, the Food and Drug Administration-approved NIRF-emitting ICG (2.25 mg/kg) or saline was injected intravenously into rabbit models with experimental atheromata induced by balloon injury and 12- to 14-week high-cholesterol diets. Twenty minutes after injection, in vivo OCT/NIRF imaging of the infrarenal aorta and iliac arteries was acquired only under contrast flushing through catheter (pullback speed up to ≤20 mm/s). NIRF signals were strongly detected in the OCT-visualized atheromata of the ICG-injected rabbits. The in vivo NIRF target-to-background ratio was significantly larger in the ICG-injected rabbits than in the saline-injected controls (Pfluorescence reflectance imaging, which correlated well with the in vivo target-to-background ratios (Pfluorescence microscopy, and histopathology also corroborated the in vivo imaging findings. Integrated OCT/NIRF structural/molecular imaging with a Food and Drug Administration -approved ICG accurately identified lipid-rich inflamed atheromata in coronary-sized vessels. This highly translatable dual-modal imaging approach could enhance our capabilities to detect high-risk coronary plaques. © 2014 American Heart Association, Inc.

  1. Quantifying cerebral hypoxia by near-infrared spectroscopy tissue oximetry

    DEFF Research Database (Denmark)

    Rasmussen, Martin B.; Eriksen, Vibeke R.; Andresen, Bjørn

    2017-01-01

    Tissue oxygenation estimated by near-infrared spectroscopy (NIRS) is a volume-weighted mean of the arterial and venous hemoglobin oxygenation. In vivo validation assumes a fixed arterial-to-venous volume-ratio (AV-ratio). Regulatory cerebro-vascular mechanisms may change the AV-ratio. We used...

  2. Circumnuclear Regions In Barred Spiral Galaxies. 1; Near-Infrared Imaging

    Science.gov (United States)

    Perez-Ramirez, D.; Knapen, J. H.; Peletier, R. F.; Laine, S.; Doyon, R.; Nadeau, D.

    2000-01-01

    We present sub-arcsecond resolution ground-based near-infrared images of the central regions of a sample of twelve barred galaxies with circumnuclear star formation activity, which is organized in ring-like regions typically one kiloparsec in diameter. We also present Hubble Space Telescope near-infrared images of ten of our sample galaxies, and compare them with our ground-based data. Although our sample galaxies were selected for the presence of circumnuclear star formation activity, our broad-band near-infrared images are heterogeneous, showing a substantial amount of small-scale structure in some galaxies, and practically none in others. We argue that, where it exists, this structure is caused by young stars, which also cause the characteristic bumps or changes in slope in the radial profiles of ellipticity, major axis position angle, surface brightness and colour at the radius of the circumnuclear ring in most of our sample galaxies. In 7 out of 10 HST images, star formation in the nuclear ring is clearly visible as a large number of small emitting regions, organised into spiral arm fragments, which are accompanied by dust lanes. NIR colour index maps show much more clearly the location of dust lanes and, in certain cases, regions of star formation than single broad-band images. Circumnuclear spiral structure thus outlined appears to be common in barred spiral galaxies with circumnuclear star formation.

  3. THz near-field imaging of biological tissues employing synchrotron radiation (Invited Paper)

    Science.gov (United States)

    Schade, Ulrich; Holldack, Karsten; Martin, Michael C.; Fried, Daniel

    2005-04-01

    Terahertz scanning near-field infrared microscopy (SNIM) below 1 THz is demonstrated. The near-field technique benefits from the broadband and highly brilliant coherent synchrotron radiation (CSR) from an electron storage ring and from a detection method based on locking on to the intrinsic time structure of the synchrotron radiation. The scanning microscope utilizes conical waveguides as near-field probes with apertures smaller than the wavelength. Different cone approaches have been investigated to obtain maximum transmittance. Together with a Martin-Puplett spectrometer the set-up enables spectroscopic mapping of the transmittance of samples well below the diffraction limit. Spatial resolution down to about λ/40 at 2 wavenumbers (0.06 THz) is derived from the transmittance spectra of the near-field probes. The potential of the technique is exemplified by imaging biological samples. Strongly absorbing living leaves have been imaged in transmittance with a spatial resolution of 130 μm at about 12 wavenumbers (0.36 THz). The THz near-field images reveal distinct structural differences of leaves from different plants investigated. The technique presented also allows spectral imaging of bulky organic tissues. Human teeth samples of various thicknesses have been imaged between 2 and 20 wavenumbers (between 0.06 and 0.6 THz). Regions of enamel and dentin within tooth samples are spatially and spectrally resolved, and buried caries lesions are imaged through both the outer enamel and into the underlying dentin.

  4. Some variations of the Kristallin-I near-field model

    Energy Technology Data Exchange (ETDEWEB)

    Smith, P A; Curti, E [Paul Scherrer Inst. (PSI), Villigen (Switzerland)

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because (i) they are thought unlikely to occur to a significant degree, or because (ii) they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. This work addresses the following topics: - radionuclide transport at the bentonite-host rock interface, - canister settlement, -chemical conditions and radionuclide transport at the glass-bentonite interface. (author) figs., tabs., refs.

  5. Some variations of the Kristallin-I near-field model

    International Nuclear Information System (INIS)

    Smith, P.A.; Curti, E.

    1995-11-01

    The Kristallin-I project is an integrated analysis of the final disposal of vitrified high-level radioactive waste (HLW) in the crystalline basement of Northern Switzerland. It includes an analysis of the radiological consequences of radionuclide release from a repository. This analysis employs a chain of independent models for the near-field, geosphere and biosphere. In constructing these models, processes are incorporated that are believed to be relevant to repository safety, while other processes are neglected. In the present report, a set of simplified, steady-state models of the near-field is developed to investigate the possible effects of specific processes which are neglected in the time-dependent Kristallin-I near-field model. These processes are neglected, either because (i) they are thought unlikely to occur to a significant degree, or because (ii) they are likely to make a positive contribution to the performance of the near-field barrier to radionuclide migration, but are insufficiently understood to justify incorporating them in a safety assessment. The aim of this report is to investigate whether the arguments for neglecting these processes in the Kristallin-I near-field model can be justified. This work addresses the following topics: - radionuclide transport at the bentonite-host rock interface, - canister settlement, -chemical conditions and radionuclide transport at the glass-bentonite interface. (author) figs., tabs., refs

  6. Near-infrared high-resolution real-time omnidirectional imaging platform for drone detection

    Science.gov (United States)

    Popovic, Vladan; Ott, Beat; Wellig, Peter; Leblebici, Yusuf

    2016-10-01

    Recent technological advancements in hardware systems have made higher quality cameras. State of the art panoramic systems use them to produce videos with a resolution of 9000 x 2400 pixels at a rate of 30 frames per second (fps).1 Many modern applications use object tracking to determine the speed and the path taken by each object moving through a scene. The detection requires detailed pixel analysis between two frames. In fields like surveillance systems or crowd analysis, this must be achieved in real time.2 In this paper, we focus on the system-level design of multi-camera sensor acquiring near-infrared (NIR) spectrum and its ability to detect mini-UAVs in a representative rural Swiss environment. The presented results show the UAV detection from the trial that we conducted during a field trial in August 2015.

  7. Near infrared photoacoustic detection of heptane in synthetic air

    DEFF Research Database (Denmark)

    Duggen, Lars; Albu, Mihaela; Willatzen, Morten

    2013-01-01

    Trace contaminations of n-heptane in synthetic air is measured in the parts-per-billion (ppb) range using near infrared photoacoustic detection. We describe the fundamental theory used in the design of the photoacoustic cell for trace gas analysis and determine the detection limit of the cell...

  8. Near-infrared emission from mesoporous crystalline germanium

    Energy Technology Data Exchange (ETDEWEB)

    Boucherif, Abderraouf; Aimez, Vincent; Arès, Richard, E-mail: richard.ares@usherbrooke.ca [Institut Interdisciplinaire d’Innovation Technologique (3IT), Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Laboratoire Nanotechnologies Nanosystèmes (LN2)-CNRS UMI-3463, Université de Sherbrooke, 3000 Boulevard Université, Sherbrooke, J1K OA5, Québec (Canada); Korinek, Andreas [Canadian Centre for Electron Microscopy, Brockhouse Institute for Materials Research, McMaster University, Hamilton, Ontario, L8S 4M1 (Canada)

    2014-10-15

    Mesoporous crystalline germanium was fabricated by bipolar electrochemical etching of Ge wafer in HF-based electrolyte. It yields uniform mesoporous germanium layers composed of high density of crystallites with an average size 5-7 nm. Subsequent extended chemical etching allows tuning of crystallites size while preserving the same chemical composition. This highly controllable nanostructure exhibits photoluminescence emission above the bulk Ge bandgap, in the near-infrared range (1095-1360nm) with strong evidence of quantum confinement within the crystallites.

  9. Organic-inorganic hybrid optical foils with strong visible reflection, excellent near infrared-shielding ability and high transparency

    Science.gov (United States)

    Zhou, Yijie; Huang, Aibin; Zhou, Huaijuan; Ji, Shidong; Jin, Ping

    2018-03-01

    Research on functional flexible films has recently been attracting widespread attention especially with regards to foils, which can be designed artificially on the basis of the practical requirements. In this work, a foil with high visible reflection and a strong near infrared shielding efficiency was prepared by a simple wet chemical method. In the process of making this kind of optical foil, emulsion polymerization was first introduced to synthesize polymer opals, which were further compressed between two pieces of polyethylene terephthalate (PET) foil under polymer melting temperature to obtain a photonic crystal film with a strong reflection in the visible region to block blue rays. The following step was to coat a layer of the inorganic nano paint, which was synthesized by dispersing Cs-doped WO3 (CWO) nanoparticles homogenously into organic resin on the surface of the PET to achieve a high near infrared shielding ability. The final composite foil exhibited unique optical properties such as high visible reflectance (23.9%) to block blue rays, and excellent near infrared shielding efficiency (98.0%), meanwhile it still maintained a high transparency meaning that this foil could potentially be applied in energy-saving window films. To sum up, this study provides new insight into devising flexible hybrid films with novel optical properties, which could be further extended to prepare other optical films for potential use in automobile, architectural and other decorative fields.

  10. Near infrared spectroscopy for qualitative comparison of pharmaceutical batches.

    Science.gov (United States)

    Roggo, Y; Roeseler, C; Ulmschneider, M

    2004-11-19

    Pharmaceuticals are produced according to current pharmacopoeias, which require quality parameters. Tablets of identical formulation, produced by different factories should have the same properties before and after storage. In this article, we analyzed samples having two different origins before and after storage (30 degrees C, 75% relative moisture). The aim of the study is to propose two approaches to understand the differences between origins and the storage effect by near infrared spectroscopy. In the first part, the main wavelengths are identified in transmittance and reflectance near infrared spectra in order to identify the major differences between the samples. In this paper, this approach is called fingerprinting. In the second part, principal component analysis (PCA) is computed to confirm the fingerprinting interpretation. The two interpretations show the differences between batches: physical aspect and moisture content. The manufacturing process is responsible for the physical differences between batches. During the storage, changes are due to the increase of moisture content and the decrease of the active content.

  11. ITO/Au/ITO sandwich structure for near-infrared plasmonics.

    Science.gov (United States)

    Fang, Xu; Mak, Chee Leung; Dai, Jiyan; Li, Kan; Ye, Hui; Leung, Chi Wah

    2014-09-24

    ITO/Au/ITO trilayers with varying gold spacer layer thicknesses were deposited on glass substrates by pulsed laser deposition. Transmission electron microscopy measurements demonstrated the continuous nature of the Au layer down to 2.4 nm. XRD patterns clearly showed an enhanced crystallinity of the ITO films promoted by the insertion of the gold layer. Compared with a single layer of ITO with a carrier concentration of 7.12 × 10(20) cm(-3), the ITO/Au/ITO structure achieved an effective carrier concentration as high as 3.26 × 10(22) cm(-3). Transmittance and ellipsometry measurements showed that the optical properties of ITO/Au/ITO films were greatly influenced by the thickness of the inserted gold layer. The cross-point wavelength of the trilayer samples was reduced with increasing gold layer thickness. Importantly, the trilayer structure exhibited a reduced loss (compared with plain Au) in the near-infrared region, suggesting its potential for plasmonic applications in the near-infrared range.

  12. Near-infrared line identification in type Ia supernovae during the transitional phase

    Energy Technology Data Exchange (ETDEWEB)

    Friesen, Brian; Baron, E.; Wisniewski, John P.; Miller, Timothy R. [Homer L. Dodge Department of Physics and Astronomy, 440 West Brooks Street, Room 100, Norman, OK 73019 (United States); Parrent, Jerod T. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Thomas, R. C. [Computational Cosmology Center, Computational Research Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road MS 50B-4206, Berkeley, CA 94720 (United States); Marion, G. H. [University of Texas at Austin, 1 University Station C1400, Austin, TX 78712-0259 (United States)

    2014-09-10

    We present near-infrared synthetic spectra of a delayed-detonation hydrodynamical model and compare them to observed spectra of four normal Type Ia supernovae ranging from day +56.5 to day +85. This is the epoch during which supernovae are believed to be undergoing the transition from the photospheric phase, where spectra are characterized by line scattering above an optically thick photosphere, to the nebular phase, where spectra consist of optically thin emission from forbidden lines. We find that most spectral features in the near-infrared can be accounted for by permitted lines of Fe II and Co II. In addition, we find that [Ni II] fits the emission feature near 1.98 μm, suggesting that a substantial mass of {sup 58}Ni exists near the center of the ejecta in these objects, arising from nuclear burning at high density.

  13. Near-infrared selective dynamic windows controlled by charge transfer impedance at the counter electrode.

    Science.gov (United States)

    Pattathil, Praveen; Scarfiello, Riccardo; Giannuzzi, Roberto; Veramonti, Giulia; Sibillano, Teresa; Qualtieri, Antonio; Giannini, Cinzia; Cozzoli, P Davide; Manca, Michele

    2016-12-08

    Recent developments in the exploitation of transparent conductive oxide nanocrystals paved the way to the realization of a new class of electrochemical systems capable of selectively shielding the infrared heat loads carried by sunlight and prospected the blooming of a key enabling technology to be implemented in the next generation of "zero-energy" building envelopes. Here we report the fabrication of a set of electrochromic devices embodying an engineered nanostructured electrode made by high aspect-ratio tungsten oxide nanorods, which allow for selectively and dynamically controlling sunlight transmission over the near-infrared to visible range. Varying the intensity of applied voltage makes the spectral response of the device change across three different optical regimes, namely fully transparent, near-infrared only blocking and both visible and near-infrared blocking. It is demonstrated that the degree of reversible modulation of the thermal radiation entering the glazing element can approach a remarkable 85%, accompanied by only a modest reduction in the luminous transmittance.

  14. High-efficiency electroluminescence and amplified spontaneous emission from a thermally activated delayed fluorescent near-infrared emitter

    Science.gov (United States)

    Kim, Dae-Hyeon; D'Aléo, Anthony; Chen, Xian-Kai; Sandanayaka, Atula D. S.; Yao, Dandan; Zhao, Li; Komino, Takeshi; Zaborova, Elena; Canard, Gabriel; Tsuchiya, Youichi; Choi, Eunyoung; Wu, Jeong Weon; Fages, Frédéric; Brédas, Jean-Luc; Ribierre, Jean-Charles; Adachi, Chihaya

    2018-02-01

    Near-infrared organic light-emitting diodes and semiconductor lasers could benefit a variety of applications including night-vision displays, sensors and information-secured displays. Organic dyes can generate electroluminescence efficiently at visible wavelengths, but organic light-emitting diodes are still underperforming in the near-infrared region. Here, we report thermally activated delayed fluorescent organic light-emitting diodes that operate at near-infrared wavelengths with a maximum external quantum efficiency of nearly 10% using a boron difluoride curcuminoid derivative. As well as an effective upconversion from triplet to singlet excited states due to the non-adiabatic coupling effect, this donor-acceptor-donor compound also exhibits efficient amplified spontaneous emission. By controlling the polarity of the active medium, the maximum emission wavelength of the electroluminescence spectrum can be tuned from 700 to 780 nm. This study represents an important advance in near-infrared organic light-emitting diodes and the design of alternative molecular architectures for photonic applications based on thermally activated delayed fluorescence.

  15. Near-infrared spectroscopy (NIRS) as a new tool for neuroeconomic research

    Science.gov (United States)

    Kopton, Isabella M.; Kenning, Peter

    2014-01-01

    Over the last decade, the application of neuroscience to economic research has gained in importance and the number of neuroeconomic studies has grown extensively. The most common method for these investigations is fMRI. However, fMRI has limitations (particularly concerning situational factors) that should be countered with other methods. This review elaborates on the use of functional Near-Infrared Spectroscopy (fNIRS) as a new and promising tool for investigating economic decision making both in field experiments and outside the laboratory. We describe results of studies investigating the reliability of prototype NIRS studies, as well as detailing experiments using conventional and stationary fNIRS devices to analyze this potential. This review article shows that further research using mobile fNIRS for studies on economic decision making outside the laboratory could be a fruitful avenue helping to develop the potential of a new method for field experiments outside the laboratory. PMID:25147517

  16. NEAR-INFRARED SURVEY OF THE GOODS-NORTH FIELD: SEARCH FOR LUMINOUS GALAXY CANDIDATES AT z ∼> 6.5 ,

    International Nuclear Information System (INIS)

    Hathi, Nimish P.; Mobasher, Bahram; Capak, Peter; Wang, Wei-Hao; Ferguson, Henry C.

    2012-01-01

    We present near-infrared (NIR; J and K s ) survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field. The publicly available imaging data were obtained using the MOIRCS instrument on the 8.2 m Subaru and the WIRCam instrument on the 3.6 m Canada-France-Hawaii Telescope (CFHT). These observations fulfill a serious wavelength gap in the GOODS-N data, i.e., lack of deep NIR observations. We combine the Subaru/MOIRCS and CFHT/WIRCam archival data to generate deep J- and K s -band images, covering the full GOODS-N field (∼169 arcmin 2 ) to an AB magnitude limit of ∼25 mag (3σ). We applied z 850 -band dropout color selection criteria, using the NIR data generated here. We have identified two possible Lyman break galaxy (LBG) candidates at z ∼> 6.5 with J ∼ 850 -dropout objects, if confirmed, are among the brightest such candidates found so far. At z ∼> 6.5, their star formation rate is estimated as 100-200 M ☉ yr –1 . If they continue to form stars at this rate, they assemble a stellar mass of ∼5 × 10 10 M ☉ after about 400 million years, becoming the progenitors of massive galaxies observed at z ≅ 5. We study the implication of the z 850 -band dropout candidates discovered here, in constraining the bright end of the luminosity function and understanding the nature of high-redshift galaxies.

  17. Effect of motion artifacts and their correction on near-infrared spectroscopy oscillation data

    DEFF Research Database (Denmark)

    Selb, Juliette; Yücel, Meryem A; Phillip, Dorte

    2015-01-01

    Functional near-infrared spectroscopy is prone to contamination by motion artifacts (MAs). Motion correction algorithms have previously been proposed and their respective performance compared for evoked rain activation studies. We study instead the effect of MAs on "oscillation" data which...... in the frequency band around 0.1 and 0.04 Hz, suggesting a physiological origin for the difference. We emphasize the importance of considering MAs as a confounding factor in oscillation-based functional near-infrared spectroscopy studies....

  18. Near-infrared water vapour self-continuum at close to room temperature

    International Nuclear Information System (INIS)

    Ptashnik, I.V.; Petrova, T.M.; Ponomarev, Yu.N.; Shine, K.P.; Solodov, A.A.; Solodov, A.M.

    2013-01-01

    The gaseous absorption of solar radiation within near-infrared atmospheric windows in the Earth's atmosphere is dominated by the water vapour continuum. Recent measurements by Baranov et al. (2011) [17] in 2500 cm −1 (4 μm) window and by Ptashnik et al. (2011) [18] in a few near-infrared windows revealed that the self-continuum absorption is typically an order of magnitude stronger than given by the MT C KD continuum model prior to version 2.5. Most of these measurements, however, were made at elevated temperatures, which makes their application to atmospheric conditions difficult. Here we report new laboratory measurements of the self-continuum absorption at 289 and 318 K in the near-infrared spectral region 1300–8000 cm −1 , using a multipass 30 m base cell with total optical path 612 m. Our results confirm the main conclusions of the previous measurements both within bands and in windows. Of particular note is that we present what we believe to be the first near-room temperature measurement using Fourier Transform Spectrometry of the self-continuum in the 6200 cm −1 (1.6 μm) window, which provides tentative evidence that, at such temperatures, the water vapour continuum absorption may be as strong as it is in 2.1 μm and 4 μm windows and up to 2 orders of magnitude stronger than the MT C KD-2.5 continuum. We note that alternative methods of measuring the continuum in this window have yielded widely differing assessment of its strength, which emphasises the need for further measurements. -- Highlights: ► New lab measurements of the near-infrared water vapour self-continuum absorption. ► First room-temperature data on the self-continuum in the 1.6 μm window. ► In the 1.6 μm window the new data exceed MT C KD-2.5 model by 2 orders of magnitude

  19. Single-walled carbon nanotubes as near-infrared optical biosensors for life sciences and biomedicine.

    Science.gov (United States)

    Jain, Astha; Homayoun, Aida; Bannister, Christopher W; Yum, Kyungsuk

    2015-03-01

    Single-walled carbon nanotubes that emit photostable near-infrared fluorescence have emerged as near-infrared optical biosensors for life sciences and biomedicine. Since the discovery of their near-infrared fluorescence, researchers have engineered single-walled carbon nanotubes to function as an optical biosensor that selectively modulates its fluorescence upon binding of target molecules. Here we review the recent advances in the single-walled carbon nanotube-based optical sensing technology for life sciences and biomedicine. We discuss the structure and optical properties of single-walled carbon nanotubes, the mechanisms for molecular recognition and signal transduction in single-walled carbon nanotube complexes, and the recent development of various single-walled carbon nanotube-based optical biosensors. We also discuss the opportunities and challenges to translate this emerging technology into biomedical research and clinical use, including the biological safety of single-walled carbon nanotubes. The advances in single-walled carbon nanotube-based near-infrared optical sensing technology open up a new avenue for in vitro and in vivo biosensing with high sensitivity and high spatial resolution, beneficial for many areas of life sciences and biomedicine. Copyright © 2015 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Effects of post heat treatment on near infrared photoluminescence of YAG:Yb{sup 3+} nanoparticles synthesized by glycothermal method

    Energy Technology Data Exchange (ETDEWEB)

    Asakura, Ryo; Isobe, Tetsuhiko, E-mail: isobe@applc.keio.ac.jp

    2014-02-15

    Influence of post heat treatment on particulate, structural, surface, and optical properties of YAG:Yb{sup 3+} nanoparticles prepared by glycothermal method is studied to understand factors for determining photoluminescence intensity. Characterization is performed on electron microscopy, X-ray diffractometry, infrared absorption spectroscopy, and optical measurements. Near infrared emission under 940 nm near infrared excitation is observed at 1029 nm corresponding to {sup 2}F{sub 5/2}→{sup 2}F{sub 7/2} transition of Yb{sup 3+}. Subsequent heat treatment causes crystallite growth and elimination of hydroxyl groups, resulting in an enhancement of the near infrared emission. -- Highlights: • YAG:Yb{sup 3+} nanoparticles of ca. 10 nm are prepared by glycothermal method at 300 °C. • 1029 nm near infrared emission takes place under 940 nm near infrared excitation. • Emission and excitation correspond to {sup 2}F{sub 5/2}→{sup 2}F{sub 7/2} transition of Yb{sup 3+}. • Subsequent heat treatment causes crystallite growth and elimination of hydroxyl groups, resulting in enhancement of near infrared emission.

  1. Photon-phonon-enhanced infrared rectification in a two-dimensional nanoantenna-coupled tunnel diode

    International Nuclear Information System (INIS)

    Kadlec, Emil A.; Jarecki, Robert L.; Starbuck, Andrew; Peters, David W.; Davids, Paul S.

    2016-01-01

    The interplay of strong infrared photon-phonon coupling with electromagnetic confinement in nanoscale devices is demonstrated to have a large impact on ultrafast photon-assisted tunneling in metal-oxide-semiconductor (MOS) structures. Infrared active optical phonon modes in polar oxides lead to strong dispersion and enhanced electric fields at material interfaces. We find that the infrared dispersion of SiO_2 near a longitudinal optical phonon mode can effectively impedance match a photonic surface mode into a nanoscale tunnel gap that results in large transverse-field confinement. An integrated 2D nanoantenna structure on a distributed large-area MOS tunnel-diode rectifier is designed and built to resonantly excite infrared surface modes and is shown to efficiently channel infrared radiation into nanometer-scale gaps in these MOS devices. This enhanced-gap transverse-electric field is converted to a rectified tunneling displacement current resulting in a dc photocurrent. We examine the angular and polarization-dependent spectral photocurrent response of these 2D nanoantenna-coupled tunnel diodes in the photon-enhanced tunneling spectral region. Lastly, our 2D nanoantenna-coupled infrared tunnel-diode rectifier promises to impact large-area thermal energy harvesting and infrared direct detectors.

  2. Length-free near infrared measurement of newborn malnutrition

    Science.gov (United States)

    Mustafa, Fatin Hamimi; Bek, Emily J.; Huvanandana, Jacqueline; Jones, Peter W.; Carberry, Angela E.; Jeffery, Heather E.; Jin, Craig T.; McEwan, Alistair L.

    2016-11-01

    Under-nutrition in neonates can cause immediate mortality, impaired cognitive development and early onset adult disease. Body fat percentage measured using air-displacement-plethysmography has been found to better indicate under-nutrition than conventional birth weight percentiles. However, air-displacement-plethysmography equipment is expensive and non-portable, so is not suited for use in developing communities where the burden is often the greatest. We proposed a new body fat measurement technique using a length-free model with near-infrared spectroscopy measurements on a single site of the body - the thigh. To remove the need for length measurement, we developed a model with five discrete wavelengths and a sex parameter. The model was developed using air-displacement-plethysmography measurements in 52 neonates within 48 hours of birth. We identified instrumentation required in a low-cost LED-based screening device and incorporated a receptor device that can increase the amount of light collected. This near-infrared method may be suitable as a low cost screening tool for detecting body fat levels and monitoring nutritional interventions for malnutrition in neonates and young children in resource-constrained communities.

  3. Control of Refining Processes on Mid-Distillates by Near Infrared Spectroscopy

    Directory of Open Access Journals (Sweden)

    Zanier-Szydlowski N.

    1999-07-01

    Full Text Available The purpose of this paper is to demonstrate the accuracy of physicochemical determinations based on equations calculated by multivariate analysis of near infrared spectra which gives access to simultaneous analyses both on-line and off-line. Detailed results concerning the determination of the refractive index at 20°C, the density, the weight% of hydrogen, the % of aromatic carbon, the weight% of mono-, di- and total aromatics and the cetane number on mid-distillates are given in a shorter time than using the conventional approach by standardized methods. It is shown that near infrared spectroscopy combined with chemometrics should allow detailed and precise comparisons of the hydrotreatment process efficiencies.

  4. Near-Infrared Spectroscopy-Based Frontal Lobe Neurofeedback Integrated in Virtual Reality Modulates Brain and Behavior in Highly Impulsive Adults

    OpenAIRE

    Hudak, Justin; Blume, Friederike; Dresler, Thomas; Haeussinger, Florian B.; Renner, Tobias J.; Fallgatter, Andreas J.; Gawrilow, Caterina; Ehlis, Ann-Christine

    2017-01-01

    Based on neurofeedback (NF) training as a neurocognitive treatment in attention-deficit/hyperactivity disorder (ADHD), we designed a randomized, controlled functional near-infrared spectroscopy (fNIRS) NF intervention embedded in an immersive virtual reality classroom in which participants learned to control overhead lighting with their dorsolateral prefrontal brain activation. We tested the efficacy of the intervention on healthy adults displaying high impulsivity as a sub-clinical populatio...

  5. Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling.

    Science.gov (United States)

    Kehr, S C; Liu, Y M; Martin, L W; Yu, P; Gajek, M; Yang, S-Y; Yang, C-H; Wenzel, M T; Jacob, R; von Ribbeck, H-G; Helm, M; Zhang, X; Eng, L M; Ramesh, R

    2011-01-01

    A planar slab of negative-index material works as a superlens with sub-diffraction-limited resolution, as propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-electron laser allows us to address precisely the polariton modes, which are critical for super-resolution imaging. We spectrally study the lateral and vertical distributions of evanescent waves around the image plane of such a lens, and achieve imaging resolution of λ/14 at the superlensing wavelength. Interestingly, at certain distances between the probe and sample surface, we observe a maximum of these evanescent fields. Comparisons with numerical simulations indicate that this maximum originates from an enhanced coupling between probe and object, which might be applicable for multifunctional circuits, infrared spectroscopy and thermal sensors.

  6. Near-field examination of perovskite-based superlenses and superlens-enhanced probe-object coupling

    Science.gov (United States)

    Kehr, S.C.; Liu, Y.M.; Martin, L.W.; Yu, P.; Gajek, M.; Yang, S.-Y.; Yang, C.-H.; Wenzel, M.T.; Jacob, R.; von Ribbeck, H.-G.; Helm, M.; Zhang, X.; Eng, L.M.; Ramesh, R.

    2011-01-01

    A planar slab of negative-index material works as a superlens with sub-diffraction-limited resolution, as propagating waves are focused and, moreover, evanescent waves are reconstructed in the image plane. Here we demonstrate a superlens for electric evanescent fields with low losses using perovskites in the mid-infrared regime. The combination of near-field microscopy with a tunable free-electron laser allows us to address precisely the polariton modes, which are critical for super-resolution imaging. We spectrally study the lateral and vertical distributions of evanescent waves around the image plane of such a lens, and achieve imaging resolution of λ/14 at the superlensing wavelength. Interestingly, at certain distances between the probe and sample surface, we observe a maximum of these evanescent fields. Comparisons with numerical simulations indicate that this maximum originates from an enhanced coupling between probe and object, which might be applicable for multifunctional circuits, infrared spectroscopy and thermal sensors. PMID:21427720

  7. Analysis of albumin Raman scattering in visible and near-infrared ranges

    Science.gov (United States)

    Lykina, Anastasia A.; Artemyev, Dmitry N.

    2018-04-01

    In this work the analysis of the shape and intensity of albumin Raman signals in visible and near-IR ranges was carried out. The experimental setup using lasers from the visible region first of all excites the fluorescence of the albumin solution, the main contribution to which is produced by sodium chloride, which is a component of the tested sample. At the same time, lasers from the near-infrared range excited the Raman signal of albumin most effectively. It was found that the highest ratio of Raman scattering to autofluorescence intensities in the detected signal was obtained using a laser with a wavelength of 1064 nm. To determine the albumin solution concentration by type of spectrum, a regression approach with the projection to latent structures method was applied. The lowest predicted error of albumin concentration of 2-3 g/l was obtained by using the near-infrared range lasers.

  8. Near-infrared spectral imaging Michelson interferometer for astronomical applications

    Science.gov (United States)

    Wells, C. W.; Potter, A. E.; Morgan, T. H.

    1980-01-01

    The design and operation of an imaging Michelson interferometer-spectrometer used for near-infrared (0.8 micron to 2.5 microns) spectral imaging are reported. The system employs a rapid scan interferometer modified for stable low resolution (250/cm) performance and a 42 element PbS linear detector array. A microcomputer system is described which provides data acquisition, coadding, and Fourier transformation for near real-time presentation of the spectra of all 42 scene elements. The electronic and mechanical designs are discussed and telescope performance data presented.

  9. Practical guide to interpretive near-infrared spectroscopy

    CERN Document Server

    Workman, Jr, Jerry

    2007-01-01

    Containing focused, comprehensive coverage, Practical Guide to Interpretive Near-Infrared Spectroscopy gives you the tools necessary to interpret NIR spectra. The authors present extensive tables, charts, and figures with NIR absorption band assignments and structural information for a broad range of functional groups, organic compounds, and polymers. They include visual spectral representation of all major compound functional groupings and NIR frequency ranges. Organized by functional group type and chemical structure, based on standard compound classification, the chapters are easy to

  10. Estimating the marine signal in the near infrared for atmospheric correction of satellite ocean-color imagery over turbid waters

    Science.gov (United States)

    Bourdet, Alice; Frouin, Robert J.

    2014-11-01

    The classic atmospheric correction algorithm, routinely applied to second-generation ocean-color sensors such as SeaWiFS, MODIS, and MERIS, consists of (i) estimating the aerosol reflectance in the red and near infrared (NIR) where the ocean is considered black (i.e., totally absorbing), and (ii) extrapolating the estimated aerosol reflectance to shorter wavelengths. The marine reflectance is then retrieved by subtraction. Variants and improvements have been made over the years to deal with non-null reflectance in the red and near infrared, a general situation in estuaries and the coastal zone, but the solutions proposed so far still suffer some limitations, due to uncertainties in marine reflectance modeling in the near infrared or difficulty to extrapolate the aerosol signal to the blue when using observations in the shortwave infrared (SWIR), a spectral range far from the ocean-color wavelengths. To estimate the marine signal (i.e., the product of marine reflectance and atmospheric transmittance) in the near infrared, the proposed approach is to decompose the aerosol reflectance in the near infrared to shortwave infrared into principal components. Since aerosol scattering is smooth spectrally, a few components are generally sufficient to represent the perturbing signal, i.e., the aerosol reflectance in the near infrared can be determined from measurements in the shortwave infrared where the ocean is black. This gives access to the marine signal in the near infrared, which can then be used in the classic atmospheric correction algorithm. The methodology is evaluated theoretically from simulations of the top-of-atmosphere reflectance for a wide range of geophysical conditions and angular geometries and applied to actual MODIS imagery acquired over the Gulf of Mexico. The number of discarded pixels is reduced by over 80% using the PC modeling to determine the marine signal in the near infrared prior to applying the classic atmospheric correction algorithm.

  11. Quantum field theory near surfaces of discontinuity

    International Nuclear Information System (INIS)

    Onishi, H.T.

    1981-01-01

    This work deals with the problem of a quantized scalar field propagating near a surface of discontinuity. The proper time formalism is employed to express the Green's function and stress tensor as proper time integrals of a transformation function. The transformation function is calculated by a WKB approximation which exhibits the essential singularities generated by the high frequency behavior of waves propagating near the surface. Two singularities are present, the usual direct singularity and an additional reflected singularity generated by the high frequency behavior of waves reflected by the discontinuity. The stress tensor is calculated by dimensional continuation. The results are employed to analyze energy generated by the surface

  12. Wide Field Infrared Survey Telescope [WFIRST]: telescope design and simulated performance

    Science.gov (United States)

    Goullioud, R.; Content, D. A.; Kuan, G. M.; Moore, J. D.; Chang, Z.; Sunada, E. T.; Villalvazo, J.; Hawk, J. P.; Armani, N. V.; Johnson, E. L.; Powell, C. A.

    2012-09-01

    The Wide Field Infrared Survey Telescope (WFIRST) mission concept was ranked first in new space astrophysics missions by the Astro2010 Decadal Survey, incorporating the Joint Dark Energy Mission payload concept and multiple science white papers. This mission is based on a space telescope at L2 studying exoplanets [via gravitational microlensing], probing dark energy, and surveying the near infrared sky. Since the release of the Astro2010 Decadal Survey, the team has been working with the WFIRST Science Definition Team to refine mission and payload concepts. We present the current interim reference mission point design of the payload, based on the use of a 1.3m unobscured aperture three mirror anastigmat form, with focal imaging and slit-less spectroscopy science channels. We also present the first results of Structural/Thermal/Optical performance modeling of the telescope point design.

  13. Discrimination of mineral waters using near infrared spectroscopy and aquaphotomics

    Directory of Open Access Journals (Sweden)

    Munćan Jelena S.

    2014-01-01

    Full Text Available Despite that water is one of the most studied materials today its dynamic properties are still not well understood. Water state in human organism is of high importance for normal healthy functioning of human body. Different kinds of water are usually classified according to its present solutes, and concentrations of these solutes, but though it is known that water molecules can form clusters around present solutes, classification of waters based on types of water molecular organization and present clusters is not present in current literature. In this study we used multivariate analysis for classification of commercial mineral waters based on their near infrared spectra (NIR. Further, we applied Aquaphotomics, a new approach for interpretation of near infrared spectra of water, which gives insight into organization of water molecules in each of these waters.

  14. Near-infrared turbidity of β-FeOOH particle suspensions

    International Nuclear Information System (INIS)

    Berdahl, P.; Espinoza, L. H.; Littlejohn, D.; Lucas, D.; Perry, D. L.

    2000-01-01

    Near-infrared transmission spectroscopy can be complicated by the light scattering from heterogeneous materials. For the examination of an evolving system exhibiting such light scattering, transmission spectra near wavenumber ν=10 4 cm -1 were obtained during the hydrolysis of FeCl 3 solutions. At first, the resulting turbid suspension of cigar-shaped β-FeOOH particles exhibits single-particle scattering, including a Rayleigh regime (attenuation∝ν 4 ). At later times, the scattering increases strongly as the particles aggregate, and becomes proportional to ν α , with α≅2, consistent with scattering models that interpret the structure of aggregates in terms of a fractal dimension d f roughly equal to 2. In all cases investigated, the attenuation due to scattering is spectrally smooth and increases monotonically with wavenumber. It can be written in the simple form ν α with 1≤α≤4. While over limited spectral ranges α may be taken independent of ν, over wide ranges it decreases with increasing ν. This behavior is consistent with the theoretical limits of α=4 at ν=0, and α=0 at ν=∞. Overall, the results suggest that a useful form for simulating scattering backgrounds in near-infrared spectroscopy is Aν α , with A and α fitted constants. (c) 2000 Society for Applied Spectroscopy

  15. A Cross-Sectional Survey of Near-Infrared Spectroscopy Use in Pediatric Cardiac ICUs in the United Kingdom, Ireland, Italy, and Germany.

    Science.gov (United States)

    Hoskote, Aparna U; Tume, Lyvonne N; Trieschmann, Uwe; Menzel, Christoph; Cogo, Paola; Brown, Katherine L; Broadhead, Michael W

    2016-01-01

    Despite the increasing use of near-infrared spectroscopy across pediatric cardiac ICUs, there is significant variability and equipoise with no universally accepted management algorithms. We aimed to explore the use of near-infrared spectroscopy in pediatric cardiac ICUs in the United Kingdom, Ireland, Italy, and Germany. A cross-sectional multicenter, multinational electronic survey of one consultant in each pediatric cardiac ICU. Pediatric cardiac ICUs in the United Kingdom and Ireland (n = 13), Italy (n = 12), and Germany (n = 33). Questionnaire targeted to establish use, targets, protocols/thresholds for intervention, and perceived usefulness of near-infrared spectroscopy monitoring. Overall, 42 of 58 pediatric cardiac ICUs (72%) responded: United Kingdom and Ireland, 11 of 13 (84.6%); Italy, 12 of 12 (100%); and Germany, 19 of 33 (57%, included all major centers). Near-infrared spectroscopy usage varied with 35% (15/42) reporting that near-infrared spectroscopy was not used at all (7/42) or occasionally (8/42); near-infrared spectroscopy use was much less common in the United Kingdom (46%) when compared with 78% in Germany and all (100%) in Italy. Only four units had a near-infrared spectroscopy protocol, and 18 specifically used near-infrared spectroscopy in high-risk patients; 37 respondents believed that near-infrared spectroscopy added value to standard monitoring and 23 believed that it gave an earlier indication of deterioration, but only 19 would respond based on near-infrared spectroscopy data alone. Targets for absolute values and critical thresholds for intervention varied widely between units. The reasons cited for not or occasionally using near-infrared spectroscopy were expense (n = 6), limited evidence and uncertainty on how it guides management (n = 4), difficulty in interpretation, and unreliability of data (n = 3). Amongst the regular or occasional near-infrared spectroscopy users (n = 35), 28 (66%) agreed that a multicenter study is warranted

  16. A New Method for Analyzing Near-Field Faraday Probe Data in Hall Thrusters

    Science.gov (United States)

    Huang, Wensheng; Shastry, Rohit; Herman, Daniel A.; Soulas, George C.; Kamhawi, Hani

    2013-01-01

    This paper presents a new method for analyzing near-field Faraday probe data obtained from Hall thrusters. Traditional methods spawned from far-field Faraday probe analysis rely on assumptions that are not applicable to near-field Faraday probe data. In particular, arbitrary choices for the point of origin and limits of integration have made interpretation of the results difficult. The new method, called iterative pathfinding, uses the evolution of the near-field plume with distance to provide feedback for determining the location of the point of origin. Although still susceptible to the choice of integration limits, this method presents a systematic approach to determining the origin point for calculating the divergence angle. The iterative pathfinding method is applied to near-field Faraday probe data taken in a previous study from the NASA-300M and NASA-457Mv2 Hall thrusters. Since these two thrusters use centrally mounted cathodes the current density associated with the cathode plume is removed before applying iterative pathfinding. A procedure is presented for removing the cathode plume. The results of the analysis are compared to far-field probe analysis results. This paper ends with checks on the validity of the new method and discussions on the implications of the results.

  17. Comment on "A spectroscopic comparison of selected Chinese kaolinite, coal bearing kaolinite and halloysite--a mid-infrared and near-infrared study" and "Infrared and infrared emission spectroscopic study of typical Chinese kaolinite and halloysite" by Hongfei Cheng et al. (2010).

    Science.gov (United States)

    Kloprogge, J Theo

    2015-02-05

    In two papers Cheng et al. (2010) reported in this journal on the mid-infrared, near-infrared and infrared emission spectroscopy of a halloysite from Hunan Xianrenwan, China. This halloysite contains around 8% of quartz (SiO2) and nearly 9% gibbsite (Al(OH)3). In their interpretation of the spectra these impurities were completely ignored. Careful comparison with a phase pure halloysite from Southern Belgium, synthetic gibbsite, gibbsite from Minas Gerais, and quartz show that these impurities do have a marked influence on the mid-infrared and infrared emission spectra. In the near-infrared, the effect is much less pronounced. Quartz does not show bands in this region and the gibbsite bands will be very weak. Comparison still show that the presence of gibbsite does contribute to the overall spectrum and bands that were ascribed to the halloysite alone do coincide with those of gibbsite. Copyright © 2014 Elsevier B.V. All rights reserved.

  18. Optical measurement of acoustic radiation pressure of the near-field acoustic levitation through transparent object

    OpenAIRE

    Nakamura, Satoshi; Furusawa, Toshiaki; Sasao, Yasuhiro; Katsura, Kogure; Naoki, Kondo

    2013-01-01

    It is known that macroscopic objects can be levitated for few to several hundred micrometers by near-field acoustic field and this phenomenon is called near-field acoustic levitation (NFAL). Although there are various experiments conducted to measure integrated acoustic pressure on the object surface, up to now there was no direct method to measure pressure distribution. In this study we measured the acoustic radiation pressure of the near-field acoustic levitation via pressure-sensitive paint.

  19. Topology optimized gold nanostrips for enhanced near-infrared photon upconversion

    DEFF Research Database (Denmark)

    Vester-Petersen, Joakim; Christiansen, Rasmus Ellebæk; Julsgaard, Brian

    2017-01-01

    This letter presents a topology optimization study of metal nanostructures optimized for electric-field enhancement in the infrared spectrum. Coupling of such nanostructures with suitable ions allows for an increased photon-upconversion yield, with one application being an increased solar-cell...... efficiency by exploiting the long-wavelength part of the solar spectrum. In this work, topology optimization is used to design a periodic array of two-dimensional gold nanostrips for electric-field enhancements in a thin film doped with upconverting erbium ions. The infrared absorption band of erbium...

  20. THE HIGH A{sub V} Quasar Survey: Reddened Quasi-Stellar Objects selected from optical/near-infrared photometry. II

    Energy Technology Data Exchange (ETDEWEB)

    Krogager, J.-K.; Fynbo, J. P. U.; Vestergaard, M. [Dark Cosmology Centre, Niels Bohr Institute, University of Copenhagen, Juliane Maries Vej 30, DK-2100 Copenhagen Ø (Denmark); Geier, S. [Instituto de Astrofísica de Canarias (IAC), E-38205 La Laguna, Tenerife (Spain); Venemans, B. P. [Max-Planck Institute for Astronomy, Königstuhl 17, D-69117 Heidelberg (Germany); Ledoux, C. [European Southern Observatory, Alonso de Córdova 3107, Vitacura, Casilla 19001, Santiago 19 (Chile); Møller, P. [European Southern Observatory, Karl-Schwarzschildstrasse 2, D-85748 Garching bei München (Germany); Noterdaeme, P. [Institut d’Astrophysique de Paris, CNRS-UPMC, UMR7095, 98bis bd Arago, F-75014 Paris (France); Kangas, T.; Pursimo, T.; Smirnova, O. [Nordic Optical Telescope, Apartado 474, E-38700 Santa Cruz de La Palma (Spain); Saturni, F. G. [Tuorla Observatory, Department of Physics and Astronomy, University of Turku, Väisäläntie 20, 21500 Piikkiö (Finland)

    2015-03-15

    Quasi-stellar objects (QSOs) whose spectral energy distributions (SEDs) are reddened by dust either in their host galaxies or in intervening absorber galaxies are to a large degree missed by optical color selection criteria like the ones used by the Sloan Digital Sky Survey (SDSS). To overcome this bias against red QSOs, we employ a combined optical and near-infrared (near-IR) color selection. In this paper, we present a spectroscopic follow-up campaign of a sample of red candidate QSOs which were selected from the SDSS and the UKIRT Infrared Deep Sky Survey (UKIDSS). The spectroscopic data and SDSS/UKIDSS photometry are supplemented by mid-infrared photometry from the Wide-field Infrared Survey Explorer. In our sample of 159 candidates, 154 (97%) are confirmed to be QSOs. We use a statistical algorithm to identify sightlines with plausible intervening absorption systems and identify nine such cases assuming dust in the absorber similar to Large Magellanic Cloud sightlines. We find absorption systems toward 30 QSOs, 2 of which are consistent with the best-fit absorber redshift from the statistical modeling. Furthermore, we observe a broad range in SED properties of the QSOs as probed by the rest-frame 2 μm flux. We find QSOs with a strong excess as well as QSOs with a large deficit at rest-frame 2 μm relative to a QSO template. Potential solutions to these discrepancies are discussed. Overall, our study demonstrates the high efficiency of the optical/near-IR selection of red QSOs.

  1. Near-infrared hyperspectral imaging of water evaporation dynamics for early detection of incipient caries.

    Science.gov (United States)

    Usenik, Peter; Bürmen, Miran; Fidler, Aleš; Pernuš, Franjo; Likar, Boštjan

    2014-10-01

    Incipient caries is characterized as demineralization of the tooth enamel reflecting in increased porosity of enamel structure. As a result, the demineralized enamel may contain increased amount of water, and exhibit different water evaporation dynamics than the sound enamel. The objective of this paper is to assess the applicability of water evaporation dynamics of sound and demineralized enamel for detection and quantification of incipient caries using near-infrared hyperspectral imaging. The time lapse of water evaporation from enamel samples with artificial and natural caries lesions of different stages was imaged by a near-infrared hyperspectral imaging system. Partial least squares regression was used to predict the water content from the acquired spectra. The water evaporation dynamics was characterized by a first order logarithmic drying model. The calculated time constants of the logarithmic drying model were used as the discriminative feature. The conducted measurements showed that demineralized enamel contains more water and exhibits significantly faster water evaporation than the sound enamel. By appropriate modelling of the water evaporation process from the enamel surface, the contrast between the sound and demineralized enamel observed in the individual near infrared spectral images can be substantially enhanced. The presented results indicate that near-infrared based prediction of water content combined with an appropriate drying model presents a strong foundation for development of novel diagnostic tools for incipient caries detection. The results of the study enhance the understanding of the water evaporation process from the sound and demineralized enamel and have significant implications for the detection of incipient caries by near-infrared hyperspectral imaging. Copyright © 2014 Elsevier Ltd. All rights reserved.

  2. LUMINOUS AND HIGH STELLAR MASS CANDIDATE GALAXIES AT z ≈ 8 DISCOVERED IN THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    International Nuclear Information System (INIS)

    Yan Haojing; Finkelstein, Steven L.; Huang, Kuang-Han; Ryan, Russell E.; Ferguson, Henry C.; Koekemoer, Anton M.; Grogin, Norman A.; Dickinson, Mark; Newman, Jeffrey A.; Somerville, Rachel S.; Davé, Romeel; Faber, S. M.; Papovich, Casey; Guo Yicheng; Giavalisco, Mauro; Lee, Kyoung-soo; Reddy, Naveen; Siana, Brian D.; Cooray, Asantha R.; Hathi, Nimish P.

    2012-01-01

    One key goal of the Hubble Space Telescope Cosmic Assembly Near-Infrared Deep Extragalactic Legacy Survey is to track galaxy evolution back to z ≈ 8. Its two-tiered ''wide and deep'' strategy bridges significant gaps in existing near-infrared surveys. Here we report on z ≈ 8 galaxy candidates selected as F105W-band dropouts in one of its deep fields, which covers 50.1 arcmin 2 to 4 ks depth in each of three near-infrared bands in the Great Observatories Origins Deep Survey southern field. Two of our candidates have J 1 mag brighter than any previously known F105W-dropouts. We derive constraints on the bright end of the rest-frame ultraviolet luminosity function of galaxies at z ≈ 8, and show that the number density of such very bright objects is higher than expected from the previous Schechter luminosity function estimates at this redshift. Another two candidates are securely detected in Spitzer Infrared Array Camera images, which are the first such individual detections at z ≈ 8. Their derived stellar masses are on the order of a few × 10 9 M ☉ , from which we obtain the first measurement of the high-mass end of the galaxy stellar mass function at z ≈ 8. The high number density of very luminous and very massive galaxies at z ≈ 8, if real, could imply a large stellar-to-halo mass ratio and an efficient conversion of baryons to stars at such an early time.

  3. Burned bones forensic investigations employing near infrared spectroscopy

    OpenAIRE

    Cascant, Mari Merce; Rubio, Sonia; Gallello, Gianni; Pastor, Agustin; Garrigues, Salvador; De la Guardia, Miguel

    2017-01-01

    The use of near infrared (NIR) spectroscopy was evaluated, by using chemometric tools, for the study of the environmental impact on burned bones. Spectra of internal and external parts of burned bones, together with sediment samples, were treated by Principal Component Analysis and cluster classification as exploratory techniques to select burned bone samples, less affected by environmental processes, to properly carry out forensic studies. Partial Least Square Discriminant Analysis was used ...

  4. Near-infrared imaging survey of faint companions around young dwarfs in the Pleiades cluster

    International Nuclear Information System (INIS)

    Itoh, Yoichi; Funayama, Hitoshi; Hashiguchi, Toshio; Oasa, Yumiko; Hayashi, Masahiko; Fukagawa, Misato; Currie, Thayne

    2011-01-01

    We conducted a near-infrared imaging survey of 11 young dwarfs in the Pleiades cluster using the Subaru Telescope and the near-infrared coronagraph imager. We found ten faint point sources, with magnitudes as faint as 20 mag in the K-band, with around seven dwarfs. Comparison with the Spitzer archive images revealed that a pair of the faint sources around V 1171 Tau is very red in infrared wavelengths, which indicates very low-mass young stellar objects. However, the results of our follow-up proper motion measurements implied that the central star and the faint sources do not share common proper motions, suggesting that they are not physically associated.

  5. Ground-based infrared surveys: imaging the thermal fields at volcanoes and revealing the controlling parameters.

    Science.gov (United States)

    Pantaleo, Michele; Walter, Thomas

    2013-04-01

    Temperature monitoring is a widespread procedure in the frame of volcano hazard monitoring. Indeed temperature changes are expected to reflect changes in volcanic activity. We propose a new approach, within the thermal monitoring, which is meant to shed light on the parameters controlling the fluid pathways and the fumarole sites by using infrared measurements. Ground-based infrared cameras allow one to remotely image the spatial distribution, geometric pattern and amplitude of fumarole fields on volcanoes at metre to centimetre resolution. Infrared mosaics and time series are generated and interpreted, by integrating geological field observations and modeling, to define the setting of the volcanic degassing system at shallow level. We present results for different volcano morphologies and show that lithology, structures and topography control the appearance of fumarole field by the creation of permeability contrasts. We also show that the relative importance of those parameters is site-dependent. Deciphering the setting of the degassing system is essential for hazard assessment studies because it would improve our understanding on how the system responds to endogenous or exogenous modification.

  6. Characterizing Wolf-Rayet stars in the near- and mid-infrared

    Energy Technology Data Exchange (ETDEWEB)

    Faherty, Jacqueline K. [Department of Terrestrial Magnetism, Carnegie Institution of Washington 5241 Broad Branch Road NW, Washington, DC 20015 (United States); Shara, Michael M.; Zurek, David; Kanarek, Graham [Department of Astrophysics, American Museum of Natural History, Central Park West at 79th Street, New York, NY 10024 (United States); Moffat, Anthony F. J., E-mail: jfaherty@dtm.ciw.edu [Departement de Physique, Universite de Montreal, C.P. 6128, Succursale Centre-Ville, Montreal, QC H3C 3J7 (Canada)

    2014-05-01

    We present refined color-color selection criteria for identifying Wolf-Rayet (WR) stars using available mid-infrared (MIR) photometry from WISE in combination with near-infrared (NIR) photometry from the Two Micron All Sky Survey. Using a sample of spectrally classified objects, we find that WR stars are well distinguished from the field stellar population in the (W1 – W2) versus (J – K{sub s} ) color-color diagram, and further distinguished from other emission line objects such as planetary nebulae, Be, and cataclysmic variable stars using a combination of NIR and MIR color constraints. As proof of concept we applied the color constraints to a photometric sample in the Galactic plane, located WR star candidates, and present five new spectrally confirmed and classified WC (1) and WN (4) stars. Analysis of the 0.8-5.0 μm spectral data for a subset of known, bright WC and WN stars shows that emission lines (primarily He I) extend into the 3.0-5.0 μm spectral region, although their strength is greatly diminished compared to the 0.8-2.5 μm region. The WR population stands out relative to background field stars at NIR and MIR colors due to an excess continuum contribution, likely caused by free-free scattering in dense winds. Mean photometric properties of known WRs are presented and imply that reddened late-type WN and WC sources are easier to detect than earlier-type sources at larger Galactic radii. WISE W3 and W4 images of 10 WR stars show evidence of circumstellar shells linked to mass ejections from strong stellar winds.

  7. A line array based near field imaging technique for characterising acoustical properties of elongated targets

    NARCIS (Netherlands)

    Driessen, F.P.G.

    1995-01-01

    With near field imaging techniques the acoustical pressure waves at distances other than the recorded can be calculated. Normally, acquisition on a two dimensional plane is necessary and extrapolation is performed by a Rayleigh integral. A near field single line instead of two dimensional plane

  8. Near-Infrared Scintillation of Liquid Argon: Recent Results Obtained with the NIR Facility at Fermilab

    Energy Technology Data Exchange (ETDEWEB)

    Escobar, C. O. [Fermilab; Rubinov, P. [Fermilab; Tilly, E. [Sewanee U.

    2018-03-19

    After a short review of previous attempts to observe and measure the near-infrared scintillation in liquid argon, we present new results obtained with NIR, a dedicated cryostat at the Fermilab Proton Assembly Building (PAB). The new results give confidence that the near-infrared light can be used as the much needed light signal in large liquid argon time projection chambers.11 pages,

  9. A NEAR-INFRARED SPECTROSCOPIC SURVEY OF COOL WHITE DWARFS IN THE SLOAN DIGITAL SKY SURVEY

    International Nuclear Information System (INIS)

    Kilic, Mukremin; Kowalski, Piotr M.; Von Hippel, Ted

    2009-01-01

    We present near-infrared photometric observations of 15 and spectroscopic observations of 38 cool white dwarfs (WDs). This is the largest near-infrared spectroscopic survey of cool WDs to date. Combining the Sloan Digital Sky Survey photometry and our near-infrared data, we perform a detailed model atmosphere analysis. The spectral energy distributions of our objects are explained fairly well by model atmospheres with temperatures ranging from 6300 K down to 4200 K. Two WDs show significant absorption in the infrared, and are best explained with mixed H/He atmosphere models. Based on the up-to-date model atmosphere calculations by Kowalski and Saumon, we find that the majority of the stars in our sample have hydrogen-rich atmospheres. We do not find any pure helium atmosphere WDs below 5000 K, and we find a trend of increasing hydrogen to helium ratio with decreasing temperature. These findings present an important challenge to understanding the spectral evolution of WDs.

  10. Near infrared spectroscopy in the development of solid dosage forms.

    Science.gov (United States)

    Räsänen, Eetu; Sandler, Niklas

    2007-02-01

    The use of near infrared (NIR) spectroscopy has rapidly grown partly due to demands of process analytical applications in the pharmaceutical industry. Furthermore, newest regulatory guidelines have advanced the increase of the use of NIR technologies. The non-destructive and non-invasive nature of measurements makes NIR a powerful tool in characterization of pharmaceutical solids. These benefits among others often make NIR advantageous over traditional analytical methods. However, in addition to NIR, a wide variety of other tools are naturally also available for analysis in pharmaceutical development and manufacturing, and those can often be more suitable for a given application. The versatility and rapidness of NIR will ensure its contribution to increased process understanding, better process control and improved quality of drug products. This review concentrates on the use of NIR spectroscopy from a process research perspective and highlights recent applications in the field.

  11. Heterogeneously integrated silicon photonics for the mid-infrared and spectroscopic sensing.

    Science.gov (United States)

    Chen, Yu; Lin, Hongtao; Hu, Juejun; Li, Mo

    2014-07-22

    Besides being the foundational material for microelectronics, crystalline silicon has long been used for the production of infrared lenses and mirrors. More recently, silicon has become the key material to achieve large-scale integration of photonic devices for on-chip optical interconnect and signal processing. For optics, silicon has significant advantages: it offers a very high refractive index and is highly transparent in the spectral range from 1.2 to 8 μm. To fully exploit silicon’s superior performance in a remarkably broad range and to enable new optoelectronic functionalities, here we describe a general method to integrate silicon photonic devices on arbitrary foreign substrates. In particular, we apply the technique to integrate silicon microring resonators on mid-infrared compatible substrates for operation in the mid-infrared. These high-performance mid-infrared optical resonators are utilized to demonstrate, for the first time, on-chip cavity-enhanced mid-infrared spectroscopic analysis of organic chemicals with a limit of detection of less than 0.1 ng.

  12. Near-infrared spectroscopy. Innovative technology summary report

    International Nuclear Information System (INIS)

    1999-07-01

    A near-infrared (NIR) spectroscopy system with a remote fiber-optic probe was developed and demonstrated to measure the water content of high-level radioactive wastes from the underground storage tanks at the Hanford Site in richland Washington. The technology was developed as a cost-effective and safer alternative to the thermogravimetric analysis (TGA) technique in use as the baseline. This work was supported by the Tanks Focus Area (TFA) within the Department of Energy's (DOE) Office of Science and Technology (OST) in cooperation with the Hanford Tank Waste Remediation System (TWRS) Program

  13. Nondestructive measurement of total volatile basic nitrogen (TVB-N) in pork meat by integrating near infrared spectroscopy, computer vision and electronic nose techniques.

    Science.gov (United States)

    Huang, Lin; Zhao, Jiewen; Chen, Quansheng; Zhang, Yanhua

    2014-02-15

    Total volatile basic nitrogen (TVB-N) content is an important reference index for evaluating pork freshness. This paper attempted to measure TVB-N content in pork meat using integrating near infrared spectroscopy (NIRS), computer vision (CV), and electronic nose (E-nose) techniques. In the experiment, 90 pork samples with different freshness were collected for data acquisition by three different techniques, respectively. Then, the individual characteristic variables were extracted from each sensor. Next, principal component analysis (PCA) was used to achieve data fusion based on these characteristic variables from 3 different sensors data. Back-propagation artificial neural network (BP-ANN) was used to construct the model for TVB-N content prediction, and the top principal components (PCs) were extracted as the input of model. The result of the model was achieved as follows: the root mean square error of prediction (RMSEP) = 2.73 mg/100g and the determination coefficient (R(p)(2)) = 0.9527 in the prediction set. Compared with single technique, integrating three techniques, in this paper, has its own superiority. This work demonstrates that it has the potential in nondestructive detection of TVB-N content in pork meat using integrating NIRS, CV and E-nose, and data fusion from multi-technique could significantly improve TVB-N prediction performance. Copyright © 2013. Published by Elsevier Ltd.

  14. NEW YOUNG STAR CANDIDATES IN THE TAURUS-AURIGA REGION AS SELECTED FROM THE WIDE-FIELD INFRARED SURVEY EXPLORER

    International Nuclear Information System (INIS)

    Rebull, L. M.; Padgett, D. L.; Noriega-Crespo, A.

    2011-01-01

    The Taurus Molecular Cloud subtends a large solid angle on the sky, in excess of 250 deg 2 . The search for legitimate Taurus members to date has been limited by sky coverage as well as the challenge of distinguishing members from field interlopers. The Wide-field Infrared Survey Explorer has recently observed the entire sky, and we take advantage of the opportunity to search for young stellar object (YSO) candidate Taurus members from a ∼260 deg 2 region designed to encompass previously identified Taurus members. We use near- and mid-infrared colors to select objects with apparent infrared excesses and incorporate other catalogs of ancillary data to present a list of rediscovered Taurus YSOs with infrared excesses (taken to be due to circumstellar disks), a list of rejected YSO candidates (largely galaxies), and a list of 94 surviving candidate new YSO-like Taurus members. There is likely to be contamination lingering in this candidate list, and follow-up spectra are warranted.

  15. Infrared to near-ultraviolet optical response for zigzag-edge silicene nanoribbons under the irradiation of an external electromagnetic field

    Science.gov (United States)

    Liao, Wenhu; Bao, Hairui; Zhang, Xincheng; Zuo, Min; Yang, Hong

    2018-01-01

    We investigate theoretically the width-dependent electronic structure and optical spectrum for intrinsic zigzag-edge silicene nanoribbons with N silicon atoms of the A and B sublattice ( N-ZSiNRs) under the irradiation of an external electromagnetic field at low temperatures. Based on the method of the tight-binding approximation, we have derived a width-dependent dispersion relation and wave function for N-ZSiNRs under the hard-wall boundary condition. By way of the dipole-transition theorem for semiconductors, both the 8- and 16-ZSiNRs have been observed to exhibit broad values (0.30-3.20 eV) of optical conductivity, dielectric function and electron energy loss spectrum in the range of infrared to near-ultraviolet. The optical spectra for 8- and 16-ZSiNRs have been manifested to be transitions between the valence and conduction bands with the same subband indices, as well as the resonances between the edge state and bulk state subbands, while the optical transitions among the different indexed bulk subbands should be forbidden owing to the non-conserved momentum. The obtained results are believed to be of importance in exploring new effects and optoelectronic applications of the silicene-based electron devices.

  16. An image analysis system for near-infrared (NIR) fluorescence lymph imaging

    Science.gov (United States)

    Zhang, Jingdan; Zhou, Shaohua Kevin; Xiang, Xiaoyan; Rasmussen, John C.; Sevick-Muraca, Eva M.

    2011-03-01

    Quantitative analysis of lymphatic function is crucial for understanding the lymphatic system and diagnosing the associated diseases. Recently, a near-infrared (NIR) fluorescence imaging system is developed for real-time imaging lymphatic propulsion by intradermal injection of microdose of a NIR fluorophore distal to the lymphatics of interest. However, the previous analysis software3, 4 is underdeveloped, requiring extensive time and effort to analyze a NIR image sequence. In this paper, we develop a number of image processing techniques to automate the data analysis workflow, including an object tracking algorithm to stabilize the subject and remove the motion artifacts, an image representation named flow map to characterize lymphatic flow more reliably, and an automatic algorithm to compute lymph velocity and frequency of propulsion. By integrating all these techniques to a system, the analysis workflow significantly reduces the amount of required user interaction and improves the reliability of the measurement.

  17. Synthesis and characterization of monodisperse, mesoporous, and magnetic sub-micron particles doped with a near-infrared fluorescent dye

    International Nuclear Information System (INIS)

    Le Guevel, Xavier; Nooney, Robert; McDonagh, Colette; MacCraith, Brian D.

    2011-01-01

    Recently, multifunctional silica nanoparticles have been investigated extensively for their potential use in biomedical applications. We have prepared sub-micron monodisperse and stable multifunctional mesoporous silica particles with a high level of magnetization and fluorescence in the near infrared region using an one-pot synthesis technique. Commercial magnetite nanocrystals and a conjugated-NIR-dye were incorporated inside the particles during the silica condensation reaction. The particles were then coated with polyethyleneglycol to stop aggregation. X-ray diffraction, N 2 adsorption analysis, TEM, fluorescence and absorbance measurements were used to structurally characterize the particles. These mesoporous silica spheres have a large surface area (1978 m 2 /g) with 3.40 nm pore diameter and a high fluorescence in the near infrared region at λ=700 nm. To explore the potential of these particles for drug delivery applications, the pore accessibility to hydrophobic drugs was simulated by successfully trapping a hydrophobic ruthenium dye complex inside the particle with an estimated concentration of 3 wt%. Fluorescence imaging confirmed the presence of both NIR dye and the post-grafted ruthenium dye complex inside the particles. These particles moved at approximately 150 μm/s under the influence of a magnetic field, hence demonstrating the multifunctionality and potential for biomedical applications in targeting and imaging. - Graphical Abstract: Hydrophobic fluorescent Ruthenium complex has been loaded into the mesopores as a surrogate drug to simulate drug delivery and to enhance the multifunctionality of the magnetic NIR emitting particles. Highlights: → Monodisperse magnetic mesoporous silica particles emitting in the near infrared region are obtained in one-pot synthesis. → We prove the capacity of such particles to uptake hydrophobic dye to mimic drug loading. → Loaded fluorescent particles can be moved under a magnetic field in a microfluidic

  18. Near-infrared laser, time domain, breast tumour detection system

    International Nuclear Information System (INIS)

    Joblin, A.J.

    1996-01-01

    Full text: The use of near-infrared laser, time domain techniques have been proposed for some time now as an alternative to X-ray mammography, as a means of mass screening for breast disease. The great driving force behind this research has been that near-infrared photons are a non-ionising radiation, which affords a greater degree of patient safety than when using X-rays. This would mean that women at risk of breast disease could be screened with a near-infrared laser imaging system, much more regularly than with an X-ray mammography system, which should allow for the earlier detection and treatment of breast disease. This paper presents a theoretical investigation of the performance of a near-infrared, time domain breast imaging system. The performance of the imaging system is characterised by the resolution and contrast parameters, which were studied using a numerical finite difference calculation method. The finite difference method is used to solve the diffusion equation for the photon transport through the inhomogeneous breast tissue medium. Optimal performance was found to be obtained with short photon times of flight. However the signal to noise ratio decreases rapidly as the photon time of flight is decreased. The system performance will therefore be limited by the noise equivalent power of the time resolved detection system, which is the signal incident on the time resolved detection system which gives a signal to noise ratio of 1:1. Photon times of flight shorter than 500 ps are not practical with current technology, which places limits on the resolution and contrast. The photon signal throughput can be increased by increasing the size of the laser beam width, by increasing the size of the aperture stop of the detector, by increasing the laser pulse duration or decreasing the detector time resolution. Best system performance is found by optimising these parameters for a given time gating and detector system characteristic (NEP). It was found that the

  19. Near-Surface Engineered Environmental Barrier Integrity

    International Nuclear Information System (INIS)

    Piet, S.J.; Breckenridge, R.P.

    2002-01-01

    The INEEL Environmental Systems Research and Analysis (ESRA) program has launched a new R and D project on Near-Surface Engineered Environmental Barrier Integrity to increase knowledge and capabilities for using engineering and ecological components to improve the integrity of near-surface barriers used to confine contaminants from the public and the environment. The knowledge gained and the capabilities built will help verify the adequacy of past remedial decisions and enable improved solutions for future cleanup decisions. The research is planned to (a) improve the knowledge of degradation mechanisms (weathering, biological, geological, chemical, radiological, and catastrophic) in times shorter than service life, (b) improve modeling of barrier degradation dynamics, (c) develop sensor systems to identify degradation prior to failure, and (d) provide a better basis for developing and testing of new barrier systems to increase reliability and reduce the risk of failure. Our project combine s selected exploratory studies (benchtop and field scale), coupled effects accelerated aging testing and the meso-scale, testing of new monitoring concepts, and modeling of dynamic systems. The performance of evapo-transpiration, capillary, and grout-based barriers will be examined

  20. Near-field characteristics of highly non-paraxial subwavelength optical fields with hybrid states of polarization

    International Nuclear Information System (INIS)

    Chen Rui-Pin; Gao Teng-Yue; Chew Khian-Hooi; Dai Chao-Qing; Zhou Guo-Quan; He Sai-Ling

    2017-01-01

    The vectorial structure of an optical field with hybrid states of polarization (SoP) in the near-field is studied by using the angular spectrum method of an electromagnetic beam. Physical images of the longitudinal components of evanescent waves are illustrated and compared with those of the transverse components from the vectorial structure. Our results indicate that the relative weight integrated over the transverse plane of the evanescent wave depends strongly on the number of the polarization topological charges. The shapes of the intensity profiles of the longitudinal components are different from those of the transverse components, and it can be manipulated by changing the initial SoP of the field cross-section. The longitudinal component of evanescent wave dominates the near-field region. In addition, it also leads to three-dimensional shape variations of the optical field and the optical spin angular momentum flux density distributions. (paper)

  1. Noncontact blood species identification method based on spatially resolved near-infrared transmission spectroscopy

    Science.gov (United States)

    Zhang, Linna; Sun, Meixiu; Wang, Zhennan; Li, Hongxiao; Li, Yingxin; Li, Gang; Lin, Ling

    2017-09-01

    The inspection and identification of whole blood are crucially significant for import-export ports and inspection and quarantine departments. In our previous research, we proved Near-Infrared diffuse transmitted spectroscopy method was potential for noninvasively identifying three blood species, including macaque, human and mouse, with samples measured in the cuvettes. However, in open sampling cases, inspectors may be endangered by virulence factors in blood samples. In this paper, we explored the noncontact measurement for classification, with blood samples measured in the vacuum blood vessels. Spatially resolved near-infrared spectroscopy was used to improve the prediction accuracy. Results showed that the prediction accuracy of the model built with nine detection points was more than 90% in identification between all five species, including chicken, goat, macaque, pig and rat, far better than the performance of the model built with single-point spectra. The results fully supported the idea that spatially resolved near-infrared spectroscopy method can improve the prediction ability, and demonstrated the feasibility of this method for noncontact blood species identification in practical applications.

  2. AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS

    International Nuclear Information System (INIS)

    Stewart, Paul N.; Tuthill, Peter G.; Nicholson, Philip D.; Sloan, G. C.; Hedman, Matthew M.

    2015-01-01

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recovered that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online

  3. AN ATLAS OF BRIGHT STAR SPECTRA IN THE NEAR-INFRARED FROM CASSINI-VIMS

    Energy Technology Data Exchange (ETDEWEB)

    Stewart, Paul N.; Tuthill, Peter G. [Sydney Institute for Astronomy, School of Physics, The University of Sydney, NSW 2006 (Australia); Nicholson, Philip D. [Department of Astronomy, Cornell University, Ithaca, NY 14853 (United States); Sloan, G. C. [Cornell Center for Astrophyics and Planetary Science, Cornell University, Ithaca, NY 14853 (United States); Hedman, Matthew M., E-mail: p.stewart@physics.usyd.edu.au [Department of Physics, University of Idaho, Moscow, ID 83844 (United States)

    2015-12-15

    We present the Cassini Atlas Of Stellar Spectra (CAOSS), comprised of near-infrared, low-resolution spectra of bright stars recovered from space-based observations by the Cassini spacecraft. The 65 stellar targets in the atlas are predominately M, K, and S giants. However, it also contains spectra of other bright nearby stars including carbon stars and main-sequence stars from A to F. The spectra presented are free of all spectral contamination caused by the Earth's atmosphere, including the detrimental telluric molecular bands which put parts of the near-infrared spectrum out of reach of terrestrial observations. With a single instrument, a spectro-photometric data set is recovered that spans the near-infrared from 0.8 to 5.1 μm with spectral resolution ranging from R = 53.5 to R = 325. Spectra have been calibrated into absolute flux units after careful characterization of the instrumental spectral efficiency. Spectral energy distributions for most stars match closely with literature values. All final data products have been made available online.

  4. Assessing soil carbon lability by near infrared spectroscopy and NaOCL oxidation

    DEFF Research Database (Denmark)

    Thomsen, Ingrid Kaag; Bruun, Sander; Jensen, Lars Stoumann

    2009-01-01

    The feasibility of near infrared (NIR) spectroscopy for quantifying labile organic matter (OM) in arable soils and for predicting soil refractory OM fractions was tested on 37 soils varying in texture and soil carbon (C) content. Three sets of arable soils (0-20 cm depth) were sampled from 1) long......-term field experiments with different OM inputs, 2) individual sites with inherent with-in field gradients in soil texture and/or C content, and 3) from a range of different sites covering variations in management and geological origin. The labile OM fraction was defined by the CO2 evolved from the soils...... incubated for 34 weeks while refractory OM was obtained by NaOCl oxidation. The labile fraction of the soil C accounted for 2-12% of the total soil C content. No systematic relationship between labile C content and total soil C or clay was found, but NIR spectra could be correlated well with the labile C...

  5. CANDELS : THE COSMIC ASSEMBLY NEAR-INFRARED DEEP EXTRAGALACTIC LEGACY SURVEY

    NARCIS (Netherlands)

    Grogin, Norman A.; Kocevski, Dale D.; Faber, S. M.; Ferguson, Henry C.; Koekemoer, Anton M.; Riess, Adam G.; Acquaviva, Viviana; Alexander, David M.; Almaini, Omar; Ashby, Matthew L. N.; Barden, Marco; Bell, Eric F.; Bournaud, Frederic; Brown, Thomas M.; Caputi, Karina I.; Casertano, Stefano; Cassata, Paolo; Castellano, Marco; Challis, Peter; Chary, Ranga-Ram; Cheung, Edmond; Cirasuolo, Michele; Conselice, Christopher J.; Cooray, Asantha Roshan; Croton, Darren J.; Daddi, Emanuele; Dahlen, Tomas; Dave, Romeel; de Mello, Duilia F.; Dekel, Avishai; Dickinson, Mark; Dolch, Timothy; Donley, Jennifer L.; Dunlop, James S.; Dutton, Aaron A.; Elbaz, David; Fazio, Giovanni G.; Filippenko, Alexei V.; Finkelstein, Steven L.; Fontana, Adriano; Gardner, Jonathan P.; Garnavich, Peter M.; Gawiser, Eric; Giavalisco, Mauro; Grazian, Andrea; Guo, Yicheng; Hathi, Nimish P.; Haeussler, Boris; Hopkins, Philip F.; Huang, Jia-Sheng; Huang, Kuang-Han; Jha, Saurabh W.; Kartaltepe, Jeyhan S.; Kirshner, Robert P.; Koo, David C.; Lai, Kamson; Lee, Kyoung-Soo; Li, Weidong; Lotz, Jennifer M.; Lucas, Ray A.; Madau, Piero; McCarthy, Patrick J.; McGrath, Elizabeth J.; McIntosh, Daniel H.; McLure, Ross J.; Mobasher, Bahram; Moustakas, Leonidas A.; Mozena, Mark; Nandra, Kirpal; Newman, Jeffrey A.; Niemi, Sami-Matias; Noeske, Kai G.; Papovich, Casey J.; Pentericci, Laura; Pope, Alexandra; Primack, Joel R.; Rajan, Abhijith; Ravindranath, Swara; Reddy, Naveen A.; Renzini, Alvio; Rix, Hans-Walter; Robaina, Aday R.; Rodney, Steven A.; Rosario, David J.; Rosati, Piero; Salimbeni, Sara; Scarlata, Claudia; Siana, Brian; Simard, Luc; Smidt, Joseph; Somerville, Rachel S.; Spinrad, Hyron; Straughn, Amber N.; Strolger, Louis-Gregory; Telford, Olivia; Teplitz, Harry I.; Trump, Jonathan R.; van der Wel, Arjen; Villforth, Carolin; Wechsler, Risa H.; Weiner, Benjamin J.; Wiklind, Tommy; Wild, Vivienne; Wilson, Grant; Wuyts, Stijn; Yan, Hao-Jing; Yun, Min S.

    2011-01-01

    The Cosmic Assembly Near-infrared Deep Extragalactic Legacy Survey (CANDELS) is designed to document the first third of galactic evolution, over the approximate redshift (z) range 8-1.5. It will image >250,000 distant galaxies using three separate cameras on the Hubble Space Telescope, from the

  6. Evaluation of portable near-infrared spectroscopy for organic milk authentication

    NARCIS (Netherlands)

    Liu, Ningjing; Parra, Hector Aya; Pustjens, Annemieke; Hettinga, Kasper; Mongondry, Philippe; Ruth, van Saskia M.

    2018-01-01

    Organic products are vulnerable to fraud due to their premium price. Analytical methodology helps to manage the risk of fraud and due to the miniaturization of equipment, tests may nowadays even be rapidly applied on-site. The current study aimed to evaluate portable near infrared spectroscopy

  7. [Study of near infrared spectral preprocessing and wavelength selection methods for endometrial cancer tissue].

    Science.gov (United States)

    Zhao, Li-Ting; Xiang, Yu-Hong; Dai, Yin-Mei; Zhang, Zhuo-Yong

    2010-04-01

    Near infrared spectroscopy was applied to measure the tissue slice of endometrial tissues for collecting the spectra. A total of 154 spectra were obtained from 154 samples. The number of normal, hyperplasia, and malignant samples was 36, 60, and 58, respectively. Original near infrared spectra are composed of many variables, for example, interference information including instrument errors and physical effects such as particle size and light scatter. In order to reduce these influences, original spectra data should be performed with different spectral preprocessing methods to compress variables and extract useful information. So the methods of spectral preprocessing and wavelength selection have played an important role in near infrared spectroscopy technique. In the present paper the raw spectra were processed using various preprocessing methods including first derivative, multiplication scatter correction, Savitzky-Golay first derivative algorithm, standard normal variate, smoothing, and moving-window median. Standard deviation was used to select the optimal spectral region of 4 000-6 000 cm(-1). Then principal component analysis was used for classification. Principal component analysis results showed that three types of samples could be discriminated completely and the accuracy almost achieved 100%. This study demonstrated that near infrared spectroscopy technology and chemometrics method could be a fast, efficient, and novel means to diagnose cancer. The proposed methods would be a promising and significant diagnosis technique of early stage cancer.

  8. A robust quantitative near infrared modeling approach for blend monitoring.

    Science.gov (United States)

    Mohan, Shikhar; Momose, Wataru; Katz, Jeffrey M; Hossain, Md Nayeem; Velez, Natasha; Drennen, James K; Anderson, Carl A

    2018-01-30

    This study demonstrates a material sparing Near-Infrared modeling approach for powder blend monitoring. In this new approach, gram scale powder mixtures are subjected to compression loads to simulate the effect of scale using an Instron universal testing system. Models prepared by the new method development approach (small-scale method) and by a traditional method development (blender-scale method) were compared by simultaneously monitoring a 1kg batch size blend run. Both models demonstrated similar model performance. The small-scale method strategy significantly reduces the total resources expended to develop Near-Infrared calibration models for on-line blend monitoring. Further, this development approach does not require the actual equipment (i.e., blender) to which the method will be applied, only a similar optical interface. Thus, a robust on-line blend monitoring method can be fully developed before any large-scale blending experiment is viable, allowing the blend method to be used during scale-up and blend development trials. Copyright © 2017. Published by Elsevier B.V.

  9. Near-Infrared Trigged Stimulus-Responsive Photonic Crystals with Hierarchical Structures.

    Science.gov (United States)

    Lu, Tao; Pan, Hui; Ma, Jun; Li, Yao; Zhu, Shenmin; Zhang, Di

    2017-10-04

    Stimuli-responsive photonic crystals (PCs) trigged by light would provide a novel intuitive and quantitative method for noninvasive detection. Inspired by the flame-detecting aptitude of fire beetles and the hierarchical photonic structures of butterfly wings, we herein developed near-infrared stimuli-responsive PCs through coupling photothermal Fe 3 O 4 nanoparticles with thermoresponsive poly(N-isopropylacrylamide) (PNIPAM), with hierarchical photonic structured butterfly wing scales as the template. The nanoparticles within 10 s transferred near-infrared radiation into heat that triggered the phase transition of PNIPAM; this almost immediately posed an anticipated effect on the PNIPAM refractive index and resulted in a composite spectrum change of ∼26 nm, leading to the direct visual readout. It is noteworthy that the whole process is durable and stable mainly owing to the chemical bonding formed between PNIPAM and the biotemplate. We envision that this biologically inspired approach could be utilized in a broad range of applications and would have a great impact on various monitoring processes and medical sensing.

  10. Evaluation of apparent viscosity of Para rubber latex by diffuse reflection near-infrared spectroscopy.

    Science.gov (United States)

    Sirisomboon, Panmanas; Chowbankrang, Rawiphan; Williams, Phil

    2012-05-01

    Near-infrared spectroscopy in diffuse reflection mode was used to evaluate the apparent viscosity of Para rubber field latex and concentrated latex over the wavelength range of 1100 to 2500 nm, using partial least square regression (PLSR). The model with ten principal components (PCs) developed using the raw spectra accurately predicted the apparent viscosity with correlation coefficient (r), standard error of prediction (SEP), and bias of 0.974, 8.6 cP, and -0.4 cP, respectively. The ratio of the SEP to the standard deviation (RPD) and the ratio of the SEP to the range (RER) for the prediction were 4.4 and 16.7, respectively. Therefore, the model can be used for measurement of the apparent viscosity of field latex and concentrated latex in quality assurance and process control in the factory.

  11. Infrared Dual-Line Hanle Diagnostic of the Coronal Vector Magnetic Field

    Energy Technology Data Exchange (ETDEWEB)

    Dima, Gabriel I.; Kuhn, Jeffrey R. [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States); Berdyugina, Svetlana V., E-mail: gdima@hawaii.edu [Institute for Astronomy, University of Hawaii, Pukalani, HI (United States); Kiepenheuer Institut fuer Sonnenphysik, Freiburg (Germany); Predictive Science Inc., San Diego, CA (United States)

    2016-04-20

    Measuring the coronal vector magnetic field is still a major challenge in solar physics. This is due to the intrinsic weakness of the field (e.g., ~4G at a height of 0.1R⊙ above an active region) and the large thermal broadening of coronal emission lines. We propose using concurrent linear polarization measurements of near-infrared forbidden and permitted lines together with Hanle effect models to calculate the coronal vector magnetic field. In the unsaturated Hanle regime both the direction and strength of the magnetic field affect the linear polarization, while in the saturated regime the polarization is insensitive to the strength of the field. The relatively long radiative lifetimes of coronal forbidden atomic transitions implies that the emission lines are formed in the saturated Hanle regime and the linear polarization is insensitive to the strength of the field. By combining measurements of both forbidden and permitted lines, the direction and strength of the field can be obtained. For example, the SiX 1.4301 μm line shows strong linear polarization and has been observed in emission over a large field-of-view (out to elongations of 0.5 R⊙). Here we describe an algorithm that combines linear polarization measurements of the SiX 1.4301 μm forbidden line with linear polarization observations of the HeI 1.0830 μm permitted coronal line to obtain the vector magnetic field. To illustrate the concept we assume that the emitting gas for both atomic transitions is located in the plane of the sky. The further development of this method and associated tools will be a critical step toward interpreting the high spectral, spatial and temporal infrared spectro-polarimetric measurements that will be possible when the Daniel K. Inouye Solar Telescope (DKIST) is completed in 2019.

  12. Near-field flat focusing mirrors

    Science.gov (United States)

    Cheng, Yu-Chieh; Staliunas, Kestutis

    2018-03-01

    This article reviews recent progress towards the design of near-field flat focusing mirrors, focusing/imaging light patterns in reflection. An important feature of such flat focusing mirrors is their transverse invariance, as they do not possess any optical axis. We start with a review of the physical background to the different focusing mechanisms of near- and far-field focusing. These near-field focusing devices like flat lenses and the reviewed near-field focusing mirrors can implement planar focusing devices without any optical axis. In contrast, various types of far-field planar focusing devices, such as high-contrast gratings and metasurfaces, unavoidably break the transverse invariance due to their radially symmetrical structures. The particular realizations of near-field flat focusing mirrors including Bragg-like dielectric mirrors and dielectric subwavelength gratings are the main subjects of the review. The first flat focusing mirror was demonstrated with a chirped mirror and was shown to manage an angular dispersion for beam focusing, similar to the management of chromatic dispersion for pulse compression. Furthermore, the reviewed optimized chirped mirror demonstrated a long near-field focal length, hardly achieved by a flat lens or a planar hyperlens. Two more different configurations of dielectric subwavelength gratings that focus a light beam at normal or oblique incidence are also reviewed. We also summarize and compare focusing performance, limitations, and future perspectives between the reviewed flat focusing mirrors and other planar focusing devices including a flat lens with a negative-index material, a planar hyperlens, a high-contrast grating, and a metasurface.

  13. Visible/Near-Infrared Spectral Properties of MUSES C Target Asteroid 25143 Itokawa

    Science.gov (United States)

    Jarvis, K. S.; Vilas, F.; Kelley, M. S.; Abell, P. A.

    2004-01-01

    The Japanese MUSES C mission launched the Hayabusa spacecraft last May 15, 2003, to encounter and study the near-Earth asteroid 25143 Itokawa. The spacecraft will obtain visible images through broadband filters similar to the ECAS filters, and near-infrared spectra from 0.85 - 2.1 microns. In preparation for this encounter, opportunities to study the asteroid with Earth-based telescopes have been fully leveraged. Visible and near-infrared spectral observations were made of asteroid 25143 Itokawa during several nights of March, 2001, around the last apparition. We report here on the results of extensive spectral observations made to address the questions of compositional variations across the surface of the asteroid (as determined by the rotational period and shape model); variations in phase angle (Sun-Itokawa-Earth angle) on spectral characteristics; and predictions of Itokawa observations by Hayabusa based on the spectral resolution and responsivity of the NIRS and AMICA instruments.

  14. Is near-infrared spectroscopy clinically useful in the preterm infant?

    DEFF Research Database (Denmark)

    da Costa, Cristine Sortica; Greisen, Gorm; Austin, Topun

    2015-01-01

    Near-infrared spectroscopy (NIRS) has been used to study cerebral haemodynamics and oxygenation in the preterm infant for many years, but its use as a clinical tool has remained elusive. This has partly been due to the challenges of providing a continuous quantitative measurement that is valid an...

  15. High-power, continuous-wave, single-frequency, all-periodically-poled, near-infrared source.

    Science.gov (United States)

    Devi, Kavita; Chaitanya Kumar, S; Ebrahim-Zadeh, M

    2012-12-15

    We report a high-power, single-frequency, continuous-wave (cw) source tunable across 775-807 nm in the near-infrared, based on internal second harmonic generation (SHG) of a cw singly-resonant optical parametric oscillator (OPO) pumped by a Yb-fiber laser. The compact, all-periodically-poled source employs a 48-mm-long, multigrating MgO doped periodically poled lithium niobate (MgO:PPLN) crystal for the OPO and a 30-mm-long, fan-out grating MgO-doped stoichiometric periodically poled lithium tantalate (MgO:sPPLT) crystal for intracavity SHG, providing as much as 3.7 W of near-infrared power at 793 nm, together with 4 W of idler power at 3232 nm, at an overall extraction efficiency of 28%. Further, the cw OPO is tunable across 3125-3396 nm in the idler, providing as much as 4.3 W at 3133 nm with >3.8  W over 77% of the tuning range together with >3  W of near-infrared power across 56% of SHG tuning range, in high-spatial beam-quality with M2<1.4. The SHG output has an instantaneous linewidth of 8.5 MHz and exhibits a passive power stability better than 3.5% rms over more than 1 min.

  16. Near-infrared reflectance bull’s eye maculopathy as an early indication of hydroxychloroquine toxicity

    Directory of Open Access Journals (Sweden)

    Wong KL

    2015-03-01

    Full Text Available Keye L Wong,1 Scott E Pautler,2 David J Browning31Retina Associates of Sarasota, Sarasota, FL, USA; 2Retina Vitreous Associates of Florida, Tampa, FL, USA; 3Charlotte Eye Ear Nose and Throat Associates, Charlotte, NC, USAImportance: In some patients, hydroxychloroquine ocular toxicity may progress even following cessation of therapy. Any leverage the clinician may use to allow earlier detection may avert significant vision loss.Observation: We report three cases suggesting that bull’s eye maculopathy seen on near-infrared reflectance with a confocal scanning laser ophthalmoscope could be an early, objective manifestation of hydroxychloroquine ocular toxicity, and with progression of the disease this near-infrared “bull’s eye” change may disappear.Conclusion and relevance: Alerting clinicians to this observation may allow a larger case series to corroborate the hypothesis that bull’s eye maculopathy detected by near-infrared reflectance may represent an early sign of hydroxychloroquine toxicity.Keywords: confocal, scanning laser ophthalmoscope, multifocal ERG

  17. Au-Nanomaterials as a Superior Choice for Near-Infrared Photothermal Therapy

    Directory of Open Access Journals (Sweden)

    Fahmida Jabeen

    2014-12-01

    Full Text Available Photothermal therapy (PPT is a platform to fight cancer by using multiplexed interactive plasmonic nanomaterials as probes in combination with the excellent therapeutic performance of near-infrared (NIR light. With recent rapid developments in optics and nanotechnology, plasmonic materials have potential in cancer diagnosis and treatment, but there are some concerns regarding their clinical use. The primary concerns include the design of plasmonic nanomaterials which are taken up by the tissues, perform their function and then clear out from the body. Gold nanoparticles (Au NPs can be developed in different morphologies and functionalized to assist the photothermal therapy in a way that they have clinical value. This review outlines the diverse Au morphologies, their distinctive characteristics, concerns and limitations to provide an idea of the requirements in the field of NIR-based therapeutics.

  18. Comparison of human skin opto-thermal response to near-infrared and visible laser irradiations: a theoretical investigation

    Energy Technology Data Exchange (ETDEWEB)

    Dai Tianhong [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Pikkula, Brian M [Department of Bioengineering, Rice University, Houston, TX 77251 (United States); Wang, Lihong V [Department of Biomedical Engineering, Texas A and M University, College Station, TX 77843 (United States); Anvari, Bahman [Department of Bioengineering, Rice University, Houston, TX 77251 (United States)

    2004-11-07

    Near-infrared wavelengths are absorbed less by epidermal melanin, and penetrate deeper into human skin dermis and blood than visible wavelengths. Therefore, laser irradiation using near-infrared wavelengths may improve the therapeutic outcome of cutaneous hyper-vascular malformations in moderately to heavily pigmented skin patients and those with large-sized blood vessels or blood vessels extending deeply into the skin. A mathematical model composed of a Monte Carlo algorithm to estimate the distribution of absorbed light, numerical solution of a bio-heat diffusion equation to calculate the transient temperature distribution, and a damage integral based on an empirical Arrhenius relationship to quantify the tissue damage was utilized to investigate the opto-thermal response of human skin to near-infrared and visible laser irradiations in conjunction with cryogen spray cooling. In addition, the thermal effects of a single continuous laser pulse and micropulse-composed laser pulse profiles were compared. Simulation results indicated that a 940 nm wavelength induces improved therapeutic outcome compared with a 585 and 595 nm wavelengths for the treatment of patients with large-sized blood vessels and moderately to heavily pigmented skin. On the other hand, a 585 nm wavelength shows the best efficacy in treating small-sized blood vessels, as characterized by the largest laser-induced blood vessel damage depth compared with 595 and 940 nm wavelengths. Dermal blood content has a considerable effect on the threshold incident dosage for epidermal damage, while the effect of blood vessel size is minimal. For the same macropulse duration and incident dosage, a micropulse-composed pulse profile results in higher peak temperature at the basal layer of skin epidermis than an ideal single continuous pulse profile.

  19. Integration of infrared thermography into various maintenance methodologies

    Science.gov (United States)

    Morgan, William T.

    1993-04-01

    Maintenance methodologies are in developmental stages throughout the world as global competitiveness drives all industries to improve operational efficiencies. Rapid progress in technical advancements has added an additional strain on maintenance organizations to progressively change. Accompanying needs for advanced training and documentation is the demand for utilization of various analytical instruments and quantitative methods. Infrared thermography is one of the primary elements of engineered approaches to maintenance. Current maintenance methodologies can be divided into six categories; Routine ('Breakdown'), Preventive, Predictive, Proactive, Reliability-Based, and Total Productive (TPM) maintenance. Each of these methodologies have distinctive approaches to achieving improved operational efficiencies. Popular though is that infrared thermography is a Predictive maintenance tool. While this is true, it is also true that it can be effectively integrated into each of the maintenance methodologies for achieving desired results. The six maintenance strategies will be defined. Infrared applications integrated into each will be composed in tabular form.

  20. Interference Tolerant Functional Near Infrared Spectrometer (fNIRS) for Cognitive State Monitoring

    Data.gov (United States)

    National Aeronautics and Space Administration — Measuring hemoglobin concentration changes in the brain with Functional Near Infrared Spectroscopy (fNIRS) is a promising technique for monitoring cognitive state...

  1. The Hubble Space Telescope: UV, Visible, and Near-Infrared Pursuits

    Science.gov (United States)

    Wiseman, Jennifer

    2010-01-01

    The Hubble Space Telescope continues to push the limits on world-class astrophysics. Cameras including the Advanced Camera for Surveys and the new panchromatic Wide Field Camera 3 which was installed nu last year's successful servicing mission S2N4,o{fer imaging from near-infrared through ultraviolet wavelengths. Spectroscopic studies of sources from black holes to exoplanet atmospheres are making great advances through the versatile use of STIS, the Space Telescope Imaging Spectrograph. The new Cosmic Origins Spectrograph, also installed last year, is the most sensitive UV spectrograph to fly io space and is uniquely suited to address particular scientific questions on galaxy halos, the intergalactic medium, and the cosmic web. With these outstanding capabilities on HST come complex needs for laboratory astrophysics support including atomic and line identification data. I will provide an overview of Hubble's current capabilities and the scientific programs and goals that particularly benefit from the studies of laboratory astrophysics.

  2. Hyper-Spectral Imager in visible and near-infrared band for lunar ...

    Indian Academy of Sciences (India)

    India's first lunar mission, Chandrayaan-1, will have a Hyper-Spectral Imager in the visible and near-infrared spectral ... mapping of the Moon's crust in a large number of spectral channels. The planned .... In-flight verification may be done.

  3. A unidirectional subwavelength focusing near-field plate

    Energy Technology Data Exchange (ETDEWEB)

    Imani, Mohammadreza F.; Grbic, Anthony [Radiation Laboratory, Department of Electrical Engineering and Computer Science, University of Michigan, Ann Arbor, Michigan 48109 (United States)

    2014-01-28

    Near-field plates consist of non-periodically patterned surfaces that can overcome the diffraction limit and confine electromagnetic fields to subwavelength dimensions. Previous near-field plates experimentally demonstrated extreme field tailoring capabilities. However, their performance suffered from radiation/reflection in undesired directions, those other than the subwavelength focus. This issue can limit the practical use of near-field plates. In this paper, we address this issue by designing a unidirectional near-field plate that can form a subwavelength focal pattern, while suppressing the field radiated/reflected in other directions. The design and operation of the proposed unidirectional near-field plate are verified through full-wave simulation. The unidirectional near-field plate may find application in high resolution imaging and probing, high density data storage, and wireless power transfer systems. As an example, its utility as a high resolution probe is demonstrated through full-wave electromagnetic simulation.

  4. Laboratory Thermal Infrared and Visible to Near-Infrared Spectral Analysis of Chert

    Science.gov (United States)

    McDowell, M. L.; Hamilton, V. E.

    2007-12-01

    Though basaltic materials dominate the composition of the Martian surface, a material with a relatively high silica component in an area of Eos Chasma was reported by [1] from thermal infrared (TIR) data. The spectrum of the silica phase resembles quartz or chert, but with the existing information it is difficult to tell which phase best fits the observations. Though quartz, chert, and amorphous silica are chemically identical (SiO2), their physical differences (e.g., microstructures) result in different TIR spectral characteristics. Previous studies have analyzed a limited number of chert samples using emission infrared spectroscopy [2] and transmission infrared spectroscopy [3]. We continue these preliminary studies with an investigation aiming to more completely understand and document the variation in spectral character of cherts. This knowledge may help to identify the silica phase in Eos Chasma and any future discoveries. Our study includes a more extensive sampling of geologic chert in hand sample (>15 samples) with various sources, methods of formation, surface textures, and crystallinities. We analyzed their visible to near-infrared (VNIR) reflectance spectra, as well as spectral features in TIR emission spectra. We measured multiple locations on each sample to determine spectral homogeneity across the sample and between various orientations. Where possible, natural, cut, and recently fractured surfaces were measured. We compared the collected TIR spectra for similarities and differences in shape and spectral contrast within each sample and between samples that may relate to variations in the samples' structure (e.g. crystallinity, and surface texture). VNIR measurements show features indicative of non-silica phases and water that may be present in the cherts. [1] Hamilton, V.E. (2005) Eos Trans. AGU, Fall Meeting Suppl., Abstract P24A-08. [2] Michalski, J.R. (2005) PhD Diss., ASU, Tempe. [3] Long, D. G. et al. (2001) Canadian Archaeological Assoc., 33rd

  5. A correlated-k model of radiative transfer in the near-infrared windows of Venus

    International Nuclear Information System (INIS)

    Tsang, C.C.C.; Irwin, P.G.J.; Taylor, F.W.; Wilson, C.F.

    2008-01-01

    We present a correlated-k-based model for generating synthetic spectra in the near-infrared window regions, from 1.0 to 2.5 μm, emitted from the deep atmosphere of Venus on the nightside. This approach is applicable for use with any near-infrared instrument, ground-based and space-borne, for analysis of the thermal emissions in this spectral range. We also approach this work with the view of using the model, in conjunction with a retrieval algorithm, to retrieve minor species from the Venus Express/VIRTIS instrument. An existing radiative-transfer model was adapted for Venusian conditions to deal with the prevailing high pressures and temperatures and other conditions. A comprehensive four-modal cloud structure model based on Pollack et al. [Near-infrared light from venus' nightside: a spectroscopic analysis. Icarus 1993;103:1-42], using refractive indices for a 75% H 2 SO 4 25% H 2 O mixture from Palmer and Williams [Optical constants of sulfuric acid; application to the clouds of Venus? Appl Opt 1975;14(1):208-19], was also implemented. We then utilized a Mie scattering algorithm to account for the multiple scattering effect between cloud and haze layers that occur in the Venusian atmosphere. The correlated-k model is shown to produce good agreement with ground-based spectra of Venus in the near infrared, and to match the output from a line-by-line radiative-transfer model to better than 10%

  6. Near-field and far-field modeling of scattered surface waves. Application to the apertureless scanning near-field optical microscopy

    International Nuclear Information System (INIS)

    Muller, J.; Parent, G.; Fumeron, S.; Jeandel, G.; Lacroix, D.

    2011-01-01

    The detection of surface waves through scanning near-field optical microscopy (SNOM) is a promising technique for thermal measurements at very small scales. Recent studies have shown that electromagnetic waves, in the vicinity of a scattering structure such as an atomic force microscopy (AFM) tip, can be scattered from near to far-field and thus detected. In the present work, a model based on the finite difference time domain (FDTD) method and the near-field to far-field (NFTFF) transformation for electromagnetic waves propagation is presented. This model has been validated by studying the electromagnetic field of a dipole in vacuum and close to a dielectric substrate. Then simulations for a tetrahedral tip close to an interface are presented and discussed.

  7. Radiation-Induced Transient Effects in Near Infrared Focal Plane Arrays

    Science.gov (United States)

    Reed, Robert A.; Pickel, J.; Marshall, P.; Waczynski, A.; McMurray, R.; Gee, G.; Polidan, E.; Johnson, S.; McKeivey, M.; Ennico, K.; hide

    2004-01-01

    This viewgraph presentation describes a test simulate the transient effects of cosmic ray impacts on near infrared focal plane arrays. The objectives of the test are to: 1) Characterize proton single events as function of energy and angle of incidence; 2) Measure charge spread (crosstalk) to adjacent pixels; 3) Assess transient recovery time.

  8. Near-infrared electroluminescence from double-emission-layers devices based on Ytterbium (III) complexes

    International Nuclear Information System (INIS)

    Li Zhefeng; Zhang Hongjie; Yu Jiangbo

    2012-01-01

    We investigated near-infrared electroluminescence properties of two lanthanide complexes Yb(PMBP) 3 Bath [PMBP = tris(1-phenyl-3-methyl-4-(4-tert-butylbenzacyl)-5-pyrazolone); Bath = bathophenanthroline] and Yb(PMIP) 3 TP 2 [PMIP = tris(1-phenyl-3-methyl-4-isobutyryl-5-pyrazolone); TP = triphenyl phosphine oxide] by fabricated the double-emission-layers devices. From the device characteristics, it is known that holes are easier to transport in Yb(PMIP) 3 TP 2 layer and electrons are easier to transport in Yb(PMBP) 3 Bath layer, at the same time, both of the two complexes can be acted as emission layers in the device. The recombination region of carriers has been confined in the interface of Yb(PMIP) 3 TP 2 /Yb(PMBP) 3 Bath, and pure Yb 3+ ion characteristic emission centered at 980 nm has been obtained. The device shows the maximum near-infrared irradiance as 14.7 mW/m 2 at the applied voltage of 17.8 V. - Highlights: ► Near-infrared electroluminescent devices with Yb(III) complexes as emission layers. ► Double-emission layer device structure introduced to balance carriers. ► Improved performance of double-emission layer device.

  9. THELI: CONVENIENT REDUCTION OF OPTICAL, NEAR-INFRARED, AND MID-INFRARED IMAGING DATA

    International Nuclear Information System (INIS)

    Schirmer, M.

    2013-01-01

    The last 15 years have seen a surge of new multi-chip optical and near-IR imagers. While some of them are accompanied by specific reduction pipelines, user-friendly and generic reduction tools are uncommon. In this paper I introduce THELI, an easy-to-use graphical interface driving an end-to-end pipeline for the reduction of any optical, near-IR, and mid-IR imaging data. The advantages of THELI when compared to other approaches are highlighted. Combining a multitude of processing algorithms and third party software, THELI provides researchers with a single, homogeneous tool. A short learning curve ensures quick success for new and more experienced observers alike. All tasks are largely automated, while at the same time a high level of flexibility and alternative reduction schemes ensure that widely different scientific requirements can be met. Over 90 optical and infrared instruments at observatories world-wide are pre-configured, while more can be added by the user. The Appendices contain three walk-through examples using public data (optical, near-IR, and mid-IR). Additional extensive documentation for training and troubleshooting is available online

  10. Host sensitized near-infrared emission in Nd3+ doped different alkaline-sodium-phosphate phosphors

    Science.gov (United States)

    Balakrishna, A.; Swart, H. C.; Kroon, R. E.; Ntwaeaborwa, O. M.

    2018-04-01

    Near-infrared (NIR) emitting phosphors of different alkaline based sodium-phosphate (MNa[PO4], where M = Mg, Ca, Sr and Ba were prepared by a conventional solution combustion method with fixed doping concentration of Nd3+ (1.0 mol%). The phosphors were characterized by powder X-ray diffraction, field emission scanning electron microscope, Fourier transform infrared spectroscopy, UV-vis spectroscopy and fluorescent spectrophotometry. The optical properties including reflectance, excitation and emission were investigated. The excitation spectra of the phosphors were characterized by a broadband extending from 450 to 900 nm. Upon excitation with a wavelength of 580 nm, the phosphor emits intensely infrared region at 872 nm, 1060 nm and 1325 nm which correspond to the 4F3/2 → 4I9/2, 4F3/2 → 4I11/2 and 4F3/2 → 4I13/2 transitions of Nd3+ ions and were found to vary for the different hosts. The strongest emission wavelength reaches 1060 nm. The most intense emission of Nd3+ was observed from Ca2+ incorporated host. The down conversion emissions of the material fall in the NIR region suggesting that the prepared phosphors have potential application in the development of photonic devices emitting in the NIR.

  11. Infrared Testing of the Wide-field Infrared Survey Telescope Grism Using Computer Generated Holograms

    Science.gov (United States)

    Dominguez, Margaret Z.; Content, David A.; Gong, Qian; Griesmann, Ulf; Hagopian, John G.; Marx, Catherine T; Whipple, Arthur L.

    2017-01-01

    Infrared Computer Generated Holograms (CGHs) were designed, manufactured and used to measure the performance of the grism (grating prism) prototype which includes testing Diffractive Optical Elements (DOE). The grism in the Wide Field Infrared Survey Telescope (WFIRST) will allow the surveying of a large section of the sky to find bright galaxies.

  12. A Colloidal-Quantum-Dot-Based Self-Charging System via the Near-Infrared Band.

    Science.gov (United States)

    Baek, Se-Woong; Cho, Jungmin; Kim, Joo-Seong; Kim, Changjo; Na, Kwangmin; Lee, Sang-Hoon; Jun, Sunhong; Song, Jung Hoon; Jeong, Sohee; Choi, Jang Wook; Lee, Jung-Yong

    2018-05-11

    A novel self-charging platform is proposed using colloidal-quantum-dot (CQD) photovoltaics (PVs) via the near-infrared (NIR) band for low-power electronics. Low-bandgap CQDs can convert invisible NIR light sources to electrical energy more efficiently than wider spectra because of reduced thermalization loss. This energy-conversion strategy via NIR photons ensures an enhanced photostability of the CQD devices. Furthermore, the NIR wireless charging system can be concealed using various colored and NIR-transparent fabric or films, providing aesthetic freedom. Finally, an NIR-driven wireless charging system is demonstrated for a wearable healthcare bracelet by integrating a CQD PVs receiver with a flexible lithium-ion battery and entirely embedding them into a flexible strap, enabling permanent self-charging without detachment. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  13. Macroscopic self-consistent model for external-reflection near-field microscopy

    International Nuclear Information System (INIS)

    Berntsen, S.; Bozhevolnaya, E.; Bozhevolnyi, S.

    1993-01-01

    The self-consistent macroscopic approach based on the Maxwell equations in two-dimensional geometry is developed to describe tip-surface interaction in external-reflection near-field microscopy. The problem is reduced to a single one-dimensional integral equation in terms of the Fourier components of the field at the plane of the sample surface. This equation is extended to take into account a pointlike scatterer placed on the sample surface. The power of light propagating toward the detector as the fiber mode is expressed by using the self-consistent field at the tip surface. Numerical results for trapezium-shaped tips are presented. The authors show that the sharper tip and the more confined fiber mode result in better resolution of the near-field microscope. Moreover, it is found that the tip-surface distance should not be too small so that better resolution is ensured. 14 refs., 10 figs

  14. Cover materials excluding near infrared radiation: effect on greenhouse climate and plant processes

    NARCIS (Netherlands)

    Kempkes, F.L.K.; Stanghellini, C.; Hemming, S.; Dai, J.

    2008-01-01

    Only about half of the energy that enters a greenhouse as sun radiation is in the wavelength range that is useful for photosynthesis (PAR, Photosynthetically Active Radiation). Nearly all the remaining energy fraction is in the Near InfraRed range (NIR) and warms the greenhouse and crop and does

  15. Near-infrared spectroscopy used to predict soybean seed germination and vigor

    Science.gov (United States)

    The potential of using near-infrared (NIR) spectroscopy for differentiating levels in germination, vigor, and electrical conductivity of soybean seeds was investigated. For the 243 spectral data collected using the Perten DA7200, stratified sampling was used to obtain three calibration sets consisti...

  16. Signal of microstrip scanning near-field optical microscope in far- and near-field zones.

    Science.gov (United States)

    Morozov, Yevhenii M; Lapchuk, Anatoliy S

    2016-05-01

    An analytical model of interference between an electromagnetic field of fundamental quasi-TM(EH)00-mode and an electromagnetic field of background radiation at the apex of a near-field probe based on an optical plasmon microstrip line (microstrip probe) has been proposed. The condition of the occurrence of electromagnetic energy reverse flux at the apex of the microstrip probe was obtained. It has been shown that the nature of the interference depends on the length of the probe. Numerical simulation of the sample scanning process was conducted in illumination-reflection and illumination-collection modes. Results of numerical simulation have shown that interference affects the scanning signal in both modes. However, in illumination-collection mode (pure near-field mode), the signal shape and its polarity are practically insensible to probe length change; only signal amplitude (contrast) is slightly changed. However, changing the probe length strongly affects the signal amplitude and shape in the illumination-reflection mode (the signal formed in the far-field zone). Thus, we can conclude that even small background radiation can significantly influence the signal in the far-field zone and has practically no influence on a pure near-field signal.

  17. Potential use of visible and near-infrared spectroscopy for pine ...

    African Journals Online (AJOL)

    The correct identification of pine species is necessary for proper application of wood in forest-based industries, since the quality of each species' wood depends on factors intrinsic to the material. The aim of this study was to evaluate the potential use of near-infrared and visible spectroscopy in the discrimination of pine ...

  18. Processing Near-Infrared Imagery of the Orion Heatshield During EFT-1 Hypersonic Reentry

    Science.gov (United States)

    Spisz, Thomas S.; Taylor, Jeff C.; Gibson, David M.; Kennerly, Steve; Osei-Wusu, Kwame; Horvath, Thomas J.; Schwartz, Richard J.; Tack, Steven; Bush, Brett C.; Oliver, A. Brandon

    2016-01-01

    The Scientifically Calibrated In-Flight Imagery (SCIFLI) team captured high-resolution, calibrated, near-infrared imagery of the Orion capsule during atmospheric reentry of the EFT-1 mission. A US Navy NP-3D aircraft equipped with a multi-band optical sensor package, referred to as Cast Glance, acquired imagery of the Orion capsule's heatshield during a period when Orion was slowing from approximately Mach 10 to Mach 7. The line-of-sight distance ranged from approximately 65 to 40 nmi. Global surface temperatures of the capsule's thermal heatshield derived from the near-infrared intensity measurements complemented the in-depth (embedded) thermocouple measurements. Moreover, these derived surface temperatures are essential to the assessment of the thermocouples' reliance on inverse heat transfer methods and material response codes to infer the surface temperature from the in-depth measurements. The paper describes the image processing challenges associated with a manually-tracked, high-angular rate air-to-air observation. Issues included management of significant frame-to-frame motions due to both tracking jerk and jitter as well as distortions due to atmospheric effects. Corrections for changing sky backgrounds (including some cirrus clouds), atmospheric attenuation, and target orientations and ranges also had to be made. The image processing goal is to reduce the detrimental effects due to motion (both sensor and capsule), vibration (jitter), and atmospherics for image quality improvement, without compromising the quantitative integrity of the data, especially local intensity (temperature) variations. The paper will detail the approach of selecting and utilizing only the highest quality images, registering several co-temporal image frames to a single image frame to the extent frame-to-frame distortions would allow, and then co-adding the registered frames to improve image quality and reduce noise. Using preflight calibration data, the registered and averaged

  19. Near-Infrared Intraoperative Chemiluminescence Imaging

    KAUST Repository

    Bü chel, Gabriel E.; Carney, Brandon; Shaffer, Travis M.; Tang, Jun; Austin, Christine; Arora, Manish; Zeglis, Brian M.; Grimm, Jan; Eppinger, Jö rg; Reiner, Thomas

    2016-01-01

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9pmolcm-2 of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the invivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. Near-Infrared Intraoperative Chemiluminescence Imaging

    KAUST Repository

    Büchel, Gabriel E.

    2016-08-03

    Intraoperative imaging technologies recently entered the operating room, and their implementation is revolutionizing how physicians plan, monitor, and perform surgical interventions. In this work, we present a novel surgical imaging reporter system: intraoperative chemiluminescence imaging (ICI). To this end, we have leveraged the ability of a chemiluminescent metal complex to generate near-infrared light upon exposure to an aqueous solution of Ce4+ in the presence of reducing tissue or blood components. An optical camera spatially resolves the resulting photon flux. We describe the construction and application of a prototype imaging setup, which achieves a detection limit as low as 6.9pmolcm-2 of the transition-metal-based ICI agent. As a proof of concept, we use ICI for the invivo detection of our transition metal tracer following both systemic and subdermal injections. The very high signal-to-noise ratios make ICI an interesting candidate for the development of new intraoperative imaging technologies. © 2016 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  1. Optimum combinations of visible and near-infrared reflectances for estimating the fraction of photosynthetically available radiation absorbed by plants

    Science.gov (United States)

    Podaire, Alain; Deschamps, Pierre-Yves; Frouin, R.; Asrar, Ghassem

    1991-01-01

    A useful parameter to estimate terrestrial primary productivity, that can be sensed from space, is the daily averaged fraction of Photosynthetically Available Radiation (PAR) absorbed by plants. To evaluate this parameter, investigators have relied on the fact that the relative amount of radiation reflected by a vegetated surface in the visible and near infrared depends on the fraction of the surface covered by the vegetation and therefore, correlates with absorbed PAR. They have used vegetation indices, namely normalized difference and simple ratio, to derive absorbed PAR. The problem with normalized difference and simple ratio is first, they are non linear functions of radiance or reflectance and therefore, cannot be readily applied to heterogeneous targets, second, they are used in generally nonlinear relationships, which make time integrals of the indices not proportional to primary productivity, and third, the relationships depend strongly on the type of canopy and background. To remove these limitations, linear combinations of visible and near infrared reflectances at optimum (one or two) viewing zenith angles are proposed.

  2. NEAR-INFRARED AUTOFLUORESCENCE IN BILATERAL DIFFUSE UVEAL MELANOCYTIC PROLIFERATION ASSOCIATED WITH ESOPHAGEAL CARCINOMA AND CHOROIDAL METASTASIS.

    Science.gov (United States)

    Golshahi, Azadeh; Bornfeld, Norbert; Weinitz, Silke; Kellner, Ulrich

    2016-01-01

    To investigate the advantage of near-infrared autofluorescence (787 nm) for the detection of melanocytic lesions in a patient with bilateral diffuse uveal melanocytic proliferation in association with esophageal carcinoma complicated by most likely unilateral choroidal metastasis. In this retrospective case report, a 55-year-old woman referred for the evaluation of sudden visual loss underwent normal ophthalmological evaluation and, in addition, was examined with near-infrared reflectance, near-infrared autofluorescence, fundus autofluorescence (Heidelberg Retina Angiograph II [HRA2; Heidelberg Engineering]), spectral domain optical coherence tomography (Spectralis OCT; Heidelberg Engineering), and multifocal electroretinography (RetiScan; Roland Consult). The patient had been diagnosed with esophageal carcinoma 3 months before the onset of visual symptoms. The visual acuity was 20/40 in the right eye and 20/20 in the left eye. Bilateral patchy melanocytic proliferation was detected on ophthalmoscopy. The extent of lesions was best detected with near-infrared reflectance and near-infrared autofluorescence, whereas fundus autofluorescence and spectral domain optical coherence tomography did not reveal alterations of the outer retina or retinal pigment epithelium in this early stage of bilateral diffuse uveal melanocytic proliferation. The right eye showed in addition to the findings on the left eye choroidal folds in the fovea and an elevated lesion inferotemporal of the fovea suspicious of a choroidal metastasis. In the B-scan ultrasonography, a homogenous lesion was seen. Spectral domain optical coherence tomography demonstrated a mild accumulation of subretinal fluid adjacent to and over the choroidal metastasis. Transretinal biopsy of this elevated lesion revealed a low differentiated carcinoma of squamous epithelium, compatible with choroidal metastasis of the esophageal carcinoma. The choroidal metastasis increased within 3 months after the first visit. The

  3. Near infrared photometry of violent star formation regions

    International Nuclear Information System (INIS)

    Melnick, J.; Terlevich, R.; Moles, M.

    1985-01-01

    Near infrared broad band photometry and CO indices for a significant number of Violent Star Formation Regions are presented. The existence of a narrow correlation between W (Hβ) and IR colour is confirmed. The interpretation of this relation as an age sequence implies a correlation between CO index and W(Hβ) which is not found. It is argued however that this failure is most likely a consequence of using narrow band filters to determine CO indices in objects with strong emission-line spectra. (author)

  4. Proceedings from the technical workshop on near-field performance assessment for high-level waste

    International Nuclear Information System (INIS)

    Sellin, P.; Apted, M.; Gago, J.

    1991-12-01

    This report contains the proceedings of 'Technical workshop of near-filed performance assessment for high-level waste' held in Madrid October 15-17, 1990. It includes the invited presentations and summaries of the scientific discussions. The workshop covered several topics: * post-emplacement environment, * benchmarking of computer codes, * glass release, * spent-fuel release, * radionuclide solubility, * near-field transport processes, * coupled processes in the near-field, * integrated assessments, * sensitivity analyses and validation. There was an invited presentation on each topic followed by an extensive discussion. One of the points highlighted in the closing discussion of the workshop was the need for international cooperation in the field of near-field performance assessment. The general opinion was that this was best achieved in smaller groups discussing specific questions. (au) Separate abstracts were prepared for 9 papers in this volume

  5. Mapping within-field variations of soil organic carbon content using UAV multispectral visible near-infrared images

    Science.gov (United States)

    Gilliot, Jean-Marc; Vaudour, Emmanuelle; Michelin, Joël

    2016-04-01

    This study was carried out in the framework of the PROSTOCK-Gessol3 project supported by the French Environment and Energy Management Agency (ADEME), the TOSCA-PLEIADES-CO project of the French Space Agency (CNES) and the SOERE PRO network working on environmental impacts of Organic Waste Products recycling on field crops at long time scale. The organic matter is an important soil fertility parameter and previous studies have shown the potential of spectral information measured in the laboratory or directly in the field using field spectro-radiometer or satellite imagery to predict the soil organic carbon (SOC) content. This work proposes a method for a spatial prediction of bare cultivated topsoil SOC content, from Unmanned Aerial Vehicle (UAV) multispectral imagery. An agricultural plot of 13 ha, located in the western region of Paris France, was analysed in April 2013, shortly before sowing while it was still bare soil. Soils comprised haplic luvisols, rendzic cambisols and calcaric or colluvic cambisols. The UAV platform used was a fixed wing provided by Airinov® flying at an altitude of 150m and was equipped with a four channels multispectral visible near-infrared camera MultiSPEC 4C® (550nm, 660nm, 735 nm and 790 nm). Twenty three ground control points (GCP) were sampled within the plot according to soils descriptions. GCP positions were determined with a centimetric DGPS. Different observations and measurements were made synchronously with the drone flight: soil surface description, spectral measurements (with ASD FieldSpec 3® spectroradiometer), roughness measurements by a photogrammetric method. Each of these locations was sampled for both soil standard physico-chemical analysis and soil water content. A Structure From Motion (SFM) processing was done from the UAV imagery to produce a 15 cm resolution multispectral mosaic using the Agisoft Photoscan® software. The SOC content was modelled by partial least squares regression (PLSR) between the

  6. Near-infrared radiation curable multilayer coating systems and methods for applying same

    Science.gov (United States)

    Bowman, Mark P; Verdun, Shelley D; Post, Gordon L

    2015-04-28

    Multilayer coating systems, methods of applying and related substrates are disclosed. The coating system may comprise a first coating comprising a near-IR absorber, and a second coating deposited on a least a portion of the first coating. Methods of applying a multilayer coating composition to a substrate may comprise applying a first coating comprising a near-IR absorber, applying a second coating over at least a portion of the first coating and curing the coating with near infrared radiation.

  7. Near infrared spectrometry for faecal fat measurement: comparison with conventional gravimetric and titrimetric methods.

    Science.gov (United States)

    Benini, L; Caliari, S; Guidi, G C; Vaona, B; Talamini, G; Vantini, I; Scuro, L A

    1989-01-01

    This investigation was aimed at comparing a new method for measuring faecal fat excretion, carried out with a semi-automated instrument by using near infrared analysis (NIRA), with the traditional titrimetric (Van de Kamer) and gravimetric (Sobel) methods. Near infrared analysis faecal fat was assayed on the three day stool collection from 118 patients (68 chronic pancreatitis, 19 organic diseases of the gastrointestinal tract, 19 alcoholic liver disease, 12 functional gastrointestinal disorders). A strict linear correlation was found between NIRA and both the titrimetric (r = 0.928, p less than 0.0001) and the gravimetric (r = 0.971, p less than 0.0001) methods. On homogenised faeces, a mean coefficient of variation of 2.1 (SD 1.71)% was found. Before homogenisation (where a mean coefficient of variation of 7% was found) accurate results were obtained when the mean of five measurements was considered. In conclusion, the assay of faecal fat excretion by the near infrared reflessometry appears a simple, rapid and reliable method for measuring steatorrhoea. PMID:2583563

  8. Chiral near-fields around chiral dolmen nanostructure

    International Nuclear Information System (INIS)

    Fu, Tong; Wang, Tiankun; Chen, Yuyan; Wang, Yongkai; Qu, Yu; Zhang, Zhongyue

    2017-01-01

    Discriminating the handedness of the chiral molecule is of great importance in the field of pharmacology and biomedicine. Enhancing the chiral near-field is one way to increase the chiral signal of chiral molecules. In this paper, the chiral dolmen nanostructure (CDN) is proposed to enhance the chiral near-field. Numerical results show that the CDN can increase the optical chirality of the near-field by almost two orders of magnitude compared to that of a circularly polarized incident wave. In addition, the optical chirality of the near-field of the bonding mode is enhanced more than that of the antibonding mode. These results provide an effective method for tailoring the chiral near-field for biophotonics sensors. (paper)

  9. Near infrared spectroscopy (NIRS) to monitor tissue haemoglobin (and myoglobin) oxygenation

    NARCIS (Netherlands)

    Scheeren, T. W. L.

    2010-01-01

    Introduction: Tissue oxygenation may be monitored noninvasively by near infrared spectroscopy (NIRS) both on the thenar eminescence (muscle) and on the forehead (brain). Thenar measurement have been used to guide therapy in trauma patients ( 1 ) and to determine the prognosis of septic patients ( 2

  10. Non-Destructive Evaluation of the Leaf Nitrogen Concentration by In-Field Visible/Near-Infrared Spectroscopy in Pear Orchards

    Directory of Open Access Journals (Sweden)

    Jie Wang

    2017-03-01

    Full Text Available Non-destructive and timely determination of leaf nitrogen (N concentration is urgently needed for N management in pear orchards. A two-year field experiment was conducted in a commercial pear orchard with five N application rates: 0 (N0, 165 (N1, 330 (N2, 660 (N3, and 990 (N4 kg·N·ha−1. The mid-portion leaves on the year’s shoot were selected for the spectral measurement first and then N concentration determination in the laboratory at 50 and 80 days after full bloom (DAB. Three methods of in-field spectral measurement (25° bare fibre under solar conditions, black background attached to plant probe, and white background attached to plant probe were compared. We also investigated the modelling performances of four chemometric techniques (principal components regression, PCR; partial least squares regression, PLSR; stepwise multiple linear regression, SMLR; and back propagation neural network, BPNN and three vegetation indices (difference spectral index, normalized difference spectral index, and ratio spectral index. Due to the low correlation of reflectance obtained by the 25° field of view method, all of the modelling was performed on two spectral datasets—both acquired by a plant probe. Results showed that the best modelling and prediction accuracy were found in the model established by PLSR and spectra measured with a black background. The randomly-separated subsets of calibration (n = 1000 and validation (n = 420 of this model resulted in high R2 values of 0.86 and 0.85, respectively, as well as a low mean relative error (<6%. Furthermore, a higher coefficient of determination between the leaf N concentration and fruit yield was found at 50 DAB samplings in both 2015 (R2 = 0.77 and 2014 (R2 = 0.59. Thus, the leaf N concentration was suggested to be determined at 50 DAB by visible/near-infrared spectroscopy and the threshold should be 24–27 g/kg.

  11. Near infrared face recognition using Zernike moments and Hermite kernels

    Czech Academy of Sciences Publication Activity Database

    Farokhi, Sajad; Sheikh, U.U.; Flusser, Jan; Yang, Bo

    2015-01-01

    Roč. 316, č. 1 (2015), s. 234-245 ISSN 0020-0255 R&D Projects: GA ČR(CZ) GA13-29225S Keywords : face recognition * Zernike moments * Hermite kernel * Decision fusion * Near infrared Subject RIV: JD - Computer Applications, Robotics Impact factor: 3.364, year: 2015 http://library.utia.cas.cz/separaty/2015/ZOI/flusser-0444205.pdf

  12. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    Science.gov (United States)

    Suhariningsih; Basuki Notobroto, Hari; Winarni, Dwi; Achmad Hussein, Saikhu; Anggono Prijo, Tri

    2017-05-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice (mus musculus), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared.

  13. On-Line Monitoring of Fermentation Processes by Near Infrared and Fluorescence Spectroscopy

    DEFF Research Database (Denmark)

    Svendsen, Carina

    Monitoring and control of fermentation processes is important to ensure high product yield, product quality and product consistency. More knowledge on on-line analytical techniques such as near infrared and fluorescence spectroscopy is desired in the fermentation industry to increase the efficiency...... of on-line monitoring systems. The primary aim of this thesis is to elucidate and explore the dynamics in fermentation processes by spectroscopy. Though a number of successful on-line lab-scale monitoring systems have been reported, it seems that several challenges are still met, which limits the number...... of full-scale systems implemented in industrial fermentation processes. This thesis seeks to achieve a better understanding of the techniques near infrared and fluorescence spectroscopy and thereby to solve some of the challenges that are encountered. The thesis shows the advantages of applying real...

  14. Quantum efficiencies of near-infrared emission from Ni2+-doped glass-ceramics

    International Nuclear Information System (INIS)

    Suzuki, Takenobu; Arai, Yusuke; Ohishi, Yasutake

    2008-01-01

    A systematic method to evaluate potentials of Ni 2+ -doped transparent glass-ceramics as a new broadband optical gain media is presented. At first, near-infrared emission of various ceramics were investigated to explore the suitable crystalline phase to be grown in the glass-ceramics. The quantum efficiency of Ni 2+ near-infrared emission estimated by the Struck-Fonger analysis was higher than 95% for spinel-type structure gallate crystals MgGa 2 O 4 and LiGa 5 O 8 at room temperature. Transparent glass-ceramics containing Ni 2+ :LiGa 5 O 8 could be prepared and the quantum efficiency for the glass-ceramics was measured to be about 10%. This value shows a potential of Ni-doped transparent glass-ceramics as a broadband gain media

  15. Noninvasive, near infrared spectroscopic-measured muscle pH and PO2 indicate tissue perfusion for cardiac surgical patients undergoing cardiopulmonary bypass

    Science.gov (United States)

    Soller, Babs R.; Idwasi, Patrick O.; Balaguer, Jorge; Levin, Steven; Simsir, Sinan A.; Vander Salm, Thomas J.; Collette, Helen; Heard, Stephen O.

    2003-01-01

    OBJECTIVE: To determine whether near infrared spectroscopic measurement of tissue pH and Po2 has sufficient accuracy to assess variation in tissue perfusion resulting from changes in blood pressure and metabolic demand during cardiopulmonary bypass. DESIGN: Prospective clinical study. SETTING: Academic medical center. SUBJECTS: Eighteen elective cardiac surgical patients. INTERVENTION: Cardiac surgery under cardiopulmonary bypass. MEASUREMENTS AND MAIN RESULTS: A near infrared spectroscopic fiber optic probe was placed over the hypothenar eminence. Reference Po2 and pH sensors were inserted in the abductor digiti minimi (V). Data were collected every 30 secs during surgery and for 6 hrs following cardiopulmonary bypass. Calibration equations developed from one third of the data were used with the remaining data to investigate sensitivity of the near infrared spectroscopic measurement to physiologic changes resulting from cardiopulmonary bypass. Near infrared spectroscopic and reference pH and Po2 measurements were compared for each subject using standard error of prediction. Near infrared spectroscopic pH and Po2 at baseline were compared with values during cardiopulmonary bypass just before rewarming commenced (hypotensive, hypothermic), after rewarming (hypotensive, normothermic) just before discontinuation of cardiopulmonary bypass, and at 6 hrs following cardiopulmonary bypass (normotensive, normothermic) using mixed-model analysis of variance. Near infrared spectroscopic pH and Po2 were well correlated with the invasive measurement of pH (R2 =.84) and Po2 (R 2 =.66) with an average standard error of prediction of 0.022 +/- 0.008 pH units and 6 +/- 3 mm Hg, respectively. The average difference between the invasive and near infrared spectroscopic measurement was near zero for both the pH and Po2 measurements. Near infrared spectroscopic Po2 significantly decreased 50% on initiation of cardiopulmonary bypass and remained depressed throughout the bypass and

  16. Near-infrared spectroscopy for cocrystal screening

    DEFF Research Database (Denmark)

    Allesø, Morten; Velaga, Sitaram; Alhalaweh, Amjad

    2008-01-01

    Near-infrared (NIR) spectroscopy is a well-established technique for solid-state analysis, providing fast, noninvasive measurements. The use of NIR spectroscopy for polymorph screening and the associated advantages have recently been demonstrated. The objective of this work was to evaluate...... the analytical potential of NIR spectroscopy for cocrystal screening using Raman spectroscopy as a comparative method. Indomethacin was used as the parent molecule, while saccharin and l-aspartic acid were chosen as guest molecules. Molar ratios of 1:1 for each system were subjected to two types of preparative...... retained in a physical mixture with the guest molecule, while liquid-assisted cogrinding did not induce any changes in the crystal lattice. The good chemical peak selectivity of Raman spectroscopy allowed a straightforward interpretation of sample data by analyzing peak positions and comparing to those...

  17. Measurement of light penetration of near-infrared laser at the lumbosacral nerves in rats

    Science.gov (United States)

    Ishibashi, Naoya; Shimoyama, Hiroshi; Kawase, Yuki; Motohara, Shosaku; Okayama, Takamitsu; Niwa, Daisuke; Koyama, Jun

    2018-02-01

    Photobiomodulation or low level laser therapy (LLLT) has been utilized in various areas of medical practice including pain relief, wound healing, and inflammation treatment. Some recent animal studies have reported that near-infrared laser irradiation to the lumbosacral nerves transcutateously relieves neuropathic pain by controlling activity of lumbosacral nerves. However, transcutaneous laser penetration to the nerves has not yet been fully elucidated. Our aim is to determine the light penetration to lumbosacral nerves when near-infrared laser was irradiated transcutateously to lumbosacral nerves. We implanted photodiodes near the lumbosacral nerves of rats and connected the photodiodes to an oscilloscope through an amplifier. Near-infrared lasers (wavelengths: 808 nm and 830 nm) were irradiated through the skin at 2, 5 and 10 W pulses (Duty 10%, 5 Hz) and outputs of photodiodes were collected. After irradiation, the depth of the photodiodes and the nerves from the skin surface were determined by micro-CT device. The result showed that the fluence rate at the lumbosacral nerves was 179+/-19.2 mW/cm2 and 232+/-20.7 mW/cm2 when the 808-nm and 830-nm laser was irradiated at 10 W respectively. These findings would be beneficial for following study of photobiomodulation.

  18. Vertical Integration of Biochemistry and Clinical Medicine Using a Near-Peer Learning Model

    Science.gov (United States)

    Gallan, Alexander J.; Offner, Gwynneth D.; Symes, Karen

    2016-01-01

    Vertical integration has been extensively implemented across medical school curricula but has not been widely attempted in the field of biochemistry. We describe a novel curricular innovation in which a near-peer learning model was used to implement vertical integration in our medical school biochemistry course. Senior medical students developed…

  19. Near field plasmon and force microscopy

    NARCIS (Netherlands)

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the

  20. Mid-infrared and near-infrared spectroscopic study of selected magnesium carbonate minerals containing ferric iron-Implications for the geosequestration of greenhouse gases.

    Science.gov (United States)

    Frost, Ray L; Reddy, B Jagannadha; Bahfenne, Silmarilly; Graham, Jessica

    2009-04-01

    The proposal to remove greenhouse gases by pumping liquefied CO(2) several kilometres below the ground implies that many carbonate containing minerals will be formed. Among these minerals brugnatellite and coalingite are probable. Two ferric ion bearing minerals brugnatellite and coalingite with a hydrotalcite-like structure have been characterised by a combination of infrared and near-infrared (NIR) spectroscopy. The infrared spectra of the OH stretching region are characterised by OH and water stretching vibrations. Both the first and second fundamental overtones of these bands are observed in the NIR spectra in the 7030-7235 cm(-1) and 10,490-10,570 cm(-1) regions. Intense (CO(3))(2-) symmetric and antisymmetric stretching vibrations support the concept that the carbonate ion is distorted. The position of the water bending vibration indicates the water is strongly hydrogen bonded in the mineral structure. Split NIR bands at around 8675 and 11,100 cm(-1) indicate that some replacement of magnesium ions by ferrous ions in the mineral structure has occurred. Near-infrared spectroscopy is ideal for the assessment of the formation of carbonate minerals.

  1. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.; Theodorou, I. G.; Centeno, A.; Petrov, P. K.; Alford, N. M.; Ryan, M. P.; Xie, F.

    2016-01-01

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  2. Gold nanodisc arrays as near infrared metal-enhanced fluorescence platforms with tuneable enhancement factors

    KAUST Repository

    Pang, J.

    2016-12-28

    Metal enhanced fluorescence (MEF) is a physical effect through which the near-field interaction of fluorophores with metallic nanoparticles can lead to large fluorescence enhancement. MEF can be exploited in many fluorescence-based biomedical applications, with potentially significant improvement in detection sensitivity and contrast enhancement. Offering lower autofluorescence and minimal photoinduced damage, the development of effective and multifunctional MEF platforms in the near-infrared (NIR) region, is particularly desirable. In this work, the enhancement of NIR fluorescence caused by interaction with regular arrays of cylindrical gold (Au) nanoparticles (nanodiscs), fabricated through nanosphere lithography, is reported. Significant MEF of up to 235 times is obtained, with tuneable enhancement factors. The effect of array structure on fluorescence enhancement is investigated by semi-quantitatively de-convoluting excitation enhancement from emission enhancement, and modelling the local electric field enhancement. By considering arrays of Au nanodiscs with the same extinction maximum, it is shown that the excitation enhancement, due to increased electric field, is not significantly different for the particle sizes and separation distances considered. Rather, it is seen that the emission from the fluorophore is strongly enhanced, and is dependent on the topography, in particular particle size. The results show that the structural characteristics of Au nanodisc arrays can be manipulated to tune their enhancement factor, and hence their sensitivity.

  3. Near-infrared intraoperative imaging during resection of an anterior mediastinal soft tissue sarcoma.

    Science.gov (United States)

    Predina, Jarrod D; Newton, Andrew D; Desphande, Charuhas; Singhal, Sunil

    2018-01-01

    Sarcomas are rare malignancies that are generally treated with multimodal therapy protocols incorporating complete local resection, chemotherapy and radiation. Unfortunately, even with this aggressive approach, local recurrences are common. Near-infrared intraoperative imaging is a novel technology that provides real-time visual feedback that can improve identification of disease during resection. The presented study describes utilization of a near-infrared agent (indocyanine green) during resection of an anterior mediastinal sarcoma. Real-time fluorescent feedback provided visual information that helped the surgeon during tumor localization, margin assessment and dissection from mediastinal structures. This rapidly evolving technology may prove useful in patients with primary sarcomas arising from other locations or with other mediastinal neoplasms.

  4. Background and state of the art of near infrared spectroscopy in the forest sector base

    International Nuclear Information System (INIS)

    Muñiz, G.I.B. de; Magalhães, W.L.E.; Carneiro, M.E.; Viana, L.C.

    2012-01-01

    The knowledge of wood properties is the fundamental importance for the indication of the potential and use of this material. In the search for new alternatives for a fast, simple and reliable characterization, there are the non-destructive evaluations of wood. The near infrared spectroscopy (NIRS) has been used as a non-destructive method that allows qualitative and quantitative information of the constituents of biomass through the interaction of electromagnetic waves with near-infrared next to the sample. This work aims to provide a review of the technique of near infrared spectroscopy and its application in forestry. The technique is used in virtually all areas due to the level of development that this technology has reached in recent years. NIR spectroscopy has proved a quick and efficient replacement of several tests that determine the quality of the wood. This is a literature review and state of the art on the theme [pt

  5. Evaluation of extractable polyphenols released to wine from cooperage byproduct by near infrared hyperspectral imaging.

    Science.gov (United States)

    Baca-Bocanegra, Berta; Nogales-Bueno, Julio; Hernández-Hierro, José Miguel; Heredia, Francisco José

    2018-04-01

    Extractable total phenolic content of American non-toasted oak (Quercus alba L.) shavings has been determined using near infrared hyperspectral imaging. A like-wine model solution was used for the simulated maceration procedure. Calibrations were performed by partial least squares regression (MPLS) using a number of spectral pre-treatments. The coefficient of determination of wood for extractable total phenolic content was 0.89, and the standard error of prediction was 6.3 mg g -1 . Thus, near infrared hyperspectral imaging arises as an attractive strategy for predicting extractable total phenolic content in the range of 0-65 mg g -1 , of great relevance from the point of view of quality assurance regarding wood used in the wine sector. Near infrared hyperspectral imaging arises as an attractive strategy for the feasibility of enhancing the value of cooperage byproduct through the fast determination of extractable bioactive molecules, such as polyphenols. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. BACKGROUND AND STATE OF THEE ART OF NEAR INFRARED SPECTROSCOPY IN THE FOREST SECTOR BASE

    Directory of Open Access Journals (Sweden)

    Graciela Inês Bolzon de Muñiz

    2012-12-01

    Full Text Available http://dx.doi.org/10.5902/198050987567The knowledge of wood properties is the fundamental importance for the indication of the potential and use of this material. In the search for new alternatives for a fast, simple and reliable characterization, there are the non-destructive evaluations of wood. The near infrared spectroscopy (NIRS has been used as a non-destructive method that allows qualitative and quantitative information of the constituents of biomass through the interaction of electromagnetic waves with near-infrared next to the sample. This work aims to provide a review of the technique of near infrared spectroscopy and its application in forestry. The technique is used in virtually all areas due to the level of development that this technology has reached in recent years. NIR spectroscopy has proved a quick and efficient replacement of several tests that determine the quality of the wood. This is a literature review and state of the art on the theme.

  7. Remote Sensing of Rock Type in the Visible and Near-Infrared,

    Science.gov (United States)

    Visible and near-infrared spectra of minerals and rocks have been measured and evaluated in terms of remote sensing applications. The authors...difficult or impossible to use in a generalized remote sensing effort in which the composition of all rocks is to be mapped. Instead, this spectral

  8. Near-infrared spectroscopy for detection of hailstorm damage on olive fruit

    Science.gov (United States)

    A rapid, robust, unbiased and inexpensive discriminant method capable of classifying olive fruit (Olea europaea L.) on the basis of the presence of hailstorm damage is economically important to the olive oil milling industry. Thus, in the present study, the feasibility of Near-Infrared (NIR) spectro...

  9. Measurement of soy contents in ground beef using near-infrared spectroscopy

    Science.gov (United States)

    Models for determining contents of soy products in ground beef were developed using near-infrared (NIR) spectroscopy. Samples were prepared by mixing four kinds of soybean protein products (Arconet, toasted soy grits, Profam and textured vegetable protein (TVP)) with ground beef (content from 0%–100...

  10. High-resolution imaging and near-infrared spectroscopy of penumbral decay

    Science.gov (United States)

    Verma, M.; Denker, C.; Balthasar, H.; Kuckein, C.; Rezaei, R.; Sobotka, M.; Deng, N.; Wang, H.; Tritschler, A.; Collados, M.; Diercke, A.; Manrique, S. J. González

    2018-06-01

    Aims: Combining high-resolution spectropolarimetric and imaging data is key to understanding the decay process of sunspots as it allows us to scrutinize the velocity and magnetic fields of sunspots and their surroundings. Methods: Active region NOAA 12597 was observed on 2016 September 24 with the 1.5-meter GREGOR solar telescope using high-spatial-resolution imaging as well as imaging spectroscopy and near-infrared (NIR) spectropolarimetry. Horizontal proper motions were estimated with local correlation tracking, whereas line-of-sight (LOS) velocities were computed with spectral line fitting methods. The magnetic field properties were inferred with the "Stokes Inversions based on Response functions" (SIR) code for the Si I and Ca I NIR lines. Results: At the time of the GREGOR observations, the leading sunspot had two light bridges indicating the onset of its decay. One of the light bridges disappeared, and an elongated, dark umbral core at its edge appeared in a decaying penumbral sector facing the newly emerging flux. The flow and magnetic field properties of this penumbral sector exhibited weak Evershed flow, moat flow, and horizontal magnetic field. The penumbral gap adjacent to the elongated umbral core and the penumbra in that penumbral sector displayed LOS velocities similar to granulation. The separating polarities of a new flux system interacted with the leading and central part of the already established active region. As a consequence, the leading spot rotated 55° clockwise over 12 h. Conclusions: In the high-resolution observations of a decaying sunspot, the penumbral filaments facing the flux emergence site contained a darkened area resembling an umbral core filled with umbral dots. This umbral core had velocity and magnetic field properties similar to the sunspot umbra. This implies that the horizontal magnetic fields in the decaying penumbra became vertical as observed in flare-induced rapid penumbral decay, but on a very different time-scale.

  11. Variability of HBV 475 in the near infrared

    International Nuclear Information System (INIS)

    Andrillat, Y.

    1982-01-01

    In the spectral range lambdalambda5800-8750, HBV 475 show important spectral variations between 1969 and 1974. Sometimes the ''hot component'' spectrum dominates (many emission lines), sometimes the ''cool component'' is preponderent (many molecular absorption TiO bands). On August 4 1974, June 6 1975 and August 9 1981, the author extended the observations up to 1.1μ. The spectra is presented and the emissions briefly discussed. These near infrared observations confirm the symbiotic nature of HBV 475 and allow specification of the spectral type of the cool component. (Auth.)

  12. A near-infrared relationship for estimating black hole masses in active galactic nuclei

    Science.gov (United States)

    Landt, Hermine; Ward, Martin J.; Peterson, Bradley M.; Bentz, Misty C.; Elvis, Martin; Korista, Kirk T.; Karovska, Margarita

    2013-06-01

    Black hole masses for samples of active galactic nuclei (AGN) are currently estimated from single-epoch optical spectra using scaling relations anchored in reverberation mapping results. In particular, the two quantities needed for calculating black hole masses, namely the velocity and the radial distance of the orbiting gas are derived from the widths of the Balmer hydrogen broad emission lines and the optical continuum luminosity, respectively. We have recently presented a near-infrared (near-IR) relationship for estimating AGN black hole masses based on the widths of the Paschen hydrogen broad emission lines and the total 1 μm continuum luminosity. The near-IR offers several advantages over the optical: it suffers less from dust extinction, the AGN continuum is observed only weakly contaminated by the host galaxy and the strongest Paschen broad emission lines Paα and Paβ are unblended. Here, we improve the calibration of the near-IR black hole mass relationship by increasing the sample from 14 to 23 reverberation-mapped AGN using additional spectroscopy obtained with the Gemini Near-Infrared Spectrograph. The additional sample improves the number statistics in particular at the high-luminosity end.

  13. Near-Infrared Resonance Energy Transfer Glucose Biosensors in Hybrid Microcapsule Carriers

    Directory of Open Access Journals (Sweden)

    Mike McShane

    2008-09-01

    Full Text Available Fluorescence-based sensing systems offer potential for noninvasive monitoring with implantable devices, but require carrier technologies that provide suitable immobilization, accessibility, and biocompatibility. Recent developments towards this goal include a competitive binding assay for glucose that has been encapsulated in semipermeable microcapsule carriers. This paper describes an extension of this work to increase the applicability to in vivo monitoring, wherein two significant developments are described: (1 a near-infrared resonance energy transfer system for transducing glucose concentration, and (2 novel hybrid organic-inorganic crosslinked microcapsules as carriers. The quenching-based assay is a competitive binding (CB system based on apo-glucose oxidase (AG as the receptor and dextran as the competitive ligand. The encapsulated quencher-labeled dextran and near infrared donor-labeled glucose receptor showed a stable and reversible response with tunable sensitivity of 1–5%/mM over the physiological range, making these transducers attractive for continuous monitoring for biomedical applications.

  14. THE 1.6 μm NEAR-INFRARED NUCLEI OF 3C RADIO GALAXIES: JETS, THERMAL EMISSION, OR SCATTERED LIGHT?

    International Nuclear Information System (INIS)

    Baldi, Ranieri D.; Chiaberge, Marco; Sparks, William; Macchetto, F. Duccio; Capetti, Alessandro; O'Dea, Christopher P.; Axon, David J.; Baum, Stefi A.; Quillen, Alice C.

    2010-01-01

    Using HST NICMOS 2 observations we have measured 1.6 μm near-infrared nuclear luminosities of 100 3CR radio galaxies with z < 0.3, by modeling and subtracting the extended emission from the host galaxy. We performed a multiwavelength statistical analysis (including optical and radio data) of the properties of the nuclei following classification of the objects into FR I and FR II, and low-ionization galaxies (LIGs), high-ionization galaxies (HIGs), and broad-line objects (BLOs) using the radio morphology and optical spectra, respectively. The correlations among near-infrared, optical, and radio nuclear luminosity support the idea that the near-infrared nuclear emission of FR Is has a non-thermal origin. Despite the difference in radio morphology, the multiwavelength properties of FR II LIG nuclei are statistically indistinguishable from those of FR Is, an indication of a common structure of the central engine. All BLOs show an unresolved near-infrared nucleus and a large near-infrared excess with respect to FR II LIGs and FR Is of equal radio core luminosity. This requires the presence of an additional (and dominant) component other than the non-thermal light. Considering the shape of their spectral energy distribution, we ascribe the origin of their near-infrared light to hot circumnuclear dust. A near-infrared excess is also found in HIGs, but their nuclei are substantially fainter than those of BLO. This result indicates that substantial obscuration along the line of sight to the nuclei is still present at 1.6 μm. Nonetheless, HIG nuclei cannot simply be explained in terms of dust obscuration: a significant contribution from light reflected in a circumnuclear scattering region is needed to account for their multiwavelength properties.

  15. Gold nanocages covered by smart polymers for controlled release with near-infrared light.

    Science.gov (United States)

    Yavuz, Mustafa S; Cheng, Yiyun; Chen, Jingyi; Cobley, Claire M; Zhang, Qiang; Rycenga, Matthew; Xie, Jingwei; Kim, Chulhong; Song, Kwang H; Schwartz, Andrea G; Wang, Lihong V; Xia, Younan

    2009-12-01

    Photosensitive caged compounds have enhanced our ability to address the complexity of biological systems by generating effectors with remarkable spatial/temporal resolutions. The caging effect is typically removed by photolysis with ultraviolet light to liberate the bioactive species. Although this technique has been successfully applied to many biological problems, it suffers from a number of intrinsic drawbacks. For example, it requires dedicated efforts to design and synthesize a precursor compound for each effector. The ultraviolet light may cause damage to biological samples and is suitable only for in vitro studies because of its quick attenuation in tissue. Here we address these issues by developing a platform based on the photothermal effect of gold nanocages. Gold nanocages represent a class of nanostructures with hollow interiors and porous walls. They can have strong absorption (for the photothermal effect) in the near-infrared while maintaining a compact size. When the surface of a gold nanocage is covered with a smart polymer, the pre-loaded effector can be released in a controllable fashion using a near-infrared laser. This system works well with various effectors without involving sophisticated syntheses, and is well suited for in vivo studies owing to the high transparency of soft tissue in the near-infrared region.

  16. NEAR-INFRARED VARIABILITY AMONG YOUNG STELLAR OBJECTS IN THE STAR FORMATION REGION CYGNUS OB7

    Energy Technology Data Exchange (ETDEWEB)

    Wolk, Scott J.; Rice, Thomas S. [Harvard-Smithsonian Center for Astrophysics, 60 Garden Street, Cambridge, MA 02138 (United States); Aspin, Colin [Institute for Astronomy, University of Hawaii at Manoa, 640 North Aohoku Place, Hilo, HI 96720 (United States)

    2013-08-20

    We present an analysis of near-infrared time-series photometry in J, H, and K bands for about 100 epochs of a 1 Degree-Sign Multiplication-Sign 1 Degree-Sign region of the Lynds 1003/1004 dark cloud in the Cygnus OB7 region. Augmented by data from the Wide-field Infrared Survey Explorer, we identify 96 candidate disk bearing young stellar objects (YSOs) in the region. Of these, 30 are clearly Class I or earlier. Using the Wide-Field Imaging Camera on the United Kingdom Infrared Telescope, we were able to obtain photometry over three observing seasons, with photometric uncertainty better than 0.05 mag down to J Almost-Equal-To 17. We study detailed light curves and color trajectories of {approx}50 of the YSOs in the monitored field. We investigate the variability and periodicity of the YSOs and find the data are consistent with all YSOs being variable in these wavelengths on timescales of a few years. We divide the variability into four observational classes: (1) stars with periodic variability stable over long timescales, (2) variables which exhibit short-lived cyclic behavior, (3) long-duration variables, and (4) stochastic variables. Some YSO variability defies simple classification. We can explain much of the observed variability as being due to dynamic and rotational changes in the disk, including an asymmetric or changing blocking fraction, changes to the inner disk hole size, as well as changes to the accretion rate. Overall, we find that the Class I:Class II ratio of the cluster is consistent with an age of <1 Myr, with at least one individual, wildly varying source {approx}100, 000 yr old. We have also discovered a Class II eclipsing binary system with a period of 17.87 days.

  17. AN ORDERED MAGNETIC FIELD IN THE PROTOPLANETARY DISK OF AB Aur REVEALED BY MID-INFRARED POLARIMETRY

    Energy Technology Data Exchange (ETDEWEB)

    Li, Dan; Pantin, Eric; Telesco, Charles M.; Zhang, Han; Barnes, Peter J.; Mariñas, Naibí [Department of Astronomy, University of Florida, 211 Bryant Space Science Center, FL 32611 (United States); Wright, Christopher M. [School of Physical, Environmental, and Mathematical Sciences, University of New South Wales, Canberra, ACT 2610 (Australia); Packham, Chris, E-mail: d.li@ufl.edu [Physics and Astronomy Department, University of Texas at San Antonio, 1 UTSA Circle, San Antonio, TX 78249 (United States)

    2016-11-20

    Magnetic fields ( B -fields) play a key role in the formation and evolution of protoplanetary disks, but their properties are poorly understood due to the lack of observational constraints. Using CanariCam at the 10.4 m Gran Telescopio Canarias, we have mapped out the mid-infrared polarization of the protoplanetary disk around the Herbig Ae star AB Aur. We detect ∼0.44% polarization at 10.3 μ m from AB Aur's inner disk ( r  < 80 au), rising to ∼1.4% at larger radii. Our simulations imply that the mid-infrared polarization of the inner disk arises from dichroic emission of elongated particles aligned in a disk B -field. The field is well ordered on a spatial scale, commensurate with our resolution (∼50 au), and we infer a poloidal shape tilted from the rotational axis of the disk. The disk of AB Aur is optically thick at 10.3 μ m, so polarimetry at this wavelength is probing the B -field near the disk surface. Our observations therefore confirm that this layer, favored by some theoretical studies for developing magneto-rotational instability and its resultant viscosity, is indeed very likely to be magnetized. At radii beyond ∼80 au, the mid-infrared polarization results primarily from scattering by dust grains with sizes up to ∼1 μ m, a size indicating both grain growth and, probably, turbulent lofting of the particles from the disk mid-plane.

  18. On the infrared behaviour of some non-Minkowskian quantum fields

    International Nuclear Information System (INIS)

    Pathinayake, C.

    1989-01-01

    The infrared structure of some quantum fields in several spacetimes was studied. Here infrared refers to effects associated with modes whose wave length is large compared to the characteristic scale of the space. Several situations dealing with aspects of this question are analyzed. It is shown that the infrared behavior of a massless scalar field and an antisymmetric tensor field in de Sitter space are different even though these two fields appear to be formally equivalent. The scalar field does not have a de Sitter-invariant quantum state, while the antisymmetric tensor is shown to have a well-behaved de Sitter-invariant vacuum. The second topic considered is the behavior of the expectation value of phi squared for a massless scalar field phi whose quantum state is free from infrared divergences in spatially flat Robertson-Walker universes. If the universe expands as a power of comoving time and the power is greater than 3/2, then phi squared grows for a finite interval of time. The next topic discussed is zero-frequency modes of massless scalar fields and vector fields in compact spaces. In some spaces they are growing functions of time. It is shown that growth rates can be related to initial conditions of the theory if the mass of the field is a function of time which varies from a constant in the past to 0 in the future. Growth in zero modes of a scalar field phi would lead to growth in phi squared. The relevance of these growing expectation values of squared field operators in global symmetry breaking is studied

  19. Permanent magnetic field, direct electric field, and infrared to reduce blood glucose level and hepatic function in mus musculus with diabetic mellitus

    International Nuclear Information System (INIS)

    Suhariningsih; Prijo, Tri Anggono; Notobroto, Hari Basuki; Winarni, Dwi; Hussein, Saikhu Achmad

    2017-01-01

    Blood contains several electrolytes with positive (cation) and negative (anion) ion load. Both electrolytes deliver impulse synergistically adjusting body needs. Those electrolytes give specific effect to external disturbance such as electric, magnetic, even infrared field. A study has been conducted to reduce blood glucose level and liver function, in type 2 Diabetes Mellitus patients, using Biophysics concept which uses combination therapy of permanent magnetic field, electric field, and infrared. This study used 48 healthy mice ( mus musculus ), male, age 3-4 weeks, with approximately 25-30 g in weight. Mice was fed with lard as high fat diet orally, before Streptozotocin (STZ) induction become diabetic mice. Therapy was conducted by putting mice in a chamber that emits the combination of permanent magnetic field, electric field, and infrared, every day for 1 hour for 28 days. There were 4 combinations of therapy/treatment, namely: (1) permanent magnetic field, direct electric field, and infrared; (2) permanent magnetic field, direct electric field, without infrared; (3) permanent magnetic field, alternating electric field, and infrared; and (4) permanent magnetic field, alternating electric field, without infrared. The results of therapy show that every combination is able to reduce blood glucose level, AST, and ALT. However, the best result is by using combination of permanent magnetic field, direct electric field, and infrared. (paper)

  20. Quantitative infrared and near-infrared gas-phase spectra for pyridine: Absolute intensities and vibrational assignments

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, T. J.; Aker, P. M.; Scharko, N. K.; Williams, S. D.

    2018-02-01

    Using vetted methods for generating quantitative absorption reference data, broadband infrared and near-infrared spectra (total range 11,000 – 600 cm-1) of pyridine vapor were recorded at 0.1 cm-1 spectral resolution, with the analyte thermostatted at 298 K and pressure-broadened to 1 atmosphere using N2 ballast gas. The quantitative spectrum is reported for the first time, and we have re-assigned some of the 27 fundamental modes. Fundamental assignments were confirmed by IR vapor phase band shapes, FT-Raman measurements and comparison with previous analyses. For the 760-Torr vapor-phase IR data several bands show resolved peaks (Q-branches). We have also assigned for the first time hundreds of combination and overtone bands in the mid- and near-IR. All assignments were made via comparison to theoretically calculated frequencies and intensities: The frequencies were computed with Gaussian03 with the anharmonic option, using MP2 and the ccpvtz basis set. The intensities were taken from a VSCF calculation in GAMESS using Hartree-Fock (for overtones and combination bands) or from the harmonic MP2 for fundamentals. Overtone and combination band harmonic and anharmonic frequencies, as well as intensities were also calculated using the CFOUR program. It is seen in the NIR spectrum near 6000 cm-1 that the very strong bands arise from the C-H first overtones, whereas only much weaker bands are observed for combination bands of C-H stretching modes. Certain features are discussed for their potential utility for atmospheric monitoring.

  1. Near-infrared optical properties of Yb3+-doped silicate glass waveguides prepared by double-energy proton implantation

    Science.gov (United States)

    Shen, Xiao-Liang; Zhu, Qi-Feng; Zheng, Rui-Lin; Lv, Peng; Guo, Hai-Tao; Liu, Chun-Xiao

    2018-03-01

    We report on the preparation and properties of an optical planar waveguide structure operating at 1539 nm in the Yb3+-doped silicate glass. The waveguide was formed by using (470 + 500) keV proton implantation at fluences of (1.0 + 2.0) × 1016 ions/cm2. The waveguiding characteristics including the guided-mode spectrum and the near-field image were investigated by the m-line technique and the finite-difference beam propagation method. The energy distribution for implanted protons and the refractive index profile for the proton-implanted waveguide were simulated by the stopping and range of ions in matter and the reflectivity calculation method. The proton-implanted Yb3+-doped silicate glass waveguide is a candidate for optoelectronic elements in the near-infrared region.

  2. Muscle metabolism from near infrared spectroscopy during rhythmic handgrip in humans

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Pott, F; Madsen, P

    1998-01-01

    The rate of metabolism in forearm flexor muscles (MO2) was derived from near-infrared spectroscopy (NIRS-O2) during ischaemia at rest rhythmic handgrip at 15% and 30% of maximal voluntary contraction (MVC), post-exercise muscle ischaemia (PEMI), and recovery in seven subjects. The MO2 was compared...

  3. The use of near infrared spectroscopy (NIRS) to predict the chemical ...

    African Journals Online (AJOL)

    resias

    Keywords: NIRS, ostrich TMR, chemical composition, nutritive value ... For adequate feeding of livestock, farmers need information about the nutritive value of available .... presented a SD/SECV ratio value of less than three, which is regarded as fair, .... The current and future role of near infrared reflectance spectroscopy in.

  4. Emergence of two near-infrared windows for in vivo and intraoperative SERS.

    Science.gov (United States)

    Lane, Lucas A; Xue, Ruiyang; Nie, Shuming

    2018-04-06

    Two clear windows in the near-infrared (NIR) spectrum are of considerable current interest for in vivo molecular imaging and spectroscopic detection. The main rationale is that near-infrared light can penetrate biological tissues such as skin and blood more efficiently than visible light because these tissues scatter and absorb less light at longer wavelengths. The first clear window, defined as light wavelengths between 650nm and 950nm, has been shown to be far superior for in vivo and intraoperative optical imaging than visible light. The second clear window, operating in the wavelength range of 1000-1700nm, has been reported to further improve detection sensitivity, spatial resolution, and tissue penetration because tissue photon scattering and background interference are further reduced at longer wavelengths. Here we discuss recent advances in developing biocompatible plasmonic nanoparticles for in vivo and intraoperative surface-enhanced Raman scattering (SERS) in both the first and second NIR windows. In particular, a new class of 'broad-band' plasmonic nanostructures is well suited for surface Raman enhancement across a broad range of wavelengths allowing a direct comparison of detection sensitivity and tissue penetration between the two NIR window. Also, optimized and encoded SERS nanoparticles are generally nontoxic and are much brighter than near-infrared quantum dots (QDs), raising new possibilities for ultrasensitive detection of microscopic tumors and image-guided precision surgery. Copyright © 2018 Elsevier Ltd. All rights reserved.

  5. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation, Phase II

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...

  6. A Near-Infrared Photon Counting Camera for High Sensitivity Astronomical Observation, Phase I

    Data.gov (United States)

    National Aeronautics and Space Administration — The innovation is a Near Infrared Photon-Counting Sensor (NIRPCS), an imaging device with sufficient sensitivity to capture the spectral signatures, in the...

  7. Synegies Between Visible/Near-Infrared Imaging Spectrometry and the Thermal Infrared in an Urban Environment: An Evaluation of the Hyperspectral Infrared Imager (HYSPIRI) Mission

    Science.gov (United States)

    Roberts, Dar A.; Quattrochi, Dale A.; Hulley, Glynn C.; Hook, Simon J.; Green, Robert O.

    2012-01-01

    A majority of the human population lives in urban areas and as such, the quality of urban environments is becoming increasingly important to the human population. Furthermore, these areas are major sources of environmental contaminants and sinks of energy and materials. Remote sensing provides an improved understanding of urban areas and their impacts by mapping urban extent, urban composition (vegetation and impervious cover fractions), and urban radiation balance through measures of albedo, emissivity and land surface temperature (LST). Recently, the National Research Council (NRC) completed an assessment of remote sensing needs for the next decade (NRC, 2007), proposing several missions suitable for urban studies, including a visible, near-infrared and shortwave infrared (VSWIR) imaging spectrometer and a multispectral thermal infrared (TIR) instrument called the Hyperspectral Infrared Imagery (HyspIRI). In this talk, we introduce the HyspIRI mission, focusing on potential synergies between VSWIR and TIR data in an urban area. We evaluate potential synergies using an Airborne Visible/Infrared Imaging Spectrometer (AVIRIS) and MODIS-ASTER (MASTER) image pair acquired over Santa Barbara, United States. AVIRIS data were analyzed at their native spatial resolutions (7.5m VSWIR and 15m TIR), and aggregated 60 m spatial resolution similar to HyspIRI. Surface reflectance was calculated using ACORN and a ground reflectance target to remove atmospheric and sensor artifacts. MASTER data were processed to generate estimates of spectral emissivity and LST using Modtran radiative transfer code and the ASTER Temperature Emissivity Separation algorithm. A spectral library of common urban materials, including urban vegetation, roofs and roads was assembled from combined AVIRIS and field-measured reflectance spectra. LST and emissivity were also retrieved from MASTER and reflectance/emissivity spectra for a subset of urban materials were retrieved from co-located MASTER and

  8. Crossing the Resolution Limit in Near-Infrared Imaging of Silicon Chips: Targeting 10-nm Node Technology

    Directory of Open Access Journals (Sweden)

    Krishna Agarwal

    2015-05-01

    Full Text Available The best reported resolution in optical failure analysis of silicon chips is 120-nm half pitch demonstrated by Semicaps Private Limited, whereas the current and future industry requirement for 10-nm node technology is 100-nm half pitch. We show the first experimental evidence for resolution of features with 100-nm half pitch buried in silicon (λ/10.6, thus fulfilling the industry requirement. These results are obtained using near-infrared reflection-mode imaging using a solid immersion lens. The key novel feature of our approach is the choice of an appropriately sized collection pinhole. Although it is usually understood that, in general, resolution is improved by using the smallest pinhole consistent with an adequate signal level, it is found that in practice for silicon chips there is an optimum pinhole size, determined by the generation of induced currents in the sample. In failure analysis of silicon chips, nondestructive imaging is important to avoid disturbing the functionality of integrated circuits. High-resolution imaging techniques like SEM or TEM require the transistors to be exposed destructively. Optical microscopy techniques may be used, but silicon is opaque in the visible spectrum, mandating the use of near-infrared light and thus poor resolution in conventional optical microscopy. We expect our result to change the way semiconductor failure analysis is performed.

  9. THE COSMIC INFRARED BACKGROUND EXPERIMENT (CIBER): THE WIDE-FIELD IMAGERS

    Energy Technology Data Exchange (ETDEWEB)

    Bock, J.; Battle, J. [Jet Propulsion Laboratory (JPL), National Aeronautics and Space Administration (NASA), Pasadena, CA 91109 (United States); Sullivan, I. [Department of Physics, University of Washington, Seattle, WA 98195 (United States); Arai, T.; Matsumoto, T.; Matsuura, S.; Tsumura, K. [Department of Space Astronomy and Astrophysics, Institute of Space and Astronautical Science (ISAS), Japan Aerospace Exploration Agency (JAXA), Sagamihara, Kanagawa 252-5210 (Japan); Cooray, A.; Mitchell-Wynne, K.; Smidt, J. [Center for Cosmology, University of California, Irvine, CA 92697 (United States); Hristov, V.; Lam, A. C.; Levenson, L. R.; Mason, P. [Department of Physics, Mathematics and Astronomy, California Institute of Technology, Pasadena, CA 91125 (United States); Keating, B.; Renbarger, T. [Department of Physics, University of California, San Diego, San Diego, CA 92093 (United States); Kim, M. G. [Department of Physics and Astronomy, Seoul National University, Seoul 151-742 (Korea, Republic of); Lee, D. H. [Institute of Astronomy and Astrophysics, Academia Sinica, National Taiwan University, Taipei 10617, Taiwan (China); Nam, U. W. [Korea Astronomy and Space Science Institute (KASI), Daejeon 305-348 (Korea, Republic of); Suzuki, K. [Instrument Development Group of Technical Center, Nagoya University, Nagoya, Aichi 464-8602 (Japan); and others

    2013-08-15

    We have developed and characterized an imaging instrument to measure the spatial properties of the diffuse near-infrared extragalactic background light (EBL) in a search for fluctuations from z > 6 galaxies during the epoch of reionization. The instrument is part of the Cosmic Infrared Background Experiment (CIBER), designed to observe the EBL above Earth's atmosphere during a suborbital sounding rocket flight. The imaging instrument incorporates a 2 Degree-Sign Multiplication-Sign 2 Degree-Sign field of view to measure fluctuations over the predicted peak of the spatial power spectrum at 10 arcmin, and 7'' Multiplication-Sign 7'' pixels, to remove lower redshift galaxies to a depth sufficient to reduce the low-redshift galaxy clustering foreground below instrumental sensitivity. The imaging instrument employs two cameras with {Delta}{lambda}/{lambda} {approx} 0.5 bandpasses centered at 1.1 {mu}m and 1.6 {mu}m to spectrally discriminate reionization extragalactic background fluctuations from local foreground fluctuations. CIBER operates at wavelengths where the electromagnetic spectrum of the reionization extragalactic background is thought to peak, and complements fluctuation measurements by AKARI and Spitzer at longer wavelengths. We have characterized the instrument in the laboratory, including measurements of the sensitivity, flat-field response, stray light performance, and noise properties. Several modifications were made to the instrument following a first flight in 2009 February. The instrument performed to specifications in three subsequent flights, and the scientific data are now being analyzed.

  10. Assessment of near infrared and "software sensor" for biomass monitoring and control

    NARCIS (Netherlands)

    Soons, Z.I.T.A.; Streefland, M.; Straten, van G.; Boxtel, van A.J.B.

    2008-01-01

    Spectroscopic instrumentation is often seen as promising for process analytical technology (PAT) to enhance control of manufacturing (bio)pharmaceuticals. The interpretation of near infrared spectra is challenging due to the large number of wavelengths recorded and the overlapping absorbance

  11. Capillary-oxygenation-level-dependent near-infrared spectrometry in frontal lobe of humans

    NARCIS (Netherlands)

    Rasmussen, Peter; Dawson, Ellen A.; Nybo, Lars; van Lieshout, Johannes J.; Secher, Niels H.; Gjedde, Albert

    2007-01-01

    Brain function requires oxygen and maintenance of brain capillary oxygenation is important. We evaluated how faithfully frontal lobe near-infrared spectroscopy (NIRS) follows haemoglobin saturation (SCap) and how calculated mitochondrial oxygen tension (PMitoO2) influences motor performance. Twelve

  12. High-Fidelity Trapped-Ion Quantum Logic Using Near-Field Microwaves.

    Science.gov (United States)

    Harty, T P; Sepiol, M A; Allcock, D T C; Ballance, C J; Tarlton, J E; Lucas, D M

    2016-09-30

    We demonstrate a two-qubit logic gate driven by near-field microwaves in a room-temperature microfabricated surface ion trap. We introduce a dynamically decoupled gate method, which stabilizes the qubits against fluctuating energy shifts and avoids the need to null the microwave field. We use the gate to produce a Bell state with fidelity 99.7(1)%, after accounting for state preparation and measurement errors. The gate is applied directly to ^{43}Ca^{+} hyperfine "atomic clock" qubits (coherence time T_{2}^{*}≈50  s) using the oscillating magnetic field gradient produced by an integrated microwave electrode.

  13. Graphene-based photovoltaic cells for near-field thermal energy conversion.

    Science.gov (United States)

    Messina, Riccardo; Ben-Abdallah, Philippe

    2013-01-01

    Thermophotovoltaic devices are energy-conversion systems generating an electric current from the thermal photons radiated by a hot body. While their efficiency is limited in far field by the Schockley-Queisser limit, in near field the heat flux transferred to a photovoltaic cell can be largely enhanced because of the contribution of evanescent photons, in particular for a source supporting a surface mode. Unfortunately, in the infrared where these systems operate, the mismatch between the surface-mode frequency and the semiconductor gap reduces drastically the potential of this technology. In this paper we propose a modified thermophotovoltaic device in which the cell is covered by a graphene sheet. By discussing the transmission coefficient and the spectral properties of the flux, we show that both the cell efficiency and the produced current can be enhanced, paving the way to promising developments for the production of electricity from waste heat.

  14. A path-integral approach for bosonic effective theories for Fermion fields in four and three dimensions

    International Nuclear Information System (INIS)

    Botelho, Luiz C.L.

    1998-02-01

    We study four dimensional Effective Bosonic Field Theories for massive fermion field in the infrared region and massive fermion in ultraviolet region by using an appropriate Fermion Path Integral Chiral variable change and the Polyakov's Fermi-Bose transmutation in the 3D-Abelian Thrirring model. (author)

  15. Online analysis of wood pellets. Quality parameters by near infrared spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Petersen Julius, Lars; Joergensen, Pia [Dong Energy Power, Fredericia (Denmark); Plejdrup Houmoeller, Lars [Arla Foods amba, Global Ingedients R and D, Videbaek (Denmark); Groenkaer Pedersen, Joan [Academy Engineer Chemistry Fertin Pharma, Vejle (Denmark); Anov, Dan

    2010-07-01

    A near infrared spectroscopy system was installed online in a wood pellet production facility. The objective was to translate real time spectra to useful chemical information, like calorific value, water- and ash content. It was possible to successfully determine water content and calorific value, whereas ash content proved troublesome. (orig.)

  16. Optical and near-infrared imaging of faint Gigahertz Peaked Spectrum sources

    NARCIS (Netherlands)

    Snellen, IAG; Schilizzi, RT; de Bruyn, AG; Miley, GK; Rottgering, HJA; McMahon, RG; Fournon, IP

    1998-01-01

    A sample of 47 faint Gigahertz Peaked Spectrum (GPS) radio sources selected from the Westerbork Northern Sky Survey (WENSS) has been imaged in the optical and near-infrared, resulting in an identification fraction of 87 per cent. The R - I and R - K colours of the faint optical counterparts are as

  17. A review: Functional near infrared spectroscopy evaluation in muscle tissues using Monte Carlo simulation

    Science.gov (United States)

    Halim, A. A. A.; Laili, M. H.; Salikin, M. S.; Rusop, M.

    2018-05-01

    Monte Carlo Simulation has advanced their quantification based on number of the photon counting to solve the propagation of light inside the tissues including the absorption, scattering coefficient and act as preliminary study for functional near infrared application. The goal of this paper is to identify the optical properties using Monte Carlo simulation for non-invasive functional near infrared spectroscopy (fNIRS) evaluation of penetration depth in human muscle. This paper will describe the NIRS principle and the basis for its proposed used in Monte Carlo simulation which focused on several important parameters include ATP, ADP and relate with blow flow and oxygen content at certain exercise intensity. This will cover the advantages and limitation of such application upon this simulation. This result may help us to prove that our human muscle is transparent to this near infrared region and could deliver a lot of information regarding to the oxygenation level in human muscle. Thus, this might be useful for non-invasive technique for detecting oxygen status in muscle from living people either athletes or working people and allowing a lots of investigation muscle physiology in future.

  18. Near-infrared mapping of spiral barred galaxies

    International Nuclear Information System (INIS)

    Gallais, P.; Rouan, D.; Lacombe, F.

    1990-01-01

    The results presented were obtained with a 32 x 32 InSb charge injection device (CID) array cooled at 4K, at the f/36 cassegrain focus of the 3m60 Canada-France-Hawaii telescope with a spatial resolution of 0.5 inches per pixel. The objects presented are spiral barred galaxies mapped at J(1.25 microns), H(1.65 microns) and K(2.2 microns). The non-axisymetric potential due to the presence of a bar induces dynamical processes leading to the confinement of matter and peculiar morphologies. Infrared imaging is used to study the link between various components. Correlations with other wavelengths ranges and 2-colors diagrams ((J-H), (H-K)) lead to the identification of star forming regions, nucleus. Maps show structures connected to the central core. The question is, are they flowing away or toward the nucleus. Observations of M83 lead to several conclusions. The star forming region, detected in the visible and the infrared cannot be very compact and must extend to the edge of the matter concentration. The general shape of the near-infrared emission and the location of radio and 10 micron peaks suggest the confinement of matter between the inner Linblad resonances localized from CO measurements about 100 and 400 pc. The distribution of color indices in the arc from southern part to the star forming region suggests an increasing amount of gas and a time evolution eventually triggered by supernova explosions. Close to the direction of the bar, a bridge-like structure connects the arc to the nucleus with peculiar color indices

  19. Patient identification using a near-infrared laser scanner

    Science.gov (United States)

    Manit, Jirapong; Bremer, Christina; Schweikard, Achim; Ernst, Floris

    2017-03-01

    We propose a new biometric approach where the tissue thickness of a person's forehead is used as a biometric feature. Given that the spatial registration of two 3D laser scans of the same human face usually produces a low error value, the principle of point cloud registration and its error metric can be applied to human classification techniques. However, by only considering the spatial error, it is not possible to reliably verify a person's identity. We propose to use a novel near-infrared laser-based head tracking system to determine an additional feature, the tissue thickness, and include this in the error metric. Using MRI as a ground truth, data from the foreheads of 30 subjects was collected from which a 4D reference point cloud was created for each subject. The measurements from the near-infrared system were registered with all reference point clouds using the ICP algorithm. Afterwards, the spatial and tissue thickness errors were extracted, forming a 2D feature space. For all subjects, the lowest feature distance resulted from the registration of a measurement and the reference point cloud of the same person. The combined registration error features yielded two clusters in the feature space, one from the same subject and another from the other subjects. When only the tissue thickness error was considered, these clusters were less distinct but still present. These findings could help to raise safety standards for head and neck cancer patients and lays the foundation for a future human identification technique.

  20. Near-Infrared Diffuse Optical Tomography

    Directory of Open Access Journals (Sweden)

    A. H. Hielscher

    2002-01-01

    Full Text Available Diffuse optical tomography (DOT is emerging as a viable new biomedical imaging modality. Using near-infrared (NIR light, this technique probes absorption as well as scattering properties of biological tissues. First commercial instruments are now available that allow users to obtain cross-sectional and volumetric views of various body parts. Currently, the main applications are brain, breast, limb, joint, and fluorescence/bioluminescence imaging. Although the spatial resolution is limited when compared with other imaging modalities, such as magnetic resonance imaging (MRI or X-ray computerized tomography (CT, DOT provides access to a variety of physiological parameters that otherwise are not accessible, including sub-second imaging of hemodynamics and other fast-changing processes. Furthermore, DOT can be realized in compact, portable instrumentation that allows for bedside monitoring at relatively low cost. In this paper, we present an overview of current state-of-the -art technology, including hardware and image-reconstruction algorithms, and focus on applications in brain and joint imaging. In addition, we present recent results of work on optical tomographic imaging in small animals.

  1. Near-infrared dichroism of a mesogenic transition metal complex and its solubility in nematic hosts

    International Nuclear Information System (INIS)

    Marshall, K.L.; Jacobs, S.D.

    1987-01-01

    A transition metal complex possessing the nematic phase, bis (p-n-butylstyryl-1, 2-dithiolato) nickel, was synthesized and its optical properties and solubility in the nematic hosts K15 and MBBA were investigated. The metal complex displayed a high solubility in both host materials (up to 10% wt/wt) and a strong near-infrared absorption band centered at 860 nm. A blocking extinction of greater than OD = 3 was obtained with a 100 micron pathlength of a 0.5% wt/wt mixture of the nematic metal complex in K15, suggesting its usefulness for passive blocking of near infrared radiation. A 24 micron thick, homogeneously aligned guest-host cell containing a 1% wt/wt mixture of the metal complex in K15 possessed a contrast ratio of nearly 5:1 and a blocking extinction of OD = 3.5 at 860 nm, demonstrating for the first time the existence of near-infrared dichroism in this class of materials. The solubility and blocking extinction of the mesogenic metal complex in K15 was considerably superior to the non-mesogenic near ir laser dye bis(dimethylaminodithiobenzil) nickel in the same host. An interaction of the nematic metal complex in mixtures with MBBA which resulted in the creation of a new absorption band at 1050 nm was also observed. 21 refs., 9 figs

  2. Infrared

    Science.gov (United States)

    Vollmer, M.

    2013-11-01

    'Infrared' is a very wide field in physics and the natural sciences which has evolved enormously in recent decades. It all started in 1800 with Friedrich Wilhelm Herschel's discovery of infrared (IR) radiation within the spectrum of the Sun. Thereafter a few important milestones towards widespread use of IR were the quantitative description of the laws of blackbody radiation by Max Planck in 1900; the application of quantum mechanics to understand the rotational-vibrational spectra of molecules starting in the first half of the 20th century; and the revolution in source and detector technologies due to micro-technological breakthroughs towards the end of the 20th century. This has led to much high-quality and sophisticated equipment in terms of detectors, sources and instruments in the IR spectral range, with a multitude of different applications in science and technology. This special issue tries to focus on a few aspects of the astonishing variety of different disciplines, techniques and applications concerning the general topic of infrared radiation. Part of the content is based upon an interdisciplinary international conference on the topic held in 2012 in Bad Honnef, Germany. It is hoped that the information provided here may be useful for teaching the general topic of electromagnetic radiation in the IR spectral range in advanced university courses for postgraduate students. In the most general terms, the infrared spectral range is defined to extend from wavelengths of 780 nm (upper range of the VIS spectral range) up to wavelengths of 1 mm (lower end of the microwave range). Various definitions of near, middle and far infrared or thermal infrared, and lately terahertz frequencies, are used, which all fall in this range. These special definitions often depend on the scientific field of research. Unfortunately, many of these fields seem to have developed independently from neighbouring disciplines, although they deal with very similar topics in respect of the

  3. Characteristics of near-field earthquake ground motion

    International Nuclear Information System (INIS)

    Kim, H. K.; Choi, I. G.; Jeon, Y. S.; Seo, J. M.

    2002-01-01

    The near-field ground motions exhibit special response characteristics that are different from those of ordinary ground motions in the velocity and displacement response. This study first examines the characteristics of near-field ground motion depending on fault directivity and fault normal and parallel component. And the response spectra of the near field ground motion are statistically processed, and are compared with the Regulatory Guide 1.60 spectrum that is present design spectrum of the nuclear power plant. The response spectrum of the near filed ground motions shows large spectral velocity and displacement in the low frequency range. The spectral accelerations of near field ground motion are greatly amplified in the high frequency range for the rock site motions, and in the low frequency range for the soil site motions. As a result, the near field ground motion effects should be considered in the seismic design and seismic safety evaluation of the nuclear power plant structures and equipment

  4. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent; Cottat, Maximilien; Gillibert, Raymond; Guillot, Nicolas; Djaker, Nadia; Lidgi-Guigui, Nathalie; Toury, Timothé e; Barchiesi, Dominique; Toma, Andrea; Di Fabrizio, Enzo M.; Gucciardi, Pietro Giuseppe; de la Chapelle, Marc Lamy

    2016-01-01

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  5. Red-Shift Effects in Surface Enhanced Raman Spectroscopy: Spectral or Intensity Dependence of the Near-Field?

    KAUST Repository

    Colas, Florent

    2016-06-06

    Optimum amplification in Surface Enhanced Raman Scattering (SERS) from individual nanoantennas is expected when the excitation is slightly blue-shifted with respect to the Localized Surface Plasmon Resonance (LSPR), so that the LSPR peak falls in the middle between the laser and the Stokes Raman emission. Recent experiments have shown when moving the excitation from the visible to the near-infrared that this rule of thumb is no more valid. The excitation has to be red-shifted with respect to the LSPR peak, up to 80nm, to obtain highest SERS. Such discrepancy is usually attributed to a Near-Field (NF) to Far-Field (FF) spectral shift. Here we critically discuss this hypothesis for the case of gold nanocylinders. By combining multi-wavelength excitation SERS experiments with numerical calculations, we show that the red-shift of the excitation energy does not originate from a spectral shift between the extinction (FF) and the near-field distribution (NF), which is found to be not larger than 10nm. Rather, it can be accounted for by looking at the peculiar spectral dependence of the near-field intensity on the cylinders diameter, characterized by an initial increase, up to 180nm diameter, followed by a decrease and a pronounced skewness.

  6. Cerebral hemodynamics measured with simultaneous PET and near-infrared spectroscopy in humans

    DEFF Research Database (Denmark)

    Rostrup, Egill; Law, Ian; Pott, Frank

    2002-01-01

    Near-infrared spectroscopy (NIRS) enables continuous non-invasive quantification of blood and tissue oxygenation, and may be useful for quantification of cerebral blood volume (CBV) changes. In this study, changes in cerebral oxy- and deoxyhemoglobin were compared to corresponding changes in CBF ...

  7. New indicator for optimal preprocessing and wavelength selection of near-infrared spectra

    NARCIS (Netherlands)

    Skibsted, E. T. S.; Boelens, H. F. M.; Westerhuis, J. A.; Witte, D. T.; Smilde, A. K.

    2004-01-01

    Preprocessing of near-infrared spectra to remove unwanted, i.e., non-related spectral variation and selection of informative wavelengths is considered to be a crucial step prior to the construction of a quantitative calibration model. The standard methodology when comparing various preprocessing

  8. Noninvasive measurement of postocclusive parameters in human forearm blood by near infrared spectroscopy

    Science.gov (United States)

    Rao, K. Prahlad; Radhakrishnan, S.; Reddy, M. Ramasubba

    2005-04-01

    Near infrared (NIR) light in the wavelength range from 700 to 900 nm can pass through skin, bone and other tissues relatively easily. As a result, NIR techniques allow a noninvasive assessment of hemoglobin saturation for a wide range of applications, such as in the study of muscle metabolism, the diagnosis of vascular disorders, brain imaging, and breast cancer detection. Near infrared Spectroscopy (NIRS) is an effective tool to measure the hemoglobin concentration in the tissues, which can discriminate optically the oxy- and deoxy- hemoglobin species because of their different near-infrared absorption spectra. We have developed an NIRS probe consisting of a laser diode of 830 nm wavelength and a PIN photodiode in reflectance mode. We have selected a set of healthy volunteers (mean age 30, range 26-40 years) for the study. The probe is placed on forearm of each subject and the backscattered light intensity is measured by occluding the blood flow at 210, 110 and 85 mmHg pressures. Recovery time, peak time and time after 50% release of the cuff pressure are determined from the optical densities during the post occlusive state of forearm. These parameters are useful for determining the transient increase in blood flow after the release of blood occlusion. Clinically, the functional aspects of blood flow in the limbs could be evaluated noninvasively by NIRS.

  9. Formation of filtration fields close to near-surface radioactive waste storages

    International Nuclear Information System (INIS)

    Mart'yanov, V.V.

    2008-01-01

    Data on the formation of filtration fields in the location of near-surface radioactive waste storages for the conditions of uniformly isotropic properties of bearing strata are demonstrated. The possibility for changing parameters of mean-caused ground flow depending on water permeability of the storages and their dimensions in plan is noted. Comparison of different filtration fields permits to determine a state of its isolating properties. Assessment criteria of the storage engineering barriers integrity are given. Conditions for uniformly isotropic properties of bearing strata by three scenarios, when engineering barriers of the storage are waterproof, distracted or lost protective properties in full, have been determined. Changing filtration field, geochemical and radiochemical situations in bearing strata are noted to represent one of basic characteristics of the integrity of the storage [ru

  10. Energy modulation of nonrelativistic electrons in an optical near field on a metal microslit

    Science.gov (United States)

    Ishikawa, R.; Bae, J.; Mizuno, K.

    2001-04-01

    Energy modulation of nonrelativistic electrons with a laser beam using a metal microslit as an interaction circuit has been investigated. An optical near field is induced in the proximity of the microslit by illumination of the laser beam. The electrons passing close to the slit are accelerated or decelerated by an evanescent wave contained in the near field whose phase velocity is equal to the velocity of the electrons. The electron-evanescent wave interaction in the microslit has been analyzed theoretically and experimentally. The theory has predicted that electron energy can be modulated at optical frequencies. Experiments performed in the infrared region have verified theoretical predictions. The electron-energy changes of more than ±5 eV with a 10 kW CO2 laser pulse at the wavelength of 10.6 μm has been successfully observed for an electron beam with an energy of less than 80 keV.

  11. Near-infrared to Mid-infrared Observations of Galaxy Mergers: NGC 2782 and NGC 7727

    Science.gov (United States)

    Onaka, Takashi; Nakamura, Tomohiko; Sakon, Itsuki; Wu, Ronin; Ohsawa, Ryou; Kaneda, Hidehiro; Lebouteiller, Vianney; Roellig, Thomas L.

    2018-01-01

    We present the results of near-infrared-to-mid-infrared (NIR-to-MIR) imaging and NIR spectroscopic observations of two galaxy mergers, NGC 2782 (Arp 215) and NGC 7727 (Arp 222), with the Infrared Camera on board AKARI. NGC 2782 shows extended MIR emission in the eastern side of the galaxy, which corresponds to the eastern tidal tail seen in the H I 21 cm map, while NGC 7727 shows extended MIR emission in the north of the galaxy, which is similar to the plumes seen in the residual image at the K-band after subtracting a galaxy model. Both extended structures are thought to have formed in association with their merger events. They show excess emission at 7–15 μm, which can be attributed to emission from polycyclic aromatic hydrocarbons (PAHs), while the observed spectral energy distributions (SEDs) decline longward of 24 μm, suggesting that very small grains (VSGs) are deficient. These characteristics of the observed MIR SED may be explained if PAHs are formed by fragmentation of VSGs during merger events. The star formation rate is estimated from the MIR PAH emission in the eastern tail region of NGC 2782 and it is in fair agreement with those estimated from Hα and [C II] 158 μm. MIR observations are efficient for the study of dust processing and structures formed during merger events.

  12. Apertureless near-field/far-field CW two-photon microscope for biological and material imaging and spectroscopic applications.

    Science.gov (United States)

    Nowak, Derek B; Lawrence, A J; Sánchez, Erik J

    2010-12-10

    We present the development of a versatile spectroscopic imaging tool to allow for imaging with single-molecule sensitivity and high spatial resolution. The microscope allows for near-field and subdiffraction-limited far-field imaging by integrating a shear-force microscope on top of a custom inverted microscope design. The instrument has the ability to image in ambient conditions with optical resolutions on the order of tens of nanometers in the near field. A single low-cost computer controls the microscope with a field programmable gate array data acquisition card. High spatial resolution imaging is achieved with an inexpensive CW multiphoton excitation source, using an apertureless probe and simplified optical pathways. The high-resolution, combined with high collection efficiency and single-molecule sensitive optical capabilities of the microscope, are demonstrated with a low-cost CW laser source as well as a mode-locked laser source.

  13. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation); Lomakina, Ekaterina I. [Faculty of Computational Mathematics and Cybernetics, Lomonosov Moscow State University, 119992 Moscow (Russian Federation)

    2010-06-25

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm{sup -1} NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  14. Gasoline classification using near infrared (NIR) spectroscopy data: Comparison of multivariate techniques

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.; Lomakina, Ekaterina I.

    2010-01-01

    Near infrared (NIR) spectroscopy is a non-destructive (vibrational spectroscopy based) measurement technique for many multicomponent chemical systems, including products of petroleum (crude oil) refining and petrochemicals, food products (tea, fruits, e.g., apples, milk, wine, spirits, meat, bread, cheese, etc.), pharmaceuticals (drugs, tablets, bioreactor monitoring, etc.), and combustion products. In this paper we have compared the abilities of nine different multivariate classification methods: linear discriminant analysis (LDA), quadratic discriminant analysis (QDA), regularized discriminant analysis (RDA), soft independent modeling of class analogy (SIMCA), partial least squares (PLS) classification, K-nearest neighbor (KNN), support vector machines (SVM), probabilistic neural network (PNN), and multilayer perceptron (ANN-MLP) - for gasoline classification. Three sets of near infrared (NIR) spectra (450, 415, and 345 spectra) were used for classification of gasolines into 3, 6, and 3 classes, respectively, according to their source (refinery or process) and type. The 14,000-8000 cm -1 NIR spectral region was chosen. In all cases NIR spectroscopy was found to be effective for gasoline classification purposes, when compared with nuclear magnetic resonance (NMR) spectroscopy or gas chromatography (GC). KNN, SVM, and PNN techniques for classification were found to be among the most effective ones. Artificial neural network (ANN-MLP) approach based on principal component analysis (PCA), which was believed to be efficient, has shown much worse results. We hope that the results obtained in this study will help both further chemometric (multivariate data analysis) investigations and investigations in the sphere of applied vibrational (infrared/IR, near-IR, and Raman) spectroscopy of sophisticated multicomponent systems.

  15. Visible and near-infrared radiative properties of vertically aligned multi-walled carbon nanotubes

    International Nuclear Information System (INIS)

    Wang, X J; Zhang, Z M; Flicker, J D; Ready, W J; Lee, B J

    2009-01-01

    This work investigates the reflection and scattering from vertically aligned carbon nanotubes, fabricated on silicon substrate using thermally enhanced chemical vapor deposition with both tip-growth and base-growth mechanisms. The directional-hemispherical reflectance in the visible and near-infrared wavelengths was measured with an integrating sphere. The polarization-dependent bidirectional reflectance distribution function was characterized with a laser scatterometer at the wavelength of 635 nm. The effective medium theory was used to elucidate the mechanism of high absorptance (greater than 0.97 in the spectral region from 400 to 1800 nm) of the multi-walled carbon nanotube samples. It is observed that scattering by impurities on the top of the nanotubes, by the nanotube tips, and by defects and misalignment can significantly increase the reflectance and introduce retroreflection. This study may facilitate application of carbon nanotubes in pyroelectric detectors as well as thermophotovoltaic emitters and absorbers.

  16. High frame-rate MR-guided near-infrared tomography system to monitor breast hemodynamics

    Science.gov (United States)

    Li, Zhiqiu; Jiang, Shudong; Krishnaswamy, Venkataramanan; Davis, Scott C.; Srinivasan, Subhadra; Paulsen, Keith D.; Pogue, Brian W.

    2011-02-01

    A near-infrared (NIR) tomography system with spectral-encoded sources at two wavelength bands was built to quantify the temporal contrast at 20 Hz bandwidth, while imaging breast tissue. The NIR system was integrated with a magnetic resonance (MR) machine through a custom breast coil interface, and both NIR data and MR images were acquired simultaneously. MR images provided breast tissue structural information for NIR reconstruction. Acquisition of finger pulse oximeter (PO) plethysmogram was synchronized with the NIR system in the experiment to offer a frequency-locked reference. The recovered absorption coefficients of the breast at two wavelengths showed identical temporal frequency as the PO output, proving this multi-modality design can recover the small pulsatile variation of absorption property in breast tissue related to the heartbeat. And it also showed the system's ability on novel contrast imaging of fast flow signals in deep tissue.

  17. Evaluation of light detector surface area for functional Near Infrared Spectroscopy.

    Science.gov (United States)

    Wang, Lei; Ayaz, Hasan; Izzetoglu, Meltem; Onaral, Banu

    2017-10-01

    Functional Near Infrared Spectroscopy (fNIRS) is an emerging neuroimaging technique that utilizes near infrared light to detect cortical concentration changes of oxy-hemoglobin and deoxy-hemoglobin non-invasively. Using light sources and detectors over the scalp, multi-wavelength light intensities are recorded as time series and converted to concentration changes of hemoglobin via modified Beer-Lambert law. Here, we describe a potential source for systematic error in the calculation of hemoglobin changes and light intensity measurements. Previous system characterization and analysis studies looked into various fNIRS parameters such as type of light source, number and selection of wavelengths, distance between light source and detector. In this study, we have analyzed the contribution of light detector surface area to the overall outcome. Results from Monte Carlo based digital phantoms indicated that selection of detector area is a critical system parameter in minimizing the error in concentration calculations. The findings here can guide the design of future fNIRS sensors. Copyright © 2017 Elsevier Ltd. All rights reserved.

  18. Preliminary tests on a new near-infrared continuous-wave tissue oximeter

    Science.gov (United States)

    Casavola, Claudia; Cicco, Giuseppe; Pirrelli, Anna; Lugara, Pietro M.

    2000-11-01

    We present a preliminary study, in vitro and in vivo, with a novel device for near-infrared tissue oximetry. The light sources used are two quasi-continuous-wave LEDs, emitting at 656 and 851 nm, and the detector is a photodiode. The data are acquired in back-scattering configuration, thus allowing the non-invasive characterization of thick tissues. Stability tests were performed by placing the optical probe on a tissue- like phantom and acquiring data for periods of time ranging from 5 to 40 minutes. No significant drifts in the DC signal were observed after a warm-up period of no more than 10 minutes. We performed reproducibility tests by repositioning the optical probe on the phantom for a number of times. We found a reproducibility better than 5% in the DC signal. We also present the results of a preliminary study conducted in vivo, on the calf muscle of human subjects. We report a comparison of the results obtained with the near-infrared oximeter with the values of blood oxygenation ctO2 measured with conventional chemical tests.

  19. [Authentication of Trace Material Evidence in Forensic Science Field with Infrared Microscopic Technique].

    Science.gov (United States)

    Jiang, Zhi-quan; Hu, Ke-liang

    2016-03-01

    In the field of forensic science, conventional infrared spectral analysis technique is usually unable to meet the detection requirements, because only very a few trace material evidence with diverse shapes and complex compositions, can be extracted from the crime scene. Infrared microscopic technique is developed based on a combination of Fourier-transform infrared spectroscopic technique and microscopic technique. Infrared microscopic technique has a lot of advantages over conventional infrared spectroscopic technique, such as high detection sensitivity, micro-area analysisand nondestructive examination. It has effectively solved the problem of authentication of trace material evidence in the field of forensic science. Additionally, almost no external interference is introduced during measurements by infrared microscopic technique. It can satisfy the special need that the trace material evidence must be reserved for witness in court. It is illustrated in detail through real case analysis in this experimental center that, infrared microscopic technique has advantages in authentication of trace material evidence in forensic science field. In this paper, the vibration features in infrared spectra of material evidences, including paints, plastics, rubbers, fibers, drugs and toxicants, can be comparatively analyzed by means of infrared microscopic technique, in an attempt to provide powerful spectroscopic evidence for qualitative diagnosis of various criminal and traffic accident cases. The experimental results clearly suggest that infrared microscopic technique has an incomparable advantage and it has become an effective method for authentication of trace material evidence in the field of forensic science.

  20. Screening suspected counterfeit Viagra and imitations of Viagra with near-infrared spectroscopy.

    NARCIS (Netherlands)

    Vredenbregt, M J; Blok-Tip, L; Hoogerbrugge, Ronald; Barends, D M; Kaste, D de

    2006-01-01

    We describe a near-infrared spectroscopy (NIRS) method for fast-screening Viagra tablets, counterfeit Viagra tablets, and imitations of Viagra. The method can (1) check the homogeneity of a batch; (2) distinguish counterfeits and imitations from authentic Viagra; (3) screen for the presence of

  1. Visualizing Veins With Near-Infrared Light to Facilitate Blood Withdrawal in Children

    NARCIS (Netherlands)

    Cuper, Natascha J.; Verdaasdonk, Rudolf M.; de Roode, Rowland; de Vooght, Karen M. K.; Viergever, Max A.; Kalkman, Cor J.; de Graaff, Jurgen C.

    Introduction. This study aims to evaluate for the first time the value of visualizing veins by a prototype of a near-infrared (NIR) vascular imaging system for venipuncture in children. Methods. An observational feasibility study of venipunctures in children (0-6 years) attending the clinical

  2. Multivariate Calibration Models for Sorghum Composition using Near-Infrared Spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Wolfrum, E.; Payne, C.; Stefaniak, T.; Rooney, W.; Dighe, N.; Bean, B.; Dahlberg, J.

    2013-03-01

    NREL developed calibration models based on near-infrared (NIR) spectroscopy coupled with multivariate statistics to predict compositional properties relevant to cellulosic biofuels production for a variety of sorghum cultivars. A robust calibration population was developed in an iterative fashion. The quality of models developed using the same sample geometry on two different types of NIR spectrometers and two different sample geometries on the same spectrometer did not vary greatly.

  3. Challenges in the noninvasive detection of body composition using near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Wenliang Chen

    2014-11-01

    Full Text Available Noninvasive detection of body composition plays a significant role in the improvement of life quality and reduction in complications of the patients, and the near-infrared (NIR spectroscopy, with the advantages of painlessness and convenience, is considered as the most promising tool for the online noninvasive monitoring of body composition. However, quite different from other fields of online detection using NIR spectroscopy, such as food safety and environment monitoring, noninvasive detection of body composition demands higher precision of the instruments as well as more rigorousness of measurement conditions. Therefore, new challenges emerge when NIR spectroscopy is applied to the noninvasive detection of body composition, which, in this paper, are first concluded from the aspects of measurement methods, measurement conditions, instrument precision, multi-component influence, individual difference and novel weak-signal extraction method based on our previous research in the cutting-edge field of NIR noninvasive blood glucose detection. Moreover, novel ideas and approaches of our group to solve these problems are introduced, which may provide evidence for the future development of noninvasive blood glucose detection, and further contribute to the noninvasive detection of other body compositions using NIR spectroscopy.

  4. Near-infrared Polarimetry of the Outflow Source AFGL 6366S: Detection of Circular Polarization

    Science.gov (United States)

    Kwon, Jungmi; Nakagawa, Takao; Tamura, Motohide; Hough, James H.; Kandori, Ryo; Choi, Minho; Kang, Miju; Cho, Jungyeon; Nakajima, Yasushi; Nagata, Tetsuya

    2018-07-01

    We have carried out near-infrared circular and linear imaging polarimetry of the AFGL 6366S region. There is one large infrared reflection nebula associated with the AFGL 6366S cluster and one small infrared reflection nebula associated with AFGL 6366S NE. Prominent and extended polarized nebulosities over the AFGL 6366S cluster field are found to be composed of several components and local nebula peaks, and those nebulosities are illuminated by at least three sources, which is roughly consistent with a previous study. However, the detailed linear polarization patterns and their degrees differ from the earlier study. The brightest regions of the nebulae are illuminated by the IRAS/WISE source. In addition, we report the first detection of circular polarization (CP) in the reflection nebula associated with AFGL 6366S. The CP is as large as approximately 4% in the K s band, and the maximum CP extent is approximately 0.45 pc, which is comparable to that for the largest CP regions known to date, such as Orion and Mon R2, although the CP degrees are much smaller. The CP pattern is mostly quadrupolar, and its morphology resembles the shape of the C18O dense core. Therefore, the CP region is probably illuminated by the IRAS/WISE source and its polarization is amplified by the dichroic absorption of the dense core associated with the cluster. This is the ninth source whose degrees of CPs are measured to be greater than 3%, suggesting that large and extended infrared CP regions are common among mid- to high-mass young stellar objects.

  5. Near Field Communication: Introduction and Implications

    Science.gov (United States)

    McHugh, Sheli; Yarmey, Kristen

    2012-01-01

    Near field communication is an emerging technology that allows objects, such as mobile phones, computers, tags, or posters, to exchange information wirelessly across a small distance. Though primarily associated with mobile payment, near field communication has many different potential commercial applications, ranging from marketing to nutrition,…

  6. Near-infrared spectroscopy and microstructure of the scales of Sabethes ( Sabethes albiprivus (Diptera: Culicidae

    Directory of Open Access Journals (Sweden)

    Betina Westphal-Ferreira

    Full Text Available ABSTRACT Near-infrared spectroscopy and microstructure of the scales of Sabethes (Sabethes albiprivus (Diptera: Culicidae. Sabethes (Sabethes albiprivus Theobald individuals vary considerably in size and color of the reflections of the scales on their thorax, abdomen, antepronotal lobes and occiput. The goal of this study was to investigate and to characterize the differences in the color of the scales among preserved specimens and to analyze the differences in the microstructures of the scales that cover their bodies using near-infrared spectroscopy, and to evaluate whether the latter is efficient in distinguishing the populations. A total of 201 adult females were analyzed for the characterization of color patterns. In addition, absorbance spectra and scanning electron microscope images were obtained from them. As a result of color analysis, two variations were identified, one represented by specimens with yellow or green scales and the other with blue or purple scales. The same two variations were corroborated using NIRS. Analysis of the microstructure of the scales lining the mesonotum, occiput and antepronotal lobes resulted in the same variations. The three methodologies, near-infrared spectroscopy, scanning electron microscopy and coloration of the reflections of the scales revealed two variations within Sa. albiprivus.

  7. NEAR-INFRARED SURVEY OF THE GOODS-NORTH FIELD: SEARCH FOR LUMINOUS GALAXY CANDIDATES AT z {approx}> 6.5 {sup ,}

    Energy Technology Data Exchange (ETDEWEB)

    Hathi, Nimish P. [Observatories of the Carnegie Institution for Science, Pasadena, CA 91101 (United States); Mobasher, Bahram [Department of Physics and Astronomy, University of California, Riverside, CA 92521 (United States); Capak, Peter [Department of Astronomy, 249-17 Caltech, 1201 East California Boulevard, Pasadena, CA 91125 (United States); Wang, Wei-Hao [Institute of Astronomy and Astrophysics, Academia Sinica, P.O. Box 23-141, Taipei 10617, Taiwan (China); Ferguson, Henry C., E-mail: nhathi@obs.carnegiescience.edu [Space Telescope Science Institute, 3700 San Martin Drive, Baltimore, MD 21218 (United States)

    2012-09-20

    We present near-infrared (NIR; J and K{sub s}) survey of the Great Observatories Origins Deep Survey-North (GOODS-N) field. The publicly available imaging data were obtained using the MOIRCS instrument on the 8.2 m Subaru and the WIRCam instrument on the 3.6 m Canada-France-Hawaii Telescope (CFHT). These observations fulfill a serious wavelength gap in the GOODS-N data, i.e., lack of deep NIR observations. We combine the Subaru/MOIRCS and CFHT/WIRCam archival data to generate deep J- and K{sub s}-band images, covering the full GOODS-N field ({approx}169 arcmin{sup 2}) to an AB magnitude limit of {approx}25 mag (3{sigma}). We applied z{sub 850}-band dropout color selection criteria, using the NIR data generated here. We have identified two possible Lyman break galaxy (LBG) candidates at z {approx}> 6.5 with J {approx}< 24.5. The first candidate is a likely LBG at z {approx_equal} 6.5 based on a weak spectral feature tentatively identified as Ly{alpha} line in the deep Keck/DEIMOS spectrum, while the second candidate is a possible LBG at z {approx_equal} 7 based on its photometric redshift. These z{sub 850}-dropout objects, if confirmed, are among the brightest such candidates found so far. At z {approx}> 6.5, their star formation rate is estimated as 100-200 M{sub Sun} yr{sup -1}. If they continue to form stars at this rate, they assemble a stellar mass of {approx}5 Multiplication-Sign 10{sup 10} M{sub Sun} after about 400 million years, becoming the progenitors of massive galaxies observed at z {approx_equal} 5. We study the implication of the z{sub 850}-band dropout candidates discovered here, in constraining the bright end of the luminosity function and understanding the nature of high-redshift galaxies.

  8. Application of Near-Infrared and Fourier Transform Infrared Spectroscopy in the Characterization of Ligand-Induced Conformation Changes in Folate Binding Protein Purified from Bovine Milk

    DEFF Research Database (Denmark)

    Bruun, Susanne Wrang; Holm, Jan; Hansen, Steen Ingemann

    2006-01-01

    Fourier transform infrared (FT-IR) and near-infrared (NIR) spectroscopy have been applied to detect structural alterations in folate binding protein (FBP) induced by ligation in different buffer types. The amide I region pointed to a beta-sheet to alpha-helix transition upon ligation in acetate...

  9. Advances in near-infrared spectroscopy to study the brain of the preterm and term neonate

    DEFF Research Database (Denmark)

    Wolf, Martin; Greisen, Gorm

    2009-01-01

    This article reviews tissue oximetry and imaging to study the preterm and newborn infant brain by near-infrared spectroscopy. These two technologies are now advanced; nearly 100 reports on their use in newborn infants have been published, and commercial instruments are available. The precision...

  10. Analysis of pharmaceutical pellets: An approach using near-infrared chemical imaging

    International Nuclear Information System (INIS)

    Sabin, Guilherme P.; Breitkreitz, Marcia C.; Souza, Andre M. de; Fonseca, Patricia da; Calefe, Lupercio; Moffa, Mario; Poppi, Ronei J.

    2011-01-01

    Highlights: → Near-Infrared Chemical Imaging was used for pellets analysis. → Distribution of the components throughout the coatings layers and core of the pellets was estimated. → Classical Least Squares (CLS) was used for calculation of the concentration maps. - Abstract: Pharmaceutical pellets are spherical or nearly spherical multi-unit dosage forms designed to optimize pharmacokinetics and pharmacodynamics features of drug release. The distribution of the pharmaceutical ingredients in the layers and core is a very important parameter for appropriate drug release, especially for pellets manufactured by the process of layer gain. Physical aspects of the sample are normally evaluated by Scanning Electron Microscopy (SEM), but it is in many cases unsuitable to provide conclusive chemical information about the distribution of the pharmaceutical ingredients in both layers and core. On the other hand, methods based on spectroscopic imaging can be very promising for this purpose. In this work, a Near-Infrared Chemical Imaging (NIR-CI) method was developed and applied to the analysis of diclophenac sodium pellets. Since all the compounds present in the sample were known in advance, Classical Least Squares (CLS) was used for calculations. The results have shown that the method was capable of providing chemical information about the distribution of the active ingredient and excipients in the core and coating layers and therefore can be complementary to SEM for the pharmaceutical development of pellets.

  11. Analysis of pharmaceutical pellets: An approach using near-infrared chemical imaging

    Energy Technology Data Exchange (ETDEWEB)

    Sabin, Guilherme P.; Breitkreitz, Marcia C.; Souza, Andre M. de [Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP (Brazil); Fonseca, Patricia da; Calefe, Lupercio; Moffa, Mario [Zelus Servicos para Industria Farmaceutica Ltda., Av. Professor Lineu Prestes n. 2242, Sao Paulo, SP (Brazil); Poppi, Ronei J., E-mail: ronei@iqm.unicamp.br [Institute of Chemistry, University of Campinas, P.O. Box 6154, 13084-971 Campinas, SP (Brazil)

    2011-11-07

    Highlights: {yields} Near-Infrared Chemical Imaging was used for pellets analysis. {yields} Distribution of the components throughout the coatings layers and core of the pellets was estimated. {yields} Classical Least Squares (CLS) was used for calculation of the concentration maps. - Abstract: Pharmaceutical pellets are spherical or nearly spherical multi-unit dosage forms designed to optimize pharmacokinetics and pharmacodynamics features of drug release. The distribution of the pharmaceutical ingredients in the layers and core is a very important parameter for appropriate drug release, especially for pellets manufactured by the process of layer gain. Physical aspects of the sample are normally evaluated by Scanning Electron Microscopy (SEM), but it is in many cases unsuitable to provide conclusive chemical information about the distribution of the pharmaceutical ingredients in both layers and core. On the other hand, methods based on spectroscopic imaging can be very promising for this purpose. In this work, a Near-Infrared Chemical Imaging (NIR-CI) method was developed and applied to the analysis of diclophenac sodium pellets. Since all the compounds present in the sample were known in advance, Classical Least Squares (CLS) was used for calculations. The results have shown that the method was capable of providing chemical information about the distribution of the active ingredient and excipients in the core and coating layers and therefore can be complementary to SEM for the pharmaceutical development of pellets.

  12. H2 spectroscopy as an agent for extinction determinations The near-infrared curve for the Orion molecular cloud

    International Nuclear Information System (INIS)

    Davis, D.S.; Larson, H.P.; Hofmann, R.; Arizona Univ., Tucson; Max-Planck-Institut fuer Physik und Astrophysik, Garching, West Germany)

    1986-01-01

    A near-infrared (1.8 to 3.5) microns extinction curve for the Orion molecular cloud is presented. The curve is derived from high-resolution spectra of the Orion H2 source recorded from the Kuiper Airborne Observatory. The data reveal that the Orion extinction law is indistinguishable from a 1/lambda form in the near-infrared, except for strongly enhanced extinction near a wavelength of about 3 microns. The implications of these results, in the context of current interstellar grain models, are discussed. 53 references

  13. Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel

    KAUST Repository

    Lee, It Ee; Guo, Yong; Ng, Tien Khee; Park, Kihong; Alouini, Mohamed-Slim; Ooi, Boon S.

    2017-01-01

    We demonstrate a gigabit near-infrared-based underwater wireless optical communication link using an 808-nm laser diode to mitigate the particle scattering effect in turbid medium. An improvement in the error performance is observed with increasing

  14. Investigation of vegetation history of buried chernozem soils using near-infrared spectroscopy (NIRS)

    Czech Academy of Sciences Publication Activity Database

    Vysloužilová, B.; Ertlen, D.; Šefrna, L.; Novák, T.; Virágh, K.; Rué, M.; Campaner, A.; Dreslerová, Dagmar; Schwartz, D.

    2015-01-01

    Roč. 365, 16 April (2015), s. 203-211 ISSN 1040-6182 Institutional support: RVO:67985912 Keywords : Holocene * paleopedology * paleoecology * near-infrared spectroscopy * chernozem * buried paleosol Subject RIV: DF - Soil Science Impact factor: 2.067, year: 2015

  15. AO–MW–PLS method applied to rapid quantification of teicoplanin with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Jiemei Chen

    2017-01-01

    Full Text Available Teicoplanin (TCP is an important lipoglycopeptide antibiotic produced by fermenting Actinoplanes teichomyceticus. The change in TCP concentration is important to measure in the fermentation process. In this study, a reagent-free and rapid quantification method for TCP in the TCP–Tris–HCl mixture samples was developed using near-infrared (NIR spectroscopy by focusing our attention on the fermentation process for TCP. The absorbance optimization (AO partial least squares (PLS was proposed and integrated with the moving window (MW PLS, which is called AO–MW–PLS method, to select appropriate wavebands. A model set that includes various wavebands that were equivalent to the optimal AO–MW–PLS waveband was proposed based on statistical considerations. The public region of all equivalent wavebands was just one of the equivalent wavebands. The obtained public regions were 1540–1868nm for TCP and 1114–1310nm for Tris. The root-mean-square error and correlation coefficient for leave-one-out cross validation were 0.046mg mL−1 and 0.9998mg mL−1 for TCP, and 0.235mg mL−1 and 0.9986mg mL−1 for Tris, respectively. All the models achieved highly accurate prediction effects, and the selected wavebands provided valuable references for designing specialized spectrometers. This study provided a valuable reference for further application of the proposed methods to TCP fermentation broth and to other spectroscopic analysis fields.

  16. Near infrared spectroscopic evaluation of water in hyaline cartilage.

    Science.gov (United States)

    Padalkar, M V; Spencer, R G; Pleshko, N

    2013-11-01

    In diseased conditions of cartilage such as osteoarthritis, there is typically an increase in water content from the average normal of 60-85% to greater than 90%. As cartilage has very little capability for self-repair, methods of early detection of degeneration are required, and assessment of water could prove to be a useful diagnostic method. Current assessment methods are either destructive, time consuming, or have limited sensitivity. Here, we investigated the hypotheses that non-destructive near infrared spectroscopy (NIRS) of articular cartilage can be used to differentiate between free and bound water, and to quantitatively assess water content. The absorbances centered at 5200 and 6890 cm(-1) were attributed to a combination of free and bound water, and to free water only, respectively. The integrated areas of both absorbance bands were found to correlate linearly with the absolute water content (R = 0.87 and 0.86) and with percent water content (R = 0.97 and 0.96) of the tissue. Partial least square models were also successfully developed and were used to predict water content, and percent free water. These data demonstrate that NIRS can be utilized to quantitatively determine water content in articular cartilage, and may aid in early detection of degenerative tissue changes in a laboratory setting, and with additional validations, possibly in a clinical setting.

  17. TeV gamma rays from 3C 279 - A possible probe of origin and intergalactic infrared radiation fields

    Science.gov (United States)

    Stecker, F. W.; De Jager, O. C.; Salamon, M. H.

    1992-01-01

    The gamma-ray spectrum of 3C 279 during 1991 June exhibited a near-perfect power law between 50 MeV and over 5 GeV with a differential spectral index of -(2.02 +/- 0.07). If extrapolated, the gamma-ray spectrum of 3C 279 should be easily detectable with first-generation air Cerenkov detectors operating above about 0.3 TeV provided there is no intergalactic absorption. However, by using model-dependent lower and upper limits for the extragalactic infrared background radiation field, a sharp cutoff of the 3C 279 spectrum is predicted at between about 0.1 and about 1 TeV. The sensitivity of present air Cerenkov detectors is good enough to measure such a cutoff, which would provide the first opportunity to obtain a measurement of the extragalactic background infrared radiation field.

  18. Optimal hemodynamic response model for functional near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Muhammad Ahmad Kamran

    2015-06-01

    Full Text Available Functional near-infrared spectroscopy (fNIRS is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF is modeled by using two Gamma functions with six unknown parameters. The HRF model is supposed to be linear combination of HRF, baseline and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown. An objective function is developed as a square of the residuals with constraints on twelve free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using ten real and fifteen simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis, i.e., (t-value >tcritical and p-value < 0.05.

  19. Optimal hemodynamic response model for functional near-infrared spectroscopy.

    Science.gov (United States)

    Kamran, Muhammad A; Jeong, Myung Yung; Mannan, Malik M N

    2015-01-01

    Functional near-infrared spectroscopy (fNIRS) is an emerging non-invasive brain imaging technique and measures brain activities by means of near-infrared light of 650-950 nm wavelengths. The cortical hemodynamic response (HR) differs in attributes at different brain regions and on repetition of trials, even if the experimental paradigm is kept exactly the same. Therefore, an HR model that can estimate such variations in the response is the objective of this research. The canonical hemodynamic response function (cHRF) is modeled by two Gamma functions with six unknown parameters (four of them to model the shape and other two to scale and baseline respectively). The HRF model is supposed to be a linear combination of HRF, baseline, and physiological noises (amplitudes and frequencies of physiological noises are supposed to be unknown). An objective function is developed as a square of the residuals with constraints on 12 free parameters. The formulated problem is solved by using an iterative optimization algorithm to estimate the unknown parameters in the model. Inter-subject variations in HRF and physiological noises have been estimated for better cortical functional maps. The accuracy of the algorithm has been verified using 10 real and 15 simulated data sets. Ten healthy subjects participated in the experiment and their HRF for finger-tapping tasks have been estimated and analyzed. The statistical significance of the estimated activity strength parameters has been verified by employing statistical analysis (i.e., t-value > t critical and p-value < 0.05).

  20. PANIC: A General-purpose Panoramic Near-infrared Camera for the Calar Alto Observatory

    Science.gov (United States)

    Cárdenas Vázquez, M.-C.; Dorner, B.; Huber, A.; Sánchez-Blanco, E.; Alter, M.; Rodríguez Gómez, J. F.; Bizenberger, P.; Naranjo, V.; Ibáñez Mengual, J.-M.; Panduro, J.; García Segura, A. J.; Mall, U.; Fernández, M.; Laun, W.; Ferro Rodríguez, I. M.; Helmling, J.; Terrón, V.; Meisenheimer, K.; Fried, J. W.; Mathar, R. J.; Baumeister, H.; Rohloff, R.-R.; Storz, C.; Verdes-Montenegro, L.; Bouy, H.; Ubierna, M.; Fopp, P.; Funke, B.

    2018-02-01

    PANIC7 is the new PAnoramic Near-Infrared Camera for Calar Alto and is a project jointly developed by the MPIA in Heidelberg, Germany, and the IAA in Granada, Spain, for the German-Spanish Astronomical Center at Calar Alto Observatory (CAHA; Almería, Spain). This new instrument works with the 2.2 m and 3.5 m CAHA telescopes covering a field of view of 30 × 30 arcmin and 15 × 15 arcmin, respectively, with a sampling of 4096 × 4096 pixels. It is designed for the spectral bands from Z to K S , and can also be equipped with narrowband filters. The instrument was delivered to the observatory in 2014 October and was commissioned at both telescopes between 2014 November and 2015 June. Science verification at the 2.2 m telescope was carried out during the second semester of 2015 and the instrument is now at full operation. We describe the design, assembly, integration, and verification process, the final laboratory tests and the PANIC instrument performance. We also present first-light data obtained during the commissioning and preliminary results of the scientific verification. The final optical model and the theoretical performance of the camera were updated according to the as-built data. The laboratory tests were made with a star simulator. Finally, the commissioning phase was done at both telescopes to validate the camera real performance on sky. The final laboratory test confirmed the expected camera performances, complying with the scientific requirements. The commissioning phase on sky has been accomplished.

  1. Probing Conditions at Ionized/Molecular Gas Interfaces With High Resolution Near-Infrared Spectroscopy

    Science.gov (United States)

    Kaplan, Kyle Franklin

    2017-08-01

    Regions of star formation and star death in our Galaxy trace the cycle of gas and dust in the interstellar medium (ISM). Gas in dense molecular clouds collapses to form stars, and stars at the end of their lives return the gas that made up their outer layers back out into the Galaxy. Hot stars generate copious amounts of ultraviolet photons which interact with the surrounding medium and dominate the energetics, ionization state, and chemistry of the gas. The interface where molecular gas is being dissociated into neutral atomic gas by far-UV photons from a nearby hot source is called a photodissociation or photon-dominated region (PDR). PDRs are found primarily in star forming regions where O and B stars serve as the source of UV photons, and in planetary nebulae where the hot core of the dying star acts as the UV source. The main target of this dissertation is molecular hydrogen (H2), the most abundant molecule in the Universe, made from hydrogen formed during the Big Bang. H2 makes up the overwhelming majority of molecules found in the ISM and in PDRs. Far-UV radiation absorbed by H2 will excite an electron in the molecule. The molecule then either dissociates ( 10% of the time; Field et al. 1966) or decays into excited rotational and vibrational ("rovibrational") levels of the electronic ground state. These excited rovibrational levels then decay via a radiative cascade to the ground rovibrational state (v = 0, J = 0), giving rise to a large number of transitions observable in emission from the mid-IR to the optical (Black & van Dishoeck, 1987). These transitions provide an excellent probe of the excitation and conditions within the gas. These transitions are also observed in warm H2, such as in shocks, where collisions excite H2 to higher rovibrational levels. High resolution near-infrared spectroscopy, with its ability to see through dust, and avoid telluric absorption and emission, serves as an effective tool to detect emission from ions, atoms, and molecules

  2. Anthracene-fused BODIPYs as near-infrared dyes with high photostability

    KAUST Repository

    Zeng, Lintao; Jiao, Chongjun; Huang, Xiaobo; Huang, Kuo-Wei; Chin, Weeshong; Wu, Jishan

    2011-01-01

    An anthracene unit was successfully fused to the zigzag edge of a boron dipyrromethene (BODIPY) core by an FeCl 3-mediated oxidative cyclodehydrogenation reaction. Meanwhile, a dimer was also formed by both intramolecular cyclization and intermolecular coupling. The anthracene-fused BODIPY monomer 7a and dimer 7b showed small energy gaps (∼1.4 eV) and near-infrared absorption/emission. Moreover, they exhibited high photostability. © 2011 American Chemical Society.

  3. Anthracene-fused BODIPYs as near-infrared dyes with high photostability

    KAUST Repository

    Zeng, Lintao

    2011-11-18

    An anthracene unit was successfully fused to the zigzag edge of a boron dipyrromethene (BODIPY) core by an FeCl 3-mediated oxidative cyclodehydrogenation reaction. Meanwhile, a dimer was also formed by both intramolecular cyclization and intermolecular coupling. The anthracene-fused BODIPY monomer 7a and dimer 7b showed small energy gaps (∼1.4 eV) and near-infrared absorption/emission. Moreover, they exhibited high photostability. © 2011 American Chemical Society.

  4. Nanoscale control of Ag nanostructures for plasmonic fluorescence enhancement of near-infrared dyes

    KAUST Repository

    Xie, Fang; Pang, Jing S.; Centeno, Anthony; Ryan, Mary P.; Riley, D. Jason; Alford, Neil M.

    2013-01-01

    of increasing the sensitivity of protein detection in clinical applications. We report the use of tunable plasmonic silver nanostructures for the fluorescence enhancement of a near-infrared (NIR) dye (Alexa Fluor 790). Extensive fluorescence enhancement of ∼2

  5. Near-Infrared Wireless Optical Communication with Particulates In-Suspension over the Underwater Channel

    KAUST Repository

    Lee, It Ee

    2017-05-08

    We demonstrate a gigabit near-infrared-based underwater wireless optical communication link using an 808-nm laser diode to mitigate the particle scattering effect in turbid medium. An improvement in the error performance is observed with increasing concentrations.

  6. Nondestructive detection of zebra chip disease in potatoes using near-infrared spectroscopy

    Science.gov (United States)

    Near-Infrared (NIR) spectroscopy in the wavelength region from 900 nm to 2600 nm was evaluated as the basis for a rapid, non-destructive method for the detection of Zebra Chip disease in potatoes and the measurement of sugar concentrations in affected tubers. Using stepwise regression in conjunction...

  7. Correlation of quality measurements to visible-near infrared spectra of pasteurized egg

    Science.gov (United States)

    A twelve week study was conducted on the egg albumen from both pasteurized and non-pasteurized shell eggs using visible-near infrared spectroscopy. Correlation of the chemical changes detected in the spectra to the measurement of Haugh units (measure of interior egg quality) was carried out using ch...

  8. Near infrared and acoustic chemometrics monitoring of volatile fatty acids and dry matter during co-digestion of manure and maize silage

    DEFF Research Database (Denmark)

    Lomborg, Carina J.; Holm-Nielsen, Jens Bo; Oleskowicz-Popiel, Piotr

    2009-01-01

    In this study, two process analytical technologies, near infrared spectroscopy and acoustic chemometrics, were investigated as means of monitoring a maize silage spiked biogas process. A reactor recirculation loop which enables sampling concomitant with on-line near infrared characterisation...... accuracy) and RPD between 2.8 and 3.6 (acceptable precision). A second experiment employed at-line monitoring with both near infrared spectroscopy and acoustic chemometrics. A larger calibration span was obtained for total solids by spiking. Both process analytical modalities were validated with respect...

  9. [Rapid discriminating hogwash oil and edible vegetable oil using near infrared optical fiber spectrometer technique].

    Science.gov (United States)

    Zhang, Bing-Fang; Yuan, Li-Bo; Kong, Qing-Ming; Shen, Wei-Zheng; Zhang, Bing-Xiu; Liu, Cheng-Hai

    2014-10-01

    In the present study, a new method using near infrared spectroscopy combined with optical fiber sensing technology was applied to the analysis of hogwash oil in blended oil. The 50 samples were a blend of frying oil and "nine three" soybean oil according to a certain volume ratio. The near infrared transmission spectroscopies were collected and the quantitative analysis model of frying oil was established by partial least squares (PLS) and BP artificial neural network The coefficients of determina- tion of calibration sets were 0.908 and 0.934 respectively. The coefficients of determination of validation sets were 0.961 and 0.952, the root mean square error of calibrations (RMSEC) was 0.184 and 0.136, and the root mean square error of predictions (RMSEP) was all 0.111 6. They conform to the model application requirement. At the same time, frying oil and qualified edible oil were identified with the principal component analysis (PCA), and the accurate rate was 100%. The experiment proved that near infrared spectral technology not only can quickly and accurately identify hogwash oil, but also can quantitatively detect hog- wash oil. This method has a wide application prospect in the detection of oil.

  10. Gastric cancer differentiation using Fourier transform near-infrared spectroscopy with unsupervised pattern recognition

    Science.gov (United States)

    Yi, Wei-song; Cui, Dian-sheng; Li, Zhi; Wu, Lan-lan; Shen, Ai-guo; Hu, Ji-ming

    2013-01-01

    The manuscript has investigated the application of near-infrared (NIR) spectroscopy for differentiation gastric cancer. The 90 spectra from cancerous and normal tissues were collected from a total of 30 surgical specimens using Fourier transform near-infrared spectroscopy (FT-NIR) equipped with a fiber-optic probe. Major spectral differences were observed in the CH-stretching second overtone (9000-7000 cm-1), CH-stretching first overtone (6000-5200 cm-1), and CH-stretching combination (4500-4000 cm-1) regions. By use of unsupervised pattern recognition, such as principal component analysis (PCA) and cluster analysis (CA), all spectra were classified into cancerous and normal tissue groups with accuracy up to 81.1%. The sensitivity and specificity was 100% and 68.2%, respectively. These present results indicate that CH-stretching first, combination band and second overtone regions can serve as diagnostic markers for gastric cancer.

  11. State-of-art application of near infrared spectroscopy for functional diagnostics in neonatology

    International Nuclear Information System (INIS)

    Wolf, M.; Paiziev, A.

    2013-01-01

    The present brief review is devoted to application of near infra-red spectroscopy (NIRS) for early diagnostics of human brain injury. The number of commercially accessible NIRS instruments, and accordingly their users, increases but the precision of measurements and their reproducibility from the clinical point of view essentially depend on used algorithms, a kind of the NIRS-instrument, sensors, which frequently leads to the different values of the measurable parameters of blood oxygen saturation (StO 2 ). We present some commercially accessible NIRS instruments for control of an oxygen saturation degree in human blood, first of all in neonatology, on the basis of absorption and scattering of near infra-red light at human tissue chromophores. The results of clinical investigations of different NIRS-spectrometers for measurements of in-vivo new-born child' blood saturation are presented as well. (authors)

  12. Broadband near-infrared metamaterial absorbers utilizing highly lossy metals

    DEFF Research Database (Denmark)

    Ding, Fei; Dai, Jin; Chen, Yiting

    2016-01-01

    Radiation absorbers have increasingly been attracting attention as crucial components for controllable thermal emission, energy harvesting, modulators, etc. However, it is still challenging to realize thin absorbers which can operate over a wide spectrum range. Here, we propose and experimentally...... demonstrate thin, broadband, polarization-insensitive and omnidirectional absorbers working in the near-infrared range. We choose titanium (Ti) instead of the commonly used gold (Au) to construct nano-disk arrays on the top of a silicon dioxide (SiO2) coated Au substrate, with the quality (Q) factor...

  13. Componential distribution analysis of food using near infrared ray image

    Science.gov (United States)

    Yamauchi, Hiroki; Kato, Kunihito; Yamamoto, Kazuhiko; Ogawa, Noriko; Ohba, Kimie

    2008-11-01

    The components of the food related to the "deliciousness" are usually evaluated by componential analysis. The component content and type of components in the food are determined by this analysis. However, componential analysis is not able to analyze measurements in detail, and the measurement is time consuming. We propose a method to measure the two-dimensional distribution of the component in food using a near infrared ray (IR) image. The advantage of our method is to be able to visualize the invisible components. Many components in food have characteristics such as absorption and reflection of light in the IR range. The component content is measured using subtraction between two wavelengths of near IR light. In this paper, we describe a method to measure the component of food using near IR image processing, and we show an application to visualize the saccharose in the pumpkin.

  14. A RESOLVED NEAR-INFRARED IMAGE OF THE INNER CAVITY IN THE GM Aur TRANSITIONAL DISK

    Energy Technology Data Exchange (ETDEWEB)

    Oh, Daehyeon; Yang, Yi [Department of Astronomical Science, SOKENDAI (The Graduate University for Advanced Studies), 2-21-1 Osawa, Mitaka, Tokyo, 181-8588 (Japan); Hashimoto, Jun; Kusakabe, Nobuhiko [Astrobiology Center of NINS 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Carson, Joseph C. [Department of Physics and Astronomy, College of Charleston 66 George Street, Charleston, SC 29424 (United States); Janson, Markus [Department of Astronomy, Stockholm University, AlbaNova University Center SE-106 91 Stockholm (Sweden); Kwon, Jungmi; Nakagawa, Takao [Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency 3-1-1 Yoshinodai, Chuo, Sagamihara, Kanagawa 252-5210 (Japan); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, SOKENDAI (The Graduate University for Advanced Studies), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Uyama, Taichi [Department of Astronomy, The University of Tokyo 7-3-1, Hongo, Bunkyo-ku, Tokyo, 113-0033 (Japan); Kudo, Tomoyuki; Currie, Thayne [Subaru Telescope, National Astronomical Observatory of Japan 650 North A’ohoku Place, Hilo, HI 96720 (United States); Abe, Lyu [Laboratoire Lagrange (UMR 7293), Universite de Nice-Sophia Antipolis, CNRS, Observatoire de la Coted’azur 28 avenue Valrose, F-06108 Nice Cedex 2 (France); Akiyama, Eiji [National Astronomical Observatory of Japan 2-21-1, Osawa, Mitaka, Tokyo, 181-8588 (Japan); Brandner, Wolfgang [Max Planck Institute for Astronomy, Köonigstuhl 17, D-69117 Heidelberg (Germany); Brandt, Timothy D.; Feldt, Markus [Astrophysics Department, Institute for Advanced Study Princeton, NJ (United States); Goto, Miwa [Universitats-Sternwarte Munchen, Ludwig-Maximilians-Universitat, Scheinerstr. 1, D-81679 Munchen (Germany); Grady, Carol A. [Exoplanets and Stellar Astrophysics Laboratory, Code 667, Goddard Space Flight Center Greenbelt, MD 20771 (United States); and others

    2016-11-01

    We present high-contrast H -band polarized intensity (PI) images of the transitional disk around the young solar-like star GM Aur. The near-infrared direct imaging of the disk was derived by polarimetric differential imaging using the Subaru 8.2 m Telescope and HiCIAO. An angular resolution and an inner working angle of 0.″07 and r ∼ 0.″05, respectively, were obtained. We clearly resolved a large inner cavity, with a measured radius of 18 ± 2 au, which is smaller than that of a submillimeter interferometric image (28 au). This discrepancy in the cavity radii at near-infrared and submillimeter wavelengths may be caused by a 3–4 M {sub Jup} planet about 20 au away from the star, near the edge of the cavity. The presence of a near-infrared inner cavity is a strong constraint on hypotheses for inner cavity formation in a transitional disk. A dust filtration mechanism has been proposed to explain the large cavity in the submillimeter image, but our results suggest that this mechanism must be combined with an additional process. We found that the PI slope of the outer disk is significantly different from the intensity slope obtained from HST /NICMOS, and this difference may indicate the grain growth process in the disk.

  15. Lipogels responsive to near-infrared light for the triggered release of therapeutic agents

    NARCIS (Netherlands)

    Martín-Saavedra, Francisco; Ruiz-Hernández, Eduardo; Escudero-Duch, Clara; Prieto, Martín; Arruebo, Manuel; Sadeghi, Negar; Deckers, Roel; Storm, Gert; Hennink, Wim E.; Santamaría, Jesús; Vilaboa, Nuria

    2017-01-01

    Here we report a composite system based on fibrin hydrogels that incorporate in their structure near-infrared (NIR) responsive nanomaterials and thermosensitive liposomes (TSL). Polymerized fibrin networks entrap simultaneously gold-based nanoparticles (NPs) capable of transducing NIR photon energy

  16. Infrared detection and photon energy up-conversion in graphene layer infrared photodetectors integrated with LEDs based on van der Waals heterostructures: Concept, device model, and characteristics

    Science.gov (United States)

    Ryzhii, V.; Otsuji, T.; Ryzhii, M.; Karasik, V. E.; Shur, M. S.

    2017-09-01

    We propose the concept of the infrared detection and photon energy up-conversion in the devices using the integration of the graphene layer infrared detectors (GLIPs) and the light emitting diodes (LEDs) based on van der Waals (vdW) heterostructures. Using the developed device model of the GLIP-LEDs, we calculate their characteristics. The GLIP-LED devices can operate as the detectors of far- and mid infrared radiation (FIR and MIR) with an electrical output or with near-infrared radiation (NIR) or visible radiation (VIR) output. In the latter case, GLIP-LED devices function as the photon energy up-converters of FIR and MIR to NIR or VIR. The operation of GLIP-LED devices is associated with the injection of the electron photocurrent produced due to the interband absorption of the FIR/MIR photons in the GLIP part into the LED emitting NIR/VIR photons. We calculate the GLIP-LED responsivity and up-conversion efficiency as functions the structure parameters and the energies of the incident FIR/MIR photons and the output NIR/VIR photons. The advantages of the GLs in the vdW heterostructures (relatively high photoexcitation rate from and low capture efficiency into GLs) combined with the reabsorption of a fraction of the NIR/FIR photon flux in the GLIP (which can enable an effective photonic feedback) result in the elevated GLIP-LED device responsivity and up-conversion efficiency. The positive optical feedback from the LED section of the device lead to increasing current injection enabling the appearance of the S-type current-voltage characteristic with a greatly enhanced responsivity near the switching point and current filamentation.

  17. Detection of bottled explosives by near infrared

    Science.gov (United States)

    Itozaki, Hideo; Sato-Akaba, Hideo

    2013-10-01

    Bottled liquids are not allowed through the security gate in the airport, because liquid explosives have been used by the terrorists. However, passengers have a lot of trouble if they cannot bring their own bottles. For example, a mother would like to carry her own milk in the airplane for her baby. Therefore the detection technology of liquid explosives should be developed as soon as possible. This paper shows that near infrared spectroscopy can detect bottled explosives quickly. The transmission method cannot deal with milk in the sense of liquid inspection. Here we examined the reflection method to the test of milk. The inspection method with light cannot make test for the metal can. We also use ultrasonic method to check metal can simultaneously in order to expand test targets.

  18. Near-infrared Spectroscopy in the Brewing Industry.

    Science.gov (United States)

    Sileoni, Valeria; Marconi, Ombretta; Perretti, Giuseppe

    2015-01-01

    This article offers an exhaustive description of the use of Near-Infrared (NIR) Spectroscopy in the brewing industry. This technique is widely used for quality control testing of raw materials, intermediates, and finished products, as well as process monitoring during malting and brewing. In particular, most of the reviewed works focus on the assessment of barley properties, aimed at quickly selecting the best barley varieties in order to produce a high-quality malt leading to high-quality beer. Various works concerning the use of NIR in the evaluation of raw materials, such as barley, malt, hop, and yeast, are also summarized here. The implementation of NIR sensors for the control of malting and brewing processes is also highlighted, as well as the use of NIR for quality assessment of the final product.

  19. Near-infrared spectroscopy for monitoring muscle oxygenation

    DEFF Research Database (Denmark)

    Boushel, Robert Christopher; Piantadosi, C A

    2000-01-01

    Near-infrared spectroscopy (NIRS) is a non-invasive method for monitoring oxygen availability and utilization by the tissues. In intact skeletal muscle, NIRS allows semi-quantitative measurements of haemoglobin plus myoglobin oxygenation (tissue O2 stores) and the haemoglobin volume. Specialized...... algorithms allow assessment of the oxidation-reduction (redox) state of the copper moiety (CuA) of mitochondrial cytochrome c oxidase and, with the use of specific tracers, accurate assessment of regional blood flow. NIRS has demonstrated utility for monitoring changes in muscle oxygenation and blood flow...... during submaximal and maximal exercise and under pathophysiological conditions including cardiovascular disease and sepsis. During work, the extent to which skeletal muscles deoxygenate varies according to the type of muscle, type of exercise and blood flow response. In some instances, a strong...

  20. The near-infrared radius-luminosity relationship for active galactic nuclei

    Science.gov (United States)

    Landt, Hermine; Bentz, Misty C.; Peterson, Bradley M.; Elvis, Martin; Ward, Martin J.; Korista, Kirk T.; Karovska, Margarita

    2011-05-01

    Black hole masses for samples of active galactic nuclei (AGNs) are currently estimated from single-epoch optical spectra. In particular, the size of the broad-line emitting region needed to compute the black hole mass is derived from the optical or ultraviolet continuum luminosity. Here we consider the relationship between the broad-line region size, R, and the near-infrared (near-IR) AGN continuum luminosity, L, as the near-IR continuum suffers less dust extinction than at shorter wavelengths and the prospects for separating the AGN continuum from host-galaxy starlight are better in the near-IR than in the optical. For a relationship of the form R∝Lα, we obtain for a sample of 14 reverberation-mapped AGN a best-fitting slope of α= 0.5 ± 0.1, which is consistent with the slope of the relationship in the optical band and with the value of 0.5 naïvely expected from photoionization theory. Black hole masses can then be estimated from the near-IR virial product, which is calculated using the strong and unblended Paschen broad emission lines (Paα or Paβ).

  1. Experimental characterization of dielectric-loaded plasmonic waveguide-racetrack resonators at near-infrared wavelengths

    DEFF Research Database (Denmark)

    Garcia, Cesar; Coello, Victor; Han, Zhanghua

    2012-01-01

    Dielectric-loaded plasmonic waveguide-racetrack resonators (WRTRs) were designed and fabricated for operating at near-infrared wavelengths (750–850 nm) and characterized using leakage-radiation microscopy. The transmission spectra of the WRTRs are found experimentally and compared to the calculat...

  2. Near field plasmon and force microscopy

    OpenAIRE

    de Hollander, R.B.G.; van Hulst, N.F.; Kooyman, R.P.H.

    1995-01-01

    A scanning plasmon near field optical microscope (SPNM) is presented which combines a conventional far field surface plasmon microscope with a stand-alone atomic force microscope (AFM). Near field plasmon and force images are recorded simultaneously both with a lateral resolution limited by the probe size to about 20 nm. At variance to previous work, utilizing a scanning tunneling microscope (STM) with a metallic tip, a dielectric silicon-nitride tip is used in contact mode. This arrangement ...

  3. Near-Infrared Keck Interferometer and IOTA Closure Phase Observations of Wolf-Rayet stars

    Science.gov (United States)

    Rajagopal, J.; Wallace, D.; Barry, R.; Richardson, L. J.; Traub, W.; Danchi, W. C.

    We present first results from observations of a small sample of IR-bright Wolf-Rayet stars with the Keck Interferometer in the near-infrared, and with the IONIC beam three-telescope beam combiner at the Infrared and Optical Telescope Array (IOTA) observatory. The former results were obtained as part of shared-risk observations in commissioning the Keck Interferometer and form a subset of a high-resolution study of dust around Wolf-Rayet stars using multiple interferometers in progress in our group. The latter results are the first closure phase observations of these stars in the near-infrared in a separated telescope interferometer. Earlier aperture-masking observations with the Keck-I telescope provide strong evidence that dust-formation in late-type WC stars are a result of wind-wind collision in short-period binaries.Our program with the Keck interferometer seeks to further examine this paradigm at much higher resolution. We have spatially resolved the binary in the prototypical dusty WC type star WR 140. WR 137, another episodic dust-producing star, has been partially resolved for the first time, providing the first direct clue to its possible binary nature.We also include WN stars in our sample to investigate circumstellar dust in this other main sub-type of WRs. We have been unable to resolve any of these, indicating a lack of extended dust.Complementary observations using the MIDI instrument on the VLTI in the mid-infrared are presented in another contribution to this workshop.

  4. Imaging Brain Function with Functional Near-Infrared Spectroscopy in Unconstrained Environments

    Directory of Open Access Journals (Sweden)

    Joana B. Balardin

    2017-05-01

    Full Text Available Assessing the neural correlates of motor and cognitive processes under naturalistic experimentation is challenging due to the movement constraints of traditional brain imaging technologies. The recent advent of portable technologies that are less sensitive to motion artifacts such as Functional Near Infrared Spectroscopy (fNIRS have been made possible the study of brain function in freely-moving participants. In this paper, we describe a series of proof-of-concept experiments examining the potential of fNIRS in assessing the neural correlates of cognitive and motor processes in unconstrained environments. We show illustrative applications for practicing a sport (i.e., table tennis, playing a musical instrument (i.e., piano and violin alone or in duo and performing daily activities for many hours (i.e., continuous monitoring. Our results expand upon previous research on the feasibility and robustness of fNIRS to monitor brain hemodynamic changes in different real life settings. We believe that these preliminary results showing the flexibility and robustness of fNIRS measurements may contribute by inspiring future work in the field of applied neuroscience.

  5. Obscured asymptotic giant branch stars in the Magellanic Clouds .2. Near-infrared and mid-infrared counterparts

    NARCIS (Netherlands)

    Zijlstra, AA; Loup, C; Waters, LBFM; Whitelock, PA; vanLoon, JT; Guglielmo, F

    1996-01-01

    We have carried out an infrared search for obscured asymptotic giant branch (AGB) stars in the Magellanic Clouds. Fields were observed in the vicinity of IRAS sources with colours and flux densities consistent with such a classification. The survey uncovered a number of obscured AGE stars as well as

  6. Random sized plasmonic nanoantennas on Silicon for low-cost broad-band near-infrared photodetection

    Science.gov (United States)

    Nazirzadeh, Mohammad Amin; Atar, Fatih Bilge; Turgut, Berk Berkan; Okyay, Ali Kemal

    2014-01-01

    In this work, we propose Silicon based broad-band near infrared Schottky barrier photodetectors. The devices operate beyond 1200 nm wavelength and exhibit photoresponsivity values as high as 3.5 mA/W with a low dark current density of about 50 pA/µm2. We make use of Au nanoislands on Silicon surface formed by rapid thermal annealing of a thin Au layer. Surface plasmons are excited on Au nanoislands and this field localization results in efficient absorption of sub-bandgap photons. Absorbed photons excite the electrons of the metal to higher energy levels (hot electron generation) and the collection of these hot electrons to the semiconductor results in photocurrent (internal photoemission). Simple and scalable fabrication makes these devices suitable for ultra-low-cost NIR detection applications. PMID:25407509

  7. Tolerance of a knotted near infrared fluorescent protein to random circular permutation

    Science.gov (United States)

    Pandey, Naresh; Kuypers, Brianna E.; Nassif, Barbara; Thomas, Emily E.; Alnahhas, Razan N.; Segatori, Laura; Silberg, Jonathan J.

    2016-01-01

    Bacteriophytochrome photoreceptors (BphP) are knotted proteins that have been developed as near-infrared fluorescent protein (iRFP) reporters of gene expression. To explore how rearrangements in the peptides that interlace into the knot within the BphP photosensory core affect folding, we subjected iRFP to random circular permutation using an improved transposase mutagenesis strategy and screened for variants that fluoresce. We identified twenty seven circularly permuted iRFP that display biliverdin-dependent fluorescence in Escherichia coli. The variants with the brightest whole cell fluorescence initiated translation at residues near the domain linker and knot tails, although fluorescent variants were discovered that initiated translation within the PAS and GAF domains. Circularly permuted iRFP retained sufficient cofactor affinity to fluoresce in tissue culture without the addition of biliverdin, and one variant displayed enhanced fluorescence when expressed in bacteria and tissue culture. This variant displayed a similar quantum yield as iRFP, but exhibited increased resistance to chemical denaturation, suggesting that the observed signal increase arose from more efficient protein maturation. These results show how the contact order of a knotted BphP can be altered without disrupting chromophore binding and fluorescence, an important step towards the creation of near-infrared biosensors with expanded chemical-sensing functions for in vivo imaging. PMID:27304983

  8. Survey and review of near-field performance assessment

    International Nuclear Information System (INIS)

    Apted, M.J.

    1993-01-01

    Chemical reactions control the performance, stability, and rate of degradation of natural and engineered barriers to waste repositories of the near field. Chemical processes are overviewed in this context. Temperature, and associated temperature gradients, are also important parameters in near-field performance assessment. The mechanical conditions of the near-field rock will be perturbed by construction of the underground repository. Mechanical analysis in the near field is further complicated by the introduction of HLW canisters and associated engineered barrier materials. Hydrological processes important to near-field performance include those associated with fluid transport. Considerable discussions and studies have been conducted on the issue of coupling among chemical-thermal-mechanical-hydrological processes; they are overviewed. (R.P.) 2 figs., 2 tabs

  9. Near infrared spectral imaging of explosives using a tunable laser source

    Energy Technology Data Exchange (ETDEWEB)

    Klunder, G L; Margalith, E; Nguyen, L K

    2010-03-26

    Diffuse reflectance near infrared hyperspectral imaging is an important analytical tool for a wide variety of industries, including agriculture consumer products, chemical and pharmaceutical development and production. Using this technique as a method for the standoff detection of explosive particles is presented and discussed. The detection of the particles is based on the diffuse reflectance of light from the particle in the near infrared wavelength range where CH, NH, OH vibrational overtones and combination bands are prominent. The imaging system is a NIR focal plane array camera with a tunable OPO/laser system as the illumination source. The OPO is programmed to scan over a wide spectral range in the NIR and the camera is synchronized to record the light reflected from the target for each wavelength. The spectral resolution of this system is significantly higher than that of hyperspectral systems that incorporate filters or dispersive elements. The data acquisition is very fast and the entire hyperspectral cube can be collected in seconds. A comparison of data collected with the OPO system to data obtained with a broadband light source with LCTF filters is presented.

  10. Near-infrared remotely triggered drug-release strategies for cancer treatment

    Science.gov (United States)

    Goodman, Amanda M.; Neumann, Oara; Nørregaard, Kamilla; Henderson, Luke; Choi, Mi-Ran; Clare, Susan E.; Halas, Naomi J.

    2017-11-01

    Remotely controlled, localized drug delivery is highly desirable for potentially minimizing the systemic toxicity induced by the administration of typically hydrophobic chemotherapy drugs by conventional means. Nanoparticle-based drug delivery systems provide a highly promising approach for localized drug delivery, and are an emerging field of interest in cancer treatment. Here, we demonstrate near-IR light-triggered release of two drug molecules from both DNA-based and protein-based hosts that have been conjugated to near-infrared-absorbing Au nanoshells (SiO2 core, Au shell), each forming a light-responsive drug delivery complex. We show that, depending upon the drug molecule, the type of host molecule, and the laser illumination method (continuous wave or pulsed laser), in vitro light-triggered release can be achieved with both types of nanoparticle-based complexes. Two breast cancer drugs, docetaxel and HER2-targeted lapatinib, were delivered to MDA-MB-231 and SKBR3 (overexpressing HER2) breast cancer cells and compared with release in noncancerous RAW 264.7 macrophage cells. Continuous wave laser-induced release of docetaxel from a nanoshell-based DNA host complex showed increased cell death, which also coincided with nonspecific cell death from photothermal heating. Using a femtosecond pulsed laser, lapatinib release from a nanoshell-based human serum albumin protein host complex resulted in increased cancerous cell death while noncancerous control cells were unaffected. Both methods provide spatially and temporally localized drug-release strategies that can facilitate high local concentrations of chemotherapy drugs deliverable at a specific treatment site over a specific time window, with the potential for greatly minimized side effects.

  11. Near field wireless power transfer using curved relay resonators for extended transfer distance

    International Nuclear Information System (INIS)

    Zhu, D; Beeby, S P; Clare, L; Stark, B H

    2015-01-01

    This paper investigates the performance of a near field wireless power transfer system that uses curved relay resonator to extend transfer distance. Near field wireless power transfer operates based on the near-field electromagnetic coupling of coils. Such a system can transfer energy over a relatively short distance which is of the same order of dimensions of the coupled coils. The energy transfer distance can be increased using flat relay resonators. Recent developments in printing electronics and e-textiles have seen increasing demand of embedding electronics into fabrics. Near field wireless power transfer is one of the most promising methods to power electronics on fabrics. The concept can be applied to body-worn textiles by, for example, integrating a transmitter coil into upholstery, and a flexible receiver coil into garments. Flexible textile coils take on the shape of the supporting materials such as garments, and therefore curved resonator and receiver coils are investigated in this work. Experimental results showed that using curved relay resonator can effectively extend the wireless power transfer distance. However, as the curvature of the coil increases, the performance of the wireless power transfer, especially the maximum received power, deteriorates. (paper)

  12. Orthostatic leg blood volume changes assessed by near-infrared spectroscopy

    DEFF Research Database (Denmark)

    Truijen, J; Kim, Y S; Krediet, C T P

    2012-01-01

    posture, volume accumulation in small blood vessels contributes significantly to the total fluid volume accumulated in the legs. Considering that near-infrared spectroscopy (NIRS) tracks postural blood volume changes within the small blood vessels of the lower leg, we evaluated the NIRS-determined changes......-linear accumulation of blood volume in the small vessels of the leg, with an initial fast phase followed by a more gradual increase at least partly contributing to the relocation of fluid during orthostatic stress....

  13. Near-infrared vascular imaging in peripheral venous and arterial access

    OpenAIRE

    Cuper, N.J.

    2012-01-01

    Venous and arterial access are among the most widespread medical procedures performed in children. Especially in young children venous and arterial access can be problematic due to tiny blood vessels that are difficult to localize beneath a layer of baby fat. This thesis describes the development and clinical evaluation of the VascuLuminator, a guidance tool for peripheral venous and arterial access by visualizing blood vessels underneath the skin with near-infrared light. In a third to a fif...

  14. Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry

    Energy Technology Data Exchange (ETDEWEB)

    Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao; Karr, Jennifer L.; Chapillon, Edwige; Tang, Ya-Wen [Institute of Astronomy and Astrophysics, Academia Sinica, PO Box 23-141, Taipei 10617, Taiwan, ROC (China); Muto, Takayuki [Division of Liberal Arts, Kogakuin University, 1-24-2, Nishi-Shinjuku, Shinjuku-ku, Tokyo 163-8677 (Japan); Dong, Ruobing [Nuclear Science Division, Lawrence Berkeley National Laboratory, 1 Cyclotron Road, Berkeley, CA 94720 (United States); Hashimoto, Jun [H. L. Dodge Department of Physics and Astronomy, University of Oklahoma, 440 W. Brooks St. Norman, OK 73019 (United States); Kusakabe, Nobuyuki; Akiyama, Eiji; Kwon, Jungmi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Itoh, Youchi [Nishi-Harima Astronomical Observatory, Center for Astronomy, University of Hyogo, 407-2 Nishigaichi, Sayo, Sayo, Hyogo 679-5313 (Japan); Carson, Joseph [Department of Physics and Astronomy, College of Charleston, 58 Coming Street, Charleston, SC 29424 (United States); Follette, Katherine B. [Steward Observatory, University of Arizona, 933 North Cherry Avenue, Tucson, AZ 85721 (United States); Mayama, Satoshi [The Center for the Promotion of Integrated Sciences, The Graduate University for Advanced Studies (SOKENDAI), Shonan International Village, Hayama-cho, Miura-gun, Kanagawa 240-0193 (Japan); Sitko, Michael [Department of Physics, University of Cincinnati, Cincinnati, OH 45221 (United States); Janson, Markus [Astrophysics Research Center, Queen' s University Belfast, BT7 1NN (United Kingdom); Grady, Carol A. [Eureka Scientific, 2452 Delmer Suite 100, Oakland, CA 96402 (United States); Kudo, Tomoyuki, E-mail: hiro@asiaa.sinica.edu.tw [Subaru Telescope, 650 North Aohoku Place, Hilo, HI 96720 (United States); and others

    2014-11-01

    We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.

  15. Surface geometry of protoplanetary disks inferred from near-infrared imaging polarimetry

    International Nuclear Information System (INIS)

    Takami, Michihiro; Hasegawa, Yasuhiro; Gu, Pin-Gao; Karr, Jennifer L.; Chapillon, Edwige; Tang, Ya-Wen; Muto, Takayuki; Dong, Ruobing; Hashimoto, Jun; Kusakabe, Nobuyuki; Akiyama, Eiji; Kwon, Jungmi; Itoh, Youchi; Carson, Joseph; Follette, Katherine B.; Mayama, Satoshi; Sitko, Michael; Janson, Markus; Grady, Carol A.; Kudo, Tomoyuki

    2014-01-01

    We present a new method of analysis for determining the surface geometry of five protoplanetary disks observed with near-infrared imaging polarimetry using Subaru-HiCIAO. Using as inputs the observed distribution of polarized intensity (PI), disk inclination, assumed properties for dust scattering, and other reasonable approximations, we calculate a differential equation to derive the surface geometry. This equation is numerically integrated along the distance from the star at a given position angle. We show that, using these approximations, the local maxima in the PI distribution of spiral arms (SAO 206462, MWC 758) and rings (2MASS J16042165-2130284, PDS 70) are associated with local concave-up structures on the disk surface. We also show that the observed presence of an inner gap in scattered light still allows the possibility of a disk surface that is parallel to the light path from the star, or a disk that is shadowed by structures in the inner radii. Our analysis for rings does not show the presence of a vertical inner wall as often assumed in studies of disks with an inner gap. Finally, we summarize the implications of spiral and ring structures as potential signatures of ongoing planet formation.

  16. Integration of independent component analysis with near-infrared spectroscopy for analysis of bioactive components in the medicinal plant Gentiana scabra Bunge

    Directory of Open Access Journals (Sweden)

    Yung-Kun Chuang

    2014-09-01

    Full Text Available Independent component (IC analysis was applied to near-infrared spectroscopy for analysis of gentiopicroside and swertiamarin; the two bioactive components of Gentiana scabra Bunge. ICs that are highly correlated with the two bioactive components were selected for the analysis of tissue cultures, shoots and roots, which were found to distribute in three different positions within the domain [two-dimensional (2D and 3D] constructed by the ICs. This setup could be used for quantitative determination of respective contents of gentiopicroside and swertiamarin within the plants. For gentiopicroside, the spectral calibration model based on the second derivative spectra produced the best effect in the wavelength ranges of 600–700 nm, 1600–1700 nm, and 2000–2300 nm (correlation coefficient of calibration = 0.847, standard error of calibration = 0.865%, and standard error of validation = 0.909%. For swertiamarin, a spectral calibration model based on the first derivative spectra produced the best effect in the wavelength ranges of 600–800 nm and 2200–2300 nm (correlation coefficient of calibration = 0.948, standard error of calibration = 0.168%, and standard error of validation = 0.216%. Both models showed a satisfactory predictability. This study successfully established qualitative and quantitative correlations for gentiopicroside and swertiamarin with near-infrared spectra, enabling rapid and accurate inspection on the bioactive components of G. scabra Bunge at different growth stages.

  17. Optical security based on near-field processes at the nanoscale

    International Nuclear Information System (INIS)

    Naruse, Makoto; Tate, Naoya; Ohtsu, Motoichi

    2012-01-01

    Optics has been playing crucial roles in security applications ranging from authentication and watermarks to anti-counterfeiting. However, since the fundamental physical principle involves optical far-fields, or propagating light, diffraction of light causes severe difficulties, for example in device scaling and system integration. Moreover, conventional security technologies in use today have been facing increasingly stringent demands to safeguard against threats such as counterfeiting of holograms, requiring innovative physical principles and technologies to overcome their limitations. Nanophotonics, which utilizes interactions between light and matter at the nanometer scale via optical near-field interactions, can break through the diffraction limit of conventional propagating light. Moreover, nanophotonics has some unique physical attributes, such as localized optical energy transfer and the hierarchical nature of optical near-field interactions, which pave the way for novel security functionalities. This paper reviews the physical principles and describes some experimental demonstrations of systems based on nanophotonics with respect to security applications such as tamper resistance against non-invasive and invasive attacks, hierarchical information retrieval, hierarchical holograms, authentication, and traceability. (paper)

  18. The Araucaria Project. The Distance to the Sculptor Group Galaxy NGC 7793 from Near-infrared Photometry of Cepheid Variables

    Energy Technology Data Exchange (ETDEWEB)

    Zgirski, Bartlomiej; Pietrzyński, Grzegorz; Wielgorski, Piotr; Narloch, Weronika; Graczyk, Dariusz [Nicolaus Copernicus Astronomical Center, Polish Academy of Sciences, Bartycka 18, 00-716 Warsaw (Poland); Gieren, Wolfgang; Gorski, Marek [Universidad de Concepcion, Departamento de Astronomia, Casilla 160-C, Concepcion (Chile); Karczmarek, Paulina [Warsaw University Observatory, Al. Ujazdowskie 4, 00-478, Warsaw (Poland); Kudritzki, Rolf-Peter; Bresolin, Fabio, E-mail: bzgirski@camk.edu.pl, E-mail: pietrzyn@camk.edu.pl, E-mail: pwielgor@camk.edu.pl, E-mail: wnarloch@camk.edu.pl, E-mail: darek@astro-udec.cl, E-mail: mgorski@astrouw.edu.pl, E-mail: wgieren@astro-udec.cl, E-mail: pkarczmarek@astrouw.edu.pl, E-mail: kud@ifa.hawaii.edu, E-mail: bresolin@ifa.hawaii.edu [Institute for Astronomy, University of Hawaii at Manoa, 2680 Woodlawn Drive, Honolulu HI 96822 (United States)

    2017-10-01

    Following the earlier discovery of classical Cepheid variables in the Sculptor Group spiral galaxy NGC 7793 from an optical wide-field imaging survey, we have performed deep near-infrared J - and K -band follow-up photometry of a subsample of these Cepheids to derive the distance to this galaxy with a higher accuracy than what was possible from optical photometry alone, by minimizing the effects of reddening and metallicity on the distance result. Combining our new near-infrared period–luminosity relations with previous optical photometry, we obtain a true distance modulus to NGC 7793 of (27.66 ± 0.04) mag (statistical) ±0.07 mag (systematic), i.e., a distance of (3.40 ± 0.17) Mpc. We also determine the mean reddening affecting the Cepheids to be E(B − V) = (0.08 ± 0.02) mag, demonstrating that there is significant dust extinction intrinsic to the galaxy in addition to the small foreground extinction. A comparison of the new, improved Cepheid distance to earlier distance determinations of NGC 7793 from the Tully–Fisher and TRGB methods is in agreement within the reported uncertainties of these previous measurements.

  19. Aqueous synthesis of high bright Ag{sub 2}Se−ZnSe quantum dots with tunable near-infrared emission

    Energy Technology Data Exchange (ETDEWEB)

    Che, Dongchen; Ding, Di [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201602 (China); Wang, Hongzhi, E-mail: wanghz@dhu.edu.cn [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201602 (China); Zhang, Qinghong [State Key Laboratory for Modification of Chemical Fibers and Polymer Materials, College of Materials Science and Engineering, Donghua University, Shanghai 201602 (China); Li, Yaogang, E-mail: yaogang_li@dhu.edu.cn [Engineering Research Center of Advanced Glass Manufacturing Technology, Ministry of Education, Donghua University, Shanghai 201602 (China)

    2016-09-05

    Efficient aqueous synthetic methods for near-infrared quantum dots as bioimaging agents are urgently required. In this work, a simple and fast synthesis of highly luminescent, near-infrared Ag{sub 2}Se quantum dots (QDs) in aqueous media is reported. The method avoids high temperature, pressure and organic solvents to directly generate water-dispersible Ag{sub 2}Se QDs. The photoluminescence emission of Ag{sub 2}Se QDs ranges from 835 to 940 nm by different Ag:Se molar ratio. Using the ZnSe as a shell, the quantum yield reaches up to 42%. The Ag{sub 2}Se−ZnSe QDs with high quantum yield, near-infrared and low cytotoxic could be used as good cell labels, showing great potential applications in bio-imaging. - Highlights: • Ag{sub 2}Se−ZnSe nanocrystals are prepared directly in aqueous media at low temperature. • Ag{sub 2}Se−ZnSe nanocrystals show excellent water solubility and colloidal stability. • Ag{sub 2}Se nanocrystals exhibit tunable near-infrared emission with ultrasmall size. • Ag{sub 2}Se−ZnSe nanocrystals show high quantum yield with low cytotoxicity. • Ag{sub 2}Se−ZnSe nanocrystals are stable over a month at room temperature in the air.

  20. A New Indicator for Optimal Preprocessing and Wavelengths Selection of Near-Infrared Spectra

    NARCIS (Netherlands)

    Skibsted, E.; Boelens, H.F.M.; Westerhuis, J.A.; Witte, D.T.; Smilde, A.K.

    2004-01-01

    Preprocessing of near-infrared spectra to remove unwanted, i.e., non-related spectral variation and selection of informative wavelengths is considered to be a crucial step prior to the construction of a quantitative calibration model. The standard methodology when comparing various preprocessing

  1. Near-infrared oxygen airglow from the Venus nightside

    Science.gov (United States)

    Crisp, D.; Meadows, V. S.; Allen, D. A.; Bezard, B.; Debergh, C.; Maillard, J.-P.

    1992-01-01

    Groundbased imaging and spectroscopic observations of Venus reveal intense near-infrared oxygen airglow emission from the upper atmosphere and provide new constraints on the oxygen photochemistry and dynamics near the mesopause (approximately 100 km). Atomic oxygen is produced by the Photolysis of CO2 on the dayside of Venus. These atoms are transported by the general circulation, and eventually recombine to form molecular oxygen. Because this recombination reaction is exothermic, many of these molecules are created in an excited state known as O2(delta-1). The airglow is produced as these molecules emit a photon and return to their ground state. New imaging and spectroscopic observations acquired during the summer and fall of 1991 show unexpected spatial and temporal variations in the O2(delta-1) airglow. The implications of these observations for the composition and general circulation of the upper venusian atmosphere are not yet understood but they provide important new constraints on comprehensive dynamical and chemical models of the upper mesosphere and lower thermosphere of Venus.

  2. Long-term behaviour of waste-forms in the near-field environment of a deep underground storage site, overview

    International Nuclear Information System (INIS)

    Toulhoat, P.; Lassabatere, Th.; Galle, Ch.; Cranga, M.; Trotignon, L.; Maillard, S.; Iracane, D.

    1997-01-01

    CEA (French Atomic Energy Commission) is responsible for the achievement of high activity and/or long life waste conditioning processes. Various waste-forms are used (glass, bitumen, etc...). ANDRA (French National Agency for Nuclear Waste Management) has to integrate the long-term durability of such waste-forms in the conception of a deep disposal and the assessment of its long-term confinement performances. The influence of near-field and of the boundary conditions imposed by the far-field on the long-term evolution is being more and more documented. Transport properties and reactivity of silica in the near field is one of the best examples of such effects. A coherent framework with relevant successive events (site re-saturation, chemical evolution of the engineered barrier, overpack corrosion) and a thorough analysis of hierarchized couplings are necessary to evaluate the long term durability of waste-form, and finally, to deliver a near-field-integrated source-term of radionuclides versus lime. We present hereafter some preliminary results obtained in the framework of the CEA 'C3P' project - long-term behaviour of waste-forms in their near-field environment. (authors)

  3. Three-Dimensional Integration of Black Phosphorus Photodetector with Silicon Photonics and Nanoplasmonics.

    Science.gov (United States)

    Chen, Che; Youngblood, Nathan; Peng, Ruoming; Yoo, Daehan; Mohr, Daniel A; Johnson, Timothy W; Oh, Sang-Hyun; Li, Mo

    2017-02-08

    We demonstrate the integration of a black phosphorus photodetector in a hybrid, three-dimensional architecture of silicon photonics and metallic nanoplasmonics structures. This integration approach combines the advantages of the low propagation loss of silicon waveguides, high-field confinement of a plasmonic nanogap, and the narrow bandgap of black phosphorus to achieve high responsivity for detection of telecom-band, near-infrared light. Benefiting from an ultrashort channel (∼60 nm) and near-field enhancement enabled by the nanogap structure, the photodetector shows an intrinsic responsivity as high as 10 A/W afforded by internal gain mechanisms, and a 3 dB roll-off frequency of 150 MHz. This device demonstrates a promising approach for on-chip integration of three distinctive photonic systems, which, as a generic platform, may lead to future nanophotonic applications for biosensing, nonlinear optics, and optical signal processing.

  4. THE TAIWAN ECDFS NEAR-INFRARED SURVEY: VERY BRIGHT END OF THE LUMINOSITY FUNCTION AT z > 7

    Energy Technology Data Exchange (ETDEWEB)

    Hsieh, Bau-Ching; Wang, Wei-Hao; Lin, Lihwai; Lim, Jeremy; Ho, Paul T. P. [Institute of Astrophysics and Astronomy, Academia Sinica, P.O. Box 23-141, Taipei 106, Taiwan (China); Yan, Haojing [Department of Physics and Astronomy, University of Missouri, Columbia, MO 65211 (United States); Karoji, Hiroshi [National Astronomical Observatory of Japan, 2-21-1 Osawa, Mitaka, Tokyo 181-8588 (Japan); Tsai, Chao-Wei [Infrared Processing and Analysis Center, California Institute of Technology, 770 South Wilson Avenue, Pasadena, CA 91125 (United States)

    2012-04-10

    The primary goal of the Taiwan ECDFS Near-Infrared Survey (TENIS) is to find well-screened galaxy candidates at z > 7 (z' dropout) in the Extended Chandra Deep Field-South (ECDFS). To this end, TENIS provides relatively deep J and K{sub s} data ({approx}25.3 ABmag, 5{sigma}) for an area of 0.5 Multiplication-Sign 0.5 deg. Leveraged with existing data at mid-infrared to optical wavelengths, this allows us to screen for the most luminous high-z objects, which are rare and thus require a survey over a large field to be found. We introduce new color selection criteria to select a z > 7 sample with minimal contaminations from low-z galaxies and Galactic cool stars; to reduce confusion in the relatively low angular resolution Infrared Array Camera (IRAC) images, we introduce a novel deconvolution method to measure the IRAC fluxes of individual sources. Illustrating perhaps the effectiveness at which we screen out interlopers, we find only one z > 7 candidate, TENIS-ZD1. The candidate has a weighted z{sub phot} of 7.8, and its colors and luminosity indicate a young (45M years old) starburst galaxy with a stellar mass of 3.2 Multiplication-Sign 10{sup 10} M{sub Sun }. The result matches with the observational luminosity function analysis and the semianalytic simulation result based on the Millennium Simulations, which may over predict the volume density for high-z massive galaxies. The existence of TENIS-ZD1, if confirmed spectroscopically to be at z > 7, therefore poses a challenge to current theoretical models for how so much mass can accumulate in a galaxy at such a high redshift.

  5. Predicting rapeseed oil content with near-infrared spectroscopy

    Directory of Open Access Journals (Sweden)

    Roberta Rossato

    2013-12-01

    Full Text Available The objective of this work was to establish a calibration equation and to estimate the efficiency of near-infrared reflectance (NIR spectroscopy for evaluating rapeseed oil content in Southern Brazil. Spectral data from 124 half-sib families were correlated with oil contents determined by the chemical method. The accuracy of the equation was verified by coefficient of determination (R² of 0.92, error of calibration (SEC of 0.78, and error of performance (SEP of 1.22. The oil content of ten genotypes, which were not included in the calibration with NIR, was similar to the one obtained by the standard chemical method. NIR spectroscopy is adequate to differentiate oil content of rapeseed genotypes.

  6. Noninvasive near-infrared live imaging of human adult mesenchymal stem cells transplanted in a rodent model of Parkinson’s disease

    Directory of Open Access Journals (Sweden)

    Bossolasco P

    2012-01-01

    Full Text Available P Bossolasco1,*, L Cova2,*, G Levandis3, V Diana2, S Cerri3, G Lambertenghi Deliliers1, E Polli1, V Silani2,4, F Blandini3, MT Armentero31Fondazione Matarelli, Dipartimento di Farmacologia, Chemioterapia e Tossicologia Medica, Università degli Studi di Milano, Milan, 2Department of Neurology and Laboratory of Neuroscience-IRCCS Istituto Auxologico Italiano, Cusano Milanino, 3Laboratory of Functional Neurochemistry, Interdepartmental Research Centre for Parkinson’s Disease, IRCCS National Institute of Neurology “C Mondino”, Pavia, 4Department of Neurology and Laboratory of Neuroscience, Centro “Dino Ferrari” Università degli Studi di Milano-IRCCS Istituto Auxologico Italiano, Milan, Italy *These authors contributed equally to this workBackground: We have previously shown that human mesenchymal stem cells (hMSCs can reduce toxin-induced neurodegeneration in a well characterized rodent model of Parkinson’s disease. However, the precise mechanisms, optimal cell concentration required for neuroprotection, and detailed cell tracking need to be defined. We exploited a near-infrared imaging platform to perform noninvasive tracing following transplantation of tagged hMSCs in live parkinsonian rats.Methods: hMSCs were labeled both with a membrane intercalating dye, emitting in the near-infrared 815 nm spectrum, and the nuclear counterstain, Hoechst 33258. Effects of near-infrared dye on cell metabolism and proliferation were extensively evaluated in vitro. Tagged hMSCs were then administered to parkinsonian rats bearing a 6-hydroxydopamine-induced lesion of the nigrostriatal pathway, via two alternative routes, ie, intrastriatal or intranasal, and the cells were tracked in vivo and ex vivo using near-infrared technology.Results: In vitro, NIR815 staining was stable in long-term hMSC cultures and did not interfere with cell metabolism or proliferation. A significant near-infrared signal was detectable in vivo, confined around the injection

  7. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    Energy Technology Data Exchange (ETDEWEB)

    Balabin, Roman M., E-mail: balabin@org.chem.ethz.ch [Department of Chemistry and Applied Biosciences, ETH Zurich, 8093 Zurich (Switzerland); Safieva, Ravilya Z. [Gubkin Russian State University of Oil and Gas, 119991 Moscow (Russian Federation)

    2011-03-18

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm{sup -1}) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  8. Biodiesel classification by base stock type (vegetable oil) using near infrared spectroscopy data

    International Nuclear Information System (INIS)

    Balabin, Roman M.; Safieva, Ravilya Z.

    2011-01-01

    The use of biofuels, such as bioethanol or biodiesel, has rapidly increased in the last few years. Near infrared (near-IR, NIR, or NIRS) spectroscopy (>4000 cm -1 ) has previously been reported as a cheap and fast alternative for biodiesel quality control when compared with infrared, Raman, or nuclear magnetic resonance (NMR) methods; in addition, NIR can easily be done in real time (on-line). In this proof-of-principle paper, we attempt to find a correlation between the near infrared spectrum of a biodiesel sample and its base stock. This correlation is used to classify fuel samples into 10 groups according to their origin (vegetable oil): sunflower, coconut, palm, soy/soya, cottonseed, castor, Jatropha, etc. Principal component analysis (PCA) is used for outlier detection and dimensionality reduction of the NIR spectral data. Four different multivariate data analysis techniques are used to solve the classification problem, including regularized discriminant analysis (RDA), partial least squares method/projection on latent structures (PLS-DA), K-nearest neighbors (KNN) technique, and support vector machines (SVMs). Classifying biodiesel by feedstock (base stock) type can be successfully solved with modern machine learning techniques and NIR spectroscopy data. KNN and SVM methods were found to be highly effective for biodiesel classification by feedstock oil type. A classification error (E) of less than 5% can be reached using an SVM-based approach. If computational time is an important consideration, the KNN technique (E = 6.2%) can be recommended for practical (industrial) implementation. Comparison with gasoline and motor oil data shows the relative simplicity of this methodology for biodiesel classification.

  9. Near-near-infrared thermal lens spectroscopy to assess overtones and combination bands of sulfentrazone pesticide

    Science.gov (United States)

    Ventura, M.; Silva, J. R.; Andrade, L. H. C.; Scorza Júnior, R. P.; Lima, S. M.

    2018-01-01

    Thermal lens spectroscopy (TLS) in the near-near-infrared region was used to explore the absorptions of overtones and combination bands of sulfentrazone (SFZ) herbicide diluted in methanol. This spectroscopic region was chosen in order to guarantee that only thermal lens effect is noted during the experimental procedure. The results showed that it was possible to detect very low concentrations ( 2 ng/μL) of SFZ in methanol by determining its thermal diffusivity or the absorption coefficient due to the 3ν(NH) + 1δ(CH) combination band. This minimum SFZ concentration is the limit observed by chromatography method. The findings demonstrated that the TLS can be used for precise and accurate assessment of pesticides in ecosystems. Besides, the 3ν(NH) + 1δ(CH) combination band at 960 nm can be used as a marker for SFZ in methanol.

  10. Spectroscopy and near infrared upconversion of Er{sup 3+}-doped TZNT glasses

    Energy Technology Data Exchange (ETDEWEB)

    Venkata Krishnaiah, K. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Marques-Hueso, J. [Institute of Sensors, Signals and Systems & Institute of Photonics and Quantum Sciences, School of Engineering and Physical Sciences, Heriot-Watt University, Edinburgh EH14 4AS (United Kingdom); Suresh, K.; Venkataiah, G. [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India); Richards, B.S. [Light Technology Institute (LTI), Karlsruhe Institute of Technology, Engesserstrasse 13, 76131 Karlsruhe (Germany); Institute of Microstructure Technology (IMT), Karlsruhe Institute of Technology, Hermann-von-Helmholtz-Platz 1, 76344 Eggenstein-Leopoldshafen (Germany); Jayasankar, C.K., E-mail: ckjaya@yahoo.com [Department of Physics, Sri Venkateswara University, Tirupati 517502 (India)

    2016-01-15

    In this paper we report on the near infrared (NIR) upconversion (UC) and spectroscopic properties of erbium (Er{sup 3+})-doped TeO{sub 2}–ZnO–Nb{sub 2}O{sub 5}–TiO{sub 2} (TZNT) oxide glasses. Judd–Ofelt theory has been applied to investigate the intensity parameters (Ω{sub λ}, λ=2, 4 and 6) which are used to derive radiative properties of the fluorescent levels. The different glasses present high refractive indices, low dispersion and Abbe numbers, as determined by variable angle spectroscopic ellipsometry. Under 980 nm excitation, the NIR emission profile and full width at half maximum have been studied in a broad range of Er{sup 3+} concentrations (0.01–3.0 mol%). On the other side, NIR UC has been obtained by exciting at 1523 nm, showing an increase of the intensity with Er{sup 3+} ion density in the studied range. The decay curves of the {sup 4}I{sub 13/2} level exhibit single exponential nature for all the different concentrations. The lifetime of the {sup 4}I{sub 13/2} level has been found to decrease (3.73–1.20 ms) after an initial increase (3.65–3.73 ms) with increasing of Er{sup 3+} ion concentration. The TZNT samples show broadband UC emission at 1.0 µm, which match with the band gap of silicon. This reveals that the investigated glasses could find application in photonics, for example non-linear optics and photovoltaic’s. - Highlights: • The Er{sup 3+}:TZNT glasses have been synthesized and optically characterized. • Refractive index and Abbe number of the TZNT glasses were measured by Ellipsometry. • Near infrared emission (1400–1600 nm) has been obtained under 980 nm excitation. • Near infrared upconversion at 980 nm has been investigated under 1523 nm excitation.

  11. Ages of galaxy bulges and disks from optical and near-infrared colors

    NARCIS (Netherlands)

    Peletier, RF; Balcells, M

    We compare optical and near-infrared colors of disks and bulges in a diameter-limited sample of inclined, bright, nearby, early-type spirals. Color profiles along wedge apertures at 15 degrees from the major axis and on the minor axis on the side of the galaxy opposite to the dust lane are used to

  12. Characterizing process effects on pharmaceutical solid forms using near-infrared spectroscopy and infrared imaging.

    Science.gov (United States)

    Roggo, Y; Jent, N; Edmond, A; Chalus, P; Ulmschneider, M

    2005-09-01

    Near-infrared spectroscopy (NIRS) has become a widely used analytical technique in the pharmaceutical industry, serving for example to determine the active substance or water content of tablets. Its great advantage lies in the minimal sample preparation required and speed of measurement. In a study designed to detect the effects of process on tablet dissolution, we describe the application of NIRS to the detection and identification of changes in uncoated and coated tablets in response to pilot-scale changes in process parameters during melt granulation, compression, and coating. Beginning with a qualitative comparison between pharmaceutical batches, we show that NIRS and principal component analysis can separate batches produced with different melt granulation parameters and differentiate between cores compressed with different compaction forces. Complementary infrared imaging can also explain the difference in dissolution properties between samples produced with different melt granulation parameters. NIRS is sensitive to changes in coating formulation, the quality of a coating excipient (hydroxypropyl methylcellulose), and coating time. In a concluding quantitative analysis, we demonstrate the feasibility of NIRS in a manufacturing context for predicting coating time and detecting production cores failing to meet dissolution test specifications.

  13. Near-infrared imaging of white dwarfs with candidate debris disks

    International Nuclear Information System (INIS)

    Wang, Zhongxiang; Tziamtzis, Anestis; Wang, Xuebing

    2014-01-01

    We have carried out JHK s imaging of 12 white dwarf debris disk candidates from the WIRED Sloan Digital Sky Survey Data Release 7 catalog, aiming to confirm or rule out disks among these sources. On the basis of positional identification and the flux density spectra, we find that seven white dwarfs have excess infrared emission, but mostly at Wide-field Infrared Survey Explorer W1 and W2 bands. Four are due to nearby red objects consistent with background galaxies or very low mass dwarfs, and one exhibits excess emission at JHK s consistent with an unresolved L0 companion at the correct distance. While our photometry is not inconsistent with all seven excesses arising from disks, the stellar properties are distinct from the known population of debris disk white dwarfs, making the possibility questionable. In order to further investigate the nature of these infrared sources, warm Spitzer imaging is needed, which may help resolve galaxies from the white dwarfs and provide more accurate flux measurements.

  14. Local field distribution near corrugated interfaces: Green function formalism versus effective medium theory

    International Nuclear Information System (INIS)

    Choy, C.W.; Xiao, J.J.; Yu, K.W.

    2007-01-01

    The recent Green function formalism (GFF) has been used to study the local field distribution near a periodic interface separating two homogeneous media of different dielectric constants. In the GFF, the integral equations can be solved conveniently because of the existence of an analytic expression for the kernel (Greenian). However, due to a severe singularity in the Greenian, the formalism was formerly applied to compute the electric fields away from the interface region. In this work, we have succeeded in extending the GFF to compute the electric field inside the interface region by taking advantage of a sum rule. To our surprise, the strengths of the electric fields are quite similar in both media across the interface, despite of the large difference in dielectric constants. Moreover, we propose a simple effective medium approximation (EMA) to compute the electric field inside the interface region. We show that the EMA can indeed give an excellent description of the electric field, except near a surface plasmon resonance

  15. Predicting the ethanol potential of wheat straw using near-infrared spectroscopy and chemometrics

    DEFF Research Database (Denmark)

    Rinnan, Åsmund; Bruun, Sander; Lindedam, Jane

    2017-01-01

    of using near-infrared spectroscopy to evaluate the ethanol potential of wheat straw by analyzing more than 1000 samples from different wheat varieties and growth conditions. During the calibration model development, the prime emphasis was to investigate the correlation structure between the two major...

  16. [Study on brand traceability of vinegar based on near infrared spectroscopy technology].

    Science.gov (United States)

    Guan, Xiao; Liu, Jing; Gu, Fang-Qing; Yang, Yong-Jian

    2014-09-01

    In the present paper, 152 vinegar samples with four different brands were chosen as research targets, and their near infrared spectra were collected by diffusion reflection mode and transmission mode, respectively. Furthermore, the brand traceability models for edible vinegar were constructed. The effects of the collection mode and pretreatment methods of spectrum on the precision of traceability models were investigated intensively. The models constructed by PLS1-DA modeling method using spectrum data of 114 training samples were applied to predict 38 test samples, and R2, RMSEC and RMSEP of the model based on transmission mode data were 0.92, 0.113 and 0.127, respectively, with recognition rate of 76.32%, and those based on diffusion reflection mode data were 0.97, 0.102 and 0.119, with recognition rate of 86.84%. The results demonstrated that the near infrared spectrum combined with PLS1-DA can be used to establish the brand traceability models for edible vinegar, and diffuse reflection mode is more beneficial for predictive ability of the model.

  17. Early detection of emerging street drugs by near infrared spectroscopy and chemometrics.

    Science.gov (United States)

    Risoluti, R; Materazzi, S; Gregori, A; Ripani, L

    2016-06-01

    Near-infrared spectroscopy (NIRs) is spreading as the tool of choice for fast and non-destructive analysis and detection of different compounds in complex matrices. This paper investigated the feasibility of using near infrared (NIR) spectroscopy coupled to chemometrics calibration to detect new psychoactive substances in street samples. The capabilities of this approach in forensic chemistry were assessed in the determination of new molecules appeared in the illicit market and often claimed to contain "non-illegal" compounds, although exhibiting important psychoactive effects. The study focused on synthetic molecules belonging to the classes of synthetic cannabinoids and phenethylamines. The approach was validated comparing results with officials methods and has been successfully applied for "in site" determination of illicit drugs in confiscated real samples, in cooperation with the Scientific Investigation Department (Carabinieri-RIS) of Rome. The achieved results allow to consider NIR spectroscopy analysis followed by chemometrics as a fast, cost-effective and useful tool for the preliminary determination of new psychoactive substances in forensic science. Copyright © 2016 Elsevier B.V. All rights reserved.

  18. Assessment of pesticide coating on cereal seeds by near infrared hyperspectral imaging

    Directory of Open Access Journals (Sweden)

    Ph. Vermeulen

    2017-01-01

    Full Text Available Classical chromatographic methods, such as ultra performance liquid chromatography (UPLC, are used as reference methods to assess seed quality and homogeneous pesticide coating of seeds. These methods have some important drawbacks since they are time consuming, expensive, destructive and require a substantial amount of solvent, among others. Near infrared (NIR spectroscopy seems to be an interesting alternative technique for the determination of the quality of seed treatment and avoids most of these drawbacks. The objective of this study was to assess the quality of pesticide coating treatment by near infrared hyperspectral imaging (NIR-HSI by analysing, on a seed-by-seed basis, several seeds simultaneously in comparison to NIR spectroscopy and UPLC as the reference method. To achieve this goal, discrimination—partial least squares discriminant analysis (PLS-DA—models and regression—partial least squares (PLS—models were developed. The results obtained by NIR-HSI are compared to the results obtained with NIR spectroscopy and UPLC instruments. This study has shown the potential of NIR hyperspectral imaging to assess the quality/homogeneity of the pesticide coating on seeds.

  19. Quantitative near-infrared spectroscopy on patients with peripheral vascular disease

    OpenAIRE

    Franceschini, MA; Fantini, S; Palumbo, R; Pasqualini, L; Vaudo, G; Franceschini, E; Gratton, E; Palumbo, B; Innocente, S; Mannarino, E

    1997-01-01

    We have used near-infrared spectroscopy to measure the hemoglobin saturation at rest and during exercise on patients affected by peripheral vascular disease (PVD). The instrument used in our study is a frequency-domain tissue oximeter which employs intensity modulated (110 MHz) laser diodes. We examined 9 subjects, 3 of which were controls and 6 were patients affected by stage II PVD. The optical probe was located on the calf muscle of the subjects. The measurement protocol consisted of: (1) ...

  20. Near-infrared spectral tomography integrated with digital breast tomosynthesis: Effects of tissue scattering on optical data acquisition design

    Energy Technology Data Exchange (ETDEWEB)

    Michaelsen, Kelly; Krishnaswamy, Venkat; Pogue, Brian W.; Poplack, Steven P.; Paulsen, Keith D. [Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 (United States); Department of Diagnostic Radiology, Dartmouth Medical School, Lebanon, New Hampshire 03756 (United States); Thayer School of Engineering, Dartmouth College, Hanover, New Hampshire 03755 and Department of Diagnostic Radiology, Dartmouth Medical School, Lebanon, New Hampshire 03756 (United States)

    2012-07-15

    Purpose: Design optimization and phantom validation of an integrated digital breast tomosynthesis (DBT) and near-infrared spectral tomography (NIRST) system targeting improvement in sensitivity and specificity of breast cancer detection is presented. Factors affecting instrumentation design include minimization of cost, complexity, and examination time while maintaining high fidelity NIRST measurements with sufficient information to recover accurate optical property maps. Methods: Reconstructed DBT slices from eight patients with abnormal mammograms provided anatomical information for the NIRST simulations. A limited frequency domain (FD) and extensive continuous wave (CW) NIRST system was modeled. The FD components provided tissue scattering estimations used in the reconstruction of the CW data. Scattering estimates were perturbed to study the effects on hemoglobin recovery. Breast mimicking agar phantoms with inclusions were imaged using the combined DBT/NIRST system for comparison with simulation results. Results: Patient simulations derived from DBT images show successful reconstruction of both normal and malignant lesions in the breast. They also demonstrate the importance of accurately quantifying tissue scattering. Specifically, 20% errors in optical scattering resulted in 22.6% or 35.1% error in quantification of total hemoglobin concentrations, depending on whether scattering was over- or underestimated, respectively. Limited frequency-domain optical signal sampling provided two regions scattering estimates (for fat and fibroglandular tissues) that led to hemoglobin concentrations that reduced the error in the tumor region by 31% relative to when a single estimate of optical scattering was used throughout the breast volume of interest. Acquiring frequency-domain data with six wavelengths instead of three did not significantly improve the hemoglobin concentration estimates. Simulation results were confirmed through experiments in two-region breast mimicking