WorldWideScience

Sample records for ne-sw trending faults

  1. Origin and model of transform faults in the Okinawa Trough

    Science.gov (United States)

    Liu, Bo; Li, Sanzhong; Jiang, Suhua; Suo, Yanhui; Guo, Lingli; Wang, Yongming; Zhang, Huixuan

    2017-06-01

    Transform faults in back-arc basins are the key to revealing the opening and development of marginal seas. The Okinawa Trough (OT) represents an incipient and active back-arc or marginal sea basin oriented in a general NE-SW direction. To determine the strikes and spatial distribution of transform faults in the OT, this paper dissects the NW- and NNE-SN-trending fault patterns on the basis of seismic profiles, gravity anomalies and region geological data. There are three main NW-trending transpressional faults in the OT, which are the seaward propagation of NW-trending faults in the East China Continent. The NNE-SN-trending faults with right-stepping distribution behave as right-lateral shearing. The strike-slip pull-apart process or transtensional faulting triggered the back-arc rifting or extension, and these faults evolved into transform faults with the emergence of oceanic crust. Thus, the transform fault patterns are inherited from pre-existing oblique transtensional faults at the offsets between rifting segments. Therefore, the OT performs the oblique spreading mechanism similar to nascent oceans such as the Red Sea and Gulf of Aden.

  2. Role of N-S strike-slip faulting in structuring of north-eastern Tunisia; geodynamic implications

    Science.gov (United States)

    Arfaoui, Aymen; Soumaya, Abdelkader; Ben Ayed, Noureddine; Delvaux, Damien; Ghanmi, Mohamed; Kadri, Ali; Zargouni, Fouad

    2017-05-01

    Three major compressional events characterized by folding, thrusting and strike-slip faulting occurred in the Eocene, Late Miocene and Quaternary along the NE Tunisian domain between Bou Kornine-Ressas-Msella and Cap Bon Peninsula. During the Plio-Quaternary, the Grombalia and Mornag grabens show a maximum of collapse in parallelism with the NNW-SSE SHmax direction and developed as 3rd order distensives zones within a global compressional regime. Using existing tectonic and geophysical data supplemented by new fault-kinematic observations, we show that Cenozoic deformation of the Mesozoic sedimentary sequences is dominated by first order N-S faults reactivation, this sinistral wrench system is responsible for the formation of strike-slip duplexes, thrusts, folds and grabens. Following our new structural interpretation, the major faults of N-S Axis, Bou Kornine-Ressas-Messella (MRB) and Hammamet-Korbous (HK) form an N-S first order compressive relay within a left lateral strike-slip duplex. The N-S master MRB fault is dominated by contractional imbricate fans, while the parallel HK fault is characterized by a trailing of extensional imbricate fans. The Eocene and Miocene compression phases in the study area caused sinistral strike-slip reactivation of pre-existing N-S faults, reverse reactivation of NE-SW trending faults and normal-oblique reactivation of NW-SE faults, creating a NE-SW to N-S trending system of east-verging folds and overlaps. Existing seismic tomography images suggest a key role for the lithospheric subvertical tear or STEP fault (Slab Transfer Edge Propagator) evidenced below this region on the development of the MRB and the HK relay zone. The presence of extensive syntectonic Pliocene on top of this crustal scale fault may be the result of a recent lithospheric vertical kinematic of this STEP fault, due to the rollback and lateral migration of the Calabrian slab eastward.

  3. Structural evolution of Cenozoic basins in northeastern Tunisia, in response to sinistral strike-slip movement on the El Alia-Teboursouk Fault

    Science.gov (United States)

    Bejaoui, Hamida; Aïfa, Tahar; Melki, Fetheddine; Zargouni, Fouad

    2017-10-01

    This paper resolves the structural complexity of Cenozoic sedimentary basins in northeastern Tunisia. These basins trend NE-SW to ∼ E-W, and are bordered by old fracture networks. Detailed descriptions of the structural features in outcrop and in subsurface data suggest that the El Alia-Teboursouk Fault zone in the Bizerte area evolved through a series of tectonic events. Cross sections, lithostratigraphic correlations, and interpretation of seismic profiles through the basins show evidence for: (i) a Triassic until Jurassic-Early Cretaceous rifting phase that induced lateral variations of facies and strata thicknesses; (ii) a set of faults oriented NE-SW, NW-SE, N-S, and E-W that guided sediment accumulation in pull-apart basins, which were subject to compressive and transpressive deformation during Eocene (Lutetian-Priabonian), Miocene (Tortonian), and Pliocene-Quaternary; and (iii) NNW-SSE to NS contractional events that occurred during the Late Pliocene. Part of the latest phase has been the formation of different synsedimentary folded structures with significant subsidence inversion. Such events have been responsible for the reactivation of inherited faults, and the intrusion of Triassic evaporites, ensuring the role of a slip layer. The combined effects of the different paleoconstraints and halokinetic movements are at the origin of the evolution of these pull-apart basins. The subsurface data suggest that an important fault displacement occurred during the Mesozoic-Cenozoic. The patterns of sediment accumulation in the different basins reflect a high activity of deep ancient faults.

  4. Fault linkage and continental breakup

    Science.gov (United States)

    Cresswell, Derren; Lymer, Gaël; Reston, Tim; Stevenson, Carl; Bull, Jonathan; Sawyer, Dale; Morgan, Julia

    2017-04-01

    The magma-poor rifted margin off the west coast of Galicia (NW Spain) has provided some of the key observations in the development of models describing the final stages of rifting and continental breakup. In 2013, we collected a 68 x 20 km 3D seismic survey across the Galicia margin, NE Atlantic. Processing through to 3D Pre-stack Time Migration (12.5 m bin-size) and 3D depth conversion reveals the key structures, including an underlying detachment fault (the S detachment), and the intra-block and inter-block faults. These data reveal multiple phases of faulting, which overlap spatially and temporally, have thinned the crust to between zero and a few km thickness, producing 'basement windows' where crustal basement has been completely pulled apart and sediments lie directly on the mantle. Two approximately N-S trending fault systems are observed: 1) a margin proximal system of two linked faults that are the upward extension (breakaway faults) of the S; in the south they form one surface that splays northward to form two faults with an intervening fault block. These faults were thus demonstrably active at one time rather than sequentially. 2) An oceanward relay structure that shows clear along strike linkage. Faults within the relay trend NE-SW and heavily dissect the basement. The main block bounding faults can be traced from the S detachment through the basement into, and heavily deforming, the syn-rift sediments where they die out, suggesting that the faults propagated up from the S detachment surface. Analysis of the fault heaves and associated maps at different structural levels show complementary fault systems. The pattern of faulting suggests a variation in main tectonic transport direction moving oceanward. This might be interpreted as a temporal change during sequential faulting, however the transfer of extension between faults and the lateral variability of fault blocks suggests that many of the faults across the 3D volume were active at least in part

  5. Deformation characteristics and history along the Ilkwang Fault, SE Korea

    Science.gov (United States)

    Jin, K.; Kim, Y.; Yang, S.; Choi, J.

    2009-12-01

    The NNE-SSW trending Ilkwang Fault is one of the major structural features around SE Korea. It is a high angle, right-lateral strike-slip fault with a displacement of about 1.2 km. The basement around the fault is Cretaceous sedimentary and volcanic rocks forming a part of the Gyeongsang Basin in SE Korea, and it is intruded by later igneous rocks. The fault has not been studied intensively due to poor exposure along the fault. However, understanding the characteristics of the Ilkwang Fault is important because three nuclear power plants and one nuclear waste disposal site are located around the fault. We have mainly investigated along the new road-cut sections of the Busan-Ulsan Highway. Many geologic structures such as dykes, folds, and faults are measured in several studied sites. The analyzed structural patterns indicate multi-deformation including reactivation of pre-existing faults. In this study, we analyzed variation patterns of attitude on the beddings and fractures around some parts of the Ilkwang Fault. The strike/dip variation from the general attitude of the structural elements (e.g. beddings) is here used as an indicator of deformation intensity across the fault. This analysis indicates that respect distances (highly deformed area affected by faulting) along the Ilkwang Fault is about 1 km in sedimentary rocks and 200 m in volcanic rocks, respectively. It indicates that the Ilkwang Fault is a relatively big fault, and layered sedimentary rock is relatively weaker than massive volcanic rock under brittle deformation. Deformation history in the studied area, based on kinematic analysis of faults, joints and dykes, is as follows: 1) NNE-SSW trending reverse fault and fold. 2) E-W trending reverse fault and N-S trending acidic dykes. 3) ENE-WSW trending left-lateral fault, NNE-SSW trending right-lateral fault, and NE-SW trending basic dykes. 4) E-W trending normal fault. 5) N-S or NNE-SSW trending reverse fault.

  6. Influence of fault trend, bends, and convergence on shallow structure and geomorphology of the Hosgri strike-slip fault, offshore central California

    Science.gov (United States)

    Johnson, Samuel Y.; Watt, Janet T.

    2012-01-01

    We mapped an ∼94-km-long portion of the right-lateral Hosgri fault zone in offshore central California using a dense network of high-resolution seismic reflection profiles, marine magnetic data, and multibeam bathymetry. These data document the location, length, and continuity of multiple fault strands, highlight fault-zone heterogeneity, and demonstrate the importance of fault trend, fault bends, and fault convergence in the development of shallow structure and tectonic geomorphology along strike-slip faults.

  7. Fault Trends and the Evolution of the Pacific-North America Transform in Southern California

    Science.gov (United States)

    Legg, M. R.; Kamerling, M. J.

    2004-12-01

    The Pacific-North America (PAC-NOAM) transform boundary evolved during the past 30 Ma, lengthening more than 1000 km and spanning a zone exceeding 200-km across southern California. The relative plate motion vector has been estimated using seafloor magnetic anomaly patterns. Orientations of major transform fault segments within this boundary provide direct evidence of the relative motion at the time these faults formed, where the faults preserve their original orientations. Avoiding areas of known vertical-axis block rotations, we find at least three major fault trends that document past and present tectonic kinematics. A northwest trend of 330 degrees is related to subduction trends in the forearc region that defined the late Mesozoic and early Tertiary coastline and has subsequently controlled the orientation of oblique rifting during the Neogene initiation and growth of the PAC-NOAM transform. This trend is manifest in the San Diego Trough and adjacent coastal rifts and associated fault zones including the Coronado Bank and Newport-Inglewood. The middle Miocene transform orientation appears to be 300-310 degrees, which imparted extensional character to faults reactivated with older subduction trends. Major faults inferred to represent Neogene transform fault segments with this trend include the Whittier, Palos Verdes Hills, Santa Cruz-Catalina Ridge, Catalina Escarpment, and possibly the Mojave segment of the San Andreas fault. In late Miocene time, the plate motion vector rotated clockwise eventually achieving its modern orientation of about 320 degrees. Active faulting showing pure strike-slip character on the San Clemente - San Isidro fault zone and the Imperial Fault show this trend, as do transform faults in the northern Gulf of California. An intermediate trend is apparent in some areas along the San Clemente fault zone in the Borderland, and along the Elsinore and San Jacinto fault zones, which transect the Peninsular Ranges. The intermediate trends may

  8. Basic research on machinery fault diagnostics: Past, present, and future trends

    Science.gov (United States)

    Chen, Xuefeng; Wang, Shibin; Qiao, Baijie; Chen, Qiang

    2017-11-01

    Machinery fault diagnosis has progressed over the past decades with the evolution of machineries in terms of complexity and scale. High-value machineries require condition monitoring and fault diagnosis to guarantee their designed functions and performance throughout their lifetime. Research on machinery Fault diagnostics has grown rapidly in recent years. This paper attempts to summarize and review the recent R&D trends in the basic research field of machinery fault diagnosis in terms of four main aspects: Fault mechanism, sensor technique and signal acquisition, signal processing, and intelligent diagnostics. The review discusses the special contributions of Chinese scholars to machinery fault diagnostics. On the basis of the review of basic theory of machinery fault diagnosis and its practical applications in engineering, the paper concludes with a brief discussion on the future trends and challenges in machinery fault diagnosis.

  9. Local Stress fields and paleo-fluid distribution within a transtensional duplex: An example from the northern termination of the Liquiñe-Ofqui Fault System.

    Science.gov (United States)

    Perez-Flores, P.; Cembrano, J. M.; Sanchez-Alfaro, P.

    2014-12-01

    The northern termination of Liquiñe-Ofqui Fault System (LOFS) is characterized by major NNE-striking dextral strike-slip faults and several second and third-order NE-to-ENE-striking oblique-slip faults. This geometry forms a transtensional duplex structure. The LOFS has a complex crosscutting relationship with inherited NW-striking structures of the Arc-oblique long-lived Fault System (ALFS). We conducted a structural mapping of fault and vein populations at key structural sites representative of each regional structural system. Field observations were combined with different methods of inversion of fault-slip heterogeneous data and with the use of different open-source computer programs that calculate resolved stress tensors and P-T axes for each structural site in order to unravel the significance of this complex architecture. The results of the inversion of fault-slip analysis show that a transtensional strike-slip regime, with NE-SW-trending subhorizontal σ1, predominate in the first and second order faults in the northern termination of the duplex. A more local tensional regime was calculated for the same area. The inversion solutions are compatible with NE-trending subvertical veins system and dilational jogs and breccia. In contrast, within the central area of the duplex fault slip inversion of fault populations shows both transpressional and compressional regimes. The first tectonic regime is compatible with ENE-striking veins and dikes. In the southern part of the duplex, fault populations are compatible with either a local transtensional stress field with an ESE-trending subhorizontal σ1 or with a tensional regime with a SW-trending, steeply plunging σ1. Our results show the complexity in the nature and spatial distribution of stress fields within strike-slip duplexes and its role in the geometrical distribution of paleo-fluid flow, part of which may account for the reactivation of inherited faults or strain incompatibilities at fault intersections.

  10. Pliocene Quaternary faulting in the Lycian Taurides - new insights into the neotectonic evolution of SW Turkey

    Science.gov (United States)

    Ten Veen, J.; Huibregtse, J.; Zwart, L.

    2003-04-01

    The submarine Anaximander Mountains connect the Hellenic and Cyprus Arcs and form a zone that accommodates the different tectonic regimes along these arcs. The Lycian Tauride Mountains in southwestern Turkey are situated just north of the Anaximander Mts. and likely have a comparable neotectonic evolution. The Lycian Taurides comprise the Bey Daglari positioned between the Lycian Nappes in the west and the Antalya Nappe Complex in the east. Here we focus on two tectonic basins, the Kasaba and Esen Çay basins, that are located in the Bey Daglari and Lycian Nappes respectively. Until the Langhian, NW-SW compression associated with the emplacement of the Lycian Nappes, caused (ductile) folding of the Bey Daglari autochthon and syntectonic sedimentation in a NE-SW trending foreland-type basin. After foreland deposition of Upper Miocene (Langhian-Serravallian) conglomerates, a phase of S-vergent thrusting and reverse faulting started, probably related to the late Miocene - Early Pliocene Aksu phase. Fault data from the Kasaba basin show that the Pliocene-Recent tectonic evolution is characterized by extension, although no sedimentary basins formed. From slickensides, striae and other kinematic indicators, in combination with stratigraphical and geomorphological information, 3 extensional fault phases are inferred: (1) ?Pliocene (post Miocene) WNW-ESE extension, forming approximately N-S trending asymmetrical grabens. (2) More recent (?Pleistocene) NE-SW extension that resulted in large 135^o tilt-block basins that are cut by less pronounced 070^o left lateral strike-slip faults. The Pleistocene - Recent period is dominated by N-S extension that resulted in formation of 90^o -100^o normal faults and reactivation of older (normal) faults. Although extension prevails, exhumation and lowering of base level, evident from crosscutting scree, point at relative uplift. From the structural data of the Esen Çay Basin, 2 extensional phases are inferred: (1) Pliocene E

  11. Touhuanping Fault, an active wrench fault within fold-and-thrust belt in northwestern Taiwan, documented by spatial analysis of fluvial terraces

    Science.gov (United States)

    Ota, Yoko; Lin, Yu-Nung Nina; Chen, Yue-Gau; Matsuta, Nobuhisa; Watanuki, Takuya; Chen, Ya-Wen

    2009-09-01

    This study aims at the recent activity and development of an active wrench fault, the Touhuanping Fault in northwestern Taiwan. Northwestern Taiwan has been proposed in a current situation between the mature to waning collision in terms of tectonic evolution. The main drainage in this area, the Chungkang River, flows close to the trace of the fault mentioned above. We examined various types of deformation of fluvial terraces along the Chungkang River as a key to understanding the nature and rate of the late Quaternary tectonics. The E-W trending Touhuanping Fault has long been mapped as a geological boundary fault, but its recent activity was suspected. Field survey revealed that its late Quaternary activity is recorded in the offset fluvial terraces. Our result shows dextral slip and vertical offset with upthrown side on the south, and activated at least twice since the emergence of terrace 4 (older terrace 3 with OSL date of ca. 80 ka). Total amount of offset recorded in the Touhuanping terrace sequence is 15 m for dextral and 10 m for vertical offset. Estimated recurrence time of earthquake rupture may be a few tens of thousand years. Uplift on the upthrown side of the Touhuanping Fault also resulted in the formation of drowned valleys which were graded to terrace 4. Other deformation features, such as back-tilting, westward warping, and a range-facing straight scarp, were also identified. A second-order anticline roughly parallel to the Touhuanping Fault is suggested to be the origin of the northward tilting on terrace 3; it could have resulted from a flower structure on the Touhuanping Fault at shallow depth. This may demonstrate that the buried segment of the Touhuanping Fault has also been active since 80 ka. In the northern study area, the westward warping at terrace 2 probably represents late Quaternary activity of another NE-SW trending Hsincheng Fault.

  12. The East Anatolian Fault Zone: Seismotectonic setting and spatiotemporal characteristics of seismicity based on precise earthquake locations

    Science.gov (United States)

    Bulut, F.; Bohnhoff, M.; Eken, T.; Janssen, C.; Kilic, T.; Dresen, G. H.

    2013-12-01

    The East Anatolian Fault Zone (EAFZ) represents a plate boundary extending over approx. 500 km between the Arabian and Anatolian plates. Relative plate motion occurs with slip rates ranging from 6 to 10 mm/yr and has resulted in destructive earthquakes in eastern Turkey as documented by historical records. In this study, we investigate the seismic activity along the EAFZ and fault kinematics based on recordings from a densified regional seismic network providing the best possible azimuthal coverage for the target region. We optimize a reference 1-D velocity model using a grid-search approach and re-locate hypocenters using the Double-Difference earthquake relocation technique. The refined hypocenter catalog provides insights into the kinematics and internal deformation of the fault zone down to a resolution ranging typically between 100 and 200 m. The distribution of hypocenters suggests that the EAFZ is characterized by NE-SW and E-W oriented sub-segments that are sub-parallel to the overall trend of the fault zone. Faulting mechanisms are predominantly left-lateral strike-slip and thus in good correlation with the deformation pattern derived from regional GPS data. However, we also observe local clusters of thrust and normal faulting events, respectively. While normal faulting events typically occur on NS-trending subsidiary faults, thrust faulting is restricted to EW-trending structures. This observation is in good accordance with kinematic models proposed for evolving shear zones. The observed spatiotemporal evolution of hypocenters indicates a systematic migration of micro- and moderate-sized earthquakes from the main fault into adjacent fault segments within several days documenting progressive interaction between the major branch of the EAFZ and its secondary structures. Analyzing the pre versus post-seismic phase for M > 5 events we find that aftershock activities are initially spread to the entire source region for several months but start to cluster at

  13. The northwest trending north Boquerón Bay-Punta Montalva Fault Zone; A through going active fault system in southwestern Puerto Rico

    Science.gov (United States)

    Roig‐Silva, Coral Marie; Asencio, Eugenio; Joyce, James

    2013-01-01

    The North Boquerón Bay–Punta Montalva fault zone has been mapped crossing the Lajas Valley in southwest Puerto Rico. Identification of the fault was based upon detailed analysis of geophysical data, satellite images, and field mapping. The fault zone consists of a series of Cretaceous bedrock faults that reactivated and deformed Miocene limestone and Quaternary alluvial fan sediments. The fault zone is seismically active (local magnitude greater than 5.0) with numerous locally felt earthquakes. Focal mechanism solutions suggest strain partitioning with predominantly east–west left-lateral displacements with small normal faults striking mostly toward the northeast. Northeast-trending fractures and normal faults can be found in intermittent streams that cut through the Quaternary alluvial fan deposits along the southern margin of the Lajas Valley, an east–west-trending 30-km-long fault-controlled depression. Areas of preferred erosion within the alluvial fan trend toward the west-northwest parallel to the onland projection of the North Boquerón Bay fault. The North Boquerón Bay fault aligns with the Punta Montalva fault southeast of the Lajas Valley. Both faults show strong southward tilting of Miocene strata. On the western end, the Northern Boquerón Bay fault is covered with flat-lying Holocene sediments, whereas at the southern end the Punta Montalva fault shows left-lateral displacement of stream drainage on the order of a few hundred meters.

  14. Hydrogeological Studies to Identify the Trend of Concealed Section of the North Tabriz Fault (Iran).

    Science.gov (United States)

    Rajabpour, Hossein; Vaezihir, Abdorreza

    2017-05-01

    The North Tabriz Fault (NTF) is the predominant regional-scale tectonic structure in the northwest of Iran. In the east side of the city of Tabriz, a portion of the fault trend has been completely concealed by recent sediments and urbanization. In this paper, some hydrogeological methods are used to locate the concealed sector. As is clear from the pumping tests results, despite the fact that the northern observation wells were closer to the pumping wells than the southern ones, they have not been affected by pumping. Conversely, all southern wells were affected by pumping and displayed decline of the water table. In addition, obvious differences in groundwater levels combined with clear differences in groundwater quality within a short distance across the probable fault trend are sufficient reasons for the presence of the fault that behaves as a barrier to groundwater lateral flows. Significant change in the elevation of the bedrock base of the aquifer over less than 200 m suggests that the fault has near vertical dip. These results indicate that the inferred trend of the NTF closely conforms to its actual trend. Therefore, the hydrogeological studies can be complementary tools to determine the position and trend of concealed faults. © 2016, National Ground Water Association.

  15. Prognosticating fault development rate in wind turbine generator bearings using local trend models

    DEFF Research Database (Denmark)

    Skrimpas, Georgios Alexandros; Palou, Jonel; Sweeney, Christian Walsted

    2016-01-01

    Generator bearing defects, e.g. ball, inner and outer race defects, are ranked among the most frequent mechanical failures encountered in wind turbines. Diagnosis and prognosis of bearing faults can be successfully implemented using vibration based condition monitoring systems, where tracking...... of vibration trends from multi-megawatt wind turbine generators are presented, showing the effectiveness of the suggested approach on the calculation of the RUL and fault progression rate....

  16. Secondary Normal Faulting Near the Terminus of a Strike-Slip Fault Segment in the Lake Mead Fault System, SE Nevada

    Science.gov (United States)

    Marshall, S. T.; Kattenhorn, S. A.

    2003-12-01

    The 95 km long Lake Mead Fault System (LMFS), located about 50 km east of Las Vegas and about 100 km west of the relatively undeformed Colorado Plateau, consists of a group of NE/SW-trending Miocene left-lateral strike-slip faults with a total offset of 65-110 km. Previous work suggests that the LMFS acted as a transform zone to accommodate differential extension between the southern Basin and Range to the north and the metamorphic core complexes of the Colorado River extensional corridor to the south. Studies of individual faults of the LMFS have shown that strike-slip faulting was the dominant mode of deformation while normal faulting, pull-apart basins, and push up structures formed as localized secondary structures related to strike-slip faults. This study focuses on the portion of the LMFS west of the Overton Arm of Lake Mead, which consists of the Bitter Spring Valley Fault (BSVF) and the Hamblin Bay Fault (HBF). Both faults have estimated offsets of 20-60 km, but past mapping efforts have been inconsistent with respect to the BSVF trace locations and degree of fault complexity. In order to demonstrate that the apparent complexity of the BSVF is the result of segmentation and secondary normal faults associated with individual segments, we focused field mapping efforts on an apparent segment of the BSVF near Pinto Ridge, located southwest of the Echo Hills and about 5 km NW of the more prominent HBF. We have identified nine normal faults that initiate near the SW tip of a segment of the BSVF and die out to the south before reaching the HBF. The offset on all these faults is a maximum at their northern intersection with the BSVF, then steadily decreases to zero away from the BSVF. These normal faults range from 0.6 km-2.25 km in length and have variable fault trace patterns. The normal fault originating closest to the SW tip of the BSVF segment curves with increasing distance away towards parallelism with the BSVF. The eight other normal faults are all oriented

  17. Seismostratigraphy and tectonic architecture of the Carboneras Fault offshore based on multiscale seismic imaging: Implications for the Neogene evolution of the NE Alboran Sea

    Science.gov (United States)

    Moreno, Ximena; Gràcia, Eulàlia; Bartolomé, Rafael; Martínez-Loriente, Sara; Perea, Héctor; de la Peña, Laura Gómez; Iacono, Claudio Lo; Piñero, Elena; Pallàs, Raimon; Masana, Eulàlia; Dañobeitia, Juan José

    2016-10-01

    In the SE Iberian Margin, which hosts the convergent boundary between the European and African Plates, Quaternary faulting activity is dominated by a large left-lateral strike-slip system referred to as the Eastern Betic Shear Zone. This active fault system runs along more than 450 km and it is characterised by low to moderate magnitude shallow earthquakes, although large historical events have also occurred. The Carboneras Fault is the longest structure of the Eastern Betic Shear Zone, and its southern termination extends further into the Alboran Sea. Previously acquired high-resolution data (i.e. swath-bathymetry, TOBI sidescan sonar and sub-bottom profiler) show that the offshore Carboneras Fault is a NE-SW-trending upwarped zone of deformation with a length of 90 km long and a width of 0.5 to 2 km, which shows geomorphic features typically found in subaerial strike-slip faults, such as deflected drainage, pressure ridges and "en echelon" folds. However, the neotectonic, depth architecture, and Neogene evolution of Carboneras Fault offshore are still poorly known. In this work we present a multiscale seismic imaging of the Carboneras Fault (i.e. TOPAS, high-resolution multichannel-seismic reflection, and deep penetration multichannel-seismic reflection) carried out during three successive marine cruises, from 2006 to 2010. The new dataset allowed us to define a total of seven seismostratigraphic units (from Tortonian to Late Quaternary) above the basement, to characterise the tectonic architecture and structural segmentation of the Carboneras Fault, and to estimate its maximum seismic potential. We finally discuss the role of the basement in the present-day tectonic evolution of the Carboneras Fault, and explore the northern and southern terminations of the fault and how the strain is transferred to nearby structures.

  18. The North South Paleozoic to Quaternary trend of alkaline magmatism from Niger Nigeria to Cameroon: Complex interaction between hotspots and Precambrian faults

    Science.gov (United States)

    Ngako, Vincent; Njonfang, Emmanuel; Aka, Festus Tongwa; Affaton, Pascal; Nnange, Joseph Metuk

    2006-07-01

    The alkaline magmatism from Niger-Nigeria to Cameroon forms large scale magmatic provinces across the African plate. It displays a N-S trend from Aïr in Niger to Jos Plateau in Nigeria changing southeastwards towards Cameroon. We have compiled recent petrological, geochemical and structural data on these magmatic provinces. The data show that although there is a general age decrease from one province to another (407 ± 8 Ma in Aïr to ⩽66 Ma in Cameroon), there is no age migration in any given province, except in the Nigeria province (Younger Granites) where a rough NE-SW age decrease is observed. The relationship between these different magmatic provinces that share similar geochemical data, added to the SW-NE parallel trends of Nigeria, Benue Trough and Cameroon Line, is difficult to explain in terms of a simple northward motion of the African plate over a single hotspot. In the light of recent tectonic models, we suggest complex interaction between, on the one hand, at least two mantle plumes acting in succession (including the St. Helena mantle plume) and, on the other hand, lithospheric fractures that induce oblique alignments of new magmatic complexes.

  19. Faults

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  20. Active fault systems and their significance for urban planning in Bucharest, Romania

    Science.gov (United States)

    Ioane, Dumitru; Stanciucu, Mihaela; Chitea, Florina; Diaconescu, Mihail

    2010-05-01

    Active fault systems may have significant influences in slow ground displacements during neotectonic vertical or/and horizontal movements, or sudden ones, as a consequence of high magnitude earthquakes. In urban planning activities, besides a detailed seismic zonation, the areal distribution of active faults and particularly of fault crossing sectors may be valuable in numerous cases. In large cities as Bucharest, Romania, built over quite thick sequences of Quaternary unconsolidated sediments, there were no possibilities of geologically mapping faults or fault systems, the geological structures being deeply buried. Due to their specific structure, the unconsolidated sediments do not preserve traces of active faulting, either due to neotectonic processes or seismic events. In the geotechnical and hydrogeological wells and in the subway tunnels such tectonic elements are not easily observed by specialists, the resulted geological cross sections representing many times only facies changes and no faults. Geophysical measurements (reflection seismics, gravity, vertical electric soundings, magnetics) or seismological observations of seismic events with Richter magnitude greater than 2, may be of greater utility, even they were not generally carried out so far at appropriate detailed scales. This preliminary study employed existing geophysical data and recordings on the local seismicity, correlated with geomorphological, geological and tectonic information related to a larger area that includes the city of Bucharest. The existing tectonic data related to fault systems refer to deeper ones, previously illustrated by 2D reflection seismic measurements performed for oil and gas accumulations. The main fault systems crossing Bucharest are trending NW-SE and N-S, directions that are also imprinted in the hydrological network: Dambovita and Colentina rivers, and a Colentina tributary trending northward, respectively. The NE-SW trending system, characteristic to the Vrancea

  1. Exhumation of the Deylaman fault trend and its effects on the deformation style of the western Alborz belt in Iran

    Science.gov (United States)

    Hakimi Asiabar, Saeid; Bagheriyan, Siyamak

    2017-07-01

    The Alborz range in northern Iran stretches along the southern coast of the Caspian Sea and finally runs northeast and merges into the Pamir mountains in Afghanistan. Alborz mountain belt is a doubly vergent orogen formed along the northern edge of the Iranian plateau in response to the closure of the Neo-Tethys ocean and continental collision between Arabia and Eurasia. The south Caspian depression—the Alborz basin of Mesozoic age (with W-E trend) in northern Iran—inverted in response to the Arabia-Eurasia collision. Pre-existing extensional faults of the south Caspian-Alborz system preferentially reactivated as contractional faults because of tectonic inversion. These contractional structures tend to run parallel to the trends of pre-existing extensional faults and acquire W and WNW-ESE orientations across the previous accommodation zones that were imposed by the reactivation of adjacent extensional faults with different directions. The NNE to N dipping faults show evidences of reactivation. The Deylaman fault is one of the important faults of western Alborz in Iran and is an example of inversion tectonic style of deformation in the western Alborz mountain range. The Deylaman fault, with an E-W trend, contains three discontinuous fault segments in the area under investigation. These fault segments have evidence of oblique right-lateral reverse motion and links eastward to the dextral Kandavan thrust. The importance of this fault is due to its effect on sedimentation of several rock units from the Jurassic to Neogene in western Alborz; the rock facies on each side of this fault are very different and illustrate different parts of tectonic history.

  2. Meso-Cenozoic tectonic evolution of the SE Brazilian continental margin: Petrographic, kinematic and dynamic analysis of the onshore Araruama Lagoon Fault System

    Science.gov (United States)

    Souza, Pricilla Camões Martins de; Schmitt, Renata da Silva; Stanton, Natasha

    2017-09-01

    The Ararauama Lagoon Fault System composes one of the most prominent set of lineaments of the SE Brazilian continental margin. It is located onshore in a key tectonic domain, where the basement inheritance rule is not followed. This fault system is characterized by ENE-WSW silicified tectonic breccias and cataclasites showing evidences of recurrent tectonic reactivations. Based on field work, microtectonic, kinematic and dynamic analysis, we reconstructed the paleostresses in the region and propose a sequence of three brittle deformational phases accountable for these reactivations: 1) NE-SW dextral transcurrence; 2) NNW-SSE dextral oblique extension that evolved to NNW-SSE ;pure; extension; 3) ENE-WSW dextral oblique extension. These phases are reasonably correlated with the tectonic events responsible for the onset and evolution of the SE onshore rift basins, between the Neocretaceous and Holocene. However, based on petrographic studies and supported by regional geological correlations, we assume that the origin of this fault system is older, related to the Early Cretaceous South Atlantic rifting. This study provides significant information about one of the main structural trends of the SE Brazilian continental margin and the tectonic events that controlled its segmentation, since the Gondwana rifting, and compartmentalization of its onshore sedimentary deposits during the Cenozoic.

  3. The Padul normal fault activity constrained by GPS data: Brittle extension orthogonal to folding in the central Betic Cordillera

    Science.gov (United States)

    Gil, Antonio J.; Galindo-Zaldívar, Jesús; Sanz de Galdeano, Carlos; Borque, Maria Jesús; Sánchez-Alzola, Alberto; Martinez-Martos, Manuel; Alfaro, Pedro

    2017-08-01

    The Padul Fault is located in the Central Betic Cordillera, formed in the framework of the NW-SE Eurasian-African plate convergence. In the Internal Zone, large E-W to NE-SW folds of western Sierra Nevada accommodated the greatest NW-SE shortening and uplift of the cordillera. However, GPS networks reveal a present-day dominant E-W to NE-SW extensional setting at surface. The Padul Fault is the most relevant and best exposed active normal fault that accommodates most of the NE-SW extension of the Central Betics. This WSW-wards dipping fault, formed by several segments of up to 7 km maximum length, favored the uplift of the Sierra Nevada footwall away from the Padul graben hanging wall. A non-permanent GPS network installed in 1999 constrains an average horizontal extensional rate of 0.5 mm/yr in N66°E direction. The fault length suggests that a (maximum) 6 magnitude earthquake may be expected, but the absence of instrumental or historical seismic events would indicate that fault activity occurs at least partially by creep. Striae on fault surfaces evidence normal-sinistral kinematics, suggesting that the Padul Fault may have been a main transfer fault of the westernmost end of the Sierra Nevada antiform. Nevertheless, GPS results evidence: (1) shortening in the Sierra Nevada antiform is in its latest stages, and (2) the present-day fault shows normal with minor oblique dextral displacements. The recent change in Padul fault kinematics will be related to the present-day dominance of the ENE-WSW regional extension versus NNW-SSE shortening that produced the uplift and northwestwards displacement of Sierra Nevada antiform. This region illustrates the importance of heterogeneous brittle extensional tectonics in the latest uplift stages of compressional orogens, as well as the interaction of folding during the development of faults at shallow crustal levels.

  4. Character and Implications of a Newly Identified Creeping Strand of the San Andreas fault NE of Salton Sea, Southern California

    Science.gov (United States)

    Janecke, S. U.; Markowski, D.

    2015-12-01

    The overdue earthquake on the Coachella section, San Andreas fault (SAF), the model ShakeOut earthquake, and the conflict between cross-fault models involving the Extra fault array and mapped shortening in the Durmid Hill area motivate new analyses at the southern SAF tip. Geologic mapping, LiDAR, seismic reflection, magnetic and gravity datasets, and aerial photography confirm the existence of the East Shoreline strand (ESS) of the SAF southwest of the main trace of the SAF. We mapped the 15 km long ESS, in a band northeast side of the Salton Sea. Other data suggest that the ESS continues N to the latitude of the Mecca Hills, and is >35 km long. The ESS cuts and folds upper Holocene beds and appears to creep, based on discovery of large NW-striking cracks in modern beach deposits. The two traces of the SAF are parallel and ~0.5 to ~2.5 km apart. Groups of east, SE, and ENE-striking strike-slip cross-faults connect the master dextral faults of the SAF. There are few sinistral-normal faults that could be part of the Extra fault array. The 1-km wide ESS contains short, discontinuous traces of NW-striking dextral-oblique faults. These en-echelon faults bound steeply dipping Pleistocene beds, cut out section, parallel tight NW-trending folds, and produced growth folds. Beds commonly dip toward the ESS on both sides, in accord with persistent NE-SW shortening across the ESS. The dispersed fault-fold structural style of the ESS is due to decollements in faulted mud-rich Pliocene to Holocene sediment and ramps and flats along the strike-slip faults. A sheared ladder-like geometric model of the two master dextral strands of the SAF and their intervening cross-faults, best explains the field relationships and geophysical datasets. Contraction across >40 km2 of the southernmost SAF zone in the Durmid Hills suggest that interaction of active structures in the SAF zone may inhibit the nucleation of large earthquakes in this region. The ESS may cross the northern Coachella

  5. Distribution of Subsurface Flexure zone caused by Uemachi Fault, Japan and its activity

    Science.gov (United States)

    Kitada, N.; Inoue, N.; Takemura, K.; Ito, H.; Mitamura, M.

    2012-12-01

    In Osaka, Uemachi Fault is one of the famous active faults. It across the center of Osaka and lies in N-S direction mainly and is more than 40 km in length. The faults bound sedimentary basins, where thick sedimentary deposits of the Pliocene-Quaternary Osaka Group have accumulated. The deposits consist primarily of sand and marine and non-marine clay, and the clay layers are key markers for the interpretation of glacial and interglacial cycles. In this study, we estimate the width of the flexure zone using a geotechnical borehole database. GI database collects more than 40,000 boreholes and includes both geological information and soil properties around Osaka by the Geo-database Information Committee of Kansai Area. Our results indicate that the deformation associated with the flexure zone is distributed primarily along the splay fault (NE-SW) and not along the main fault, suggesting that the splay fault might be the primary fault at present. We first examined the borehole data along the seismic reflection line and then considered the surrounding area. An Upper Pleistocene marine clay (Ma12) is a good indicator of the flexure zone. We constructed many cross sections in and around the fault zone and classified the deformation form into three categories around the flexure zone. The results of this study allowed us to map the distribution of folding in a zone in the west of the Osaka area. Folding can be classified into three types: (1) Ma12 folding, (2) Ma12 folding that does not continue toward the hanging wall, and (3) folding or displacement of old marine clay. These folding zone trends are N-W strike however these trace are serpentine. These folding zone information are not in worth to estimate the source fault, however these zone will be more serious damaged when the earthquake occurred. Our result agrees well with the average displacement speed of about 0.4 m/ka that was derived by the Headquarters for Earthquake Research Promotion of the Ministry of Education

  6. An Integrated Architecture for On-Board Aircraft Engine Performance Trend Monitoring and Gas Path Fault Diagnostics

    Science.gov (United States)

    Simon, Donald L.

    2010-01-01

    Aircraft engine performance trend monitoring and gas path fault diagnostics are closely related technologies that assist operators in managing the health of their gas turbine engine assets. Trend monitoring is the process of monitoring the gradual performance change that an aircraft engine will naturally incur over time due to turbomachinery deterioration, while gas path diagnostics is the process of detecting and isolating the occurrence of any faults impacting engine flow-path performance. Today, performance trend monitoring and gas path fault diagnostic functions are performed by a combination of on-board and off-board strategies. On-board engine control computers contain logic that monitors for anomalous engine operation in real-time. Off-board ground stations are used to conduct fleet-wide engine trend monitoring and fault diagnostics based on data collected from each engine each flight. Continuing advances in avionics are enabling the migration of portions of the ground-based functionality on-board, giving rise to more sophisticated on-board engine health management capabilities. This paper reviews the conventional engine performance trend monitoring and gas path fault diagnostic architecture commonly applied today, and presents a proposed enhanced on-board architecture for future applications. The enhanced architecture gains real-time access to an expanded quantity of engine parameters, and provides advanced on-board model-based estimation capabilities. The benefits of the enhanced architecture include the real-time continuous monitoring of engine health, the early diagnosis of fault conditions, and the estimation of unmeasured engine performance parameters. A future vision to advance the enhanced architecture is also presented and discussed

  7. The "fault of the Pool" along the Congo River between Kinshasa and Brazzaville, R(D)Congo is no more a myth: Paleostress from small-scale brittle structures

    Science.gov (United States)

    Delvaux, Damien; Ganza, Gloire; Kongota, Elvis; Fukiabantu, Guilain; Mbokola, Dim; Boudzoumou, Florent; Miyouna, Timothée; Gampio, Urbain; Nkodia, Hardy

    2017-04-01

    Small-scale brittle structures such as shear fractures and tension joints are well developed in the indurated Paleozoic Inkisi red sandstones of the West-Congo Supergroup in the "pool" region of Kinshasa and Brazzaville, along the Congo River. They appear to be related to the evolution of intraplate stresses during the late Cretaceous-Paleogene period, possibly related to the opening of the South Atlantic. However, inferring paleostresses from such structures is difficult due to the lack of clear kinematic indicators, so we used mainly the geometry, architecture and sequence of the joint systems to infer paleostresses. A limited number of kinematic indicators for slip sense (displaced pebbles, irregularities on striated surfaces, slickensides) or extension (plume joints) confirm the general conclusions of the joint architecture analysis. We found evidence for two major brittle deformation systems, leading to almost orthogonal fracture sets. They both started by the development of plume joints, which progressively evolved into open tension joints, isolated shear fractures and long (up to several hundred meters) brittle shear zones. The first system started to develop under NE-SW extension and evolved into strike-slip with NNW-SSE horizontal compression while the second (and later), started to develop under NW-SE extension and evolved into strike-slip with NNE-SSW horizontal compression. The second brittle deformation episode was associated with fluid flow as shown by the presence of palygorskite-calcite veins in the most prominent fractures of the second fracture system. Along the NE-SW brittle shear zones which run parallel to the Congo River, carbonate-rich fault-gauge lenses are filled by sand derived from the crushed adjacent walls and calcite vein fragments injected at a high fluid pressure, with late precipitation of palygorskite. Our study demonstrates the existence of two fault systems between Kinshasa and Brazzaville, the first one orthogonal to the trend

  8. Faulting mechanisms and stress regime at the European HDR site of Soultz-sous-Forets, France

    Energy Technology Data Exchange (ETDEWEB)

    Cuenot, Nicolas; Charlety, Jean; Haessler, Henri [Institut de Physique du Globe de Strasbourg, Ecole et Observatoire des Sciences de la Terre (IPGS-EOST), 5 rue Rene Descartes, 67084 Strasbourg Cedex (France); Dorbath, Louis [Institut de Physique du Globe de Strasbourg, Ecole et Observatoire des Sciences de la Terre (IPGS-EOST), 5 rue Rene Descartes, 67084 Strasbourg Cedex (France); Institut de Recherche pour le Developpement, Laboratoire des Mecanismes et Transferts en Geologie (IRD, LMTG), 14 Avenue Edouard Belin, 31400 Toulouse (France)

    2006-10-15

    , horizontal, NE-SW-oriented trend of the minor horizontal stress, but a rotation of the major stress from a sub-vertical direction (top of the stimulated region) to a sub-horizontal one (bottom of the stimulated region). This implies a change from a normal-faulting to a strike-slip regime, in agreement with our fault-plane solutions. Finally, we applied the stress components to the nodal planes of several events and were able to determine their fault plane and obtain a 3D image of the fracture network, based on real data. (author)

  9. Active faulting and transpression tectonics along the plate boundary in North Africa

    Directory of Open Access Journals (Sweden)

    Mustapha Meghraoui

    2013-01-01

    Full Text Available We present a synthesis of the active tectonics of the northern Atlas Mountains, and suggest a kinematic model of transpression and block rotation that illustrates the mechanics of this section of the Africa–Eurasia plate boundary. Neotectonic structures and significant shallow seismicity (with Mw >5.0 indicate that coeval E-W-trending, right-lateral faulting and NE-SW, thrust-related folding result from oblique convergence at the plate boundary, which forms a transpressional system. The strain distribution obtained from fault–fold structures and P axes of focal mechanism solutions, and the geodetic (NUVEL-1 and GPS convergence show that the shortening and convergence directions are not coaxial. The transpressional strain is partitioned along the strike and the quantitative description of the displacement field yields a compression-to-transcurrence ratio varying from 33% near Gibraltar, to 50% along the Tunisian Atlas. Shortening directions oriented NNE and NNW for the Pliocene and Quaternary, respectively, and the S shape of the Quaternary anticline axes, are in agreement with the 2.24˚/Myr to 3.9˚/Myr modeled clockwise rotation of the small tectonic blocks and with the paleomagnetic data. The convergence between Africa and Eurasia is absorbed along the Atlas Mountains at the upper crustal level, by means of thrusting above decollement systems, which are controlled by subdued transcurrent faults. The Tell Atlas of northwest Algeria, which has experienced numerous large earthquakes with respect to the other regions, is interpreted as a restraining bend that localizes the strain distribution along the plate boundary.

  10. Shallow-depth location and geometry of the Piedmont Reverse splay of the Hayward Fault, Oakland, California

    Science.gov (United States)

    Catchings, Rufus D.; Goldman, Mark R.; Trench, David; Buga, Michael; Chan, Joanne H.; Criley, Coyn J.; Strayer, Luther M.

    2017-04-18

    The Piedmont Thrust Fault, herein referred to as the Piedmont Reverse Fault (PRF), is a splay of the Hayward Fault that trends through a highly populated area of the City of Oakland, California (fig. 1A). Although the PRF is unlikely to generate a large-magnitude earthquake, slip on the PRF or high-amplitude seismic energy traveling along the PRF may cause considerable damage during a large earthquake on the Hayward Fault. Thus, it is important to determine the exact location, geometry (particularly dip), and lateral extent of the PRF within the densely populated Oakland area. In the near surface, the PRF juxtaposes Late Cretaceous sandstone (of the Franciscan Complex Novato Quarry terrane of Blake and others, 1984) and an older Pleistocene alluvial fan unit along much of its mapped length (fig. 1B; Graymer and others, 1995). The strata of the Novato Quarry unit vary greatly in strike (NW, NE, and E), dip direction (NE, SW, E, and NW), dip angle (15° to 85°), and lithology (shale and sandstone), and the unit has been intruded by quartz diorite in places. Thus, it is difficult to infer the structure of the fault, particularly at depth, with conventional seismic reflection imaging methods. To better determine the location and shallow-depth geometry of the PRF, we used high-resolution seismic imaging methods described by Catchings and others (2014). These methods involve the use of coincident P-wave (compressional wave) and S-wave (shear wave) refraction tomography and reflection data, from which tomographic models of P- and S-wave velocity and P-wave reflection images are developed. In addition, the coincident P-wave velocity (VP) and S-wave velocity (VS) data are used to develop tomographic models of VP/VS ratios and Poisson’s ratio, which are sensitive to shallow-depth faulting and groundwater. In this study, we also compare measurements of Swave velocities determined from surface waves with those determined from refraction tomography. We use the combination of

  11. Carbon monoxide degassing from seismic fault zones in the Basin and Range province, west of Beijing, China

    Science.gov (United States)

    Sun, Yutao; Zhou, Xiaocheng; Zheng, Guodong; Li, Jing; Shi, Hongyu; Guo, Zhengfu; Du, Jianguo

    2017-11-01

    Degassing of carbon monoxide (CO), which plays a significant role in the contribution of deep carbon to the atmosphere, commonly occurs within active fault zones. CO degassing from soil to the atmosphere in the Basin and Range province, west of Beijing (BRPB), China, was investigated by in-situ field measurements in the active fault zones. The measured concentrations of CO in soil gas in the BRPB ranged from 0.29 × 10-6 to 1.1 × 10-6 with a mean value of 0.6 × 10-6, which is approximately twice as large as that in the atmosphere. Net fluxes of CO degassing ranged from -48.6 mg m-2 d-1 to 12.03 mg m-2 d-1. The diffusion of CO from soil to the atmosphere in the BRPB was estimated to be at least 7.6 × 103 ton/a, which is comparable to the corresponding result of about 1.2 × 104 ton/a for CO2. CO concentrations were spatially heterogeneous with clearly higher concentrations along the NE-SW trending in the BRPB. These elevated values of CO concentrations were also coincident with the region with low-velocity and high conductivity in deep mantle, and high Poisson's ratio in the crust, thereby suggesting that CO degassing from the soil might be linked to upwelling of the asthenospheric mantle. Other sources of CO in the soil gas are suggested to be dominated by chemical reactions between deep fluids and carbonate minerals (e.g., dolomite, limestone, and siderite) in country rocks. Biogenic processes may also contribute to the CO in soil gas. The spatial distribution patterns of CO concentrations are coincident with the stress field, suggesting that the concentrations of CO could be a potential indicator for crustal stress field and, hence is potential useful for earthquake monitoring in the BRPB.

  12. New High-Resolution 3D Imagery of Fault Deformation and Segmentation of the San Onofre and San Mateo Trends in the Inner California Borderlands

    Science.gov (United States)

    Holmes, J. J.; Driscoll, N. W.; Kent, G. M.; Bormann, J. M.; Harding, A. J.

    2015-12-01

    The Inner California Borderlands (ICB) is situated off the coast of southern California and northern Baja. The structural and geomorphic characteristics of the area record a middle Oligocene transition from subduction to microplate capture along the California coast. Marine stratigraphic evidence shows large-scale extension and rotation overprinted by modern strike-slip deformation. Geodetic and geologic observations indicate that approximately 6-8 mm/yr of Pacific-North American relative plate motion is accommodated by offshore strike-slip faulting in the ICB. The farthest inshore fault system, the Newport-Inglewood Rose Canyon (NIRC) fault complex is a dextral strike-slip system that extends primarily offshore approximately 120 km from San Diego to the San Joaquin Hills near Newport Beach, California. Based on trenching and well data, the NIRC fault system Holocene slip rate is 1.5-2.0 mm/yr to the south and 0.5-1.0 mm/yr along its northern extent. An earthquake rupturing the entire length of the system could produce an Mw 7.0 earthquake or larger. West of the main segments of the NIRC fault complex are the San Mateo and San Onofre fault trends along the continental slope. Previous work concluded that these were part of a strike-slip system that eventually merged with the NIRC complex. Others have interpreted these trends as deformation associated with the Oceanside Blind Thrust fault purported to underlie most of the region. In late 2013, we acquired the first high-resolution 3D P-Cable seismic surveys (3.125 m bin resolution) of the San Mateo and San Onofre trends as part of the Southern California Regional Fault Mapping project aboard the R/V New Horizon. Analysis of these volumes provides important new insights and constraints on the fault segmentation and transfer of deformation. Based on the new 3D sparker seismic data, our preferred interpretation for the San Mateo and San Onofre fault trends is they are transpressional features associated with westward

  13. Chronology of last earthquake on Firouzkuh Fault using by C14

    Science.gov (United States)

    Nazari, H.; Ritz, J.-F.; Walker, R.; Alimohammadian, H.; Salamati, R.; Shahidi, A.; Patnaik, R.; Talebian, M.

    2009-04-01

    The Firouzkuh fault with about 70 km length extending from east of Mosha fault in Aminabad village to Gadok in north east of Firouzkuh and easily is traceable on satellite images and aerial photographs (Nazari, 2006). Geologically this fault bounded between Jurassic - Cretaceous deposits in east (hanging wall) and Plio-Quaternary sediments in the west (foot wall) fault, (Aghanabati and Hamedi, 1994). This fault with NE-SW trend, located at northern part of south Firouzkuh high lands, and is partially compatible with F-16 magnetism (Yossefi and Firedburg, 1977). This fault initially was known as south trending thrust fault (Berberian et al., 1996), then included as left-lateral dextral fault (Jackson et al., 2002) and after all as sinstral-normal fault (Nazari et al., 2005) However, due to dispersal pattern of deformation on different faults, make sit difficult to fully understand the geometry and mechanism of the latest activity of Firouzkuh fault. In bigger scale, presence of eastern mountains and pattern of younger deformation in fault plain, especially in Firouzkuh domain, there is an evidence of left-Lateral dextral fault with vertical component for Firouzkuh fault. In a compressed structural regim, the vertical component can be consider as a thrust component that has caused the formation and general morphology of the area or a fault plain with south - west dipping. There is no palaeoseismic data or recorded large scale seismic activity related to Firouzkuh fault. Although historically, Firouzkuh fault is located in komes seismic zone (856 AD, Io= X, Ms= 7.9), but since Firouzkuh is an intermountain area, no historic seismic activity is reported from that area. There are number of recorded seismic activity such as 1969, 1973, 1975, 1979, 1985, 1989, 1990, and 2008 with magnitude of less than 4.8 except Gadok earthquake in 1990 which its magnitude was 5.8 and this is the greatest recorded seismic activity of Firouzkuh area, the morphotectonic and palaeoseismic

  14. Deformation bands in normal fault damage zones, Southwestern Sinai, Suez rift, Egypt

    Science.gov (United States)

    Zaky, Kh. S.

    2017-03-01

    The present study provides evidence that the NW-SE normal faults in Nubian Sandstone reservoirs (Malha and Naqus formations) are surrounded by damage zones in which the rocks are affected by cataclastic deformation bands and small scale faults. The paleostress analysis of the small faults indicates that σ3 has NE-SW direction while σ1 is sub-vertical. The thickness of the bands is ranging from 3 mm to 1 cm. The density and thickness of the bands increase toward the faults and decrease backward. The deformation bands form two prominent sets. The first set is running in the NW-SE direction parallel to the main faults and dip towards the northeast and southwest, i.e. synthetic and antithetic conjugate sets. The second set has NE-SW direction and dip mainly in the NW in the Malha Formation and in the SE in Naqus Formation. The two sets of deformation bands mutually crosscut each other, suggesting that both sets developed during the same deformation event. The deformation bands are planar features and occur singly or form braided clusters. The microscopic studies indicate that the host rock is mainly quartz arenite and composed of fine to very fine, well sorted quartz grains which weakly fractured and cemented by calcite. The microscopic studies of the bands indicate that they composed of strong grain crushing (cataclasis) and clay minerals. This composition is probably causes reduction of porosity and permeability within the deformation bands. The reservoir rocks in the damage zones of the normal faults are divided into polygonal areas by the deformation bands.

  15. The Geomorphological Developments Along the East Anatolian Fault Zone, Turkey

    Science.gov (United States)

    Saber, R.; Caglayan, A.; Isik, V.; Seyitoglu, G.

    2014-12-01

    The collision of Eurasia with Arabia has given rise to intracontinental shortening in SE Turkey and development of large scale fault zones. The East Anatolian Fault Zone (EAFZ), a major active fault zone over 700 km in length with NE-striking, defines the boundary zone between Eurasia plate and Anatolian micro-plate. Although the northeastern continuation of the zone merges into the North Anatolian Fault Zone at Karliova region, the southwestern continuation has been the subject of some debate. The zone is characterized by numerous, complex faults and segmented surface ruptures. It cuts and offsets several distinctive units in east and southeast Turkey. The portion of the EAFZ examined in this study extends from Celikhan to Turkoglu. Active fault strands in this portion of the EAFZ is termed the Erkenek and Golbasi segments. The zone is made of several NE-SW closely spaced strands cut across Mesozoic-to-Tertiary variable rock units and structures, indicating inception of strike-slip motion in Quaternary and characterized by a series of basins. Fault-related several morphological features have been mapped are within the study area, suggesting the left-lateral motion of fault strands along this part of the EAFZ. Offset streams, beheaded channels, pressure and shutter ridges, linear valleys and ridges and sag ponds are prominent morpho-tectonic features. Offset streams have been measured as few meters to hundreds of meters and show sinistral displacement along the fault zone. Fault scarps, several tens of metres high, are developed in fan deposits along the length of the fault strands. Forming the set of linear sag ponds in Golbasi reveals extentional activity of the EAFZ in this area. Motion of fault strands formed linear valleys and ridges parallel to the faults which is most remarkable features. Our geomorphic studies demonstrated the ongoing activity of the the EAFZ between Celikhan to Turkoglu regions.

  16. Crustal structure of norther Oaxaca terrane; The Oaxaca and caltepec faults, and the Tehuacan Valley. A gravity study.

    Science.gov (United States)

    Campos-Enriquez, J. O.; Alatorre-Zamora, M. A.; Ramón, V. M.; Belmonte, S.

    2014-12-01

    Northern Oaxaca terrane, southern Mexico, is bound by the Caltepec and Oaxaca faults to the west and east, respectively. These faults juxtapose the Oaxaca terrane against the Mixteca and Juarez terranes, respectively. The Oaxaca Fault also forms the eastern boundary of the Cenozoic Tehuacan depression. Several gravity profiles across these faults and the Oaxaca terrane (including the Tehuacan Valley) enables us to establish the upper crustal structure of this region. Accordingly, the Oaxaca terrane is downward displaced to the east in two steps. First the Santa Lucia Fault puts into contact the granulitic basamental rocks with Phanerozoic volcanic and sedimentary rocks. Finally, the Gavilan Fault puts into contact the Oaxaca terrane basement (Oaxaca Complex) into contact with the volcano-sedimentary infill of the valley. This gravity study reveals that the Oaxaca Fault system gives rise to a series of east tilted basamental blocks (Oaxaca Complex?). A structural high at the western Tehuacan depression accomadates the east dipping faults (Santa Lucia and Gavilan faults) and the west dipping faults of the Oaxaca Fault System. To the west of this high structural we have the depper depocenters. The Oaxaca Complex, the Caltepec and Santa Lucia faults continue northwestwards beneath Phanerozoic rocks. The faults are regional tectonic structures. They seem to continue northwards below the Trans-Mexican Volcanic Belt. A major E-W to NE-SW discontinuity on the Oaxaca terrane is inferred to exist between profiles 1 and 2. The Tehuacan Valley posses a large groundwater potential.

  17. Expression of Lithospheric Shear Zones in Rock Elasticity Tensors and in Anisotropic Receiver Functions and Inferences on the Roots of Faults and Lower Crustal Deformation

    Science.gov (United States)

    Schulte-Pelkum, V.; Condit, C.; Brownlee, S. J.; Mahan, K. H.; Raju, A.

    2016-12-01

    We investigate shear zone-related deformation fabric from field samples, its dependence on conditions during fabric formation, and its detection in situ using seismic data. We present a compilation of published rock elasticity tensors measured in the lab or calculated from middle and deep crustal samples and compare the strength and symmetry of seismic anisotropy as a function of location within a shear zone, pressure-temperature conditions during formation, and composition. Common strengths of seismic anisotropy range from a few to 10 percent. Apart from the typically considered fabric in mica, amphibole and quartz also display fabrics that induce seismic anisotropy, although the interaction between different minerals can result in destructive interference in the total measured anisotropy. The availability of full elasticity tensors enables us to predict the seismic signal from rock fabric at depth. A method particularly sensitive to anisotropy of a few percent in localized zones of strain at depth is the analysis of azimuthally dependent amplitude and polarity variations in teleseismic receiver functions. We present seismic results from California and Colorado. In California, strikes of seismically detected fabric show a strong alignment with current strike-slip motion between the Pacific and North American plates, with high signal strength near faults and from depths below the brittle-ductile transition. These results suggest that the faults have roots in the ductile crust; determining the degree of localization, i.e., the width of the fault-associated shear zones, would require an analysis with denser station coverage, which now exists in some areas. In Colorado, strikes of seismically detected fabric show a broad NW-SE to NNW-SSE alignment that may be related to Proterozoic fabric developed at high temperatures, but locally may also show isotropic dipping contrasts associated with Laramide faulting. The broad trend is punctuated with NE-SW-trending strikes

  18. Is there really an active fault (Cibyra Fault?) cutting the Stadion of the ancient city of Cibyra? (Burdur-Fethiye Fault Zone, Turkey)

    Science.gov (United States)

    Elitez, İrem; Yaltırak, Cenk

    2013-04-01

    The Cibyra segment of the Burdur-Fethiye Fault Zone (BFFZ) is in a tectonically very active region of southwestern Anatolia. The presence of the Cibyra Fault was firstly suggested by Akyüz and Altunel (1997, 2001). Researchers identified traces of historical earthquakes in Cibyra by taking into account the collapsed seat rows on the east side of the stadion as reference. They claimed that the NNE-SSW left lateral fault Cibyra Fault (related to Burdur-Fethiye Fault Zone) continues through Pliocene sediments on both eastern and western sides of the stadion of Cibyra. The questionable left-lateral fault had been examined in detail by ourselves during our 60-days accommodation in the ancient city of Cibyra excavations for the Burdur-Fethiye Fault Zone Project in 2008, 2009 and 2012. A left-lateral offset on the Stadion was firstly mentioned in a study whose aim is to find the traces of Burdur-Fethiye Fault (Akyüz and Altunel, 2001) and many researchers accepted this fault by reference (for example Alçiçek et al. 2002, 2004, 2005, 2006 and Karabacak, 2011). However as a result of the field observations it is understood that there is no fault cutting the Stadion. By the reason of the fact that there are a lot of faults in the region, however the fault that devastated the ancient city is unknown. The deformation traces on the ruins of the ancient city display a seismic movement occured in the region. It is strongly possible that this movement is related to the NE-SW left lateral oblique normal fault named as Cibyra Fault at the northwestern side of the city. Especially the ravages in the eastern part of the city indicate that the deformations are related to ground properties. If the rotation and overturn movement are considered and if both movements are the product of the same earthquake, the real Cibyra Fault is compatible with normal fault with left lateral compenent. After the 2011 excavations and 2012 field studies, the eastern wall of the Stadion showed that

  19. Deformation Along the Southeast Extension of the Lake Mead Fault System Evaluated with Paleomagnetic Data From Miocene Igneous Rocks, Hoover Dam area, Nevada and Arizona

    Science.gov (United States)

    Geissman, J. W.

    2002-12-01

    At and near Hoover Dam, southeast of Las Vegas, Cenozoic left-slip offset along the NE-SW trending Lake Mead fault system (LMFS) has resulted in the apparent rotation of structures and total displacement of up to 65 km. Defining any rotation of blocks within and near the LMFS is critical to assessing the kinematics of strike-slip faulting and attending extension. Paleomagnetic data from Miocene volcanic and some sedimentary rocks and intrusions (over 160 sites) deposited on Precambrian basement show that part of the Hoover Dam locality has experienced counterclockwise rotation . The middle Miocene (ca. 14.2 Ma)Tuff of Hoover Dam (THD)(sampled at over 90 sites) yields a well-grouped characteristic magnetization (ChRM); about 5 km south and east of the dam, gently east-dipping, north-striking rocks of the THD yield a corrected ChRM of moderate positive inclination and northwest declination (D=324.8°, I=27.4°, a95=10.7°, k=24, N=9 sites). Structural corrections, based on compaction fabrics in the THD are consistent with stratigraphic contacts. The anomalous shallow inclination for the THD ChRM implies that it was emplaced over a short period of time during a field instability. contact and conglomerate test results are interpreted to show that the THD ChRM is primary. Corrected data from north and west of the dam (D=289.7°, I=30.2°,a95=8.6°,k=32, N=10) are interpreted to indicate about 35° of counterclockwise rotation (R= -35.1°, delR= 12.4, F= -2.8°, delF = 10.8, relative to data from south of the dam) of crust across the dam site, consistent with progressive changes in strike of tilted fault blocks. The transition from apparently unrotated crust to rotated crust occurs over a zone about 1 km wide, where blocks of THD and older strata have been tilted up to 50°, probably concurrent with rotation. Rotation of crust northwest of Hoover Dam may reflect differential extension northwest of the LMFS (e.g.,River Mountains area) as strain is partitioned into west to

  20. Role of low angle normal faulting and basement thrusting on the structural architecture of the Northern Apennines (Italy)

    Science.gov (United States)

    Molli, Giancarlo; Carlini, Mirko; Vescovi, Paolo; Artoni, Andrea; Balsamo, Fabrizio; Camurri, Francesca; Clemenzi, Luca; Storti, Fabrizio; Torelli, Luigi

    2017-04-01

    The Northern Apennines of Italy are a classical site for studying fundamental issues in thrust wedges, such as ophiolite formation and emplacement, interplay between tectonics and sedimentation, role of out-of-sequence thrusting, syn-orogenic versus post-orogenic extension, along strike segmentation, etc. Accordingly, the Northern Apennines have been extensively studied since more than two centuries ago. Despite the huge amount of available data with different resolution, a 3D comprehensive regional view combining in a modern framework all available surface and subsurface information for contiguous sectors of the chain is still lacking. We performed such an attempt in the area framed between the Taro valley to the north and the northern termination of the Alpi Apuane to the south. The region includes the main morphostructural zones of the North-West Apennines from the Tyrrhenian coast West-Northwest of La Spezia, through the main topographic divide of the Apennines, to the external frontal part of the chain. The area has been investigated through a multidisciplinary approach that integrated: 1) surface geological data collected during the last two decades of structural and stratigraphic field works in the internal as well as external sectors of the chain; 2) subsurface geological data including: a) interpretation of 1200 Km of seismic reflection profiles tied to surface geology and b) analysis of 39 boreholes stratigraphies. The construction of two regional NE-SW trending cross-sections (the Levanto-Pontremoli-Parma to the North and the La Spezia-Sarzana-North Apuane-Cerreto to the South), connected by the NW-SE trending Taro River-Lunigiana Area-Alpi Apuane composite section, allowed us to illustrate (i) the role of out-of-sequence blind thrusting in the basement, (ii) the presence of low angle normal faulting and its relationships with recent to active high angle normal faulting. Both extensional and contractional systems have relevant implications for the

  1. Neogene folding and faulting in southern Monterey Bay, Central California, USA

    Science.gov (United States)

    Gardner-Taggart, J. M.; Greene, H. Gary; Ledbetter, M.T.

    1993-01-01

    The goal of this study was to determine the Neogene structural history of southern Monterey Bay by mapping and correlating the shallow tectonic structures with previously identified deeper occurring structures. Side scan sonographs and Uniboom seismic reflection profiles collected in the region suggest that deformation associated with both compressional and transcurrent movement is occurring. Strike-slip movement between the North American and Pacific plates started as subduction ceased 21 Ma, creating the San Andreas fault system. Clockwise rotation of the Pacific plate occurred between 3.4 and 3.9 Ma causing orthogonal convergence between the two plates. This plate rotation is responsible for compressional Neogene structures along the central California coast. Structures exhibit transpressional tectonic characteristics such as thrust faulting, reverse faulting and asymmetrical folding. Folding and faulting are confined to middle Miocene and younger strata. Shallow Mesozoic granitic basement rocks either crop out or lie near the surface in most of the region and form a possible de??collement along which the Miocene Monterey Formation has decoupled and been folded. Over 50% of the shallow faults strike normal (NE-SW) to the previously identified faults. Wrench fault tectonics complicated by compression, gradual uplift of the basement rocks, and a change in plate convergence direction are responsible for the observed structures in southern Monterey Bay. ?? 1993.

  2. Reactivation of Precambrian faults on the southwestern continental margin of India: Evidence from gravity anomalies

    Science.gov (United States)

    Subrahmanyam, V.; Ramana, M. V.; Rao, D. Gopala

    1993-03-01

    Gravimetric and bathymetric studies on the southwestern continental margin of India confirm the extension of onshore NW-SE-, NNW-SSE-, N-S-, NE-SW-, ENE-WSW- and E-W-trending lineaments of Precambrian age over a considerable distance into the offshore region. The bight in the bathymetry off Coondapoor the offsets of Bessas de Pedro bank and the Cora Divh Island of the Laccadive group, the Prathap Ridge, and the inferred mid-shelf basement ridge suggest block movements on the southwestern continental margin. The physiographic expression on the Prathap Ridge (around 14° 20' N and 72° 50' E) is unaffected by some of the ENE-WSW lineaments, which probably indicates that these lineaments predate, the evolution of the topographic expression. As seafloor spreading advanced with respect to the Carlsberg Ridge, some of the ENE-WSW and NE-SW lineaments on the western continental margin appear to have been reactivated, and block movements took place. The presence of a basement ridge in the mid-shelf and the shelf margin basement high (Prathap Ridge) west of the slope resembles the structural style of a passive continental margin.

  3. Late Pleistocene-Holocene evolution of the southern Marmara shelf and sub-basins: middle strand of the North Anatolian fault, southern Marmara Sea, Turkey

    Science.gov (United States)

    Vardar, Denizhan; Öztürk, Kurultay; Yaltırak, Cenk; Alpar, Bedri; Tur, Hüseyin

    2014-03-01

    Although there are many research studies on the northern and southern branches of the North Anatolian fault, cutting through the deep basins of the Sea of Marmara in the north and creating a series of pull-apart basins on the southern mainland, little data is available about the geometrical and kinematical characteristics of the middle strand of the North Anatolian fault. The first detailed geometry of the middle strand of the North Anatolian fault along the southern Marmara shelf, including the Gemlik and Bandırma Bay, will be given in this study, by a combined interpretation of different seismic data sets. The characteristic features of its segments and their importance on the paleogeographic evolution of the southern shelf sub-basins were defined. The longest one of these faults, the Armutlu-Bandırma segment, is a 75-km long dextral strike-slip fault which connects the W-E trending Gençali segment in the east and NE-SW trending Kapıdağ-Edincik segment in the west. In this context, the Gemlik Bay opened as a pull-apart basin under the control of the middle strand whilst a new fault segment developed during the late Pleistocene, cutting through the eastern rim of the bay. In this region, a delta front forming the paleoshoreline of the Gemlik paleolake was cut and shifted approximately 60 ± 5 m by the new segment. The same offset on this fault was also measured on a natural scarp of acoustic basement to the west and integrated with this paleoshoreline forming the slightly descending topset-foreset reflections of the delta front. Therefore the new segment is believed to be active at least for the last 30,000 years. The annual lateral slip rate representing this period of time will be 2 mm, which is quite consistent with modern GPS measurements. Towards the west, the Bandırma Bay is a rectangular transpressional basin whilst the Erdek Bay is a passive basin under the control of NW-SE trending faults. When the water level of the paleo-Marmara lake dropped down

  4. The Effect of Regional Tectonics on Faults in Bonaire and the Bonaire Basin: A Seismic Reflection Study

    Science.gov (United States)

    Brandl, C.; Reece, R.; Bayer, J.; Bales, M. K.

    2016-12-01

    Bonaire is located on the Bonaire microplate between the Caribbean and South American plates, and is part of the Netherlands Leeward Antilles as well as the ABC Islands along with Aruba and Curacao. As the major tectonic plates move they stress the microplate, which causes deformation as faulting. This study utilizes legacy seismic reflection data combined with a recent nearshore survey to study tectonic deformation in the basins surrounding Bonaire. Our legacy data covers a large portion of the ABC Islands; one dataset is a 1981 multichannel seismic (MCS) WesternGeco survey and the other is a 1971 USGS survey that we converted from print to SEGY. The modern dataset (2013) is a high-resolution MCS survey acquired off the western coast of Bonaire. We will use the legacy datasets to validate previous interpretations in the nearshore environment and extend these interpretations to the deepwater basins. Faults influenced by regional tectonics are more evident in deepwater basins because of their lateral continuity, and offset of thick sedimentary strata. A recent study of nearshore Bonaire utilizing the high-resolution seismic dataset interpreted several NE-SW dipping normal faults, which may correspond to regional extension. However, the influence is not clear, perhaps due to a lack of data or the nearshore nature of the dataset. Analysis of the legacy datasets show several areas in the surrounding basins with faults dipping NE-SW. Further analysis may reinforce observations made in the nearshore environment. Studying the tectonics of Bonaire can provide insight about the evolution of the region and help better define the effect of regional tectonic forces on the microplate. This study also shows the benefit of legacy seismic datasets that are publically available but stored as print or film in conjunction with modern data. They can provide value to a modern study by expanding the scope of available data as well as increasing the number of questions a study can

  5. Fault fluid evolution at the outermost edges of the southern Apennines fold-and-thrust belt, Italy

    Science.gov (United States)

    Agosta, Fabrizio; Belviso, Claudia; Cavalcante, Francesco; Vita Petrullo, Angela

    2017-04-01

    This work focuses on the structural architecture and mineralization of a high-angle, extensional fault zone that crosscuts the Middle Pleistocene tuffs and pyroclastites of the Vulture Volcano, southern Italy. This fault zone is topped by a few m-thick travertine deposit formed by precipitation, in a typical lacustrine depositional environment, from a fault fluid that included a mixed, biogenic- and mantle-derived CO2. The detailed analysis of its different mineralization can shed new lights into the shallow crustal fluid flow that took place during deformation of the outer edge of the southern Apennines fold-and-thrust belt. In fact, the study fault zone is interpreted as a shallow-seated, tear fault associated with a shallow thrust fault displacing the most inner portion of the Bradano foredeep basin infill, and was thus active during the latest stages of contractional deformation. Far from the fault zone, the fracture network is made up of three high-angle joint sets striking N-S, E-W and NW-SE, respectively. The former two sets can be interpreted as the older structural elements that pre-dated the latter one, which is likely due to the current stress state that affects the whole Italian peninsula. In the vicinity of the fault zone, a fourth joint high-angle set striking NE-SW is also present, which becomes the most dominant fracture set within the study footwall fault damage zone. Detailed X-ray diffraction analysis of the powder obtained from hand specimens representative of the multiple mineralization present within the fault zone, and in the surrounding volcanites, are consistent with circulation of a fault fluid that modified its composition with time during the latest stages of volcanic activity and contractional deformation. Specifically, veins infilled with and slickenside coated by jarosite, Opal A and/or goethite are found in the footwall fault damage zone. Based upon the relative timing of formation of the aforementioned joint sets, deciphered after

  6. Rôle et importance de la fracturation méridienne dans les déformations crétacées et alpines de la 'zone des diapirs' (Tunisie septentrionale)

    Science.gov (United States)

    Chikhaoui, M.; Turki, M. M.

    1995-08-01

    In the 'Diapir zone', located at the northern Tunisian thrust front of the Atlas fold belt, the interference of NE-SW and N-S trending folds forms the major structural feature of this region. The variability of the tectonic directions are due to the superposition of compressive movements onto Cretaceous structures. During the Lower Cretaceous period, opening of the Tethyan, Mesogean and Atlantic oceans gave rise, on the land, to a system of NE-SW, N-S and NW-SE extensional faults. The NE-SW direction, reactivated as strike slip and subsequent normal faults, interferred with the N-S direction, to give, in the post Triassic cover, a hacture system enabling Triassic diapirs to be emplaced. The Lower Cretaceous deformationed rocks were overlain by the Latetransgression This period was also marked by early diapirism of the Triassic evapontic formations indicated by their abundant reworking in the Albain-Cenomanian stages. During the Upper Cietaceous, a new period of extensonal tectonics resulted from reactivation of the major fault system and of the diapirism. This lead to important fades and thickness variations as well as unconformities and sedimentary lu atuses. Deformations clue to the Miocene to Quaternary NW-SE compressive regime were strongly influenced by pre-orogaric structural geometry. Shear induced NE-SW trending folds were developed above older faults having the same orientation The N-S trendmg folds correspond to late torsions of NE-SW fold axes in the neighbourhood of N-S palaeofaults.

  7. Tectonic evolution of kid metamorphic complex and the recognition of Najd fault system in South East Sinai, Egypt

    Science.gov (United States)

    Sultan, Yasser M.; El-Shafei, Mohamed K.; Arnous, Mohamed O.

    2017-03-01

    A low-to medium-grade metamorphic belt of a volcano-sedimentary succession occurs in the eastern side of South Sinai as a part of the northernmost extension of the Arabian-Nubian Shield in Egypt. The belt is known as the Kid metamorphic complex. It is considered as one of the major belt among the other exposed metamorphic belts in South Sinai. Here, we detect and investigate the signature of the Najd Fault system in South Sinai based on detailed structural analysis in field and digital image processing. The enhanced satellite image and the geo-spatial distributions confirm that the Kid belt is essentially composed of nine Precambrian units. Field relations and geometrical analysis of the measured structural data revealed that the study area underwent four successive deformational phases (D1-D4). D1 is an upright tight to isoclinal large-scale folds that caused few F1 small-scale folds and a steeply dipping S1 axial plane foliation. The second deformational event D2 produced dominant of sub-horizontal S2 foliation planes accompanied with recumbent isoclinal folds and NW-SE trending L2 lineations. The main sense during D2 was top-to-the-NW with local reversals to the SE. The third folding generations F3 is recorded as axial plane S3-surfaces and is characterized by open concentric folding that overprinting both F1 and F2 folds and has a flexural-slip mechanism. F3 fold hinges plunge to the west-northwest or east-southeast indicate north-northeast-south-southwest shortening during D3. The fourth deformational event D4 is characterized by NE plunging open concentric folding overprint the pre-existing fold generations and formed under flexural slip mechanism reflecting coaxial deformation and indicating change in the stress regime as a result of the change in shortening from NE-SW to NW-SE. This phase is probably accompanied with the final assembly of east and west Gondwana. The dextral NW-SE shear zone that bounded the southwestern portion of the metamorphic belt is

  8. The Morelia-Acambay Fault System

    Science.gov (United States)

    Velázquez Bucio, M.; Soria-Caballero, D.; Garduño-Monroy, V.; Mennella, L.

    2013-05-01

    The Trans-Mexican Volcanic Belt (TMVB) is one of the most actives and representative zones of Mexico geologically speaking. Research carried out in this area gives stratigraphic, seismologic and historical evidence of its recent activity during the quaternary (Martinez and Nieto, 1990). Specifically the Morelia-Acambay faults system (MAFS) consist in a series of normal faults of dominant direction E - W, ENE - WSW y NE - SW which is cut in center west of the Trans-Mexican Volcanic Belt. This fault system appeared during the early Miocene although the north-south oriented structures are older and have been related to the activity of the tectonism inherited from the "Basin and Range" system, but that were reactivated by the east- west faults. It is believed that the activity of these faults has contributed to the creation and evolution of the longed lacustrine depressions such as: Chapala, Zacapu, Cuitzeo, Maravatio y Acambay also the location of monogenetic volcanoes that conformed the Michoacan-Guanajuato volcanic field (MGVF) and tend to align in the direction of the SFMA dominant effort. In a historical time different segments of the MAFS have been the epicenter of earthquakes from moderated to strong magnitude like the events of 1858 in Patzcuaro, Acambay in 1912, 1979 in Maravatio and 2007 in Morelia, among others. Several detailed analysis and semi-detailed analysis through a GIS platform based in the vectorial archives and thematic charts 1:50 000 scaled from the data base of the INEGI which has allowed to remark the influence of the MAFS segments about the morphology of the landscape and the identification of other structures related to the movement of the existent faults like fractures, alignments, collapses and others from the zone comprehended by the northwest of Morelia in Michoacán to the East of Acambay, Estado de México. Such analysis suggests that the fault segments possess a normal displacement plus a left component. In addition it can be

  9. Application of classification methods in fault detection and diagnosis of inverter fed induction machine drive: a trend towards reliability

    Science.gov (United States)

    Delpha, C.; Diallo, D.; El Hachemi Benbouzid, M.; Marchand, C.

    2008-08-01

    The aim of this paper is to present a method of detection and isolation of intermittent misfiring in power switches of a three phase inverter feeding an induction machine drive. The detection and diagnosis procedure is based solely on the output currents of the inverter flowing into the machine windings. The measured currents are transformed in the two dimensional frame obtained with the Concordia transform. The data are then treated by a time-average method. The results even promising lack of accuracy mainly in the fault isolation step. To enhance the fault detection and diagnosis by the use of the information enclosed in the data, a Principal Component Analysis classifier is applied. The detection of a fault occurrence is made by a two-class classifier. The isolation is a two-step approach which uses the Linear Discriminant Analysis; the first is to identify the faulty leg with a three-class classifier and the second one discriminates the faulty power switch. Both methods are evaluated with experimental data and pattern recognition method proves its effectiveness and accuracy in the faulty leg detection and isolation. This article has been submitted as part of “IET Colloquium on Reliability in Electromagnetic Systems”, 24 and 25 May 2007, Paris

  10. Fluid Flow and Fault Zone Damage in Crystalline Basement Rocks (Ore Mountains Saxony)

    Science.gov (United States)

    Achtziger-Zupančič, P.; Loew, S.; Hiller, A.; Mariethoz, G.

    2015-12-01

    Groundwater flow in fractured basement rocks on aquifer scale and processes involved in the creation of fracture network permeability are poorly understood even though they have been studied for decades. A unique hydrogeological dataset consisting of 1030 discrete inflows (corresponding to preferential groundwater pathways) to the Poehla Ore Mine (Ore Mountains) of the SDAG Wismut has been compiled and quantitatively interpreted. Transmissivities and permeabilities were calculated from discrete and cumulative inflows using analytical equations and numerical groundwater flow models. The Variscan basement at Poehla Mine was modelled in 3-D, covering a volume of 14x4x1 km3 with 14 metamorphosed litho-stratigraphic units and 131 faults separated in 6 main strike directions. Mesoscale fractures mapped at inflows points, i.e. locally conductive fractures, show a weak correlation with fault orientation, and a large orientation scattering, which could be related to small scale stress heterogeneities. Inflow points were spatially correlated with major faults considering two distance criteria. This correlation suggests that mainly NW-SE and NE-SW striking faults are transmissive, which should be critically stressed considering all available data about the regional stress field. The trace length (extent) and width of the core and damage zones of the modelled faults were compiled in order to investigate the flow distribution and permeability profiles in directions perpendicular to fault strike. It can be shown that 90% of all inflows are located in damage zones. The inflows are usually situated within multiple fault zones which overlap each other. Cumulative flow distribution functions within damage zones are non-linear and vary between faults with different orientation. 75-95% of the flow occurs in the inner 50% of the damage zone. Significantly lower flow rates were recognized within most fault cores.

  11. Gravity data of the Norcia and Castelluccio basins (central Italy): insight for active faulting of the area

    Science.gov (United States)

    Ruano, P.; Rustichelli, A.; Galindo-Zaldívar, J.; Piccardi, L.; Ruiz-Constán, A.; Tondi, E.; López-Garrido, A. C.; Sanz de Galdeano, C.

    2009-04-01

    The Norcia and Castelluccio basins are located in the central Apennines, the southeastern extension of the NE-vergent arcuate, Neogene, foreland fold and thrust belt of northern Italy. These intramontane depressions are infilled by Pleistocene-Holocene coarse continental fluvial and alluvial deposits, whereas the bedrock units are represented by limestone and pelagic marls of Jurassic to Miocene age. Several historical and instrumental highly destructive earthquakes have occurred in this area: January 14, 1703 (X MCS, M=6.6); September 19, 1979 (Ms= 5.9, focal depth of 6-8km). Fault data and earthquake focal mechanisms show a predominant NE-SW extension, but strike-slip and even reverse mechanisms have also been determined. The surface of the Norcia basin is flat, slightly inclined to the NW, with only an almost isolated basement hill in the middle. The basin has a predominant NNW-SSE elongation with very straight boundaries constituted by oblique-extensional faults. In addition, Castelluccio Depression is a hanging basin located eastwards of the Norcia area. In order to determine the distribution of the sedimentary infill, a gravity survey has been developed in the region, including several profiles orthogonal to the basin edges and additional scattered data that improve the map coverage. Measurements have been done in the basins and also in the basement in order to determine the regional anomalies. A Scintrex CG-5 gravitimeter with an accuracy of 0.001mGal, a barometric altimeter of 0.5 m of precision, and a Garmin e-trex GPS have been used during the acquisition of the 294 measurements. A density of 2.60 g/cm3 (mean density of the basement limestone) has been considered for calculating the Bouguer Anomalies. Terrain corrections have been determined using the SRTM90-m. The Foligno absolute gravity base station has been taking into account during this survey. The Bouguer Anomaly is negative in all the area, with a regional trend that decreases northeastwards

  12. Strike-slip and extensional tectonics of the Tan-Lu fault zone (eastern China) from the Cretaceous to Cenozoic

    Science.gov (United States)

    Zhang, Y. Q.; Shi, W.; Dong, S. W.

    2003-04-01

    Cretaceous to NW-SE oriented transpression, causing inversion of the Lower Cretaceous rift basin and sinistral motion along the Tan-Lu fault. During the Late Cretaceous, dextral activation of the Tan-Lu fault zone resulted in pull-apart opening of the Zhucheng basin, which was subsequently deformed by NE-SW compression. The Cenozoic deformation history of the Tan-Lu fault zone can be separated into three periods: Early Tertiary normal faulting resulting from NW-SE extension; Miocene normal faulting imposed by NE-SW to NNE-SSW extension; and Quaternary dextral strike-slip faulting caused by ENE-WSW compression. The Early Tertiary extension was responsible for rift basin formation in north China and originated from back-roll mantle convection induced by westward subduction of the Pacific plate beneath the eastern margin of the Asia continent. The Miocene extension may have been genetically associated with process of the Japan Sea opening. The Quaternary faulting mainly occurred along the middle portion of the active Tan-Lu fault zone and resulted from far-field effect of the late-stage India and Eurasia convergence.

  13. A UNIQUE FACTORIZATION DOMAIN

    African Journals Online (AJOL)

    volcano-tectonic and sedimentation processes. Faulting was accompanied by extensive basaltic and silicic volcanism restricted to separate centres aligned along the NE-SW trending rift axis. Several shield volcanoes were developed in the plateaux; the different volcanic episodes formed thick rock sequences (Di. Paola ...

  14. Some new observations on the intra-plate deformation in the Central Indian Basin (CIB)

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Neprochnov, O.V.; Levchenko, O.V.; Rao, T.C.S.; Milanovsky, V.E.; Lakshminarayana, S.

    and from a detailed grid over a 45 x 45 km block, covering the area between 2 degrees N and 2 degrees S, and 81 degrees and 84 degrees E, indicate (1) a NE-SW trend for the faulted deformed blocks; (2) presence of fracture zones older than and unrelated...

  15. 2012 Little Bear Post Fire, Nogal Peak NE SW, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains imagery for the Lincoln National Forest, Otero County, New Mexico. The imagery was flown to provide coverage after the 2012 Little Bear Fire.

  16. 2012 Little Bear Post Fire, Nogal Peak NE SW, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This data set contains imagery for the Lincoln National Forest, Otero County, New Mexico. The imagery was flown to provide coverage after the 2012 Little Bear Fire.

  17. 2012 Whitewater Baldy Post Fire, Grouse Mountain NE SW, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains imagery for the Gila National Forest, Catron and Grant County, New Mexico. The imagery was flown to provide coverage after the 2012...

  18. 2012 Whitewater Baldy Post Fire, Shelley Peak NE SW, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains imagery for the Gila National Forest, Catron and Grant County, New Mexico. The imagery was flown to provide coverage after the 2012...

  19. 2012 Whitewater Baldy Post Fire, Shelley Peak NE SW, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains imagery for the Gila National Forest, Catron and Grant County, New Mexico. The imagery was flown to provide coverage after the 2012...

  20. 2012 Whitewater Baldy Post Fire, Loco Mountain NE SW, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains imagery for the Gila National Forest, Catron and Grant County, New Mexico. The imagery was flown to provide coverage after the 2012...

  1. 2012 Whitewater Baldy Post Fire, Loco Mountain NE SW, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — This dataset contains imagery for the Gila National Forest, Catron and Grant County, New Mexico. The imagery was flown to provide coverage after the 2012...

  2. Application of Anisotropy of Magnetic Susceptibility to large-scale fault kinematics: an evaluation

    Science.gov (United States)

    Casas, Antonio M.; Roman-Berdiel, Teresa; Marcén, Marcos; Oliva-Urcia, Belen; Soto, Ruth; Garcia-Lasanta, Cristina; Calvin, Pablo; Pocovi, Andres; Gil-Imaz, Andres; Pueyo-Anchuela, Oscar; Izquierdo-Llavall, Esther; Vernet, Eva; Santolaria, Pablo; Osacar, Cinta; Santanach, Pere; Corrado, Sveva; Invernizzi, Chiara; Aldega, Luca; Caricchi, Chiara; Villalain, Juan Jose

    2017-04-01

    be observed within the same fault zone, depending on the proximity to the core zone. The transition between them is usually defined by oblate fabrics, with the long and intermediate axes contained within the main foliation plane in SC-like structures. The faults studied in this work are located in Northeast Iberia; most of them were formed during the Late-Variscan fracturing stage and constitute first-order structures controlling the Mesozoic and Cenozoic evolution of the Iberian plate. They include (i) large-scale (Cameros-Demanda) and plurikilometric (Monroyo, Rastraculos), thrusts resulting from basement thrusting and Mesozoic basin inversion, and (ii) strike-slip to transpressional structures in the Iberian Chain (Río Grío and Daroca faults, Aragonian Branch) and the Catalonian Range (Vallès fault). Application of AMS in combination with structural analysis has allowed us a deeper approach into the kinematics of these fault zones and namely to (i) accurately define the transport direction of Cenozoic thrusts (NNW to NE-SW for the studied E-W segments) and the flow directions of décollements and to evaluate the representativity of small-scale structures linked to thrusting; (ii) to assess the transpressional character of deformation for the main NW-SE and NE-SW Late-Variscan faults in NE Iberia during the Cenozoic (horizontal to intermediate-plunging transport directions) and (iii) to define the strain partitioning between different thrust sheets and strike-slip faults to finally establish the pattern of displacements in this intra-plate setting.

  3. Unraveling the deformational history of faults from AMS

    Science.gov (United States)

    Calvín, Pablo; Casas-Sainz, Antonio; Román-Berdiel, Teresa; Oliva-Urcía, Belén; García-Lasanta, Cristina; Pocoví, Andrés; Gil-Imaz, Andrés; Pueyo-Anchuela, Oscar; Izquierdo-Llavall, Esther; Osácar, Cinta; José Villalaín, Juan; Corrado, Sveva; Invernizzi, Chiara; Aldega, Luca; Caricchi, Chiara; Antolín-Tomás, Borja

    2014-05-01

    The faults chosen for this study belong to the Iberian Chain (Northeastern Iberian Plate) and include two kinematically different kinds of structures (thrusts and strike-slip), with well-developed fault gouges several tens or hundreds of meters thick (Datos Fault System and Daroca Fault) and thinner clayey layers linked to thrust surfaces (Cameros-Demanda Thrust). The Cameros-Demanda Thrust has a relatively simple history of Mesozoic extension and Tertiary inversion. Along the thrust several areas with fault rocks include weakly oriented breccias, deformed conglomerates and clayey fault gouge with S/C structures. The Datos and Daroca faults show a more complex history of movement and are of key importance in the Variscan and Alpine evolution of the Iberian microplate. They show fault rocks with thickness of up to hundreds of meters, consisting of fault gouges, microbreccias and fault breccias with large blocks of stratified Paleozoic and Mesozoic blocks. Anisotropy of Magnetic Susceptibility (AMS) can be an useful tool in order to discriminate the tectonic evolution of such faults, remembering the different behaviors as part of different stages in northern Gondwana (Variscan cycle) and the Iberian microplate (Alpine cycle). Samples for the AMS study were collected from 56 sites, 29 (434 specimens) belonging to three areas of the Cameros-Demanda Thrust, 17 (196 specimens) in the Datos Fault System, and 10 (114 specimens) at the Daroca Fault. AMS results at the Cameros-Demanda Thrust show a main NW-SE magnetic lineation (Matute and Prejano areas), a secondary NE-SW magnetic lineation (Matute area) and a girdle distribution from NE to SW in the Panzares area. These results suggest a main NW movement for the Cameros-Demanda Thrust, consistent with kinematic indicators, but also evidence a NE-directed minor contribution, especially in the easternmost outcrops. Daroca and Datos Faults show a grater variability, both in plunge and azimuth, and magnetic lineation can be

  4. Neotectonic fault detection and lithosphere structure beneath SW of High Atlas (Morocco)

    Science.gov (United States)

    Timoulali, Youssef; Radi, Said; Azguet, Roumaissae; Bachaoui, Mostapha

    2016-08-01

    The High Atlas is a 100 km wide zone defined by E-W to NE-SW trending folds nearly orthogonal to the Atlantic coastline. The major compressional structures in the High Atlas consist of large-scale fold systems which affect Mesozoic and Cainozoic formations. The extreme West of the High Atlas including the region of Agadir is defined as an earthquake Zone. Historical seismicity data shows that the Agadir region was hit by two destructive earthquakes in 1731 and 1960 with magnitude 6.4 and 6.0, respectively. The present study has two main goals: 1) to use remote sensing techniques to detect and map the surface geological structures including faults; 2) to use the local earthquake tomography for imaging the lithosphere (subsurface) and detect deep structures. For the remote sensing techniques we used ETM + Landsat7 images and the SRTM 90 m image as a Digital Terrane Elevation Model. This study focuses on the computerized identification, feature extraction and quantitative interpretation of lineaments over the SW High Atlas. The analysis developed here is based on the numerical enhancement of a Landsat image and on the statistical processing of data generated through enhancement. The results generated by the numerical enhancement and statistical analysis are presented on fault maps, lineament maps, polar diagrams and lineament density maps. The lineaments have a high concentration of orientations around the directions N40E, N80W and N-S. For the subsurface study, seismic data sets were used to define the 3-D velocity structures. We also used local earthquake tomography to obtain the velocity map and crustal structure of the SW High Atlas region. The tomography results show a new and detailed lithosphere structure defined by a high velocity body in the northern of SW High Atlas from 15 to 45 Km depth, dipping to the north beneath the Essaouira basin in the western Meseta with P velocity variations from 6.5 to 7.8 km/s. This anomaly can be interpreted as an old

  5. Faults Images

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Through the study of faults and their effects, much can be learned about the size and recurrence intervals of earthquakes. Faults also teach us about crustal...

  6. Fault Estimation

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis prob-lems are reformulated in the so-called standard problem setup introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...

  7. The Neogene-Quaternary geodynamic evolution of the central Calabrian Arc: A case study from the western Catanzaro Trough basin

    Science.gov (United States)

    Brutto, F.; Muto, F.; Loreto, M. F.; Paola, N. De; Tripodi, V.; Critelli, S.; Facchin, L.

    2016-12-01

    The Catanzaro Trough is a Neogene-Quaternary basin developed in the central Calabrian Arc, between the Serre and the Sila Massifs, and filled by up to 2000 m of continental to marine deposits. It extends from the Sant'Eufemia Basin (SE Tyrrhenian Sea), offshore, to the Catanzaro Basin, onshore. Here, onshore structural data have been integrated with structural features interpreted using marine geophysical data to infer the main tectonic processes that have controlled the geodynamic evolution of the western portion of the Catanzaro Trough, since Upper Miocene to present. The data show a complex tectonostratigraphic architecture of the basin, which is mainly controlled by the activity of NW-SE and NE-SW trending fault systems. In particular, during late Miocene, the NW-SE oriented faults system was characterized by left lateral kinematics. The same structural regime produces secondary fault systems represented by E-W and NE-SW oriented faults. The ca. E-W lineaments show extensional kinematics, which may have played an important role during the opening of the WNW-ESE paleo-strait; whereas the NE-SW oriented system represents the conjugate faults of the NW-SE oriented structural system, showing a right lateral component of motion. During the Piacenzian-Lower Pleistocene, structural field and geophysical data show a switch from left-lateral to right-lateral kinematics of the NW-SE oriented faults, due to a change of the stress field. This new structural regime influenced the kinematics of the NE-SW faults system, which registered left lateral movement. Since Middle Pleistocene, the study area experienced an extensional phase, WNW-ESE oriented, controlled mainly by NE-SW and, subordinately, N-S oriented normal faults. This type of faulting splits obliquely the western Catanzaro Trough, producing up-faulted and down-faulted blocks, arranged as graben-type system (i.e Lamezia Basin). The multidisciplinary approach adopted, allowed us to constrain the structural setting of

  8. Faulting and Mud Volcano Eruptions Inside of the Coastal Range During the 2003 Mw = 6.8 Chengkung Earthquake in Eastern Taiwan

    Directory of Open Access Journals (Sweden)

    Guo-Jang Jiang

    2011-01-01

    Full Text Available Field investigations following the 2003 Mw = 6.8 Chengkung earthquake in eastern Taiwan revealed some interesting observations of surface geological processes closely related to the co-seismic deformation. We discovered that the Tama Fault, which is about 15 km east of the causative Chihshang Fault, underwent shortening of about 15.5 mm locally in 2001 - 2006, particularly during the 2003 earthquake. This shows that ESE-WNW compression affects the upper crust of the Coastal Range and produces significant shortening in addition to that of the major Chihshang Fault. On the hanging wall of the Chihshang Fault, we also found vigorous activities of the two major mud volcanoes during the main shock, lasting several days. To the north, the Luoshan Mud Volcano, a large mud basin, erupted noisily with water and gases during the earthquake. To the south, in the Leikunghuo Mud Volcano, two sets of fractures, one aligned with the N16¢XE right-lateral fault and the other with the N80¢XE left-lateral fault, occurred during the earthquake. This conjugate system revealed a strike-slip stress regime with NE-SW compression and NW-SE extension. We interpret it to be the result of local stress permutation rather than regional tectonic stress. We conclude that deformation did occur inside of the Coastal Range, especially during the co-seismic event. Therefore, a better understanding of the internal deformation of the Coastal Range is an important target for future studies, particularly across three mapped faults: the Yungfeng, Tuluanshan and Tama faults. We also want to draw attention to the stress analysis in the mud volcanoes area, where the local stress perturbation plays an important role.

  9. Finding faults

    Energy Technology Data Exchange (ETDEWEB)

    Barber, J.; Duke, J. [Surpac Minex Group (Australia)

    2005-04-01

    The Surpac Minex Group has been building a geologic model to represent the coal seam structure at the Carbones del Cerrejon LLC mine in north eastern Colombia which is bonded by major reserve and normal faults. This is being achieved through a new software faulting tool. The tool combines existing Minex modelling with new fault interpretation tools. New software that permits 3-D photogrammetry and seismic data can also be incorporated. 6 figs.

  10. Cataclastic faults along the SEMP fault system (Eastern Alps, Austria) — A contribution to fault zone evolution, internal structure and paleo-stresses

    Science.gov (United States)

    Hausegger, Stefan; Kurz, Walter

    2013-11-01

    In this study three different sites along the ENE-trending, sinistral Salzach-Ennstal-Mariazell-Puchberg [SEMP] fault zone were investigated with respect to brittle fault zone evolution and fault re-activation. All sites crop out in Triassic carbonates (Ladinian Wetterstein limestone/-dolomite). Simultaneously (re-) activated faults were investigated with focus on fault-slip data and structural inventory of each individual fault zone. Configuration of (internal) structural elements, fault core thickness, strike direction and slip sense in addition to particle analysis of fault core cataclasites add up to three different fault types (Fault Types I, II and III). Fault Type I is classified by a complex internal fault core structure with thicknesses up to several 10s of meters and generally evolve in a strike direction of maximum shear stress (τmax). Type II faults, characterized by cataclastic fault cores with thicknesses up to 1 m, as well as Type III faults (thin solitary cataclastic layers) evolve sub-parallel to the main fault direction and in orientation according to R, R' or X shear fractures with variable (σn/τ) ratio. Progressive development from Type III to Type II and Type I faults is consistent with increasing displacement and increasing fault core width. Fault type classification and related paleostress analysis provide evidence from field observation compared to theoretical and analog models of Mohr-Coulomb fracture evolution.

  11. ESR dating of the fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2004-01-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs, grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Ulzin nuclear reactor. ESR signals of quartz grains separated from fault rocks collected from the E-W trend fault are saturated. This indicates that the last movement of these faults had occurred before the quaternary period. ESR dates from the NW trend faults range from 300ka to 700ka. On the other hand, ESR date of the NS trend fault is about 50ka. Results of this research suggest that long-term cyclic fault activity near the Ulzin nuclear reactor continued into the pleistocene.

  12. A reassessment of the Archean-Mesoproterozoic tectonic development of the southeastern Chhattisgarh Basin, Central India through detailed aeromagnetic analysis

    Science.gov (United States)

    Sridhar, M.; Ramesh Babu, V.; Markandeyulu, A.; Raju, B. V. S. N.; Chaturvedi, A. K.; Roy, M. K.

    2017-08-01

    We constrained the geological framework over polydeformed Paleoproterozoic Sonakhan Greenstone Belt and addressed the tectonic evolution of Singhora basin in the fringes of Bastar Craton, central India by utilizing aeromagnetic data interpretation, 2.5D forward modelling and 3D magnetic susceptibility inversions. The Sonakhan Greenstone Belt exposes volcano-sedimentary sequences of the Sonakhan Group within NNW-SSE to NW-SE trending linear belts surrounded by granite gneisses, which are unconformably overlain by sedimentary rocks of Chhattisgarh Basin. The orientations of aeromagnetic anomalies are coincident with geological trends and appear to correlate with lithology and geologic structure. Regional magnetic anomalies and lineaments reveal both NNW-SSE and NE-SW trends. Prominent E-W trending linear, high amplitude magnetic anomalies are interpreted as the Trans-Chhattisgarh Aeromagnetic Lineament (TCAL). NW-SE trending aeromagnetic signatures related to Sonakhan Greenstone Belt extends below the Singhora sedimentary rocks and forms the basement in the west. The analysis suggests that TCAL is a block fault with northern block down-thrown and affected the basement rocks comprising the Sonakhan Greenstone Belt and Samblapur Granitoids. The episode of faulting represented by the TCAL is pre-Singhora sedimentation and played a vital role in basin evolution. The basement configuration image generated by estimates of depth to magnetic basement suggests a complex pattern of NNE-SSW to NE-SW trending depressions separated by a linear N-S trending basement ridge. It is inferred from the 3D magnetic susceptibility inversion that the thickness of sediments is more towards the eastern basin margin and the N-S ridge is a manifestation of post sedimentary faulting. Results of 2.5D modelling of a WNW-ESE profile across the Singhora Basin combined with results from 3D inversion suggest suggests the basin subsidence was controlled by NE-SW trending regional faults in an active

  13. Fault diagnosis

    Science.gov (United States)

    Abbott, Kathy

    1990-01-01

    The objective of the research in this area of fault management is to develop and implement a decision aiding concept for diagnosing faults, especially faults which are difficult for pilots to identify, and to develop methods for presenting the diagnosis information to the flight crew in a timely and comprehensible manner. The requirements for the diagnosis concept were identified by interviewing pilots, analyzing actual incident and accident cases, and examining psychology literature on how humans perform diagnosis. The diagnosis decision aiding concept developed based on those requirements takes abnormal sensor readings as input, as identified by a fault monitor. Based on these abnormal sensor readings, the diagnosis concept identifies the cause or source of the fault and all components affected by the fault. This concept was implemented for diagnosis of aircraft propulsion and hydraulic subsystems in a computer program called Draphys (Diagnostic Reasoning About Physical Systems). Draphys is unique in two important ways. First, it uses models of both functional and physical relationships in the subsystems. Using both models enables the diagnostic reasoning to identify the fault propagation as the faulted system continues to operate, and to diagnose physical damage. Draphys also reasons about behavior of the faulted system over time, to eliminate possibilities as more information becomes available, and to update the system status as more components are affected by the fault. The crew interface research is examining display issues associated with presenting diagnosis information to the flight crew. One study examined issues for presenting system status information. One lesson learned from that study was that pilots found fault situations to be more complex if they involved multiple subsystems. Another was pilots could identify the faulted systems more quickly if the system status was presented in pictorial or text format. Another study is currently under way to

  14. The Influence of the Wallula Fault and Pasco Basin on the Tectonic Framework of South-Central Washington

    Science.gov (United States)

    Blakely, R. J.; Sherrod, B. L.; Wells, R. E.; Weaver, C. S.

    2011-12-01

    -striking magnetic anomalies define a broad region of dike injection crossing the western Pasco basin north of the WFZ. The most prominent anomaly correlates with mapped dikes and vents of the Ice Harbor Member (8.5 Ma) of CRBG, and the entire anomaly pattern has been attributed to intrusive sources of Ice Harbor flood basalts. At their northern end, Ice Harbor magnetic anomalies connect with the Saddle Mountains thrust fault. At their southern end, the anomalies appear truncated by the WFZ, although a complex system of WNW-striking faults obscures magnetic evidence for dikes in this region. The episode of NE-SW extension that promoted dike injection in the Pasco basin 8.5 Ma apparently involved both the Saddle Mountains thrust fault and WFZ serving as restraining stepovers in a broad right-lateral fault system.

  15. Qena Valley Evolution, Eastern Desert, Egypt

    Science.gov (United States)

    Abdelkareem, Mohamed

    2010-05-01

    Remotely sensed topographic and optical data were used to identify tectonic phenomena in Qena Valley. Using digital elevation model, morphotectonic features were identified. Processing and analysis were carried out by the combined use of: (1) digital elevation model, (2) digital drainage network analysis, (3) optical data analysis, and (4) lineament extraction and analysis. Structural information from other sources, such as geological maps, remotely sensed images and field observations were analyzed with geographic information system techniques. The analysis results reveal that the linear features of Qena Valley controlled by several structural elements have different trends NW-SE, NE-SW and N-S trends. Basement rocks at Qena valley has a major NE-SW trending and the sedimentary rocks are dominated by a NW-SE, NE-SW and N-S trends while, E-W are less abundant. The NE-SW trends at north Eastern Desert Egypt attain to normal faults that reflect extension in NW-SE direction, which is related to strike slip faulting along NW-SE directed Najd fault system. Further, the NE-SW is abundant as joints and fractures seem to have controlled the path of the Nile in Qift - Qena area. The NW-SE direction are abundant in the rock fracture trends (Gulf of Suez or Red Sea) and reflects Neoproterozoic faults have been reactivated in Neogene during rifting events of the Red Sea opening and marked the sedimentary rocks at Qena valley. The results of the lineament density map reveals that Qena valley was originated along one fault that trend like the Gulf of Suez and the range of the Red Sea Hills. This major fault was dissected by several lateral faults are seen well exposed at numerous places within the valley, especially on its eastern side. Both sides of Qena valley have a similar density matching may attain to that this lineaments affected Qena valley during rifting. This rifts it probably happened in Early Miocene associated with Red Sea tectonics. The general southward slope of

  16. Some geodynamic aspects of the Krishna-Godavari Basin, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Murthy, K.S.R.; Subrahmanyam, A.S.; Lakshminarayana, S.; Chandrasekhar, D.V.; Rao, T.C.S.

    of India in the late Jurassic (126 Ma), although the relation between this hotspot and the two cross trends on either side remains unresolved. The breakup was associated with rift phase volcanism, as evidenced by the inferred dyke intrusions... on the continental slope (around 3000 m water depth) off Machilipat- nam, though no reasons for the occurrence of such an isolated volcanic feature have been explained, except that it falls on the extension of some NE-SW fault systems of Peninsular India...

  17. Buried active faults in the Zafferana Etnea territory (south-eastern flank of Mt. Etna: geometry and kinematics by earthquake relocation and focal mechanisms

    Directory of Open Access Journals (Sweden)

    Salvatore Alparone

    2013-04-01

    Full Text Available We relocated seismicity that occurred from 2000 to 2005 inside a sector of Mt. Etna, comprising the town of Zafferana Etnea, using the double-difference technique. This approach revealed some spatial clusters of events at depths of 3.0 km to 5.5 km b.s.l., which suggested NE-SW-oriented and NNW-SSE-oriented active structures located west and north-west with respect to Zafferana Etnea. We also calculated 64 fault plane solutions, and azimuth and dip distributions of maximum compression P axes. The data include eight events with magnitudes between 3.1 and 3.7 that caused damage to Zafferana Etnea. This approach has allowed the definition of the geometry of structures that show no surface evidence, but are potentially hazardous for this territory. These faults might be linked to the regional tectonics, although they were activated by stress changes related to a general pressurizing of the Mt. Etna magma system between 2000 and 2005.

  18. Slip History and Evolution of the Hat Creek Fault, Northern California

    Science.gov (United States)

    Walker, E. L.; Kattenhorn, S. A.

    2008-12-01

    Normal faults commonly exhibit unique surface features in basalt such as vertical scarps and fault-trace monoclines that provide clues to the fault evolution. The Hat Creek fault, 25 km north of Lassen volcano in northern California, is a segmented fault system within Pleistocene and younger basalts. The fault is located along the western boundary of the Modoc plateau in the extended backarc of the Cascades. The fault geometry tells of a varied extensional history that likely reflects a complex interplay between tectonic and magmatic influences. In response, the northern portion of the fault system migrated progressively westward, abandoning older scarps in its wake, whereas the southern portion continues to utilize Pleistocene slip surfaces. This spatial evolution has created three distinct scarps. From oldest (easternmost) to youngest (westernmost), they are informally identified as: the rim (max. throw of 352 m), the pali (max. throw of 174 m), and the active scarp (max. throw of 65 m). The rim is oriented N-S, consistent with the regional E-W extension direction, and consists of 7 predominantly right-stepping segments (NNW oriented) that are physically linked through lower ramp breaches. This geometry implies a clockwise rotation of the stress field after the segments developed, with linkage driven by right-lateral oblique motion. Throw profiles along the rim illustrate mechanical interactions and partitioning of displacement between adjacent segments. The pali is a relatively younger fault plane located up to 3.3 km west of the northern portion of the rim. The pali is oriented NW-SE and consists of 5 left-stepping segments that are physically connected through upper ramp breaches, also consistent with right-lateral oblique motion. The pali likely nucleated along its central segment, where throw is maximized, in response to a magmatic perturbation of the stress field (causing a local NE-SW extension), possibly related to dike injection that culminated in the

  19. Offshore structural trends from magnetic data over Cauvery Basin, east coast of India

    Digital Repository Service at National Institute of Oceanography (India)

    Subrahmanyam, A.S.; Lakshminarayana, S.; Chandrasekhar, D.V.; Murthy, K.S.R.; Rao, T.C.S.

    been interpreted as due to dyke intrusions. NE-SW lineament reflects the offshore extension of a major basement depression, viz, the Pondicherry depression. E-W lineation, south of Proto Novo reveals a basement high suggesting the seaward extension...

  20. Constraining fault activity by investigating tectonically-deformed Quaternary palaeoshorelines using a synchronous correlation method: the Capo D'Orlando Fault as a case study (NE Sicily, Italy)

    Science.gov (United States)

    Meschis, Marco; Roberts, Gerald P.; Robertson, Jennifer

    2016-04-01

    Long-term curstal extension rates, accommodated by active normal faults, can be constrained by investigating Late Quaternary vertical movements. Sequences of marine terraces tectonically deformed by active faults mark the interaction between tectonic activity, sea-level changes and active faulting throughout the Quaternary (e.g. Armijo et al., 1996, Giunta et al, 2011, Roberts et al., 2013). Crustal deformation can be calculated over multiple seismic cycles by mapping Quaternary tectonically-deformed palaeoshorelines, both in the hangingwall and footwall of active normal faults (Roberts et al., 2013). Here we use a synchronous correlation method between palaeoshorelines elevations and the ages of sea-level highstands (see Roberts et al., 2013 for further details) which takes advantage of the facts that (i) sea-level highstands are not evenly-spaced in time, yet must correlate with palaeoshorelines that are commonly not evenly-spaced in elevation, and (ii) that older terraces may be destroyed and/or overprinted by younger highstands, so that the next higher or lower paleoshoreline does not necessarily correlate with the next older or younger sea-level highstand. We investigated a flight of Late Quaternary marine terraces deformed by normal faulting as a result of the Capo D'Orlando Fault in NE Sicily (e.g. Giunta et al., 2011). This fault lies within the Calabrian Arc which has experienced damaging seismic events such as the 1908 Messina Straits earthquake ~ Mw 7. Our mapping and previous mapping (Giunta et al. (2011) demonstrate that the elevations of marine terraces inner edges change along the strike the NE - SW oriented normal fault. This confirms active deformation on the Capo D'Orlando Fault, strongly suggesting that it should be added into the Database of Individual Seismogenic Sources (DISS, Basili et al., 2008). Giunta et al. (2011) suggested that uplift rates and hence faults lip-rates vary through time for this examples. We update the ages assigned to

  1. Kinematics of long lived faults in intraplate settings: case study of the Río Grío Fault (Iberian Range).

    Science.gov (United States)

    Marcén, Marcos; Román-Berdiel, Teresa; Casas, Antonio; Calvín-Ballester, Pablo; Oliva-Urcia, Belen; García-Lasanta, Cristina

    2015-04-01

    This study is based on the comparison of structural analysis and AMS data of Río Grío Fault, associated with the Datos Fault System, in the Iberian Chain (Northeastern Iberian Plate, Spain). The Río Grío Fault, with NW-SE strike, has a tectonic evolution of probably Mesozoic extension and Tertiary transpressive dextral movement, and it is characterized by the presence of a well-developed cataclastic zone 200m width. The structure of the core is characterized by elongated along strike and narrow lenses separated by subvertical fault planes with well-developed fault breccias and gouges. The lenses usually conserve intact stratification, and it may be recognized several lithologies, including Ordovician quartzites, slates and clay, and red-colored Permo-triassic clay and sandstones. The internal structure of these lenses shows folds, brechified zones, and localized foliation in clay lenses. Cinematic indicators (striations, S/C structures…) show strong reverse dip-slip and dextral strike-slip components, indicating strain partitioning between the different lenses, and it is interpreted as the result of the reactivation of previous normal faults, like a strike-slip shear, during the NNE-SSW to NE-SW Cenozoic compression of the NE Iberian Plate. Samples of AMS study were collected from two areas (SG and RG) of the fault zone, separated by 4.5km along strike. Samples provide a magnetic susceptibility highly dependent on lithology, between ±5*10-5 [SI] in the white fault gouge and ±20*10-5 [SI] in red-colored clay. The low susceptibility in several sites results in high imprecise AMS measurements. AMS results for the first area (SG), obtained in red and black colored clays, show the same magnetic fabric in all sites. K-min axis of the magnetic ellipsoid corresponds to the pole of the fault planes measured in the outcrop, and the magnetic lineation is nearly horizontal, probably related to strike-slip movements. In the second area (RG), the AMS shows a grater

  2. Structural analysis of the Valence basin (SE France) based on kriging and borehole data: implications for hercynian fault zone behaviour in geothermic reservoirs.

    Science.gov (United States)

    Chabani, Arezki; Mehl, Caroline; Bruel, Dominique; Cojan, Isabelle

    2017-04-01

    The Valence basin is a 130 km-long and 60 km-wide Tertiary sub-basin situated north to the SE basin of France, in the central part of the European Cenozoic RIft System (ECRIS). That structural key position in a naturally fractured hostrock associated with a favorable thermal regime make that basin a good target for geothermal exploitation in France. The structure and kinematics of the Valence basin is controlled by a several kilometer-scale hercynian fault system that may have a strong influence on fluid flows and thermal anomalies within the basin. This study aimed to constrain the geometry of deposits and the way they fracture regards to the major faults, to determine their diagenetic evolution and to characterize the hydraulic behavior of the major faults. We thus performed a structural model of the basin and analyzed the Montoison borehole. Kriging on data pointed on 348 boreholes from BSS, synthetic boreholes calculated from two seismic lines and isohypses from existing models allowed modeling the geometry of basement and the ceno-mesozoic unconformity. Basement is structured by two pluri-kilometer long fault corridors striking N/S to NE/SW. The central extends laterally on around 1 kilometer and has been identified as a segment of the Cevennes fault. The maximum depth of the basement is around 6000 m and is situated between the two corridors. Interpretations on seismic lines highlight a westward migration of Cenozoic depocenters within time. A structural analysis of the Montoison borehole confirms it is affected by a major fault interpreted as the Cevennes fault. Fault zone cuts across the Keuper and is characterized by an heterometric breccia within marly layers. The entire sedimentary pile recorded 2 sets of fractures: perpendicular and parallel to the borehole axis. Both sets are recrystallized. Nature of recrystallization (quartz, calcite and dolomite) strongly depends on the hostrock. An important thread of barite is located under the fault zone, putting

  3. Optimal fault signal estimation

    NARCIS (Netherlands)

    Stoorvogel, Antonie Arij; Niemann, H.H.; Saberi, A.; Sannuti, P.

    2002-01-01

    We consider here both fault identification and fault signal estimation. Regarding fault identification, we seek either exact or almost fault identification. On the other hand, regarding fault signal estimation, we seek either $H_2$ optimal, $H_2$ suboptimal or Hinfinity suboptimal estimation. By

  4. Late Pleistocene flank collapse of Zempoala volcano (Central Mexico) and the role of fault reactivation

    Science.gov (United States)

    Arce, José Luis; Macías, Rodolfo; García Palomo, Armando; Capra, Lucia; Macías, José Luis; Layer, Paul; Rueda, Hernando

    2008-11-01

    Zempoala is an extinct Pleistocene (˜ 0.7-0.8 Ma) stratovolcano that together with La Corona volcano (˜ 0.9 Ma) forms the southern end of the Sierra de las Cruces volcanic range, Central Mexico. The volcano consists of andesitic and dacitic lava flows and domes, as well as pyroclastic and epiclastic sequences, and has had a complex history with several flank collapses. One of these collapses occurred during the late Pleistocene on the S-SE flank of the volcano and produced the Zempoala debris avalanche deposit. This collapse could have been triggered by the reactivation of two normal fault systems (E-W and NE-SW), although magmatic activity cannot be absolutely excluded. The debris avalanche traveled 60 km to the south, covers an area of 600 km 2 and has a total volume of 6 km 3, with a calculated Heim coefficient (H/L) of 0.03. Based on the textural characteristics of the deposit we recognized three zones: proximal, axial, and lateral distal zone. The proximal zone consists of debris avalanche blocks that develop a hummocky topography; the axial zone corresponds with the main debris avalanche deposit made of large clasts set in a sandy matrix, which transformed to a debris flow in the lateral distal portion. The deposit is heterolithologic in composition, with dacitic and andesitic fragments from the old edifice that decrease in volume as bulking of exotic clasts from the substratum increase. Several cities (Cuernavaca, Jojutla de Juárez, Alpuyeca) with associated industrial, agricultural, and tourism activities have been built on the deposit, which pose in evidence the possible impact in case of a new event with such characteristics, since the area is still tectonically active.

  5. Fault-Zone Deformation and Strain Partitioning at the Brittle-Ductile Transition, SEMP Fault, Austrian Alps.

    Science.gov (United States)

    Cole, J. N.; Hacker, B. R.; Ratschbacher, L.; Dolan, J. F.; Frost, E.; Barth, N.

    2005-12-01

    The differentially exhumed Miocene strike-slip Salzachtal-Ennstal-Mariazell-Puchberg (SEMP) fault in Eastern Austria allows one to study fault structure from Earth's surface to ~30km depth, simply by moving along strike from the Vienna basin to the Tauern Window. Coincident with its entry into the Tauern Window, the SEMP fault passes from a dominantly brittle to a dominantly ductile structure. It is these kinds of brittle-ductile transitions that represent major mechanical discontinuities in the crust and may represent the base of the seismogenic zone. The Tauern segment of the SEMP fault therefore represents a key location for studying earthquake nucleation and mid-crustal rheology. Previous studies (e.g. Behrmann, 1990; Ratschbacher et al., 1991a; Linzer et al., 2002) suggested that the SEMP fault splayed down-section into the Tauern Window into a series of ductile shear zones, including the Olperer, Griener, and Ahrntal shear zones. At each of these locations, however, outcrop-scale structures (e.g. cross-cutting dikes) demonstrate that the main shear-zone fabrics are pre-Alpine, and thus largely unrelated to the SEMP. In contrast, a brittle-ductile shear zone in the northeastern edge of the Tauern Window (near Rinderkarsee south of Krimml) is a probable deeper level portion of the SEMP. The Rinderkarsee shear zone is localized along the contact between the tonalitic Zentral Gneiss and the metasedimentary/meta-igneous rocks of the Habach Group, but extends at least 1300m into the Zentral Gneiss. Shear strain is partitioned into separate discrete zones of sinistral and dextral shear, and both structures have the same slip plane mineralogy and are thus interpreted as coeval. Generally, sinistral shear zones are subvertical and strike NE-SW, while dextral shear zones are steeply dipping and strike NW-SE. At Rinderkarsee there exists a continuum of deformation from high to low temperature. High-temperature deformation shows dominantly sinistral amphibolite

  6. Kinematically Coupled Strike-Slip and Normal Faults in the Lake Mead Strike-Slip Fault System, Southeast Nevada

    Science.gov (United States)

    Kattenhorn, S. A.; Marshall, S. T.; Cooke, M. L.

    2008-12-01

    The Lake Mead fault system consists of a ~95 km long, northeast-trending zone of strike-slip faults of Miocene age that accommodate a total left-lateral offset of 20-65 km. We use a combination of detailed field mapping and numerical modeling to show that a previously unnamed left-lateral strike-slip segment of the Lake Mead fault system and a dense cluster of dominantly west-dipping normal faults acted in concert to accommodate regional left-lateral offset. We suggest that the strike-slip fault that we refer to as the Pinto Ridge fault: (1) was kinematically related to other faults of the Lake Mead fault system; (2) was responsible for the creation of the normal fault cluster at Pinto Ridge; and (3) utilized these normal faults as linking structures between separate strike-slip fault segments to create a longer, through-going fault. Results from numerical models demonstrate that the observed location and curving strike patterns of the normal fault cluster is consistent with the faults having formed as secondary structures as the result of the perturbed stress field around the slipping Pinto Ridge fault. Comparison of mechanical efficiency of various normal fault geometries within extending terranes suggests that the observed west dip of normal faults reflects a west- dipping anisotropy at depth, such as a detachment. The apparent terminations of numerous strike-slip faults of the Lake Mead fault system into west-dipping normal faults suggest that a west-dipping detachment may be regionally coherent.

  7. A new relevant seismic source of the Eastern Betic Shear Zone with Holocene activity: Los Tollos Fault (Murcia, SE Spain).

    Science.gov (United States)

    Insua-Arevalo, Juan M.; Garcia-Mayordomo, Julian; Salazar, Angel; Rodriguez-Escudero, Emilio; Martin-Banda, Raquel; Alvarez-Gomez, Jose A.; Canora, Carolina; Martinez-Diaz, Jose J.

    2014-05-01

    The NW-SE convergence between the Nubian and Eurasian plates in the western Mediterranean (4-5mm/yr) produces a crustal deformation of the southeastern Iberian Peninsula where Late Neogene and Quaternary faulting activity is dominated by a large NE-SW left-lateral strike-slip fault system: the Eastern Betic Shear Zone (EBSZ). The EBSZ is a cortical structure in NNE to NE direction and sigmoid trace that stretches for more than 450 km, and includes, from north to south, the well-known faults of Bajo Segura, Carrascoy, Alhama de Murcia, Palomares and Carboneras. Historically, several of the most destructive seismic events in the Iberian Peninsula, reaching intensities up to IX-X (MSK), have occurred in the area. Those events have been related to the main faults belonging to the EBSZ. Recently, one of the most damaging earthquakes recorded in recent times in Spain, the Lorca earthquake (11/05/2011, Mw 5.2. IEMS98 VII), has been related to the Alhama de Murcia Fault. In this work, we present Los Tollos Fault (LTF) as a new relevant tectonic feature belonging to the Eastern Betic Shear Zone. LTF is located southwest of the Carrascoy Fault, close to densely populated villages (eg: Alhama de Murcia, Totana) and less than 30 km away from downtown Murcia, the largest city of the region with almost half a million inhabitants. This fact highlights the importance of studying the LTF seismogenic potential in order to gain a better picture of the local seismic hazard and risk in the region. The aim of this work is to contribute with new data to parameterize the paleoseismic activity of this active fault in order to be included in future seismic hazard assessments of the area. LTF has been previously mapped as normal fault dipping to the NW. Furthermore, it has also been interpreted as the possible SW extension of the Carrascoy Fault. However, we show that LTF is actually a left-lateral reverse fault dipping to the SE and that it has no apparent connection to the Carrascoy Fault

  8. Lithological 3D grid model of the Vuonos area built by using geostatistical simulation honoring the 3D fault model and structural trends of the Outokumpu association rocks in Eastern Finland

    Science.gov (United States)

    Laine, Eevaliisa

    2015-04-01

    The Outokumpu mining district - a metallogenic province about 100 km long x 60 km wide - hosts a Palaeoproterozoic sulfide deposit characterized by an unusual lithological association. It is located in the North Karelia Schist Belt , which was thrust on the late Archaean gneissic-granitoid basement of the Karelian craton during the early stages of the Svecofennian Orogeny between 1.92 and 1.87 Ga (Koistinen 1981). Two major tectono-stratigraphic units can be distinguished, a lower, parautochthonous 'Lower Kaleva' unit and an upper, allochthonous 'upper Kaleva' unit or 'Outokumpu allochthon'. The latter consists of tightly-folded deep marine turbiditic mica schists and metagraywackes containing intercalations of black schist, and the Outo¬kumpu assemblage, which comprises ca. 1950 Ma old, serpentinized peridotites surrounded by carbonate-calc-silicate ('skarn')-quartz rocks. The ore body is enclosed in the Outokumpu assemblage, which is thought to be part of a disrupted and incomplete ophiolite complex (Vuollo & Piirainen 1989) that can be traced to the Kainuu schist belt further north where the well-preserved Jormua ophiolite is ex¬posed (Kontinen 1987, Peltonen & Kontinen 2004). Outokumpu can be divided into blocks divided by faults and shear zones (Saalmann and Laine, 2014). The aim of this study was to make a 3D lithological model of a small part of the Outokumpu association rocks in the Vuonos area honoring the 3D fault model built by Saalmann and Laine (2014). The Vuonos study area is also a part of the Outokumpu mining camp area (Aatos et al. 2013, 2014). Fault and shear structures was used in geostatistical gridding and simulation of the lithologies. Several possible realizations of the structural grids, conforming the main lithological trends were built. Accordingly, it was possible to build a 3D structural grid containing information of the distribution of the possible lithologies and an estimation the associated uncertainties. References: Aatos, S

  9. Fault zone fabric and fault weakness

    NARCIS (Netherlands)

    Collettini, C.; Niemeijer, A.; Viti, C.; Marone, C.

    2009-01-01

    Geological and geophysical evidence suggests that some crustal faults are weak1–6 compared to laboratory measurements of frictional strength7. Explanations for fault weakness include the presence of weak minerals4, high fluid pressures within the fault core8,9 and dynamic processes such as

  10. Reverse fault growth and fault interaction with frictional interfaces: insights from analogue models

    Science.gov (United States)

    Bonanno, Emanuele; Bonini, Lorenzo; Basili, Roberto; Toscani, Giovanni; Seno, Silvio

    2017-04-01

    precut models with isotropic models to evaluate the trends of variability. Our results indicate that the discontinuities are reactivated especially when the tip of the newly-formed fault is either below or connected to them. During the stage of maximum activity along the precut, the faults slow down or even stop their propagation. The fault propagation systematically resumes when the angle between the fault and the precut is about 90° (critical angle); only during this stage the fault crosses the precut. The reactivation of the discontinuities induces an increase of the apical angle of the fault-related fold and produces wider limbs compared to the isotropic reference experiments.

  11. Stafford fault system: 120 million year fault movement history of northern Virginia

    Science.gov (United States)

    Powars, David S.; Catchings, Rufus D.; Horton, J. Wright; Schindler, J. Stephen; Pavich, Milan J.

    2015-01-01

    The Stafford fault system, located in the mid-Atlantic coastal plain of the eastern United States, provides the most complete record of fault movement during the past ~120 m.y. across the Virginia, Washington, District of Columbia (D.C.), and Maryland region, including displacement of Pleistocene terrace gravels. The Stafford fault system is close to and aligned with the Piedmont Spotsylvania and Long Branch fault zones. The dominant southwest-northeast trend of strong shaking from the 23 August 2011, moment magnitude Mw 5.8 Mineral, Virginia, earthquake is consistent with the connectivity of these faults, as seismic energy appears to have traveled along the documented and proposed extensions of the Stafford fault system into the Washington, D.C., area. Some other faults documented in the nearby coastal plain are clearly rooted in crystalline basement faults, especially along terrane boundaries. These coastal plain faults are commonly assumed to have undergone relatively uniform movement through time, with average slip rates from 0.3 to 1.5 m/m.y. However, there were higher rates during the Paleocene–early Eocene and the Pliocene (4.4–27.4 m/m.y), suggesting that slip occurred primarily during large earthquakes. Further investigation of the Stafford fault system is needed to understand potential earthquake hazards for the Virginia, Maryland, and Washington, D.C., area. The combined Stafford fault system and aligned Piedmont faults are ~180 km long, so if the combined fault system ruptured in a single event, it would result in a significantly larger magnitude earthquake than the Mineral earthquake. Many structures most strongly affected during the Mineral earthquake are along or near the Stafford fault system and its proposed northeastward extension.

  12. A Uniform Fault Zone Diffusivity Structure in the Simi Valley Based on Water Level Tidal and Barometric Response

    Science.gov (United States)

    Xue, L.; Brodsky, E. E.; Allègre, V.; Parker, B. L.; Cherry, J. A.

    2016-12-01

    Water levels inside conventional water wells can tap an artesian aquifer response to pressure head disturbances caused by the Earth tides and surface atmospheric loading. The fluctuation of water levels can measure the hydrogeologic properties of the formation surrounding these wells. Specifically, the amplitude of water level oscillation is determined by formation specific storage, and the phase shift between the water level oscillation and the pressure head disturbance is determined by formation permeability. We utilized 36 wells completed in fractured, interbedded sandstone of turbidite origin in an upland area of southern California to measure the in-situ hydrogeologic properties by combining the water level tidal and barometric responses. This site experiences north-south shortening and it has groups of NE-SW and east-west conjugate faults. The site has been intensively characterized and monitored hydrologically since the 1980's because of the groundwater contamination. Hence, this study provides a good opportunity to measure the in-situ hydrogeologic properties for comparison to other test types and scales. Most of the observed water level tidal responses have a lead phase response, which cannot be interpreted either by the water level response in a confined aquifer or the water level response in an unconfined aquifer. To interpret these observations, we utilized the water level response in a partially confined aquifer, resulting in both positive and negative phase information when fully considering all the observations. Due to the different mechanisms for tidal versus barometric water level responses, the combination can give better constraints on the inverted hydrologic properties. The range of the measured permeability is 10-15-10-13 m2 and the range of the specific storage is 10-7-10-5 1/m. The resulting diffusivity is within 10-2-10-1 m2/s which is relatively uniform. This indicates the fault damages in the site are relatively homogeneous at the scale of

  13. Fracture analysis and determination of in-situ stress direction from resistivity and acoustic image logs and core data in the Wenchuan Earthquake Fault Scientific Drilling Borehole-2 (50-1370 m)

    Science.gov (United States)

    Nie, Xin; Zou, Changchun; Pan, Li; Huang, Zhaohui; Liu, Dongming

    2013-05-01

    After the Wenchuan Earthquake on May 12th, 2008, the Wenchuan Earthquake Fault Scientific Drilling Project (WFSD) was initiated in order to investigate the structure of the fault zones and the mechanism of the earthquake. The WFSD contains four boreholes (WFSD-1, WFSD-2, WFSD-3 and WFSD-4) lying at the maximum displacement locations along the Yingxiu-Beichuan fault zone and the Guanxian-Anxian fault zone, and WFSD-2 is the second borehole and is still being drilled. Core samples, resistivity and acoustic image logging data were acquired from 50 to 1370 m. The natural fractures, borehole breakouts, drilling-induced fractures and drilling-enhanced natural fractures were identified from the cores and the image logs and were statistically analyzed. The strikes of the natural fractures systematically vary and can be sorted into four groups according to depth: (1) above 637 m, mainly striking ENE-WSW; (2) in the interval of 637-932.6 m, striking NNE-SSW; (3) in the interval of 932.6-1200 m, directed ENE-WSW then to WNW-ESE, while striking NE-SW from 1030 m to 1150 m; (4) from 1200 m to 1370 m, maintaining a strike of WNW-ESE. The natural fractures from 50 m to 637 m seem to be reverse faults which strike approximately parallelly to the main fault. Two sets of conjugate fractures around 1002.4 m indicating subvertical maximum principal paleo-stress direction may be a subordinate structure of the main fault caused by a local stress field, and it reveals the complex stress field of Yingxiu-Beichuan fault zone when the fractures formed. A total of 12 BOs, 2 sets of DIFs and one set of DEFs with an overall length of 30.4 m were interpreted from 960 m to 1370 m in WFSD-2. The average SHmax orientation interpreted for WFSD-2 (960-1370 m) is 120.7°-300.7°N (i.e. WNW-ESE) with the standard deviation of 9.2° and it is consistent with the stress status of Yingxiu-Beichuan fault zone which is one of the main fault zones in the 2008 Wenchuan Earthquake. Well logging data and

  14. Fault classification method for the driving safety of electrified vehicles

    Science.gov (United States)

    Wanner, Daniel; Drugge, Lars; Stensson Trigell, Annika

    2014-05-01

    A fault classification method is proposed which has been applied to an electric vehicle. Potential faults in the different subsystems that can affect the vehicle directional stability were collected in a failure mode and effect analysis. Similar driveline faults were grouped together if they resembled each other with respect to their influence on the vehicle dynamic behaviour. The faults were physically modelled in a simulation environment before they were induced in a detailed vehicle model under normal driving conditions. A special focus was placed on faults in the driveline of electric vehicles employing in-wheel motors of the permanent magnet type. Several failures caused by mechanical and other faults were analysed as well. The fault classification method consists of a controllability ranking developed according to the functional safety standard ISO 26262. The controllability of a fault was determined with three parameters covering the influence of the longitudinal, lateral and yaw motion of the vehicle. The simulation results were analysed and the faults were classified according to their controllability using the proposed method. It was shown that the controllability decreased specifically with increasing lateral acceleration and increasing speed. The results for the electric driveline faults show that this trend cannot be generalised for all the faults, as the controllability deteriorated for some faults during manoeuvres with low lateral acceleration and low speed. The proposed method is generic and can be applied to various other types of road vehicles and faults.

  15. Lithospheric deformation inferred from teleseismic shear wave splitting observations in the Scottish Highlands

    Science.gov (United States)

    Bastow, I. D.; Owens, T. J.; Helffrich, G.; Knapp, J. H.

    2006-05-01

    The Scottish Highlands is an area that has experienced intense tectonic deformation over a recorded geological history that dates back to the Precambrian. Evidence for large scale deformation during the Caledonian orogeny is evident, for example, at the Great Glen and Highland Boundary faults, which have been investigated by field based studies of surface geology. The RUSH (Reflections Under the Scottish Highlands) broadband seismic network of 24 stations recorded continuously for 2 years in 2001-3 and traversed several of the major tectonic terrane boundaries in Scotland. Here we employ the method of Silver and Chan (1991) to estimate splitting parameters (dt, phi) using teleseismic shear waves recorded by these stations. The problem of large amounts of microseismic noise in our data is overcome by stacking individual results using the approach of Restivo and Helffrich (1999); high signal-to-noise ratio results are given more weight in the stack. We explore the relationship between splitting and structural fabric and find that fast polarisation directions are most commonly parallel to geological features such as the NE-SW trending Great Glen and Highland Boundary faults. In the north west part of the study area, towards the Moine thust zone, a change from NE- SW to E-W oriented polarisation direction is noted but dt is unchanged. dt increases markedly towards the NE-SW terrane boundaries. The results confirm that lithospheric scale deformation in Scotland has a preserved "fossil" anisotropic signature, up to hundreds of millions of years after the last tectonic episode.

  16. The relationship of near-surface active faulting to megathrust splay fault geometry in Prince William Sound, Alaska

    Science.gov (United States)

    Finn, S.; Liberty, L. M.; Haeussler, P. J.; Northrup, C.; Pratt, T. L.

    2010-12-01

    We interpret regionally extensive, active faults beneath Prince William Sound (PWS), Alaska, to be structurally linked to deeper megathrust splay faults, such as the one that ruptured in the 1964 M9.2 earthquake. Western PWS in particular is unique; the locations of active faulting offer insights into the transition at the southern terminus of the previously subducted Yakutat slab to Pacific plate subduction. Newly acquired high-resolution, marine seismic data show three seismic facies related to Holocene and older Quaternary to Tertiary strata. These sediments are cut by numerous high angle normal faults in the hanging wall of megathrust splay. Crustal-scale seismic reflection profiles show splay faults emerging from 20 km depth between the Yakutat block and North American crust and surfacing as the Hanning Bay and Patton Bay faults. A distinct boundary coinciding beneath the Hinchinbrook Entrance causes a systematic fault trend change from N30E in southwestern PWS to N70E in northeastern PWS. The fault trend change underneath Hinchinbrook Entrance may occur gradually or abruptly and there is evidence for similar deformation near the Montague Strait Entrance. Landward of surface expressions of the splay fault, we observe subsidence, faulting, and landslides that record deformation associated with the 1964 and older megathrust earthquakes. Surface exposures of Tertiary rocks throughout PWS along with new apatite-helium dates suggest long-term and regional uplift with localized, fault-controlled subsidence.

  17. Structural controls on Eocene to Pliocene tectonic and metallogenic evolution of the southernmost Lesser Caucasus, Armenia: paleostress field reconstruction and fault-slip analysis

    Science.gov (United States)

    Hovakimyan, Samvel; Moritz, Robert; Tayan, Rodrik

    2017-04-01

    The Cenozoic evolution of the central segment of the Tethyan belt is dominated by oblique convergence and final collision of Gondwana-derived terranes and the Arabian plate with Eurasia, which created a favorable setting for the formation of the highly mineralized Meghri-Ordubad pluton in the southernmost Lesser Caucasus. Regional strike-slip faults played an important role in the control of the porphyry Cu-Mo and epithermal systems hosted by the Meghri-Ordubad pluton. In this contribution we discuss the paleostress and the kinematic environment of the major strike-slip and oblique-slip ore-controlling faults throughout the Eocene subduction to Mio-Pliocene post-collisional tectonic evolution of the Meghri-Ordubad pluton based on detailed structural field mapping of the ore districts, stereonet compilation of ore-bearing fractures and vein orientations in the major porphyry and epithermal deposits, and the paleostress reconstructions. Paleostress reconstructions indicate that during the Eocene and Early Oligocene, the main paleostress axe orientations reveal a dominant NE-SW-oriented compression, which is compatible with the subduction geometry of the Neotethys along Eurasia. This tectonic setting was favorable for dextral displacements along the two major, regional NNW-oriented Khustup-Giratakh and Salvard-Ordubad strike-slip faults. This resulted in the formation of a NS-oriented transrotational basin, known as the Central magma and ore- controlling zone (Tayan, 1998). It caused a horizontal clockwise rotation of blocks. The EW-oriented faults separating the blocks formed as en-échelon antithetic faults (Voghji, Meghrasar, Bughakyar and Meghriget-Cav faults). The Central zone consists of a network of EW-oriented sinistral and NS-oriented subparallel strike-slip faults (Tashtun, Spetry, Tey, Meghriget and Terterasar faults). They are active since the Eocene and were reactivated during the entire tectonic evolution of the pluton, but with different behaviors

  18. 2011 Las Conchas Post Fire, e435106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  19. 2011 Las Conchas Post Fire, g335106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  20. 2011 Las Conchas Post Fire, a436106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  1. 2011 Las Conchas Post Fire, g335106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  2. 2011 Las Conchas Post Fire, h235106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  3. 2011 Las Conchas Post Fire, h235106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  4. 2011 Las Conchas Post Fire, e535106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  5. 2011 Las Conchas Post Fire, e335106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  6. 2011 Las Conchas Post Fire, h335106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  7. 2011 Las Conchas Post Fire, h535106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  8. 2011 Las Conchas Post Fire, f435106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  9. 2011 Las Conchas Post Fire, h435106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  10. 2011 Las Conchas Post Fire, h135106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  11. 2011 Las Conchas Post Fire, e535106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  12. 2011 Las Conchas Post Fire, g435106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  13. 2011 Las Conchas Post Fire, a436106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  14. 2011 Las Conchas Post Fire, f435106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  15. 2011 Las Conchas Post Fire, g235106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  16. 2011 Las Conchas Post Fire, a336106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  17. 2011 Las Conchas Post Fire, f335106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  18. 2011 Las Conchas Post Fire, g235106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  19. 2011 Las Conchas Post Fire, d431506_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  20. 2011 Las Conchas Post Fire, e335106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  1. 2011 Las Conchas Post Fire, g535106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  2. 2011 Las Conchas Post Fire, h435106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  3. 2011 Las Conchas Post Fire, g435106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  4. 2011 Las Conchas Post Fire, f335106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  5. 2011 Las Conchas Post Fire, h335106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  6. 2011 Las Conchas Post Fire, a236106_ne_sw, CIR

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  7. 2011 Las Conchas Post Fire, h535106_ne_sw, RGB

    Data.gov (United States)

    Earth Data Analysis Center, University of New Mexico — Wilson and Company collected and processed multi-spectral (red, green, blue, near-infrared) digital aerial imagery of the Las Conchas Fire that burned in the Santa...

  8. Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): geodynamic implications for NNE Iran

    OpenAIRE

    Javidfakhr, Bita; Bellier, Olivier; Shabanian, Esmaeil; Siame, Lionel; Léanni, Laëtitia; Bourlès, Didier; Ahmadian, Seiran

    2011-01-01

    Abstract The Alborz is a region of active deformation within the Arabia-Eurasia collision zone. The Abr and the Khij Faults are two NE-trending left-lateral strike-slip faults in the eastern Alborz that correspond to the Shahrud fault system extended through an area of about 95?55 km2. Tectonic landforms typically associated with active strike-slip faults, such as deflected stream channels, offset ridges and fault scarps are documented along the mentioned faults. Detailed analyses ...

  9. Relationship between displacement and gravity change of Uemachi faults and surrounding faults of Osaka basin, Southwest Japan

    Science.gov (United States)

    Inoue, N.; Kitada, N.; Kusumoto, S.; Itoh, Y.; Takemura, K.

    2011-12-01

    The Osaka basin surrounded by the Rokko and Ikoma Ranges is one of the typical Quaternary sedimentary basins in Japan. The Osaka basin has been filled by the Pleistocene Osaka group and the later sediments. Several large cities and metropolitan areas, such as Osaka and Kobe are located in the Osaka basin. The basin is surrounded by E-W trending strike slip faults and N-S trending reverse faults. The N-S trending 42-km-long Uemachi faults traverse in the central part of the Osaka city. The Uemachi faults have been investigated for countermeasures against earthquake disaster. It is important to reveal the detailed fault parameters, such as length, dip and recurrence interval, so on for strong ground motion simulation and disaster prevention. For strong ground motion simulation, the fault model of the Uemachi faults consist of the two parts, the north and south parts, because of the no basement displacement in the central part of the faults. The Ministry of Education, Culture, Sports, Science and Technology started the project to survey of the Uemachi faults. The Disaster Prevention Institute of Kyoto University is carried out various surveys from 2009 to 2012 for 3 years. The result of the last year revealed the higher fault activity of the branch fault than main faults in the central part (see poster of "Subsurface Flexure of Uemachi Fault, Japan" by Kitada et al., in this meeting). Kusumoto et al. (2001) reported that surrounding faults enable to form the similar basement relief without the Uemachi faults model based on a dislocation model. We performed various parameter studies for dislocation model and gravity changes based on simplified faults model, which were designed based on the distribution of the real faults. The model was consisted 7 faults including the Uemachi faults. The dislocation and gravity change were calculated based on the Okada et al. (1985) and Okubo et al. (1993) respectively. The results show the similar basement displacement pattern to the

  10. Cross-fault pressure depletion, Zechstein carbonate reservoir, Weser-Ems area, Northern German Gas Basin

    Energy Technology Data Exchange (ETDEWEB)

    Corona, F.V.; Brauckmann, F.; Beckmann, H.; Gobi, A.; Grassmann, S.; Neble, J.; Roettgen, K. [ExxonMobil Production Deutschland GmbH (EMPG), Hannover (Germany)

    2013-08-01

    A cross-fault pressure depletion study in Upper Permian Zechstein Ca2 carbonate reservoir was undertaken in the Weser-Ems area of the Northern German Gas Basin. The primary objectives are to develop a practical workflow to define cross-fault pressures scenarios for Zechstein Ca2 reservoir drillwells, to determine the key factors of cross-fault pressure behavior in this platform carbonate reservoir, and to translate the observed cross-fault pressure depletion to fault transmissibility for reservoir simulation models. Analysis of Zechstein Ca2 cross-fault pressures indicates that most Zechstein-cutting faults appear to act as fluid-flow baffles with some local occurrences of fault seal. Moreover, there appears to be distinct cross-fault baffling or pressure depletion trends that may be related to the extent of the separating fault or fault system, degree of reservoir flow-path tortuosity, and quality of reservoir juxtaposition. Based on the above observations, a three-part workflow was developed consisting of (1) careful interpretation and mapping of faults and fault networks, (2) analysis of reservoir juxtaposition and reservoir juxtaposition quality, and (3) application of the observed cross-fault pressure depletion trends. This approach is field-analog based, is practical, and is being used currently to provide reliable and supportable pressure prediction scenarios for subsequent Zechstein fault-bounded drill-well opportunities.

  11. Fault detection and isolation in systems with parametric faults

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    1999-01-01

    The problem of fault detection and isolation of parametric faults is considered in this paper. A fault detection problem based on parametric faults are associated with internal parameter variations in the dynamical system. A fault detection and isolation method for parametric faults is formulated...

  12. Iowa Bedrock Faults

    Data.gov (United States)

    Iowa State University GIS Support and Research Facility — This fault coverage locates and identifies all currently known/interpreted fault zones in Iowa, that demonstrate offset of geologic units in exposure or subsurface...

  13. Layered Fault Management Architecture

    National Research Council Canada - National Science Library

    Sztipanovits, Janos

    2004-01-01

    ... UAVs or Organic Air Vehicles. The approach of this effort was to analyze fault management requirements of formation flight for fleets of UAVs, and develop a layered fault management architecture which demonstrates significant...

  14. Software fault tolerance

    OpenAIRE

    Kazinov, Tofik Hasanaga; Mostafa, Jalilian Shahrukh

    2009-01-01

    Because of our present inability to produce errorfree software, software fault tolerance is and will contiune to be an important consideration in software system. The root cause of software design errors in the complexity of the systems. This paper surveys various software fault tolerance techniquest and methodologies. They are two gpoups: Single version and Multi version software fault tolerance techniques. It is expected that software fault tolerance research will benefit from this research...

  15. Fault Tolerant Feedback Control

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.

    2001-01-01

    An architecture for fault tolerant feedback controllers based on the Youla parameterization is suggested. It is shown that the Youla parameterization will give a residual vector directly in connection with the fault diagnosis part of the fault tolerant feedback controller. It turns out that there...

  16. Performance based fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2002-01-01

    Different aspects of fault detection and fault isolation in closed-loop systems are considered. It is shown that using the standard setup known from feedback control, it is possible to formulate fault diagnosis problems based on a performance index in this general standard setup. It is also shown...

  17. Fault zone architecture within Miocene–Pliocene syn-rift sediments ...

    Indian Academy of Sciences (India)

    The present study focusses on field description of small normal fault zones in Upper Miocene–Pliocene sedimentary rocks on the northwestern side of the Red Sea, Egypt. The trend of these fault zones is mainly NW–SE. Paleostress analysis of 17 fault planes and slickenlines indicate that the tension direction is NE–SW.

  18. Information Based Fault Diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2008-01-01

    Fault detection and isolation, (FDI) of parametric faults in dynamic systems will be considered in this paper. An active fault diagnosis (AFD) approach is applied. The fault diagnosis will be investigated with respect to different information levels from the external inputs to the systems....... These inputs are disturbance inputs, reference inputs and auxilary inputs. The diagnosis of the system is derived by an evaluation of the signature from the inputs in the residual outputs. The changes of the signatures form the external inputs are used for detection and isolation of the parametric faults....

  19. The Lake Edgar Fault: an active fault in Southwestern Tasmania, Australia, with repeated displacement in the Quaternary

    Directory of Open Access Journals (Sweden)

    V. Jensen

    2003-06-01

    Full Text Available The Lake Edgar Fault in Western Tasmania, Australia is marked by a prominent fault scarp and is a recently reactivated fault initially of Cambrian age. The scarp has a northerly trend and passes through the western abutment of the Edgar Dam, a saddle dam on Lake Pedder. The active fault segment displaces geologically young river and glacial deposits. It is 29 ± 4 km long, and dips to the west. Movement on the fault has ruptured the ground surface at least twice within the Quaternary and possibly the last ca. 25 000 years; the most recent rupture has occurred since the last glaciation (within the last ca. 10000 years. This is the only known case of surface faulting in Australia with evidence for repeated ruptures in the Late Pleistocene. Along its central portion the two most recent surface-faulting earthquakes have resulted in about 2.5 m of vertical displacement each (western side up. The Lake Edgar Fault is considered capable of generating earthquakes in the order of magnitude 61/2-71/4. The Gell River Fault is another fault nearby that was apparently also active in the Late Pleistocene. It has yet to be studied in detail but the scarp appears to be more degraded and therefore older than the most recent movement on the Lake Edgar Fault.

  20. Fault isolability conditions for linear systems with additive faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...... can occur simultaneously, whereas faults belonging to different fault sets appear disjoint in time. The proposed fault detection and isolation (FDI) scheme consists of three steps. A fault detection (FD) step is followed by a fault set isolation (FSI) step. Here the fault set is isolated wherein...... the faults have occurred. The last step is a fault isolation (FI) of the faults occurring in a specific fault set, i.e. equivalent with the standard FI step....

  1. Fault kinematics and active tectonics at the southeastern boundary of the eastern Alborz (Abr and Khij fault zones): Geodynamic implications for NNE Iran

    Science.gov (United States)

    Javidfakhr, Bita; Bellier, Olivier; Shabanian, Esmaeil; Siame, Lionel; Léanni, Laëtitia; Bourlès, Didier; Ahmadian, Seiran

    2011-10-01

    The Alborz is a region of active deformation within the Arabia-Eurasia collision zone. The Abr and the Khij Faults are two NE-trending left-lateral strike-slip faults in the eastern Alborz that correspond to the Shahrud fault system extended through an area of about 95 km × 55 km. Tectonic landforms typically associated with active strike-slip faults, such as deflected stream channels, offset ridges and fault scarps are documented along the mentioned faults. Detailed analyses of satellite images and digital topographic data accompanied by field surveys allowed us to measure horizontal offsets of about 420 ± 50 m and 400 ± 50 m for the Abr and Khij Faults, respectively. A total of 8 quartz-rich samples were sampled and dated from two different fan surfaces using in situ-produced 10Be cosmogenic dating method. Minimum exposure ages for the abandonment of the alluvial fan surfaces of 115 ± 14 kyr along the Abr Fault and of 230 ± 16 kyr along the Khij Fault imply that both faults are active with slip rates of about 3-4 mm yr -1 and 1-3 mm yr -1, respectively. The results of our study provide the first direct quantitative geological estimates of slip rate along these two active faults and place a new constraint on slip distribution between the faults in the eastern Alborz. Fault kinematic studies (from fault slip data) indicate a N35°E-trending maximum stress axis comprising a dominant strike-slip regime in agreement with the geomorphological analyses. The left-lateral strike-slip faulting along the Abr and Khij Faults and their associated fault zones in the eastern Alborz can be due to the westward component of motion of the South Caspian Basin with respect to Eurasia and Central Iran.

  2. Seeing the faults from the hummocks: tectonic or landslide fault discrimination with LiDAR at Mt Shasta, California

    Directory of Open Access Journals (Sweden)

    Riccardo eTortini

    2015-08-01

    Full Text Available The detection of active faults around volcanoes is of importance for both seismic and volcanic hazard assessment. The lower flanks of volcanoes are, however, often covered by debris avalanche deposits (DADs that are highly faulted during transport. Such areas are dissected by faults that delineate deposit hummocks, making it hard to differentiate tectonic from landslide structures. Detailed analysis of DAD surface morphology can detect fault trends not compatible with landslide emplacement, but which do follow regional trends or cut hummocks. Indeed, neotectonic faults may also cut across avalanche structure and morphology and thus be distinguishable. We present evidence from the Mount Shasta DAD of neotectonic deformation along a north-south trending fault. The fault was identified on an airborne LiDAR campaign and then confirmed in the field. The discovery shows the value of high-resolution topographic mapping of such areas, and exposes a previously unknown fault. In this particular case the identified fault is not long, and may not present a strong seismic risk to the sparsely populated area, but the full area of the DAD has not been mapped and there are suggestions from lower resolution datasets that other faults may be present outside the LiDAR coverage, indicating that the Shasta basin could be more seismically active than presently thought. We speculate that this may be part of a westward extension of the Klamath basin rifting. Many DADs at the base of other volcanoes are highly populated and fault detection in these zones could have a significant impact on risk assessment.

  3. Seeing the faults from the hummocks: tectonic or landslide fault discrimination with LiDAR at Mt Shasta, California

    Science.gov (United States)

    Tortini, Riccardo; van Wyk de Vries, Benjamin; Carn, Simon

    2015-08-01

    The detection of active faults around volcanoes is of importance for both seismic and volcanic hazard assessment. The lower flanks of volcanoes are, however, often covered by debris avalanche deposits (DADs) that are highly faulted during transport. Such areas are dissected by faults that delineate deposit hummocks, making it hard to differentiate tectonic from landslide structures. Detailed analysis of DAD surface morphology can detect fault trends not compatible with landslide emplacement, but which do follow regional trends or cut hummocks. Indeed, neotectonic faults may also cut across avalanche structure and morphology and thus be distinguishable. We present evidence from the Mount Shasta DAD of neotectonic deformation along a north-south trending fault. The fault was identified on an airborne LiDAR campaign and then confirmed in the field. The discovery shows the value of high-resolution topographic mapping of such areas, and exposes a previously unknown fault. In this particular case the identified fault is not long, and may not present a strong seismic risk to the sparsely populated area, but the full area of the DAD has not been mapped and there are suggestions from lower resolution datasets that other faults may be present outside the LiDAR coverage, indicating that the Shasta basin could be more seismically active than presently thought. We speculate that this may be part of a westward extension of the Klamath basin rifting. Many DADs at the base of other volcanoes are highly populated and fault detection in these zones could have a significant impact on risk assessment.

  4. How Faults Shape the Earth.

    Science.gov (United States)

    Bykerk-Kauffman, Ann

    1992-01-01

    Presents fault activity with an emphasis on earthquakes and changes in continent shapes. Identifies three types of fault movement: normal, reverse, and strike faults. Discusses the seismic gap theory, plate tectonics, and the principle of superposition. Vignettes portray fault movement, and the locations of the San Andreas fault and epicenters of…

  5. Novel Coupled Thermochronometric and Geochemical Investigation of Blind Geothermal Resources in Fault-Controlled Dilational Corners

    Energy Technology Data Exchange (ETDEWEB)

    Stockli, Daniel [Univ. of Texas, Austin, TX (United States)

    2017-02-17

    Geothermal plays in extensional and transtensional tectonic environments have long been a major target in the exploration of geothermal resources and the Dixie Valley area has served as a classic natural laboratory for this type of geothermal plays. In recent years, the interactions between normal faults and strike-slip faults, acting either as strain relay zones have attracted significant interest in geothermal exploration as they commonly result in fault-controlled dilational corners with enhanced fracture permeability and thus have the potential to host blind geothermal prospects. Structural ambiguity, complications in fault linkage, etc. often make the selection for geothermal exploration drilling targets complicated and risky. Though simplistic, the three main ingredients of a viable utility-grade geothermal resource are heat, fluids, and permeability. Our new geological mapping and fault kinematic analysis derived a structural model suggest a two-stage structural evolution with (a) middle Miocene N -S trending normal faults (faults cutting across the modern range), - and tiling Olio-Miocene volcanic and sedimentary sequences (similar in style to East Range and S Stillwater Range). NE-trending range-front normal faulting initiated during the Pliocene and are both truncating N-S trending normal faults and reactivating some former normal faults in a right-lateral fashion. Thus the two main fundamental differences to previous structural models are (1) N-S trending faults are pre-existing middle Miocene normal faults and (2) these faults are reactivated in a right-later fashion (NOT left-lateral) and kinematically linked to the younger NE-trending range-bounding normal faults (Pliocene in age). More importantly, this study provides the first constraints on transient fluid flow through the novel application of apatite (U-Th)/He (AHe) and 4He/3He thermochronometry in the geothermally active Dixie Valley area in Nevada.

  6. Uncovering dynamic fault trees

    NARCIS (Netherlands)

    Junges, Sebastian; Guck, Dennis; Katoen, Joost P.; Stoelinga, Mariëlle Ida Antoinette

    Fault tree analysis is a widespread industry standard for assessing system reliability. Standard (static) fault trees model the failure behaviour of systems in dependence of their component failures. To overcome their limited expressive power, common dependability patterns, such as spare management,

  7. Middle Miocene E-W tectonic horst structure of Crete through extensional detachment faults

    Science.gov (United States)

    Papanikolaou, D.; Vassilakis, E.

    2008-07-01

    Two east-west trending extensional detachment faults have been recognized in Crete, one with top-to-the-north motion of the hanging wall toward the Cretan Sea and one with top-to-the-south motion of the hanging wall toward the Libyan Sea. The east-west trending zone between these two detachment faults, which forms their common footwall, comprises a tectonic horst formed during Middle Miocene slip on the detachment faults. The detachment faults disrupt the overall tectono-stratigraphic succession of Crete and are localized along pre-existing thrust faults and along particular portions of the stratigraphic sequence, including the transition between the Permo-Triassic Tyros Beds and the base of the Upper Triassic-Eocene carbonate platform of the Tripolis nappe. By recognizing several different tectono-stratigraphic formations within what is generally termed the 'phyllite-quartzite', it is possible to distinguish these extensional detachment faults from thrust faults and minor discontinuities in the sequence. The deformation history of units within Crete can be summarized as: (i) compressional deformation producing arc-parallel east-west trending south-directed thrust faults in Oligocene to Early Miocene time (ii) extensional deformation along arc-parallel, east-west trending detachment faults in Middle Miocene time, with hanging wall motion to the north and south; (iii) Late Miocene-Quaternary extensional deformation along high-angle normal and oblique normal faults that disrupt the older arc-parallel structures.

  8. Middle Miocene E-W tectonic horst structure of Crete through extensional detachment faults

    Energy Technology Data Exchange (ETDEWEB)

    Papanikolaou, D [Professor of Dynamics and Tectonics, School of Geology and Geoenvironment, Department of Dynamics, Tectonics and Applied Geology, National and Kapodestrian University of Athens, 15784 (Greece); Vassilakis, E [Research Scientist, School of Geology and Geoenvironment, Department of Dynamics, Tectonics and Applied Geology, National and Kapodestrian University of Athens, 15784 (Greece)], E-mail: dpapan@geol.uoa.gr, E-mail: evasilak@geol.uoa.gr

    2008-07-01

    Two east-west trending extensional detachment faults have been recognized in Crete, one with top-to-the-north motion of the hanging wall toward the Cretan Sea and one with top-to-the-south motion of the hanging wall toward the Libyan Sea. The east-west trending zone between these two detachment faults, which forms their common footwall, comprises a tectonic horst formed during Middle Miocene slip on the detachment faults. The detachment faults disrupt the overall tectono-stratigraphic succession of Crete and are localized along pre-existing thrust faults and along particular portions of the stratigraphic sequence, including the transition between the Permo-Triassic Tyros Beds and the base of the Upper Triassic-Eocene carbonate platform of the Tripolis nappe. By recognizing several different tectono-stratigraphic formations within what is generally termed the 'phyllite-quartzite', it is possible to distinguish these extensional detachment faults from thrust faults and minor discontinuities in the sequence. The deformation history of units within Crete can be summarized as: (i) compressional deformation producing arc-parallel east-west trending south-directed thrust faults in Oligocene to Early Miocene time (ii) extensional deformation along arc-parallel, east-west trending detachment faults in Middle Miocene time, with hanging wall motion to the north and south; (iii) Late Miocene-Quaternary extensional deformation along high-angle normal and oblique normal faults that disrupt the older arc-parallel structures.

  9. Fault Tolerant Control Systems

    DEFF Research Database (Denmark)

    Bøgh, S.A.

    failures. It is often feasible to increase availability for these control loops by designing the control system to perform on-line detection and reconfiguration in case of faults before the safety system makes a close-down of the process. A general development methodology is given in the thesis......This thesis considered the development of fault tolerant control systems. The focus was on the category of automated processes that do not necessarily comprise a high number of identical sensors and actuators to maintain safe operation, but still have a potential for improving immunity to component...... that carried the control system designer through the steps necessary to consider fault handling in an early design phase. It was shown how an existing control loop with interface to the plant wide control system could be extended with three additional modules to obtain fault tolerance: Fault detection...

  10. Solar system fault detection

    Science.gov (United States)

    Farrington, R.B.; Pruett, J.C. Jr.

    1984-05-14

    A fault detecting apparatus and method are provided for use with an active solar system. The apparatus provides an indication as to whether one or more predetermined faults have occurred in the solar system. The apparatus includes a plurality of sensors, each sensor being used in determining whether a predetermined condition is present. The outputs of the sensors are combined in a pre-established manner in accordance with the kind of predetermined faults to be detected. Indicators communicate with the outputs generated by combining the sensor outputs to give the user of the solar system and the apparatus an indication as to whether a predetermined fault has occurred. Upon detection and indication of any predetermined fault, the user can take appropriate corrective action so that the overall reliability and efficiency of the active solar system are increased.

  11. Synthesis of gravity, magnetic and thermal studies at the Las Tres Virgenes geothermal zone, Baja California Sur, Mexico. Sintesis de los estudios de gravimetria, magnetometria y termometria en la zona geotermica de Las Tres Virgenes, Baja California Sur, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Garcia Estrada, Gerardo (Departamento de Exploracion, Gerencia de Proyectos Geotermoelectricos de la Comision Federal de Electricidad, Morelia (Mexico)); Gonzalez Lopez, Macario (Residencia General de Cerro Prieto, Mexicali (Mexico))

    1998-01-15

    Las Tres Virgenes geothermal zone is located in the NE-SW central sector of a sigmoidal basin that regionally has a NW-SE trend. In the local deepest zone there is a NE-SE granodioritic basement horst acting as hydrologic barrier, that makes the fluids flow up. After moving in a direction parallel to the local horst, waters continue its regional SE-NW movement controlled by regional tectonics. The flanks of the granodioritic basement horst, and local N-S faulting act as fluid paths in the hydrothermal zone, but regional NW-SE regional faults determine the general flow direction. Both regional and local tectonics show magnetic evidences of the emplacement of magmatic bodies of intermediate to basic composition. Those along NW-SE trends are more noticeable but we consider they are not the present day heat source. Intermediate magmatism along NE-SW local trend seems to be less extensive but it is younger, so, we consider it constitutes the heat source of the hydrothermal system. Thermal data suggest that the heat source is located below the volcanic chain toward the S or SW of the wells, phenomena related with the general displacement of magmatism from NE to SW along the volcanic chain. However, recent intensive faulting permits a higher permeability in the northern sector in which there are slightly smaller temperatures but at shallower depths and with higher flow rates.

  12. Continuation, south of Oaxaca City (southern Mexico) of the Oaxaca-Juarez terrane boundary and of the Oaxaca Fault. Based in MT, gravity and magnetic studies

    Science.gov (United States)

    Campos-Enriquez, J. O.; Corbo, F.; Arzate-Flores, J.; Belmonte-Jimenez, S.; Arango-Galván, C.

    2010-12-01

    The Oaxaca Fault represents Tertiary extensional reactivation of the Juarez shear zone constituting the boundary-suture between the Oaxaca and Juarez terranes (southern Mexico). South of Oaxaca City, the fault trace disappears and there are not clear evidences for its southward continuation at depth. The crust in southern México has been studied through seismic refraction, and seismological and magnetotelluric (MT) studies. The refraction studies did not image the Oaxaca Fault. However, previous regional MT studies suggest that the Oaxaca-Juarez terrane boundary lies to the east of the Zaachila and Mitla sub-basins, which implies sinistral displacement along the Donaji Fault. Campos-Enriquez et al. (2009) established the shallow structure of the Oaxaca-Juarez terrane boundary based in detailed gravity and magnetic studies. This study enabled: 1) to establish the shallow structure of the composite depression comprising three N-S sub-basins: the northern Etla and southern Zaachila sub-basins separated by the Atzompa sub-basin. According to the Oaxaca-Juarez terrane boundary is displaced sinistrally ca. 20 km along the E-W Donají Fault, which defines the northern boundary of the Zaachila sub-basin. At the same time,, the Oaxaca Fault may either continue unbroken southwards along the western margin of a horst in the Zaachila sub-basin or be offset along with the terrane boundary. This model implies that originally the suture was continuous south of the Donaji Fault. A constraint for the accreation of the Oaxaca and Juarez terranes. Thirty MT soundings were done in the area of the Central Valleys, Oaxaca City (southern Mexico). In particular we wanted to image the possible southward continuation of the Oaxaca Fault. 22 Mt sounding are located along two NE-SW profiles to the northern and to the south of the City of Oaxaca. To the north of Oaxaca City, the electrical resistivity distribution obtained show a clear discontinuity across the superficial trace of the Oaxaca

  13. Identification of active fault using analysis of derivatives with vertical second based on gravity anomaly data (Case study: Seulimeum fault in Sumatera fault system)

    Science.gov (United States)

    Hududillah, Teuku Hafid; Simanjuntak, Andrean V. H.; Husni, Muhammad

    2017-07-01

    Gravity is a non-destructive geophysical technique that has numerous application in engineering and environmental field like locating a fault zone. The purpose of this study is to spot the Seulimeum fault system in Iejue, Aceh Besar (Indonesia) by using a gravity technique and correlate the result with geologic map and conjointly to grasp a trend pattern of fault system. An estimation of subsurface geological structure of Seulimeum fault has been done by using gravity field anomaly data. Gravity anomaly data which used in this study is from Topex that is processed up to Free Air Correction. The step in the Next data processing is applying Bouger correction and Terrin Correction to obtain complete Bouger anomaly that is topographically dependent. Subsurface modeling is done using the Gav2DC for windows software. The result showed a low residual gravity value at a north half compared to south a part of study space that indicated a pattern of fault zone. Gravity residual was successfully correlate with the geologic map that show the existence of the Seulimeum fault in this study space. The study of earthquake records can be used for differentiating the active and non active fault elements, this gives an indication that the delineated fault elements are active.

  14. Structural character of the Ghost Dance Fault, Yucca Mountain, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Spengler, R.W. [Geological Survey, Denver, CO (United States); Braun, C.A.; Linden, R.M.; Martin, L.G.; Ross-Brown, D.M.; Blackburn, R.L. [SAIC, Golden, CO (United States)

    1993-12-31

    Detailed structural mapping of an area that straddles the southern part of the Ghost Dance Fault has revealed the presence of several additional subparallel to anastomosing faults. These faults, mapped at a scale of 1:240, are: (1) dominantly north-trending, (2) present on both the upthrown and downthrown sides of the surface trace of the Ghost Dance fault, (3) near-vertical features that commonly offset strata down to the west by 3 to 6 m (10 to 20 ft), and (4) commonly spaced 15 to 46 m (50 to 150 ft) apart. The zone also exhibits a structural fabric, containing an abundance of northwest-trending fractures. The width of the zone appears to be at least 213 m (700 ft) near the southernmost boundary of the study area but remains unknown near the northern extent of the study area, where the width of the study area is only 183 m (600 ft).

  15. Fault Management Metrics

    Science.gov (United States)

    Johnson, Stephen B.; Ghoshal, Sudipto; Haste, Deepak; Moore, Craig

    2017-01-01

    This paper describes the theory and considerations in the application of metrics to measure the effectiveness of fault management. Fault management refers here to the operational aspect of system health management, and as such is considered as a meta-control loop that operates to preserve or maximize the system's ability to achieve its goals in the face of current or prospective failure. As a suite of control loops, the metrics to estimate and measure the effectiveness of fault management are similar to those of classical control loops in being divided into two major classes: state estimation, and state control. State estimation metrics can be classified into lower-level subdivisions for detection coverage, detection effectiveness, fault isolation and fault identification (diagnostics), and failure prognosis. State control metrics can be classified into response determination effectiveness and response effectiveness. These metrics are applied to each and every fault management control loop in the system, for each failure to which they apply, and probabilistically summed to determine the effectiveness of these fault management control loops to preserve the relevant system goals that they are intended to protect.

  16. Fault-tolerant design

    CERN Document Server

    Dubrova, Elena

    2013-01-01

    This textbook serves as an introduction to fault-tolerance, intended for upper-division undergraduate students, graduate-level students and practicing engineers in need of an overview of the field.  Readers will develop skills in modeling and evaluating fault-tolerant architectures in terms of reliability, availability and safety.  They will gain a thorough understanding of fault tolerant computers, including both the theory of how to design and evaluate them and the practical knowledge of achieving fault-tolerance in electronic, communication and software systems.  Coverage includes fault-tolerance techniques through hardware, software, information and time redundancy.  The content is designed to be highly accessible, including numerous examples and exercises.  Solutions and powerpoint slides are available for instructors.   ·         Provides textbook coverage of the fundamental concepts of fault-tolerance; ·         Describes a variety of basic techniques for achieving fault-toleran...

  17. Fault tolerant control for uncertain systems with parametric faults

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2006-01-01

    A fault tolerant control (FTC) architecture based on active fault diagnosis (AFD) and the YJBK (Youla, Jarb, Bongiorno and Kucera)parameterization is applied in this paper. Based on the FTC architecture, fault tolerant control of uncertain systems with slowly varying parametric faults...

  18. Fault Analysis in Cryptography

    CERN Document Server

    Joye, Marc

    2012-01-01

    In the 1970s researchers noticed that radioactive particles produced by elements naturally present in packaging material could cause bits to flip in sensitive areas of electronic chips. Research into the effect of cosmic rays on semiconductors, an area of particular interest in the aerospace industry, led to methods of hardening electronic devices designed for harsh environments. Ultimately various mechanisms for fault creation and propagation were discovered, and in particular it was noted that many cryptographic algorithms succumb to so-called fault attacks. Preventing fault attacks without

  19. Three-dimensional fault framework of the 2014 South Napa Earthquake, San Francisco Bay region, California

    Science.gov (United States)

    Graymer, R. W.

    2014-12-01

    Assignment of the South Napa earthquake to a mapped fault is difficult, as it occurred where three large, northwest-trending faults converge and may interact in the subsurface. The surface rupture did not fall on the main trace of any of these faults, but instead between the Carneros and West Napa faults and northwest along strike from the northern mapped end of the Franklin Fault. The 2014 rupture plane appears to be nearly vertical, based on focal mechanisms of the mainshock and connection of the surface trace/rupture to the relocated hypocenter (J. Hardebeck, USGS). 3D surfaces constructed from published data show that the Carneros Fault is a steeply west-dipping fault that runs just west of the near-vertical 2014 rupture plane. The Carneros Fault does not appear to have been involved in the earthquake, although relocated aftershocks suggest possible minor triggered slip. The main West Napa Fault is also steeply west-dipping and that its projection intersects the 2014 rupture plane at around the depth of the mainshock hypocenter. UAVSAR data (A. Donnellan, JPL) and relocated aftershocks suggest that the main West Napa Fault experienced triggered slip/afterslip along a length of roughly 20 km. It is possible that the 2014 rupture took place along a largely unrecognized westerly strand of the West Napa Fault. The Franklin Fault is a steeply east-dipping fault (with a steeply west-dipping subordinate trace east of Mare Island) that has documented late Quaternary offset. Given the generally aligned orientation of the 3D fault surfaces, an alternative interpretation is that the South Napa earthquake occurred on the northernmost reach of the Franklin Fault within it's 3D junction with the West Napa Fault. This interpretation is supported, but not proven, by a short but prominent linear feature in the UAVSAR data at Slaughterhouse Point west of Vallejo, along trend south-southeast of the observed coseismic surface rupture.

  20. GOLD MINERAL PROSPECTING USING PHASED ARRAY TYPE L-BAND SYNTHETIC APERTURE RADAR (PALSAR SATELLITE REMOTE SENSING DATA, CENTRAL GOLD BELT, MALAYSIA

    Directory of Open Access Journals (Sweden)

    A. Beiranvand Pour

    2016-06-01

    Full Text Available The Bentong-Raub Suture Zone (BRSZ of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  1. Gold Mineral Prospecting Using Phased Array Type L-Band Synthetic Aperture Radar (palsar) Satellite Remote Sensing Data, Central Gold Belt, Malaysia

    Science.gov (United States)

    Beiranvand Pour, Amin; Hashim, Mazlan

    2016-06-01

    The Bentong-Raub Suture Zone (BRSZ) of Peninsular Malaysia is one of the significant structural zones in Sundaland, Southeast Asia. It forms the boundary between the Gondwana-derived Sibumasu terrane in the west and Sukhothai arc in the east. The BRSZ is also genetically related to the sediment-hosted/orogenic gold deposits associated with the major lineaments and form-lines in the central gold belt Central Gold Belt of Peninsular Malaysia. In tropical environments, heavy tropical rainforest and intense weathering makes it impossible to map geological structures over long distances. Advances in remote sensing technology allow the application of Synthetic Aperture Radar (SAR) data in geological structural analysis for tropical environments. In this investigation, the Phased Array type L-band Synthetic Aperture Radar (PALSAR) satellite remote sensing data were used to analyse major geological structures in Peninsular Malaysia and provide detailed characterization of lineaments and form-lines in the BRSZ, as well as its implication for sediment-hosted/orogenic gold exploration in tropical environments. The major geological structure directions of the BRSZ are N-S, NNE-SSW, NE-SW and NW-SE, which derived from directional filtering analysis to PALSAR data. The pervasive array of N-S faults in the study area and surrounding terrain is mainly linked to the N-S trending of the Suture Zone. N-S striking lineaments are often cut by younger NE-SW and NW-SE-trending lineaments. Gold mineralized trends lineaments are associated with the intersection of N-S, NE-SW, NNW-SSE and ESE-WNW faults and curvilinear features in shearing and alteration zones. Lineament analysis on PALSAR satellite remote sensing data is a useful tool for detecting the boundary between the Gondwana-derived terranes and major geological features associated with suture zone especially for large inaccessible regions in tropical environments.

  2. Geodynamics of the Dead Sea Fault: Do active faulting and past earthquakes determine the seismic gaps?

    Science.gov (United States)

    Meghraoui, Mustapha

    2014-05-01

    The ~1000-km-long North-South trending Dead Sea transform fault (DSF) presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short term slip rates along the DSF. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. However, recent GPS results showing ~2.5 mm/yr velocity rate of the northern DSF appears to be quite different than the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern where the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this paper, we discuss the role of the DSF in the regional geodynamics and its implication on the identification of seismic gaps.

  3. Active faults and related Late Quaternary deformation along the Northwestern Himalayan Frontal Zone, India

    Directory of Open Access Journals (Sweden)

    T. Nakata

    2003-06-01

    Full Text Available Numerous newly-identified traces of active faults in the Himalayan foothill zone along the HFF around Chandigarh, in Pinjore Dun, along the piedmont zone of the Lower Siwalik hill front and within the Lower Tertiary hill range reveal the pattern of thrust and strike-slip faulting, striking parallel to the principal structural trend (NNW-SSE of the orogenic belt. The active Chandigarh Fault, Pinjore Garden Fault and Barsar thrust have vertically dislocated, warped and backtilted fluvial and alluvial-fan surfaces made up of Late Pleistocene-Holocene sediments. West- and southwest-facing fault scarplets with heights ranging from 12 to 50 m along these faults suggest continued tectonic movement through Late Pleistocene to recent times. Gentle warping and backtilting of the terraces on the hanging wall sides of the faults indicate fault-bend folding. These active faults are the manifestation of north-dipping imbricated thrust faults branching out from the major fault systems like the Main Boundary Fault (MBF and Himalayan Frontal Fault (HFF, probably merging down northward into a décollement. The Taksal Fault, striking NNW-SSE, shows prominent right-lateral movement marked by lateral offset of streams and younger Quaternary terraces and occupies a narrow deep linear valley along the fault trace. Right stepping along this fault has resulted in formation of a small pull-apart basin. Fault scarplets facing ENE and WSW are the manifestation of dip-slip movement. This fault is an example of slip-partitioning between the strike-slip and thrust faults, suggesting ongoing oblique convergence of the Indian plate and northward migration of a tectonic sliver. Slip rate along the Taksal Fault has been calculated as 2.8 mm/yr. Preliminary trench investigation at the base of the Chandigarh Fault Scarp has revealed total displacement of 3.5 m along a low angle thrust fault with variable dip of 20° to 46° due northeast, possibly the result of one

  4. Quaternary Fault Lines

    Data.gov (United States)

    Department of Homeland Security — This data set contains locations and information on faults and associated folds in the United States that are believed to be sources of M>6 earthquakes during the...

  5. Reconstruction and appraisal of Akunu-Akoko area iron ore deposits using geological and magnetic approaches

    Science.gov (United States)

    Okpoli, Cyril; Akingboye, Adedibu

    2016-06-01

    Geological mapping and magnetic methods were applied for the exploration of iron ore deposits in the Akunu-Akoko area of Southwestern Nigeria for the purpose of evaluating their geological characteristics and resource potentials. A proton magnetometer measures the vertical, horizontal and total magnetic intensities in gammas. The subsurface geology was interpreted qualitatively and quantitatively. The downward continuations and second vertical derivatives, the small-sized mineralised bodies and shallow features in the study area were mapped. The faults are trending in the following directions: NE-SW, NW-SE, N-S and E-W groups, while the iron ore mineralisation is structurally controlled by two major groups of fault trends, namely, the NE-SW and NW-SE; the N-S and E-W groups are mere occurrences that do not contribute to the structural control of the iron ore mineralisation in Akunu. The upward continuation has a linear feature similar to the principal orientation of the regional faults, while Locations 2 and 3 have relatively high magnetic susceptibility zones; suspected to be iron ore deposits. The depths to the magnetic sources ranged from 25 m to about 250 m.

  6. Deformation style and controlling geodynamic processes at the eastern Guadalquivir foreland basin (Southern Spain)

    Science.gov (United States)

    Marín-Lechado, C.; Pedrera, A.; Peláez, J. A.; Ruiz-Constán, A.; González-Ramón, A.; Henares, J.

    2017-06-01

    The tectonic structure of the Guadalquivir foreland basin becomes complex eastward evolving from a single depocenter to a compartmented basin. The deformation pattern within the eastern Guadalquivir foreland basin has been characterized by combining seismic reflection profiles, boreholes, and structural field data to output a 3-D model. High-dipping NNE-SSW to NE-SW trending normal and reverse fault arrays deform the Variscan basement of the basin. These faults generally affect Tortonian sediments, which show syntectonic features sealed by the latest Miocene units. Curved and S-shaped fault traces are abundant and caused by the linkage of nearby fault segments during lateral fault propagation. Preexisting faults were reactivated either as normal or reverse faults depending on their position within the foreland. At Tortonian time, reverse faults deformed the basin forebulge, while normal faults predominated within the backbulge. Along-strike variation of the Betic foreland basin geometry is supported by an increasing mechanical coupling of the two plates (Alborán Domain and Variscan basement) toward the eastern part of the cordillera. Thus, subduction would have progressed in the western Betics, while it would have failed in the eastern one. There, the initially subducted Iberian paleomargin (Nevado-Filábride Complex) was incorporated into the upper plate promoting the transmission of collision-related compressional stresses into the foreland since the middle Miocene. Nowadays, compression is still active and produces low-magnitude earthquakes likely linked to NNE-SSW to NE-SW preexiting faults reactivated with reverse oblique-slip kinematics. Seismicity is mostly concentrated around fault tips that are frequently curved in overstepping zones.

  7. Earthquake Hazard and Segmented Fault Evolution, Hat Creek Fault, Northern California

    Science.gov (United States)

    Blakeslee, M. W.; Kattenhorn, S. A.

    2010-12-01

    Precise insight into surface rupture and the evolution and mechanical interaction of segmented normal fault systems is critical for assessing the potential seismic hazard. The Hat Creek fault is a ~35 km long, NNW trending segmented normal fault system located on the western boundary of the Modoc Plateau and within the extending backarc basin of the Cascadia subduction zone in northern California. The Hat Creek fault has a prominent surface rupture showing evidence of multiple events in the past 15 ka, although there have been no historic earthquakes. In response to interactions with volcanic activity, the fault system has progressively migrated several km westward, causing older scarps to become seemingly inactive, and producing three distinct, semi-parallel scarps with different ages. The oldest scarp, designated the “Rim”, is the farthest west and has up to 352 m of throw. The relatively younger “Pali” scarp has up to 174 m of throw. The young “Active” scarp has a maximum throw of 65 m in the 24±6 ka Hat Creek basalt, with 20 m of throw in ~15 ka glacial gravels (i.e., a Holocene slip rate of ~1.3 mm/yr). Changes in the geometry and kinematics of the separate scarps during the faulting history imply the orientation of the stress field has rotated clockwise, now inducing oblique right-lateral motion. Previous studies suggested that the Active scarp consists of 7 left-stepping segments with a cumulative length of 23.5 km. We advocate that the Active scarp is actually composed of 8 or 9 segments and extends 4 km longer than previous estimates. This addition to the active portion of the fault is based on detailed mapping of a young surface rupture in the northern portion of the fault system. This ~30 m high young scarp offsets lavas that erupted from Cinder Butte, a low shield volcano, but has a similar geometry and properties as the Active scarp in the Hat Creek basalt. At its northern end, the Active scarp terminates at Cinder Butte. Our mapping

  8. Fault lubrication during earthquakes.

    Science.gov (United States)

    Di Toro, G; Han, R; Hirose, T; De Paola, N; Nielsen, S; Mizoguchi, K; Ferri, F; Cocco, M; Shimamoto, T

    2011-03-24

    The determination of rock friction at seismic slip rates (about 1 m s(-1)) is of paramount importance in earthquake mechanics, as fault friction controls the stress drop, the mechanical work and the frictional heat generated during slip. Given the difficulty in determining friction by seismological methods, elucidating constraints are derived from experimental studies. Here we review a large set of published and unpublished experiments (∼300) performed in rotary shear apparatus at slip rates of 0.1-2.6 m s(-1). The experiments indicate a significant decrease in friction (of up to one order of magnitude), which we term fault lubrication, both for cohesive (silicate-built, quartz-built and carbonate-built) rocks and non-cohesive rocks (clay-rich, anhydrite, gypsum and dolomite gouges) typical of crustal seismogenic sources. The available mechanical work and the associated temperature rise in the slipping zone trigger a number of physicochemical processes (gelification, decarbonation and dehydration reactions, melting and so on) whose products are responsible for fault lubrication. The similarity between (1) experimental and natural fault products and (2) mechanical work measures resulting from these laboratory experiments and seismological estimates suggests that it is reasonable to extrapolate experimental data to conditions typical of earthquake nucleation depths (7-15 km). It seems that faults are lubricated during earthquakes, irrespective of the fault rock composition and of the specific weakening mechanism involved.

  9. A High-Resolution Aeromagnetic Survey to Identify Buried Faults at Dixie Valley, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Smith, Richard Paul; Grauch, V. J. S.; Blackwell, David D.

    2002-09-01

    Preliminary results from a high-resolution aeromagnetic survey (200m line spacing) acquired in Dixie Valley early in 2002 provide confirmation of intra-basin faulting based on subtle surface indications. In addition the data allow identification of the locations and trends of many faults that have not been recognized at the surface, and provide a picture of intrabasin faulting patterns not possible using other techniques. The data reveal a suite of northeasterly-trending curving and branching faults that surround a relatively coherent block in the area of Humboldt Salt Marsh, the deepest part of the basin. The producing reservoir occurs at the north end of this coherent block, where rampart faults from the northwest side of the valley merge with anthithetic faults from the central and southeast parts of the valley.

  10. Active Fault Isolation in MIMO Systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    isolation is based directly on the input/output s ignals applied for the fault detection. It is guaranteed that the fault group includes the fault that had occurred in the system. The second step is individual fault isolation in the fault group . Both types of isolation are obtained by applying dedicated......Active fault isolation of parametric faults in closed-loop MIMO system s are considered in this paper. The fault isolation consists of two steps. T he first step is group- wise fault isolation. Here, a group of faults is isolated from other pos sible faults in the system. The group-wise fault...

  11. Faults in Linux

    DEFF Research Database (Denmark)

    Palix, Nicolas Jean-Michel; Thomas, Gaël; Saha, Suman

    2011-01-01

    a major problem? To answer these questions, we have transported the experiments of Chou et al. to Linux versions 2.6.0 to 2.6.33, released between late 2003 and early 2010. We find that Linux has more than doubled in size during this period, but that the number of faults per line of code has been......In 2001, Chou et al. published a study of faults found by applying a static analyzer to Linux versions 1.0 through 2.4.1. A major result of their work was that the drivers directory contained up to 7 times more of certain kinds of faults than other directories. This result inspired a number...... decreasing. And, even though drivers still accounts for a large part of the kernel code and contains the most faults, its fault rate is now below that of other directories, such as arch (HAL) and fs (file systems). These results can guide further development and research efforts. To enable others...

  12. Fault Detection for Industrial Processes

    Directory of Open Access Journals (Sweden)

    Yingwei Zhang

    2012-01-01

    Full Text Available A new fault-relevant KPCA algorithm is proposed. Then the fault detection approach is proposed based on the fault-relevant KPCA algorithm. The proposed method further decomposes both the KPCA principal space and residual space into two subspaces. Compared with traditional statistical techniques, the fault subspace is separated based on the fault-relevant influence. This method can find fault-relevant principal directions and principal components of systematic subspace and residual subspace for process monitoring. The proposed monitoring approach is applied to Tennessee Eastman process and penicillin fermentation process. The simulation results show the effectiveness of the proposed method.

  13. What is Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Frei, C. W.; Kraus, K.

    2000-01-01

    availability and reduce the risk of safety hazards. Its aim is to prevent that simple faults develop into serious failure. Fault-tolerant control merges several disciplines to achieve this goal, including on-line fault diagnosis, automatic condition assessment and calculation of remedial actions when a fault......Faults in automated processes will often cause undesired reactions and shut-down of a controlled plant, and the consequences could be damage to the plant, to personnel or the environment. Fault-tolerant control is the synonym for a set of recent techniques that were developed to increase plant...

  14. Wind turbine fault detection and fault tolerant control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Johnson, Kathryn

    2013-01-01

    In this updated edition of a previous wind turbine fault detection and fault tolerant control challenge, we present a more sophisticated wind turbine model and updated fault scenarios to enhance the realism of the challenge and therefore the value of the solutions. This paper describes...... the challenge model and the requirements for challenge participants. In addition, it motivates many of the faults by citing publications that give field data from wind turbine control tests....

  15. Constraining fault growth rates and fault evolution in New Zealand

    OpenAIRE

    Lamarche, G.; Bull, J. M.; Barnes, P.M.; Taylor, S.K.; Horgan, H.

    2000-01-01

    Understanding how faults propagate, grow and interact in fault systems is important because they are primarily responsible for the distribution of strain in the upper crust. They localise deformation and stress release, often producing surface displacements that control sedimentation and fluid flow either by acting as conduits or barriers. Identifying fault spatial distribution, quantifying activity, evaluating linkage mechanism, and estimating fault growth rates are key components in seismic...

  16. Late Cretaceous volcanic arc system in Southwest Korea: Occurrence, lithological characteristics, SHRIMP zircon U-Pb age, and tectonic implications

    Science.gov (United States)

    Koh, Hee Jae; Kwon, Chang Woo

    2017-04-01

    In the southwest region of the Korean Peninsula, four large volcanoes, the Buan, Seonunsan, Wido, and Beopseongpo, with a maximum diameter of ca 20 km, form a distinct topographic undulation along the NE-SW-trending Hamyeol Fault. These volcanics comprise various types of pyroclastic, sedimentary, and lava/intrusive rocks, and are interpreted as remnants of calderas resulting from various volcanic eruptions, indicating that Hamyeol Fault, together with crustal extension, played an important role in volcano formation in this region. SHRIMP U-Pb ages of zircon isolated from each volcanics are as follows. For Buan Volcanics, Cheonmasan Tuff 87.23 ±0.92 Ma, Udongje Tuff 86.79 ±0.71 Ma, Seokpo Tuff 87.30 ±0.99 Ma and Yujeongje Tuff 86.66 ±0.93 Ma. For Seonunsan Volcanics, Gyeongsusan Tuff 84.9 ±1.1 Ma and Yeongije Tuff 86.61 ±0.67 Ma. These ages indicate that the four volcanics were formed in the Late Cretaceous. The ages are comparable to those of the volcanic rocks of the Aioi and Arima groups in Southwestern Japan, suggesting that the Late Cretaceous volcanic arc systems developed in a NE-SW direction from the Japanese Islands to the southwestern part of the Korean Peninsula caused by regional magmatism together with crustal deformation as reflected by occurrence of the volcanic rocks along the Hamyeol Fault.

  17. Computer hardware fault administration

    Science.gov (United States)

    Archer, Charles J.; Megerian, Mark G.; Ratterman, Joseph D.; Smith, Brian E.

    2010-09-14

    Computer hardware fault administration carried out in a parallel computer, where the parallel computer includes a plurality of compute nodes. The compute nodes are coupled for data communications by at least two independent data communications networks, where each data communications network includes data communications links connected to the compute nodes. Typical embodiments carry out hardware fault administration by identifying a location of a defective link in the first data communications network of the parallel computer and routing communications data around the defective link through the second data communications network of the parallel computer.

  18. Fault Tolerant Computer Architecture

    CERN Document Server

    Sorin, Daniel

    2009-01-01

    For many years, most computer architects have pursued one primary goal: performance. Architects have translated the ever-increasing abundance of ever-faster transistors provided by Moore's law into remarkable increases in performance. Recently, however, the bounty provided by Moore's law has been accompanied by several challenges that have arisen as devices have become smaller, including a decrease in dependability due to physical faults. In this book, we focus on the dependability challenge and the fault tolerance solutions that architects are developing to overcome it. The two main purposes

  19. Evaluation of the location and recency of faulting near prospective surface facilities in Midway Valley, Nye County, Nevada

    Energy Technology Data Exchange (ETDEWEB)

    Swan, F.H.; Wesling, J.R.; Angell, M.M.; Thomas, A.P.; Whitney, J.W.; Gibson, J.D.

    2002-01-17

    Evaluation of surface faulting that may pose a hazard to prospective surface facilities is an important element of the tectonic studies for the potential Yucca Mountain high-level radioactive waste repository in southwestern Nevada. For this purpose, a program of detailed geologic mapping and trenching was done to obtain surface and near-surface geologic data that are essential for determining the location and recency of faults at a prospective surface-facilities site located east of Exile Hill in Midway Valley, near the eastern base of Yucca Mountain. The dominant tectonic features in the Midway Valley area are the north- to northeast-trending, west-dipping normal faults that bound the Midway Valley structural block-the Bow Ridge fault on the west side of Exile Hill and the Paint-brush Canyon fault on the east side of the valley. Trenching of Quaternary sediments has exposed evidence of displacements, which demonstrate that these block-bounding faults repeatedly ruptured the surface during the middle to late Quaternary. Geologic mapping, subsurface borehole and geophysical data, and the results of trenching activities indicate the presence of north- to northeast-trending faults and northwest-trending faults in Tertiary volcanic rocks beneath alluvial and colluvial sediments near the prospective surface-facilities site. North to northeast-trending faults include the Exile Hill fault along the eastern base of Exile Hill and faults to the east beneath the surficial deposits of Midway Valley. These faults have no geomorphic expression, but two north- to northeast-trending zones of fractures exposed in excavated profiles of middle to late Pleistocene deposits at the prospective surface-facilities site appear to be associated with these faults. Northwest-trending faults include the West Portal and East Portal faults, but no disruption of Quaternary deposits by these faults is evident. The western zone of fractures is associated with the Exile Hill fault. The eastern

  20. Fault zone architecture of a major oblique-slip fault in the Rawil depression, Western Helvetic nappes, Switzerland

    Science.gov (United States)

    Gasser, D.; Mancktelow, N. S.

    2009-04-01

    The Helvetic nappes in the Swiss Alps form a classic fold-and-thrust belt related to overall NNW-directed transport. In western Switzerland, the plunge of nappe fold axes and the regional distribution of units define a broad depression, the Rawil depression, between the culminations of Aiguilles Rouge massif to the SW and Aar massif to the NE. A compilation of data from the literature establishes that, in addition to thrusts related to nappe stacking, the Rawil depression is cross-cut by four sets of brittle faults: (1) SW-NE striking normal faults that strike parallel to the regional fold axis trend, (2) NW-SE striking normal faults and joints that strike perpendicular to the regional fold axis trend, and (3) WNW-ESE striking normal plus dextral oblique-slip faults as well as (4) WSW-ENE striking normal plus dextral oblique-slip faults that both strike oblique to the regional fold axis trend. We studied in detail a beautifully exposed fault from set 3, the Rezli fault zone (RFZ) in the central Wildhorn nappe. The RFZ is a shallow to moderately-dipping (ca. 30-60˚) fault zone with an oblique-slip displacement vector, combining both dextral and normal components. It must have formed in approximately this orientation, because the local orientation of fold axes corresponds to the regional one, as does the generally vertical orientation of extensional joints and veins associated with the regional fault set 2. The fault zone crosscuts four different lithologies: limestone, intercalated marl and limestone, marl and sandstone, and it has a maximum horizontal dextral offset component of ~300 m and a maximum vertical normal offset component of ~200 m. Its internal architecture strongly depends on the lithology in which it developed. In the limestone, it consists of veins, stylolites, cataclasites and cemented gouge, in the intercalated marls and limestones of anastomosing shear zones, brittle fractures, veins and folds, in the marls of anastomosing shear zones, pressure

  1. Fault tolerant control based on active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2005-01-01

    An active fault diagnosis (AFD) method will be considered in this paper in connection with a Fault Tolerant Control (FTC) architecture based on the YJBK parameterization of all stabilizing controllers. The architecture consists of a fault diagnosis (FD) part and a controller reconfiguration (CR) ...

  2. Fault analysis for condition monitoring of induction motors

    Science.gov (United States)

    Nandi, Subhasis

    Recently, research has picked up a fervent pace in the area of fault diagnosis of electrical machines. Like adjustable speed drives, fault prognosis has become almost indispensable. The manufacturers of these drives are now keen to include diagnostic features in the software to decrease machine down time and improve salability. Prodigious improvement in signal processing hardware and software has made this possible. Primarily, these techniques depend upon locating specific harmonic components in the line current, also known as motor current signature analysis (MCSA). These harmonic components are usually different for different types of faults. However, with multiple faults or different varieties of drive schemes, MCSA can become an onerous task as different types of faults and time harmonics may end up generating similar signatures. Thus, other signals such as speed, torque, noise, vibration, etc., are also explored for their frequency contents. Sometimes, altogether different techniques such as thermal measurements, chemical analysis, etc., are also employed to find out the nature and the degree of the fault. It is indeed evident that this area is vast in scope. Going by the present trend, human involvement in the actual fault detection decision making is slowly being replaced by automated tools such as expert systems, neural networks, fuzzy logic based systems; to name a few. However, this cannot be achieved without detailed fault analysis and subsequent recognition of the fault pattern. Keeping this in mind, simulation studies of the broken bar and eccentricity related faults using MCSA have been taken up. Also, a common theoretical basis for the different types (static, dynamic and mixed) of eccentricity related faults which give different signatures for different pole and rotor bar combinations has been developed. This will be of great importance both from fault diagnosis as well as sensorless drive applications' viewpoint. Finally, the insight gained from

  3. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2002-03-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then trow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs grain size shows a plateau for grains below critical size : these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected from the Yangsan fault system. ESR dates from the this fault system range from 870 to 240 ka. Results of this research suggest that long-term cyclic fault activity continued into the pleistocene.

  4. Fault diagnosis of induction motors

    CERN Document Server

    Faiz, Jawad; Joksimović, Gojko

    2017-01-01

    This book is a comprehensive, structural approach to fault diagnosis strategy. The different fault types, signal processing techniques, and loss characterisation are addressed in the book. This is essential reading for work with induction motors for transportation and energy.

  5. Fault management and systems knowledge

    Science.gov (United States)

    2016-12-01

    Pilots are asked to manage faults during flight operations. This leads to the training question of the type and depth of system knowledge required to respond to these faults. Based on discussions with multiple airline operators, there is agreement th...

  6. Improving Multiple Fault Diagnosability using Possible Conflicts

    Data.gov (United States)

    National Aeronautics and Space Administration — Multiple fault diagnosis is a difficult problem for dynamic systems. Due to fault masking, compensation, and relative time of fault occurrence, multiple faults can...

  7. Normal Fault Growth on Mars

    Science.gov (United States)

    Morris, A. P.; Wyrick, D. Y.; Ferrill, D. A.

    2008-12-01

    Displacement versus length relationships of faults on Earth and Mars have been used to describe and interpret the evolution of faults and fault systems, infer differences in the relative strengths of strata, and evaluate variations in fault-system response to differences in gravity from planet to planet. In this presentation, we focus on maximum throw versus trace length (Dmax/L) of continuously mappable faults and Dmax/L of individual fault segments. Fault analyses on Mars have the advantage of a planetary surface devoid of vegetation and largely unaffected by weathering and erosion. Areas on the flanks of Alba Patera, Mars, were chosen because they are well imaged by all generations of data coverage, contain fault systems that have a range of developmental characteristics, and formed in a relatively simple tectonic setting dominated by extension. Footwall and hanging wall cutoff traces of more than 300 faults were interpreted using Viking imagery and ArcGIS software. Throw was obtained by calculating the elevation difference between adjacent footwall and hanging wall points using Mars Orbiter Laser Altimeter data. Throw versus along-strike trace length plots were constructed for each interpreted fault. Single fault segments are defined as having one well-defined displacement maximum bounded by two near-zero displacement minima. Segments within a multi-segment fault were identified by counting displacement maxima along the fault trace. The number of segments incorporated into multi-segment faults is positively correlated with the fault trace length. In a plot of Dmax versus L, whole faults are distributed approximately along a locus of Dmax = K × Ln, where K = 5 × 10-4 to 5 × 10-2 and n = 1. This is in agreement with previous studies of faults on Mars. Single fault segments form a distinct population whose distribution is described approximately by the same equation but where K = 1.7 × 10-3. Dmax/L ratios for multi-segment faults represent an apparently self

  8. Fault Tolerant Wind Farm Control

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob

    2013-01-01

    In the recent years the wind turbine industry has focused on optimizing the cost of energy. One of the important factors in this is to increase reliability of the wind turbines. Advanced fault detection, isolation and accommodation are important tools in this process. Clearly most faults are deal...... scenarios. This benchmark model is used in an international competition dealing with Wind Farm fault detection and isolation and fault tolerant control....

  9. Oblique strike-slip faulting of the Cascadia submarine forearc: The Daisy Bank fault zone off central Oregon

    Science.gov (United States)

    Goldfinger, Chris; Kulm, LaVerne D.; Yeats, Robert S.; Hummon, Cheryl; Huftile, Gary J.; Niem, Alan R.; McNeill, Lisa C.

    The Cascadia submarine forearc off Oregon and Washington is deformed by numerous active WNW-trending, left-lateral strike-slip faults. The kinematics of this set of sub-parallel left-lateral faults suggests clockwise block rotation of the forearc driven by oblique subduction. One major left-lateral strike-slip fault, the 94 km-long Daisy Bank fault, located off central Oregon, was studied in detail using high-resolution AMS 150 kHz and SeaMARC-lA sidescan sonar, swath bathymetry, multichannel seismic reflection profiles and a submersible. The Daisy Bank fault zone cuts the sediments and basaltic basement of the subducting Juan de Fuca plate, and the overriding North American plate, extending from the abyssal plain to the upper slope-outer shelf region. The Daisy Bank fault, a near-vertical left-lateral fault striking 292°, is a wide structural zone with multiple scarps observed in high-resolution sidescan images. From a submersible, we observe that these scarps offset late Pleistocene gray clay and overlying olive green Holocene mud, dating fault activity as post-12 ka on the upper slope. Vertical separation along individual fault scarps ranges from a few centimeters to 130 meters. Using a retrodeformation technique with multichannel reflection records, we calculate a net slip of 2.2±0.5 km. Fault movement commenced at about 380±50 ka near the western fault tip, based upon an analysis of growth strata and correlation with deep-sea drill hole biostratigraphy. We calculate a slip rate of 5.7±2.0 mm/yr. for the Daisy Bank fault at its western end on the Juan de Fuca plate. The motion of the set of oblique faults, including the Daisy Bank fault, may accommodate a significant portion of the oblique component of plate motion along the central Cascadia margin. We propose a block rotation model by which the seawardmost part of the forearc rotates clockwise and translates northward.

  10. The engine fuel system fault analysis

    Science.gov (United States)

    Zhang, Yong; Song, Hanqiang; Yang, Changsheng; Zhao, Wei

    2017-05-01

    For improving the reliability of the engine fuel system, the typical fault factor of the engine fuel system was analyzed from the point view of structure and functional. The fault character was gotten by building the fuel system fault tree. According the utilizing of fault mode effect analysis method (FMEA), several factors of key component fuel regulator was obtained, which include the fault mode, the fault cause, and the fault influences. All of this made foundation for next development of fault diagnosis system.

  11. Cenozoic rifting in the West Antarctic Rift System

    Science.gov (United States)

    Granot, R.; Cande, S. S.; Stock, J. M.; Clayton, R. W.; Davey, F. J.

    2007-12-01

    The West Antarctic Rift System (WARS) experienced two episodes of Cenozoic rifting. Seafloor spreading at the Adare spreading axis, north of the Ross Sea, from Middle Eocene to Late Oligocene time (43 - 26 Ma), was directly linked with motions within the WARS. For this time interval, marine magnetic anomalies within the Adare Basin and structural features within the Ross Sea constrain the motion between East and West Antarctica. During this episode, widespread intrusive activity took place in the continental part of the rift. Subsequent Late Oligocene until present-day (26 - 0 Ma) extension was characterized by a transition to volcanic activity. Yet, the details of extension during this episode have been poorly resolved. We present preliminary results of new seismic reflection and seafloor mapping data acquired on geophysical cruise 07-01 aboard the R/VIB Nathaniel Palmer in the northern part of the rift. Our results suggest that the style of deformation changed from spreading-related faulting into diffuse normal faulting (tilted blocks) that trend NE-SW with little resultant E-W extension. Recent volcanism is distributed throughout but tends to align with the NE-SW trend, into a localized zone. Formation of the Terror Rift, Ross Sea, within the same time frame suggests that the pole of rotation has changed its position, reflecting a change in the relative magnitudes of tensile stresses along the rift. Moreover, this change was accompanied with a sharp decrease of extension rates.

  12. VLF-EM prospecting for the characterization of a fault zone and the evaluation of its permeability conditions.

    Science.gov (United States)

    Fais, Silvana; Ligas, Paola; Cuccuru, Francesco; Maggio, Enrico; Plaisant, Alberto; Pettinau, Alberto; Pala, Antonio

    2017-04-01

    An electromagnetic VLF survey was carried out to characterize a fault zone in south-western Sardinia (Italy) and to investigate its permeability conditions. The VLF method is passive because instead of a transmitter-receiver system, as in an active electromagnetic method, it uses signals from distant radio stations operating in the very low 15-25 kHz frequency range used for military transmissions. In this survey the station UMS (Moscow - Russia) operating at 17.1 kHz was used to perform four NW-SE electromagnetic profiles at 10m station intervals over the study area where a NE-SW fault zone was supposed. A WADI-ABEM system was used for the VLF data acquisition survey. The VLF-EM data were first interpreted using the Karous-Hjelt linear filter (Karous-Hjelt, 1983; Ogilvy and Lee, 1991) which allows the generation of apparent current density pseudosections by filtering the in-phase data. The pseudosections provide a representation of the depth of the various current concentrations and hence the spatial arrangement of subsurface geological features such as faults, fracture zones and geological contacts. However, on analyzing the Karous-Hjelt current density pseudosections, VLF data are useful to produce a qualitative view of the subsurface structure. The quantitative interpretation of the VLF data was done with a 2-D code for the VLF data inversion. The initial model was constrained considering the results of previous resistivity laboratory measurements carried out on samples from the main geological formations outcropping in the survey area. In all the Karous-Hjelt pseudosections as also in the 2D resistivity models many conductive zones are present (resistivity lower than 440 Ωm in good agreement with the results obtained from the previous laboratory measurements). Some of the conductive zones are located along an ideal alignment that can be linked with a structural discontinuity whose presence was hypothesized in the area. The conductive zones detected with the

  13. Formal fault tree semantics

    OpenAIRE

    Schellhorn, Gerhard

    2002-01-01

    Formal fault tree semantics / G. Schellhorn, A. Thums, and W. Reif. - In: IDPT : Proceedings of the Sixth World Conference on Integrated Design and Process Technology : June 23 - 27, 2003, Pasadena, California / SDPS, Society for Design & Process Science. - 2002. - 1CD-ROM

  14. Diagnosing Intermittent Faults

    NARCIS (Netherlands)

    Van Gemund, A.J.C.; Abreu, R.F.; Zoeteweij, P.

    2008-01-01

    In this working report we outline how to determine the intermittency parameters gj from the activity matrix A (context: DX’08 paper Abreu, Zoeteweij, Van Gemund). We start with the single fault (SF) case and show that averaging over the error vector e is the exact way. We also show that in this way

  15. Network Power Fault Detection

    OpenAIRE

    Siviero, Claudio

    2013-01-01

    Network power fault detection. At least one first network device is instructed to temporarily disconnect from a power supply path of a network, and at least one characteristic of the power supply path of the network is measured at a second network device connected to the network while the at least one first network device is temporarily disconnected from the network

  16. Detecting Faults from Encoded Information

    NARCIS (Netherlands)

    Persis, Claudio De

    2003-01-01

    The problem of fault detection for linear continuous-time systems via encoded information is considered. The encoded information is received at a remote location by the monitoring deiice and assessed to infer the occurrence of the fault. A class of faults is considered which allows to use a simple

  17. Fault-Related Sanctuaries

    Science.gov (United States)

    Piccardi, L.

    2001-12-01

    Beyond the study of historical surface faulting events, this work investigates the possibility, in specific cases, of identifying pre-historical events whose memory survives in myths and legends. The myths of many famous sacred places of the ancient world contain relevant telluric references: "sacred" earthquakes, openings to the Underworld and/or chthonic dragons. Given the strong correspondence with local geological evidence, these myths may be considered as describing natural phenomena. It has been possible in this way to shed light on the geologic origin of famous myths (Piccardi, 1999, 2000 and 2001). Interdisciplinary researches reveal that the origin of several ancient sanctuaries may be linked in particular to peculiar geological phenomena observed on local active faults (like ground shaking and coseismic surface ruptures, gas and flames emissions, strong underground rumours). In many of these sanctuaries the sacred area is laid directly above the active fault. In a few cases, faulting has affected also the archaeological relics, right through the main temple (e.g. Delphi, Cnidus, Hierapolis of Phrygia). As such, the arrangement of the cult site and content of relative myths suggest that specific points along the trace of active faults have been noticed in the past and worshiped as special `sacred' places, most likely interpreted as Hades' Doors. The mythological stratification of most of these sanctuaries dates back to prehistory, and points to a common derivation from the cult of the Mother Goddess (the Lady of the Doors), which was largely widespread since at least 25000 BC. The cult itself was later reconverted into various different divinities, while the `sacred doors' of the Great Goddess and/or the dragons (offspring of Mother Earth and generally regarded as Keepers of the Doors) persisted in more recent mythologies. Piccardi L., 1999: The "Footprints" of the Archangel: Evidence of Early-Medieval Surface Faulting at Monte Sant'Angelo (Gargano, Italy

  18. The Evergreen basin and the role of the Silver Creek fault in the San Andreas fault system, San Francisco Bay region, California

    Science.gov (United States)

    Jachens, Robert C.; Wentworth, Carl M.; Graymer, Russell W.; Williams, Robert; Ponce, David A.; Mankinen, Edward A.; Stephenson, William J.; Langenheim, Victoria

    2017-01-01

    fault to the Hayward fault across the Mission seismic trend northeast of the Evergreen basin, whereas slip above a depth of 5 km is transferred through a complex zone of oblique-reverse faults along and over the northeast basin margin. However, a prominent groundwater flow barrier and related land-subsidence discontinuity coincident with the concealed Silver Creek fault, a discontinuity in the pattern of seismicity on the Calaveras fault at the Silver Creek fault intersection, and a structural sag indicative of a negative flower structure in Quaternary sediments along the southwest basin margin indicate that the Silver Creek fault has had minor ongoing slip over the past few hundred thousand years. Two earthquakes with ∼M6 occurred in A.D. 1903 in the vicinity of the Silver Creek fault, but the available information is not sufficient to reliably identify them as Silver Creek fault events.

  19. The Quaternary Silver Creek Fault Beneath the Santa Clara Valley, California

    Science.gov (United States)

    Wentworth, Carl M.; Williams, Robert A.; Jachens, Robert C.; Graymer, Russell W.; Stephenson, William J.

    2010-01-01

    The northwest-trending Silver Creek Fault is a 40-km-long strike-slip fault in the eastern Santa Clara Valley, California, that has exhibited different behaviors within a changing San Andreas Fault system over the past 10-15 Ma. Quaternary alluvium several hundred meters thick that buries the northern half of the Silver Creek Fault, and that has been sampled by drilling and imaged in a detailed seismic reflection profile, provides a record of the Quaternary history of the fault. We assemble evidence from areal geology, stratigraphy, paleomagnetics, ground-water hydrology, potential-field geophysics, and reflection and earthquake seismology to determine the long history of the fault in order to evaluate its current behavior. The fault formed in the Miocene more than 100 km to the southeast, as the southwestern fault in a 5-km-wide right step to the Hayward Fault, within which the 40-km-long Evergreen pull-apart basin formed. Later, this basin was obliquely cut by the newly recognized Mt. Misery Fault to form a more direct connection to the Hayward Fault, although continued growth of the basin was sufficient to accommodate at least some late Pliocene alluvium. Large offset along the San Andreas-Calaveras-Mt Misery-Hayward Faults carried the basin northwestward almost to its present position when, about 2 Ma, the fault system was reorganized. This led to near abandonment of the faults bounding the pull-apart basin in favor of right slip extending the Calaveras Fault farther north before stepping west to the Hayward Fault, as it does today. Despite these changes, the Silver Creek Fault experienced a further 200 m of dip slip in the early Quaternary, from which we infer an associated 1.6 km or so of right slip, based on the ratio of the 40-km length of the strike-slip fault to a 5-km depth of the Evergreen Basin. This dip slip ends at a mid-Quaternary unconformity, above which the upper 300 m of alluvial cover exhibits a structural sag at the fault that we interpret as

  20. Examining the links between Slow Slip Events, crustal faults and subduction interface in Central Mexico

    Science.gov (United States)

    Bigot, A.; Manighetti, I.; Vergnolle, M.; Campillo, M.

    2012-12-01

    We have analyzed the tectonic structures, active and more ancient, that dissect the upper plate, the subducting plate and the trench in Central Mexico, and examined the links between these structures, the historical and instrumental seismicity, and the SSEs and tremors (as described in Radiguet et al., 2012). We show that the tectonic architecture of the upper plate controls the location of the SSEs and of a large part of the instrumental seismicity. The large historical subduction ruptures do not extend further below than ≈ 30 km depth. The broken areas are underlined by a zone of dense instrumental seismicity that extends confined between the broken patches and a vertical WSW-trending fault that cuts across the upper plate down to the interface, with its trace halfway between Acapulco and Chilpancingo (AC fault). This fault shows no morphological evidence of recent activity. Another similar, parallel WNW-trending fault exists north of Chilpancingo (NC fault). Though it shows no morphological evidence of recent activity, it is underlined by a dense instrumental seismicity confined in the range 40-70 km of depth, whose focal mechanisms are all extensional. No instrumental seismicity is recorded between the two faults. By contrast, the slip zones of the 2002, 2006 and 2010 major SSEs appear confined exactly in between the two vertical fault planes, while the major zone of reported tremors extend immediately north of the NC fault plane. The occurrence of each SSE induces a slight increase in the density of instrumental seismicity related to the NC fault, and a marked increase in the density of instrumental seismicity recorded south of the AC fault. In details, the seismicity increases at the northern tips of the NE-trending faults that dissect the trench and hence also likely the down-going oceanic plate below. Simple static Coulomb stress transfer models confirm that each SSE likely increased the static stresses by ≈ 0.1 bars on both the shallower portion of the

  1. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: Presentation and interpretation of structural data from the Nagssugtoqidian orogen using a GIS platform: general trends and features

    Directory of Open Access Journals (Sweden)

    van Gool, Jeroen A.M.

    2006-12-01

    Full Text Available In this contribution we present data collected by more than 50 international geologists involved ingeological mapping and research projects in the Nagssugtoqidian orogen of West Greenland, organised by the Geological Survey of Denmark and Greenland and the Danish Lithosphere Centre. Using a geographical information system (GIS as a framework for visualisation and analysis of structural and lithological data, it is now possible to give a unique overview of thousands of data points, employedhere within a study area of approximately 160 × 180 km in the central and northern Nagssugtoqidian orogen. The GIS methodology allows comparison, integration and analysis of datasets interms of subject, space, and scale. This is extremely helpful in the recognition of geological patterns,such as terrain or domain boundaries and map-scale structures. Analysis of the available structuraldata shows clear differences in deformation patterns between the core and the northern segment ofthe Nagssugtoqidian orogen. One of the most prominent features is the ENE-striking Nordre Strømfjord shear zone, which transects the orogen from the coast to the Inland Ice. The data also clearly document a change from predominantly steeply dipping, ENE–WSW-trending fabrics and large,elongate structural domains in the core of the orogen, to large, open fold patterns and moderately to shallowly dipping fabrics in smaller structural domains in the north.

  2. Near Surface Tectonics in the Baltic Sea Sector of the North German Basin and the Tornquist Zone

    Science.gov (United States)

    Al-Hseinat, Mu'ayyad; Huebscher, Christian

    2017-04-01

    The Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea are discussed on the basis of a dense grid of ca. 800 reflection seismic profiles. The study area covers the transition from the salt floored North German Basin (Bay of Kiel) to the salt free Tornquist Zone (Pomeranian Bay). The geological structure was studied by individual seismic sections and derived high-resolution time-structure maps of the main horizons, the Upper Cretaceous, Tertiary and Pleistocene. Numerous significant faults could be identified in the Upper Cretaceous and Tertiary layers throughout the study area. Several of the faults propagate upwards across the unconsolidated Pleistocene sediments and penetrate the seafloor topography. In the salt floored North German Basin, three major fault trends are observed: NW-SE, N-S and NNE-SSW striking faults. Several of the faults are located directly above basement (sub-salt) faults and salt pillows. The majority of these faults are trending N-S to NNE-SSW and parallel the direction of the Glückstadt Graben faults. Basement tectonics controls supra-salt tectonics, but the ductile salt layer causes an offset between the sub- and supra-salt faults. In the salt free Pomeranian Bay, two major fault trends are found: NW-SE and NE-SW striking faults. The majority of these faults are located above basement faults following the Tornquist Zone direction. The fault movements are interpreted as a reactivation of pre-existing faults and vertical salt movement due to major plate reorganisation related to the Africa-Iberia-Europe convergence and later Alpine Orogeny (ca. 90 Ma). The faults and salt tectonics were afterward reactivated between Late Eocene and Middle Miocene when the principal horizontal stress orientation changed from a NE-SW to a NW-SE direction, the present-day orientation. We suggest that the recent tectonics and upward propagation of the faults resulted from ice

  3. Permo-Triassic structural evolution of the Shiwandashan and Youjiang structural belts, South China

    Science.gov (United States)

    Li, Jianhua; Zhao, Guochun; Johnston, Stephen T.; Dong, Shuwen; Zhang, Yueqiao; Xin, Yujia; Wang, Wenbao; Sun, Hanshen; Yu, Yingqi

    2017-07-01

    We conducted field mapping coupled with radiometric dating across the Shiwandashan and Youjiang structural belts (SWSB and YJSB), to investigate how southwest South China evolved and to better understand its links to plate boundary dynamics during the Late Permian to Middle Triassic. Our results reveal an episodic tectono-magmatic evolutionary history of the SWSB and YJSB. The SWSB underwent significant NW-SE shortening punctuated by ∼250-240 Ma S-type pluton emplacement during the Late Permian to Middle Triassic; the shortening was expressed by thin-skinned NW-verging thrusts and folds, and conjugate sets of ∼N-trending sinistral and ∼E-trending dextral faults. The NW-SE shortening overlapped with, and was succeeded by Triassic NE-SW shortening in the YJSB. The NE-SW shortening was expressed by NE-verging thrusts and folds, which documented a northeastward propagation of foreland deformation. The NE-verging folds overprinted older NW-verging folds, forming superimposed folds at the juncture of the YJSB and SWSB in the Long'an area. Our results, combined with regional considerations, support a model of the NW-SE shortening as an Andean-type orogeny that developed in response to westward subduction of the Paleo-Pacific Plate, and the NE-SW shortening as a product of the Indochina-South China collision. The subduction of the Paleo-Pacific plate assisted in westward motion of the South China oceanic lithosphere, which may have facilitated the closure of the Paleo-Tethys ocean and subsequent collisions of South China with North China and Indochina.

  4. Precambrian crustal evolution and Cretaceous–Palaeogene faulting in West Greenland: Faults and fractures in central West Greenland: onshore expression of continental break-up and sea-floor spreading in the Labrador – Baffin Bay Sea

    Directory of Open Access Journals (Sweden)

    Chalmers, James A.

    2006-12-01

    Full Text Available The complex Ungava fault zone lies in the Davis Strait and separates failed spreading centres in the Labrador Sea and Baffin Bay. This study focuses on coastal exposures east of the fault-bound Sisimiut basin, where the onshore expressions of these fault systems and the influence of pre-existing basement are examined. Regional lineament studies identify five main systems: N–S, NNE–SSW, ENE–WSW, ESE–WNW and NNW–SSE. Field studies reveal that strike-slip movements predominate, and are consistent with a ~NNE–SSW-oriented sinistral wrench system. Extensional faults trending N–S and ENE–WSW (basement-parallel, and compressional faults trending E–W, were also identified. The relative ages of these fault systems have been interpreted using cross-cutting relationships and by correlation with previously identified structures. A two-phase model for fault development fits the development of both the onshore fault systems observed in this study and regional tectonic structures offshore. The conclusions from this study show that the fault patterns and sense of movement on faults onshore reflect the stress fields that govern the opening of the Labrador Sea – Davis Strait – Baffin Bay seaway, and that the wrench couple on the Ungava transform system played a dominant role in the development of the onshore fault patterns

  5. Late Cretaceous to recent tectonic evolution of the North German Basin and the transition zone to the Baltic Shield/southwest Baltic Sea

    Science.gov (United States)

    Al Hseinat, M.; Hübscher, C.

    2017-06-01

    In this study we investigate the Late Cretaceous to recent tectonic evolution of the southwestern Baltic Sea based on a dense grid of seismic reflection profiles. This area covers the Baltic Sea sector of the salt influenced North German Basin and its transition to the salt free Baltic Shield across the Tornquist Zone. The Upper Cretaceous to recent structural evolution is discussed by means of individual seismic sections and derived high-resolution time-structure maps of the main horizons, i.e., the Upper Cretaceous, Tertiary and Pleistocene. The Upper Cretaceous and Tertiary layers reveal numerous significant faults throughout the study area. Several of these faults propagate upwards across the unconsolidated Pleistocene sediments and occasionally penetrate the surface. The salt influenced North German Basin reveals three major fault trends: NW-SE, N-S and NNE-SSW. Several of these faults are located directly above basement (sub-salt) faults and salt pillows. The majority of these faults are trending N-S to NNE-SSW and parallel the direction of the Glückstadt Graben faults. In the salt free Tornquist Zone, we identify two major shallow fault trends, which are NW-SE and NE-SW. The majority of these faults are located above basement faults, following the direction of the Tornquist Zone. We conclude that generally basement tectonics controls activation and trends of shallow faults. If salt is present, the ductile salt layer causes a lateral shift between the sub- and supra-salt faults. Major plate reorganisation related to the Africa-Iberia-Europe convergence and the subsequent Alpine Orogeny caused reactivation of pre-existing faults and vertical salt movement in the Late Cretaceous. The change of stress orientation from NE-SW to a NW-SE during Neogene caused another phase of fault and salt tectonic reactivation. We explain that the ice-sheet loading and/or present-day stress field may have acted in combination, causing the recent tectonics and upward extension of

  6. ESR dating of fault rocks

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Hee Kwon [Kangwon National Univ., Chuncheon (Korea, Republic of)

    2003-02-15

    Past movement on faults can be dated by measurement of the intensity of ESR signals in quartz. These signals are reset by local lattice deformation and local frictional heating on grain contacts at the time of fault movement. The ESR signals then grow back as a result of bombardment by ionizing radiation from surrounding rocks. The age is obtained from the ratio of the equivalent dose, needed to produce the observed signal, to the dose rate. Fine grains are more completely reset during faulting, and a plot of age vs. grain size shows a plateau for grains below critical size; these grains are presumed to have been completely zeroed by the last fault activity. We carried out ESR dating of fault rocks collected near the Gori nuclear reactor. Most of the ESR signals of fault rocks collected from the basement are saturated. This indicates that the last movement of the faults had occurred before the Quaternary period. However, ESR dates from the Oyong fault zone range from 370 to 310 ka. Results of this research suggest that long-term cyclic fault activity of the Oyong fault zone continued into the Pleistocene.

  7. Tertiary tectonic evolution of the external South Carpathians and the adjacent Moesian platform (Romania)

    Science.gov (United States)

    Maå£Enco, L.; Bertotti, G.; Dinu, C.; Cloetingh, S.

    1997-12-01

    Depth-interpreted seismic sections of the Getic Depression foredeep, paleostress indicator data and analysis of outcrop- to regional-scale structures are integrated to derive the tectonic evolution of the South Carpathians - Moesian platform area. Following Late Cretaceous and older orogenic phases, the South Carpathians - Moesian platform area underwent strike-slip deformation with NE-SW oriented compression and NW-SE tension. In Paleogene to Early Burdigalian times, tensional deformation is recorded which led to the opening of WSW-ENE to E-W trending extensional basins. In the Late Burdigalian, NE-SW oriented contraction took over causing the oblique inversion of preexisting extensional structures. During Sarmatian times, NW-SE and slightly younger N-S trending compression caused the activation of mainly NW-SE dextral strike-slip faults and, in the frontal areas, south directed thrusting. The NW-SE direction of extension determined for Paleogene to Early Burdigalian times is hardly compatible with presently accepted models of substantially continuous dextral wrenching between the Intra-Carpathians units to the north of the South Carpathians and the Moesian platform to the south. In contrast, we have demonstrated dextral transpressive to transtensional movements within an E-W trending corridor from the Late Burdigalian to Late Sarmatian which are compatible with available models.

  8. Late Quaternary strike-slip along the Taohuala Shan-Ayouqi fault zone and its tectonic implications in the Hexi Corridor and the southern Gobi Alashan, China

    Science.gov (United States)

    Yu, Jing-xing; Zheng, Wen-jun; Zhang, Pei-zhen; Lei, Qi-yun; Wang, Xu-long; Wang, Wei-tao; Li, Xin-nan; Zhang, Ning

    2017-11-01

    The Hexi Corridor and the southern Gobi Alashan are composed of discontinuous a set of active faults with various strikes and slip motions that are located to the north of the northern Tibetan Plateau. Despite growing understanding of the geometry and kinematics of these active faults, the late Quaternary deformation pattern in the Hexi Corridor and the southern Gobi Alashan remains controversial. The active E-W trending Taohuala Shan-Ayouqi fault zone is located in the southern Gobi Alashan. Study of the geometry and nature of slip along this fault zone holds crucial value for better understanding the regional deformation pattern. Field investigations combined with high-resolution imagery show that the Taohuala Shan fault and the E-W trending faults within the Ayouqi fault zone (F2 and F5) are left-lateral strike-slip faults, whereas the NW or WNW-trending faults within the Ayouqi fault zone (F1 and F3) are reverse faults. We collected Optically Stimulated Luminescence (OSL) and cosmogenic exposure age dating samples from offset alluvial fan surfaces, and estimated a vertical slip rate of 0.1-0.3 mm/yr, and a strike-slip rate of 0.14-0.93 mm/yr for the Taohuala Shan fault. Strata revealed in a trench excavated across the major fault (F5) in the Ayouqi fault zone and OSL dating results indicate that the most recent earthquake occurred between ca. 11.05 ± 0.52 ka and ca. 4.06 ± 0.29 ka. The geometry and kinematics of the Taohuala Shan-Ayouqi fault zone enable us to build a deformation pattern for the entire Hexi Corridor and the southern Gobi Alashan, which suggest that this region experiences northeastward oblique extrusion of the northern Tibetan Plateau. These left-lateral strike-slip faults in the region are driven by oblique compression but not associated with the northeastward extension of the Altyn Tagh fault.

  9. Real-time fault diagnosis and fault-tolerant control

    OpenAIRE

    Gao, Zhiwei; Ding, Steven X.; Cecati, Carlo

    2015-01-01

    This "Special Section on Real-Time Fault Diagnosis and Fault-Tolerant Control" of the IEEE Transactions on Industrial Electronics is motivated to provide a forum for academic and industrial communities to report recent theoretic/application results in real-time monitoring, diagnosis, and fault-tolerant design, and exchange the ideas about the emerging research direction in this field. Twenty-three papers were eventually selected through a strict peer-reviewed procedure, which represent the mo...

  10. The strong Mw6 earthquake of 26th January 2014 in Cephalonia island, Ionian Sea, Greece: a first report

    Science.gov (United States)

    Karastathis, Vassilis; Koukouvelas, Ioannis; Ganas, Athanasios; Moschou, Alexandra; Mouzakiotis, Aggelos; Papadopoulos, Gerassimos A.; Spanos, Dimitrios

    2014-05-01

    On 26 January 2014 a strong (Mw6) shallow earthquake ruptured the western side of Cephalonia island in the Ionian Sea, Greece. The main shock was followed by abundant aftershocks, one of them of Mw5.4. The earthquake caused damage but no human victims mainly in the area of Lixouri town in the western part of the island. However, the rest part of the island was only slightly affected. The earthquake caused also a series of ground failures, such as landslides and rockfalls which are geographically distributed in the meizoseismal area mainly along two tectonic lines trending NE-SW the first and about N-S the other. A spot of soil liquefaction was observed in the coastal zone near the port of Lixouri. According to first results the peak ground acceleration may have exceeded 0.35 g. The seismotectonic field appears complicated since the main shock was associated with about NE-SW strike-slip faulting while some of the strong aftershocks were associated with nearly N-S thrust. A relocation of the main shock and aftershocks was performed. We discuss the faulting associated with the earthquake sequence generation in relation to the relocated events and the ground failures observed in the field.

  11. The 2009 earthquake, magnitude mb 4.8, in the Pantanal Wetlands, west-central Brazil.

    Science.gov (United States)

    Dias, Fábio L; Assumpção, Marcelo; Facincani, Edna M; França, George S; Assine, Mario L; Paranhos, Antônio C; Gamarra, Roberto M

    2016-09-01

    The main goal of this paper is to characterize the Coxim earthquake occurred in June 15th, 2009 in the Pantanal Basin and to discuss the relationship between its faulting mechanism with the Transbrasiliano Lineament. The earthquake had maximum intensity MM V causing damage in farm houses and was felt in several cities located around, including Campo Grande and Goiânia. The event had an mb 4.8 magnitude and depth was 6 km, i.e., it occurred in the upper crust, within the basement and 5 km below the Cenozoic sedimentary cover. The mechanism, a thrust fault mechanism with lateral motion, was obtained by P-wave first-motion polarities and confirmed by regional waveform modelling. The two nodal planes have orientations (strike/dip) of 300°/55° and 180°/55° and the orientation of the P-axis is approximately NE-SW. The results are similar to the Pantanal earthquake of 1964 with mb 5.4 and NE-SW compressional axis. Both events show that Pantanal Basin is a seismically active area, under compressional stress. The focal mechanism of the 1964 and 2009 events have no nodal plane that could be directly associated with the main SW-NE trending Transbrasiliano system indicating that a direct link of the Transbrasiliano with the seismicity in the Pantanal Basin is improbable.

  12. Imaging of Subsurface Faults using Refraction Migration with Fault Flooding

    KAUST Repository

    Metwally, Ahmed Mohsen Hassan

    2017-05-31

    We propose a novel method for imaging shallow faults by migration of transmitted refraction arrivals. The assumption is that there is a significant velocity contrast across the fault boundary that is underlain by a refracting interface. This procedure, denoted as refraction migration with fault flooding, largely overcomes the difficulty in imaging shallow faults with seismic surveys. Numerical results successfully validate this method on three synthetic examples and two field-data sets. The first field-data set is next to the Gulf of Aqaba and the second example is from a seismic profile recorded in Arizona. The faults detected by refraction migration in the Gulf of Aqaba data were in agreement with those indicated in a P-velocity tomogram. However, a new fault is detected at the end of the migration image that is not clearly seen in the traveltime tomogram. This result is similar to that for the Arizona data where the refraction image showed faults consistent with those seen in the P-velocity tomogram, except it also detected an antithetic fault at the end of the line. This fault cannot be clearly seen in the traveltime tomogram due to the limited ray coverage.

  13. Investigation of Regional Fractures and Cu Mineralization Relationships in the Khezrabad and Shahr-e-Babak Area: Using Fry and Fractal analysis

    Directory of Open Access Journals (Sweden)

    Alireza Zarasvandi

    2015-10-01

    such linear trends occur at a characteristic spacing. There is 37 and 42 copper point's index in the Khezr-Abad and Shar-B-Babak areas. The Fry patterns of copper index for two areas were determined with application of Dot Proc software. Fractal analysis is another technique for determination of regional distribution of faults. In this research the fractal dimension of joints and faults was determined in different locations using box-counting fractal method and drawing the logarithmic graphs. Results - The major faults show NW/SE trends in the Khezr-Abad area. They have a similar trend with Dehshir-Baft fault. Other sets of faults show NE/SW trend. These faults are younger than the Dehshir-Baft and release sinistral sense of shear. - Intrusion of two intrusive bodies leads to the accumulation of strike-slip faults in the vicinity of intrusive rocks. In this region faults and joints mainly show NW/SE and NE/SW trends. - The results of Fry analysis show that the mineralization in the Khezr-Abad occurred in the Cretaceous (and younger rocks with NE/SW and NW/SE orientations. In the other words, these areas of mineralization are mainly related to the secondary faults or (P faults in the pull basins and cross cutting points of these faults which have similar strike with the Dehshir-Baft fault. NE/SW mineralization is probably related to the tensional stress direction or faults having the general trends of central Iran structures. - The calculations of fractal dimension show that the southeastern parts of the Khezr Abad have higher amounts of fractal dimension (Db= 1.7002. Also there is a relatively higher copper index in this part, indicating a logical relation between fault structures and mineralization. -The generated maps indicate that the mineralization in the Shahr-e-Babak area occurred at the intersection of faults and volcanic system and the Fry analysis shows a NE/SW and NW/SE trend of ore concentration. - Northwestern parts of the Share-e-Babak show higher fractal

  14. Map and Database of Probable and Possible Quaternary Faults in Afghanistan

    Science.gov (United States)

    Ruleman, C.A.; Crone, A.J.; Machette, M.N.; Haller, K.M.; Rukstales, K.S.

    2007-01-01

    conjugate shear system in a transpressional region of the Trans-Himalayan orogenic belt. The general patterns and orientations of faults and the styles of deformation that we interpret from the imagery are consistent with the styles of faulting determined from focal mechanisms of historical earthquakes. Northwest-trending strike-slip fault zones are cut and displaced by younger, southeast-verging thrust faults; these relations define the interaction between northwest-southeast-oriented contraction and northwest-directed extrusion in the western Himalaya, Pamir, and Hindu Kush regions. Transpression extends into north-central Afghanistan where north-verging contraction along the east-west-trending Alburz-Marmul fault system interacts with northwest-trending strike-slip faults. Pressure ridges related to thrust faulting and extensional basins bounded by normal faults are located at major stepovers in these northwest-trending strike-slip systems. In contrast, young faulting in central and western Afghanistan indicates that the deformation is dominated by extension where strike-slip fault zones transition into regions of normal faults. In addition to these initial observations, our digital map and database provide a foundation that can be expanded, complemented, and modified as future investigations provide more detailed information about the location, characteristics, and history of movement on Quaternary faults in Afghanistan.

  15. Rifting kinematics along the Arabian Margin, Red Sea

    Science.gov (United States)

    Pierantoni, Pietro Paolo; Schettino, Antonio; Zanoni, Davide; Rasul, Najeeb

    2017-04-01

    The Red Sea represents a young basin floored by oceanic, transitional, or thinned continental crust that formed between Nubia and Arabia. According to most authors, rifting between Nubia and Arabia started in the late Oligocene ( 27 Ma) and it is still in progress in the northern part of the Red Sea at latitudes greater than 24°N. Conversely, the area south of 20.3°N displays a linear spreading ridge extending as south as 14.8°N, which formed in the early Pliocene (the first pulse of sea floor spreading occurred during chron C3n.2n, 4.62 Ma). A transition zone (between 24°N and 20.3°N, present-day coordinates) exists between the northern and the southern sectors, characterized by a segmented spreading center that started forming at 2.58 Ma (chron 2A, late Pliocene) in the southernmost area and propagated northwards. Some authors suggest that the present-day NE-SW spreading directions can be extended back to the early Miocene. However, we are going to show, on the basis of geological evidence from the Arabian margin, that at least two phases of rifting, characterized by distinct extension directions, are necessary to explain the observed structural pattern of deformation in a wide area extending from 28°N to 20°N. At present, there is no magnetic evidence for the existence of a linear spreading center in the northern Red Sea at latitudes higher than 24°N. In this area, the syn-rift pattern of deformation along the Arabian margin is only partly coherent with the present day NE-SW sea floor spreading directions and with the observed trend of fracture zones in the Red Sea. In fact, an older set of rift structures was found during 3 field trips performed along the northern and central Red Sea Arabian margin (2015-2016), suggesting the existence of an earlier rifting stage characterized by N-S trending strike-slip faults and E-W normal faults. The objective of the field trips was to investigate the hypothesis that an early phase of N-S extension and formation of

  16. Final Technical Report: PV Fault Detection Tool.

    Energy Technology Data Exchange (ETDEWEB)

    King, Bruce Hardison [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Jones, Christian Birk [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-12-01

    The PV Fault Detection Tool project plans to demonstrate that the FDT can (a) detect catastrophic and degradation faults and (b) identify the type of fault. This will be accomplished by collecting fault signatures using different instruments and integrating this information to establish a logical controller for detecting, diagnosing and classifying each fault.

  17. Evidence for propagating, active tensional faulting in Upper Kåfjord valley, Troms County, Norway

    Science.gov (United States)

    Redfield, T. F.; Osmundsen, P. T.; Henderson, I. H. C.; Hermanns, R. L.

    2010-05-01

    New concepts governing margin extension and post-rift passive margin evolution are appearing from onshore and offshore studies. In Norway topographic escarpments, creation, preservation and destruction of landforms, and drainage patterns are related to structural templates created during the Jurassic rift phase. Contradicting the notion that post-rift isostatic compensation, thermal subsidence, and topographic degradation mark a passive margin's final evolutionary phases, we present geological evidence for currently-active tensional deformation, accommodated by release faulting, in uppermost Kåfjordalen and Signaldalen. In Signaldalen, propagation of the deformation tip has introduced active normal faulting to Finland. Ground observations indicate a large normal fault defines the eastern border of the Lyngen 'Alps' peninsula. There, a series of exceptionally well-preserved triangular facets adorn a sharp, elevated escarpment. To the east a swarm of small NE-trending normal faults are exposed in roadside outcrops near the mouth of Kåfjord, dipping both to the NW and SE. Displacement across the fault swarm is asymmetric, the greatest component of motion being down-to-the-NW in the direction of the Lyngen Fault. Another set of NE trending, NW dipping faults crop out at Revsdalfjellet. We interpret these faults to reflect splays to the Lyngen Fault. The hanging wall of the Lyngen Fault is characterized by numerous clusters of fault-controlled rockslides. We interpret the valleys of Signaldalen, Skibotndalen, and Kåfjordalen, located in the hanging wall of the Lyngen Fault, to have formed at least partly under the influence of release faults that accommodated hanging wall flexure and failure. Other fault scarps, trending more NW-SE, crop out at two Kåfjord rockslide sites, Nomandalstinden and Litledalen. Mineralized surfaces exhibiting dip-slip slickenlines indicate most of these faults are true tectonic features, not simply gravitationally-driven 'sackung' planes

  18. Seismological Studies for Tensile Faults

    Directory of Open Access Journals (Sweden)

    Gwo-Bin Ou

    2008-01-01

    Full Text Available A shear slip fault, an equivalence of a double couple source, has often been assumed to be a kinematic source model in ground motion simulation. Estimation of seismic moment based on the shear slip model indicates the size of an earthquake. However, if the dislocation of the hanging wall relative to the footwall includes not only a shear slip tangent to the fault plane but also expansion and compression normal to the fault plane, the radiating seismic waves will feature differences from those out of the shear slip fault. Taking account of the effects resulting from expansion and compression to a fault plane, we can resolve the tension and pressure axes as well as the fault plane solution more exactly from ground motions than previously, and can evaluate how far a fault zone opens or contracts during a developing rupture. In addition to a tensile angle and Poisson¡¦s ratio for the medium, a tensile fault with five degrees of freedom has been extended from the shear slip fault with only three degrees of freedom, strike, dip, and slip.

  19. SEISMOLOGY: Watching the Hayward Fault.

    Science.gov (United States)

    Simpson, R W

    2000-08-18

    The Hayward fault, located on the east side of the San Francisco Bay, represents a natural laboratory for seismologists, because it does not sleep silently between major earthquakes. In his Perspective, Simpson discusses the study by Bürgmann et al., who have used powerful new techniques to study the fault. The results indicate that major earthquakes cannot originate in the northern part of the fault. However, surface-rupturing earthquakes have occurred in the area, suggesting that they originated to the north or south of the segment studied by Bürgmann et al. Fundamental questions remain regarding the mechanism by which plate tectonic stresses are transferred to the Hayward fault.

  20. Advanced cloud fault tolerance system

    Science.gov (United States)

    Sumangali, K.; Benny, Niketa

    2017-11-01

    Cloud computing has become a prevalent on-demand service on the internet to store, manage and process data. A pitfall that accompanies cloud computing is the failures that can be encountered in the cloud. To overcome these failures, we require a fault tolerance mechanism to abstract faults from users. We have proposed a fault tolerant architecture, which is a combination of proactive and reactive fault tolerance. This architecture essentially increases the reliability and the availability of the cloud. In the future, we would like to compare evaluations of our proposed architecture with existing architectures and further improve it.

  1. Physical fault tolerance of nanoelectronics.

    Science.gov (United States)

    Szkopek, Thomas; Roychowdhury, Vwani P; Antoniadis, Dimitri A; Damoulakis, John N

    2011-04-29

    The error rate in complementary transistor circuits is suppressed exponentially in electron number, arising from an intrinsic physical implementation of fault-tolerant error correction. Contrariwise, explicit assembly of gates into the most efficient known fault-tolerant architecture is characterized by a subexponential suppression of error rate with electron number, and incurs significant overhead in wiring and complexity. We conclude that it is more efficient to prevent logical errors with physical fault tolerance than to correct logical errors with fault-tolerant architecture.

  2. An Overview of Transmission Line Protection by Artificial Neural Network: Fault Detection, Fault Classification, Fault Location, and Fault Direction Discrimination

    Directory of Open Access Journals (Sweden)

    Anamika Yadav

    2014-01-01

    Full Text Available Contemporary power systems are associated with serious issues of faults on high voltage transmission lines. Instant isolation of fault is necessary to maintain the system stability. Protective relay utilizes current and voltage signals to detect, classify, and locate the fault in transmission line. A trip signal will be sent by the relay to a circuit breaker with the purpose of disconnecting the faulted line from the rest of the system in case of a disturbance for maintaining the stability of the remaining healthy system. This paper focuses on the studies of fault detection, fault classification, fault location, fault phase selection, and fault direction discrimination by using artificial neural networks approach. Artificial neural networks are valuable for power system applications as they can be trained with offline data. Efforts have been made in this study to incorporate and review approximately all important techniques and philosophies of transmission line protection reported in the literature till June 2014. This comprehensive and exhaustive survey will reduce the difficulty of new researchers to evaluate different ANN based techniques with a set of references of all concerned contributions.

  3. 2001 Bhuj-Kachchh earthquake: surface faulting and its relation with neotectonics and regional structures, Gujarat, Western India

    Directory of Open Access Journals (Sweden)

    M. G. Thakkar

    2003-06-01

    Full Text Available Primary and secondary surface deformation related to the 2001 Bhuj-Kachchh earthquake suggests that thrusting movement took place along an E-W fault near the western extension of the South Wagad Fault, a synthetic fault of the Kachchh Mainland Fault (KMF. Despite early reconnaissance reports that concluded there was no primary surface faulting, we describe an 830 m long, 15-35 cm high, east-west-trending thrust fault scarp near where the seismogenic fault plane would project to the surface, near Bharodiya village (between 23°34.912'N, 70°23.942'E and 23°34.304'N, 70°24.884'E. Along most of the scarp Jurassic bedrock is thrust over Quaternary deposits, but the fault scarp also displaces Holocene alluvium and an earth dam, with dips of 13° to 36° south. Secondary co-seismic features, mainly liquefaction and lateral spreading, dominate the area south of the thrust. Transverse right-lateral movement along the «Manfara Fault» and a parallel fault near Bharodiya suggests segmentation of the E-W master faults. Primary (thrust surface rupture had a length of 0.8 km, maximum displacement of about 35 cm, and average displacement of about 15 cm. Secondary (strike-slip faulting was more extensive, with a total end-to-end length of 15 km, maximum displacement of 35 cm, and average displacement of about 20 cm.

  4. Fault Tolerant Distributive Processing

    Science.gov (United States)

    Quesnell, Harris

    1982-12-01

    A fault tolerant design used to enhanced the survivability of a distributive processing system is described. Based on physical limitations, mission duration and maintenance support, the approach has emphasized functional redundancy in place of the traditional hardware or software level redundancy. A top down architecture within the system's hierarchy allows sharing of common resources. Various techniques used to enhance the survivability of the hardware at the equipment, module and component level were analyzed. The intent of the on going work is to demonstrate the ability of a distributive processing system to maintain itself for a long period of time.

  5. Perspective View, Garlock Fault

    Science.gov (United States)

    2000-01-01

    California's Garlock Fault, marking the northwestern boundary of the Mojave Desert, lies at the foot of the mountains, running from the lower right to the top center of this image, which was created with data from NASA's shuttle Radar Topography Mission (SRTM), flown in February 2000. The data will be used by geologists studying fault dynamics and landforms resulting from active tectonics. These mountains are the southern end of the Sierra Nevada and the prominent canyon emerging at the lower right is Lone Tree canyon. In the distance, the San Gabriel Mountains cut across from the leftside of the image. At their base lies the San Andreas Fault which meets the Garlock Fault near the left edge at Tejon Pass. The dark linear feature running from lower right to upper left is State Highway 14 leading from the town of Mojave in the distance to Inyokern and the Owens Valley in the north. The lighter parallel lines are dirt roads related to power lines and the Los Angeles Aqueduct which run along the base of the mountains.This type of display adds the important dimension of elevation to the study of land use and environmental processes as observed in satellite images. The perspective view was created by draping a Landsat satellite image over an SRTM elevation model. Topography is exaggerated 1.5 times vertically. The Landsat image was provided by the United States Geological Survey's Earth Resources Observations Systems (EROS) Data Center, Sioux Falls, South Dakota.Elevation data used in this image was acquired by the Shuttle Radar Topography Mission (SRTM) aboard the Space Shuttle Endeavour, launched on February 11,2000. SRTM used the same radar instrument that comprised the Spaceborne Imaging Radar-C/X-Band Synthetic Aperture Radar (SIR-C/X-SAR) that flew twice on the Space Shuttle Endeavour in 1994. SRTM was designed to collect three-dimensional measurements of the Earth's surface. To collect the 3-D data, engineers added a 60-meter-long (200-foot) mast, installed

  6. Stress field rotation or block rotation: An example from the Lake Mead fault system

    Science.gov (United States)

    Ron, Hagai; Nur, Amos; Aydin, Atilla

    1990-02-01

    The Coulomb criterion, as applied by Anderson (1951), has been widely used as the basis for inferring paleostresses from in situ fault slip data, assuming that faults are optimally oriented relative to the tectonic stress direction. Consequently if stress direction is fixed during deformation so must be the faults. Freund (1974) has shown that faults, when arranged in sets, must generally rotate as they slip. Nur et al., (1986) showed how sufficiently large rotations require the development of new sets of faults which are more favorably oriented to the principal direction of stress. This leads to the appearance of multiple fault sets in which older faults are offset by younger ones, both having the same sense of slip. Consequently correct paleostress analysis must include the possible effect of fault and material rotation, in addition to stress field rotation. The combined effects of stress field rotation and material rotation were investigated in the Lake Meade Fault System (LMFS) especially in the Hoover Dam area. Fault inversion results imply an apparent 60 degrees clockwise (CW) rotation of the stress field since mid-Miocene time. In contrast structural data from the rest of the Great Basin suggest only a 30 degrees CW stress field rotation. By incorporating paleomagnetic and seismic evidence, the 30 degrees discrepancy can be neatly resolved. Based on paleomagnetic declination anomalies, it is inferred that slip on NW trending right lateral faults caused a local 30 degrees counter-clockwise (CCW) rotation of blocks and faults in the Lake Mead area. Consequently the inferred 60 degrees CW rotation of the stress field in the LMFS consists of an actual 30 degrees CW rotation of the stress field (as for the entire Great Basin) plus a local 30 degrees CCW material rotation of the LMFS fault blocks.

  7. Fault distribution to the west of Songliao Basin by means of gravity analysis

    Science.gov (United States)

    Chen, Jun; Li, Shizhen; Zhou, Xingui

    2017-04-01

    Our study area is located to the west of Songliao Basin, northeastern China. Its tectonic setting includes three parts, the Argun block, the Higgnan block and the Songnen block from north to south. It belongs to the northeastern Asia orogenic zone surrounded by the Siberia plate, the North China plate and the Pacific plate. As the global feature, the gravity anomaly values increase from west to east, and from southwest to northeast. The minimum value is 5mGal, and the maximum value is 5mGal. In the southwestern region, the variation range is from -87mGal to 65mGal. But in the northeastern region, it is between -65mGal and 55mGal. In the central region, the gravity anomaly values are between -55mGal and 25mGal, and the gravity anomaly gradient is bigger than that in other regions. In the eastern region, gravity anomaly values are bigger than those in other regions, and the gravity anomaly characteristics is complicated. There are gravity anomaly gradient belts, anomaly direction changes, distortion of contour lines, broaden or narrowed of the closed contour lines. Gravity anomaly data can be used for study of tectonics division and regional geological structures. The gravity anomaly data has been processed using many methods. Firstly, analytic upward- continuation and apparent-depth filtering were used to separate the gravity anomaly field with different depth and different scale. Then, horizontal derivatives, vertical derivatives, analytical signal calculation, small sub-domain filtering were used to increase the gravity resolution for fault discrimination. Through the interpretation of different depth and different scale gravity anomalies, we mapped the fault distribution of the study area. There are four types of faults with different trends, which are north east-east(NEE), near west-east(WE), north-east(NE) and north-west(NW). The NE and NW trending faults are distributed in the whole region. The WE trending faults are located mainly in the southern region of

  8. Thrust faults and extensional detachment faults in Cretan tectono-stratigraphy: Implications for Middle Miocene extension

    Science.gov (United States)

    Papanikolaou, Dimitrios; Vassilakis, Emmanuel

    2010-06-01

    dipping E-W-trending zones; one dipping north, related to the opening of the Cretan basin, and the other dipping south, related to the formation of the Messara supra-detachment basin. The deformation history of units within Crete can be summarized as: (i) compressional deformation producing arc-parallel east-west-trending south-directed thrust faults in Oligocene to Early Miocene time; (ii) extensional deformation along arc-parallel, east-west-trending detachment faults in Middle Miocene time, with hanging wall motion to the north and south; and (iii) Late Miocene-Quaternary transtensional deformation along high-angle normal and oblique normal faults that disrupt the older arc-parallel structures.

  9. Central Asia Active Fault Database

    Science.gov (United States)

    Mohadjer, Solmaz; Ehlers, Todd A.; Kakar, Najibullah

    2014-05-01

    The ongoing collision of the Indian subcontinent with Asia controls active tectonics and seismicity in Central Asia. This motion is accommodated by faults that have historically caused devastating earthquakes and continue to pose serious threats to the population at risk. Despite international and regional efforts to assess seismic hazards in Central Asia, little attention has been given to development of a comprehensive database for active faults in the region. To address this issue and to better understand the distribution and level of seismic hazard in Central Asia, we are developing a publically available database for active faults of Central Asia (including but not limited to Afghanistan, Tajikistan, Kyrgyzstan, northern Pakistan and western China) using ArcGIS. The database is designed to allow users to store, map and query important fault parameters such as fault location, displacement history, rate of movement, and other data relevant to seismic hazard studies including fault trench locations, geochronology constraints, and seismic studies. Data sources integrated into the database include previously published maps and scientific investigations as well as strain rate measurements and historic and recent seismicity. In addition, high resolution Quickbird, Spot, and Aster imagery are used for selected features to locate and measure offset of landforms associated with Quaternary faulting. These features are individually digitized and linked to attribute tables that provide a description for each feature. Preliminary observations include inconsistent and sometimes inaccurate information for faults documented in different studies. For example, the Darvaz-Karakul fault which roughly defines the western margin of the Pamir, has been mapped with differences in location of up to 12 kilometers. The sense of motion for this fault ranges from unknown to thrust and strike-slip in three different studies despite documented left-lateral displacements of Holocene and late

  10. Fault Monitooring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2009-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to line breakage...... and risky abortion of an oil-loading operation. With signicant drift forces from waves, non-Gaussian elements dominate in residuals and fault diagnosis need be designed using dedicated change detection for the type of distribution encountered. In addition to dedicated diagnosis, an optimal position...... algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Detection properties and fault-tolerant control are demonstrated by high delity simulations...

  11. Structure and flow properties of syn-rift border faults: The interplay between fault damage and fault-related chemical alteration (Dombjerg Fault, Wollaston Forland, NE Greenland)

    Science.gov (United States)

    Kristensen, Thomas B.; Rotevatn, Atle; Peacock, David C. P.; Henstra, Gijs A.; Midtkandal, Ivar; Grundvåg, Sten-Andreas

    2016-11-01

    Structurally controlled, syn-rift, clastic depocentres are of economic interest as hydrocarbon reservoirs; understanding the structure of their bounding faults is of great relevance, e.g. in the assessment of fault-controlled hydrocarbon retention potential. Here we investigate the structure of the Dombjerg Fault Zone (Wollaston Forland, NE Greenland), a syn-rift border fault that juxtaposes syn-rift deep-water hanging-wall clastics against a footwall of crystalline basement. A series of discrete fault strands characterize the central fault zone, where discrete slip surfaces, fault rock assemblages and extreme fracturing are common. A chemical alteration zone (CAZ) of fault-related calcite cementation envelops the fault and places strong controls on the style of deformation, particularly in the hanging-wall. The hanging-wall damage zone includes faults, joints, veins and, outside the CAZ, disaggregation deformation bands. Footwall deformation includes faults, joints and veins. Our observations suggest that the CAZ formed during early-stage fault slip and imparted a mechanical control on later fault-related deformation. This study thus gives new insights to the structure of an exposed basin-bounding fault and highlights a spatiotemporal interplay between fault damage and chemical alteration, the latter of which is often underreported in fault studies. To better elucidate the structure, evolution and flow properties of faults (outcrop or subsurface), both fault damage and fault-related chemical alteration must be considered.

  12. Fault Management Design Strategies

    Science.gov (United States)

    Day, John C.; Johnson, Stephen B.

    2014-01-01

    Development of dependable systems relies on the ability of the system to determine and respond to off-nominal system behavior. Specification and development of these fault management capabilities must be done in a structured and principled manner to improve our understanding of these systems, and to make significant gains in dependability (safety, reliability and availability). Prior work has described a fundamental taxonomy and theory of System Health Management (SHM), and of its operational subset, Fault Management (FM). This conceptual foundation provides a basis to develop framework to design and implement FM design strategies that protect mission objectives and account for system design limitations. Selection of an SHM strategy has implications for the functions required to perform the strategy, and it places constraints on the set of possible design solutions. The framework developed in this paper provides a rigorous and principled approach to classifying SHM strategies, as well as methods for determination and implementation of SHM strategies. An illustrative example is used to describe the application of the framework and the resulting benefits to system and FM design and dependability.

  13. Multiple Generations of Faulting: A Kinematic Analysis of the Lagarfljót Region, Northeast Iceland

    Science.gov (United States)

    Runnals, K.; Karson, J. A.; Fiorentino, A. J., II

    2014-12-01

    The North American/Eurasian plate boundary in Iceland is structurally diverse with oblique rifts, volcanic fissure swarms, and transform zones. Lagarfljót is a lake located in the Tertiary flood basalts of East Iceland that range in age from ~7 to 3 Ma. The lake is approximately 50 km E of the actively spreading, NS-trending, Northern Rift Zone (NVZ), and occupies a northeast-trending depression in an area of strong NS lineaments. A flexure zone runs N-S across the southern part of the lake, and predates an angular unconformity in the regional lava pile. Exposures in cliffs along the lakeshore and stream cuts above unveil a series of dikes and faults that can be correlated with the lineaments, and indicate a complicated tectonic history. Fault zones are characterized by fault breccia, cataclasite and gouge with well-developed slickenlines and clear shear-sense indicators. Fault gouge in individual shear zones ranges from centimeters to meters in thickness. Cross cutting relationships define the relative ages of 2 families of structures, with both post-dating the flexure. The older generation of faults are NS-striking, dextral, strike-slip faults. These are cut by NE-striking, normal faults. The normal faults are almost exclusively located along or near the margins of large dikes or swarms of dikes ranging from 1 - 5 m wide. Displacements along individual normal faults range from centimeters up to 8 m. Some faults cut the lavas above the unconformity and locally rotated structures suggest that limited tilting of the lava pile occurred during faulting. These findings may be related to larger scale processes of propagation and relocation of the NVZ.

  14. Integration of magnetic, gravity, and well data in imaging subsurface geology in the Ksar Hirane region (Laghouat, Algeria)

    Science.gov (United States)

    Farhi, Walid; Boudella, Ammar; Saibi, Hakim; Bounif, Mohand Ou Abdallah

    2016-12-01

    Gravity and magnetic surveys, comprised of data from 985 gravity stations and 1373 magnetic stations, were recorded in the Ksar Hirane region in Laghouat, Algeria from May-August 2011 to study the poorly understood thickness of the sedimentary rocks and the structure of the basement rocks. The Bouguer anomalies vary from -48 mGal (northwest) to -58 mGal (southeast) and the magnetic intensities from 42,094 nT (northwest) to 42,344 nT (southeast). The constrained two-dimensional (2-D) forward modeling, three-dimensional (3-D) inversion of measured gravity and magnetic datasets helped us highlight the structure of the basement rocks at Ksar Hirane and determine the thickness of the sedimentary cover. Prominent NE-SW-trending geophysical anomalies that affect the study area were revealed by potential field gradient methods and were in agreement with the geological structure trends. The 3-D constrained inversion of magnetic data showed magnetized Precambrian metamorphic basement rock at shallow depths (approximately 3 km) in the southeast region and deeper (>10 km) in the northwestern part of the region, presenting similar results to that of the 2-D forward modeling of gravity and magnetic data. The inverted gravity data explain the structural architecture of the Ksar Hirane area, dissected by NE-SW sub-vertical faults.

  15. Strike-slip faulting in the Inner California Borderlands, offshore Southern California.

    Science.gov (United States)

    Bormann, J. M.; Kent, G. M.; Driscoll, N. W.; Harding, A. J.; Sahakian, V. J.; Holmes, J. J.; Klotsko, S.; Kell, A. M.; Wesnousky, S. G.

    2015-12-01

    In the Inner California Borderlands (ICB), offshore of Southern California, modern dextral strike-slip faulting overprints a prominent system of basins and ridges formed during plate boundary reorganization 30-15 Ma. Geodetic data indicate faults in the ICB accommodate 6-8 mm/yr of Pacific-North American plate boundary deformation; however, the hazard posed by the ICB faults is poorly understood due to unknown fault geometry and loosely constrained slip rates. We present observations from high-resolution and reprocessed legacy 2D multichannel seismic (MCS) reflection datasets and multibeam bathymetry to constrain the modern fault architecture and tectonic evolution of the ICB. We use a sequence stratigraphy approach to identify discrete episodes of deformation in the MCS data and present the results of our mapping in a regional fault model that distinguishes active faults from relict structures. Significant differences exist between our model of modern ICB deformation and existing models. From east to west, the major active faults are the Newport-Inglewood/Rose Canyon, Palos Verdes, San Diego Trough, and San Clemente fault zones. Localized deformation on the continental slope along the San Mateo, San Onofre, and Carlsbad trends results from geometrical complexities in the dextral fault system. Undeformed early to mid-Pleistocene age sediments onlap and overlie deformation associated with the northern Coronado Bank fault (CBF) and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, we interpret the northern CBF to be inactive, and slip rate estimates based on linkage with the Holocene active Palos Verdes fault are unwarranted. In the western ICB, the San Diego Trough fault (SDTF) and San Clemente fault have robust linear geomorphic expression, which suggests that these faults may accommodate a significant portion of modern ICB slip in a westward temporal migration of slip. The SDTF offsets young sediments between the US/Mexico border and the

  16. Fault tolerance in "multiprocessor systems

    Indian Academy of Sciences (India)

    puter architecture; [multiprocessor systems; reconfiguration; system- level diagnosis; VLSI processor arrays. 1. Introduction. Fault-tolerant computing can be defined as the ability to execute specified algorithms correctly inspite of the presence of faults. The complexity of supersystems and the increasing use of such computer ...

  17. Did births decline in the United States after the enactment of no-fault divorce law?

    Science.gov (United States)

    Nakonezny, Paul A; Rodgers, Joseph Lee; Shaw, Kristen

    2003-01-01

    Previous research has demonstrated that U.S. no-fault divorce laws implemented between 1953 and 1987 resulted in more divorces in some states than would have occurred otherwise. In other states, divorce patterns appeared to follow prevailing trends even after implementation of no-fault divorce legislation. A more distal question is whether implementation of no-fault divorce laws had an effect on birth rates. We analyzed state-level birth data from all 50 states to assess the birth response to the enactment of no-fault divorce law in each state. Results suggested that birth rates decreased significantly two to four years following the enactment of no-fault divorce law for the group of 34 states whose divorce rates responded to no-fault divorce legislation. As predicted, among the 16 states whose divorce rates did not respond to no-fault divorce legislation, the enactment of no-fault divorce law had a small and nonsignificant positive influence on birth rates. Generally, the group of 34 states had lower post no-fault birth rates than the group of 16 states.

  18. Westward extension of the Levantine Basin to the Eratosthenes Seamount and the Cyprus Arc - no evidence for strike-slip motion

    Science.gov (United States)

    Klimke, Jennifer; Ehrhardt, Axel

    2013-04-01

    The Eastern Mediterranean represents a complex pattern of micro plates. A side by side distribution of diverse tectonic situations like collision, subduction, obduction and shear makes this area a very interesting spot on earth. Whereas subduction of Neo-Tethys oceanic crust is still ongoing at the Hellenic Arc, a collision occurred eastward when the Eratosthenes Seamount (ESM) entered the Cyprus Arc. If subduction is still active further east towards the Syrian coast remains unclear. The collision related deformation of the ESM and the adjacent Levantine Basin will be discussed in this paper. We present a new set of 2D multichannel seismic data, acquired in 2010 with the RV Maria S Merian, which is a dense line grid with NW-SE and NE-SW trending profiles crossing the ESM and the western part of the Levantine Basin south of Cyprus. We show first results of the profiles that were processed up to Pre-Stack Depth Migration. Based on the dense line grid with distances of not more than 5 nautical miles, we picked the key horizons in the Levantine Basin and generated reliable 3D-grids of the horizons. With this dense line grid, it was possible to trace the western extension of the Levantine Basin sometimes also referred to as Baltim Hecataeus Line (BHL), which is a fault lineament of Mesozoic age separating the Levantine Basin from the ESM. This extension is observed on every NW-SE and NE-SW trending profile and we were able to trace it even further north and south of the ESM. The BHL is believed to be reactivated as a linear sinistral transform fault that compensates the northward motion of the African-Arabian plate with respect to the blocked ESM. With our data we can show that the western extension of the Levantine Basin does not coincide with a sinistral transform fault and that it is rather a normal fault with a meandering NNE-SSW trending strike.

  19. Fault tolerant control for switched linear systems

    CERN Document Server

    Du, Dongsheng; Shi, Peng

    2015-01-01

    This book presents up-to-date research and novel methodologies on fault diagnosis and fault tolerant control for switched linear systems. It provides a unified yet neat framework of filtering, fault detection, fault diagnosis and fault tolerant control of switched systems. It can therefore serve as a useful textbook for senior and/or graduate students who are interested in knowing the state-of-the-art of filtering, fault detection, fault diagnosis and fault tolerant control areas, as well as recent advances in switched linear systems.  

  20. Fault Current Characteristics of the DFIG under Asymmetrical Fault Conditions

    Directory of Open Access Journals (Sweden)

    Fan Xiao

    2015-09-01

    Full Text Available During non-severe fault conditions, crowbar protection is not activated and the rotor windings of a doubly-fed induction generator (DFIG are excited by the AC/DC/AC converter. Meanwhile, under asymmetrical fault conditions, the electrical variables oscillate at twice the grid frequency in synchronous dq frame. In the engineering practice, notch filters are usually used to extract the positive and negative sequence components. In these cases, the dynamic response of a rotor-side converter (RSC and the notch filters have a large influence on the fault current characteristics of the DFIG. In this paper, the influence of the notch filters on the proportional integral (PI parameters is discussed and the simplified calculation models of the rotor current are established. Then, the dynamic performance of the stator flux linkage under asymmetrical fault conditions is also analyzed. Based on this, the fault characteristics of the stator current under asymmetrical fault conditions are studied and the corresponding analytical expressions of the stator fault current are obtained. Finally, digital simulation results validate the analytical results. The research results are helpful to meet the requirements of a practical short-circuit calculation and the construction of a relaying protection system for the power grid with penetration of DFIGs.

  1. Constraining fault growth rates and fault evolution in New Zealand

    Science.gov (United States)

    Lamarche, Geoffroy; Bull, Jonathan M.; Barnes, Phil M.; Taylor, Susanna K.; Horgan, Huw

    2000-10-01

    Understanding how faults propagate, grow, and interact in fault systems is important because they are primarily responsible for distributing strain in the upper crust. They localize deformation and stress release, often producing surface displacements that control sedimentation and fluid flow, either by acting as conduits or barriers. Identifying fault spatial distribution, quantifying activity, evaluating linkage mechanisms, and estimating fault growth rates are key components in seismic risk evaluation. Scientists from the National Institute of Water and Atmospheric Research (NIWA), New Zealand, and the Southampton Oceanography Centre, United Kingdom, are working on a collaborative project that aims to improve understanding of faulting processes in the Earth's crust.The program comprises two research cruises to survey the Whakatane Graben, New Zealand, which is a zone of intense seismicity active extensional faulting, and rapid subsidence within the back-arc region of the Pacific-Australia plate boundary zone (Figure 1). Few places in the world offer the same opportunity to study the mechanisms by which major crustal faults have grown from small- to large-scale structures capable of generating moderate to large-magnitude earthquakes.

  2. Active fault traces along Bhuj Fault and Katrol Hill Fault, and ...

    Indian Academy of Sciences (India)

    observed on the left bank of a stream cutting the terrace. Faulting is well revealed by 10–30 cm thick gouge. Lack of any corroborating evidence show- ing displacement of Quaternary deposits makes it difficult to decipher the active nature of the fault. However, the probability cannot be ruled- out. In the outlet of the small ...

  3. Dynamics of Earthquake Faults

    CERN Document Server

    Carlson, J M; Shaw, B E

    1993-01-01

    We present an overview of our ongoing studies of the rich dynamical behavior of the uniform, deterministic Burridge--Knopoff model of an earthquake fault. We discuss the behavior of the model in the context of current questions in seismology. Some of the topics considered include: (1) basic properties of the model, such as the magnitude vs. frequency distribution and the distinction between small and large events; (2) dynamics of individual events, including dynamical selection of rupture propagation speeds; (3) generalizations of the model to more realistic, higher dimensional models; (4) studies of predictability, in which artificial catalogs generated by the model are used to test and determine the limitations of pattern recognition algorithms used in seismology.

  4. A Framework-Based Approach for Fault-Tolerant Service Robots

    Directory of Open Access Journals (Sweden)

    Heejune Ahn

    2012-11-01

    Full Text Available Recently the component-based approach has become a major trend in intelligent service robot development due to its reusability and productivity. The framework in a component-based system should provide essential services for application components. However, to our knowledge the existing robot frameworks do not yet support fault tolerance service. Moreover, it is often believed that faults can be handled only at the application level. In this paper, by extending the robot framework with the fault tolerance function, we argue that the framework-based fault tolerance approach is feasible and even has many benefits, including that: 1 the system integrators can build fault tolerance applications from non-fault-aware components; 2 the constraints of the components and the operating environment can be considered at the time of integration, which – cannot be anticipated eaily at the time of component development; 3 consistency in system reliability can be obtained even in spite of diverse application component sources. In the proposed construction, we build XML rule files defining the rules for probing and determining the fault conditions of each component, contamination cases from a faulty component, and the possible recovery and safety methods. The rule files are established by a system integrator and the fault manager in the framework controls the fault tolerance process according to the rules. We demonstrate that the fault-tolerant framework can incorporate widely accepted fault tolerance techniques. The effectiveness and real-time performance of the framework-based approach and its techniques are examined by testing an autonomous mobile robot in typical fault scenarios.

  5. Integrating remote sensing and magnetic data for structural geology investigation in pegmatite areas in eastern Afghanistan

    Science.gov (United States)

    Salehi, Ratib; Saadi, Nureddin M.; Khalil, Ahmed; Watanabe, Koichiro

    2015-01-01

    This study used an integrated approach to investigate pegmatite areas in eastern Afghanistan. The analysis of surface data, including a digital elevation model (DEM), and Landsat Enhanced Thematic Mapper Plus (ETM+) images, was combined with airborne magnetic data to better understand three-dimensional geology in the area. The ETM+ and DEM data were used to map geological structures at the surface, which indicate that the area consists of two main fault systems that trend NNE and E-W. The two trends represent the remnants of reactivated structures that formed under the stress regimes generated during the tectonic evolution of eastern Afghanistan. Magnetic data indicate an NE-SW trending basin. A two-dimensional schematic model shows that the basin gradually deepens toward the SW with depths to the magnetic basement ranging between 2 and 11.5 km. The integration of the results gave new insight into the tectonic evolution and structure patterns near the pegmatites area.

  6. The 2009MW 6.1 L'Aquila fault system imaged by 64k earthquake locations

    Science.gov (United States)

    Valoroso, Luisa

    2016-03-01

    On April 6 2009, a MW 6.1 normal-faulting earthquake struck the axial area of the Abruzzo region in central Italy. We investigate the complex architecture and mechanics of the activated fault system by using 64k high-resolution foreshock and aftershock locations. The fault system is composed by two major SW dipping segments forming an en-echelon NW trending system about 50km long: the high-angle L'Aquila fault and the listric Campotosto fault, located in the first 10km depth. From the beginning of 2009, foreshocks activated the deepest portion of the mainshock fault. A week before the MW 6.1 event, the largest (MW 4.0) foreshock triggered seismicity migration along a minor off-fault segment. Seismicity jumped back to the main plane a few hours before the mainshock. High-precision locations allowed us to peer into the fault zone showing complex geological structures from the metre to the kilometre scale, analogous to those observed by field studies and seismic profiles. Also, we were able to investigate important aspects of earthquakes nucleation and propagation through the upper crust in carbonate-bearing rocks such as: the role of fluids in normal-faulting earthquakes; how crustal faults terminate at depths; the key role of fault zone structure in the earthquake rupture evolution processes.

  7. Possible Connections Between the Coronado Bank Fault Zone and the Newport-Inglewood, Rose Canyon, and Palos Verdes Fault Zones Offshore San Diego County, California.

    Science.gov (United States)

    Sliter, R. W.; Ryan, H. F.

    2003-12-01

    High-resolution multichannel seismic-reflection and deep-tow Huntec data collected by the USGS were interpreted to map the Coronado Bank fault zone (CBFZ) offshore San Diego County, California. The CBFZ is comprised of several major strands (eastern, central, western) that change in both orientation and degree of deformation along strike. Between Coronado Bank and San Diego, the CBFZ trends N25W and occupies a narrow 7 km zone. Immediately north of La Jolla submarine canyon (LJSC), the easternmost strand changes orientation to almost due north and appears to be offset in a right-lateral sense across the canyon axis. The strand merges with a prominent fault that follows the base of the continental slope in about 600 m water depth. The central portion of the CBFZ is mapped as a negative flower structure and deforms seafloor sediment as far north as 15 km north of LJSC. Farther north, this structure is buried by more than 400 m of basin sediment. Along the eastern edge of the Coronado Bank, the western portion of the CBFZ is characterized by high angle normal faults that dip to the east. North of the Coronado Bank, the western segment follows the western edge of a basement high; it cuts through horizontal basin reflectors and in places deforms the seafloor. We mapped an additional splay of the CBFZ that trends N40W; it is only observed north and west of LJSC. Although the predominant trend of the CBFZ is about N40W, along strike deviations from this orientation of some of the strands indicate that these strands connect with other offshore fault zones in the area. Based on the limited data available, the trend of the CBFZ south of Coronado Bank suggests that it might connect with the Rose Canyon fault zone (RCFZ) that has been mapped in San Diego Bay. North of Coronado Bank, the CBFZ is a much broader fault zone (about 25 km wide) composed of diverging fault strands. The westernmost strand may merge with the western strand of the Palos Verdes fault zone (PVFZ) south of

  8. Absolute age determination of quaternary faults

    Energy Technology Data Exchange (ETDEWEB)

    Cheong, Chang Sik; Lee, Seok Hoon; Choi, Man Sik [Korea Basic Science Institute, Seoul (Korea, Republic of)] (and others)

    2000-03-15

    To constrain the age of neotectonic fault movement, Rb-Sr, K-Ar, U-series disequilibrium, C-14 and Be-10 methods were applied to the fault gouges, fracture infillings and sediments from the Malbang, Ipsil, Wonwonsa faults faults in the Ulsan fault zone, Yangsan fault in the Yeongdeog area and southeastern coastal area. Rb-Sr and K-Ar data imply that the fault movement of the Ulan fault zone initiated at around 30 Ma and preliminary dating result for the Yang san fault is around 70 Ma in the Yeongdeog area. K-Ar and U-series disequilibrium dating results for fracture infillings in the Ipsil fault are consistent with reported ESR ages. Radiocarbon ages of quaternary sediments from the Jeongjari area are discordant with stratigraphic sequence. Carbon isotope data indicate a difference of sedimentry environment for those samples. Be-10 dating results for the Suryum fault area are consistent with reported OSL results.

  9. A Framework For Evaluating Comprehensive Fault Resilience Mechanisms In Numerical Programs

    Energy Technology Data Exchange (ETDEWEB)

    Chen, S. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Peng, L. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States); Bronevetsky, G. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-09

    As HPC systems approach Exascale, their circuit feature will shrink, while their overall size will grow, all at a fixed power limit. These trends imply that soft faults in electronic circuits will become an increasingly significant problem for applications that run on these systems, causing them to occasionally crash or worse, silently return incorrect results. This is motivating extensive work on application resilience to such faults, ranging from generic techniques such as replication or checkpoint/restart to algorithm-specific error detection and resilience techniques. Effective use of such techniques requires a detailed understanding of (1) which vulnerable parts of the application are most worth protecting (2) the performance and resilience impact of fault resilience mechanisms on the application. This paper presents FaultTelescope, a tool that combines these two and generates actionable insights by presenting in an intuitive way application vulnerabilities and impact of fault resilience mechanisms on applications.

  10. Deep structure and crustal configuration of the Jeffara basin (Southern Tunisia) based on regional gravity, seismic reflection and borehole data: How to explain a gravity maximum within a large sedimentary basin?

    Science.gov (United States)

    Gabtni, H.; Jallouli, C.; Mickus, K. L.; Zouari, H.; Turki, M. M.

    2009-03-01

    The Jeffara basin of southern Tunisia contains a thick sequence of mainly Triassic and Permian sediments that is characterized by a gravity maximum. To explain the positive gravity signature over the Jeffara sedimentary basin and to obtain a more quantitative representation of the subsurface structure, a regional 2.5D gravity model constrained by seismic reflection and borehole data was constructed along a NE-SW trending profile. The depth to the crust/mantle implies that the Jeffara basin is associated with crustal thinning. The gravity model also implies that subsidence is controlled by a basement stepped down by relatively low-displacement faulting. This sedimentary subsidence, as described by a listric-faulting model, is probably caused by a thinned crust.

  11. Using 3D seismic to understand the structural evolution of the UK Central North Sea

    Energy Technology Data Exchange (ETDEWEB)

    Eggink, J.W.; Riegstra, D.E.; Suzanne, P. [Shell UK Exploration and Production, London (United Kingdom)

    1996-12-31

    Interpretation of regional 3d Seismic data suggests that the structural evolution of the Central North Sea occurred in three successive structural regimes. Two successive extensional tectonic regimes from Late Palaeozoic to Early Cretaceous into the Tertiary. Techtonic movements were controlled by the relative orientation of the stress fields with respect to the fault strikes of older major Variscan fault trends. The amount and direction of strike-slip movement was controlled by a gradual clockwise rotation of the minimum effective stress in the horizontal plane from apprximately NE-SW to E-W in the first two phases. Within this framework, Halokinesis is only of local importance and serves to amplify the tectonically controlled structuration. The structural model developed here explains the observed distribution of fields and structures in the Central Graben, as well as enabling prediction of structural development in its less well explored portions. (author)

  12. Active tectonics of the Oran (Algeria) Quaternary plain

    Science.gov (United States)

    youcef, Bouhadad; rabah, Bensalem; e-hadi, oubaiche

    2016-04-01

    The Oran region, in north-western Algeria, has been hit several times in the past by destructive moderate-sized and strong earthquakes. The Oran October 9th , 1790 (I0= X) was among the strongest seismic events in the western Mediterranean area comparable, if we consider the described effects, to the El- Asnam (1980, Ms=7.3) and Zemmouri (2003, Mw=6.8) earthquakes. Such strong seismic events requires the presence of major active geological structures that are re-activated several times in the past. In this work we present results of a multi- disciplinary study combining geomorphic analysis, field earthquake geological investigations and geophysical methods, undertaken to study the southern border of the Oran Quaternary plain. A 50 km long, SW-dipping and NE-SW trending active fault has been identified that showing clear quaternary deformation. Keywords: earthquake geology, active fault, geomorphic, geophysics, Algeria.

  13. Architecture of thrust faults with alongstrike variations in fault-plane dip: anatomy of the Lusatian Fault, Bohemian Massif

    Czech Academy of Sciences Publication Activity Database

    Coubal, Miroslav; Adamovič, Jiří; Málek, Jiří; Prouza, V.

    2014-01-01

    Roč. 59, č. 3 (2014), s. 183-208 ISSN 1802-6222 Institutional support: RVO:67985831 ; RVO:67985891 Keywords : fault architecture * fault plane geometry * drag structures * thrust fault * sandstone * Lusatian Fault Subject RIV: DB - Geology ; Mineralogy Impact factor: 1.405, year: 2014

  14. Deep Fault Drilling Project—Alpine Fault, New Zealand

    Directory of Open Access Journals (Sweden)

    Rupert Sutherland

    2009-09-01

    Full Text Available The Alpine Fault, South Island, New Zealand, constitutes a globally significant natural laboratory for research into how active plate-bounding continental faults work and, in particular, how rocks exposed at the surface today relate to deep-seated processes of tectonic deformation, seismogenesis, and mineralization. The along-strike homogeneity of the hanging wall, rapid rate of dextral-reverse slip on an inclined fault plane, and relatively shallow depths to mechanical and chemical transitions make the Alpine Fault and the broader South Island plate boundary an important international site for multi-disciplinary research and a realistic target for an ambitious long-term program of scientific drilling investigations.

  15. Fault Monitoring and Fault Recovery Control for Position Moored Tanker

    DEFF Research Database (Denmark)

    Fang, Shaoji; Blanke, Mogens

    2011-01-01

    This paper addresses fault tolerant control for position mooring of a shuttle tanker operating in the North Sea. A complete framework for fault diagnosis is presented but the loss of a sub-sea mooring line buoyancy element is given particular attention, since this fault could lead to mooring line...... breakage and a high-risk abortion of an oil-loading operation. With significant drift forces from waves, non-Gaussian elements dominate forces and the residuals designed for fault diagnosis. Hypothesis testing need be designed using dedicated change detection for the type of distribution encountered....... In addition to dedicated diagnosis, an optimal position algorithm is proposed to accommodate buoyancy element failure and keep the mooring system in a safe state. Furthermore, even in the case of line breakage, this optimal position strategy could be utilised to avoid breakage of a second mooring line...

  16. Method of locating ground faults

    Science.gov (United States)

    Patterson, Richard L. (Inventor); Rose, Allen H. (Inventor); Cull, Ronald C. (Inventor)

    1994-01-01

    The present invention discloses a method of detecting and locating current imbalances such as ground faults in multiwire systems using the Faraday effect. As an example, for 2-wire or 3-wire (1 ground wire) electrical systems, light is transmitted along an optical path which is exposed to magnetic fields produced by currents flowing in the hot and neutral wires. The rotations produced by these two magnetic fields cancel each other, therefore light on the optical path does not read the effect of either. However, when a ground fault occurs, the optical path is exposed to a net Faraday effect rotation due to the current imbalance thereby exposing the ground fault.

  17. Carlsbad, San Onofre, and San Mateo Fault Zones: Possible Right-Lateral Offset Along the Slope-Basin Transition, Offshore Southern California

    Science.gov (United States)

    Conrad, J. E.; Dartnell, P.; Sliter, R. W.; Ryan, H. F.; Maier, K. L.; Brothers, D. S.

    2014-12-01

    Several poorly understood faults are exposed along the mid- and lower slope offshore southern California from Encinitas to San Clemente. From south to north, these faults have been referred to as the Carlsbad, San Onofre, and San Mateo fault zones, which are generally characterized as nearly vertical to steeply east-dipping faults with a reverse slip component. The U.S. Geological Survey collected high-resolution seismic reflection and bathymetric data from 2009-2012 to better characterize these faults. From offshore Encinitas to Oceanside, these data reveal a complex and variable fault zone that structurally controls the slope-basin transition. In this area, the faults show both reverse as well as normal offset, but may also include an unknown amount of strike-slip offset. North of Oceanside, however, faulting shows clear evidence of right-lateral slip, offsetting submarine channels near the base of the slope by approximately 60 m. North of these offset channels, the base of the slope bends about 30° to the west, following the trend of the San Mateo fault zone, but fault strands on strike with those that offset the channels trend obliquely up slope, appearing to merge with the Newport-Inglewood fault zone (NIFZ) on the shelf. These fault strands consist of several en echelon left-stepping segments separated by "pop-up" structures, which imply a significant component of right-lateral offset along this fault zone, and thus may serve to transfer right-lateral slip from faults along the base of the slope to the NIFZ. This fault zone also separates structures associated with the San Mateo fold and thrust belt to the west from undeformed slope sediments to the east. The existence of significant right-lateral slip on faults along the slope and slope-basin transition has implications for assessing seismic hazards associated with the NIFZ, and also provides constraints on possible reverse motion on the hypothesized Oceanside Thrust.

  18. Fault Features Extraction and Identification based Rolling Bearing Fault Diagnosis

    Science.gov (United States)

    Qin, B.; SUN, G. D.; ZHANG, L. Y.; WANG, J. G.; HU, J.

    2017-05-01

    For the fault classification model based on extreme learning machine (ELM), the diagnosis accuracy and stability of rolling bearing is greatly influenced by a critical parameter, which is the number of nodes in hidden layer of ELM. An adaptive adjustment strategy is proposed based on vibrational mode decomposition, permutation entropy, and nuclear kernel extreme learning machine to determine the tunable parameter. First, the vibration signals are measured and then decomposed into different fault feature models based on variation mode decomposition. Then, fault feature of each model is formed to a high dimensional feature vector set based on permutation entropy. Second, the ELM output function is expressed by the inner product of Gauss kernel function to adaptively determine the number of hidden layer nodes. Finally, the high dimension feature vector set is used as the input to establish the kernel ELM rolling bearing fault classification model, and the classification and identification of different fault states of rolling bearings are carried out. In comparison with the fault classification methods based on support vector machine and ELM, the experimental results show that the proposed method has higher classification accuracy and better generalization ability.

  19. Active fault diagnosis by temporary destabilization

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2006-01-01

    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  20. Fault isolatability conditions for linear systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    In this paper, we shall show that an unlimited number of additive single faults can be isolated under mild conditions if a general isolation scheme is applied. Multiple faults are also covered. The approach is algebraic and is based on a set representation of faults, where all faults within a set...

  1. Active Fault Diagnosis by Temporary Destabilization

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Henrik

    2006-01-01

    An active fault diagnosis method for parametric or multiplicative faults is proposed. The method periodically adds a term to the controller that for a short period of time renders the system unstable if a fault has occurred, which facilitates rapid fault detection. An illustrative example is given....

  2. Fault Detection for Diesel Engine Actuator

    DEFF Research Database (Denmark)

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.

    1994-01-01

    Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur.......Feedback control systems are vulnerable to faults in control loop sensors and actuators, because feedback actions may cause abrupt responses and process damage when faults occur....

  3. Fracture mapping of lineaments and recognizing their tectonic significance using SPOT-5 satellite data: A case study from the Bajestan area, Lut Block, east of Iran

    Science.gov (United States)

    Ahmadirouhani, Reyhaneh; Rahimi, Behnam; Karimpour, Mohammad Hassan; Malekzadeh Shafaroudi, Azadeh; Afshar Najafi, Sadegh; Pour, Amin Beiranvand

    2017-10-01

    Syste'm Pour l'Observation de la Terre (SPOT) remote sensing satellite data have useful characteristics for lineament extraction and enhancement related to the tectonic evaluation of a region. In this study, lineament features in the Bajestan area associated with the tectonic significance of the Lut Block (LB), east Iran were mapped and characterized using SPOT-5 satellite data. The structure of the Bajestan area is affected by the activity of deep strike-slip faults in the boundary of the LB. Structural elements such as faults and major joints were extracted, mapped, and analyzed by the implementation of high-Pass and standard kernels (Threshold and Sobel) filters to bands 1, 2 and 3 of SPOT-5 Level 2 A scene product of the Bajestan area. Lineament map was produced by assigning resultant filter images to red-green-blue (RGB) colour combinations of three main directions such as N-S, E-W and NE-SW. Results derived from image processing technique and statistical assessment indicate that two main orientations, including NW-SE with N-110 azimuth and NE-SW with N-40 azimuth, were dominated in the Bajestan area. The NW-SE trend has a high frequency in the study area. Based on the results of remote sensing lineament analysis and fieldwork, two dextral and sinistral strike-slip components were identified as main fault trends in the Bajestan region. Two dextral faults have acted as the cause of shear in the south and north of the Bajestan granitoid mass. Furthermore, the results indicate that the most of the lineaments in this area are extensional fractures corresponding to both the dykes emplacement and hydrothermal alteration zones. The application of SPOT-5 satellite data for structural analysis in a study region has great capability to provide very useful information of a vast area with low cost and time-consuming.

  4. Geometry and kinematics of the Triassic rift basin in Jameson Land (East Greenland)

    Science.gov (United States)

    Guarnieri, Pierpaolo; Brethes, Anaïs.; Rasmussen, Thorkild M.

    2017-04-01

    The Triassic rift basin along the east Greenland margin described in this paper is represented by NE-SW trending basins and highs segmented by NW-SE trending transfer zones. Coarse-grained sediments along the eastern side of Jameson Land are shown to be hosted in half-graben structures belonging to the Carlsberg Fjord Basin that is bounded by NW dipping normal faults mapped and described after fieldwork in the Klitdal area in Liverpool Land. New aeromagnetic and electromagnetic data together with new drill cores allow the reinterpretation of available seismic lines showing the continuation of the Triassic rift basin toward the SW where it is buried under the Upper Triassic postrift sediments and the Jurassic successions of the Jameson Land Basin. The N-S trending Liverpool Land, interpreted as the boundary block of the Triassic basin, is shown to represent a structural high inherited from the Late Carboniferous tectonics and faulted during the Triassic rifting. The Carlsberg Fjord Basin and the Klitdal Fault System described in this paper should be seen as analogues to the Helgeland Basin in the Norwegian offshore that is bounded by the Ylvingen Fault Zone and to the Papa and West of Shetlands Basins that are bounded by the Spine Fault. The Triassic rift zone and transfer faults on both conjugate margins show a straightforward correlation with the trends of the initial spreading line and fracture zones of the northeast Atlantic indicating a possible inheritance of the Triassic rifting.

  5. Fault Tolerant External Memory Algorithms

    DEFF Research Database (Denmark)

    Jørgensen, Allan Grønlund; Brodal, Gerth Stølting; Mølhave, Thomas

    2009-01-01

    bound on the number of I/Os required for any deterministic dictionary that is resilient to memory faults. We design a static and a dynamic deterministic dictionary with optimal query performance as well as an optimal sorting algorithm and an optimal priority queue. Finally, we consider scenarios where......Algorithms dealing with massive data sets are usually designed for I/O-efficiency, often captured by the I/O model by Aggarwal and Vitter. Another aspect of dealing with massive data is how to deal with memory faults, e.g. captured by the adversary based faulty memory RAM by Finocchi and Italiano....... However, current fault tolerant algorithms do not scale beyond the internal memory. In this paper we investigate for the first time the connection between I/O-efficiency in the I/O model and fault tolerance in the faulty memory RAM, and we assume that both memory and disk are unreliable. We show a lower...

  6. Static Decoupling in fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    1998-01-01

    An algebraic approach is given for a design of a static residual weighting factor in connection with fault detection. A complete parameterization is given of the weighting factor which will minimize a given performance index...

  7. Submarine earthquake rupture, active faulting and volcanism along the major Liquiñe-Ofqui Fault Zone and implications for seismic hazard assessment in the Patagonian Andes Ruptura sísmica submarina, tectónica y volcanismo activo a lo largo de la Falla Liquiñe-Ofqui e implicancias para el peligro sísmico en los Andes patagónicos

    Directory of Open Access Journals (Sweden)

    Gabriel Vargas

    2013-01-01

    faults. Besides, seismic hazard assessment should also consider the possibility of earthquake magnitude in the order of 7.1 along the main fault systems like the RCF.La Zona de Falla Liquiñe-Ofqui es un sistema de intraarco activo y paralelo al contacto entre las placas tectónicas de Nazca y Sudamérica, a lo largo del cual el fallamiento y el volcanismo cuaternarios están estrechamente asociados. A partir de observaciones geomorfológicas y estructurales subaéreas, la prospección subacuática de fallas con evidencia de actividad pleistocena tardía-holocena y la caracterización de volcanes monogenéticos, se propone una cartografía y un modelo cinemático para la tectónica reciente, con énfasis en los últimos 12.000 años, asociada a fallas activas en el área del Fiordo Aysén. Esto permite incrementar sustancialmente el conocimiento geológico básico necesario para la determinación del peligro sísmico asociado a estructuras corticales en la región de Aysén de la Patagonia del sur de Chile. La cartografía de fallas junto con observaciones de campo y resultados geocronológicos sugieren que la deformación ocurre dominantemente a lo largo de estructuras de rumbo dextral-inversa de orientación norte-sur y localmente NNW-SSE, junto con fallas dextral-normal de rumbo NE a NNE y en menor medida a lo largo de fallas sinistrales de rumbo este-oeste. Es posible asociar esta cinemática a un acortamiento regional de orientación NE-SW. El volcanismo monogenético y subacuático holoceno ha ocurrido bajo este régimen tectónico, posiblemente favorecido por la geometría, estructura y cinemática de las fallas activas. Escarpes submarinos bien preservados de fallas que deforman sedimentos del fondo del fiordo Aysén fueron asociados con el terremoto de abril del año 2007, de magnitud Mw6,2, ocurrido a lo largo de la Zona de Falla Liquiñe-Ofqui. Observaciones realizadas en este estudio muestran que este terremoto ocurrió a lo largo de una falla de 15-20 km de

  8. Preuves de la non-stratification du Trias dans le Turonien de la Koudiat Sidii (Nord-Ouest de la Tunisie)Evidence of the non-interbedding of the Triassic evaporites within the Turonian sediments in the Koudiat Sidii area (north-western Tunisia)

    Science.gov (United States)

    Chikhaoui, Mongi; Braham, Ahmed; Turki, Mohamed Moncef

    2001-06-01

    The cartographic and biostratigraphic datings carried out at Koudiat Sidii do not confirm the interbedding of the Triassic rocks within the Turonian sediments. Interrelationships between cartographic, drill holes and gravimetric dating show that the Triassic rocks form the core of a large anticline, flanked by Cretaceous and Neogene outcrops. Of this structure, in large parts collapsed and buried under a thick Quaternary deposit, we only see the western flank, formed by dolomitic breccia of Triassic rocks supporting a set that spreads from Upper Cenomanian to Upper Senonian. The occurrence of Triassic debris flow reworked in the Turonian allows us to interpret the Triassic material as a diapiric extrusion, which reached the surface during the Turonian times, in the tectonic corner of ancient faults trending north-south and NE-SW. During the Tertiary tightening phases, oriented NW-SE, the induced folded structures are strongly controlled by these tectonic directions. Particularly, the meridian fold corresponds to the torsion of J. Hout NE-SW fold in the neighbourhood of the north-south palaeofaults.

  9. Thermal regime, groundwater flow and petroleum occurrences in the Cap Bon region, northeastern Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Bouri, Salem; Abdallah, Ines Ben; Dhia, Hamed Ben [Laboratoire ' Eau-Energie-Environnement' , Ecole Nationale d' Ingenieurs de Sfax, P.B. ' W' , 3038 Sfax (Tunisia); Zarhloule, Yassine [Laboratoire de Geologie Appliquee, Environnement et Hydrogeologie, Faculte des Sciences, Oujda (Morocco)

    2007-08-15

    The Cap Bon region of northeastern Tunisia is part of a young continental margin that presents a thick column of sediments deposited mainly during Cretaceous and Miocene extended tectonic episodes. This sedimentary package is characterised by broad synclines alternating with NE-SW trending anticlines, and is affected by numerous NE-SW, NW-SE and E-W striking faults. Oligo-Miocene sandstones constitute the most important potential reservoir rocks in the region. The distribution of subsurface temperatures in the Cap Bon basin reflects local groundwater circulation patterns and correlates with the location of known oil and gas fields. The results of geothermal studies could therefore prove useful in the search for new hydrocarbon resources in the region. Subsurface temperatures were measured in deep oil exploration and shallow water wells. Local geothermal gradients range from 25 to 35{sup o}C/km, showing higher values in the Korbous and Zennia areas, which correspond to zones of groundwater discharge and convergence in the Oligo-Miocene aquifer system, respectively. Analysis of thermo-hydraulic and geochemical data relative to the thermal springs in the Korbous region along the Mediterranean coast has made a useful contribution to geothermal prospecting for potential deep reservoirs. Positive geothermal gradient anomalies correspond to areas of ascending thermal waters (i.e. discharge areas), whereas negative anomalies indicate areas of infiltrating colder meteoric waters (i.e. recharge areas). The zones of convergence of upward-moving water and groundwater may be associated with petroleum occurrences. (author)

  10. Diagnosis and fault-tolerant control

    CERN Document Server

    Blanke, Mogens; Lunze, Jan; Staroswiecki, Marcel

    2016-01-01

    Fault-tolerant control aims at a gradual shutdown response in automated systems when faults occur. It satisfies the industrial demand for enhanced availability and safety, in contrast to traditional reactions to faults, which bring about sudden shutdowns and loss of availability. The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process that can be used to ensure fault tolerance. It also introduces design methods suitable for diagnostic systems and fault-tolerant controllers for continuous processes that are described by analytical models of discrete-event systems represented by automata. The book is suitable for engineering students, engineers in industry and researchers who wish to get an overview of the variety of approaches to process diagnosis and fault-tolerant contro...

  11. Seismic hazard in low slip rate crustal faults, estimating the characteristic event and the most hazardous zone: study case San Ramón Fault, in southern Andes

    Science.gov (United States)

    Estay, Nicolás P.; Yáñez, Gonzalo; Carretier, Sebastien; Lira, Elias; Maringue, José

    2016-11-01

    Crustal faults located close to cities may induce catastrophic damages. When recurrence times are in the range of 1000-10 000 or higher, actions to mitigate the effects of the associated earthquake are hampered by the lack of a full seismic record, and in many cases, also of geological evidences. In order to characterize the fault behavior and its effects, we propose three different already-developed time-integration methodologies to define the most likely scenarios of rupture, and then to quantify the hazard with an empirical equation of peak ground acceleration (PGA). We consider the following methodologies: (1) stream gradient and (2) sinuosity indexes to estimate fault-related topographic effects, and (3) gravity profiles across the fault to identify the fault scarp in the basement. We chose the San Ramón Fault on which to apply these methodologies. It is a ˜ 30 km N-S trending fault with a low slip rate (0.1-0.5 mm yr-1) and an approximated recurrence of 9000 years. It is located in the foothills of the Andes near the large city of Santiago, the capital of Chile (> 6 000 000 inhabitants). Along the fault trace we define four segments, with a mean length of ˜ 10 km, which probably become active independently. We tested the present-day seismic activity by deploying a local seismological network for 1 year, finding five events that are spatially related to the fault. In addition, fault geometry along the most evident scarp was imaged in terms of its electrical resistivity response by a high resolution TEM (transient electromagnetic) profile. Seismic event distribution and TEM imaging allowed the constraint of the fault dip angle (˜ 65°) and its capacity to break into the surface. Using the empirical equation of Chiou and Youngs (2014) for crustal faults and considering the characteristic seismic event (thrust high-angle fault, ˜ 10 km, Mw = 6.2-6.7), we estimate the acceleration distribution in Santiago and the hazardous zones. City domains that are under

  12. Faulted Tell and ancient road by the Dead Sea Transform in southern Turkey

    Science.gov (United States)

    Altunel, E.; Meghraoui, M.; Akyuz, S.; Karabacak, V.; Bertrand, S.; Yalciner, C.; Ferry, M.; Munschy, M.

    2006-12-01

    We investigate the northern end of the Dead Sea Transform Fault (DSTF) in the Amik Basin using paleoseismology, archeoseismology and geophysical prospecting. The DSFZ is one of the major continental faults where large historical earthquakes occurred, some of them were associated with surface ruptures. The Amik Basin has a large number of archaeological sites where some ancient man-made structures are located on the fault zone. The fault appears as a prominent scarp located immediately south of the basin and offsets large and small streams showing a range of 650 +-10 m to 14 +-0.5 m of left-lateral displacement. Aerial photographs and field observations indicate that the fault also affects Holocene lacustrine deposits of the basin and form a North-South trending morphological scarp. Archeological sites are largely spread in the area and the fault crosses the approximately 6500 BC old Sicantarla Tell and related walls. A total left-lateral offset of 40 +-5 m measured from the detailed morphology of the Tell and 43 +-1.5 m from a magnetic survey illustrates the cumulative left-lateral movement along the fault and provide with an average 5 mm/yr slip rate for the late Holocene. Field studies also showed that an ancient road with nearby Hittites inscriptions (around 2000 BC) is left-laterally offset by 25 +-2 m along the DSTF and provide with an average 6.2 mm/yr slip rate. In addition, paleoseismic trenching at three locations between the Tell and the southern fault trace expose the fault zone and successive most recent faulting events including the AD 1408 large earthquake. The faulted archeological sites and geomorphology offer the possibility to document successive coseismic ruptures and constitute a real archive of large earthquakes along the DSTF.

  13. Slip deficit and location of seismic gaps along the Dead Sea Fault

    Science.gov (United States)

    Meghraoui, Mustapha; Toussaint, Renaud; Ferry, Matthieu; Nguema-Edzang, Parfait

    2015-04-01

    The Dead Sea Fault (DSF), a ~ 1000-km-long North-South trending transform fault presents structural discontinuities and includes segments that experienced large earthquakes (Mw>7) in historical times. The Wadi Araba and Jordan Valley, the Lebanese restraining bend, the Missyaf and Ghab fault segments in Syria and the Ziyaret Fault segment in Turkey display geometrical complexities made of step overs, restraining and releasing bends that may constitute major obstacles to earthquake rupture propagation. Using active tectonics, GPS measurements and paleoseismology we investigate the kinematics and long-term/short-term slip rates along the Dead Sea fault. Tectonic geomorphology with paleoseismic trenching and archeoseismic investigations indicate repeated faulting events and left-lateral slip rate ranging from 4 mm/yr in the southern fault section to 6 mm/yr in the northern fault section. Except for the northernmost DSF section, these long-term estimates of fault slip rate are consistent with GPS measurements that show 4 to 5 mm/yr deformation rate across the plate boundary. Indeed, recent GPS results showing 3 +-0.5 mm/yr velocity rate of the northern DSF appear to be in contradiction with the ~6 mm/yr paleoseismic slip rate. The kinematic modeling that combines GPS and seismotectonic results implies a complex geodynamic pattern with the DSF transforms the Cyprus arc subduction zone into transpressive tectonics on the East Anatolian fault. The timing of past earthquake ruptures shows the occurrence of seismic sequences and a southward migration of large earthquakes, with the existence of major seismic gaps along strike. In this contribution, we present the calculated seismic slip deficit along the fault segments and discuss the identification of seismic gaps and the implication for the seismic hazard assessment.

  14. Surface faults in the gulf coastal plain between Victoria and Beaumont, Texas

    Science.gov (United States)

    Verbeek, Earl R.

    1979-01-01

    Displacement of the land surface by faulting is widespread in the Houston-Galveston region, an area which has undergone moderate to severe land subsidence associated with fluid withdrawal (principally water, and to a lesser extent, oil and gas). A causative link between subsidence and fluid extraction has been convincingly reported in the published literature. However, the degree to which fluid withdrawal affects fault movement in the Texas Gulf Coast, and the mechanism(s) by which this occurs are as yet unclear. Faults that offset the ground surface are not confined to the large (>6000-km2) subsidence “bowl” centered on Houston, but rather are common and characteristic features of Gulf Coast geology. Current observations and conclusions concerning surface faults mapped in a 35,000-km2 area between Victoria and Beaumont, Texas (which area includes the Houston subsidence bowl) may be summarized as follows: (1) Hundreds of faults cutting the Pleistocene and Holocene sediments exposed in the coastal plain have been mapped. Many faults lie well outside the Houston-Galveston region; of these, more than 10% are active, as shown by such features as displaced, fractured, and patched road surfaces, structural failure of buildings astride faults, and deformed railroad tracks. (2) Complex patterns of surface faults are common above salt domes. Both radial patterns (for example, in High Island, Blue Ridge, Clam Lake, and Clinton domes) and crestal grabens (for example, in the South Houston and Friendswood-Webster domes) have been recognized. Elongate grabens connecting several known and suspected salt domes, such as the fault zone connecting Mykawa, Friendswood-Webster, and Clear Lake domes, suggest fault development above rising salt ridges. (3) Surface faults associated with salt domes tend to be short (10 km), occur singly or in simple grabens, have gently sinuous traces, and tend to lie roughly parallel to the ENE-NE “coastwise” trend common to regional growth

  15. Kinematics of the East Anatolian Fault Zone between Turkoglu (Kahramanmaras) and Celikhan (Adiyaman), eastern Turkey

    Science.gov (United States)

    Yilmaz, H.; Over, S.; Ozden, S.

    2006-11-01

    In this study we determined the stress regime acting along the East Anatolian Fault Zone between Turkoglu (Kahramanmaras) and Celikhan (Adiyaman), from the Neocene to present-day, based on the inversion of striations measured on faults and on the focal mechanisms of earthquakes having magnitudes greater than 5.0. The inversions yield a strike-slip stress regime with a reverse component (i.e., transpression) operative in the Neocene to present with a consistent N-to NW-trending σ1 axis 156 ± 11° and an E- to NE-trending σ3 axis, 67 ± 9°σ3, producing left-lateral motion along the East Anatolian Fault Zone. The inversions of focal mechanisms yield a strike-slip stress deviator characterized by an approximately N-S (N1°W)-trending σ1 and an approximately E-W (N89°E)-trending σ3 axis. Both the kinematic analysis and structural observations indicate that the stress regime operating in the study area has had a transpressional character, giving rise to the Mio-Pliocene compressive structures (reverse faults, thrusts and folds) observed in the study area. Field observations allow estimation of a Pliocene age for the strike-slip East Anatolian Fault Zone.

  16. Analysis of Cheshire basin by gravity method: Some preliminary results

    Science.gov (United States)

    Shafie, Nadiah Hanim; Hamzah, Umar; Samsudin, Abdul Rahim

    2014-09-01

    Gravity data acquired from Cheshire basin located in the northwestern part of the United Kingdom were processed and analysed to determine the structural pattern within the entire sedimentary basin. A total of 753 gravity data were obtained from the British Geological Society and with the aid of Oasis Montaj software, maps of Bouguer anomaly, isostatic and total horizontal derivative were obtained for qualitative and quantitative interpretation in determining the fault trend and the tectonic system of the study area. The positive Bouguer anomaly region found in the northwest of the study area is associated with the high density sedimentary rocks while the negative region in the southern part corresponds to low density sediments. The regional and local isostatic maps with different cut-off wavelengths reflect changes in anomalies corresponding to different types of sedimentary rocks. The general trends of faults in the Chesire basin are shown in the total horizontal derivative map of the Bouguer gravity values. Most of the major faults found in the southern part of the study area are trending in NW-SE and NE-SW directions. The less dominant faults are found in the western and eastern parts with N-S trending faults while in the northern and southern part are trending E-W. The 2D modeling shows the estimated depth to limestone basement of about 3736 m below the sandstone and mudstone.

  17. Evidence for distributed clockwise rotation of the crust in the northwestern United States from fault geometries and focal mechanisms

    Science.gov (United States)

    Brocher, Thomas M.; Wells, Ray E.; Lamb, Andrew P.; Weaver, Craig S.

    2017-05-01

    Paleomagnetic and GPS data indicate that Washington and Oregon have rotated clockwise for the past 16 Myr. Late Cenozoic and Quaternary fault geometries, seismicity lineaments, and focal mechanisms provide evidence that this rotation is accommodated by north directed thrusting and right-lateral strike-slip faulting in Washington, and SW to W directed normal faulting and right-lateral strike-slip faulting to the east. Several curvilinear NW to NNW trending high-angle strike-slip faults and seismicity lineaments in Washington and NW Oregon define a geologic pole (117.7°W, 47.9°N) of rotation relative to North America. Many faults and focal mechanisms throughout northwestern U.S. and southwestern British Columbia have orientations consistent with this geologic pole as do GPS surface velocities corrected for elastic Cascadia subduction zone coupling. Large Quaternary normal faults radial to the geologic pole, which appear to accommodate crustal rotation via crustal extension, are widespread and can be found along the Lewis and Clark zone in Montana, within the Centennial fault system north of the Snake River Plain in Idaho and Montana, to the west of the Wasatch Front in Utah, and within the northern Basin and Range in Oregon and Nevada. Distributed strike-slip faults are most prominent in western Washington and Oregon and may serve to transfer slip between faults throughout the northwestern U.S.

  18. Seismotectonic Investigation of Biga Peninsula in SW Marmara Region Using Steerable Filter Technique, Potential Field Data and Recent Seismicity

    Science.gov (United States)

    Görgün, Ethem; Albora, A. Muhittin

    2017-10-01

    We examine seismotectonic setting of Biga Peninsula in western Anatolia (Çanakkale region) using the steerable filter technique and recent seismicity. One of the most important issues in geophysics is to observe borders or margins of tectonic/geologic discontinues. For this purpose, we apply this filter technique to gravity anomaly map of Biga Peninsula. We observe undetected/buried faults in Biga Peninsula using the steerable technique where they have never been seen in the geological maps before. These buried faults comply with recent seismicity for this region. Focal mechanisms of past earthquakes ( M ≥ 3.5) are in good agreement with fault orientations. This observation shows that we have to take into account these fault locations and consider for preparing future seismic hazard maps. The geometry of fault segments reveals mostly strike-slip faulting regime with NE-SW trending direction of T-axis in the entire study region. According to high-resolution hypocenter relocation of the Biga earthquake sequences in the observation period between 5 January 2005 and 14 November 2015 extends from N to S direction. The stress tensor inversion results indicate a predominant normal stress regime with a NW-SE oriented maximum horizontal compressive stress ( S H). According to strong discrepancy of density in the Biga Peninsula is characterized by numerous small segmented secondary faults. These buried or undetected fault locations indicate that these segments are large enough to increase earthquake stress failure towards NW-SE and N-S directions, respectively. Seismotectonic setting of Biga Peninsula is divided into sub-regions by NE-SW trending secondary faults with normal and major strike-slip components. This output is verified by steerable filter and local/regional seismotectonic analysis. We propose a new seismotectonic model for Biga Peninsula and update the orientation of active fault segments. According to our model, North Anatolian Fault Zone cross-cuts the

  19. Fault Analysis in Solar Photovoltaic Arrays

    Science.gov (United States)

    Zhao, Ye

    Fault analysis in solar photovoltaic (PV) arrays is a fundamental task to increase reliability, efficiency and safety in PV systems. Conventional fault protection methods usually add fuses or circuit breakers in series with PV components. But these protection devices are only able to clear faults and isolate faulty circuits if they carry a large fault current. However, this research shows that faults in PV arrays may not be cleared by fuses under some fault scenarios, due to the current-limiting nature and non-linear output characteristics of PV arrays. First, this thesis introduces new simulation and analytic models that are suitable for fault analysis in PV arrays. Based on the simulation environment, this thesis studies a variety of typical faults in PV arrays, such as ground faults, line-line faults, and mismatch faults. The effect of a maximum power point tracker on fault current is discussed and shown to, at times, prevent the fault current protection devices to trip. A small-scale experimental PV benchmark system has been developed in Northeastern University to further validate the simulation conclusions. Additionally, this thesis examines two types of unique faults found in a PV array that have not been studied in the literature. One is a fault that occurs under low irradiance condition. The other is a fault evolution in a PV array during night-to-day transition. Our simulation and experimental results show that overcurrent protection devices are unable to clear the fault under "low irradiance" and "night-to-day transition". However, the overcurrent protection devices may work properly when the same PV fault occurs in daylight. As a result, a fault under "low irradiance" and "night-to-day transition" might be hidden in the PV array and become a potential hazard for system efficiency and reliability.

  20. Awoyemi et al (8)

    African Journals Online (AJOL)

    DELL

    direction (N-S, NNE-SSW and NE-SW) and that the deep seated faults reflect structurally in the overlying sedimentary column. ... Keywords: Cretaceous Sediments, Lineaments, Azimuth-frequency, Fault Propagation. ABSTRACT. 69 .... Cenozoic Recent basalts including those of Cameroon Volcanic Line. 6. Study Area.

  1. Fault Management Guiding Principles

    Science.gov (United States)

    Newhouse, Marilyn E.; Friberg, Kenneth H.; Fesq, Lorraine; Barley, Bryan

    2011-01-01

    Regardless of the mission type: deep space or low Earth orbit, robotic or human spaceflight, Fault Management (FM) is a critical aspect of NASA space missions. As the complexity of space missions grows, the complexity of supporting FM systems increase in turn. Data on recent NASA missions show that development of FM capabilities is a common driver for significant cost overruns late in the project development cycle. Efforts to understand the drivers behind these cost overruns, spearheaded by NASA's Science Mission Directorate (SMD), indicate that they are primarily caused by the growing complexity of FM systems and the lack of maturity of FM as an engineering discipline. NASA can and does develop FM systems that effectively protect mission functionality and assets. The cost growth results from a lack of FM planning and emphasis by project management, as well the maturity of FM as an engineering discipline, which lags behind the maturity of other engineering disciplines. As a step towards controlling the cost growth associated with FM development, SMD has commissioned a multi-institution team to develop a practitioner's handbook representing best practices for the end-to-end processes involved in engineering FM systems. While currently concentrating primarily on FM for science missions, the expectation is that this handbook will grow into a NASA-wide handbook, serving as a companion to the NASA Systems Engineering Handbook. This paper presents a snapshot of the principles that have been identified to guide FM development from cradle to grave. The principles range from considerations for integrating FM into the project and SE organizational structure, the relationship between FM designs and mission risk, and the use of the various tools of FM (e.g., redundancy) to meet the FM goal of protecting mission functionality and assets.

  2. Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator

    OpenAIRE

    Liwei Shi; Zhou Bo

    2015-01-01

    This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG) system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experi...

  3. Integrated Seismic Imaging of the Carlsberg Fault in the Copenhagen City Center

    Science.gov (United States)

    Nielsen, L.; Thybo, H.; Jorgensen, M. I.

    2003-12-01

    Images of the Carlsberg Fault in the area of the Copenhagen city center, Denmark, are obtained from normal incidence and refraction seismic data collected along a 3 km long E-W trending profile, which is oriented approximately perpendicular to the strike of the fault. The integrated seismic data set provides the most detailed images to 500 m depth so far obtained of this fault. The fault zone appears as a flower structure in the normal incidence section, and an abrupt change in the P-wave velocity structure across the fault zone further indicates that significant lateral movements have taken place along the fault. Vertical movements of up to 90 m are evident in the fault zone. Even the shallowest layers that can be imaged by the seismic data (approximately 30 m depth) are clearly vertically offset by the fault. In order to constrain the strike of the fault zone through the Copenhagen area we use shots detonated inside the fault zone, which are recorded by geophones distributed along arcs of circles situated up to 7 km away from the shots. Ground penetrating radar measurements are conducted to image the fault structures in the topmost 10 m. Geodetic measurements conducted in the Copenhagen area during the last 165 years indicate that the fault may still be active with horizontal displacements of about 5 cm over a 73-year period. Small cracks in walls and displacements of buildings may further indicate that the fault is still playing an active role in forming the Copenhagen area. However, no earthquakes are detected along the fault, and the seismicity of the study area is very weak. The formation of the Carlsberg Fault may be related to extensional stresses in a strike-slip system associated with the Sorgenfrei-Tornquist zone, which is situated only 40 km east of the study area. The Sorgenfrei-Tornquist zone is a major tectonic element in southern Scandinavia where it is situated close to the boarder between the Danish Basin to the southwest and the Baltic Shield to

  4. Fault detection and isolation for complex system

    Science.gov (United States)

    Jing, Chan Shi; Bayuaji, Luhur; Samad, R.; Mustafa, M.; Abdullah, N. R. H.; Zain, Z. M.; Pebrianti, Dwi

    2017-07-01

    Fault Detection and Isolation (FDI) is a method to monitor, identify, and pinpoint the type and location of system fault in a complex multiple input multiple output (MIMO) non-linear system. A two wheel robot is used as a complex system in this study. The aim of the research is to construct and design a Fault Detection and Isolation algorithm. The proposed method for the fault identification is using hybrid technique that combines Kalman filter and Artificial Neural Network (ANN). The Kalman filter is able to recognize the data from the sensors of the system and indicate the fault of the system in the sensor reading. Error prediction is based on the fault magnitude and the time occurrence of fault. Additionally, Artificial Neural Network (ANN) is another algorithm used to determine the type of fault and isolate the fault in the system.

  5. Recent faulting in the Gulf of Santa Catalina: San Diego to Dana Point

    Science.gov (United States)

    Ryan, H.F.; Legg, M.R.; Conrad, J.E.; Sliter, R.W.

    2009-01-01

    We interpret seismic-reflection profiles to determine the location and offset mode of Quaternary offshore faults beneath the Gulf of Santa Catalina in the inner California Continental Borderland. These faults are primarily northwest-trending, right-lateral, strike-slip faults, and are in the offshore Rose Canyon-Newport-Inglewood, Coronado Bank, Palos Verdes, and San Diego Trough fault zones. In addition we describe a suite of faults imaged at the base of the continental slope between Dana Point and Del Mar, California. Our new interpretations are based on high-resolution, multichannel seismic (MCS), as well as very high resolution Huntec and GeoPulse seismic-reflection profiles collected by the U.S. Geological Survey from 1998 to 2000 and MCS data collected by WesternGeco in 1975 and 1981, which have recently been made publicly available. Between La Jolla and Newport Beach, California, the Rose Canyon and Newport-Inglewood fault zones are multistranded and generally underlie the shelf break. The Rose Canyon fault zone has a more northerly strike; a left bend in the fault zone is required to connect with the Newport-Inglewood fault zone. A prominent active anticline at mid-slope depths (300-400 m) is imaged seaward of where the Rose Canyon fault zone merges with the Newport-Inglewood fault zone. The Coronado Bank fault zone is a steeply dipping, northwest-trending zone consisting of multiple strands that are imaged from south of the U.S.-Mexico border to offshore of San Mateo Point. South of the La Jolla fan valley, the Coronado Bank fault zone is primarily transtensional; this section of the fault zone ends at the La Jolla fan valley in a series of horsetail splays. The northern section of the Coronado Bank fault zone is less well developed. North of the La Jolla fan valley, the Coronado Bank fault zone forms a positive flower structure that can be mapped at least as far north as Oceanside, a distance of ??35 km. However, north of Oceanside, the Coronado Bank

  6. Billing Trends

    Indian Academy of Sciences (India)

    First page Back Continue Last page Overview Graphics. Billing Trends. Internet access: Bandwidth becoming analogous to electric power. Only maximum capacity (load) is fixed; Charges based on usage (units). Leased line bandwidth: Billing analogous to phone calls. But bandwidth is variable.

  7. Skiing trends

    Science.gov (United States)

    Charles R. Goeldner; Stacy Standley

    1980-01-01

    A brief historical overview of skiing is presented, followed by a review of factors such as energy, population trends, income, sex, occupation and attitudes which affect the future of skiing. A. C. Neilson's Sports Participation Surveys show that skiing is the second fastest growing sport in the country. Skiing Magazine's study indicates there are...

  8. Food Trends.

    Science.gov (United States)

    Schwenk, Nancy E.

    1991-01-01

    An overall perspective on trends in food consumption is presented. Nutrition awareness is at an all-time high; consumption is influenced by changes in disposable income, availability of convenience foods, smaller household size, and an increasing proportion of ethnic minorities in the population. (18 references) (LB)

  9. Where's the Hayward Fault? A Green Guide to the Fault

    Science.gov (United States)

    Stoffer, Philip W.

    2008-01-01

    This report describes self-guided field trips to one of North America?s most dangerous earthquake faults?the Hayward Fault. Locations were chosen because of their easy access using mass transit and/or their significance relating to the natural and cultural history of the East Bay landscape. This field-trip guidebook was compiled to help commemorate the 140th anniversary of an estimated M 7.0 earthquake that occurred on the Hayward Fault at approximately 7:50 AM, October 21st, 1868. Although many reports and on-line resources have been compiled about the science and engineering associated with earthquakes on the Hayward Fault, this report has been prepared to serve as an outdoor guide to the fault for the interested public and for educators. The first chapter is a general overview of the geologic setting of the fault. This is followed by ten chapters of field trips to selected areas along the fault, or in the vicinity, where landscape, geologic, and man-made features that have relevance to understanding the nature of the fault and its earthquake history can be found. A glossary is provided to define and illustrate scientific term used throughout this guide. A ?green? theme helps conserve resources and promotes use of public transportation, where possible. Although access to all locations described in this guide is possible by car, alternative suggestions are provided. To help conserve paper, this guidebook is available on-line only; however, select pages or chapters (field trips) within this guide can be printed separately to take along on an excursion. The discussions in this paper highlight transportation alternatives to visit selected field trip locations. In some cases, combinations, such as a ride on BART and a bus, can be used instead of automobile transportation. For other locales, bicycles can be an alternative means of transportation. Transportation descriptions on selected pages are intended to help guide fieldtrip planners or participants choose trip

  10. Identification of natural fractures and in situ stress at Rantau Dedap geothermal field

    Science.gov (United States)

    Artyanto, Andika; Sapiie, Benyamin; Idham Abdullah, Chalid; Permana Sidik, Ridwan

    2017-12-01

    Rantau Dedap Area is a geothermal field which is located in Great Sumatra Fault (GSF). The fault and fracture are main factor in the permeability of the geothermal system. However, not all faults and fractures have capability of to flow the fluids. Borehole image log is depiction of the borehole conditions, it is used to identify the natural fractures and drilling induced fracture. Both of them are used to identify the direction of the fracture, direction of maximum horizontal stress (SHmax), and geomechanics parameters. The natural fractures are the results of responses to stress on a rock and permeability which controlling factor in research area. Breakouts is found in this field as a trace of drilling induced fracture due to in situ stress work. Natural fractures are strongly clustered with true strike trending which first, second, and third major direction are N170°E – N180°E (N-S), N60°E – N70°E (NE-SW), and N310°E – N320°E (NW-SE), while the dominant dip is 80° –90°. Based on borehole breakout analysis, maximum horizontal stress orientation is identified in N162°E – N204°E (N-S) and N242°E (NE-SW) direction. It’s constantly similar with regional stress which is affected by GSF. Several parameters have been identified and analyzed are SHmax, SHmin, and Sy. It can be concluded that Rantau Dedap Geothermal Field is affected by strike-slip regime. The determination of in situ stress and natural fractures are important to study the pattern of permeability which is related to the fault in reservoir of this field.

  11. Fault Recoverability Analysis via Cross-Gramian

    DEFF Research Database (Denmark)

    Shaker, Hamid Reza

    2016-01-01

    with feedback control. Fault recoverability provides important and useful information which could be used in analysis and design. However, computing fault recoverability is numerically expensive. In this paper, a new approach for computation of fault recoverability for bilinear systems is proposed......Engineering systems are vulnerable to different kinds of faults. Faults may compromise safety, cause sub-optimal operation and decline in performance if not preventing the whole system from functioning. Fault tolerant control (FTC) methods ensure that the system performance maintains within...

  12. An architecture for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, Jakob

    2005-01-01

    A general architecture for fault tolerant control is proposed. The architecture is based on the (primary) YJBK parameterization of all stabilizing compensators and uses the dual YJBK parameterization to quantify the performance of the fault tolerant system. The approach suggested can be applied...... for additive faults, parametric faults, and for system structural changes. The modeling for each of these fault classes is described. The method allows to design for passive as well as for active fault handling. Also, the related design method can be fitted either to guarantee stability or to achieve graceful...

  13. Fault Isolation for Shipboard Decision Support

    DEFF Research Database (Denmark)

    Lajic, Zoran; Blanke, Mogens; Nielsen, Ulrik Dam

    2010-01-01

    Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation of a containe......Fault detection and fault isolation for in-service decision support systems for marine surface vehicles will be presented in this paper. The stochastic wave elevation and the associated ship responses are modeled in the frequency domain. The paper takes as an example fault isolation...

  14. Seismic evidence of Quaternary faulting in the Benton Hills area, southeast Missouri

    Science.gov (United States)

    Palmer, J.R.; Shoemaker, M.; Hoffman, D.; Anderson, N.L.; Vaughn, J.D.; Harrison, R.W.

    1997-01-01

    Two reflection seismic profiles at English Hill, across the southern edge of the Benton Hills escarpment, southeast Missouri, establish that geologic structures at English Hill are of tectonic origin. The lowland area to the south of the escarpment is relatively undisturbed. The geology at English Hill is structurally complex, and reflection seismic and geologic data indicate extensive and episodic faulting of Paleozoic, Cretaceous, Tertiary, and Quaternary strata. The individual faults have near-vertical fault surfaces with maximum vertical separations on the order of 15 m. They appear to be clustered in north-northeast trending zones that essentially parallel one of the dominant Benton Hills structural trends. These observations suggest that previously mapped Quaternary faults at English Hill are deep-seated and tectonic in origin. This paper documents recent faulting at English Hill and is the first time late Quaternary, surface-rupture faulting has been recognized in the middle Mississippi River Valley region outside of the New Madrid seismic zone. This has important implications for earthquake assessment in the midcontinent.

  15. GPS measurements of deformation associated with the 1987 Superstition Hills earthquake: Evidence for conjugate faulting

    Science.gov (United States)

    Larsen, Shawn; Reilinger, Robert; Neugebauer, Helen; Strange, William

    1991-01-01

    Large station displacements observed from Imperial Valley Global Positioning System (GPS) campaigns are attributed to the November 24, 1987 Superstition Hills earthquake sequence. Thirty sites from a 42 station GPS network established in 1986 were reoccupied during 1988 and/or 1990. Displacements at three sites within 3 kilometers of the surface rupture approach 0.5 m. Eight additional stations within 20 km of the seismic zone are displaced at least 10 cm. This is the first occurrence of a large earthquake (M(sub S) 6.6) within a preexisting GPS network. Best-fitting uniform slip models of rectangular dislocations in an elastic half-space indicate 130 + or - 8 cm right-lateral displacement along the northwest-trending Superstition Hills fault and 30 + or - 10 cm left-lateral displacement along the conjugate northeast-trending Elmore Ranch fault. The geodetic moments are 9.4 x 10(exp 25) dyne-cm and 2.3 x 10(exp 25) dyne-cm for the Superstition Hills and Elmore Ranch faults, respectively, consistent with teleseismic source parameters. The data also suggest the post seismic slip along the Superstition Hills fault is concentrated at shallow depths. Distributed slip solutions using Singular Value Decomposition indicate near uniform displacement along the Elmore Ranch fault and concentrated slip to the northwest and southeast along the Superstition Hills fault. A significant component of non-seismic displacement is observed across the Imperial Valley, which is attributed in part to interseismic plate-boundary deformation.

  16. Fault-tolerant Supervisory Control

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh

    of this work has been to develop and employ concepts and methods that are suitable for use in different automation processes, with applicability in various industrial fields. The requirements for high productivity and quality has resulted in employing additional instrumentation and use of more sophisticated...... control algorithms. The drawback is, however, that these control systems have become more vulnerable to even simple faults in instrumentation. On the other hand, due to cost-optimality requirements, an extensive use of hardware redundancy has been prohibited. Nevertheless, the dependency and availability...... could be increased through enhancing control systems' ability to on-line perform fault detection and reconfiguration when a fault occurs and before a safety system shuts-down the entire process. The main contributions of this research effort are development and experimentation with methodologies...

  17. Paleoseismology of the 1966 Varto Earthquake (Ms 6.8) and Structure of the Varto Fault Zone, Eastern Turkey

    Science.gov (United States)

    Isik, V.; Caglayan, A.; Saber, R.; Yesilyurt, N.

    2014-12-01

    Turkey is a region of active faulting and contains several strike-slip fault zones, which have generated both historical and recent large earthquakes. Two active fault zones in Turkey, the North Anatolian Fault Zone (NAFZ) and the East Anatolian Fault Zone (EAFZ), divide the area into the Anatolian micro-plate accommodating WSW-directed movement. The southeastern continuation of the NAFZ is often referred to the Varto Fault Zone (VFZ). The VFZ cuts mainly Pliocene volcano-sedimentary units and/or Quaternary deposits and is characterized by multiple fault strands and multiple, closely spaced, active seismogenic zones. Fault motions in the zone are primarily right-lateral, with a subordinate component of NNW-SSE shortening. Study area is Varto region in which indications of active faulting are very well preserved. We recognized three coseismic ruptures from five trench exposures. It is referred to these as events 1 (youngest) through 3 (oldest). The best evidence of event 3 comes from fault traces and its upward terminations. The major components of this fault are fault core and damage zone. The fault is not just one plane of discontinuity and bifurcates and creates additional slip surfaces, which propagate out of the plane of the original fault. Event 2 and event 1, referring to 1946 and 1966 earthquakes, are characterized primarily by discrete, regularly spaced normal faults with and 55-80 cm and 105-270 cm throws, respectively and geometry of growth strata. The VFZ in the study area include typical structures of strike-slip fault zone. It forms a number of parallel and slightly sub-parallel strands striking N50°-72°W including contractional and extensional brittle structures. Several meters to tens of meters wavelength active folds with ENE-WSW and WNW-ESE trending fold axis. These folds deform the Plio-Quaternary units and show classic asymmetry associated with both a south- and north-vergent fault propagation fold. Meso-scale normal faults are also well

  18. Testing Pixel Translation Digital Elevation Models to Reconstruct Slip Histories: An Example from the Agua Blanca Fault, Baja California, Mexico

    Science.gov (United States)

    Wilson, J.; Wetmore, P. H.; Malservisi, R.; Ferwerda, B. P.; Teran, O.

    2012-12-01

    approximately equal to that to the east. The ABF has varying kinematics along strike due to changes in trend of the fault with respect to the nearly east-trending displacement vector of the Ensenada Block to the north of the fault relative to a stable Baja Microplate to the south. These kinematics include nearly pure strike slip in the central portion of the ABF where the fault trends nearly E-W, and minor components of normal dip-slip motion on the NABF and eastern sections of the fault where the trends become more northerly. A pixel translation vector parallel to the trend of the ABF in the central segment (290 deg, 10.5 km) produces kinematics consistent with those described above. The block between the NABF and STF has a pixel translation vector parallel the STF (291 deg, 3.5 km). We find these vectors are consistent with the kinematic variability of the fault system and realign several major drainages and ridges across the fault. This suggests these features formed prior to faulting, and they yield preferred values of offset: 10.5 km on the ABF, 7 km on the NABF and 3.5 km on the STF. This model is consistent with the kinematic model proposed by Hamilton (1971) in which the ABF is a transform fault, linking extensional regions of Valle San Felipe and the Continental Borderlands.

  19. Shear wave splitting of the 2009 L'Aquila seismic sequence: fluid saturated microcracks and crustal fractures in the Abruzzi region (Central Apennines, Italy)

    Science.gov (United States)

    Baccheschi, P.; Pastori, M.; Margheriti, L.; Piccinini, D.

    2016-03-01

    The Abruzzi region is located in the Central Apennines Neogene fold-and-thrust belt and has one of the highest seismogenic potential in Italy, with high and diffuse crustal seismicity related to NE-SW oriented extension. In this study, we investigate the detailed spatial variation in shear wave splitting providing high-resolution anisotropic structure beneath the L'Aquila region. To accomplish this, we performed a systematic analysis of crustal anisotropic parameters: fast polarization direction (ϕ) and delay time (δt). We benefit from the dense coverage of seismic stations operating in the area and from a catalogue of several accurate earthquake locations of the 2009 L'Aquila seismic sequence, related to the Mw 6.1 2009 L'Aquila main shock, to describe in detail the geometry of the anisotropic volume around the active faults that ruptured. The spatial variations both in ϕ and δt suggest a complex anisotropic structure beneath the region caused by a combination of both structural- and stress-induced mechanisms. The average ϕ is NNW-SSE oriented (N141°), showing clear similarity both with the local fault strike and the SHmax. In the central part of the study area fast axes are oriented NW-SE, while moving towards the northeastern and northwestern sectors the fast directions clearly diverge from the general trend of NW-SE and rotate accordingly to the local fault strikes. The above-mentioned fault-parallel ϕ distribution suggests that the observed anisotropy is mostly controlled by the local fault-related structure. Toward the southeast fast directions become orthogonal both to strike of the local mapped faults and to the SHmax. Here, ϕ are predominantly oriented NE-SW; we interpret this orientation as due to the presence of a highly fractured and overpressurized rock volume which should be responsible of the 90° flips in ϕ and the increase in δt. Another possible mechanism for NE-SW orientation of ϕ in the southeastern sector could be ascribed to the

  20. Fault-tolerant system for catastrophic faults in AMR sensors

    NARCIS (Netherlands)

    Zambrano Constantini, A.C.; Kerkhoff, Hans G.

    Anisotropic Magnetoresistance angle sensors are widely used in automotive applications considered to be safety-critical applications. Therefore dependability is an important requirement and fault-tolerant strategies must be used to guarantee the correct operation of the sensors even in case of

  1. Advanced monitoring, fault diagnostics, and maintenance of cryogenic systems

    CERN Document Server

    Girone, Mario; Pezzetti, Marco

    In this Thesis, advanced methods and techniques of monitoring, fault diagnostics, and predictive maintenance for cryogenic processes and systems are described. In particular, in Chapter 1, mainstreams in research on measurement systems for cryogenic processes are reviewed with the aim of dening key current trends and possible future evolutions. Then, in Chapter 2, several innovative methods are proposed. A transducer based on a virtual ow meter is presented for monitoring helium distribution and consumption in cryogenic systems for particle accelerators [1]. Furthermore, a comprehensive metrological analysis of the proposed transducer for verifying the metrological performance and pointing out most critical uncertainty sources is described [2]. A model-based method for fault detection and early-stage isolation, able to work with few records of Frequency Response Function (FRF) on an unfaulty compressor, is then proposed [3]. To enrich the proposal, a distributed diagnostic procedure, based on a micro-genetic...

  2. Dislocation model for aseismic fault slip in the transverse ranges of Southern California

    Science.gov (United States)

    Cheng, A.; Jackson, D. D.; Matsuura, M.

    1985-01-01

    Geodetic data at a plate boundary can reveal the pattern of subsurface displacements that accompany plate motion. These displacements are modelled as the sum of rigid block motion and the elastic effects of frictional interaction between blocks. The frictional interactions are represented by uniform dislocation on each of several rectangular fault patches. The block velocities and fault parameters are then estimated from geodetic data. Bayesian inversion procedure employs prior estimates based on geological and seismological data. The method is applied to the Transverse Ranges, using prior geological and seismological data and geodetic data from the USGS trilateration networks. Geodetic data imply a displacement rate of about 20 mm/yr across the San Andreas Fault, while the geologic estimates exceed 30 mm/yr. The prior model and the final estimates both imply about 10 mm/yr crustal shortening normal to the trend of the San Andreas Fault. Aseismic fault motion is a major contributor to plate motion. The geodetic data can help to identify faults that are suffering rapid stress accumulation; in the Transverse Ranges those faults are the San Andreas and the Santa Susana.

  3. Solar Dynamic Power System Fault Diagnosis

    Science.gov (United States)

    Momoh, James A.; Dias, Lakshman G.

    1996-01-01

    The objective of this research is to conduct various fault simulation studies for diagnosing the type and location of faults in the power distribution system. Different types of faults are simulated at different locations within the distribution system and the faulted waveforms are monitored at measurable nodes such as at the output of the DDCU's. These fault signatures are processed using feature extractors such as FFT and wavelet transforms. The extracted features are fed to a clustering based neural network for training and subsequent testing using previously unseen data. Different load models consisting of constant impedance and constant power are used for the loads. Open circuit faults and short circuit faults are studied. It is concluded from present studies that using features extracted from wavelet transforms give better success rates during ANN testing. The trained ANN's are capable of diagnosing fault types and approximate locations in the solar dynamic power distribution system.

  4. Finite Fault Database (ANSS ComCat)

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — A Finite Fault is a modeled representation of the spatial extent, amplitude and duration of fault rupture (slip) of an earthquake, and is generated via the inversion...

  5. Quantifying Fault Networks on Alba Patera, Mars

    Science.gov (United States)

    Wyrick, D. Y.; Ferrill, D. A.; Morris, A. P.; Sims, D. W.; Franklin, N. M.

    2005-03-01

    Newly developed terrestrial approaches were applied to martian fault networks to quantify the extent and degree of fault network connectivity. These techniques will provide key constraints for martian hydrological models.

  6. A summary of the active fault investigation in the extension sea area of Kikugawa fault and the Nishiyama fault , N-S direction fault in south west Japan

    Science.gov (United States)

    Abe, S.

    2010-12-01

    In this study, we carried out two sets of active fault investigation by the request from Ministry of Education, Culture, Sports, Science and Technology in the sea area of the extension of Kikugawa fault and the Nishiyama fault. We want to clarify the five following matters about both active faults based on those results. (1)Fault continuity of the land and the sea. (2) The length of the active fault. (3) The division of the segment. (4) Activity characteristics. In this investigation, we carried out a digital single channel seismic reflection survey in the whole area of both active faults. In addition, a high-resolution multichannel seismic reflection survey was carried out to recognize the detailed structure of a shallow stratum. Furthermore, the sampling with the vibrocoring to get information of the sedimentation age was carried out. The reflection profile of both active faults was extremely clear. The characteristics of the lateral fault such as flower structure, the dispersion of the active fault were recognized. In addition, from analysis of the age of the stratum, it was recognized that the thickness of the sediment was extremely thin in Holocene epoch on the continental shelf in this sea area. It was confirmed that the Kikugawa fault extended to the offing than the existing results of research by a result of this investigation. In addition, the width of the active fault seems to become wide toward the offing while dispersing. At present, we think that we can divide Kikugawa fault into some segments based on the distribution form of the segment. About the Nishiyama fault, reflection profiles to show the existence of the active fault was acquired in the sea between Ooshima and Kyushu. From this result and topographical existing results of research in Ooshima, it is thought that Nishiyama fault and the Ooshima offing active fault are a series of structure. As for Ooshima offing active fault, the upheaval side changes, and a direction changes too. Therefore, we

  7. Combination of geophysical methods for fault detection: a case study from the Møre-Trøndelag Fault Complex, Mid-Norway

    Science.gov (United States)

    Nasuti, A.; Dalsegg, E.; Ebbing, J.; Lundberg, E.; Tonnesen, J.; Pascal, C.

    2009-12-01

    The Møre-Trøndelag Fault Complex (MTFC) is one of the most prominent fault complexes in Scandinavia and perhaps on Earth. The MTFC appears to have controlled the tectonic evolution of central Norway and its shelf for the past 400 Myr, at least, and has experienced repeated reactivation during Paleozoic (Devonian to Permian), Mesozoic (Jurassic) and Cenozoic times. Despite its pronounced signature in the landscape its deep structure has remained unresolved until now. We acquired multiple geophysical data sets across a segment of the MTFC composed of two main faults (i.e. the Tjellefjorden and Fannefjorden faults). The faults are partly exposed and their respective traces can be seen as prominent topographic escarpments. However their exact locations (i.e. below Quaternary sediments), extents and dips are less clear, and have not been studied systematically by geophysical methods. To detect the fault zones and their structural attributes, a series of magnetic, resistivity, shallow refraction and deep reflection seismics profiles were measured across these fault zones. In addition, 265 new gravity points have been established in a region of 4x4 km. Interpretation of the magnetic data shows the distinctive signature of near-vertical faults (~80°-85° towards the south), trending NNE-SSW. Quantitative interpretation of the data points to a width of 90 to 150 m for the Tjellefjorden Fault and 200 to 400 m for the Fannefjorden Fault. Inversion of 2D resistivity data reveals a three-layered subsurface until 130 m depth. The layers represent the thin low resistive topsoil underlain by weathered bedrock, and the resistive bedrock. Within the resistive bedrock distinct low resistivity zones can be observed, which can be associated with highly fractured bedrock. These low resistive zones correlate to low velocity zones in the shallow refraction profile. The aim of using deep reflection seismic was to image structures in the upper crust down to a depth of 4 km. Processing of

  8. Stability of stacking faults in tungsten

    Energy Technology Data Exchange (ETDEWEB)

    Dranova, Z.I.; Ksenofontov, V.A.; Kul' ko, V.B.; Mikhailovskii, I.M.

    1979-12-01

    The atomic configuration of planar lattice defects in tungsten was investigated by field-ion microscopy and thermal etching. Stable stacking faults were observed throughout the investigated temperature range 78--1700/sup 0/K. These faults were studied by field-ion microscopy and mathematical modeling methods. It was found that the existence of stacking faults in bcc crystals was not associated with the action of strong omnidirectional tensile stresses. The crystallographic characteristics of the faults were determined.

  9. Fault Detection for Nonlinear Systems

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, H.H.

    1998-01-01

    The paper describes a general method for designing fault detection and isolation (FDI) systems for nonlinear processes. For a rich class of nonlinear systems, a nonlinear FDI system can be designed using convex optimization procedures. The proposed method is a natural extension of methods based...

  10. Fault Tolerance Using Group Communication

    NARCIS (Netherlands)

    Kaashoek, M.F.; Tanenbaum, A.S.

    We propose group communication as an efficient mechanism to support fault tolerance. Our approach is based on an efficient reliable broadcast protocol that requires on average only two messages per broadcast. To illustrate our approach we will describe how the task bag model can be made

  11. Tsunamis and splay fault dynamics

    Science.gov (United States)

    Wendt, J.; Oglesby, D.D.; Geist, E.L.

    2009-01-01

    The geometry of a fault system can have significant effects on tsunami generation, but most tsunami models to date have not investigated the dynamic processes that determine which path rupture will take in a complex fault system. To gain insight into this problem, we use the 3D finite element method to model the dynamics of a plate boundary/splay fault system. We use the resulting ground deformation as a time-dependent boundary condition for a 2D shallow-water hydrodynamic tsunami calculation. We find that if me stress distribution is homogeneous, rupture remains on the plate boundary thrust. When a barrier is introduced along the strike of the plate boundary thrust, rupture propagates to the splay faults, and produces a significantly larger tsunami man in the homogeneous case. The results have implications for the dynamics of megathrust earthquakes, and also suggest mat dynamic earthquake modeling may be a useful tool in tsunami researcn. Copyright 2009 by the American Geophysical Union.

  12. Fault detection using (PI) observers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.; Shafai, B.

    The fault detection and isolation (FDI) problem in connection with Proportional Integral (PI) Observers is considered in this paper. A compact formulation of the FDI design problem using PI observers is given. An analysis of the FDI design problem is derived with respectt to the time domain...... properties. A method for design of PI observers applied to FDI is given....

  13. Actuator Fault Detection and Diagnosis for Quadrotors

    NARCIS (Netherlands)

    Lu, P.; Van Kampen, E.J.; Yu, B.

    2014-01-01

    This paper presents a method for fault detection and diagnosis of actuator loss of effectiveness for a quadrotor helicopter. This paper not only considers the detection of the actuator loss of effectiveness faults, but also addresses the diagnosis of the faults. The detection and estimation of the

  14. High temperature superconducting fault current limiter

    Science.gov (United States)

    Hull, John R.

    1997-01-01

    A fault current limiter (10) for an electrical circuit (14). The fault current limiter (10) includes a high temperature superconductor (12) in the electrical circuit (14). The high temperature superconductor (12) is cooled below its critical temperature to maintain the superconducting electrical properties during operation as the fault current limiter (10).

  15. Engine gearbox fault diagnosis using empirical mode ...

    Indian Academy of Sciences (India)

    Kiran Vernekar

    A LabVIEW software Virtual Instrument (VI) program was developed to ... study. Artificial faults were generated at different locations of the bearing and they are bearing outer race, inner race, inner and outer race together fault and rolling element (ball) fault. ... validation information of original signal were decom- posed using ...

  16. On the "stacking fault" in copper

    NARCIS (Netherlands)

    Fransens, J.R.; Pleiter, F

    2003-01-01

    The results of a perturbed gamma-gamma angular correlations experiment on In-111 implanted into a properly cut single crystal of copper show that the defect known in the literature as "stacking fault" is not a planar faulted loop but a stacking fault tetrahedron with a size of 10-50 Angstrom.

  17. Active fault detection in MIMO systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2014-01-01

    The focus in this paper is on active fault detection (AFD) for MIMO systems with parametric faults. The problem of design of auxiliary inputs with respect to detection of parametric faults is investigated. An analysis of the design of auxiliary inputs is given based on analytic transfer functions...

  18. Fault estimation - A standard problem approach

    DEFF Research Database (Denmark)

    Stoustrup, J.; Niemann, Hans Henrik

    2002-01-01

    This paper presents a range of optimization based approaches to fault diagnosis. A variety of fault diagnosis problems are reformulated in the so-called standard problem set-up introduced in the literature on robust control. Once the standard problem formulations are given, the fault diagnosis pr...

  19. The minimum scale of grooving on faults

    NARCIS (Netherlands)

    Candela, T.; Brodsky, E.E.

    2016-01-01

    At the field scale, nearly all fault surfaces contain grooves generated as one side of the fault slips past the other. Grooves are so common that they are one of the key indicators of principal slip surfaces. Here, we show that at sufficiently small scales, grooves do not exist on fault surfaces. A

  20. Fundamental problems in fault detection and identification

    DEFF Research Database (Denmark)

    Saberi, A.; Stoorvogel, A. A.; Sannuti, P.

    2000-01-01

    A number of different fundamental problems in fault detection and fault identification are formulated in this paper. The fundamental problems include exact, almost, generic and class-wise fault detection and identification. Necessary and sufficient conditions for the solvability of the fundamental...

  1. Exact, almost and delayed fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Saberi, Ali; Stoorvogel, Anton A.

    1999-01-01

    Considers the problem of fault detection and isolation while using zero or almost zero threshold. A number of different fault detection and isolation problems using exact or almost exact disturbance decoupling are formulated. Solvability conditions are given for the formulated design problems....... The l-step delayed fault detection problem is also considered for discrete-time systems....

  2. Active tectonics in Eastern Lunana (NW Bhutan): Implications for the seismic and glacial hazard potential of the Bhutan Himalaya

    Science.gov (United States)

    Meyer, M. C.; Wiesmayr, G.; Brauner, M.; HäUsler, H.; Wangda, D.

    2006-06-01

    Paleoseismological investigations, brittle fault analysis, and paleostrain calculations combined with the interpretation of satellite imagery and flood wave modeling were used to investigate the seismic and associated glacial hazard potential in Eastern Lunana, a remote area in NW Bhutan. Seismically induced liquefaction features, cracked pebbles, and a surface rupture of about 6.8 km length constrain the occurrence of M ≥ 6 earthquakes within this high-altitude periglacial environment, which are the strongest earthquakes ever been reported for the Kingdom of Bhutan. Seismicity occurs along conjugate sets of faults trending NE-SW to NNW-SSE by strike-slip and normal faulting mechanism indicating E-W extension and N-S shortening. The strain field for these conjugate sets of active faults is consistent with widespread observations of young E-W expansion throughout southern Tibet and the north Himalaya. We expect, however, that N-S trending active strike-slip faults may even reach much farther to the south, at least into southern Bhutan. Numerous glacial lakes exist in the investigation area, and today more than 100 × 106 m3 of water are stored in moraine-dammed and supraglacial lakes which are crosscut by active faults. Strong earthquakes may trigger glacial lake outburst floods, and the impact of such flash floods may be worst 80 km downstream where the valley is broad and densely populated. Consequently, tectonic models of active deformation have to be closely linked with glacial hazard evaluation and require rethinking and modification.

  3. Fault diagnosis and fault-tolerant control based on adaptive control approach

    CERN Document Server

    Shen, Qikun; Shi, Peng

    2017-01-01

    This book provides recent theoretical developments in and practical applications of fault diagnosis and fault tolerant control for complex dynamical systems, including uncertain systems, linear and nonlinear systems. Combining adaptive control technique with other control methodologies, it investigates the problems of fault diagnosis and fault tolerant control for uncertain dynamic systems with or without time delay. As such, the book provides readers a solid understanding of fault diagnosis and fault tolerant control based on adaptive control technology. Given its depth and breadth, it is well suited for undergraduate and graduate courses on linear system theory, nonlinear system theory, fault diagnosis and fault tolerant control techniques. Further, it can be used as a reference source for academic research on fault diagnosis and fault tolerant control, and for postgraduates in the field of control theory and engineering. .

  4. Fault Diagnosis in HVAC Chillers

    Science.gov (United States)

    Choi, Kihoon; Namuru, Setu M.; Azam, Mohammad S.; Luo, Jianhui; Pattipati, Krishna R.; Patterson-Hine, Ann

    2005-01-01

    Modern buildings are being equipped with increasingly sophisticated power and control systems with substantial capabilities for monitoring and controlling the amenities. Operational problems associated with heating, ventilation, and air-conditioning (HVAC) systems plague many commercial buildings, often the result of degraded equipment, failed sensors, improper installation, poor maintenance, and improperly implemented controls. Most existing HVAC fault-diagnostic schemes are based on analytical models and knowledge bases. These schemes are adequate for generic systems. However, real-world systems significantly differ from the generic ones and necessitate modifications of the models and/or customization of the standard knowledge bases, which can be labor intensive. Data-driven techniques for fault detection and isolation (FDI) have a close relationship with pattern recognition, wherein one seeks to categorize the input-output data into normal or faulty classes. Owing to the simplicity and adaptability, customization of a data-driven FDI approach does not require in-depth knowledge of the HVAC system. It enables the building system operators to improve energy efficiency and maintain the desired comfort level at a reduced cost. In this article, we consider a data-driven approach for FDI of chillers in HVAC systems. To diagnose the faults of interest in the chiller, we employ multiway dynamic principal component analysis (MPCA), multiway partial least squares (MPLS), and support vector machines (SVMs). The simulation of a chiller under various fault conditions is conducted using a standard chiller simulator from the American Society of Heating, Refrigerating, and Air-conditioning Engineers (ASHRAE). We validated our FDI scheme using experimental data obtained from different types of chiller faults.

  5. Fault-Tolerant Heat Exchanger

    Science.gov (United States)

    Izenson, Michael G.; Crowley, Christopher J.

    2005-01-01

    A compact, lightweight heat exchanger has been designed to be fault-tolerant in the sense that a single-point leak would not cause mixing of heat-transfer fluids. This particular heat exchanger is intended to be part of the temperature-regulation system for habitable modules of the International Space Station and to function with water and ammonia as the heat-transfer fluids. The basic fault-tolerant design is adaptable to other heat-transfer fluids and heat exchangers for applications in which mixing of heat-transfer fluids would pose toxic, explosive, or other hazards: Examples could include fuel/air heat exchangers for thermal management on aircraft, process heat exchangers in the cryogenic industry, and heat exchangers used in chemical processing. The reason this heat exchanger can tolerate a single-point leak is that the heat-transfer fluids are everywhere separated by a vented volume and at least two seals. The combination of fault tolerance, compactness, and light weight is implemented in a unique heat-exchanger core configuration: Each fluid passage is entirely surrounded by a vented region bridged by solid structures through which heat is conducted between the fluids. Precise, proprietary fabrication techniques make it possible to manufacture the vented regions and heat-conducting structures with very small dimensions to obtain a very large coefficient of heat transfer between the two fluids. A large heat-transfer coefficient favors compact design by making it possible to use a relatively small core for a given heat-transfer rate. Calculations and experiments have shown that in most respects, the fault-tolerant heat exchanger can be expected to equal or exceed the performance of the non-fault-tolerant heat exchanger that it is intended to supplant (see table). The only significant disadvantages are a slight weight penalty and a small decrease in the mass-specific heat transfer.

  6. Robust Fault Diagnosis Design for Linear Multiagent Systems with Incipient Faults

    Directory of Open Access Journals (Sweden)

    Jingping Xia

    2015-01-01

    Full Text Available The design of a robust fault estimation observer is studied for linear multiagent systems subject to incipient faults. By considering the fact that incipient faults are in low-frequency domain, the fault estimation of such faults is proposed for discrete-time multiagent systems based on finite-frequency technique. Moreover, using the decomposition design, an equivalent conclusion is given. Simulation results of a numerical example are presented to demonstrate the effectiveness of the proposed techniques.

  7. Reevaluation of 1935 M 7.0 earthquake fault, Miaoli-Taichung Area, western Taiwan: a DEM and field study

    Science.gov (United States)

    Lin, Y. N.; Chen, Y.; Ota, Y.

    2003-12-01

    A large earthquake (M 7.0) took place in Miaoli area, western Taiwan on April 21st, 1935. Right to its south is the 1999 Chi-Chi earthquake fault, indicating it is not only tectonically but seismically active. As the previous study, the study area is located in the mature zone of a tectonic collision that occurred between Philippine sea Plate and Eurasia continental Plate. The associated surface ruptures of 1935 earthquake daylighted Tungtsichiao Fault, a tear fault trending NE in the south and Chihhu Fault, a back thrust trending N-S in the north, but no ruptures occurred in between. Strike-slip component was identified by the horizontal offset observed along Tungtsichiao Fault; however, there are still disputes on the reported field evidence. Our purposes are (1) to identify the structural behaviors of these two faults, (2) to find out what the seismogenic structure is, and (3) to reconstruct the regional geology by information given by this earthquake. By DEM interpretation and field survey, we can clearly recognize a lot of the 1935 associated features. In the west of Chihhu Fault, a series of N-S higher terraces can be identified with eastward tilted surfaces and nearly 200 m relative height. Another lower terrace is also believed being created during the 1935 earthquake, showing an east-facing scarp with a height of ca. 1.5~2 m. Outcrop investigation reveals that the late-Miocene bedrock has been easterly thrusted over the Holocene conglomerates, indicating a west-dipping fault plane. The Tungtsichiao Fault cuts through a lateritic terrace at Holi, which is supposed developed in Pleistocene. The fault scarp is only discernible in the northeastern ending. Other noticeable features are the fault related antiforms that line up along the surface rupture. There is no outcrop to show the fault geometry among bedrocks. We re-interpret the northern Chihhu Fault as the back thrust generated from a main subsurface detachment, which may be the actual seismogenic fault

  8. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

    Directory of Open Access Journals (Sweden)

    V. A. Sankov

    2015-01-01

    Full Text Available Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults. NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as

  9. Active faults paragenesis and the state of crustal stresses in the Late Cenozoic in Central Mongolia

    Directory of Open Access Journals (Sweden)

    V. A. Sankov

    2015-12-01

    Full Text Available Active faults of the Hangay-Hentiy tectonic saddle region in Central Mongolia are studied by space images interpretation, relief analysis, structural methods and tectonic stress reconstruction. The study results show that faults activation during the Late Cenozoic stage was selective, and a cluster pattern of active faults is typical for the study region. Morphological and genetic types and the kinematics of faults in the Hangay-Hentiy saddle region are related the direction of the ancient inherited structural heterogeneities. Latitudinal and WNW trending faults are left lateral strike-slips with reverse or thrust component (Dzhargalantgol and North Burd faults. NW trending faults are reverse faults or thrusts with left lateral horizontal component. NNW trending faults have right lateral horizontal component. The horizontal component of the displacements, as a rule, exceeds the vertical one. Brittle deformations in fault zones do not conform with the Pliocene and, for the most part, Pleistocene topography. With some caution it may be concluded that the last phase of revitalization of strike slip and reverse movements along the faults commenced in the Late Pleistocene. NE trending disjunctives are normal faults distributed mainly within the Hangay uplift. Their features are more early activation within the Late Cenozoic and the lack of relation to large linear structures of the previous tectonic stages. According to the stress tensor reconstructions of the last phase of deformation in zones of active faults of the Hangay-Hentiy saddle using data on tectonic fractures and fault displacements, it is revealed that conditions of compression and strike-slip with NNE direction of the axis of maximum compression were dominant. Stress tensors of extensional type with NNW direction of minimum compression are reconstructed for the Orkhon graben. It is concluded that the activation of faults in Central Mongolia in the Pleistocene-Holocene, as well as

  10. [Trend sports].

    Science.gov (United States)

    Meier, R; Pralle, H

    2015-06-01

    Popular trend sports are characterized by intensive and high speed performance. Due to the high energy mechanism in falls, typical injury distributions and patterns result. In a retrospective study the injury patterns and frequencies in mountain bike athletes were analyzed and pathophysiological, diagnostic and therapeutic options in the treatment of high energy injuries to the carpal bones are shown. Based on a retrospective survey over 2 successive years, active mountain bike athletes (World Cup Series) were interviewed using a standardized questionnaire. Injury patterns and frequencies were analyzed. The pathophysiology, diagnostics and therapy of high energy carpal injuries are discussed. In this study 107 World Cup mountain bike athletes were enrolled. Injuries of the extremities were found in more than 75% of athletes with a higher prevalence in the upper extremities (40.7%) than the lower extremities (34.84%), followed by injuries of the head and face (13.3%, of which 10.6% were traumatic brain injuries) and the trunk (10.6%). Fractures and dislocations of the hand and wrist were found in approximately half of the athletes (50.9%). In popular trend sports injuries of the extremities are common, especially of the carpal bones and ligaments. It is important to distinguish stable from destabilizing injuries in order to provide adequate therapeutic options.

  11. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilledcores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System.

  12. Numerical modelling of the mechanical and fluid flow properties of fault zones - Implications for fault seal analysis

    NARCIS (Netherlands)

    Heege, J.H. ter; Wassing, B.B.T.; Giger, S.B.; Clennell, M.B.

    2009-01-01

    Existing fault seal algorithms are based on fault zone composition and fault slip (e.g., shale gouge ratio), or on fault orientations within the contemporary stress field (e.g., slip tendency). In this study, we aim to develop improved fault seal algorithms that account for differences in fault zone

  13. Synthesis of Fault-Tolerant Embedded Systems

    DEFF Research Database (Denmark)

    Eles, Petru; Izosimov, Viacheslav; Pop, Paul

    2008-01-01

    This work addresses the issue of design optimization for fault- tolerant hard real-time systems. In particular, our focus is on the handling of transient faults using both checkpointing with rollback recovery and active replication. Fault tolerant schedules are generated based on a conditional...... process graph representation. The formulated system synthesis approaches decide the assignment of fault-tolerance policies to processes, the optimal placement of checkpoints and the mapping of processes to processors, such that multiple transient faults are tolerated, transparency requirements...

  14. A Quaternary fault database for central Asia

    Science.gov (United States)

    Mohadjer, Solmaz; Ehlers, Todd Alan; Bendick, Rebecca; Stübner, Konstanze; Strube, Timo

    2016-02-01

    Earthquakes represent the highest risk in terms of potential loss of lives and economic damage for central Asian countries. Knowledge of fault location and behavior is essential in calculating and mapping seismic hazard. Previous efforts in compiling fault information for central Asia have generated a large amount of data that are published in limited-access journals with no digital maps publicly available, or are limited in their description of important fault parameters such as slip rates. This study builds on previous work by improving access to fault information through a web-based interactive map and an online database with search capabilities that allow users to organize data by different fields. The data presented in this compilation include fault location, its geographic, seismic, and structural characteristics, short descriptions, narrative comments, and references to peer-reviewed publications. The interactive map displays 1196 fault traces and 34 000 earthquake locations on a shaded-relief map. The online database contains attributes for 123 faults mentioned in the literature, with Quaternary and geodetic slip rates reported for 38 and 26 faults respectively, and earthquake history reported for 39 faults. All data are accessible for viewing and download via http://www.geo.uni-tuebingen.de/faults/. This work has implications for seismic hazard studies in central Asia as it summarizes important fault parameters, and can reduce earthquake risk by enhancing public access to information. It also allows scientists and hazard assessment teams to identify structures and regions where data gaps exist and future investigations are needed.

  15. Tool for Viewing Faults Under Terrain

    Science.gov (United States)

    Siegel, Herbert, L.; Li, P. Peggy

    2005-01-01

    Multi Surface Light Table (MSLT) is an interactive software tool that was developed in support of the QuakeSim project, which has created an earthquake- fault database and a set of earthquake- simulation software tools. MSLT visualizes the three-dimensional geometries of faults embedded below the terrain and animates time-varying simulations of stress and slip. The fault segments, represented as rectangular surfaces at dip angles, are organized into collections, that is, faults. An interface built into MSLT queries and retrieves fault definitions from the QuakeSim fault database. MSLT also reads time-varying output from one of the QuakeSim simulation tools, called "Virtual California." Stress intensity is represented by variations in color. Slips are represented by directional indicators on the fault segments. The magnitudes of the slips are represented by the duration of the directional indicators in time. The interactive controls in MSLT provide a virtual track-ball, pan and zoom, translucency adjustment, simulation playback, and simulation movie capture. In addition, geographical information on the fault segments and faults is displayed on text windows. Because of the extensive viewing controls, faults can be seen in relation to one another, and to the terrain. These relations can be realized in simulations. Correlated slips in parallel faults are visible in the playback of Virtual California simulations.

  16. Rule-based fault diagnosis of hall sensors and fault-tolerant control of PMSM

    Science.gov (United States)

    Song, Ziyou; Li, Jianqiu; Ouyang, Minggao; Gu, Jing; Feng, Xuning; Lu, Dongbin

    2013-07-01

    Hall sensor is widely used for estimating rotor phase of permanent magnet synchronous motor(PMSM). And rotor position is an essential parameter of PMSM control algorithm, hence it is very dangerous if Hall senor faults occur. But there is scarcely any research focusing on fault diagnosis and fault-tolerant control of Hall sensor used in PMSM. From this standpoint, the Hall sensor faults which may occur during the PMSM operating are theoretically analyzed. According to the analysis results, the fault diagnosis algorithm of Hall sensor, which is based on three rules, is proposed to classify the fault phenomena accurately. The rotor phase estimation algorithms, based on one or two Hall sensor(s), are initialized to engender the fault-tolerant control algorithm. The fault diagnosis algorithm can detect 60 Hall fault phenomena in total as well as all detections can be fulfilled in 1/138 rotor rotation period. The fault-tolerant control algorithm can achieve a smooth torque production which means the same control effect as normal control mode (with three Hall sensors). Finally, the PMSM bench test verifies the accuracy and rapidity of fault diagnosis and fault-tolerant control strategies. The fault diagnosis algorithm can detect all Hall sensor faults promptly and fault-tolerant control algorithm allows the PMSM to face failure conditions of one or two Hall sensor(s). In addition, the transitions between health-control and fault-tolerant control conditions are smooth without any additional noise and harshness. Proposed algorithms can deal with the Hall sensor faults of PMSM in real applications, and can be provided to realize the fault diagnosis and fault-tolerant control of PMSM.

  17. Active fault diagnosis by controller modification

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Niemann, Hans Henrik

    2010-01-01

    Two active fault diagnosis methods for additive or parametric faults are proposed. Both methods are based on controller reconfiguration rather than on requiring an exogenous excitation signal, as it is otherwise common in active fault diagnosis. For the first method, it is assumed that the system...... in a way that guarantees the continuity of transition and global stability using a recent result on observer parameterization. An illustrative example inspired by a field study of a drag racing vehicle is given. For the second method, an active fault diagnosis method for parametric faults is proposed...... considered is controlled by an observer-based controller. The method is then based on a number of alternate observers, each designed to be sensitive to one or more additive faults. Periodically, the observer part of the controller is changed into the sequence of fault sensitive observers. This is done...

  18. Diagnosis and Fault-tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens; Kinnaert, Michel; Lunze, Jan

    The book presents effective model-based analysis and design methods for fault diagnosis and fault-tolerant control. Architectural and structural models are used to analyse the propagation of the fault through the process, to test the fault detectability and to find the redundancies in the process...... the applicability of the presented methods. The theoretical results are illustrated by two running examples which are used throughout the book. The book addresses engineering students, engineers in industry and researchers who wish to get a survey over the variety of approaches to process diagnosis and fault...... that can be used to ensure fault tolerance. Design methods for diagnostic systems and fault-tolerant controllers are presented for processes that are described by analytical models, by discrete-event models or that can be dealt with as quantised systems. Four case studies on pilot processes show...

  19. Fertilizer trends

    Energy Technology Data Exchange (ETDEWEB)

    Donaldson, R.

    1992-12-31

    This fourteenth edition of Fertilizer Trends presents historical fertilizer market data to aid industry, government, and financial market analysis and planners in their study of fertilizer and agricultural market cycles, market planning, and investment decisions. A 27-year summary of the US fertilizer market is presented in graphic and tabular form. Production, use, and trade data are included for each plant nutrient and sulfur. Canadian statistics have been included because of the important role of the Canadian fertilizer industry in the US fertilizer market. World production and consumption of nitrogen, phosphate, and potash are included because of the strong influence of world markets on the domestic market. Planted acreage and plant nutrient application rates for the major crops have been included to illustrate their effect on fertilizer use. Retail prices of the leading US fertilizer materials also are given.

  20. Shallow Faulting in Morelia, Mexico, Based on Seismic Tomography and Geodetically Detected Land Subsidence

    Science.gov (United States)

    Cabral-Cano, E.; Arciniega-Ceballos, A.; Vergara-Huerta, F.; Chaussard, E.; Wdowinski, S.; DeMets, C.; Salazar-Tlaczani, L.

    2013-12-01

    include secondary faults at depths up to 4-8m below the surface and located up to 24m away from the main fault trace. The Torremolinos fault system includes secondary faults, which are present up to 8m deep and 12-18m away from the main fault trace. Even though the InSAR analysis provides an unsurpassed synoptic view, a higher temporal resolution observation of fault movement has been pursued using the MOIT continuously operating GPS station, which is located within 100 m from the La Colina main fault trace. GPS data is also particularly useful to decompose horizontal and vertical motion in the absence of both ascending and descending SAR data acquisitions. Observations since July 2009 show a total general displacement trend of -39mm/yr and a total horizontal differential motion of 41.8 mm/yr and -4.7mm/yr in its latitudinal and Longitudinal components respectively in respect to the motion observed at the MOGA GPS station located 5.0 km to the SSE within an area which is not affected by subsidence. In addition to the overall trend, high amplitude excursions at the MOIT station with individual residual amplitudes up to 20mm, 25mm, and 60mm in its latitudinal, longitudinal and vertical components respectively vertical are observed. The correlation of fault motion excursions in relationship to the rainfall records will be analyzed.

  1. New insights on Southern Coyote Creek Fault and Superstition Hills Fault

    Science.gov (United States)

    van Zandt, A. J.; Mellors, R. J.; Rockwell, T. K.; Burgess, M. K.; O'Hare, M.

    2007-12-01

    Recent field work has confirmed an extension of the southern Coyote Creek (CCF) branch of the San Jacinto fault in the western Salton trough. The fault marks the western edge of an area of subsidence caused by groundwater extraction, and field measurements suggest that recent strike-slip motion has occurred on this fault as well. We attempt to determine whether this fault connects at depth with the Superstition Hills fault (SHF) to the southeast by modeling observed surface deformation between the two faults measured by InSAR. Stacked ERS (descending) InSAR data from 1992 to 2000 is initially modeled using a finite fault in an elastic half-space. Observed deformation along the SHF and Elmore Ranch fault is modeled assuming shallow (< 5 km) creep. We test various models to explain surface deformation between the two faults.

  2. Pressure prediction and hydraulic continuity - Regional trends and local anomalies

    NARCIS (Netherlands)

    Verweij, J.M.

    2017-01-01

    This paper discusses the influence of hydraulic continuity of reservoirs and faults and the lack thereof on the occurrence of local pore fluid pressure conditions deviating from previously established regional trends. The hydrodynamic-based approaches will be illustrated with case studies from the

  3. Morphotectonics of the Jamini River basin, Bundelkhand Craton, Central India; using remote sensing and GIS technique

    Science.gov (United States)

    Prakash, K.; Mohanty, T.; Pati, J. K.; Singh, S.; Chaubey, K.

    2017-11-01

    Morphological and morphotectonic analyses have been used to obtain information that influence hydrographic basins, predominantly these are modifications of tectonic elements and the quantitative description of landforms. Discrimination of morphotectonic indices of active tectonics of the Jamini river basin consists the analyses of asymmetry factor, ruggedness number, basin relief, gradient, basin elongation ratio, drainage density analysis, and drainage pattern analysis, which have been completed for each drainage basin using remote sensing and GIS techniques. The Jamini river is one of the major tributaries of the Betwa river in central India. The Jamini river basin is divided into five subwatersheds viz. Jamrar, Onri, Sainam, Shahzad and Baragl subwatershed. The quantitative approach of watershed development of the Jamini river basin, and its four sixth (SW1-SW4) and one fifth (SW5) order subwatersheds, was carried out using Survey of India toposheets (parts of 54I, 54K, 54L, 54O, and 54P), Landsat 7 ETM+, ASTER (GDEM) data, and field data. The Jamini river has low bifurcation index which is a positive marker of tectonic imprint on the hydrographic network. The analyses show that the geomorphological progression of the study area was robustly influenced by tectonics. The analysis demonstrates to extensional tectonics system with the following alignments: NE-SW, NW-SE, NNE-SSW, ENE-WSW, E-W, and N-S. Three major trends are followed by lower order streams viz. NE-SW, NW-SE, and E-W directions which advocate that these tectonic trends were active at least up to the Late Pleistocene. The assessment of morphotectonic indices may be used to evaluate the control of active faults on the hydrographic system. The analysis points out westward tilting of the drainage basins with strong asymmetry in some reaches, marked elongation ratio of subwatersheds, and lower order streams having close alignment with lineaments (active faults). The study facilitated to considerate the

  4. Inverter Ground Fault Overvoltage Testing

    Energy Technology Data Exchange (ETDEWEB)

    Hoke, Andy [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Nelson, Austin [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chakraborty, Sudipta [National Renewable Energy Laboratory (NREL), Golden, CO (United States); Chebahtah, Justin [SolarCity Corporation, San Mateo, CA (United States); Wang, Trudie [SolarCity Corporation, San Mateo, CA (United States); McCarty, Michael [SolarCity Corporation, San Mateo, CA (United States)

    2015-08-12

    This report describes testing conducted at NREL to determine the duration and magnitude of transient overvoltages created by several commercial PV inverters during ground fault conditions. For this work, a test plan developed by the Forum on Inverter Grid Integration Issues (FIGII) has been implemented in a custom test setup at NREL. Load rejection overvoltage test results were reported previously in a separate technical report.

  5. Centrifugal compressor fault diagnosis based on qualitative simulation and thermal parameters

    Science.gov (United States)

    Lu, Yunsong; Wang, Fuli; Jia, Mingxing; Qi, Yuanchen

    2016-12-01

    This paper concerns fault diagnosis of centrifugal compressor based on thermal parameters. An improved qualitative simulation (QSIM) based fault diagnosis method is proposed to diagnose the faults of centrifugal compressor in a gas-steam combined-cycle power plant (CCPP). The qualitative models under normal and two faulty conditions have been built through the analysis of the principle of centrifugal compressor. To solve the problem of qualitative description of the observations of system variables, a qualitative trend extraction algorithm is applied to extract the trends of the observations. For qualitative states matching, a sliding window based matching strategy which consists of variables operating ranges constraints and qualitative constraints is proposed. The matching results are used to determine which QSIM model is more consistent with the running state of system. The correct diagnosis of two typical faults: seal leakage and valve stuck in the centrifugal compressor has validated the targeted performance of the proposed method, showing the advantages of fault roots containing in thermal parameters.

  6. Stress transfer to the Denali and other regional faults from the M 9.2 Alaska earthquake of 1964

    Science.gov (United States)

    Bufe, C.G.

    2004-01-01

    Stress transfer from the great 1964 Prince William Sound earthquake is modeled on the Denali fault, including the Denali-Totschunda fault segments that ruptured in 2002, and on other regional fault systems where M 7.5 and larger earthquakes have occurred since 1900. The results indicate that analysis of Coulomb stress transfer from the dominant earthquake in a region is a potentially powerful tool in assessing time-varying earthquake hazard. Modeled Coulomb stress increases on the northern Denali and Totschunda faults from the great 1964 earthquake coincide with zones that ruptured in the 2002 Denali fault earthquake, although stress on the Susitna Glacier thrust plane, where the 2002 event initiated, was decreased. A southeasterlytrending Coulomb stress transect along the right-lateral Totschunda-Fairweather-Queen Charlotte trend shows stress transfer from the 1964 event advancing slip on the Totschunda, Fairweather, and Queen Charlotte segments, including the southern Fairweather segment that ruptured in 1972. Stress transfer retarding right-lateral strike slip was observed from the southern part of the Totschunda fault to the northern end of the Fairweather fault (1958 rupture). This region encompasses a gap with shallow thrust faulting but with little evidence of strike-slip faulting connecting the segments to the northwest and southeast. Stress transfer toward failure was computed on the north-south trending right-lateral strike-slip faults in the Gulf of Alaska that ruptured in 1987 and 1988, with inhibitory stress changes at the northern end of the northernmost (1987) rupture. The northern Denali and Totschunda faults, including the zones that ruptured in the 2002 earthquakes, follow very closely (within 3%), for about 90??, an arc of a circle of radius 375 km. The center of this circle is within a few kilometers of the intersection at depth of the Patton Bay fault with the Alaskan megathrust. This inferred asperity edge may be the pole of counterclockwise

  7. New fault tolerant matrix converter

    Energy Technology Data Exchange (ETDEWEB)

    Ibarra, Edorta; Andreu, Jon; Kortabarria, Inigo; Ormaetxea, Enekoitz; Alegria, Inigo Martinez de; Martin, Jose Luis [Department of Electronics and Telecommunications, University of the Basque Country, Alameda de Urquijo s/n, E-48013 Bilbao (Spain); Ibanez, Pedro [TECNALIA, Energy Unit, Parque Tecnologico de Zamudio, E-48170 Bizkaia (Spain)

    2011-02-15

    The matrix converter (MC) presents a promising topology that will have to overcome certain barriers (protection systems, durability, the development of converters for real applications, etc.) in order to gain a foothold in the industry. In some applications, where continuous operation must be insured in the case of a system failure, improved reliability of the converter is of particular importance. In this sense, this article focuses on the study of a fault tolerant MC. The fault tolerance of a converter is characterized by its total or partial response in the case of a breakage of any of its components. Taking into consideration that virtually no work has been done on fault tolerant MCs, this paper describes the most important studies in this area. Moreover, a new method is proposed for detecting the breakage of MC semiconductors. Likewise, a new variation of SVM modulation with failure tolerance capacity is presented. This guarantees the continuous operation of the converter and the pseudo-optimum control of a PMSM. This paper also proposes a novel MC topology, which allows the flexible reconfiguration of this converter, when one or several of its semiconductors are damaged. In this way, the MC can continue operating at 100% of its performance without having to double its resources. In this way, it can be said that the solution described in this article represents a step forward towards the development of reliable matrix converters for real applications. (author)

  8. Fault tolerant operation of switched reluctance machine

    Science.gov (United States)

    Wang, Wei

    The energy crisis and environmental challenges have driven industry towards more energy efficient solutions. With nearly 60% of electricity consumed by various electric machines in industry sector, advancement in the efficiency of the electric drive system is of vital importance. Adjustable speed drive system (ASDS) provides excellent speed regulation and dynamic performance as well as dramatically improved system efficiency compared with conventional motors without electronics drives. Industry has witnessed tremendous grow in ASDS applications not only as a driving force but also as an electric auxiliary system for replacing bulky and low efficiency auxiliary hydraulic and mechanical systems. With the vast penetration of ASDS, its fault tolerant operation capability is more widely recognized as an important feature of drive performance especially for aerospace, automotive applications and other industrial drive applications demanding high reliability. The Switched Reluctance Machine (SRM), a low cost, highly reliable electric machine with fault tolerant operation capability, has drawn substantial attention in the past three decades. Nevertheless, SRM is not free of fault. Certain faults such as converter faults, sensor faults, winding shorts, eccentricity and position sensor faults are commonly shared among all ASDS. In this dissertation, a thorough understanding of various faults and their influence on transient and steady state performance of SRM is developed via simulation and experimental study, providing necessary knowledge for fault detection and post fault management. Lumped parameter models are established for fast real time simulation and drive control. Based on the behavior of the faults, a fault detection scheme is developed for the purpose of fast and reliable fault diagnosis. In order to improve the SRM power and torque capacity under faults, the maximum torque per ampere excitation are conceptualized and validated through theoretical analysis and

  9. HYDROLOGIC CHARACTERISTICS OF FAULTS AT YUCCA MOUNTAIN, NEVADA

    Energy Technology Data Exchange (ETDEWEB)

    R.P. Dickerson

    2000-10-19

    Yucca Mountain comprises a series of north-trending ridges composed of tuffs within the southwest Nevada volcanic field, 120 km northwest of Las Vegas, Nevada. These ridges are formed of east-dipping blocks of interbedded welded and nonwelded tuff that are offset along steep, mostly west-dipping faults that have tens to hundreds of meters of vertical separation. Yucca Mountain is currently under study as a potential site for underground storage of high-level radioactive waste, with the principle goal being the safe isolation of the waste from the accessible environment. To this end, an understanding of the behavior of ground-water flow through the mountain in the unsaturated zone and beneath the mountain in the saturated zone is critical. The percolation of water through the mountain and into the ground-water flow system beneath the potential repository site is predicated on: (1) the amount of water available at the surface as a result of the climatic conditions, (2) the hydrogeologic characteristics of the volcanic strata that compose the mountain. and (3) the hydrogeologic characteristics of the structures, particularly fault zones and fracture networks, that disrupt these strata. This paper addresses the hydrogeologic characteristics of the fault zones at Yucca Mountain, focusing primarily on the central part of the mountain where the potential repository block is located.

  10. The transtensional offshore portion of the northern San Andreas fault: Fault zone geometry, late Pleistocene to Holocene sediment deposition, shallow deformation patterns, and asymmetric basin growth

    Science.gov (United States)

    Beeson, Jeffrey W.; Johnson, Samuel Y.; Goldfinger, Chris

    2017-01-01

    We mapped an ~120 km offshore portion of the northern San Andreas fault (SAF) between Point Arena and Point Delgada using closely spaced seismic reflection profiles (1605 km), high-resolution multibeam bathymetry (~1600 km2), and marine magnetic data. This new data set documents SAF location and continuity, associated tectonic geomorphology, shallow stratigraphy, and deformation. Variable deformation patterns in the generally narrow (∼1 km wide) fault zone are largely associated with fault trend and with transtensional and transpressional fault bends.We divide this unique transtensional portion of the offshore SAF into six sections along and adjacent to the SAF based on fault trend, deformation styles, seismic stratigraphy, and seafloor bathymetry. In the southern region of the study area, the SAF includes a 10-km-long zone characterized by two active parallel fault strands. Slip transfer and long-term straightening of the fault trace in this zone are likely leading to transfer of a slice of the Pacific plate to the North American plate. The SAF in the northern region of the survey area passes through two sharp fault bends (∼9°, right stepping, and ∼8°, left stepping), resulting in both an asymmetric lazy Z–shape sedimentary basin (Noyo basin) and an uplifted rocky shoal (Tolo Bank). Seismic stratigraphic sequences and unconformities within the Noyo basin correlate with the previous 4 major Quaternary sea-level lowstands and record basin tilting of ∼0.6°/100 k.y. Migration of the basin depocenter indicates a lateral slip rate on the SAF of 10–19 mm/yr for the past 350 k.y.Data collected west of the SAF on the south flank of Cape Mendocino are inconsistent with the presence of an offshore fault strand that connects the SAF with the Mendocino Triple Junction. Instead, we suggest that the SAF previously mapped onshore at Point Delgada continues onshore northward and transitions to the King Range thrust.

  11. High-resolution seismic profiling reveals faulting associated with the 1934 Ms 6.6 Hansel Valley earthquake (Utah, USA)

    Science.gov (United States)

    Bruno, Pier Paolo G.; Duross, Christopher; Kokkalas, Sotirios

    2017-01-01

    The 1934 Ms 6.6 Hansel Valley, Utah, earthquake produced an 8-km-long by 3-km-wide zone of north-south−trending surface deformation in an extensional basin within the easternmost Basin and Range Province. Less than 0.5 m of purely vertical displacement was measured at the surface, although seismologic data suggest mostly strike-slip faulting at depth. Characterization of the origin and kinematics of faulting in the Hansel Valley earthquake is important to understand how complex fault ruptures accommodate regions of continental extension and transtension. Here, we address three questions: (1) How does the 1934 surface rupture compare with faults in the subsurface? (2) Are the 1934 fault scarps tectonic or secondary features? (3) Did the 1934 earthquake have components of both strike-slip and dip-slip motion? To address these questions, we acquired a 6.6-km-long, high-resolution seismic profile across Hansel Valley, including the 1934 ruptures. We observed numerous east- and west-dipping normal faults that dip 40°−70° and offset late Quaternary strata from within a few tens of meters of the surface down to a depth of ∼1 km. Spatial correspondence between the 1934 surface ruptures and subsurface faults suggests that ruptures associated with the earthquake are of tectonic origin. Our data clearly show complex basin faulting that is most consistent with transtensional tectonics. Although the kinematics of the 1934 earthquake remain underconstrained, we interpret the disagreement between surface (normal) and subsurface (strike-slip) kinematics as due to slip partitioning during fault propagation and to the effect of preexisting structural complexities. We infer that the 1934 earthquake occurred along an ∼3-km wide, off-fault damage zone characterized by distributed deformation along small-displacement faults that may be alternatively activated during different earthquake episodes.

  12. Fault Diagnosis and Fault Tolerant Control with Application on a Wind Turbine Low Speed Shaft Encoder

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Sardi, Hector Eloy Sanchez; Escobet, Teressa

    2015-01-01

    . This sensor has to be correct as blade pitch actions should be different at different azimuth angle as the wind speed varies within the rotor field due to different phenomena. A scheme detecting faults in this sensor has previously been designed for the application of a high end fault diagnosis and fault...... tolerant control of wind turbines using a benchmark model. In this paper, the fault diagnosis scheme is improved and integrated with a fault accommodation scheme which enables and disables the individual pitch algorithm based on the fault detection. In this way, the blade and tower loads are not increased...

  13. First palaeoseismological data on the Santa Marta Fault System, Northern Colombia

    Science.gov (United States)

    Idárraga, J.

    2009-04-01

    The Santa Marta Fault System (SMFS) is a NNW-striking major structural feature that controls the western foothills of the Sierra Nevada of Santa Marta (northern Colombia), the world's highest coastal relief. Morphotectonically, the SMFS exhibits an arrangement of parallel to subparallel fault traces. These traces are associated with a set of offset streams indicating a left-lateral component for displacement. NE-trending compressive structures as reverse faults (e.g. the Orihueca and San Pedro faults) and folds (the Fundación Anticline), and NW-trending distensive structures as normal faults are present too. These structures are consistent with a left-lateral shear zone striking NNW. An unlitified ruditic deposit with tectonic deformation crops out at the Riofrío site; this deposit consists of a series of debris slope layers linked to a deyection cone. The documented deformation in this outcrop is characterized by a tilting of the sequence to NE (against the direction of deposition) and by the presence of inverse faulting in which the coseismic displacement could have been distributed across distensive structures (normal faults and opened fractures). A magnitude (Mw) of 6.4 was calculated for the compressive event based on the displacement measured on the outcrop; this value corresponds to a minimum magnitude. Unfortunately, it has not been possible to date the deposits to constrain the tectonic events in time. The results of this research constitute the first data on the palaeoseismology of the SMFS, and are an important basis for future paleoseismic studies that allow calculating the seismic hazard of the region and giving an approximation of the Plio-Quaternary evolution of the South American northwestern corner.

  14. Monitoring of micro-deformations along Idrija and Raša faults in W Slovenia

    Directory of Open Access Journals (Sweden)

    Andrej Gosar

    2007-06-01

    Full Text Available Monitoring of tectonic movements along two active faults of Dinaric (NW-SE trending fault system in W Slovenia using TM 71 extensiometers was set up in 2004. After two years ob measurements some clear trends of displacement were developed. The average left-lateral displacement along a crack in the inner fault zone of the Idrija fault in Učja valley is 0.38 mm/year. Short term (10 months rates were even greater and reached the value of 0.54 mm/year. Since the Idrija fault is considered as dextral strike-slip, is the observedleft-lateral displacement explained by local permutation of principle stress axis. In the Ra{a fault monitoring site at the foot of Vremščica Mt. at Košana the average reverse uplift of hanging wall (SW block of 0.24 mm/years and left-lateral displacement of 0.16 mm/year were established. Short term (9 months vertical displacements reached the value of 0.53 mm/year. The oblique sense of displacement is in agreement with geological and seismological observations. Since there were no stronger earthquakes in the vicinity and time span of monitoring, no correlations were established with seismic activity. The observed displacement rates along monitored faults of up to 0.5 mm/year are consistent with the regional deformation rate in W Slovenia established from GPS measurements which is of the order of 2 mm/year.

  15. Intraplate seismicity along the Gedi Fault in Kachchh rift basin of western India

    Science.gov (United States)

    Joshi, Vishwa; Rastogi, B. K.; Kumar, Santosh

    2017-08-01

    The Kachchh rift basin is located on the western continental margin of India and has a history of experiencing large to moderate intraplate earthquakes with M ≥ 5. During the past two centuries, two large earthquakes of Mw 7.8 (1819) and Mw 7.7 (2001) have occurred in the Kachchh region, the latter with an epicenter near Bhuj. The aftershock activity of the 2001 Bhuj earthquake is still ongoing with migration of seismicity. Initially, epicenters migrated towards the east and northeast within the Kachchh region but, since 2007, it has also migrated to the south. The triggered faults are mostly within 100 km and some up to 200 km distance from the epicentral area of the mainshock. Most of these faults are trending in E-W direction, and some are transverse. It was noticed that some faults generate earthquakes down to the Moho depth whereas some faults show earthquake activity within the upper crustal volume. The Gedi Fault, situated about 50 km northeast of the 2001 mainshock epicenter, triggered the largest earthquake of Mw 5.6 in 2006. We have carried out detailed seismological studies to evaluate the seismic potential of the Gedi Fault. We have relocated 331 earthquakes by HypoDD to improve upon location errors. Further, the relocated events are used to estimate the b value, p value, and fractal correlation dimension Dc of the fault zone. The present study indicates that all the events along the Gedi Fault are shallow in nature, with focal depths less than 20 km. The estimated b value shows that the Gedi aftershock sequence could be classified as Mogi's type 2 sequence, and the p value suggests a relatively slow decay of aftershocks. The fault plane solutions of some selected events of Mw > 3.5 are examined, and activeness of the Gedi Fault is assessed from the results of active fault studies as well as GPS and InSAR results. All these results are critically examined to evaluate the material properties and seismic potential of the Gedi Fault that may be useful

  16. Intraplate seismicity along the Gedi Fault in Kachchh rift basin of western India

    Science.gov (United States)

    Joshi, Vishwa; Rastogi, B. K.; Kumar, Santosh

    2017-11-01

    The Kachchh rift basin is located on the western continental margin of India and has a history of experiencing large to moderate intraplate earthquakes with M ≥ 5. During the past two centuries, two large earthquakes of Mw 7.8 (1819) and Mw 7.7 (2001) have occurred in the Kachchh region, the latter with an epicenter near Bhuj. The aftershock activity of the 2001 Bhuj earthquake is still ongoing with migration of seismicity. Initially, epicenters migrated towards the east and northeast within the Kachchh region but, since 2007, it has also migrated to the south. The triggered faults are mostly within 100 km and some up to 200 km distance from the epicentral area of the mainshock. Most of these faults are trending in E-W direction, and some are transverse. It was noticed that some faults generate earthquakes down to the Moho depth whereas some faults show earthquake activity within the upper crustal volume. The Gedi Fault, situated about 50 km northeast of the 2001 mainshock epicenter, triggered the largest earthquake of Mw 5.6 in 2006. We have carried out detailed seismological studies to evaluate the seismic potential of the Gedi Fault. We have relocated 331 earthquakes by HypoDD to improve upon location errors. Further, the relocated events are used to estimate the b value, p value, and fractal correlation dimension Dc of the fault zone. The present study indicates that all the events along the Gedi Fault are shallow in nature, with focal depths less than 20 km. The estimated b value shows that the Gedi aftershock sequence could be classified as Mogi's type 2 sequence, and the p value suggests a relatively slow decay of aftershocks. The fault plane solutions of some selected events of Mw > 3.5 are examined, and activeness of the Gedi Fault is assessed from the results of active fault studies as well as GPS and InSAR results. All these results are critically examined to evaluate the material properties and seismic potential of the Gedi Fault that may be useful

  17. Morphotectonics of the Padul-Nigüelas Fault Zone, southern Spain

    Directory of Open Access Journals (Sweden)

    Jochen Hürtgen

    2014-02-01

    Full Text Available The Padul-Nigüelas Fault Zone (PNFZ is situated at the south-western mountain front of the Sierra Nevada (southern Spain in the Internal Zone of the Betic Cordilleras and belongs to a NW-SE trending system of normal faults dipping SW. The PNFZ constitutes a major tectonic and lithological boundary in the Betics, and separates the metamorphic units of the Alpujárride Complex from Upper Tertiary to Quaternary deposits. Due to recent seismicity and several morphological and geological indicators, such as preserved fault scarps, triangular facets, deeply incised valleys and faults in the colluvial wedges, the PNFZ is suspected to be a tectonically active feature of the south-eastern Granada Basin. We performed morphotectonic GIS analyses based on digital elevation models (DEM, cell size: 10 m to obtain tectonic activity classes for each outcropping segment of the PNFZ. We have determined the following geomorphic indices: mountain front sinuosity, stream-length gradient index, concavity index and valley floor width to height ratio. The results show a differentiation in the states of activity along the fault zone strike. The western and eastern segments of the PNFZ indicate a higher tectonic activity compared to the center of the fault zone. We discuss and critically examine the comparability and reproducibility of geomorphic analyses, concluding that careful interpretation is necessary, if no ground-truthing can be performed.

  18. ERTS-1 imagery of eastern Africa: A first look at the geological structure of selected areas

    Science.gov (United States)

    Mohr, P. A. (Principal Investigator)

    1972-01-01

    The author has identified the following significant results. Imagery of the African rift system resolves the major Cainozoic faults, zones of warping, and associated volcanism. It also clearly depicts the crystal grain of the Precambrian rocks where these are exposed. New structural features, or new properties of known features such as greater extent, continuity, and linearity are revealed by ERTS-1 imagery. This applies, for example, to the NE-SW fracture zones in Yemen, the Aswa mylonite zone at the northern end of the Western Rift, the Nandi fault of western Kenya, the linear faults of the Elgeyo escarpment in the Gregory Rift, and the hemibasins of warped Tertiary lavas on the Red Sea margin of Yemen, matching those of Ethiopian plateau-Afar margin. A tentative scheme is proposed, relating the effect on the pattern of Cainozoic faulting of the degree of obliquity to Precambrian structural trend. It is particularly noteworthy that, even where the Precambrian grain determines the rift faulting to be markedly oblique to the overall trend of the rift trough, for example, in central Lake Tanganyika, the width of the trough is not significantly increased. Some ground mapped lithological boundaries are obscure on ERTS-1 imagery.

  19. Frictional properties of Shionohira Fault Gouge of Fukushima, Japan

    Science.gov (United States)

    Aoki, K.; Seshimo, K.; Tanaka, Y.; Niwa, M.; Kametaka, M.; Sakai, T.; Shimamoto, T.

    2015-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake created co-seismic surface ruptures trending NNE-SSW direction in Iwaki City, Fukushima Prefecture, which were newly namded as the Shionohira Fault by Ishiyama et al. (2011). However, the same N-S trending lineaments were recognized to exist even though no surface ruptures occurred from the south of the Tabito-Nameishi to the boundary between the Fukushima and Ibaragi Prefectures. In the attempt to elucidate the differences of active and non-active segments of the fault, this report discusses the results of active segment.All experiments were conducted using a rotary-shear low to high-velocity frictional testing apparatus at the State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. The apparatus is capable of producing slip rates of 60 mm/year to 2.1 m/s on a pair of cylindrical specimens of 40 mm in diameter, and temperature and pressure up to 500 degree in centigrade and 70 MPa by using TiAlCr alloy piston.Gouge samples were taken from the thick fault gouge in crystalline shist at Betto outcrop, and gouge from the contact between sandstone and crystalline shist at Shionohira outcrop. They were dried in an oven for 20 hours at 60 degree in centigrade and were gently disaggregated to make gouge powder. Wet and dry gouge experiments have been conducted at the initial compression of fault gouge samples from 1 to 5 MPa, at slip rates from 0.0002 mm/s to 2.1 m/s and at normal stresses of 1.0 to 2.0 MPa. Friction strengthening or weakening behavior was also examined.The results revealed high friction coefficients around 0.6 to 0.8 under non-porous conditions, but very low coefficients of around 0.1 to 0.2 under porous conditions for both outcrop samples. The results also indicated the sample taken from the active segment of Shionohira fault to show a velocity strengthening behavior, whereby the friction coefficient became slightly higher as velocity increased.

  20. Fault Diagnosis and Fault-tolerant Control of Modular Multi-level Converter High-voltage DC System

    DEFF Research Database (Denmark)

    Liu, Hui; Ma, Ke; Wang, Chao

    2016-01-01

    device fault, DC line faults as well as AC grid faults. Special attention is given to the comparison of the corresponding fault diagnosis and fault-tolerant control approaches. Further, focus is dedicated to control/protection strategies and topologies with fault ride-though capability for MMC...... of failures and lower the reliability of the MMC-HVDC system. Therefore, research on the fault diagnosis and fault-tolerant control of MMC-HVDC system is of great significance in order to enhance the reliability of the system. This paper provides a comprehensive review of fault diagnosis and fault handling...... strategies of MMC-HVDC systems for the most common faults happened in MMC-HVDC systems covering MMC faults, DC side faults as well as AC side faults. An important part of this paper is devoted to a discussion of the vulnerable spots as well as failure mechanism of the MMC-HVDC system covering switching...

  1. Use of RADARSAT-1 satellite imagery and geophysical data for oil and kimberlite exploration

    Science.gov (United States)

    Paganelli, Flora

    The synergy of RADARSAT-1 and seismic imagery interpretation has been applied in the Blackstone area of the Central Alberta Foothills in the Canadian Cordillera thrust and fold belt to map the continuity of geological structures, which are of importance for oil and gas exploration. The reconstruction of the continuity of thrust-fold related major structures known in the area has been successful. Transverse faults and lineaments with ENE-WSW, NE-SW, and NNE-SSW trends have been delineated on the radar images. The ENE-WSW transverse faults have an extensional character, cut across the inner and outer Foothills and are persistent at the regional scale. The NE-SW and NNE-SSW transverse faults are wrench type faults, which are mainly localized in the inner Foothills. These structures have been identified for the first time in the area and are possibly a third generation fault-play type for oil and gas exploration. Principal Component Analysis (PCA) of RADARSAT-1 images was applied in the Buffalo Head Hills area, in the Western Canada Sedimentary Basin (WCSB), to provide an enhanced image base for structural mapping. North- and NNE-trending lineaments bounding the eastern edge of the Buffalo Head Hills along the Loon River valley, a conjugate set of NW- and NE-trending lineaments, and ENE-trending lineaments identifying the latest features in the area were outlined. The development of these structures has been related to Precambrian terrane assemblage in the WCSB during the Early Proterozoic, the development of the Peace River Arch, and the Laramide Orogeny. In the Buffalo Head Hills area a weights of evidence statistical approach was used to determine the spatial relationship of NNE-, NE-, -NW, and ENE-trending lineaments to known kimberlite locations. This method outlined different degrees of spatial correlation between kimberlites and lineaments, with higher correlations defined for the NNE, NE, and ENE lineament datasets. A weights of evidence model was then

  2. Delineating active faults by using integrated geophysical data at northeastern part of Cairo, Egypt

    Directory of Open Access Journals (Sweden)

    Sultan Awad Sultan Araffa

    2012-06-01

    Full Text Available Geophysical techniques such as gravity, magnetic and seismology are perfect tools for detecting subsurface structures of local, regional as well as of global scales. The study of the earthquake records can be used for differentiating the active and non active fault elements. In the current study more than 2200 land magnetic stations have been measured by using two proton magnetometers. The data is corrected for diurnal variations and then reduced by IGRF. The corrected data have been interpreted by different techniques after filtering the data to separate shallow sources (basaltic sheet from the deep sources (basement complex. Both Euler deconvolution and 3-D magnetic modeling have been carried out. The results of our interpretation have indicated that the depth to the upper surface of basaltic sheet ranges from less than 10–600 m, depth to the lower surface ranges from 60 to 750 m while the thickness of the basaltic sheet varies from less than 10–450 m. Moreover, gravity measurements have been conducted at the 2200 stations using a CG-3 gravimeter. The measured values are corrected to construct a Bouguer anomaly map. The least squares technique is then applied for regional residual separation. The third order of least squares is found to be the most suitable to separate the residual anomalies from the regional one. The resultant third order residual gravity map is used to delineate the structural fault systems of different characteristic trends. The trends are a NW–SE trend parallel to that of Gulf of Suez, a NE–SW trend parallel to the Gulf of Aqaba and an E–W trend parallel to the trend of Mediterranean Sea. Taking seismological records into consideration, it is found that most of 24 earthquake events recorded in the study area are located on fault elements. This gives an indication that the delineated fault elements are active.

  3. Segmentation and step-overs along strike-slip fault systems in the inner California borderlands: Implications for fault architecture and basin formation

    Science.gov (United States)

    Maloney, J. M.; Driscoll, N. W.; Kent, G.; Brothers, D. S.

    2013-12-01

    Reprocessed, industry multichannel seismic reflection data and high resolution Chirp data were examined to characterize the geometry and recency of faulting in the inner California borderlands (ICB). Two end-member models have been proposed to explain the deformation observed in the ICB. One model invokes reactivation of detachment faults by the Oceanside Blind Thrust (OBT) to explain the deformation and margin architecture (e.g., San Mateo/Carlsbad Trend). In contrast, the other model explains the deformation by step-overs along the strike-slip fault systems. Several observations in both the southern and central portions of the ICB are more consistent with the step-over model than the regional blind thrust model. For example, regions in the ICB exhibit both tensional and compressional structures across the margin, which are more readily explained by the strike-slip model. Localized compression and extension occurs as predicted at fault bends and step-overs. Furthermore, strike slip fault systems that bound extensional regions (i.e., San Diego Bay) exhibit localized normal deformation as they approach the releasing step-overs. In addition, onlapping turbidites reveal that the deformation becomes younger toward the east, an observation not consistent with a westward verging blind thrust fault system. Finally, rotational deformation previously attributed to a splay off the OBT instead appears to be a southward transported gravitational slide deposit. In summary, the nested high-resolution Chirp and MCS data have provided new constraints on ICB tectonic deformation and margin architecture, which are best explained by step-overs on strike slip fault systems.

  4. Fault Diagnosis and Fault Handling for Autonomous Aircraft

    DEFF Research Database (Denmark)

    Hansen, Søren

    Unmanned Aerial vehicles (UAVs) or drones are used increasingly for missions where piloted aircraft are unsuitable. The unmanned aircraft has a number of advantages with respect to size, weight and manoeuvrability that makes it possible for them to solve tasks that an aircraft previously has been...... to another type of aircraft with different parameters. Amongst the main findings of this research project is a method to handle faults on the UAV’s pitot tube, which measures the aircraft speed. A set of software redundancies based on GPS velocity information and engine thrust are used to detect abnormal...

  5. Applying wavelet entropy principle in fault classification

    Energy Technology Data Exchange (ETDEWEB)

    El Safty, S.; El-Zonkoly, A. [Arab Academy for Science and Technology, Miami, Alexandria, P.O.1029 (Egypt)

    2009-11-15

    The ability to detect and classify the type of fault plays a great role in the protection of power system. This procedure is required to be precise with no time consumption. In this paper detection of fault type has been implemented using wavelet analysis together with wavelet entropy principle. The simulation of power system is carried out using PSCAD/EMTDC. Different types of faults were studied obtaining various current waveforms. These current waveforms were decomposed using wavelet analysis into different approximation and details. The wavelet entropies of such decompositions are analyzed reaching a successful methodology for fault classification. The suggested approach is tested using different fault types and proven successful identification for the type of fault. (author)

  6. Frictional Properties of Shionohira Fault Gouge (Part 2) -A Comparison with Kuruma Fault Gouge at the Southern Extension of Shionohira Fault-

    Science.gov (United States)

    Seshimo, K.; Kazuhiro, A.; Yukumo, T.; Masakazu, N.; Shimamoto, T.; Ma, S.; Yao, L.; Kametaka, M.

    2016-12-01

    The April 11, 2011 Fukushima-ken Hamadori Earthquake (the largest aftershock of the 2011 off the Pacific coast of Tohoku Earthquake) formed co-seismic surface ruptures in NNW-SSE direction in Iwaki City, Fukushima Prefecture, Japan, named Shionohira Fault (hereafter called "active segment"). A N-S trending geological fault with lineaments (Kuruma Fault) along the southern extension of Shionohira Fault showed no surface ruptures (hereafter called "non-active segment"). The current report discusses differences of active and non-active segments by conducting low to high-velocity friction experiments on the gouge from shallow borehole cores. All experiments used a rotary-shear low to high-velocity frictional testing apparatus at the State Key Laboratory of Earthquake Dynamics, Institute of Geology, China Earthquake Administration. The apparatus can produce slip rates of 0.2 microns/s to 2.1 mm/s under dry and wet conditions at room temperature and at normal stresses of mostly 1.38MPa. Experiments were performed under drained condition using gouges sealed by teflon sleeves. Non-active segment samples were taken from shallow borehole cores at depths 20.90 20.95m of Minakami-kita outcrop, and those for active segment at depths 12.82 12.87m of Shionohira outcrop and 5.96 6.00m of Betto outcrop. Three slip behaviors were recognized based on velocity dependence of steady-state friction coefficient: almost no velocity dependence for low velocity-regime of below 10 to 100 microns/s; clear velocity strengthening for intermediate velocity-regime of 100 microns/s to 1 mm/s; and significant velocity weakening for high velocity-regime of above 1 to 10 mm/s. Steady-state friction coefficients of dry gouges were 0.6 to 1.0 at low to intermediate slip velocity, and about 0.1 at high slip velocity. Wet gouges, however, of both Betto and Shionohira outcrop samples and Betto borehole core sample measured below 0.2 at low slip velocity although core samples of Shionohira and Minakami

  7. Faults and volcanoes: Main volcanic structures in the Acambay Graben, Mexico

    Science.gov (United States)

    Aguirre-Diaz, G. J.; Pedrazzi, D.; Suñe-Puchol, I.; Lacan, P.

    2016-12-01

    The Mexican Volcanic Belt (MVB) province is best known by the major stratovolcanoes, such as Popocatepetl and Colima, but most of the province is formed by modest size stratovolcanoes and monogenetic cones. Regional fault systems were developed together with the building of the volcanic province; the most notorious one is Chapala-Tula Fault System (CTFS), which runs parallel to the central sector of the MVB, and thus it is also referred to as the Intra-Arc fault system. Acambay graben (AG) is part of this central system. It is a 20 x 70 km depression located 100 km to the NW of Mexico City, at the easternmost end of the E-W trending CTFS, and was formed as the result of NS to NE oriented extension. Seismically active normal faults, such as the Acambay-Tixmadejé fault, with a mB =7 earthquake in 1912, delimit the AG. The graben includes several volcanic structures and associated deposits ranging in age from Miocene to 3 ka. The main structures are two stratovolcanoes, Altamirano (900 m high) and Temascalcingo (800 m high). There are also several Miocene-Pliocene lava domes, and Quaternary small cinder cones and shield volcanoes. Faulting of the Acambay graben affects all these volcanic forms, but depending on their ages, the volcanoes are cut by several faults or by a few. That is the case of Altamirano and Temascalcingo volcanoes, where the former is almost unaffected whereas the latter is highly dissected by faults. Altamirano is younger than Temascalcingo; youngest pyroclastic deposits from Altamirano are dated at 12-3 ka, and those from Temascalcingo at 40-25 ka (radiocarbon ages). The relatively young ages found in volcanic deposits within the Acambay graben raise the volcanic danger level in this area, originally marked as an inactive volcanic zone, but activity could restart at any time. Supported by DGAPA-PAPIIT-UNAM grant IN-104615.

  8. Strike-slip faults in the southernmost Andes and the development of the Patagonian orocline

    Science.gov (United States)

    Cunningham, W. Dickson

    1993-02-01

    The Patagonian orocline is the 90° bend in the southernmost Andes between 50°S and 56°S. Paleomagnetic and structural data indicate that the orocline is, at least in part, the product of tectonic rotation. Recent field work in the Beagle Channel region of southernmost Chile provides evidence for widespread left-lateral strike-slip faulting in the internal zones of the mountain belt. Both arms of the Beagle Channel are interpreted to be left-lateral strike-slip faults based on detailed study of mesoscale strike-slip faults (Riedel shears) observed in coastal outcrops. Although much of the evidence indicates Cenozoic brittle strike-slip faulting, other fabric data, including vertical foliation zones containing horizontal quartz stretching lineations and ductile left-lateral kinematic indicators, suggest that Mesozoic ductile strike-slip or oblique-slip shearing also occurred. The implication is that the mid-Cretaceous Andean orogeny involved the transpressional inversion of the Rocas Verdes marginal basin and that transpression has been the dominant deformational regime in the region for the last 120 Ma. Regional left-lateral strike-slip faults are now recognized in all lithotectonic provinces of the southernmost Andes. A statistical study of regional lineament trends using aerial photographs and satellite imagery suggests that many unstudied lineaments are also strike-slip faults. A new model is proposed that integrates the development of strike-slip faulting and the structural evolution and uplift of the southernmost Andes with the rotational development of the orocline. The Patagonian orocline appears to be the product of broad interplate shearing accommodated by strike-slip faulting, block rotation, and contraction and is probably continuing to evolve today.

  9. Microseismicity at the North Anatolian Fault in the Sea of Marmara offshore Istanbul, NW Turkey

    Science.gov (United States)

    Bulut, Fatih; Bohnhoff, Marco; Ellsworth, William L.; Aktar, Mustafa; Dresen, Georg

    2009-01-01

    The North Anatolian Fault Zone (NAFZ) below the Sea of Marmara forms a “seismic gap” where a major earthquake is expected to occur in the near future. This segment of the fault lies between the 1912 Ganos and 1999 İzmit ruptures and is the only NAFZ segment that has not ruptured since 1766. To monitor the microseismic activity at the main fault branch offshore of Istanbul below the Çınarcık Basin, a permanent seismic array (PIRES) was installed on the two outermost Prince Islands, Yassiada and Sivriada, at a few kilometers distance to the fault. In addition, a temporary network of ocean bottom seismometers was deployed throughout the Çınarcık Basin. Slowness vectors are determined combining waveform cross correlation and P wave polarization. We jointly invert azimuth and traveltime observations for hypocenter determination and apply a bootstrap resampling technique to quantify the location precision. We observe seismicity rates of 20 events per month for M aster fault below ∼17 km depth. On the basis of a cross-correlation technique we group closely spaced earthquakes and determine composite focal mechanisms implementing recordings of surrounding permanent land stations. Fault plane solutions have a predominant right-lateral strike-slip mechanism, indicating that normal faulting along this part of the NAFZ plays a minor role. Toward the west we observe increasing components of thrust faulting. This supports the model of NW trending, dextral strike-slip motion along the northern and main branch of the NAFZ below the eastern Sea of Marmara.

  10. Earthquake hazards of active blind-thrust faults under the central Los Angeles basin, California

    Science.gov (United States)

    Shaw, John H.; Suppe, John

    1996-04-01

    We document several blind-thrust faults under the Los Angeles basin that, if active and seismogenic, are capable of generating large earthquakes (M = 6.3 to 7.3). Pliocene to Quaternary growth folds imaged in seismic reflection profiles record the existence, size, and slip rates of these blind faults. The growth structures have shapes characteristic of fault-bend folds above blind thrusts, as demonstrated by balanced kinematic models, geologic cross sections, and axial-surface maps. We interpret the Compton-Los Alamitos trend as a growth fold above the Compton ramp, which extends along strike from west Los Angeles to at least the Santa Ana River. The Compton thrust is part of a larger fault system, including a decollement and ramps beneath the Elysian Park and Palos Verdes trends. The Cienegas and Coyote Hills growth folds overlie additional blind thrusts in the Elysian Park trend that are not closely linked to the Compton ramp. Analysis of folded Pliocene to Quaternary strata yields slip rates of 1.4 ± 0.4 mm/yr on the Compton thrust and 1.7 ± 0.4 mm/yr on a ramp beneath the Elysian Park trend. Assuming that slip is released in large earthquakes, we estimate magnitudes of 6.3 to 6.8 for earthquakes on individual ramp segments based on geometric segment sizes derived from axial surface maps. Multiple-segment ruptures could yield larger earthquakes (M = 6.9 to 7.3). Relations among magnitude, coseismic displacement, and slip rate yield an average recurrence interval of 380 years for single-segment earthquakes and a range of 400 to 1300 years for multiple-segment events. If these newly documented blind thrust faults are active, they will contribute substantially to the seismic hazards in Los Angeles because of their locations directly beneath the metropolitan area.

  11. Active fault diagnosis in closed-loop systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2005-01-01

    Active fault diagnosis (AFD) of parametric faults is considered in connection with closed loop feedback systems. AFD involves auxiliary signals applied on the closed loop system. A fault signature matrix is introduced in connection with AFD and it is shown that if a limited number of faults can...... occur in the system, a fault separation in the fault signature matrix can be obtained. Then the single elements in the matrix only depend of a reduced number of parametric faults. This can directly be applied for fault isolation. If it is not possible to obtain this separation, it is shown how the fault...... signature matrix can be applied for a dynamical fault isolation, i.e. fault isolation based on the dynamic characteristic of the fault signature matrix as function of the different parametric faults....

  12. An Active Fault-Tolerant Control Method Ofunmanned Underwater Vehicles with Continuous and Uncertain Faults

    Directory of Open Access Journals (Sweden)

    Daqi Zhu

    2008-11-01

    Full Text Available This paper introduces a novel thruster fault diagnosis and accommodation system for open-frame underwater vehicles with abrupt faults. The proposed system consists of two subsystems: a fault diagnosis subsystem and a fault accommodation sub-system. In the fault diagnosis subsystem a ICMAC(Improved Credit Assignment Cerebellar Model Articulation Controllers neural network is used to realize the on-line fault identification and the weighting matrix computation. The fault accommodation subsystem uses a control algorithm based on weighted pseudo-inverse to find the solution of the control allocation problem. To illustrate the proposed method effective, simulation example, under multi-uncertain abrupt faults, is given in the paper.

  13. Fault Diagnosis in Deaerator Using Fuzzy Logic

    Directory of Open Access Journals (Sweden)

    S Srinivasan

    2007-01-01

    Full Text Available In this paper a fuzzy logic based fault diagnosis system for a deaerator in a power plant unit is presented. The system parameters are obtained using the linearised state space deaerator model. The fuzzy inference system is created and rule base are evaluated relating the parameters to the type and severity of the faults. These rules are fired for specific changes in system parameters and the faults are diagnosed.

  14. On concentrated solute sources in faulted aquifers

    Science.gov (United States)

    Robinson, N. I.; Werner, A. D.

    2017-06-01

    Finite aperture faults and fractures within aquifers (collectively called 'faults' hereafter) theoretically enable flowing water to move through them but with refractive displacement, both on entry and exit. When a 2D or 3D point source of solute concentration is located upstream of the fault, the plume emanating from the source relative to one in a fault-free aquifer is affected by the fault, both before it and after it. Previous attempts to analyze this situation using numerical methods faced challenges in overcoming computational constraints that accompany requisite fine mesh resolutions. To address these, an analytical solution of this problem is developed and interrogated using statistical evaluation of solute distributions. The method of solution is based on novel spatial integral representations of the source with axes rotated from the direction of uniform water flow and aligning with fault faces and normals. Numerical exemplification is given to the case of a 2D steady state source, using various parameter combinations. Statistical attributes of solute plumes show the relative impact of parameters, the most important being, fault rotation, aperture and conductivity ratio. New general observations of fault-affected solution plumes are offered, including: (a) the plume's mode (i.e. peak concentration) on the downstream face of the fault is less displaced than the refracted groundwater flowline, but at some distance downstream of the fault, these realign; (b) porosities have no influence in steady state calculations; (c) previous numerical modeling results of barrier faults show significant boundary effects. The current solution adds to available benchmark problems involving fractures, faults and layered aquifers, in which grid resolution effects are often barriers to accurate simulation.

  15. Stability of fault during fluid injection

    Science.gov (United States)

    Passelegue, Francois; Brantut, Nicolas; Mitchell, Tom

    2017-04-01

    Elevated pore pressure can lead to slip reactivation on pre-existing fractures and faults when the coulomb failure point is reached. From a static point of view, the reactivation of fault submitted to a background stress (τ0) is a function of the peak strength of the fault, i.e. the quasi-static effective friction coefficient (µeff). In this study, we present new results about the influence of the injection rate on the stability of faults. Experiments were conducted on a saw-cut sample of westerly granite. The experimental fault was 8 cm length. Injections were conducted through a 2 mm diameter hole reaching the fault surface. Experiments were conducted at four different order magnitudes fluid pressure injection rates (from 1 MPa/minute to 1 GPa/minute), in a fault system submitted to 50 and 100 MPa confining pressure. Our results show that the peak fluid pressure leading to slip depends on injection rate. The faster the injection rate, the larger the peak fluid pressure leading to instability. Our result suggest that the stability of the fault is not only a function of the fluid pressure required to reach the failure criterion, but is mainly a function of the ratio between the length of the fault affected by fluid pressure and the total fault length. In addition, we show that the slip rate increases with the background effective stress and with the intensity of the fluid pressure pertubation, i.e. with the excess shear stress acting on the part of the fault pertubated by fluid injection. Our results suggest that crustal fault can be reactivated by fluid pressures that are locally much higher than expected from a static Coulomb stress analysis. These results could explain the "large" magnitude human-induced earthquakes recently observed in Basel (Mw 3.6, 2006) and in Oklahoma (Mw 5.6, 2016).

  16. Characterizing Sedimentary Responses to Coastal Faulting Using High-Resolution Geochronology and Sedimentology: East Matagorda Peninsula, Texas

    Science.gov (United States)

    Wolfe, P.; Yeager, K. M.; Feagin, R. A.; Brunner, C. A.; Schindler, K. J.

    2013-12-01

    The structural framework of the northern Gulf of Mexico coastal zone is characterized by numerous growth fault systems. Neotectonic processes in coastal marshes in this region have been shown to be important drivers of relative sea-level rise as well as having significant influence on marsh accretion processes. An apparent historical acceleration of movement along some of these coastal faults is believed to be largely a result of the regional onset and intensification of subsurface fluid withdrawal from the 1930's to the present. One active growth fault breached the surface of East Matagorda Peninsula, Texas as early as the 1960's and displacement there is ongoing, leading to significant wetland losses over the past several decades. To characterize the Holocene behavior of this fault and the consequent sedimentary responses, a suite of fallout radionuclides (7Be, 137Cs, 210Pb) and radiocarbon (14C), supplemented by sedimentological data have been used to determine sediment mixing depths, rates of sediment accumulation, and sediment geochronology. These tools allow for testing of the hypothesis that the fault at Matagorda has been recently reactivated, leading to surficial deformation and alteration of sediment accumulation processes, particularly on the downthrown side of the fault. Correlation of time-equivalent stratigraphic boundaries reveals a maximum total Holocene fault offset of ~1 meter. Determination of fault slip rates from these values reveals a linear trend of displacement as a function of distance along the fault trace with maximum slip occurring to the southwest (seaward) and minimum slip to the northeast. Mean fallout radionuclide-derived sediment accumulation rates for the past ~100 years are relatively uniform across the fault trace. However, rates from the downthrown station nearest to the fault trace display a dramatic increase over the last 30 years. This increase is likely a response to fault-induced increased accommodation space on the

  17. Active faulting in the Inner California Borderlands: new constraints from high-resolution multichannel seismic and multibeam bathymetric data.

    Science.gov (United States)

    Bormann, J. M.; Holmes, J. J.; Sahakian, V. J.; Klotsko, S.; Kent, G.; Driscoll, N. W.; Harding, A. J.; Wesnousky, S. G.

    2014-12-01

    Geodetic data indicate that faults offshore of Southern California accommodate 6-8 mm/yr of dextral Pacific-North American relative plate motion. In the Inner California Borderlands (ICB), modern strike-slip deformation is overprinted on topography formed during plate boundary reorganization 30-15 Ma. Despite its proximity to urban Southern California, the hazard posed by active faults in the ICB remains poorly understood. We acquired a 4000-line-km regional grid of high-resolution, 2D multichannel seismic (MCS) reflection data and multibeam bathymetry to examine the fault architecture and tectonic evolution of the ICB. We interpret the MCS data using a sequence stratigraphic approach to establish a chronostratigraphy and identify discrete episodes of deformation. We present our results in a regional fault model that distinguishes active deformation from older structures. Significant differences exist between our model of ICB deformation and existing models. Mounting evidence suggests a westward temporal migration of slip between faults in the ICB. In the eastern ICB, slip on the Newport-Inglewood/Rose Canyon fault and the neighboring Coronado Bank fault (CBF) diminishes to the north and appears to decrease over time. Undeformed Late Pliocene sediments overlie the northern extent of the CBF and the breakaway zone of the purported Oceanside Blind Thrust. Therefore, CBF slip rate estimates based on linkage with the Palos Verdes fault to the north are unwarranted. Deformation along the San Mateo, San Onofre, and Carlsbad trends is best explained as localized deformation resulting from geometrical complexities in a dextral strike-slip fault system. In the western ICB, the San Diego Trough fault (SDTF) offsets young sediments between the US/Mexico border and the eastern margin of Avalon Knoll, where the fault is spatially coincident with the San Pedro Basin fault (SPBF). Farther west, the San Clemente fault (SCF) has a strong linear bathymetric expression. The length

  18. Structural appraisal of the Gadag schist belt from gravity investigations

    Indian Academy of Sciences (India)

    : the high density Gadag schist belt is characterized by a gravity high and occurs in two discontinuous segments — the main N-S trending segment, and its thinner NW-SE trending extension, the two separated by a NE-SW trending deep ...

  19. Active fault diagnosis in closed-loop uncertain systems

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    Fault diagnosis of parametric faults in closed-loop uncertain systems by using an auxiliary input vector is considered in this paper, i.e. active fault diagnosis (AFD). The active fault diagnosis is based directly on the socalled fault signature matrix, related to the YJBK (Youla, Jabr, Bongiorno...

  20. Faults and Diagnosis Systems in Power Converters

    DEFF Research Database (Denmark)

    Lee, Kyo-Beum; Choi, Uimin

    2014-01-01

    frequently. Therefore, it is important to monitor the power device and capacitor fault to increase the reliability of power electronics. In this chapter, the diagnosis methods for power device fault will be discussed by dividing into open- and short-circuit faults. Then, the condition monitoring methods...... efforts have been put into making these systems better in terms of reliability in order to achieve high power source availability, reduce the cost of energy and also increase the reliability of overall systems. Among the components used in power converters, a power device and a capacitor fault occurs most...

  1. Soil radon levels across the Amer fault

    Energy Technology Data Exchange (ETDEWEB)

    Font, Ll. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)], E-mail: lluis.font@uab.cat; Baixeras, C.; Moreno, V. [Grup de Fisica de les Radiacions, Edifici Cc, Departament de Fisica, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain); Bach, J. [Unitat de Geodinamica externa, Departament de Geologia, Edifici Cs, Universitat Autonoma de Barcelona, E-08193 Bellaterra (Spain)

    2008-08-15

    Soil radon levels have been measured across the Amer fault, which is located near the volcanic region of La Garrotxa, Spain. Both passive (LR-115, time-integrating) and active (Clipperton II, time-resolved) detectors have been used in a survey in which 27 measurement points were selected in five lines perpendicular to the Amer fault in the village area of Amer. The averaged results show an influence of the distance to the fault on the mean soil radon values. The dynamic results show a very clear seasonal effect on the soil radon levels. The results obtained support the hypothesis that the fault is still active.

  2. Fault tolerant filtering and fault detection for quantum systems driven by fields in single photon states

    Energy Technology Data Exchange (ETDEWEB)

    Gao, Qing, E-mail: qing.gao.chance@gmail.com; Dong, Daoyi, E-mail: daoyidong@gmail.com; Petersen, Ian R., E-mail: i.r.petersen@gmai.com [School of Engineering and Information Technology, University of New South Wales, Canberra, ACT 2600 (Australia); Rabitz, Herschel, E-mail: hrabitz@princeton.edu [Department of Chemistry, Princeton University, Princeton, New Jersey 08544 (United States)

    2016-06-15

    The purpose of this paper is to solve the fault tolerant filtering and fault detection problem for a class of open quantum systems driven by a continuous-mode bosonic input field in single photon states when the systems are subject to stochastic faults. Optimal estimates of both the system observables and the fault process are simultaneously calculated and characterized by a set of coupled recursive quantum stochastic differential equations.

  3. Fault detection and fault-tolerant control for nonlinear systems

    CERN Document Server

    Li, Linlin

    2016-01-01

    Linlin Li addresses the analysis and design issues of observer-based FD and FTC for nonlinear systems. The author analyses the existence conditions for the nonlinear observer-based FD systems to gain a deeper insight into the construction of FD systems. Aided by the T-S fuzzy technique, she recommends different design schemes, among them the L_inf/L_2 type of FD systems. The derived FD and FTC approaches are verified by two benchmark processes. Contents Overview of FD and FTC Technology Configuration of Nonlinear Observer-Based FD Systems Design of L2 nonlinear Observer-Based FD Systems Design of Weighted Fuzzy Observer-Based FD Systems FTC Configurations for Nonlinear Systems< Application to Benchmark Processes Target Groups Researchers and students in the field of engineering with a focus on fault diagnosis and fault-tolerant control fields The Author Dr. Linlin Li completed her dissertation under the supervision of Prof. Steven X. Ding at the Faculty of Engineering, University of Duisburg-Essen, Germany...

  4. Rectifier Fault Diagnosis and Fault Tolerance of a Doubly Fed Brushless Starter Generator

    Directory of Open Access Journals (Sweden)

    Liwei Shi

    2015-01-01

    Full Text Available This paper presents a rectifier fault diagnosis method with wavelet packet analysis to improve the fault tolerant four-phase doubly fed brushless starter generator (DFBLSG system reliability. The system components and fault tolerant principle of the high reliable DFBLSG are given. And the common fault of the rectifier is analyzed. The process of wavelet packet transforms fault detection/identification algorithm is introduced in detail. The fault tolerant performance and output voltage experiments were done to gather the energy characteristics with a voltage sensor. The signal is analyzed with 5-layer wavelet packets, and the energy eigenvalue of each frequency band is obtained. Meanwhile, the energy-eigenvalue tolerance was introduced to improve the diagnostic accuracy. With the wavelet packet fault diagnosis, the fault tolerant four-phase DFBLSG can detect the usual open-circuit fault and operate in the fault tolerant mode if there is a fault. The results indicate that the fault analysis techniques in this paper are accurate and effective.

  5. Fine-scale delineation of the location of and relative ground shaking within the San Andreas Fault zone at San Andreas Lake, San Mateo County, California

    Science.gov (United States)

    Catchings, R.D.; Rymer, M.J.; Goldman, M.R.; Prentice, C.S.; Sickler, R.R.

    2013-01-01

    The San Francisco Public Utilities Commission is seismically retrofitting the water delivery system at San Andreas Lake, San Mateo County, California, where the reservoir intake system crosses the San Andreas Fault (SAF). The near-surface fault location and geometry are important considerations in the retrofit effort. Because the SAF trends through highly distorted Franciscan mélange and beneath much of the reservoir, the exact trace of the 1906 surface rupture is difficult to determine from surface mapping at San Andreas Lake. Based on surface mapping, it also is unclear if there are additional fault splays that extend northeast or southwest of the main surface rupture. To better understand the fault structure at San Andreas Lake, the U.S. Geological Survey acquired a series of seismic imaging profiles across the SAF at San Andreas Lake in 2008, 2009, and 2011, when the lake level was near historical lows and the surface traces of the SAF were exposed for the first time in decades. We used multiple seismic methods to locate the main 1906 rupture zone and fault splays within about 100 meters northeast of the main rupture zone. Our seismic observations are internally consistent, and our seismic indicators of faulting generally correlate with fault locations inferred from surface mapping. We also tested the accuracy of our seismic methods by comparing our seismically located faults with surface ruptures mapped by Schussler (1906) immediately after the April 18, 1906 San Francisco earthquake of approximate magnitude 7.9; our seismically determined fault locations were highly accurate. Near the reservoir intake facility at San Andreas Lake, our seismic data indicate the main 1906 surface rupture zone consists of at least three near-surface fault traces. Movement on multiple fault traces can have appreciable engineering significance because, unlike movement on a single strike-slip fault trace, differential movement on multiple fault traces may exert compressive and

  6. Aseismic Slip Events along the Southern San Andreas Fault System Captured by Radar Interferometry

    Energy Technology Data Exchange (ETDEWEB)

    Vincent, P

    2001-10-01

    A seismic slip is observed along several faults in the Salton Sea and southernmost Landers rupture zone regions using interferometric synthetic aperture radar (InSAR) data spanning different time periods between 1992 and 1997. In the southernmost Landers rupture zone, projecting south from the Pinto Mountain Fault, sharp discontinuities in the interferometric phase are observed along the sub-parallel Burnt Mountain and Eureka Peak Faults beginning three months after the Landers earthquake and is interpreted to be post-Landers after-slip. Abrupt phase offsets are also seen along the two southernmost contiguous 11 km Durmid Hill and North Shore segments of the San Andreas Fault with an abrupt termination of slip near the northern end of the North Shore Segment. A sharp phase offset is seen across 20 km of the 30 km-long Superstition Hills Fault before phase decorrelation in the Imperial Valley along the southern 10 km of the fault prevents coherent imaging by InSAR. A time series of deformation interferograms suggest most of this slip occurred between 1993 and 1995 and none of it occurred between 1992 and 1993. A phase offset is also seen along a 5 km central segment of the Coyote Creek fault that forms a wedge with an adjoining northeast-southwest trending conjugate fault. Most of the slip observed on the southern San Andreas and Superstition Hills Faults occurred between 1993 and 1995--no slip is observed in the 92-93 interferograms. These slip events, especially the Burnt Mountain and Eureka Peak events, are inferred to be related to stress redistribution from the June, 1992 M{sub w} = 7.3 Landers earthquake. Best-fit elastic models of the San Andreas and Superstition Hills slip events suggest source mechanisms with seismic moments over three orders of magnitude larger than a maximum possible summation of seismic moments from all seismicity along each fault segment during the entire 4.8-year time interval spanned by the InSAR data. Aseismic moment releases of this

  7. Multiple faulting events revealed by trench analysis of the seismogenic structure of the 1976 Ms7.1 Luanxian earthquake, Tangshan Region, China

    Science.gov (United States)

    Guo, Hui; Jiang, Wali; Xie, Xinsheng

    2017-10-01

    The Ms7.8 Tangshan earthquake occurred on 28 July 1976 at 03:42 CST. Approximately 15 h later, the Ms7.1 Luanxian earthquake occurred approximately 40 km northeast of the main shock. The two earthquakes formed different surface rupture zones. The surface rupture of the Tangshan earthquake was NNE-trending and more than 47 km long. The surface rupture of the Luanxian earthquake was more than 6 km long and consisted of two sections, forming a protruding arc to the west. The north and south sections were NE- and NW-trending and 2 km and 4 km long, respectively. A trench was excavated in Sanshanyuan Village across the NE-trending rupture of the Luanxian earthquake, at the macroscopic epicenter of the Luanxian earthquake. Analysis of this trench revealed that the surface rupture is connected to the underground active fault. The following major conclusions regarding Late Quaternary fault activity have been reached. (1) The Sanshanyuan trench indicated that its fault planes trend NE30° and dip SE or NW at angles of approximately 69-82°. (2) The fault experienced four faulting events prior to the Luanxian earthquake at 27.98 ka with an average recurrence interval of approximately 7.5 ka. (3) The Ms7.1 Luanxian earthquake resulted from the activity of the Luanxian Western fault and was triggered by the Ms7.8 Tangshan earthquake. The seismogenic faults of the 1976 Ms7.1 Luanxian earthquake and the 1976 Ms7.8 Tangshan earthquake are not the same fault. This example of an M7 earthquake triggered by a nearly M8 earthquake after more than 10 h on a nearby fault is a worthy topic of research for the future prediction of strong earthquakes.

  8. Large seismic faults in the Hellenic arc

    Directory of Open Access Journals (Sweden)

    B. S. Papazachos

    1996-06-01

    Full Text Available Using information concerning reliable fault plane solutions, spatial distribution of strong earthquakes (Ms³ 6.0 as well as sea bottom and coastal topography, properties of the seismic faults (orientation, dimension, type of faulting were determined in seven shallow (h < 40 km seismogenic regions along the convex part of thc Hellenic arc (Hellenic trench and in four seismogenic regions of intermediate depth earthquakes (h = 40-100 km along the concave part of this arc. Except for the northwesternmost part of the Hellenic trench, where the strike-slip Cephalonia transform fault dominates, all other faults along this trench are low angle thrust faults. III thc western part of the trench (Zante-west Crete faults strike NW-SE and dip NE, while in its eastern part (east Crete-Rhodos faults strike WNW-ESE and dip NNE. Such system of faulting can be attributed to an overthrust of the Aegean lithosphere on the eastern Mediterranean lithosphere. The longest of these faults (L = 300 km is that which produced the largest known shallow earthquake in the Mediterranean area (21 July 365, Ms = 8.3 which is located near the southwestern coast of Crete. The second longest such fault (L = l 70 km is that which produced a large earthquake (December 1303, Ms = 8.0 in the easternmost part of the trench (east of Rhodos island. Both earthquakes were associated with gigantic tsunamis which caused extensive damage in the coast of many Eastern Mediterranean countries. Seismic faults of the intermediate depth earthquakes in the shallow part of the Benioff zone (h = 40- 100 km are of strike-slip type, with a thrust component. The orientations of these faults vary along the concave part of the arc in accordance with a subduction of remnants of all old lithospheric slab from the convex side (Mediterranean to the concave side (Aegean of thc Hellenic arc. The longest of these faults (L = 220 km is that which produced the largest known intermediate depth earthquake in the

  9. Late Holocene Paleoseismic Timing and Slip History Along the Missyaf Segment of the Dead Sea Fault in Syria

    Science.gov (United States)

    Meghraoui, M.; Gomez, F.; Sbeinati, R.; Van der Woerd, J.; Mouty, M.; Hijazi, F.; Darkal, A.; Darawcheh, R.; Radwan, Y.; Al-Najjar, H.; Layous, I.; Al-Ghazzi, R.; Barazangi, M.

    2001-12-01

    We investigate the timing of Holocene earthquakes and related slip rate along the main segment of the Dead Sea fault south of the Ghab pull-apart basin in western Syria. The 60-70 km long Missyaf segment consists of a single fault branch of the north-south trending left-lateral fault at the plate boundary between Africa and Arabia. The late Quaternary tectonic activity along the fault is characterized by (1) deflected streams with consistent left-lateral displacements of different sizes (50 to 300 m), and (2) evidence of large shutter-ridge structures and small pull-apart basins. Microtopographic surveys and trenching across the fault at two sites document the size and timing of paleoseismic events and the related faulting behavior. Near El Harif village, the fault cut across a Roman aqueduct (younger than 22 AD) and induces 10.5 ±0.1 m of left-lateral displacement. Nearby trench-excavations and test pits exhibit the fault with the shear zone affecting a succession of young alluvial deposits of a terrace meander. Radiocarbon dating of the faulting events with vertical displacements reveal the occurrence of a large seismic event prior to 408-380 BC, a penultimate event between 22 - 979 AD and the most recent event between 979 - 1255 AD. The two most recent events being most likely responsible for the Roman aqueduct total displacement, it implies an average coseismic left-lateral movement of 5 m and a slip rate of about 5 mm/yr. The correlation with the historical seismicity catalogue suggests that the most recent faulting event may correspond to the well documented large earthquake of 1170 AD.

  10. Late Holocene Paleoseismic Timing and Slip Rate Along The Missyaf Segment of The Dead Sea Fault In Syria

    Science.gov (United States)

    Meghraoui, M.; Gomez, F.; Sbeinati, R.; van der Woerd, J.; Mouty, M.; Darkal, A.; Darawcheh, R.; Radwan, Y.; Al-Ghazzi, R.; Barazangi, M.

    We investigate the timing of Holocene earthquakes and related slip rate along the main segment of the Dead Sea fault south of the Ghab pull-apart basin in western Syria. The 60-70 km long Missyaf segment consists of a single fault branch of the north-south trending left-lateral fault at the plate boundary between Africa and Arabia. The late Quaternary tectonic activity along the fault is characterized by (1) deflected streams with consistent left-lateral displacements of different sizes (50 to 300 m), and (2) ev- idence of large shutter-ridge structures and small pull-apart basins. Microtopographic surveys and trenching across the fault at two sites document the size and timing of paleoseismic events and the related faulting behaviour. Near El Harif village, the fault cut across a Roman aqueduct (younger than 22 AD) and induces 13.6 s0.1 m of left-´ lateral displacement. Nearby trench-excavations and test pits exhibit the fault with the shear zone affecting a succession of young alluvial deposits of a terrace meander. First radiocarbon dating of the faulting events with vertical displacements reveal the occur- rence of a large seismic event prior to 348 BC - 810 BC, a penultimate event between 650 - 1152 AD and the most recent event between 979 - 1255 AD. The two most re- cent events being most likely responsible for the Roman aqueduct total displacement, it implies a coseismic left-lateral movement of 6.8 m per event at this location and a slip rate of about 6 - 7 mm/yr for the last 2000 years. The correlation with the histor- ical seismicity catalogue suggests that the most recent faulting event may correspond to the well documented large earthquake of 1170 AD for which we estimate Mw = 7.3 - 7.5.

  11. Microseismicity derived fault-planes and their relationship to focal mechanism, stress inversion, and geologic data

    Science.gov (United States)

    Urbancic, Theodore I.; Trifu, Cezar-Ioan; Young, R. Paul

    1993-11-01

    General stress and faulting trends have been retrieved through the analysis of mining induced microseismic events (M less than 0) at two sites, related to an m(sub N) 2.6 rockburst, and an excavation at depth. A comparison of results obtained through principal component analysis (PCA) of seismicity, focal mechanism, and stress inversion, with in-situ measurements of stress and structural mapping data, show that: under stable stress conditions, the P, B, T, and stress inversion axes are consistent with in-situ measurements of stresses; stress inversion and PCA fault-planes lie within 10 to 20 deg of the most significant mapped features at the sites; and the PCA technique provides a robust approach for the determination of fault-planes.

  12. Distributed fault rupture in the Yuha Desert, California, associated with the El Mayor-Cucapah earthquake, and the contribution of InSAR imagery to its documentation

    Science.gov (United States)

    Treiman, J. A.; Kendrick, K. J.; Rymer, M. J.; Fielding, E. J.

    2010-12-01

    The Mw7.2 April 4, 2010 El Mayor-Cucapah earthquake and its aftershocks caused primary and secondary rupture on a broad array of more than two dozen faults in the Yuha Desert, just north of the United States-Mexico border. Field mapping documented maximum displacements of 4-6 cm on branches of the northwest-trending Laguna Salada Fault and on the newly identified and named, northeast-trending Yuha Fault. Lesser displacements, including left-lateral, right-lateral and/or extensional components were mapped on at least twenty other faults, a majority of which are newly identified. Minor triggered slip (~1 cm) was also found on the southeastern-most Elsinore Fault, likely in response to the June aftershock sequence. Although the principal faults were readily identified and mapped in the field, many of the faults with lower coseismic displacement might not have been mapped had we not had interferometric synthetic aperture radar (InSAR) imagery to alert us to their presence. InSAR images were from data derived from the high resolution airborne NASA/JPL UAVSAR instrument. Fault displacements were discernable from both the primary rupture and the aftershock sequence. Faults with surface displacements as small as a couple of millimeters or less were located and mapped. Several InSAR lineaments are interpreted as faults which had more distributed displacement that was not expressed as brittle surface rupture. InSAR imagery spanning the appropriate time intervals proved invaluable to obtaining a more complete picture of faulting in the Yuha Desert.

  13. Raman spectra of carbonaceous materials in a fault zone in the Longmenshan thrust belt, China; comparisons with those of sedimentary and metamorphic rocks

    Science.gov (United States)

    Kouketsu, Yui; Shimizu, Ichiko; Wang, Yu; Yao, Lu; Ma, Shengli; Shimamoto, Toshihiko

    2017-03-01

    We analyzed micro-Raman spectra of carbonaceous materials (CM) in natural and experimentally deformed fault rocks from Longmenshan fault zone that caused the 2008 Wenchuan earthquake, to characterize degree of disordering of CM in a fault zone. Raman spectral parameters for 12 samples from a fault zone in Shenxigou, Sichuan, China, all show low-grade structures with no graphite. Low crystallinity and δ13C values (-24‰ to -25‰) suggest that CM in fault zone originated from host rocks (Late Triassic Xujiahe Formation). Full width at half maximum values of main spectral bands (D1 and D2), and relative intensities of two subbands (D3 and D4) of CM were variable with sample locations. However, Raman parameters of measured fault rocks fall on established trends of graphitization in sedimentary and metamorphic rocks. An empirical geothermometer gives temperatures of 160-230 °C for fault rocks in Shenxigou, and these temperatures were lower for highly sheared gouge than those for less deformed fault breccia at inner parts of the fault zone. The lower temperature and less crystallinity of CM in gouge might have been caused by the mechanical destruction of CM by severe shearing deformation, or may be due to mixing of host rocks on the footwall. CM in gouge deformed in high-velocity experiments exhibits slight changes towards graphitization characterized by reduction of D3 and D4 intensities. Thus low crystallinity of CM in natural gouge cannot be explained by our experimental results. Graphite formation during seismic fault motion is extremely local or did not occur in the study area, and the CM crystallinity from shallow to deep fault zones may be predicted as a first approximation from the graphitization trend in sedimentary and metamorphic rocks. If that case, graphite may lower the friction of shear zones at temperatures above 300 °C, deeper than the lower part of seismogenic zone.

  14. Review of fault diagnosis and fault-tolerant control for modular multilevel converter of HVDC

    DEFF Research Database (Denmark)

    Liu, Hui; Loh, Poh Chiang; Blaabjerg, Frede

    2013-01-01

    , several typical topologies of MMC-HVDC systems are presented. Then fault types such as capacitor voltage unbalance, unbalance between upper and lower arm voltage are analyzed and the corresponding fault detection and diagnosis approaches are explained. In addition, more attention is dedicated to control......This review focuses on faults in Modular Multilevel Converter (MMC) for use in high voltage direct current (HVDC) systems by analyzing the vulnerable spots and failure mechanism from device to system and illustrating the control & protection methods under failure condition. At the beginning...... strategies, when running in MMC faults or grid faults. This paper ends up with a discussion of other opportunities for future development....

  15. Mesoscopic Structural Observations of Cores from the Chelungpu Fault System, Taiwan Chelungpu-Fault Drilling Project Hole-A, Taiwan

    Directory of Open Access Journals (Sweden)

    Hiroki Sone

    2007-01-01

    Full Text Available Structural characteristics of fault rocks distributed within major fault zones provide basic information in understanding the physical aspects of faulting. Mesoscopic structural observations of the drilled cores from Taiwan Chelungpu-fault Drilling Project Hole-A are reported in this article to describe and reveal the distribution of fault rocks within the Chelungpu Fault System. The Chelungpu Fault System in Hole-A was encountered at a depth of between 1050 - 1250 m where deformation structures increased. Three major fault zone structures were found at approximate depths of 1111, 1153, and 1221 m. The presence of wide fault rock regions were mostly concentrated in these 3 fault zones. The fault zone at 1111 m mainly consists of a nearly brecciated fracture zone and a clayey fault gouge zone of about 1.05 m in thickness. Fault rocks from the fault zone at 1153 m are characterized by the presence of sand grains in the matrix content, consisting of a 1.1-m thick fault breccia zone and a 0.35-m thick fault gouge zone. The fault zone at 1221 m consists of fault breccia and fault gouge of 1.15 m in total thickness. These are relatively harder and darker in color than the previous 2 fault zones. Each of the 3 fault zones contains a few layers of dark colored rocks of approximately 5 - 80 mm in thickness within the fault breccia and fault gouge zones. These dark colored rocks were found distinctively within the fault rocks. However, there relation to the process of faulting is not clearly understood and shall be discussed in detail with the aid of microscopic observations.

  16. Fault permeability models for geothermal doublet designs

    NARCIS (Netherlands)

    Heege, J.H. ter

    2016-01-01

    The occurrence and properties of natural faults and fractures in geothermal reservoirs are key in determining reservoir flow properties, and thereby the performance of geothermal doublets placed in fractured reservoirs or in the vicinity of fault zones. In this paper, an analytical model is

  17. Training for Skill in Fault Diagnosis

    Science.gov (United States)

    Turner, J. D.

    1974-01-01

    The Knitting, Lace and Net Industry Training Board has developed a training innovation called fault diagnosis training. The entire training process concentrates on teaching based on the experiences of troubleshooters or any other employees whose main tasks involve fault diagnosis and rectification. (Author/DS)

  18. Measurement selection for parametric IC fault diagnosis

    Science.gov (United States)

    Wu, A.; Meador, J.

    1991-01-01

    Experimental results obtained with the use of measurement reduction for statistical IC fault diagnosis are described. The reduction method used involves data pre-processing in a fashion consistent with a specific definition of parametric faults. The effects of this preprocessing are examined.

  19. Fault detection based on microseismic events

    Science.gov (United States)

    Yin, Chen

    2017-09-01

    In unconventional reservoirs, small faults allow the flow of oil and gas as well as act as obstacles to exploration; for, (1) fracturing facilitates fluid migration, (2) reservoir flooding, and (3) triggering of small earthquakes. These small faults are not generally detected because of the low seismic resolution. However, such small faults are very active and release sufficient energy to initiate a large number of microseismic events (MEs) during hydraulic fracturing. In this study, we identified microfractures (MF) from hydraulic fracturing and natural small faults based on microseismicity characteristics, such as the time-space distribution, source mechanism, magnitude, amplitude, and frequency. First, I identified the mechanism of small faults and MF by reservoir stress analysis and calibrated the ME based on the microseismic magnitude. The dynamic characteristics (frequency and amplitude) of MEs triggered by natural faults and MF were analyzed; moreover, the geometry and activity types of natural fault and MF were grouped according to the source mechanism. Finally, the differences among time-space distribution, magnitude, source mechanism, amplitude, and frequency were used to differentiate natural faults and manmade fractures.

  20. Diagnostics Tools Identify Faults Prior to Failure

    Science.gov (United States)

    2013-01-01

    Through the SBIR program, Rochester, New York-based Impact Technologies LLC collaborated with Ames Research Center to commercialize the Center s Hybrid Diagnostic Engine, or HyDE, software. The fault detecting program is now incorporated into a software suite that identifies potential faults early in the design phase of systems ranging from printers to vehicles and robots, saving time and money.

  1. Fault Detection for a Diesel Engine Actuator

    DEFF Research Database (Denmark)

    Blanke, M.; Bøgh, S.A.; Jørgensen, R.B.

    1995-01-01

    An electro-mechanical position servo is introduced as a benchmark for mode-based Fault Detection and Identification (FDI).......An electro-mechanical position servo is introduced as a benchmark for mode-based Fault Detection and Identification (FDI)....

  2. The Curiosity Mars Rover's Fault Protection Engine

    Science.gov (United States)

    Benowitz, Ed

    2014-01-01

    The Curiosity Rover, currently operating on Mars, contains flight software onboard to autonomously handle aspects of system fault protection. Over 1000 monitors and 39 responses are present in the flight software. Orchestrating these behaviors is the flight software's fault protection engine. In this paper, we discuss the engine's design, responsibilities, and present some lessons learned for future missions.

  3. Dynamic modeling of gearbox faults: A review

    Science.gov (United States)

    Liang, Xihui; Zuo, Ming J.; Feng, Zhipeng

    2018-01-01

    Gearbox is widely used in industrial and military applications. Due to high service load, harsh operating conditions or inevitable fatigue, faults may develop in gears. If the gear faults cannot be detected early, the health will continue to degrade, perhaps causing heavy economic loss or even catastrophe. Early fault detection and diagnosis allows properly scheduled shutdowns to prevent catastrophic failure and consequently result in a safer operation and higher cost reduction. Recently, many studies have been done to develop gearbox dynamic models with faults aiming to understand gear fault generation mechanism and then develop effective fault detection and diagnosis methods. This paper focuses on dynamics based gearbox fault modeling, detection and diagnosis. State-of-art and challenges are reviewed and discussed. This detailed literature review limits research results to the following fundamental yet key aspects: gear mesh stiffness evaluation, gearbox damage modeling and fault diagnosis techniques, gearbox transmission path modeling and method validation. In the end, a summary and some research prospects are presented.

  4. A setup for active fault diagnosis

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2006-01-01

    A setup for active fault diagnosis (AFD) of parametric faults in dynamic systems is formulated in this paper. It is shown that it is possible to use the same setup for both open loop systems, closed loop systems based on a nominal feedback controller as well as for closed loop systems based on a ...

  5. Fault diagnosis based on controller modification

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik

    2015-01-01

    Detection and isolation of parametric faults in closed-loop systems will be considered in this paper. A major problem is that a feedback controller will in general reduce the effects from variations in the systems including parametric faults on the controlled output from the system. Parametric fa...

  6. Fault Tolerant Control: A Simultaneous Stabilization Result

    DEFF Research Database (Denmark)

    Stoustrup, Jakob; Blondel, V.D.

    2004-01-01

    is detectable from each output and that it is stabilizable. The proof of this result is constructive, and a worked example shows how to design a fault tolerant compensator for a simple, yet challeging system. A family of second order systems is described that requires fault tolerant compensators of arbitrarily...

  7. Norm based design of fault detectors

    DEFF Research Database (Denmark)

    Rank, Mike Lind; Niemann, Hans Henrik

    1999-01-01

    The design of fault detectors for fault detection and isolation (FDI) in dynamic systems is considered in this paper from a norm based point of view. An analysis of norm based threshold selection is given based on different formulations of FDI problems. Both the nominal FDI problem as well...

  8. Integration of control and fault detection

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Stoustrup, J.

    The integrated design of control and fault detection is studied. The result of the analysis is that it is possible to separate the design of the controller and the filter for fault detection in the case where the nominal model can be assumed to be fairly accurate. In the uncertain case, however...

  9. Improved DFIG Capability during Asymmetrical Grid Faults

    DEFF Research Database (Denmark)

    Zhou, Dao; Blaabjerg, Frede

    2015-01-01

    the natural component of the Doubly-Fed Induction Generator (DFIG) stator flux during the fault period, their effects on the rotor voltage can be investigated. It is concluded that the phase-to-phase fault has the worst scenario due to its highest introduction of the negative stator flux. Afterwards...

  10. A Fault-tolerant Development Methodology for Industrial Control Systems

    DEFF Research Database (Denmark)

    Izadi-Zamanabadi, Roozbeh; Thybo, C.

    2004-01-01

    Developing advanced detection schemes is not the lone factor for obtaining a successful fault diagnosis performance. Acquiring significant achievements in applying Fault-tolerance in industrial development requires that fault diagnosis and recovery schemes are developed in a consistent and logica......Developing advanced detection schemes is not the lone factor for obtaining a successful fault diagnosis performance. Acquiring significant achievements in applying Fault-tolerance in industrial development requires that fault diagnosis and recovery schemes are developed in a consistent...

  11. Characterization of the Highway 95 Fault in lower Fortymile Wash using electrical and electromagnetic methods, Nye County, Nevada

    Science.gov (United States)

    Macy, Jamie P.; Kryder, Levi; Walker, Jamieson

    2012-01-01

    The Highway 95 Fault is a buried, roughly east-west trending growth fault at the southern extent of Yucca Mountain and Southwestern Nevada Volcanic Field. Little is known about the role of this fault in the movement of groundwater from the Yucca Mountain area to downgradient groundwater users in Amargosa Valley. The U.S. Geological Survey (USGS) Arizona Water Science Center (AZWSC), in cooperation with the Nye County Nuclear Waste Repository Project Office (NWRPO), has used direct current (DC) resistivity, controlled-source audio magnetotelluric (CSAMT), and transient electromagnetics (TEM) to better understand the fault. These geophysical surveys were designed to look at structures buried beneath the alluvium, following a transect of wells for lithologic control. Results indicate that the fault is just north of U.S. Highway 95, between wells NC-EWDP-2DB and -19D, and south of Highway 95, east of well NC-EWDP-2DB. The Highway 95 Fault may inhibit shallow groundwater movement by uplifting deep Paleozoic carbonates, effectively reducing the overlying alluvial aquifer thickness and restricting the movement of water. Upward vertical hydraulic gradients in wells proximal to the fault indicate that upward movement is occurring from deeper, higher-pressure aquifers.

  12. Fault-tolerant Control of Unmanned Underwater Vehicles with Continuous Faults: Simulations and Experiments

    Directory of Open Access Journals (Sweden)

    Qian Liu

    2009-12-01

    Full Text Available A novel thruster fault diagnosis and accommodation method for open-frame underwater vehicles is presented in the paper. The proposed system consists of two units: a fault diagnosis unit and a fault accommodation unit. In the fault diagnosis unit an ICMAC (Improved Credit Assignment Cerebellar Model Articulation Controllers neural network information fusion model is used to realize the fault identification of the thruster. The fault accommodation unit is based on direct calculations of moment and the result of fault identification is used to find the solution of the control allocation problem. The approach resolves the continuous faulty identification of the UV. Results from the experiment are provided to illustrate the performance of the proposed method in uncertain continuous faulty situation.

  13. A New Fault-tolerant Switched Reluctance Motor with reliable fault detection capability

    DEFF Research Database (Denmark)

    Lu, Kaiyuan

    2014-01-01

    Fault-Tolerant Switched Reluctance (FTSR) motor is proposed in this paper. A unique feature of this special design is that it allows use of the unexcited phase coils as search coils for fault detection. Therefore this new motor has all the advantages of using search coils for reliable fault detection......For reliable fault detection, often, search coils are used in many fault-tolerant drives. The search coils occupy extra slot space. They are normally open-circuited and are not used for torque production. This degrades the motor performance, increases the cost and manufacture complexity. A new...... while no extra search coil is actually needed. The motor itself is able to continue to work under any faulted conditions, providing fault-tolerant features. The working principle, performance evaluation of this motor will be demonstrated in this paper and Finite Element Analysis results are provided....

  14. Solving fault diagnosis problems linear synthesis techniques

    CERN Document Server

    Varga, Andreas

    2017-01-01

    This book addresses fault detection and isolation topics from a computational perspective. Unlike most existing literature, it bridges the gap between the existing well-developed theoretical results and the realm of reliable computational synthesis procedures. The model-based approach to fault detection and diagnosis has been the subject of ongoing research for the past few decades. While the theoretical aspects of fault diagnosis on the basis of linear models are well understood, most of the computational methods proposed for the synthesis of fault detection and isolation filters are not satisfactory from a numerical standpoint. Several features make this book unique in the fault detection literature: Solution of standard synthesis problems in the most general setting, for both continuous- and discrete-time systems, regardless of whether they are proper or not; consequently, the proposed synthesis procedures can solve a specific problem whenever a solution exists Emphasis on the best numerical algorithms to ...

  15. Aluminium Process Fault Detection and Diagnosis

    Directory of Open Access Journals (Sweden)

    Nazatul Aini Abd Majid

    2015-01-01

    Full Text Available The challenges in developing a fault detection and diagnosis system for industrial applications are not inconsiderable, particularly complex materials processing operations such as aluminium smelting. However, the organizing into groups of the various fault detection and diagnostic systems of the aluminium smelting process can assist in the identification of the key elements of an effective monitoring system. This paper reviews aluminium process fault detection and diagnosis systems and proposes a taxonomy that includes four key elements: knowledge, techniques, usage frequency, and results presentation. Each element is explained together with examples of existing systems. A fault detection and diagnosis system developed based on the proposed taxonomy is demonstrated using aluminium smelting data. A potential new strategy for improving fault diagnosis is discussed based on the ability of the new technology, augmented reality, to augment operators’ view of an industrial plant, so that it permits a situation-oriented action in real working environments.

  16. Fault Reconnaissance Agent for Sensor Networks

    Directory of Open Access Journals (Sweden)

    Elhadi M. Shakshuki

    2010-01-01

    Full Text Available One of the key prerequisite for a scalable, effective and efficient sensor network is the utilization of low-cost, low-overhead and high-resilient fault-inference techniques. To this end, we propose an intelligent agent system with a problem solving capability to address the issue of fault inference in sensor network environments. The intelligent agent system is designed and implemented at base-station side. The core of the agent system – problem solver – implements a fault-detection inference engine which harnesses Expectation Maximization (EM algorithm to estimate fault probabilities of sensor nodes. To validate the correctness and effectiveness of the intelligent agent system, a set of experiments in a wireless sensor testbed are conducted. The experimental results show that our intelligent agent system is able to precisely estimate the fault probability of sensor nodes.

  17. Quantifying fault recovery in multiprocessor systems

    Science.gov (United States)

    Malek, Miroslaw; Harary, Frank

    1990-01-01

    Various aspects of reliable computing are formalized and quantified with emphasis on efficient fault recovery. The mathematical model which proves to be most appropriate is provided by the theory of graphs. New measures for fault recovery are developed and the value of elements of the fault recovery vector are observed to depend not only on the computation graph H and the architecture graph G, but also on the specific location of a fault. In the examples, a hypercube is chosen as a representative of parallel computer architecture, and a pipeline as a typical configuration for program execution. Dependability qualities of such a system is defined with or without a fault. These qualities are determined by the resiliency triple defined by three parameters: multiplicity, robustness, and configurability. Parameters for measuring the recovery effectiveness are also introduced in terms of distance, time, and the number of new, used, and moved nodes and edges.

  18. Cascadia subduction tremor muted by crustal faults

    Science.gov (United States)

    Wells, Ray; Blakely, Richard J.; Wech, Aaron G.; McCrory, Patricia A.; Michael, Andrew

    2017-01-01

    Deep, episodic slow slip on the Cascadia subduction megathrust of western North America is accompanied by low-frequency tremor in a zone of high fluid pressure between 30 and 40 km depth. Tremor density (tremor epicenters per square kilometer) varies along strike, and lower tremor density statistically correlates with upper plate faults that accommodate northward motion and rotation of forearc blocks. Upper plate earthquakes occur to 35 km depth beneath the faults. We suggest that the faults extend to the overpressured megathrust, where they provide fracture pathways for fluid escape into the upper plate. This locally reduces megathrust fluid pressure and tremor occurrence beneath the faults. Damping of tremor and related slow slip caused by fluid escape could affect fault properties of the megathrust, possibly influencing the behavior of great earthquakes.

  19. Lidar Mapping Documents Post-glacial Faulting West of the High Cascades Axis at Crater Lake National Park, Oregon

    Science.gov (United States)

    Bacon, C. R.; Robinson, J. E.

    2014-12-01

    The Cascades magmatic arc lies mainly within the High Cascades graben system in the state of Oregon. Normal faults of the Klamath graben trend north into Mount Mazama, the volcano whose catastrophic eruption ~7700 cal y BP resulted in collapse of 8x10 km Crater Lake caldera. Geologic mapping of Mount Mazama (Bacon, USGS SIM 2832, 2008) delineated faults of the West Klamath Lake fault zone (WKLFZ) and their northern extensions through Crater Lake National Park west of the caldera. Outcrop patterns implied presence of normal faults farther west but dense conifer forest made discovery of subtle scarps impractical. Closer to the Cascades axis, successively decreasing offsets of mapped Mazama lava flows with decreasing age yielded a long-term vertical slip rate of ~0.3 mm/y on the principal fault segments of the WKLFZ near Crater Lake, where the youngest offset lavas are 35 ka in age. Other workers have found offset lateral moraine crests where Last Glacial Maximum (LGM) valley glaciers crossed the WKLFZ south of Crater Lake. A lidar survey of Crater Lake National Park in 2010 supported by the Oregon Lidar Consortium (Robinson, USGS Data Series 716, 2012) revealed meter-scale, dominantly N-S trending fault scarps with down-to-the-east displacement west of most previously mapped faults at the latitude of Crater Lake, increasing the known width of the fault zone there to as much as 11 km. Fault segments as long as 7-16 km form a semi-continuous system for virtually the entire 32 km N-S extent of lidar coverage. Along the western part of the fault zone, scarp height is as great as ~20 m. Scarp length and height imply that several M>6-7 earthquakes have occurred in late Pleistocene-Holocene time. Field observations show that the ignimbrite of the Mazama climactic eruption banks against or covers scarps. One fault vertically displaces a lateral moraine ~3 m. The moraine contains clasts of ~50 ka andesite and therefore likely dates from the LGM so that the most recent

  20. Bloc tectonic rotations recorded in the Neogene and Quaternary magmatic rocks from Northwestern Algeria: preliminary paleomagnetic results.

    Science.gov (United States)

    El Messaoud Derder, Mohamed; Robion, Philippe; Maouche, Said; Bayou, Boualem; Amenna, Mohamed; Henry, Bernard; Missenard, Yves; Ouabadi, Aziouz; Bestandji, Rafik; Ayache, Mohamed

    2016-04-01

    The seismic activity of the Western Mediterranean area is partly concentrated in northern Africa, particularly in northern Algeria, as it was shown by the strong earthquakes of Zemmouri 21 May 2003 Mw=6.9 and the El Asnam 10 October 1980 Ms= 7.3. This seismicity is due to the convergence between Africa and Eurasia plates since the Oligocene. This convergence involves a tectonic transpression with N-S to NNW-SSE shortening direction, which is expressed by active deformation along the plate boundary. Along the Tellian Atlas (Northern Algeria), active structures define NE-SW trending folds and NE-SW sinistral transpressive faults affecting the intermountain and coastal Neogene to Quaternary sedimentary basins (e.g. Cheliff and Mitidja Plioquaternary intramontaneous basins, …). The NE-SW reverse active faults are coupled with NW-SE to E-W trending strike-slip deep faults. The active deformation in northern Algeria can be explained by a kinematics model of blocks rotation: the transpressive tectonics with NNW-SSE direction of convergence defines NE-SW oriented blocks, which have been subjected to clockwise rotation. In north Algeria, paleomagnetic studies were carried out in the central area, on Neogene sedimentary and magmatic formations (Derder et al, 2009, 2011; 2013). They pointed out tectonic rotation of large blocks, in agreement with the kinematic model. Narrow zones represent important shear zone with strong rotation of smaller blocks (Derder et al., 2013). A new paleomagnetic study was conducted on the recent magmatic rocks outcropping in the Northwestern Algeria, in order to validate this model on a regional scale. The study is still in progress and the preliminary results show presence of systematic clockwise blocks rotation. These results confirm that the Africa-Europe convergence is partly accommodated in northern Africa by blocks rotations. They highlight that rotations are not homogeneous in north Algeria and thus the importance of future works in this

  1. Seismic Interpretation of the Nam Con Son Basin and its Implication for the Tectonic Evolution

    Directory of Open Access Journals (Sweden)

    Nguyen Quang Tuan

    2016-06-01

    Full Text Available DOI:10.17014/ijog.3.2.127-137The Nam Con Son Basin covering an area of circa 110,000 km2 is characterized by complex tectonic settings of the basin which has not fully been understood. Multiple faults allowed favourable migration passageways for hydrocarbons to go in and out of traps. Despite a large amount of newly acquired seismic and well data there is no significant update on the tectonic evolution and history of the basin development. In this study, the vast amount of seismic and well data were integrated and reinterpreted to define the key structural events in the Nam Con Son Basin. The results show that the basin has undergone two extentional phases. The first N - S extensional phase terminated at around 30 M.a. forming E - W trending grabens which are complicated by multiple half grabens filled by Lower Oligocene sediments. These grabens were reactivated during the second NW - SE extension (Middle Miocene, that resulted from the progressive propagation of NE-SW listric fault from the middle part of the grabens to the margins, and the large scale building up of roll-over structure. Further to the SW, the faults of the second extentional phase turn to NNE-SSW and ultimately N - S in the SW edge of the basin. Most of the fault systems were inactive by Upper Miocene except for the N - S fault system which is still active until recent time.

  2. Activation of Fault Structures South of the La Habra Earthquake Rupture As Evidenced By UAVSAR Imaging

    Science.gov (United States)

    Donnellan, A.; Parker, J. W.; Grant Ludwig, L.; Hauksson, E.

    2014-12-01

    The 28 March, 2014 M 5.2 La Habra earthquake occurred on a northeast striking, northwest dipping left-lateral oblique thrust fault at the northeastern margin of the LA Basin, where regional right-lateral shear is accommodated by major northwest trending faults of the Peninsular Ranges, and north-south shortening is accommodated by north-dipping thrust faults and east-west trending folds of the Transverse Ranges. The La Habra mainshock location and focal mechanism is northwest of but sub-parallel to the Puente Hills thrust fault. Relocated seismicity highlights a northeast-trending rupture plane consistent with the magnitude and focal mechanism of the event. NASA's UAVSAR L-Band radar instrument was flown for north and south looking lines before the earthquake on 22 January 2014. The north looking line was reflown three days after the earthquake on 31 March, 2014, and the south looking line was reflown a week later on 4 April 2014. The UAVSAR Repeat Pass Interferogram (RPI) products show deformation consistent with the location of the mainshock beneath the town of La Habra. The results also show considerable aseismic northward horizontal deformation with minor uplift in the West Coyote Hills, south of the relocated seismicity. Inversion of the combined interferograms is consistent with south dipping low-angle (7°) shallow slip that corresponds to bedding plane attitudes and a mapped unconformity. The entire West Coyote Hills show 37 mm of modeled northward slip with an additional 34 mm of modeled slip concentrated near the Coyote Hills Park northeast of the intersection of Rosecrans Avenue and North Gilbert Street. A narrow band of shortening was also observed with UAVSAR, and confirmed with on-the-ground field observations, at the Trojan Way Kink Band, nearly one fault dimension southwest of the main rupture.

  3. Methodology for Designing Fault-Protection Software

    Science.gov (United States)

    Barltrop, Kevin; Levison, Jeffrey; Kan, Edwin

    2006-01-01

    A document describes a methodology for designing fault-protection (FP) software for autonomous spacecraft. The methodology embodies and extends established engineering practices in the technical discipline of Fault Detection, Diagnosis, Mitigation, and Recovery; and has been successfully implemented in the Deep Impact Spacecraft, a NASA Discovery mission. Based on established concepts of Fault Monitors and Responses, this FP methodology extends the notion of Opinion, Symptom, Alarm (aka Fault), and Response with numerous new notions, sub-notions, software constructs, and logic and timing gates. For example, Monitor generates a RawOpinion, which graduates into Opinion, categorized into no-opinion, acceptable, or unacceptable opinion. RaiseSymptom, ForceSymptom, and ClearSymptom govern the establishment and then mapping to an Alarm (aka Fault). Local Response is distinguished from FP System Response. A 1-to-n and n-to- 1 mapping is established among Monitors, Symptoms, and Responses. Responses are categorized by device versus by function. Responses operate in tiers, where the early tiers attempt to resolve the Fault in a localized step-by-step fashion, relegating more system-level response to later tier(s). Recovery actions are gated by epoch recovery timing, enabling strategy, urgency, MaxRetry gate, hardware availability, hazardous versus ordinary fault, and many other priority gates. This methodology is systematic, logical, and uses multiple linked tables, parameter files, and recovery command sequences. The credibility of the FP design is proven via a fault-tree analysis "top-down" approach, and a functional fault-mode-effects-and-analysis via "bottoms-up" approach. Via this process, the mitigation and recovery strategy(s) per Fault Containment Region scope (width versus depth) the FP architecture.

  4. Faulting and groundwater in a desert environment: constraining hydrogeology using time-domain electromagnetic data

    Science.gov (United States)

    Bedrosian, Paul A.; Burgess, Matthew K.; Nishikawa, Tracy

    2013-01-01

    Within the south-western Mojave Desert, the Joshua Basin Water District is considering applying imported water into infiltration ponds in the Joshua Tree groundwater sub-basin in an attempt to artificially recharge the underlying aquifer. Scarce subsurface hydrogeological data are available near the proposed recharge site; therefore, time-domain electromagnetic (TDEM) data were collected and analysed to characterize the subsurface. TDEM soundings were acquired to estimate the depth to water on either side of the Pinto Mountain Fault, a major east-west trending strike-slip fault that transects the proposed recharge site. While TDEM is a standard technique for groundwater investigations, special care must be taken when acquiring and interpreting TDEM data in a twodimensional (2D) faulted environment. A subset of the TDEM data consistent with a layered-earth interpretation was identified through a combination of three-dimensional (3D) forward modelling and diffusion time-distance estimates. Inverse modelling indicates an offset in water table elevation of nearly 40 m across the fault. These findings imply that the fault acts as a low-permeability barrier to groundwater flow in the vicinity of the proposed recharge site. Existing production wells on the south side of the fault, together with a thick unsaturated zone and permeable near-surface deposits, suggest the southern half of the study area is suitable for artificial recharge. These results illustrate the effectiveness of targeted TDEM in support of hydrological studies in a heavily faulted desert environment where data are scarce and the cost of obtaining these data by conventional drilling techniques is prohibitive.

  5. Geodetic Network Design and Optimization on the Active Tuzla Fault (Izmir, Turkey for Disaster Management

    Directory of Open Access Journals (Sweden)

    Haluk Ozener

    2008-08-01

    Full Text Available Both seismological and geodynamic research emphasize that the Aegean Region, which comprises the Hellenic Arc, the Greek mainland and Western Turkey is the most seismically active region in Western Eurasia. The convergence of the Eurasian and African lithospheric plates forces a westward motion on the Anatolian plate relative to the Eurasian one. Western Anatolia is a valuable laboratory for Earth Science research because of its complex geological structure. Izmir is a large city in Turkey with a population of about 2.5 million that is at great risk from big earthquakes. Unfortunately, previous geodynamics studies performed in this region are insufficient or cover large areas instead of specific faults. The Tuzla Fault, which is aligned trending NE–SW between the town of Menderes and Cape Doganbey, is an important fault in terms of seismic activity and its proximity to the city of Izmir. This study aims to perform a large scale investigation focusing on the Tuzla Fault and its vicinity for better understanding of the region's tectonics. In order to investigate the crustal deformation along the Tuzla Fault and Izmir Bay, a geodetic network has been designed and optimizations were performed. This paper suggests a schedule for a crustal deformation monitoring study which includes research on the tectonics of the region, network design and optimization strategies, theory and practice of processing. The study is also open for extension in terms of monitoring different types of fault characteristics. A one-dimensional fault model with two parameters – standard strike-slip model of dislocation theory in an elastic half-space – is formulated in order to determine which sites are suitable for the campaign based geodetic GPS measurements. Geodetic results can be used as a background data for disaster management systems.

  6. Magnetic fabric of brittle fault rocks

    Science.gov (United States)

    Pomella, Hannah

    2014-05-01

    The anisotropy of magnetic susceptibility (AMS) has been recognized as a highly sensitive indicator of rock fabric and is widely employed in the field of structural geology. Brittle faults are often characterized by fault breccia and gouge, fault rocks with clast-in-matrix textures. A noteworthy property of both gouge and breccia is the often observed presence of a fabric that is defined by the preferred orientation of clasts and grains in the matrix. In the very fine-grained gouge and in the matrix of the breccia the fabric is not visible in the field or in thin sections but can probably be detected by AMS analyses. For the present study different kinds of brittle fault rocks have been sampled on two faults with known tectonic settings, in order to allow for a structural interpretation of the measured AMS signal. The measurements were carried out with an AGICO MFK1-FA Kappabridge and a CS4 furnace apparatus at the Institute of Geology, University of Innsbruck. Fault gouge was sampled on the Naif fault located in the Southern Alps, E of Meran, South Tyrol, Italy. Along this fault the Permian Granodiorite overthrusts the Southalpine basement and its Permomesozoic cover. The Neoalpine thrust fault is characterised by a wide cataclastic zone and an up to 1 m thick fault gouge. The gouge was sampled using paleomagnetic sample boxes. Heating experiments indicate that the magnetic fabric is dominated by paramagnetic minerals (>95%). The samples provide a magnetic susceptibility in the range of +10*E-5 [SI]. The K-min axis of the magnetic ellipsoid corresponds approximately to the pol of the fault plane measured in the field. However the whole magnetic ellipsoid shows a variation in the inclination compared to the structural data. Fine-grained ultracataclasites were sampled on the Assergi fault, located in the Abruzzi Apennines, NE of L'Aquila, Italy. This normal fault was active in historical time and crosscuts limestones as well as talus deposits. An up to 20 cm thick

  7. The active Nea Anchialos Fault System (Central Greece: comparison of geological, morphotectonic, archaeological and seismological data

    Directory of Open Access Journals (Sweden)

    R. Caputo

    1996-06-01

    Full Text Available The Nea Anchialos Fault System has been studied integrating geological, morphological, structural, archaeological and seismic data. This fault system forms the northern boundary of the Almyros Basin which is one of the Neogene-Quaternary tectonic basins of Thessaly. Specific structural and geomorphological mapping were carried out and fault-slip data analysis allowed the Late Quaternary palaeo-stress field to be estimated. The resulting N-S trending purely extensional regime is consistent with the direction of the T-axes computed from the focal mechanisms of the summer 1980, Volos seismic sequence and the April 30, 1985 Almyros earthquake. A minor set of structural data indicates a WNW-ESE extension which has been interpreted as due to a local and second order stress field occurring during the N-S regional extension. Furthermore, new archaeological data, discovered by the author, have improved morphology and tectonics of the area also allowing a tentative estimate of the historic (III-IV century AD. to Present fault slip rate. Several topographic profiles across the major E- W topographic escarpment as well as along the streams, have emphasised scarps and knick-points, further supporting the occurrence of very recent morphogenic activity. In the last section, the structural, morphological and archaeological data are compared with the already existing seismological data and their integrated analysis indicates that the Nea Anchialos Fault System has been active since Lower(?-Middle Pleistocene.

  8. Tectonic geomorphology of large normal faults bounding the Cuzco rift basin within the southern Peruvian Andes

    Science.gov (United States)

    Byers, C.; Mann, P.

    2015-12-01

    The Cuzco basin forms a 80-wide, relatively flat valley within the High Andes of southern Peru. This larger basin includes the regional capital of Cuzco and the Urubamba Valley, or "Sacred Valley of the Incas" favored by the Incas for its mild climate and broader expanses of less rugged and arable land. The valley is bounded on its northern edge by a 100-km-long and 10-km-wide zone of down-to-the-south systems of normal faults that separate the lower area of the down-dropped plateau of central Peru and the more elevated area of the Eastern Cordillera foldbelt that overthrusts the Amazon lowlands to the east. Previous workers have shown that the normal faults are dipslip with up to 600 m of measured displacements, reflect north-south extension, and have Holocene displacments with some linked to destructive, historical earthquakes. We have constructed topographic and structural cross sections across the entire area to demonstrate the normal fault on a the plateau peneplain. The footwall of the Eastern Cordillera, capped by snowcapped peaks in excess of 6 km, tilts a peneplain surface northward while the hanging wall of the Cuzco basin is radially arched. Erosion is accelerated along the trend of the normal fault zone. As the normal fault zone changes its strike from east-west to more more northwest-southeast, normal displacement decreases and is replaced by a left-lateral strike-slip component.

  9. An arc fault detection system

    Energy Technology Data Exchange (ETDEWEB)

    Jha, Kamal N.

    1997-12-01

    An arc fault detection system for use on ungrounded or high-resistance-grounded power distribution systems is provided which can be retrofitted outside electrical switchboard circuits having limited space constraints. The system includes a differential current relay that senses a current differential between current flowing from secondary windings located in a current transformer coupled to a power supply side of a switchboard, and a total current induced in secondary windings coupled to a load side of the switchboard. When such a current differential is experienced, a current travels through a operating coil of the differential current relay, which in turn, opens an upstream circuit breaker located between the switchboard and a power supply to remove the supply of power to the switchboard.

  10. Experimental Investigation of Thrust Fault Rupture Mechanics

    Science.gov (United States)

    Gabuchian, Vahe

    Thrust fault earthquakes are investigated in the laboratory by generating dynamic shear ruptures along pre-existing frictional faults in rectangular plates. A considerable body of evidence suggests that dip-slip earthquakes exhibit enhanced ground motions in the acute hanging wall wedge as an outcome of broken symmetry between hanging and foot wall plates with respect to the earth surface. To understand the physical behavior of thrust fault earthquakes, particularly ground motions near the earth surface, ruptures are nucleated in analog laboratory experiments and guided up-dip towards the simulated earth surface. The transient slip event and emitted radiation mimic a natural thrust earthquake. High-speed photography and laser velocimeters capture the rupture evolution, outputting a full-field view of photo-elastic fringe contours proportional to maximum shearing stresses as well as continuous ground motion velocity records at discrete points on the specimen. Earth surface-normal measurements validate selective enhancement of hanging wall ground motions for both sub-Rayleigh and super-shear rupture speeds. The earth surface breaks upon rupture tip arrival to the fault trace, generating prominent Rayleigh surface waves. A rupture wave is sensed in the hanging wall but is, however, absent from the foot wall plate: a direct consequence of proximity from fault to seismometer. Signatures in earth surface-normal records attenuate with distance from the fault trace. Super-shear earthquakes feature greater amplitudes of ground shaking profiles, as expected from the increased tectonic pressures required to induce super-shear transition. Paired stations measure fault parallel and fault normal ground motions at various depths, which yield slip and opening rates through direct subtraction of like components. Peak fault slip and opening rates associated with the rupture tip increase with proximity to the fault trace, a result of selective ground motion amplification in the

  11. Drilling the North Anatolian Fault

    Directory of Open Access Journals (Sweden)

    Mustafa Aktar

    2008-07-01

    Full Text Available An international workshop entitled “GONAF: A deep Geophysical Observatory at the North Anatolian Fault”, was held 23–27 April 2007 in Istanbul, Turkey. The aim of this workshop was to refine plans for a deep drilling project at the North Anatolian Fault Zone (NAFZ in northwestern Turkey. The current drilling target is located in the Marmara Sea offshore the megacity of Istanbul in the direct vicinity of the main branch of the North Anatolian Fault on the PrinceIslands (Figs. 1 and 2.The NAFZ represents a 1600-km-long plate boundary that slips at an average rate of 20–30 mm·yr-1 (McClusky et al., 2000. It has developed in the framework of the northward moving Arabian plate and the Hellenic subduction zone where the African lithosphere is subducting below the Aegean. Comparison of long-term slip rates with Holocene and GPS-derived slip rates indicate an increasing westwardmovement of the Anatolian plate with respect to stable Eurasia. During the twentieth century, the NAFZ has ruptured over 900 km of its length. A series of large earthquakes starting in 1939 near Erzincan in Eastern Anatolia propagated westward towards the Istanbul-Marmara region in northwestern Turkey that today represents a seismic gap along a ≥100-km-long segment below the Sea of Marmara. This segment did not rupture since 1766 and, if locked, may have accumulated a slip deficit of 4–5 m. It is believed being capable of generating two M≥7.4 earthquakes within the next decades (Hubert-Ferrari et al., 2000; however, it could even rupture in a large single event (Le Pichon et al., 1999.

  12. Geophysical Exploration of Faults, Fissures, and Fractures at Four Sites in Mexicali, Baja California, Mexico

    Science.gov (United States)

    Lázaro-Mancilla, O.; Gonzalez-Fernandez, A.; Contreras-Corvera, A.; Stock, J. M.; Moreno-Ayala, D.; Ramirez-Hernandez, J.; Carreon-Diazconti, C.; Lopez, D. A. L.; Lopez, J. R.

    2014-12-01

    We conducted field geophysical measurements in areas in the City of Mexicali that are associated with geological faults, fissures, and fractures. The study sites are: 1) Instituto Tecnologico de Mexicali 2) The buried trace of the Michoacan de Ocampo fault in the urban zone 3) Rio Nuevo 4) A site reported by Frez (2013) with ground rupture SW of Cerro Prieto At Site 1, seismic reflection profiling used a cable with 24 geophones at 1 m spacing. The source was a 3.6 kg sledge hammer, with 3 impacts per shot point. 347 shot points at 2 m spacing provided 6 fold coverage along a straight line with minimal elevation changes. Sample rate was 2000/s, and record length 1 s; reflections were seen down to 0.3 s TWTT. Processing included: frequency filter, fk filter, predictive deconvolution, geometry, velocity analysis, NMO and stacking. Lateral changes in the seismic section are due to surface modification and/or the presence of faults.At site 2, we measured 222Radon in 36 locations along 17 profiles across the fault, using inherent alpha spectrometry with a Durridge RAD7 detector. Each site was measured at a depth of 60 cm, with 31 five-minute readings in a 3 hour period, interspersed with 10 minute of background purge and 3 five-minute background measurements. In a profile parallel to the fault, 78% of the readings were > 100 pCi/L, confirming the presence of the fault along the swath surveyed. At Site 3 we compiled observations of post-earthquake cracks, conducted reconnaissance, and measured some profiles using 100 MHz GPR. These observations showed that the cracks are associated with ground failure due to earthquake shaking. At Site 4 our new 222Radon gas measurements complemented a pre-existing profile that had high 222Radon values lacking a structural explanation. Related to this we found that this region has two NW-SE trending features: a magnetic anomaly low of 360 nT (Evans, Summer and Castillo, 1972) and a graben reported by the Mexican Geological Survey in 2003

  13. Geological constraints for earthquake faulting studies in the Colfiorito area (central Italy)

    Science.gov (United States)

    Cello, Giuseppe; Deiana, Giovanni; Ferelli, Luca; Marchegiani, Leonardo; Maschio, Laura; Mazzoli, Stefano; Michetti, Alessandro; Serva, Leonello; Tondi, Emanuele; Vittori, Tiziano

    On September 26, 1997, at 00.33 h(GMT), a Mw 5.7 earthquake occurred in the axial zone of theUmbria-Marche Apennines of central Italy, in the Colfiorito basin area. At09.40 h (GMT), a Mw 6.0 earthquake again struck the area withinthe Colfiorito basin, a major intramontane basin filled with Quaternarycontinental deposits. The two main shocks, and the associated aftershockswere within a roughly NNW-SSE trending zone of largest damage (Imax10), in which ground deformation has been observed. Along this trend,Cello et al. (1997a) had mapped a few capable faults, showingtranstensional to pure extensional kinematics. Field inspection of themapped faults, carried out after the main shocks, revealed that some ofthem were locally reactivated (for lengths of several hundreds metres andsurface slip in the range of 2-8 cm) during the September 26, 1997earthquakes.

  14. Tectonic stress evolution in the Pan-African Lufilian Arc and its foreland (Katanga, DRC): orogenic bending, late orogenic extensional collapse and transition to rifting

    Science.gov (United States)

    Kipata, M. L.; Delvaux, D.; Sebagenzi, M. N.; Cailteux, J.; Sintubin, M.

    2012-04-01

    Between the paroxysm of the Lufilian orogeny at ~ 550 Ma and the late Neogene to Quaternary development of the south-western branch of the East African rift system, the tectonic evolution of the Lufilian Arc and Kundelungu foreland in the Katanga region of the Democratic Republic of Congo remains poorly unknown although it caused important Cu-dominated mineral remobilizations leading to world-class ore deposits. This long period is essentially characterized by brittle tectonic deformations that have been investigated by field studies in open mines spread over the entire arc and foreland. Paleostress tensors were computed for a database of 1450 fault-slip data by interactive stress tensor inversion and data subset separation, and the relative succession of 8 brittle deformation events established. The oldest brittle structures observed are related to the Lufilian brittle compressional climax (stage 1). They have been re-oriented during the orogenic bending that led to the arcuate shape of the belt. Unfolding the stress directions from the first stage allows to reconstruct a consistent NE-SW direction of compression for this stage. Constrictional deformation occurred in the central part of the arc, probably during orogenic bending (Stage 2). After the orogenic bending, a sequence of 3 deformation stages marks the progressive onset of late-orogenic extension: strike-slip deformations (stages 3-4) and late-orogenic arc-parallel extension (stage 5). It is proposed that these 3 stages correspond to orogenic collapse. In early Mesozoic, NW-SE compression was induced by a transpressional inversion, interpreted as induced by far-field stresses generated at the southern active margin of Gondwana (stage 6). Since then, this region was affected by rift-related extension, successively in a NE-SW direction (stage 7, Tanganyika trend) and NW-SE direction (stage 8, Moero trend).

  15. Comparison of upwards splaying and upwards merging segmented normal faults

    Science.gov (United States)

    Freitag, U. A.; Sanderson, D. J.; Lonergan, L.; Bevan, T. G.

    2017-07-01

    A common model for normal fault growth involves a single fault at depth splaying upwards into a series of en-echelon segments. This model is applied to faults as well as a range of extension fractures, including veins, joints and igneous dykes. Examples of splaying growth fault systems in the Columbus Basin, offshore Trinidad, are presented. They include the commonly described upwards splaying type, but also one fault zone with an upward change from disconnected overlapping synthetic faults to a continuous fault. One fault zone with high-displacement fault segments is separated by a relay ramp at depth, becomes breached higher up, developing into a continuous fault at its upper part, where displacements are least. This example suggests that whilst kinematic linkage typically precedes geometric linkage in the evolution of relay ramps, low-displacement parts of a fault system may be geometrically linked whereas higher displacement areas are only kinematically linked.

  16. Role of tectonic inheritance in the instauration of Tunisian Atlassic fold-and-thrust belt: Case of Bouhedma - Boudouaou structures

    Science.gov (United States)

    Ghanmi, Mohamed Abdelhamid; Ghanmi, Mohamed; Aridhi, Sabri; Ben Salem, Mohamed Sadok; Zargouni, Fouad

    2016-07-01

    Tectonic inversion in the Bouhedma-Boudouaou Mountains was investigated through recent field work and seismic lines interpretation calibrated with petroleum well data. Located to the Central-Southern Atlas of Tunisia, this area signed shortened intra-continental fold-and-thrust belts. Two dissymmetric anticlines characterize Bouhedma - Boudouaou major fold. These structures show a strong virgation respectively from E-W to NNE-SSW as a response to the interference between both tectonic inversion and tectonic inheritance. This complex geometry is driven by Mesozoic rifting, which marked an extensional inherited regime. A set of late Triassic-Early Jurassic E-W and NW-SE normal faults dipping respectively to the North and to the East seems to widely affect the overall geodynamic evolution of this domain. They result in major thickness changes across the hanging wall and the footwall blocks in response with the rifting activity. Tectonic inversion is inferred from convergence between African and European plates since late Cretaceous. During Serravalian - Tortonian event, NW-SE trending paroxysm led to: 1) folding of pre-inversion and syn-inversion strata, 2) reactivation of pre-existing normal faults to reverse ones and 3) orogeny of the main structures with NE-SW and E-W trending. The compressional feature still remains active during Quaternary event (Post-Villafranchian) with N-S trending compression. Contraction during inversion generates folding and internal deformation as well as Fault-Propagation-Fold and folding related strike.

  17. Geomorphological context of the basins of Northwestern Peninsular Malaysia

    Science.gov (United States)

    Sautter, Benjamin; Pubellier, Manuel; Menier, David

    2014-05-01

    ) appear more penetrative in both granitic and limestone units. On most of the studied outcrops, exfoliation fractures are reactivated into normal faults. Deformation is particularly severe at the contact of the granites and the sediments which is underlined by cataclasic quartz dykes and hornfelds. Off-shore, in the Straits of Malacca, nine tertiary half-grabens are present, all oriented in N-S to NE-SW direction with N-S boundary faults on their western margin. We propose a tectonic scenario for the north-western Malaysia Peninsula according to which the northward motion of India induced first right-lateral transpressionnal tectonics at the End of the Mesozoics (Cretaceous early Tertiary). This system is illustrated in the NW-SE trending fractures of the Main Range Batholith and other Triassic plutons within a system bounded and controlled by the Bok Bak Fault, the KL fault zone and the Bentong Raub Suture Zone. Later, a second stage of transtension led to the opening of the en echelon onshore basins in a tear-faults system, and to the opening of half grabens offshore in the Straits of Malacca.

  18. Active faulting on the Wallula fault zone within the Olympic-Wallowa lineament, Washington State, USA

    Science.gov (United States)

    Sherrod, Brian; Blakely, Richard J.; Lasher, John P.; Lamb, Andrew P.; Mahan, Shannon; Foit, Franklin F.; Barnett, Elizabeth

    2016-01-01

    The Wallula fault zone is an integral feature of the Olympic-Wallowa lineament, an ∼500-km-long topographic lineament oblique to the Cascadia plate boundary, extending from Vancouver Island, British Columbia, to Walla Walla, Washington. The structure and past earthquake activity of the Wallula fault zone are important because of nearby infrastructure, and also because the fault zone defines part of the Olympic-Wallowa lineament in south-central Washington and suggests that the Olympic-Wallowa lineament may have a structural origin. We used aeromagnetic and ground magnetic data to locate the trace of the Wallula fault zone in the subsurface and map a quarry exposure of the Wallula fault zone near Finley, Washington, to investigate past earthquakes along the fault. We mapped three main packages of rocks and unconsolidated sediments in an ∼10-m-high quarry exposure. Our mapping suggests at least three late Pleistocene earthquakes with surface rupture, and an episode of liquefaction in the Holocene along the Wallula fault zone. Faint striae on the master fault surface are subhorizontal and suggest reverse dextral oblique motion for these earthquakes, consistent with dextral offset on the Wallula fault zone inferred from offset aeromagnetic anomalies associated with ca. 8.5 Ma basalt dikes. Magnetic surveys show that the Wallula fault actually lies 350 m to the southwest of the trace shown on published maps, passes directly through deformed late Pleistocene or younger deposits exposed at Finley quarry, and extends uninterrupted over 120 km.

  19. Fault diagnosis of sensor networked structures with multiple faults using a virtual beam based approach

    Science.gov (United States)

    Wang, H.; Jing, X. J.

    2017-07-01

    This paper presents a virtual beam based approach suitable for conducting diagnosis of multiple faults in complex structures with limited prior knowledge of the faults involved. The ;virtual beam;, a recently-proposed concept for fault detection in complex structures, is applied, which consists of a chain of sensors representing a vibration energy transmission path embedded in the complex structure. Statistical tests and adaptive threshold are particularly adopted for fault detection due to limited prior knowledge of normal operational conditions and fault conditions. To isolate the multiple faults within a specific structure or substructure of a more complex one, a 'biased running' strategy is developed and embedded within the bacterial-based optimization method to construct effective virtual beams and thus to improve the accuracy of localization. The proposed method is easy and efficient to implement for multiple fault localization with limited prior knowledge of normal conditions and faults. With extensive experimental results, it is validated that the proposed method can localize both single fault and multiple faults more effectively than the classical trust index subtract on negative add on positive (TI-SNAP) method.

  20. Episodic activity of a dormant fault in tectonically stable Europe: The Rauw fault (NE Belgium)

    Science.gov (United States)

    Verbeeck, Koen; Wouters, Laurent; Vanneste, Kris; Camelbeeck, Thierry; Vandenberghe, Dimitri; Beerten, Koen; Rogiers, Bart; Schiltz, Marco; Burow, Christoph; Mees, Florias; De Grave, Johan; Vandenberghe, Noël

    2017-03-01

    Our knowledge about large earthquakes in stable continental regions comes from studies of faults that generated historical surface rupturing earthquakes or were identified by their recent imprint in the morphology. Here, we evaluate the co-seismic character and movement history of the Rauw fault in Belgium, which lacks geomorphological expression and historical/present seismicity. This 55-km-long normal fault, with known Neogene and possibly Early Pleistocene activity, is the largest offset fault west of the active Roer Valley Graben. Its trace was identified in the shallow subsurface based on high resolution geophysics. All the layers within the Late Pliocene Mol Formation (3.6 to 2.59 Ma) are displaced 7 m vertically, without growth faulting, but deeper deposits show increasing offset. A paleoseismic trench study revealed cryoturbated, but unfaulted, late glacial coversands overlying faulted layers of Mol Formation. In-between those deposits, the fault tip was eroded, along with evidence for individual displacement events. Fragmented clay gouge observed in a micromorphology sample of the main fault evidences co-seismic faulting, as opposed to fault creep. Based on optical and electron spin resonance dating and trench stratigraphy, the 7 m combined displacement is bracketed to have occurred between 2.59 Ma and 45 ka. The regional presence of the Sterksel Formation alluvial terrace deposits, limited to the hanging wall of the Rauw fault, indicates a deflection of the Meuse/Rhine confluence (1.0 to 0.5 Ma) by the fault's activity, suggesting that most of the offset occurred prior to/at this time interval. In the trench, Sterksel Formation is eroded but reworked gravel testifies for its former presence. Hence, the Rauw fault appears as typical of plate interior context, with an episodic seismic activity concentrated between 1.0 and 0.5 Ma or at least between 2.59 Ma to 45 ka, possibly related to activity variations in the adjacent, continuously active Roer Valley

  1. Oblique transfer of extensional strain between basins of the middle Rio Grande rift, New Mexico: Fault kinematic and paleostress constraints

    Science.gov (United States)

    Minor, Scott A.; Hudson, Mark R.; Caine, Jonathan S.; Thompson, Ren A.

    2013-01-01

    The structural geometry of transfer and accommodation zones that relay strain between extensional domains in rifted crust has been addressed in many studies over the past 30 years. However, details of the kinematics of deformation and related stress changes within these zones have received relatively little attention. In this study we conduct the first-ever systematic, multi-basin fault-slip measurement campaign within the late Cenozoic Rio Grande rift of northern New Mexico to address the mechanisms and causes of extensional strain transfer associated with a broad accommodation zone. Numerous (562) kinematic measurements were collected at fault exposures within and adjacent to the NE-trending Santo Domingo Basin accommodation zone, or relay, which structurally links the N-trending, right-stepping en echelon Albuquerque and Española rift basins. The following observations are made based on these fault measurements and paleostresses computed from them. (1) Compared to the typical northerly striking normal to normal-oblique faults in the rift basins to the north and south, normal-oblique faults are broadly distributed within two merging, NE-trending zones on the northwest and southeast sides of the Santo Domingo Basin. (2) Faults in these zones have greater dispersion of rake values and fault strikes, greater dextral strike-slip components over a wide northerly strike range, and small to moderate clockwise deflections of their tips. (3) Relative-age relations among fault surfaces and slickenlines used to compute reduced stress tensors suggest that far-field, ~E-W–trending σ3 stress trajectories were perturbed 45° to 90° clockwise into NW to N trends within the Santo Domingo zones. (4) Fault-stratigraphic age relations constrain the stress perturbations to the later stages of rifting, possibly as late as 2.7–1.1 Ma. Our fault observations and previous paleomagnetic evidence of post–2.7 Ma counterclockwise vertical-axis rotations are consistent with increased

  2. Data Fault Detection in Medical Sensor Networks

    Directory of Open Access Journals (Sweden)

    Yang Yang

    2015-03-01

    Full Text Available Medical body sensors can be implanted or attached to the human body to monitor the physiological parameters of patients all the time. Inaccurate data due to sensor faults or incorrect placement on the body will seriously influence clinicians’ diagnosis, therefore detecting sensor data faults has been widely researched in recent years. Most of the typical approaches to sensor fault detection in the medical area ignore the fact that the physiological indexes of patients aren’t changing synchronously at the same time, and fault values mixed with abnormal physiological data due to illness make it difficult to determine true faults. Based on these facts, we propose a Data Fault Detection mechanism in Medical sensor networks (DFD-M. Its mechanism includes: (1 use of a dynamic-local outlier factor (D-LOF algorithm to identify outlying sensed data vectors; (2 use of a linear regression model based on trapezoidal fuzzy numbers to predict which readings in the outlying data vector are suspected to be faulty; (3 the proposal of a novel judgment criterion of fault state according to the prediction values. The simulation results demonstrate the efficiency and superiority of DFD-M.

  3. Formal Validation of Fault Management Design Solutions

    Science.gov (United States)

    Gibson, Corrina; Karban, Robert; Andolfato, Luigi; Day, John

    2013-01-01

    The work presented in this paper describes an approach used to develop SysML modeling patterns to express the behavior of fault protection, test the model's logic by performing fault injection simulations, and verify the fault protection system's logical design via model checking. A representative example, using a subset of the fault protection design for the Soil Moisture Active-Passive (SMAP) system, was modeled with SysML State Machines and JavaScript as Action Language. The SysML model captures interactions between relevant system components and system behavior abstractions (mode managers, error monitors, fault protection engine, and devices/switches). Development of a method to implement verifiable and lightweight executable fault protection models enables future missions to have access to larger fault test domains and verifiable design patterns. A tool-chain to transform the SysML model to jpf-Statechart compliant Java code and then verify the generated code via model checking was established. Conclusions and lessons learned from this work are also described, as well as potential avenues for further research and development.

  4. Underground power line fault locating system

    Energy Technology Data Exchange (ETDEWEB)

    Fox, L.D.; Flath, R.K.

    1993-08-24

    A method is described of locating a fault in a polyphase power distribution system power distributing power from a bulk power source to power consumers, the power distribution system having a substation feeding a fused switch gear unit, a first vault, and at least one subsequent vault receiving power from the first vault, the first vault distributing power from the fused switch gear unit among plural outgoing underground power lines, each underground outgoing power line supplying power to at least one power consumer, the method comprising the steps of: checking fusing within the fused switch gear unit to determine in which phase the fault has occurred; checking the continuity of a power line interconnecting the fused switch gear unit and the first vault; identifying the fused switch gear unit and the first vault which normally supply power to a line having the fault; installing a fault indicator on each underground outgoing power line of the faulted phase in the first vault and in each subsequent vault; inserting a current limiting fuse in series with and between the fused switch gear unit and the first vault; reenergizing the first vault plural outgoing underground power lines through the current limiting fuse and causing the current limiting fuse to blow; and reading each fault indicator after the reenergizing step to determine the location of the fault. A method according to claim 7 for an underground power distribution system wherein at least one underground outgoing power line delivers power to at least one distribution transformer, wherein the step of installing the fault indicators further comprises installing a fault indicator on each distribution transformer.

  5. Cooperative human-machine fault diagnosis

    Science.gov (United States)

    Remington, Roger; Palmer, Everett

    1987-01-01

    Current expert system technology does not permit complete automatic fault diagnosis; significant levels of human intervention are still required. This requirement dictates a need for a division of labor that recognizes the strengths and weaknesses of both human and machine diagnostic skills. Relevant findings from the literature on human cognition are combined with the results of reviews of aircrew performance with highly automated systems to suggest how the interface of a fault diagnostic expert system can be designed to assist human operators in verifying machine diagnoses and guiding interactive fault diagnosis. It is argued that the needs of the human operator should play an important role in the design of the knowledge base.

  6. Navigation System Fault Diagnosis for Underwater Vehicle

    DEFF Research Database (Denmark)

    Falkenberg, Thomas; Gregersen, Rene Tavs; Blanke, Mogens

    2014-01-01

    This paper demonstrates fault diagnosis on unmanned underwater vehicles (UUV) based on analysis of structure of the nonlinear dynamics. Residuals are generated using dierent approaches in structural analysis followed by statistical change detection. Hypothesis testing thresholds are made signal...... based to cope with non-ideal properties seen in real data. Detection of both sensor and thruster failures are demonstrated. Isolation is performed using the residual signature of detected faults and the change detection algorithm is used to assess severity of faults by estimating their magnitude...

  7. Efficient fault diagnosis of helicopter gearboxes

    Science.gov (United States)

    Chin, H.; Danai, K.; Lewicki, D. G.

    1993-01-01

    Application of a diagnostic system to a helicopter gearbox is presented. The diagnostic system is a nonparametric pattern classifier that uses a multi-valued influence matrix (MVIM) as its diagnostic model and benefits from a fast learning algorithm that enables it to estimate its diagnostic model from a small number of measurement-fault data. To test this diagnostic system, vibration measurements were collected from a helicopter gearbox test stand during accelerated fatigue tests and at various fault instances. The diagnostic results indicate that the MVIM system can accurately detect and diagnose various gearbox faults so long as they are included in training.

  8. Fault Tolerant Control of Wind Turbines

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Stoustrup, Jakob; Kinnaert, Michel

    2013-01-01

    This paper presents a test benchmark model for the evaluation of fault detection and accommodation schemes. This benchmark model deals with the wind turbine on a system level, and it includes sensor, actuator, and system faults, namely faults in the pitch system, the drive train, the generator......, and the converter system. Since it is a system-level model, converter and pitch system models are simplified because these are controlled by internal controllers working at higher frequencies than the system model. The model represents a three-bladed pitch-controlled variable-speed wind turbine with a nominal power...

  9. Fault Detection and Isolation for Spacecraft

    DEFF Research Database (Denmark)

    Jensen, Hans-Christian Becker; Wisniewski, Rafal

    2002-01-01

    This article realizes nonlinear Fault Detection and Isolation for actuators, given there is no measurement of the states in the actuators. The Fault Detection and Isolation of the actuators is instead based on angular velocity measurement of the spacecraft and knowledge about the dynamics...... of the satellite. The algorithms presented in this paper are based on a geometric approach to achieve nonlinear Fault Detection and Isolation. The proposed algorithms are tested in a simulation study and the pros and cons of the algorithms are discussed....

  10. Cooperative application/OS DRAM fault recovery.

    Energy Technology Data Exchange (ETDEWEB)

    Ferreira, Kurt Brian; Bridges, Patrick G. (University of New Mexico, Albuquerque, NM); Heroux, Michael Allen; Hoemmen, Mark; Brightwell, Ronald Brian

    2012-05-01

    Exascale systems will present considerable fault-tolerance challenges to applications and system software. These systems are expected to suffer several hard and soft errors per day. Unfortunately, many fault-tolerance methods in use, such as rollback recovery, are unsuitable for many expected errors, for example DRAM failures. As a result, applications will need to address these resilience challenges to more effectively utilize future systems. In this paper, we describe work on a cross-layer application/OS framework to handle uncorrected memory errors. We illustrate the use of this framework through its integration with a new fault-tolerant iterative solver within the Trilinos library, and present initial convergence results.

  11. Concatenated codes for fault tolerant quantum computing

    Energy Technology Data Exchange (ETDEWEB)

    Knill, E.; Laflamme, R.; Zurek, W.

    1995-05-01

    The application of concatenated codes to fault tolerant quantum computing is discussed. We have previously shown that for quantum memories and quantum communication, a state can be transmitted with error {epsilon} provided each gate has error at most c{epsilon}. We show how this can be used with Shor`s fault tolerant operations to reduce the accuracy requirements when maintaining states not currently participating in the computation. Viewing Shor`s fault tolerant operations as a method for reducing the error of operations, we give a concatenated implementation which promises to propagate the reduction hierarchically. This has the potential of reducing the accuracy requirements in long computations.

  12. Detecting Fan Faults in refrigerated Cabinets

    DEFF Research Database (Denmark)

    Thybo, C.; Rasmussen, B.D.; Izadi-Zamanabadi, Roozbeh

    2002-01-01

    Fault detection in supermarket refrigeration systems is an important topic due to both economic and food safety reasons. If faults can be detected and diagnosed before the system drifts outside the specified operational envelope, service costs can be reduced and in extreme cases the costly...... faults in display cabinets under the wide operational conditions that display cabinets are exposed to. The approach described uses a non- linear parity equation comparing the heat transfer rates of the air and the refrigerant. The paper presents the detection method and discusses the application...

  13. Norm based Threshold Selection for Fault Detectors

    DEFF Research Database (Denmark)

    Rank, Mike Lind; Niemann, Henrik

    1998-01-01

    The design of fault detectors for fault detection and isolation (FDI) in dynamic systems is considered from a norm based point of view. An analysis of norm based threshold selection is given based on different formulations of FDI problems. Both the nominal FDI problem as well as the uncertain FDI...... problem are considered. Based on this analysis, a performance index based on norms of the involved transfer functions is given. The performance index allows us also to optimize the structure of the fault detection filter directly...

  14. Mechanical Models of Fault-Related Folding

    Energy Technology Data Exchange (ETDEWEB)

    Johnson, A. M.

    2003-01-09

    The subject of the proposed research is fault-related folding and ground deformation. The results are relevant to oil-producing structures throughout the world, to understanding of damage that has been observed along and near earthquake ruptures, and to earthquake-producing structures in California and other tectonically-active areas. The objectives of the proposed research were to provide both a unified, mechanical infrastructure for studies of fault-related foldings and to present the results in computer programs that have graphical users interfaces (GUIs) so that structural geologists and geophysicists can model a wide variety of fault-related folds (FaRFs).

  15. A Concept for fault tolerant controllers

    DEFF Research Database (Denmark)

    Niemann, Hans Henrik; Poulsen, Niels Kjølstad

    2009-01-01

    This paper describe a concept for fault tolerant controllers (FTC) based on the YJBK (after Youla, Jabr, Bongiorno and Kucera) parameterization. This controller architecture will allow to change the controller on-line in the case of faults in the system. In the described FTC concept, a safe mode...... controller is applied as the basic feedback controller. A controller for normal operation with high performance is obtained by including certain YJBK parameters (transfer functions) in the controller. This will allow a fast switch from normal operation to safe mode operation in case of critical faults...

  16. Business process trends

    OpenAIRE

    von Rosing, Mark; Polovina, Simon

    2015-01-01

    Business process and business process management (BPM) concepts have matured over the years and new technology, concepts, standards and solutions appear. In this chapter\\ud we will therefore focus on the current and future process trends. We will elaborate on the importance of trends, the maturity of the subject, giving a perspective on what emerging trends, industry trends, mega trends are, what is hyped at the moment, and what has reached a market adoption where it has started to become the...

  17. Drivers, Trends and Mitigation

    Energy Technology Data Exchange (ETDEWEB)

    Blanco, Arthur S.; Gerlagh, Reyer; Suh, Sangwon; Barrett, John A.; de Coninck, Heleen; Diaz Morejon, Cristobal Felix; Mathur, Ritu; Nakicenovic, Nebojsa; Ahenkorah, Alfred Ofosu; Pan, Jiahua; Pathak, Himanshu; Rice, Jake; Richels, Richard G.; Smith, Steven J.; Stern, David; Toth, Ferenc L.; Zhou, Peter

    2014-12-01

    Chapter 5 analyzes the anthropogenic greenhouse gas (GHG) emission trends until the present and the main drivers that explain those trends. The chapter uses different perspectives to analyze past GHG-emissions trends, including aggregate emissions flows and per capita emissions, cumulative emissions, sectoral emissions, and territory-based vs. consumption-based emissions. In all cases, global and regional trends are analyzed. Where appropriate, the emission trends are contextualized with long-term historic developments in GHG emissions extending back to 1750.

  18. Geochemical characteristics of fault core and damage zones of the Hong-Che Fault Zone of the Junggar Basin (NW China) with implications for the fault sealing process

    Science.gov (United States)

    Liu, Yin; Wu, Kongyou; Wang, Xi; Pei, Yangwen; Liu, Bo; Guo, Jianxun

    2017-08-01

    Faults may have a complex internal structure, including fault core and damage zone, and can act as major conduits for fluid migration. The migration of fluids along faults is generally associated with strong fluid-rock interaction, forming large amounts of cement that fill in the fractures. The cementation of the fault fractures is considered to be one of the important parameters of fault sealing. The different components of faults have diverse geochemical features because of varying physical characteristics. The investigation of the geochemical characteristics of the fault and damage zones could provide important information about the fault sealing process, which is very important in oil and gas exploration. To understand the fault-cemented sealing process, detailed geochemical studies were conducted on the fault and damage zones of the Hong-Che Fault of the northwestern Junggar Basin in China. The major and trace element data of our study suggest that the fault core is characterized by higher loss on ignition (LOI), potassium loss, Chemical Index of Alteration (CIA), and Plagioclase Index of Alteration (PIA) values and lower high field strength element (HFSE), large-ion lithosphile element (LILE), and rare earth element (REE) concentrations compared with the damage zone, implying more serious elemental loss and weathering of the fault core compared with the damage zone during faulting. The carbon and oxygen isotope data reveal that the cement of the Hong-Che Fault Zone formed due to multiple sources of fluids. The fault core was mainly affected by deep sources of hydrothermal fluids. In combination with previous studies, we suggest a potential fault-cemented sealing process during the period of fault movement. The fault core acts as the fluid conduit during faulting. After faulting, the fault core is cemented and the damage zone becomes the major conduit for fluid migration. The cementation firstly occurs on two sides of the damage zone in the upper part of the

  19. 3D Fault modeling of the active Chittagong-Myanmar fold belt, Bangladesh

    Science.gov (United States)

    Peterson, D. E.; Hubbard, J.; Akhter, S. H.; Shamim, N.

    2013-12-01

    The Chittagong-Myanmar fold belt (CMFB), located in eastern Bangladesh, eastern India and western Myanmar, accommodates east-west shortening at the India-Burma plate boundary. Oblique subduction of the Indian Plate beneath the Burma Plate since the Eocene has led to the development of a large accretionary prism complex, creating a series of north-south trending folds. A continuous sediment record from ~55 Ma to the present has been deposited in the Bengal Basin by the Ganges-Brahmaputra-Meghna rivers, providing an opportunity to learn about the history of tectonic deformation and activity in this fold-and-thrust belt. Surface mapping indicates that the fold-and-thrust belt is characterized by extensive N-S-trending anticlines and synclines in a belt ~150-200 km wide. Seismic reflection profiles from the Chittagong and Chittagong Hill Tracts, Bangladesh, indicate that the anticlines mapped at the surface narrow with depth and extend to ~3.0 seconds TWTT (two-way travel time), or ~6.0 km. The folds of Chittagong and Chittagong Hill Tracts are characterized by doubly plunging box-shaped en-echelon anticlines separated by wide synclines. The seismic data suggest that some of these anticlines are cored by thrust fault ramps that extend to a large-scale décollement that dips gently to the east. Other anticlines may be the result of detachment folding from the same décollement. The décollement likely deepens to the east and intersects with the northerly-trending, oblique-slip Kaladan fault. The CMFB region is bounded to the north by the north-dipping Dauki fault and the Shillong Plateau. The tectonic transition from a wide band of E-W shortening in the south to a narrow zone of N-S shortening along the Dauki fault is poorly understood. We integrate surface and subsurface datasets, including topography, geological maps, seismicity, and industry seismic reflection profiles, into a 3D modeling environment and construct initial 3D surfaces of the major faults in this

  20. Rapid recovery from transient faults in the fault-tolerant processor with fault-tolerant shared memory

    Science.gov (United States)

    Harper, Richard E.; Butler, Bryan P.

    1990-01-01

    The Draper fault-tolerant processor with fault-tolerant shared memory (FTP/FTSM), which is designed to allow application tasks to continue execution during the memory alignment process, is described. Processor performance is not affected by memory alignment. In addition, the FTP/FTSM incorporates a hardware scrubber device to perform the memory alignment quickly during unused memory access cycles. The FTP/FTSM architecture is described, followed by an estimate of the time required for channel reintegration.

  1. Data-driven design of fault diagnosis and fault-tolerant control systems

    CERN Document Server

    Ding, Steven X

    2014-01-01

    Data-driven Design of Fault Diagnosis and Fault-tolerant Control Systems presents basic statistical process monitoring, fault diagnosis, and control methods, and introduces advanced data-driven schemes for the design of fault diagnosis and fault-tolerant control systems catering to the needs of dynamic industrial processes. With ever increasing demands for reliability, availability and safety in technical processes and assets, process monitoring and fault-tolerance have become important issues surrounding the design of automatic control systems. This text shows the reader how, thanks to the rapid development of information technology, key techniques of data-driven and statistical process monitoring and control can now become widely used in industrial practice to address these issues. To allow for self-contained study and facilitate implementation in real applications, important mathematical and control theoretical knowledge and tools are included in this book. Major schemes are presented in algorithm form and...

  2. Fault-Tolerant Approach for Modular Multilevel Converters under Submodule Faults

    DEFF Research Database (Denmark)

    Deng, Fujin; Tian, Yanjun; Zhu, Rongwu

    2016-01-01

    The modular multilevel converter (MMC) is attractive for medium- or high-power applications because of the advantages of its high modularity, availability, and high power quality. The fault-tolerant operation is one of the important issues for the MMC. This paper proposed a fault-tolerant approach...... for the MMC under submodule (SM) faults. The characteristic of the MMC with arms containing different number of healthy SMs under faults is analyzed. Based on the characteristic, the proposed approach can effectively keep the MMC operation as normal under SM faults. It can effectively improve the MMC...... performance under SM faults but without the knowledge of the number of the faulty SMs in the arm, without extra demand on communication systems, which potentially increases the reliability. The time-domain simulation studies with the PSCAD/EMTDC are conducted and a down-scale MMC prototype is also tested...

  3. Guaranteed Cost Fault-Tolerant Control for Networked Control Systems with Sensor Faults

    Directory of Open Access Journals (Sweden)

    Qixin Zhu

    2015-01-01

    Full Text Available For the large scale and complicated structure of networked control systems, time-varying sensor faults could inevitably occur when the system works in a poor environment. Guaranteed cost fault-tolerant controller for the new networked control systems with time-varying sensor faults is designed in this paper. Based on time delay of the network transmission environment, the networked control systems with sensor faults are modeled as a discrete-time system with uncertain parameters. And the model of networked control systems is related to the boundary values of the sensor faults. Moreover, using Lyapunov stability theory and linear matrix inequalities (LMI approach, the guaranteed cost fault-tolerant controller is verified to render such networked control systems asymptotically stable. Finally, simulations are included to demonstrate the theoretical results.

  4. Superposed ruptile deformational events revealed by field and VOM structural analysis

    Science.gov (United States)

    Kumaira, Sissa; Guadagnin, Felipe; Keller Lautert, Maiara

    2017-04-01

    interpret geometrical and kinematic data. Planar and linear structural orientations and kinematic indicators revealed superposition of three deformational events: i) compressive, ii) transtensional, and iii) extensional paleostress regimes. The compressive regime was related to a radial to pure compression with N-S horizontal maximum compression vector. This stress regime corresponds mainly to the development of dextral tension fractures and NE-SW reverse faults. The transtensional regime has NW-SE sub-horizontal extension, NE-SW horizontal compressional, and sub-vertical intermediate tensors, generating mainly shear fractures by reactivation of the metamorphic foliation (anisotropy), NE-SW reverse faults and NE-vertical veins and gashes. The extensional regime of strike-slip type presents a NE-SW sub-horizontal extension and NW-SE trending sub-vertical maximum compression vector. Structures related to this regime are sub-vertical tension gashes, conjugate fractures and NW-SE normal faults. Cross-cutting relations show that compression was followed by transtension, which reactivate the ductile foliation, and in the last stage, extension dominated. Most important findings show that: i) local stress fields can modify expected geometry and ii) anisotropy developed by previous structures control the nucleation of new fractures and reactivations. Use of field data integrated in a VOM has great potential as analogues for structured reservoirs.

  5. Fault Rock Variation as a Function of Host Rock Lithology

    Science.gov (United States)

    Fagereng, A.; Diener, J.

    2013-12-01

    Fault rocks contain an integrated record of the slip history of a fault, and thereby reflect the deformation processes associated with fault slip. Within the Aus Granulite Terrane, Namibia, a number of Jurassic to Cretaceous age strike-slip faults cross-cut Precambrian high grade metamorphic rocks. These strike-slip faults were active at subgreenschist conditions and occur in a variety of host rock lithologies. Where the host rock contains significant amounts of hydrous minerals, representing granulites that have undergone retrogressive metamorphism, the fault rock is dominated by hydrothermal breccias. In anhydrous, foliated rocks interlayered with minor layers containing hydrous phyllosilicates, the fault rock is a cataclasite partially cemented by jasper and quartz. Where the host rock is an isotropic granitic rock the fault rock is predominantly a fine grained black fault rock. Cataclasites and breccias show evidence for multiple deformation events, whereas the fine grained black fault rocks appear to only record a single slip increment. The strike-slip faults observed all formed in the same general orientation and at a similar time, and it is unlikely that regional stress, strain rate, pressure and temperature varied between the different faults. We therefore conclude that the type of fault rock here depended on the host rock lithology, and that lithology alone accounts for why some faults developed a hydrothermal breccia, some cataclasite, and some a fine grained black fault rock. Consequently, based on the assumption that fault rocks reflect specific slip styles, lithology was also the main control on different fault slip styles in this area at the time of strike-slip fault activity. Whereas fine grained black fault rock is inferred to represent high stress events, hydrothermal breccia is rather related to events involving fluid pressure in excess of the least stress. Jasper-bearing cataclasites may represent faults that experienced dynamic weakening as seen

  6. PV Systems Reliability Final Technical Report: Ground Fault Detection

    Energy Technology Data Exchange (ETDEWEB)

    Lavrova, Olga [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Flicker, Jack David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Johnson, Jay [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2016-01-01

    We have examined ground faults in PhotoVoltaic (PV) arrays and the efficacy of fuse, current detection (RCD), current sense monitoring/relays (CSM), isolation/insulation (Riso) monitoring, and Ground Fault Detection and Isolation (GFID) using simulations based on a Simulation Program with Integrated Circuit Emphasis SPICE ground fault circuit model, experimental ground faults installed on real arrays, and theoretical equations.

  7. Recording real case data of earth faults in distribution lines

    Energy Technology Data Exchange (ETDEWEB)

    Haenninen, S. [VTT Energy, Espoo (Finland)

    1996-12-31

    The most common fault type in the electrical distribution networks is the single phase to earth fault. According to the earlier studies, for instance in Nordic countries, about 80 % of all faults are of this type. To develop the protection and fault location systems, it is important to obtain real case data of disturbances and faults which occur in the networks. For example, the earth fault initial transients can be used for earth fault location. The aim of this project was to collect and analyze real case data of the earth fault disturbances in the medium voltage distribution networks (20 kV). Therefore, data of fault occurrences were recorded at two substations, of which one has an unearthed and the other a compensated neutral, measured as follows: (a) the phase currents and neutral current for each line in the case of low fault resistance (b) the phase voltages and neutral voltage from the voltage measuring bay in the case of low fault resistance (c) the neutral voltage and the components of 50 Hz at the substation in the case of high fault resistance. In addition, the basic data of the fault occurrences were collected (data of the line, fault location, cause and so on). The data will be used in the development work of fault location and earth fault protection systems

  8. Mobilities and dislocation energies of planar faults in an ordered ...

    Indian Academy of Sciences (India)

    Present work describes the stability of possible planar faults of the A3B (D019) phase with an axial ratio less than the ideal. Mobilities and dislocation energies of various planar faults viz. antiphase boundaries (APBs), superlattice intrinsic stacking faults (SISFs) and complex stacking faults (CSFs) have been computed using ...

  9. Fuzzy set theoretic approach to fault tree analysis

    African Journals Online (AJOL)

    user

    68M15 (Reliability, testing and fault tolerance). Keywords: Fault tree, Triangular and Trapezoidal fuzzy number, Fuzzy importance, Ranking of fuzzy numbers. 1. Introduction. Fault tree analysis (FTA) seems to be a very effective tool to predict probability of hazard, resulting from sequences and combinations of faults and ...

  10. Incorporating Fault Tolerance Tactics in Software Architecture Patterns

    NARCIS (Netherlands)

    Harrison, Neil B.; Avgeriou, Paris

    2008-01-01

    One important way that an architecture impacts fault tolerance is by making it easy or hard to implement measures that improve fault tolerance. Many such measures are described as fault tolerance tactics. We studied how various fault tolerance tactics can be implemented in the best-known

  11. Structural Analysis Extended with Active Fault Isolation - Methods and Algorithms

    DEFF Research Database (Denmark)

    Gelso, Esteban R.; Blanke, Mogens

    2009-01-01

    Isolability of faults is a key issue in fault diagnosis whether the aim is maintenance or active fault-tolerant control. It is often encountered that while faults are detectable, they are only group-wise isolable from a usual diagnostic point of view. However, active injection of test signals...

  12. A novel KFCM based fault diagnosis method for unknown faults in satellite reaction wheels.

    Science.gov (United States)

    Hu, Di; Sarosh, Ali; Dong, Yun-Feng

    2012-03-01

    Reaction wheels are one of the most critical components of the satellite attitude control system, therefore correct diagnosis of their faults is quintessential for efficient operation of these spacecraft. The known faults in any of the subsystems are often diagnosed by supervised learning algorithms, however, this method fails to work correctly when a new or unknown fault occurs. In such cases an unsupervised learning algorithm becomes essential for obtaining the correct diagnosis. Kernel Fuzzy C-Means (KFCM) is one of the unsupervised algorithms, although it has its own limitations; however in this paper a novel method has been proposed for conditioning of KFCM method (C-KFCM) so that it can be effectively used for fault diagnosis of both known and unknown faults as in satellite reaction wheels. The C-KFCM approach involves determination of exact class centers from the data of known faults, in this way discrete number of fault classes are determined at the start. Similarity parameters are derived and determined for each of the fault data point. Thereafter depending on the similarity threshold each data point is issued with a class label. The high similarity points fall into one of the 'known-fault' classes while the low similarity points are labeled as 'unknown-faults'. Simulation results show that as compared to the supervised algorithm such as neural network, the C-KFCM method can effectively cluster historical fault data (as in reaction wheels) and diagnose the faults to an accuracy of more than 91%. Copyright © 2011 ISA. Published by Elsevier Ltd. All rights reserved.

  13. Soil Moisture Active Passive Mission: Fault Management Design Analyses

    Science.gov (United States)

    Meakin, Peter; Weitl, Raquel

    2013-01-01

    As a general trend, the complexities of modern spacecraft are increasing to include more ambitious mission goals with tighter timing requirements and on-board autonomy. As a byproduct, the protective features that monitor the performance of these systems have also increased in scope and complexity. Given cost and schedule pressures, there is an increasing emphasis on understanding the behavior of the system at design time. Formal test-driven verification and validation (V&V) is rarely able to test the significant combinatorics of states, and often finds problems late in the development cycle forcing design changes that can be costly. This paper describes the approach the SMAP Fault Protection team has taken to address some of the above-mentioned issues.

  14. Submarine topography and faulting in Bahia de Banderas, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Alvarez, Roman [Instituto de Investigaciones en Matematicas Aplicadas y en Sistemas, Universidad Nacional Autonoma de Mexico, Mexico D.F (Mexico)

    2007-04-15

    A digital elevation model of Bahia de Banderas and its offshore continuation to the Middle America Trench (MAT) is built from a data set of 6872 bathymetric soundings. Two new, offshore basins and several, previously unknown faults within the bay are also identified. The south flank of Banderas canyon is considerably steeper than the north one. This asymmetry and the seismic activity present lead to propose that Banderas Canyon has a half-graben structure of the fault growth type, and reverse drag geometry, which originates in an extensional basin oriented N-S. The canyon is divided in two sections that trend in different directions. The older section of the canyon, trending E-W, is probably Late Miocene; the associated Banderas Fault is suggested to extend westward, down to the MAT along a section that complements that of the half-graben. The section of Banderas Canyon trending NE and continuing into Banderas Valley is identified as a younger portion of the structure. The older and the younger portions of the canyon appear to be active presently. A group of faults also trending NE seem to be associated with the change in direction of the canyon. These results support the hypothesis that the structure of Banderas Canyon is a half-graben, and they strengthen the idea that it is the limit between the region to the north that underwent extension in the Miocene, and the region to the south that did not experienced it. [Spanish] Un modelo digital de elevacion de Bahia de Banderas y su continuacion costa afuera hasta la Trinchera Mesoamericana se construye con 6872 sondeos batimetricos. Se identifi can dos nuevas cuencas costa afuera y tambien varias fallas, hasta ahora no reportadas, dentro de la bahia. El fl anco sur del Canon de Banderas es considerablemente mas empinado que el flanco norte. Esta asimetria, junto con la actividad sismica presente, lleva a proponer que el Canon de Banderas tiene una estructura de semi-graben del tipo de crecimiento de falla, con

  15. Integrated seismic interpretation of the Carlsberg Fault zone, Copenhagen, Denmark

    DEFF Research Database (Denmark)

    Nielsen, Lars; Thybo, Hans; Jørgensen, Mette Iwanouw

    2005-01-01

    We locate the concealed Carlsberg Fault zone along a 12-km-long trace in the Copenhagen city centre by seismic refraction, reflection and fan profiling. The Carlsberg Fault is located in a NNW-SSE striking fault system in the border zone between the Danish Basin and the Baltic Shield. Recent...... the fault zone. The fault zone is a shadow zone to shots detonated outside the fault zone. Finite-difference wavefield modelling supports the interpretations of the fan recordings. Our fan recording approach facilitates cost-efficient mapping of fault zones in densely urbanized areas where seismic normal...

  16. Enhanced Maritime Safety through Diagnosis and Fault Tolerant Control

    DEFF Research Database (Denmark)

    Blanke, Mogens

    2001-01-01

    -tolerant control is a methodology to help prevent that faults develop into failure. The means include on-line fault diagnosis, automatic condition assessment and calculation of remedial action to avoid hazards. This paper gives an overview of methods to obtain fault-tolerance: fault diagnosis; analysis......Faults in steering, navigation instruments or propulsion machinery are serious on a marine vessel since the consequence could be loss of maneuvering ability, and imply risk of damage to vessel personnel or environment. Early diagnosis and accomodation of faults could enhance safety. Fault...

  17. Intelligent Fault Diagnosis in a Power Distribution Network

    Directory of Open Access Journals (Sweden)

    Oluleke O. Babayomi

    2016-01-01

    Full Text Available This paper presents a novel method of fault diagnosis by the use of fuzzy logic and neural network-based techniques for electric power fault detection, classification, and location in a power distribution network. A real network was used as a case study. The ten different types of line faults including single line-to-ground, line-to-line, double line-to-ground, and three-phase faults were investigated. The designed system has 89% accuracy for fault type identification. It also has 93% accuracy for fault location. The results indicate that the proposed technique is effective in detecting, classifying, and locating low impedance faults.

  18. Stator Fault Modelling of Induction Motors

    DEFF Research Database (Denmark)

    Thomsen, Jesper Sandberg; Kallesøe, Carsten

    2006-01-01

    In this paper a model of an induction motor affected by stator faults is presented. Two different types of faults are considered, these are; disconnection of a supply phase, and inter-turn and turn-turn short circuits inside the stator. The output of the derived model is compared to real measurem......In this paper a model of an induction motor affected by stator faults is presented. Two different types of faults are considered, these are; disconnection of a supply phase, and inter-turn and turn-turn short circuits inside the stator. The output of the derived model is compared to real...... measurements from a specially designed induction motor. With this motor it is possible to simulate both terminal disconnections, inter-turn and turn-turn short circuits. The results show good agreement between the measurements and the simulated signals obtained from the model. In the tests focus...

  19. Faults--Offshore of Carpinteria, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3261 presents data for faults for the geologic and geomorphic map (see sheet 10, SIM 3261) of the Offshore of Carpinteria map area, California. The...

  20. Faults--Offshore Pigeon Point, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore Pigeon Point map area, California. The vector data file is...

  1. Software Tools for Fault Management Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fault Management (FM) is a key requirement for safety, efficient onboard and ground operations, maintenance, and repair. QSI's TEAMS Software suite is a leading...

  2. Software Tools for Fault Management Technologies Project

    Data.gov (United States)

    National Aeronautics and Space Administration — System autonomy is a key enabler for satisfying complex mission goals, enhancing mission success probabilities, as well as safety at a reduced cost. Fault Management...

  3. Fault Tree Generation and Augmentation Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Fault Management (FM) is one of the key components of system autonomy. In order to guarantee FM effectiveness and control the cost, tools are required to automate...

  4. Faults--Offshore Santa Cruz, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore Santa Cruz map area, California. The vector data file is...

  5. STACKING FAULT ENERGY IN HIGH MANGANESE ALLOYS

    Directory of Open Access Journals (Sweden)

    Eva Mazancová

    2009-04-01

    Full Text Available Stacking fault energy of high manganese alloys (marked as TWIP and TRIPLEX is an important parameter determining deformation mechanism type realized in above mentioned alloys. Stacking fault energy level can be asserted with a gliding of partial and/or full dislocations, b gliding mechanism and twinning deformation process in connection with increasing of fracture deformation level (deformation elongation and with increasing of simultaneously realized work hardening proces., c gliding mechanism and deformation induced e-martensite formation. In contribution calculated stacking fault energies are presented for various chemical compositions of high manganese alloys. Stacking fault energy dependences on manganese, carbon, iron and alluminium contents are presented. Results are confronted with some accessible papers.The aim of work is to deepen knowledge of presented data. The TWIP and TRIPLEX alloys can be held for promissing new automotive materials.

  6. Faults--Offshore of Ventura, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of SIM 3254 presents data for faults for the geologic and geomorphic map (see sheet 10, SIM 3254) of the Offshore of Ventura map area, California. The...

  7. Fault Detection for Quantized Networked Control Systems

    Directory of Open Access Journals (Sweden)

    Wei-Wei Che

    2013-01-01

    Full Text Available The fault detection problem in the finite frequency domain for networked control systems with signal quantization is considered. With the logarithmic quantizer consideration, a quantized fault detection observer is designed by employing a performance index which is used to increase the fault sensitivity in finite frequency domain. The quantized measurement signals are dealt with by utilizing the sector bound method, in which the quantization error is treated as sector-bounded uncertainty. By using the Kalman-Yakubovich-Popov (GKYP Lemma, an iterative LMI-based optimization algorithm is developed for designing the quantized fault detection observer. And a numerical example is given to illustrate the effectiveness of the proposed method.

  8. Faults--Offshore Scott Creek, California

    Data.gov (United States)

    U.S. Geological Survey, Department of the Interior — This part of DS 781 presents data for the faults for the geologic and geomorphic map of the Offshore of Scott Creek map area, California. The vector data file is...

  9. Current Sensor Fault Reconstruction for PMSM Drives

    Directory of Open Access Journals (Sweden)

    Gang Huang

    2016-01-01

    Full Text Available This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform.

  10. Current Sensor Fault Reconstruction for PMSM Drives.

    Science.gov (United States)

    Huang, Gang; Luo, Yi-Ping; Zhang, Chang-Fan; He, Jing; Huang, Yi-Shan

    2016-01-30

    This paper deals with a current sensor fault reconstruction algorithm for the torque closed-loop drive system of an interior PMSM. First, sensor faults are equated to actuator ones by a new introduced state variable. Then, in αβ coordinates, based on the motor model with active flux linkage, a current observer is constructed with a specific sliding mode equivalent control methodology to eliminate the effects of unknown disturbances, and the phase current sensor faults are reconstructed by means of an adaptive method. Finally, an αβ axis current fault processing module is designed based on the reconstructed value. The feasibility and effectiveness of the proposed method are verified by simulation and experimental tests on the RT-LAB platform.

  11. Reset Tree-Based Optical Fault Detection

    Directory of Open Access Journals (Sweden)

    Howon Kim

    2013-05-01

    Full Text Available In this paper, we present a new reset tree-based scheme to protect cryptographic hardware against optical fault injection attacks. As one of the most powerful invasive attacks on cryptographic hardware, optical fault attacks cause semiconductors to misbehave by injecting high-energy light into a decapped integrated circuit. The contaminated result from the affected chip is then used to reveal secret information, such as a key, from the cryptographic hardware. Since the advent of such attacks, various countermeasures have been proposed. Although most of these countermeasures are strong, there is still the possibility of attack. In this paper, we present a novel optical fault detection scheme that utilizes the buffers on a circuit’s reset signal tree as a fault detection sensor. To evaluate our proposal, we model radiation-induced currents into circuit components and perform a SPICE simulation. The proposed scheme is expected to be used as a supplemental security tool.

  12. SDEM modelling of fault-propagation folding

    DEFF Research Database (Denmark)

    Clausen, O.R.; Egholm, D.L.; Poulsen, Jane Bang

    2009-01-01

    and variations in Mohr-Coulomb parameters including internal friction. Using SDEM modelling, we have mapped the propagation of the tip-line of the fault, as well as the evolution of the fold geometry across sedimentary layers of contrasting rheological parameters, as a function of the increased offset......Understanding the dynamics and kinematics of fault-propagation-folding is important for evaluating the associated hydrocarbon play, for accomplishing reliable section balancing (structural reconstruction), and for assessing seismic hazards. Accordingly, the deformation style of fault......-propagation-folding has already been the topic of a large number of empirical studies as well as physical and computational model experiments. However, with the newly developed Stress-based Discrete Element Method (SDEM), we have, for the first time, explored computationally the link between self-emerging fault patterns...

  13. A Novel Fault Early Warning Model Based on Fault Gene Table for Smart Distribution Grids

    Directory of Open Access Journals (Sweden)

    Min Xiang

    2017-11-01

    Full Text Available Since a smart distribution grid has a diversity of components and complicated topology; it is very hard to achieve fault early warning for each part. A fault early warning model for smart distribution grid combining a back propagation (BP neural network with a gene sequence alignment algorithm is proposed. Firstly; the operational state of smart distribution grid is divided into four states; and a BP neural network is adopted to explore the operational state from the historical fault data of the smart distribution grid. This obtains the relationship between each state transition time sequence and corresponding fault, and is used to construct the fault gene table. Then; a state transition time sequence is obtained online periodically, which is matched with each gene in fault gene table by an improved Smith–Waterman algorithm. If the maximum match score exceeds the given threshold, the relevant fault will be detected early. Finally, plenty of time domain simulation is performed on the proposed fault early warning model to IEEE-14 bus. The simulation results show that the proposed model can achieve efficient early fault warning of smart distribution grids.

  14. Evidence for early miocene wrench faulting in the Marlborough fault system, New Zealand: structural implications

    Science.gov (United States)

    Audru, Jean-Christophe; Delteil, Jean

    1998-10-01

    In New Zealand, the Marlborough strike-slip faults link the Hikurangi subduction zone to the Alpine fault collision zone. Stratigraphic and structural analysis in the Marlborough region constrain the inception of the current strike-slip tectonics. Six major Neogene basins are investigated. Their infill is composed of marine and freshwater sediments up to 3 km thick; they are characterised by coarse facies derived from the basins bounding relief, high sedimentation rates and asymmetric geometries. Proposed factors that controlled the basins' generation are the initial geometry of the strike-slip faults and the progressive strike-slip motion. Two groups of basins are presented: the early Miocene (23 My) basins were generated under wrench tectonics above releasing-jogs between basement faults. The late Miocene (11 My) basins were initiated by halfgrabens tilted along straighter faults during a transtensive stage. Development of faults during Cretaceous to Oligocene times facilitated the following propagation of wrench tectonics. The Pliocene (5 My) to current increasing convergence has shortened the basins and distorted the Miocene array of faults. This study indicates that the Marlborough Fault System is an old feature that connected part of the Hikurangi margin to the Alpine fault since the subduction and collision initiation.

  15. Rotating speed isolation and its application to rolling element bearing fault diagnosis under large speed variation conditions

    Science.gov (United States)

    Wang, Yi; Xu, Guanghua; Zhang, Qing; Liu, Dan; Jiang, Kuosheng

    2015-07-01

    During the past decades, the conventional envelope analysis has been one of the main approaches in vibration signal processing. However, the envelope analysis is based on stationary assumption, thus it is not applicable to the fault diagnosis of bearings under rotating speed variation conditions. This constraint limits the bearing diagnosis in industrial applications significantly. In order to extend the conventional diagnosis technique to speed variation cases, a rotating speed isolation method is proposed. This method consists of four main steps: (a) a low-pass filter is used to separate the rotating speed components and the resonance frequency band from the original signal; (b) the trend line of instantaneous rotating frequency (IRF) is extracted by ridge detection from the short-time spectrum of the low-pass filtered signal; (c) the envelope signal is obtained by fast kurtogram based resonance demodulation; (d) the trend line of instantaneous fault characteristic frequency (IFCF) is extracted by ridge detection from the short-time spectrum of the envelope signal; (e) the rotating speed is isolated and the instantaneous fault characteristic order (FCO), which is obtained by simply dividing the IFCF by IRF, can be used to identify the fault type. By rotating speed isolation, the bearing faults under speed variation conditions can be detected without additional tachometers. The effectiveness of the proposed method has been validated by both simulated and experimental bearing vibration signals. The results show that the proposed method outperforms the conventional envelope analysis method and is effective in bearing diagnosis under speed variation conditions.

  16. Verification-based Software-fault Detection

    OpenAIRE

    Gladisch, Christoph David

    2011-01-01

    Software is used in many safety- and security-critical systems. Software development is, however, an error-prone task. In this dissertation new techniques for the detection of software faults (or software "bugs") are described which are based on a formal deductive verification technology. The described techniques take advantage of information obtained during verification and combine verification technology with deductive fault detection and test generation in a very unified way.

  17. Fault Detection and Isolation using Eigenstructure Assignment

    DEFF Research Database (Denmark)

    Jørgensen, R.B.; Patton, R.J.; Chen, J.

    1994-01-01

    The purpose of this article is to investigate the robustness to model uncertainties of observer based fault detection and isolation. The approach is designed with a straight forward dynamic nad the observer.......The purpose of this article is to investigate the robustness to model uncertainties of observer based fault detection and isolation. The approach is designed with a straight forward dynamic nad the observer....

  18. GN and C Fault Protection Fundamentals

    Science.gov (United States)

    Rasmussen, Robert D.

    2008-01-01

    This is a companion presentation for a paper by the same name for the same conference. The objective of this paper is to shed some light on the fundamentals of fault tolerant design for GN&C. The common heritage of ideas behind both faulted and normal operation is explored, as is the increasingly indistinct line between these realms in complex missions. Techniques in common practice are then evaluated in this light to suggest a better direction for future efforts.

  19. Energy-efficient fault-tolerant systems

    CERN Document Server

    Mathew, Jimson; Pradhan, Dhiraj K

    2013-01-01

    This book describes the state-of-the-art in energy efficient, fault-tolerant embedded systems. It covers the entire product lifecycle of electronic systems design, analysis and testing and includes discussion of both circuit and system-level approaches. Readers will be enabled to meet the conflicting design objectives of energy efficiency and fault-tolerance for reliability, given the up-to-date techniques presented.

  20. Modeling Fluid Flow in Faulted Basins

    Directory of Open Access Journals (Sweden)

    Faille I.

    2014-07-01

    Full Text Available This paper presents a basin simulator designed to better take faults into account, either as conduits or as barriers to fluid flow. It computes hydrocarbon generation, fluid flow and heat transfer on the 4D (space and time geometry obtained by 3D volume restoration. Contrary to classical basin simulators, this calculator does not require a structured mesh based on vertical pillars nor a multi-block structure associated to the fault network. The mesh follows the sediments during the evolution of the basin. It deforms continuously with respect to time to account for sedimentation, erosion, compaction and kinematic displacements. The simulation domain is structured in layers, in order to handle properly the corresponding heterogeneities and to follow the sedimentation processes (thickening of the layers. In each layer, the mesh is unstructured: it may include several types of cells such as tetrahedra, hexahedra, pyramid, prism, etc. However, a mesh composed mainly of hexahedra is preferred as they are well suited to the layered structure of the basin. Faults are handled as internal boundaries across which the mesh is non-matching. Different models are proposed for fault behavior such as impervious fault, flow across fault or conductive fault. The calculator is based on a cell centered Finite Volume discretisation, which ensures conservation of physical quantities (mass of fluid, heat at a discrete level and which accounts properly for heterogeneities. The numerical scheme handles the non matching meshes and guaranties appropriate connection of cells across faults. Results on a synthetic basin demonstrate the capabilities of this new simulator.