WorldWideScience

Sample records for ncar climate system

  1. An improved ENSO simulation by representing chlorophyll-induced climate feedback in the NCAR Community Earth System Model.

    Science.gov (United States)

    Kang, Xianbiao; Zhang, Rong-Hua; Gao, Chuan; Zhu, Jieshun

    2017-12-07

    The El Niño-Southern oscillation (ENSO) simulated in the Community Earth System Model of the National Center for Atmospheric Research (NCAR CESM) is much stronger than in reality. Here, satellite data are used to derive a statistical relationship between interannual variations in oceanic chlorophyll (CHL) and sea surface temperature (SST), which is then incorporated into the CESM to represent oceanic chlorophyll -induced climate feedback in the tropical Pacific. Numerical runs with and without the feedback (referred to as feedback and non-feedback runs) are performed and compared with each other. The ENSO amplitude simulated in the feedback run is more accurate than that in the non-feedback run; quantitatively, the Niño3 SST index is reduced by 35% when the feedback is included. The underlying processes are analyzed and the results show that interannual CHL anomalies exert a systematic modulating effect on the solar radiation penetrating into the subsurface layers, which induces differential heating in the upper ocean that affects vertical mixing and thus SST. The statistical modeling approach proposed in this work offers an effective and economical way for improving climate simulations.

  2. The Asian-Australian Monsoon and El Niño-Southern Oscillation in the NCAR Climate System Model*.

    Science.gov (United States)

    Meehl, Gerald A.; Arblaster, Julie M.

    1998-06-01

    Features associated with the Asian-Australian monsoon system and El Niño-Southern Oscillation (ENSO) are described in the National Center for Atmospheric Research (NCAR) global coupled Climate System Model (CSM). Simulation characteristics are compared with a version of the atmospheric component of the CSM, the NCAR CCM3, run with time-evolving SSTs from 1950 to 1994, and with observations. The CSM is shown to represent most major features of the monsoon system in terms of mean climatology, interannual variability, and connections to the tropical Pacific. This includes a representation of the Southern Oscillation links between strong Asian-Australian monsoons and associated negative SST anomalies in the eastern equatorial Pacific. The equatorial SST gradient across the Pacific in the CSM is shown to be similar to the observed with somewhat cooler mean SSTs across the entire Pacific by about 1°-2°C. The seasonal cycle of SSTs in the eastern equatorial Pacific has the characteristic signature seen in the observations of relatively warmer SSTs propagating westward in the first half of the year followed by the reestablishment of the cold tongue with relatively colder SSTs propagating westward in the second half of the year. Like other global coupled models, the propagation is similar to the observed but with the establishment of the relatively warmer water in the first half of the year occurring about 1-2 months later than observed. The seasonal cycle of precipitation in the tropical eastern Pacific is also similar to other global coupled models in that there is a tendency for a stronger-than-observed double ITCZ year round, particularly in northern spring, but with a well-reproduced annual maximum of ITCZ strength north of the equator in the second half of the year. Time series of area-averaged SSTs for the NINO3 region in the eastern equatorial Pacific show that the CSM is producing about 60% of the amplitude of the observed variability in that region, consistent

  3. Response of the East Asian climate system to water and heat changes of global frozen soil using NCAR CAM model

    Science.gov (United States)

    Xin, Y.

    2017-12-01

    Under the condition of land-atmosphere heat and water conservation, a set of sensitive numerical experiments are set up to investigate the response of the East Asian climate system to global frozen soil change. This is done by introducing the supercooled soil water process into the Community Land Model (CLM3.0), which has been coupled to the National Center of Atmospheric Research Community Atmosphere Model (CAM3.1). Results show that: 1) The ratio between soil ice and soil water in CLM3.0 is clearly changed by the supercooled soil water process. Ground surface temperature and soil temperature are also affected. 2) The Eurasian (including East Asian) climate system is sensitive to changes of heat and water in frozen soil regions. In January, the Aleutian low sea level pressure circulation is strengthened, Ural blocking high at 500 hPa weakened, and East Asian trough weakened. In July, sea level pressure over the Aleutian Islands region is significantly reduced; there are negative anomalies of 500 hPa geopotential height over the East Asian mainland, and positive anomalies over the East Asian ocean. 3) In January, the southerly component of the 850 hPa wind field over East Asia increases, indicating a weakened winter monsoon. In July, cyclonic anomalies appear on the East Asian mainland while there are anticyclonic anomalies over the ocean, reflective of a strengthened east coast summer monsoon. 4) Summer rainfall in East Asia changed significantly, including substantial precipitation increase on the southern Qinghai-Tibet Plateau, central Yangtze River Basin, and northeast China. Summer rainfall significantly decreased in south China and Hainan Island, but slightly decreased in central and north China. Further analysis showed considerable upper air motion along 30°N latitude, with substantial descent of air at its north and south sides. Warm and humid air from the Northeast Pacific converged with cold air from northern land areas, representing the main cause of

  4. An investigation of the Archean climate using the NCAR CCm

    International Nuclear Information System (INIS)

    Jenkins, G.S.

    1991-01-01

    The Archean (2.5 to 3.8 billion years ago) is of interest climatically, because of the 'Faint-Young Sun Paradox', which can be characterized by the Sun's reduced energy output. This lower energy output leads to a frozen planet if the climate existed as it does today. But, the geologic record shows that water was flowing at the earth's surface 3.8 billion years ago. Energy Balance Models (EBMs) and one-dimensional radiative-convective (1DRC) models predict a frozen planet for this time period, unless large carbon dioxide (CO2) concentrations exist in the Archean atmosphere. The goal is to explore the Archean climate with the National Center for Atmospheric Research (NCAR), Community Climate Model (CCM). The search for negative feedbacks to explain the 'Faint-Young Sun Paradox' is the thrust of this study. This study undertakes a series of sensitivity simulations which first explores individual factors that may be important for the Archean. They include rotation rate, lower solar luminosity, and land fraction. Then, these climatic factors along with higher CO2 concentrations are combined into a set of experiments. A faster rotation rate may have existed in the Archean. The faster rotation rate simulations show warmer globally averaged surface temperatures that are caused by a 20 percent decrease in the total cloud fraction. The smaller cloud fraction is brought about by dynamical changes. A global ocean is a possibility for the Archean. A global ocean simulation predicts 4 K increase in global mean surface temperatures compared to the present-day climate control

  5. Application of the system of assimilation of climatic data (CDAS) of the Project NCEP/NCAR - Reanalysis Dates Set For climatological and synoptic ends

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez, Jesus Antonio

    2001-01-01

    In response to an increasing demand of meteorological information on a synoptic scale and the need for a better and more precise knowledge of the different atmospheric fields on a local, regional and global scale, the program known as GRADS, developed by COLA in the US, has been implemented. to show graphically meteorological patterns at the surface and at different levels in the troposphere and lower stratosphere based on high-quality grid data prepared by NCEP/NCAR (NOAA)

  6. COSMIC Payload in NCAR-NASPO GPS Satellite System for Severe Weather Prediction

    Science.gov (United States)

    Lai-Chen, C.

    Severe weather, such as cyclones, heavy rainfall, outburst of cold air, etc., results in great disaster all the world. It is the mission for the scientists to design a warning system, to predict the severe weather systems and to reduce the damage of the society. In Taiwan, National Satellite Project Office (NSPO) initiated ROCSAT-3 program at 1997. She scheduled the Phase I conceptual design to determine the mission for observation weather system. Cooperating with National Center of Atmospheric Research (NCAR), NSPO involved an international cooperation research and operation program to build a 32 GPS satellites system. NCAR will offer 24 GPS satellites. The total expanse will be US 100 millions. NSPO also provide US 80 millions for launching and system engineering operation. And NCAR will be responsible for Payload Control Center and Fiducial Network. The cooperative program contract has been signed by Taiwan National Science Council, Taipei Economic Cultural Office of United States and American Institute in Taiwan. One of the payload is COSMIC, Constellation Observation System for Meteorology, Ionosphere and Climate. It is a GPS meteorology instrument system. The system will observe the weather information, e. g. electron density profiles, horizontal and vertical TEC and CFT scintillation and communication outage maps. The mission is to obtain the weather data such as vertical temperature profiles, water vapor distribution and pressure distribution over the world for global weather forecasting, especially during the severe weather period. The COSMIC Conference held on November, 1998. The export license was also issued by Department of Commerce of Unites States at November, 1998. Recently, NSPO begun to train their scientists to investigate the system. Scientists simulate the observation data to combine the existing routine satellite infrared cloud maps, radar echo and synoptic weather analysis for severe weather forecasting. It is hopeful to provide more accurate

  7. PLC based control system and maintenance activities at NCAR, Bilaspur

    International Nuclear Information System (INIS)

    Dewangan, Jaidev; Trivedi, T.; Patel, Shiv P.; Malik, C.; Kumar, Rakesh; Gupta, Santosh Kumar; Bajpai, P.K.

    2015-01-01

    A 3.0 MV high current low energy Pelletron Accelerator facility (Model 9SDH-4, NEC, USA) with TORUIS (ion source for H + and He 2+ beam current H + ion ∼ 50μA @ 6 MeV, He 2+ at ∼ 10μA) and SNICS-II ion source for heavy ions has been commissioned as 'National Centre for Accelerator Based Research' in the Department of Pure and Applied Physics, Guru Ghasidas Vishwavidyalaya. In this paper, we detail out the control system developed and implemented at NCAR. The basic idea of controlling the machine is by providing the output signal through PLC to ACPC of accelerator using user interface points provided by the manufacturer. The PLC based system generates output signal once it receives the feedback signals from search and secure switches, door lock switches and scram switches interlocked with PLC. The output is controlled by ladder logic and is activated only when all the radiation monitors are in healthy state and outside radiations monitor having low radiation level. The details of control system and maintenance activities will be discussed in the paper

  8. Final Report. Evaluating the Climate Sensitivity of Dissipative Subgrid-Scale Mixing Processes and Variable Resolution in NCAR's Community Earth System Model

    Energy Technology Data Exchange (ETDEWEB)

    Jablonowski, Christiane [Univ. of Michigan, Ann Arbor, MI (United States)

    2015-12-14

    The goals of this project were to (1) assess and quantify the sensitivity and scale-dependency of unresolved subgrid-scale mixing processes in NCAR’s Community Earth System Model (CESM), and (2) to improve the accuracy and skill of forthcoming CESM configurations on modern cubed-sphere and variable-resolution computational grids. The research thereby contributed to the description and quantification of uncertainties in CESM’s dynamical cores and their physics-dynamics interactions.

  9. Biosphere-Atmosphere Transfer Scheme (BATS) version le as coupled to the NCAR community climate model. Technical note. [NCAR (National Center for Atmospheric Research)

    Energy Technology Data Exchange (ETDEWEB)

    Dickinson, R.E.; Henderson-Sellers, A.; Kennedy, P.J.

    1993-08-01

    A comprehensive model of land-surface processes has been under development suitable for use with various National Center for Atmospheric Research (NCAR) General Circulation Models (GCMs). Special emphasis has been given to describing properly the role of vegetation in modifying the surface moisture and energy budgets. The result of these efforts has been incorporated into a boundary package, referred to as the Biosphere-Atmosphere Transfer Scheme (BATS). The current frozen version, BATS1e is a piece of software about four thousand lines of code that runs as an offline version or coupled to the Community Climate Model (CCM).

  10. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications Lab., Boulder, CO (United States)

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM).

  11. Impact of Amazon deforestation on climate simulations using the NCAR CCM2/BATS model

    Energy Technology Data Exchange (ETDEWEB)

    Hahmann, A.N.; Dickinson, R.E. [Univ. of Arizona, Tucson, AZ (United States)

    1996-12-31

    Model validation and results are briefly presented for a simulation of deforestation of the Amazon rainforest. This initial study is made using assumptions regarding deforestation similar to those in earlier studies with several versions of the NCAR Community Climate Model (CCM) couples to the Biosphere-Atmosphere Transfer Scheme (BATS). The model used is a revised version of the NCAR CCM Version 2 coupled to BATS Version 1e. This paper discusses the portion of validation dealing with the distribution of precipitation; the simulation displays very good agreement with observed rainfall rates for the austral summer. Preliminary results from an 8-year simulation of deforestation are similar to that of previous studies. Annual precipitation and evaporation are reduced, while surface air temperatures show a slight increase. A substantial bimodal pattern appears in the results, with the Amazon decrease of precipitation and temperature increase accompanied by changes in the opposite sign to the southeast of the Amazon. Similar patterns have occurred in other studies, but not always in exactly the same locations. Evidently, how much of the region of rainfall increase occurs in the deforested area over the Amazon strongly affects the inferred statistics. It is likely that this pattern depends on the model control climatology and possibly other features. 16 refs., 2 figs., 2 tabs.

  12. NCAR's Experimental Real-time Convection-allowing Ensemble Prediction System

    Science.gov (United States)

    Schwartz, C. S.; Romine, G. S.; Sobash, R.; Fossell, K.

    2016-12-01

    Since April 2015, the National Center for Atmospheric Research's (NCAR's) Mesoscale and Microscale Meteorology (MMM) Laboratory, in collaboration with NCAR's Computational Information Systems Laboratory (CISL), has been producing daily, real-time, 10-member, 48-hr ensemble forecasts with 3-km horizontal grid spacing over the conterminous United States (http://ensemble.ucar.edu). These computationally-intensive, next-generation forecasts are produced on the Yellowstone supercomputer, have been embraced by both amateur and professional weather forecasters, are widely used by NCAR and university researchers, and receive considerable attention on social media. Initial conditions are supplied by NCAR's Data Assimilation Research Testbed (DART) software and the forecast model is NCAR's Weather Research and Forecasting (WRF) model; both WRF and DART are community tools. This presentation will focus on cutting-edge research results leveraging the ensemble dataset, including winter weather predictability, severe weather forecasting, and power outage modeling. Additionally, the unique design of the real-time analysis and forecast system and computational challenges and solutions will be described.

  13. Simulation of the modern arctic climate by the NCAR CCM1

    Science.gov (United States)

    Bromwich, David H.; Tzeng, Ren-Yow; Parish, Thomas, R.

    1994-01-01

    The National Center of Atmospheric Research (NCAR) Community Climate Model Version 1 (CCM1's) simulation of the modern arctic climate is evaluated by comparing a five-year seasonal cycle simulation with the European Center for Medium-Range Weather Forecasts (ECMWF) global analyses. The sea level pressure (SLP), storm tracks, vertical cross section of height, 500-hPa height, total energy budget, and moisture budget are analyzed to investigate the biases in the simulated arctic climate. The results show that the model simulates anomalously low SLP, too much storm activity, and anomalously strong baroclinicity to the west of Greenland and vice versa to the east of Greenland. This bias is mainly attributed to the model's topographic representation of Greenland. First, the broadened Greenland topography in the model distorts the path of cyclone waves over the North Atlantic Ocean. Second, the model oversimulates the ridge over Greenland, which intensifies its blocking effect and steers the cyclone waves clockwise around it and hence produces an artificial circum-Greenland trough. These biases are significantly alleviated when the horizontal resolution increases to T42. Over the Arctic basin, the model simulates large amounts of low-level (stratus) clouds in winter and almost no stratus in summer, which is opposite to the observations. This bias is mainly due to the location of the simulated SLP features and the negative anomaly of storm activity, which prevent the transport of moisture into this region during summer but favor this transport in winter. The moisture budget analysis shows that the model's net annual precipitation (P-E) between 70 deg N and the North Pole is 6.6 times larger than the observations and the model transports six times more moisture into this region. The bias in the advection term is attributed to the positive moisture fixer scheme and the distorted flow pattern. However, the excessive moisture transport into the Arctic basin does not solely

  14. Expanding Access to NCAR's Digital Assets: Towards a Unified Scientific Data Management System

    Science.gov (United States)

    Stott, D.

    2016-12-01

    In 2014 the National Center for Atmospheric Research (NCAR) Directorate created the Data Stewardship Engineering Team (DSET) to plan and implement the strategic vision of an integrated front door for data discovery and access across the organization, including all laboratories, the library, and UCAR Community Programs. The DSET is focused on improving the quality of users' experiences in finding and using NCAR's digital assets. This effort also supports new policies included in federal mandates, NSF requirements, and journal publication rules. An initial survey with 97 respondents identified 68 persons responsible for more than 3 petabytes of data. An inventory, using the Data Asset Framework produced by the UK Digital Curation Centre as a starting point, identified asset types that included files and metadata, publications, images, and software (visualization, analysis, model codes). User story sessions with representatives from each lab identified and ranked desired features for a unified Scientific Data Management System (SDMS). A process beginning with an organization-wide assessment of metadata by the HDF Group and followed by meetings with labs to identify key documentation concepts, culminated in the development of an NCAR metadata dialect that leverages the DataCite and ISO 19115 standards. The tasks ahead are to build out an SDMS and populate it with rich standardized metadata. Software packages have been prototyped and currently are being tested and reviewed by DSET members. Key challenges for the DSET include technical and non-technical issues. First, the status quo with regard to how assets are managed varies widely across the organization. There are differences in file format standards, technologies, and discipline-specific vocabularies. Metadata diversity is another real challenge. The types of metadata, the standards used, and the capacity to create new metadata varies across the organization. Significant effort is required to develop tools to create

  15. Development of hybrid 3-D hydrological modeling for the NCAR Community Earth System Model (CESM)

    Energy Technology Data Exchange (ETDEWEB)

    Zeng, Xubin [Univ. of Arizona, Tucson, AZ (United States); Troch, Peter [Univ. of Arizona, Tucson, AZ (United States); Pelletier, Jon [Univ. of Arizona, Tucson, AZ (United States); Niu, Guo-Yue [Univ. of Arizona, Tucson, AZ (United States); Gochis, David [NCAR Research Applications (RAL), Boulder, CO (United States)

    2015-11-15

    This is the Final Report of our four-year (3-year plus one-year no cost extension) collaborative project between the University of Arizona (UA) and the National Center for Atmospheric Research (NCAR). The overall objective of our project is to develop and evaluate the first hybrid 3-D hydrological model with a horizontal grid spacing of 1 km for the NCAR Community Earth System Model (CESM). We have made substantial progress in model development and evaluation, computational efficiencies and software engineering, and data development and evaluation, as discussed in Sections 2-4. Section 5 presents our success in data dissemination, while Section 6 discusses the scientific impacts of our work. Section 7 discusses education and mentoring success of our project, while Section 8 lists our relevant DOE services. All peer-reviewed papers that acknowledged this project are listed in Section 9. Highlights of our achievements include: • We have finished 20 papers (most published already) on model development and evaluation, computational efficiencies and software engineering, and data development and evaluation • The global datasets developed under this project have been permanently archived and publicly available • Some of our research results have already been implemented in WRF and CLM • Patrick Broxton and Michael Brunke have received their Ph.D. • PI Zeng has served on DOE proposal review panels and DOE lab scientific focus area (SFA) review panels

  16. NCAR High-resolution Land Data Assimilation System and Its Recent Applications

    Science.gov (United States)

    Chen, F.; Manning, K.; Barlage, M.; Gochis, D.; Tewari, M.

    2008-05-01

    A High-Resolution Land Data Assimilation System (HRLDAS) has been developed at NCAR to meet the need for high-resolution initial conditions of land state (soil moisture and temperature) by today's numerical weather prediction models coupled to a land surface model such as the WRF/Noah coupled modeling system. Intended for conterminous US application, HRLDAS uses observed hourly 4-km national precipitation analysis and satellite-derived surface-solar-downward radiation to drive, in uncoupled mode, the Noah land surface model to simulate long-term evolution of soil state. The advantage of HRLDAS is its use of 1-km resolution land-use and soil texture maps and 4-km rainfall data. As a result, it is able to capture fine-scale heterogeneity at the surface and in the soil. The ultimate goal of HRLDAS development is to characterize soil moisture/temperature and vegetation variability at small scales (~4km) over large areas to provide improved initial land and vegetation conditions for the WRF/Noah coupled model. Hence, HRLDAS is configured after the WRF/Noah coupled model configuration to ensure the consistency in model resolution, physical configuration (e.g., terrain height), soil model, and parameters between the uncoupled soil initialization system and its coupled forecast counterpart. We will discuss various characteristics of HRLDAS, including its spin-up and sensitivity to errors in forcing data. We will describe recent enhancement in terms of hydrological modeling and the use of remote sensing data. We will discuss recent applications of HRLDAS for flood forecast, agriculture, and arctic land system.

  17. Comparison of the seasonal climate simulated by the pattern CCM3 and the data of the reanalysis NCEP/NCAR with the observed data of the temperature of the air and the precipitation in Colombia

    International Nuclear Information System (INIS)

    Leon Aristizabal, Gloria Esperanza; Zea Mazo, Jorge Anibal

    2001-01-01

    In this work we carry out a comparison of the simulations of the climatic model CCM3, the data of the NCEP/NCAR Reanalysis and real data, by the practical significance of the model based on the observed differences

  18. Historical simulations and climate change projections over India by NCAR CCSM4: CMIP5 vs. NEX-GDDP

    Science.gov (United States)

    Sahany, Sandeep; Mishra, Saroj Kanta; Salunke, Popat

    2018-03-01

    A new bias-corrected statistically downscaled product, namely, the NASA Earth Exchange Global Daily Downscaled Projections (NEX-GDDP), has recently been developed by NASA to help the scientific community in climate change impact studies at local to regional scale. In this work, the product is validated over India and its added value as compared to its CMIP5 counterpart for the NCAR CCSM4 model is analyzed, followed by climate change projections under the RCP8.5 global warming scenario using the two datasets for the variables daily maximum 2-m air temperature (Tmax), daily minimum 2-m air temperature (Tmin), and rainfall. It is found that, overall, the CCSM4-NEX-GDDP significantly reduces many of the biases in CCSM4-CMIP5 for the historical simulations; however, some biases such as the significant overestimation in the frequency of occurrence in the lower tail of the Tmax and Tmin still remain. In regard to rainfall, an important value addition in CCSM4-NEX-GDDP is the alleviation of the significant underestimation of rainfall extremes found in CCSM4-CMIP5. The projected Tmax from CCSM4-NEX-GDDP are in general higher than that projected by CCSM4-CMIP5, suggesting that the risks of heat waves and very hot days could be higher than that projected by the latter. CCSM4-NEX-GDDP projects the frequency of occurrence of the upper extreme values of historical Tmax to increase by a factor of 100 towards the end of century (as opposed to a factor of 10 increase projected by CCSM4-CMIP5). In regard to rainfall, both CCSM4-CMIP5 and CCSM4-NEX-GDDP project an increase in annual rainfall over India under the RCP8.5 global warming scenario progressively from the near term through the far term. However, CCSM4-NEX-GDDP consistently projects a higher magnitude of increase and over a larger area as compared to that projected by CCSM4-CMIP5. Projected daily rainfall distributions from CCSM4-CMIP5 and CCSM4-NEX-GDDP suggest the occurrence of events that have no historical precedents

  19. Coral Reef Habitat Suitability in Future Climate Scenarios from NCAR CESM1 considering a Suite of Biogeochemical Variables

    Science.gov (United States)

    Freeman, L. A.; Kleypas, J. A.; Miller, A. J.

    2013-12-01

    A maximum entropy species distribution model (Maxent) is used to describe coral reef habitat in current climate conditions and to predict changes to that habitat during the 21st century. Two climate change scenarios (RCP4.5 and RCP8.5) from the National Center for Atmospheric Research's Community Earth System Model version 1 (CESM1) were used with Maxent to determine environmental suitability for the family of corals Scleractina in 1° by 1° cells. Input environmental variables most suitable for representing coral habitat limitation are isolated using a principal component analysis and include cumulative thermal stress, salinity, light availability, current speed, phosphate levels and aragonite saturation state. Considering a suite of environmental variables allows for a more synergistic view of future habitat suitability, although individual variables are found to be limiting in certain areas- for example, aragonite saturation state is limiting at higher latitudes. Climate-driven coral reef habitat changes depend strongly on the oceanic region of interest and the region of corals used to train the niche model. Increased global coral habitat loss occurred in both RCP4.5 and RCP8.5 climate projections as time progressed through the 21th century. Maximum suitable habitat loss was 82% by 2100 for RCP8.5. When only Caribbean/Atlantic coral reef environmental data is applied globally, 88% of global habitat was lost by 2100 for RCP8.5. The global runs utilizing only Pacific Ocean reefs' ability to survive showed the most significant worldwide loss, 90% by 2100 for RCP8.5. When Maxent was trained with Indian Ocean reefs, an increase in suitable habitat worldwide was estimated. Habitat suitability was found to increase by 38% in RCP4.5 by 2100 and 28% in RCP8.5 by 2050. This suggests that shallow tropical sites in the Indian Ocean basin experience conditions today that are most similar to future worldwide climate projections. Indian Ocean reefs may be ideal candidate

  20. Collaborative Research: Quantifying the Uncertainties of Aerosol Indirect Effects and Impacts on Decadal-Scale Climate Variability in NCAR CAM5 and CESM1

    Energy Technology Data Exchange (ETDEWEB)

    Nenes, Athanasios [Georgia Inst. of Technology, Atlanta, GA (United States)

    2017-06-23

    The goal of this proposed project is to assess the climatic importance and sensitivity of aerosol indirect effect (AIE) to cloud and aerosol processes and feedbacks, which include organic aerosol hygroscopicity, cloud condensation nuclei (CCN) activation kinetics, Giant CCN, cloud-scale entrainment, ice nucleation in mixed-phase and cirrus clouds, and treatment of subgrid variability of vertical velocity. A key objective was to link aerosol, cloud microphysics and dynamics feedbacks in CAM5 with a suite of internally consistent and integrated parameterizations that provide the appropriate degrees of freedom to capture the various aspects of the aerosol indirect effect. The proposal integrated new parameterization elements into the cloud microphysics, moist turbulence and aerosol modules used by the NCAR Community Atmospheric Model version 5 (CAM5). The CAM5 model was then used to systematically quantify the uncertainties of aerosol indirect effects through a series of sensitivity tests with present-day and preindustrial aerosol emissions. New parameterization elements were developed as a result of these efforts, and new diagnostic tools & methodologies were also developed to quantify the impacts of aerosols on clouds and climate within fully coupled models. Observations were used to constrain key uncertainties in the aerosol-cloud links. Advanced sensitivity tools were developed and implements to probe the drivers of cloud microphysical variability with unprecedented temporal and spatial scale. All these results have been published in top and high impact journals (or are in the final stages of publication). This proposal has also supported a number of outstanding graduate students.

  1. A Collaborative Proposal: Simulating and Understanding Abrupt Climate-Ecosystem Changes During Holocene with NCAR-CCSM3.

    Energy Technology Data Exchange (ETDEWEB)

    Zhengyu Liu, Bette Otto-Bliesner

    2013-02-01

    We have made significant progress in our proposed work in the last 4 years (3 years plus 1 year of no cost extension). In anticipation of the next phase of study, we have spent time on the abrupt changes since the last glacial maximum. First, we have performed further model-data comparison based on our baseline TRACE-21 simulation and made important progress towards the understanding of several major climate transitions. Second, we have made a significant effort in processing the model output of TRACE-21 and have put this output on a website for access by the community. Third, we have completed many additional sensitivity experiments. In addition, we have organized synthesis workshops to facilitate and promote transient model-data comparison for the international community. Finally, we have identified new areas of interest for Holocene climate changes.

  2. Responses of Mixed-Phase Cloud Condensates and Cloud Radiative Effects to Ice Nucleating Particle Concentrations in NCAR CAM5 and DOE ACME Climate Models

    Science.gov (United States)

    Liu, X.; Shi, Y.; Wu, M.; Zhang, K.

    2017-12-01

    Mixed-phase clouds frequently observed in the Arctic and mid-latitude storm tracks have the substantial impacts on the surface energy budget, precipitation and climate. In this study, we first implement the two empirical parameterizations (Niemand et al. 2012 and DeMott et al. 2015) of heterogeneous ice nucleation for mixed-phase clouds in the NCAR Community Atmosphere Model Version 5 (CAM5) and DOE Accelerated Climate Model for Energy Version 1 (ACME1). Model simulated ice nucleating particle (INP) concentrations based on Niemand et al. and DeMott et al. are compared with those from the default ice nucleation parameterization based on the classical nucleation theory (CNT) in CAM5 and ACME, and with in situ observations. Significantly higher INP concentrations (by up to a factor of 5) are simulated from Niemand et al. than DeMott et al. and CNT especially over the dust source regions in both CAM5 and ACME. Interestingly the ACME model simulates higher INP concentrations than CAM5, especially in the Polar regions. This is also the case when we nudge the two models' winds and temperature towards the same reanalysis, indicating more efficient transport of aerosols (dust) to the Polar regions in ACME. Next, we examine the responses of model simulated cloud liquid water and ice water contents to different INP concentrations from three ice nucleation parameterizations (Niemand et al., DeMott et al., and CNT) in CAM5 and ACME. Changes in liquid water path (LWP) reach as much as 20% in the Arctic regions in ACME between the three parameterizations while the LWP changes are smaller and limited in the Northern Hemispheric mid-latitudes in CAM5. Finally, the impacts on cloud radiative forcing and dust indirect effects on mixed-phase clouds are quantified with the three ice nucleation parameterizations in CAM5 and ACME.

  3. An Efficient Workflow Environment to Support the Collaborative Development of Actionable Climate Information Using the NCAR Climate Risk Management Engine (CRMe)

    Science.gov (United States)

    Ammann, C. M.; Vigh, J. L.; Lee, J. A.

    2016-12-01

    Society's growing needs for robust and relevant climate information have fostered an explosion in tools and frameworks for processing climate projections. Many top-down workflows might be employed to generate sets of pre-computed data and plots, frequently served in a "loading-dock style" through a metadata-enabled search and discovery engine. Despite these increasing resources, the diverse needs of applications-driven projects often result in data processing workflow requirements that cannot be fully satisfied using past approaches. In parallel to the data processing challenges, the provision of climate information to users in a form that is also usable represents a formidable challenge of its own. Finally, many users do not have the time nor the desire to synthesize and distill massive volumes of climate information to find the relevant information for their particular application. All of these considerations call for new approaches to developing actionable climate information. CRMe seeks to bridge the gap between the diversity and richness of bottom-up needs of practitioners, with discrete, structured top-down workflows typically implemented for rapid delivery. Additionally, CRMe has implemented web-based data services capable of providing focused climate information in usable form for a given location, or as spatially aggregated information for entire regions or countries following the needs of users and sectors. Making climate data actionable also involves summarizing and presenting it in concise and approachable ways. CRMe is developing the concept of dashboards, co-developed with the users, to condense the key information into a quick summary of the most relevant, curated climate data for a given discipline, application, or location, while still enabling users to efficiently conduct deeper discovery into rich datasets on an as-needed basis.

  4. Progress Report 2008: A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Drake, John B [ORNL; Worley, Patrick H [ORNL; Hoffman, Forrest M [ORNL; Jones, Phil [Los Alamos National Laboratory (LANL)

    2009-01-01

    This project employs multi-disciplinary teams to accelerate development of the Community Climate System Model (CCSM), based at the National Center for Atmospheric Research (NCAR). A consortium of eight Department of Energy (DOE) National Laboratories collaborate with NCAR and the NASA Global Modeling and Assimilation Office (GMAO). The laboratories are Argonne (ANL), Brookhaven (BNL) Los Alamos (LANL), Lawrence Berkeley (LBNL), Lawrence Livermore (LLNL), Oak Ridge (ORNL), Pacific Northwest (PNNL) and Sandia (SNL). The work plan focuses on scalablity for petascale computation and extensibility to a more comprehensive earth system model. Our stated goal is to support the DOE mission in climate change research by helping ... To determine the range of possible climate changes over the 21st century and beyond through simulations using a more accurate climate system model that includes the full range of human and natural climate feedbacks with increased realism and spatial resolution.

  5. The NCEP/NCAR 40-Year Reanalysis Project.

    Science.gov (United States)

    Kalnay, E.; Kanamitsu, M.; Kistler, R.; Collins, W.; Deaven, D.; Gandin, L.; Iredell, M.; Saha, S.; White, G.; Woollen, J.; Zhu, Y.; Leetmaa, A.; Reynolds, B.; Chelliah, M.; Ebisuzaki, W.; Higgins, W.; Janowiak, J.; Mo, K. C.; Ropelewski, C.; Wang, J.; Jenne, Roy; Joseph, Dennis

    1996-03-01

    The NCEP and NCAR are cooperating in a project (denoted "reanalysis") to produce a 40-year record of global analyses of atmospheric fields in support of the needs of the research and climate monitoring communities. This effort involves the recovery of land surface, ship, rawinsonde, pibal, aircraft, satellite, and other data; quality controlling and assimilating these data with a data assimilation system that is kept unchanged over the reanalysis period 1957-96. This eliminates perceived climate jumps associated with changes in the data assimilation system.The NCEP/NCAR 40-yr reanalysis uses a frozen state-of-the-art global data assimilation system and a database as complete as possible. The data assimilation and the model used are identical to the global system implemented operationally at the NCEP on 11 January 1995, except that the horizontal resolution is T62 (about 210 km). The database has been enhanced with many sources of observations not available in real time for operations, provided by different countries and organizations. The system has been designed with advanced quality control and monitoring components, and can produce 1 mon of reanalysis per day on a Cray YMP/8 supercomputer. Different types of output archives are being created to satisfy different user needs, including a "quick look" CD-ROM (one per year) with six tropospheric and stratospheric fields available twice daily, as well as surface, top-of-the-atmosphere, and isentropic fields. Reanalysis information and selected output is also available on-line via the Internet (http//:nic.fb4.noaa.gov:8000). A special CD-ROM, containing 13 years of selected observed, daily, monthly, and climatological data from the NCEP/NCAR Re-analysis, is included with this issue. Output variables are classified into four classes, depending on the degree to which they are influenced by the observations and/or the model. For example, "C" variables (such as precipitation and surface fluxes) are completely determined

  6. ARCAS (ACACIA Regional Climate-data Access System) -- a Web Access System for Climate Model Data Access, Visualization and Comparison

    Science.gov (United States)

    Hakkarinen, C.; Brown, D.; Callahan, J.; hankin, S.; de Koningh, M.; Middleton-Link, D.; Wigley, T.

    2001-05-01

    A Web-based access system to climate model output data sets for intercomparison and analysis has been produced, using the NOAA-PMEL developed Live Access Server software as host server and Ferret as the data serving and visualization engine. Called ARCAS ("ACACIA Regional Climate-data Access System"), and publicly accessible at http://dataserver.ucar.edu/arcas, the site currently serves climate model outputs from runs of the NCAR Climate System Model for the 21st century, for Business as Usual and Stabilization of Greenhouse Gas Emission scenarios. Users can select, download, and graphically display single variables or comparisons of two variables from either or both of the CSM model runs, averaged for monthly, seasonal, or annual time resolutions. The time length of the averaging period, and the geographical domain for download and display, are fully selectable by the user. A variety of arithmetic operations on the data variables can be computed "on-the-fly", as defined by the user. Expansions of the user-selectable options for defining analysis options, and for accessing other DOD-compatible ("Distributed Ocean Data System-compatible") data sets, residing at locations other than the NCAR hardware server on which ARCAS operates, are planned for this year. These expansions are designed to allow users quick and easy-to-operate web-based access to the largest possible selection of climate model output data sets available throughout the world.

  7. Reversible and irreversible impacts of greenhouse gas emissions in multi-century projections with the NCAR global coupled carbon cycle-climate model

    Energy Technology Data Exchange (ETDEWEB)

    Froelicher, Thomas L.; Joos, Fortunat [University of Bern, Climate and Environmental Physics, Physics Institute, Bern (Switzerland); University of Bern, Oeschger Centre for Climate Change Research, Bern (Switzerland)

    2010-12-15

    The legacy of historical and the long-term impacts of 21st century greenhouse gas emissions on climate, ocean acidification, and carbon-climate feedbacks are investigated with a coupled carbon cycle-climate model. Emission commitment scenarios with zero emissions after year 2100 and 21st century emissions of 1,800, 900, and 0 gigatons of carbon are run up to year 2500. The reversibility and irreversibility of impacts is quantified by comparing anthropogenically-forced regional changes with internal, unforced climate variability. We show that the influence of historical emissions and of non-CO{sub 2} agents is largely reversible on the regional scale. Forced changes in surface temperature and precipitation become smaller than internal variability for most land and ocean grid cells in the absence of future carbon emissions. In contrast, continued carbon emissions over the 21st century cause irreversible climate change on centennial to millennial timescales in most regions and impacts related to ocean acidification and sea level rise continue to aggravate for centuries even if emissions are stopped in year 2100. Undersaturation of the Arctic surface ocean with respect to aragonite, a mineral form of calcium carbonate secreted by marine organisms, is imminent and remains widespread. The volume of supersaturated water providing habitat to calcifying organisms is reduced from preindustrial 40 to 25% in 2100 and to 10% in 2300 for the high emission case. We conclude that emission trading schemes, related to the Kyoto Process, should not permit trading between emissions of relatively short-lived agents and CO{sub 2} given the irreversible impacts of anthropogenic carbon emissions. (orig.)

  8. Regional decadal predictions of coupled climate-human systems

    Science.gov (United States)

    Curchitser, E. N.; Lawrence, P.; Felder, F.; Large, W.; Bacmeister, J. T.; Andrews, C.; Kopp, R. E.

    2016-12-01

    We present results from a project to develop a framework for investigating the interactions between human activity and the climate system using state-of-the-art multi-scale, climate and economic models. The model is applied to the highly industrialized and urbanized coastal region of the northeast US with an emphasis on New Jersey. The framework is developed around the NCAR Community Earth System Model (CESM). The CESM model capabilities are augmented with enhanced resolution of the atmosphere (25 km), land surface (I km) and ocean models (7 km) in our region of interest. To the climate model, we couple human activity models for the utility sector and a 300-equation econometric model with sectorial details of an input-output model for the New Jersey economy. We will present results to date showing the potential impact of climate change on electricity markets on its consequences on economic activity in the region.

  9. Climate Forecast System

    Science.gov (United States)

    Weather Service NWS logo - Click to go to the NWS home page Climate Forecast System Home News Organization Web portal to all Federal, state and local government Web resources and services. The NCEP Climate when using the CFS Reanalysis (CFSR) data. Saha, Suranjana, and Coauthors, 2010: The NCEP Climate

  10. NCAR Earth Observing Laboratory - An End-to-End Observational Science Enterprise

    Science.gov (United States)

    Rockwell, A.; Baeuerle, B.; Grubišić, V.; Hock, T. F.; Lee, W. C.; Ranson, J.; Stith, J. L.; Stossmeister, G.

    2017-12-01

    Researchers who want to understand and describe the Earth System require high-quality observations of the atmosphere, ocean, and biosphere. Making these observations not only requires capable research platforms and state-of-the-art instrumentation but also benefits from comprehensive in-field project management and data services. NCAR's Earth Observing Laboratory (EOL) is an end-to-end observational science enterprise that provides leadership in observational research to scientists from universities, U.S. government agencies, and NCAR. Deployment: EOL manages the majority of the NSF Lower Atmosphere Observing Facilities, which includes research aircraft, radars, lidars, profilers, and surface and sounding systems. This suite is designed to address a wide range of Earth system science - from microscale to climate process studies and from the planet's surface into the Upper Troposphere/Lower Stratosphere. EOL offers scientific, technical, operational, and logistics support to small and large field campaigns across the globe. Development: By working closely with the scientific community, EOL's engineering and scientific staff actively develop the next generation of observing facilities, staying abreast of emerging trends, technologies, and applications in order to improve our measurement capabilities. Through our Design and Fabrication Services, we also offer high-level engineering and technical expertise, mechanical design, and fabrication to the atmospheric research community. Data Services: EOL's platforms and instruments collect unique datasets that must be validated, archived, and made available to the research community. EOL's Data Management and Services deliver high-quality datasets and metadata in ways that are transparent, secure, and easily accessible. We are committed to the highest standard of data stewardship from collection to validation to archival. Discovery: EOL promotes curiosity about Earth science, and fosters advanced understanding of the

  11. Facilitating NCAR Data Discovery by Connecting Related Resources

    Science.gov (United States)

    Rosati, A.

    2012-12-01

    Linking datasets, creators, and users by employing the proper standards helps to increase the impact of funded research. In order for users to find a dataset, it must first be named. Data citations play the important role of giving datasets a persistent presence by assigning a formal "name" and location. This project focuses on the next step of the "name-find-use" sequence: enhancing discoverability of NCAR data by connecting related resources on the web. By examining metadata schemas that document datasets, I examined how Semantic Web approaches can help to ensure the widest possible range of data users. The focus was to move from search engine optimization (SEO) to information connectivity. Two main markup types are very visible in the Semantic Web and applicable to scientific dataset discovery: The Open Archives Initiative-Object Reuse and Exchange (OAI-ORE - www.openarchives.org) and Microdata (HTML5 and www.schema.org). My project creates pilot aggregations of related resources using both markup types for three case studies: The North American Regional Climate Change Assessment Program (NARCCAP) dataset and related publications, the Palmer Drought Severity Index (PSDI) animation and image files from NCAR's Visualization Lab (VisLab), and the multidisciplinary data types and formats from the Advanced Cooperative Arctic Data and Information Service (ACADIS). This project documents the differences between these markups and how each creates connectedness on the web. My recommendations point toward the most efficient and effective markup schema for aggregating resources within the three case studies based on the following assessment criteria: ease of use, current state of support and adoption of technology, integration with typical web tools, available vocabularies and geoinformatic standards, interoperability with current repositories and access portals (e.g. ESG, Java), and relation to data citation tools and methods.

  12. Arctic Climate Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Ivey, Mark D. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Robinson, David G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Boslough, Mark B. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Backus, George A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Peterson, Kara J. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); van Bloemen Waanders, Bart G. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Swiler, Laura Painton [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Desilets, Darin Maurice [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Reinert, Rhonda Karen [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States)

    2015-03-01

    This study began with a challenge from program area managers at Sandia National Laboratories to technical staff in the energy, climate, and infrastructure security areas: apply a systems-level perspective to existing science and technology program areas in order to determine technology gaps, identify new technical capabilities at Sandia that could be applied to these areas, and identify opportunities for innovation. The Arctic was selected as one of these areas for systems level analyses, and this report documents the results. In this study, an emphasis was placed on the arctic atmosphere since Sandia has been active in atmospheric research in the Arctic since 1997. This study begins with a discussion of the challenges and benefits of analyzing the Arctic as a system. It goes on to discuss current and future needs of the defense, scientific, energy, and intelligence communities for more comprehensive data products related to the Arctic; assess the current state of atmospheric measurement resources available for the Arctic; and explain how the capabilities at Sandia National Laboratories can be used to address the identified technological, data, and modeling needs of the defense, scientific, energy, and intelligence communities for Arctic support.

  13. The NCAR Digital Asset Services Hub (DASH): Implementing Unified Data Discovery and Access

    Science.gov (United States)

    Stott, D.; Worley, S. J.; Hou, C. Y.; Nienhouse, E.

    2017-12-01

    The National Center for Atmospheric Research (NCAR) Directorate created the Data Stewardship Engineering Team (DSET) to plan and implement an integrated single entry point for uniform digital asset discovery and access across the organization in order to improve the efficiency of access, reduce the costs, and establish the foundation for interoperability with other federated systems. This effort supports new policies included in federal funding mandates, NSF data management requirements, and journal citation recommendations. An inventory during the early planning stage identified diverse asset types across the organization that included publications, datasets, metadata, models, images, and software tools and code. The NCAR Digital Asset Services Hub (DASH) is being developed and phased in this year to improve the quality of users' experiences in finding and using these assets. DASH serves to provide engagement, training, search, and support through the following four nodes (see figure). DASH MetadataDASH provides resources for creating and cataloging metadata to the NCAR Dialect, a subset of ISO 19115. NMDEdit, an editor based on a European open source application, has been configured for manual entry of NCAR metadata. CKAN, an open source data portal platform, harvests these XML records (along with records output directly from databases) from a Web Accessible Folder (WAF) on GitHub for validation. DASH SearchThe NCAR Dialect metadata drives cross-organization search and discovery through CKAN, which provides the display interface of search results. DASH search will establish interoperability by facilitating metadata sharing with other federated systems. DASH ConsultingThe DASH Data Curation & Stewardship Coordinator assists with Data Management (DM) Plan preparation and advises on Digital Object Identifiers. The coordinator arranges training sessions on the DASH metadata tools and DM planning, and provides one-on-one assistance as requested. DASH Repository

  14. The National Center for Atmospheric Research (NCAR) Research Data Archive: a Data Education Center

    Science.gov (United States)

    Peng, G. S.; Schuster, D.

    2015-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA), rda.ucar.edu, is not just another data center or data archive. It is a data education center. We not only serve data, we TEACH data. Weather and climate data is the original "Big Data" dataset and lessons learned while playing with weather data are applicable to a wide range of data investigations. Erroneous data assumptions are the Achilles heel of Big Data. It doesn't matter how much data you crunch if the data is not what you think it is. Each dataset archived at the RDA is assigned to a data specialist (DS) who curates the data. If a user has a question not answered in the dataset information web pages, they can call or email a skilled DS for further clarification. The RDA's diverse staff—with academic training in meteorology, oceanography, engineering (electrical, civil, ocean and database), mathematics, physics, chemistry and information science—means we likely have someone who "speaks your language." Data discovery is another difficult Big Data problem; one can only solve problems with data if one can find the right data. Metadata, both machine and human-generated, underpin the RDA data search tools. Users can quickly find datasets by name or dataset ID number. They can also perform a faceted search that successively narrows the options by user requirements or simply kick off an indexed search with a few words. Weather data formats can be difficult to read for non-expert users; it's usually packed in binary formats requiring specialized software and parameter names use specialized vocabularies. DSs create detailed information pages for each dataset and maintain lists of helpful software, documentation and links of information around the web. We further grow the level of sophistication of the users with tips, tutorials and data stories on the RDA Blog, http://ncarrda.blogspot.com/. How-to video tutorials are also posted on the NCAR Computational and Information Systems

  15. Climate Discovery: Integrating Research With Exhibit, Public Tours, K-12, and Web-based EPO Resources

    Science.gov (United States)

    Foster, S. Q.; Carbone, L.; Gardiner, L.; Johnson, R.; Russell, R.; Advisory Committee, S.; Ammann, C.; Lu, G.; Richmond, A.; Maute, A.; Haller, D.; Conery, C.; Bintner, G.

    2005-12-01

    The Climate Discovery Exhibit at the National Center for Atmospheric Research (NCAR) Mesa Lab provides an exciting conceptual outline for the integration of several EPO activities with other well-established NCAR educational resources and programs. The exhibit is organized into four topic areas intended to build understanding among NCAR's 80,000 annual visitors, including 10,000 school children, about Earth system processes and scientific methods contributing to a growing body of knowledge about climate and global change. These topics include: 'Sun-Earth Connections,' 'Climate Now,' 'Climate Past,' and 'Climate Future.' Exhibit text, graphics, film and electronic media, and interactives are developed and updated through collaborations between NCAR's climate research scientists and staff in the Office of Education and Outreach (EO) at the University Corporation for Atmospheric Research (UCAR). With funding from NCAR, paleoclimatologists have contributed data and ideas for a new exhibit Teachers' Guide unit about 'Climate Past.' This collection of middle-school level, standards-aligned lessons are intended to help students gain understanding about how scientists use proxy data and direct observations to describe past climates. Two NASA EPO's have funded the development of 'Sun-Earth Connection' lessons, visual media, and tips for scientists and teachers. Integrated with related content and activities from the NASA-funded Windows to the Universe web site, these products have been adapted to form a second unit in the Climate Discovery Teachers' Guide about the Sun's influence on Earth's climate. Other lesson plans, previously developed by on-going efforts of EO staff and NSF's previously-funded Project Learn program are providing content for a third Teachers' Guide unit on 'Climate Now' - the dynamic atmospheric and geological processes that regulate Earth's climate. EO has plans to collaborate with NCAR climatologists and computer modelers in the next year to develop

  16. Conceptualizing Climate Change in the Context of a Climate System: Implications for Climate and Environmental Education

    Science.gov (United States)

    Shepardson, Daniel P.; Niyogi, Dev; Roychoudhury, Anita; Hirsch, Andrew

    2012-01-01

    Today there is much interest in teaching secondary students about climate change. Much of this effort has focused directly on students' understanding of climate change. We hypothesize, however, that in order for students to understand climate change they must first understand climate as a system and how changes to this system due to both natural…

  17. An assessment of the surface climate in the NCEP climate forecast system reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wanqiu; Xie, Pingping; Yoo, Soo-Hyun; Xue, Yan; Kumar, Arun [Climate Prediction Center, NCEP/NWS/NOAA, Camp Springs, MD (United States); Wu, Xingren [Environmental Modeling Center, NCEP/NWS/NOAA, Camp Springs, MD (United States)

    2011-10-15

    This paper analyzes surface climate variability in the climate forecast system reanalysis (CFSR) recently completed at the National Centers for Environmental Prediction (NCEP). The CFSR represents a new generation of reanalysis effort with first guess from a coupled atmosphere-ocean-sea ice-land forecast system. This study focuses on the analysis of climate variability for a set of surface variables including precipitation, surface air 2-m temperature (T2m), and surface heat fluxes. None of these quantities are assimilated directly and thus an assessment of their variability provides an independent measure of the accuracy. The CFSR is compared with observational estimates and three previous reanalyses (the NCEP/NCAR reanalysis or R1, the NCEP/DOE reanalysis or R2, and the ERA40 produced by the European Centre for Medium-Range Weather Forecasts). The CFSR has improved time-mean precipitation distribution over various regions compared to the three previous reanalyses, leading to a better representation of freshwater flux (evaporation minus precipitation). For interannual variability, the CFSR shows improved precipitation correlation with observations over the Indian Ocean, Maritime Continent, and western Pacific. The T2m of the CFSR is superior to R1 and R2 with more realistic interannual variability and long-term trend. On the other hand, the CFSR overestimates downward solar radiation flux over the tropical Western Hemisphere warm pool, consistent with a negative cloudiness bias and a positive sea surface temperature bias. Meanwhile, the evaporative latent heat flux in CFSR appears to be larger than other observational estimates over most of the globe. A few deficiencies in the long-term variations are identified in the CFSR. Firstly, dramatic changes are found around 1998-2001 in the global average of a number of variables, possibly related to the changes in the assimilated satellite observations. Secondly, the use of multiple streams for the CFSR induces spurious

  18. Management and Stewardship of Airborne Observational Data for the NSF/NCAR HIAPER (GV) and NSF/NCAR C-130 at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    Science.gov (United States)

    Aquino, J.

    2014-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies. The data collected are an important legacy of these field campaigns. A comprehensive metadata database and integrated cyber-infrastructure, along with a robust data workflow that begins during the field phase and extends to long-term archival (current aircraft data holdings go back to 1967), assures that: all data and associated software are safeguarded throughout the data handling process; community standards of practice for data stewardship and software version control are followed; simple and timely community access to collected data and associated software tools are provided; and the quality of the collected data is preserved, with the ultimate goal of supporting research and the reproducibility of published results. The components of this data system to be presented include: robust, searchable web access to data holdings; reliable, redundant data storage; web-based tools and scripts for efficient creation, maintenance and update of data holdings; access to supplemental data and documentation; storage of data in standardized data formats; comprehensive metadata collection; mature version control; human-discernable storage practices; and procedures to inform users of changes. In addition, lessons learned, shortcomings, and desired upgrades

  19. A new synoptic scale resolving global climate simulation using the Community Earth System Model

    Science.gov (United States)

    Small, R. Justin; Bacmeister, Julio; Bailey, David; Baker, Allison; Bishop, Stuart; Bryan, Frank; Caron, Julie; Dennis, John; Gent, Peter; Hsu, Hsiao-ming; Jochum, Markus; Lawrence, David; Muñoz, Ernesto; diNezio, Pedro; Scheitlin, Tim; Tomas, Robert; Tribbia, Joseph; Tseng, Yu-heng; Vertenstein, Mariana

    2014-12-01

    High-resolution global climate modeling holds the promise of capturing planetary-scale climate modes and small-scale (regional and sometimes extreme) features simultaneously, including their mutual interaction. This paper discusses a new state-of-the-art high-resolution Community Earth System Model (CESM) simulation that was performed with these goals in mind. The atmospheric component was at 0.25° grid spacing, and ocean component at 0.1°. One hundred years of "present-day" simulation were completed. Major results were that annual mean sea surface temperature (SST) in the equatorial Pacific and El-Niño Southern Oscillation variability were well simulated compared to standard resolution models. Tropical and southern Atlantic SST also had much reduced bias compared to previous versions of the model. In addition, the high resolution of the model enabled small-scale features of the climate system to be represented, such as air-sea interaction over ocean frontal zones, mesoscale systems generated by the Rockies, and Tropical Cyclones. Associated single component runs and standard resolution coupled runs are used to help attribute the strengths and weaknesses of the fully coupled run. The high-resolution run employed 23,404 cores, costing 250 thousand processor-hours per simulated year and made about two simulated years per day on the NCAR-Wyoming supercomputer "Yellowstone."

  20. Building a global federation system for climate change research: the earth system grid center for enabling technologies (ESG-CET)

    International Nuclear Information System (INIS)

    Ananthakrishnan, R; Bernholdt, D E; Bharathi, S; Brown, D; Chen, M; Chervenak, A L; Cinquini, L; Drach, R; Foster, I T; Fox, P; Fraser, D; Halliday, K; Hankin, S; Jones, P; Kesselman, C; Middleton, D E; Schwidder, J; Schweitzer, R; Schuler, R; Shoshani, A; Siebenlist, F; Sim, A; Strand, W G; Wilhelmi, N; Su, M; Williams, D N

    2007-01-01

    The recent release of the Intergovernmental Panel on Climate Change (IPCC) 4th Assessment Report (AR4) has generated significant media attention. Much has been said about the US role in this report, which included significant support from the Department of Energy through the Scientific Discovery through Advanced Computing (SciDAC) and other Department of Energy (DOE) programs for climate model development and the production execution of simulations. The SciDAC-supported Earth System Grid Center for Enabling Technologies (ESG-CET) also played a major role in the IPCC AR4: all of the simulation data that went into the report was made available to climate scientists worldwide exclusively via the ESG-CET At the same time as the IPCC AR4 database was being developed, the National Center for Atmospheric Research (NCAR), a leading US climate science laboratory and a ESG participant, began publishing model runs from the Community Climate System Model (CCSM), and its predecessor the Parallel Coupled Model (PCM) through ESG In aggregate, ESG-CET provides seamless access to over 180 terabytes of distributed climate simulation data to over 6,000 registered users worldwide, who have taken delivery of more than 250 terabytes from the archive. Not only does this represent a substantial advance in scientific knowledge, it is also a major step forward in how we conduct the research process on a global scale. Moving forward, the next IPCC assessment report, AR5, will demand multi-site metadata federation for data discovery and cross-domain identity management for single sign-on of users in a more diverse federation enterprise environment. Towards this aim, ESG is leading the effort in the climate community towards standardization of material for the global federation of metadata, security, and data services required to standardize, analyze, and access data worldwide

  1. Supporting National User Communities at NERSC and NCAR

    Energy Technology Data Exchange (ETDEWEB)

    Killeen, Timothy L.; Simon, Horst D.

    2006-05-16

    The National Energy Research Scientific Computing Center(NERSC) and the National Center for Atmospheric Research (NCAR) are twocomputing centers that have traditionally supported large national usercommunities. Both centers have developed responsive approaches to supportthese user communities and their changing needs, providing end-to-endcomputing solutions. In this report we provide a short overview of thestrategies used at our centers in supporting our scientific users, withan emphasis on some examples of effective programs and futureneeds.

  2. Climate Change Education in Earth System Science

    Science.gov (United States)

    Hänsel, Stephanie; Matschullat, Jörg

    2013-04-01

    The course "Atmospheric Research - Climate Change" is offered to master Earth System Science students within the specialisation "Climate and Environment" at the Technical University Bergakademie Freiberg. This module takes a comprehensive approach to climate sciences, reaching from the natural sciences background of climate change via the social components of the issue to the statistical analysis of changes in climate parameters. The course aims at qualifying the students to structure the physical and chemical basics of the climate system including relevant feedbacks. The students can evaluate relevant drivers of climate variability and change on various temporal and spatial scales and can transform knowledge from climate history to the present and the future. Special focus is given to the assessment of uncertainties related to climate observations and projections as well as the specific challenges of extreme weather and climate events. At the end of the course the students are able to critically reflect and evaluate climate change related results of scientific studies and related issues in media. The course is divided into two parts - "Climate Change" and "Climate Data Analysis" and encompasses two lectures, one seminar and one exercise. The weekly "Climate change" lecture transmits the physical and chemical background for climate variation and change. (Pre)historical, observed and projected climate changes and their effects on various sectors are being introduced and discussed regarding their implications for society, economics, ecology and politics. The related seminar presents and discusses the multiple reasons for controversy in climate change issues, based on various texts. Students train the presentation of scientific content and the discussion of climate change aspects. The biweekly lecture on "Climate data analysis" introduces the most relevant statistical tools and methods in climate science. Starting with checking data quality via tools of exploratory

  3. Comparing the Global Charcoal Database with Burned Area Trends from an Offline Fire Model Driven by the NCAR Last Millennium Ensemble

    Science.gov (United States)

    Schaefer, A.; Magi, B. I.; Marlon, J. R.; Bartlein, P. J.

    2017-12-01

    This study uses an offline fire model driven by output from the NCAR Community Earth System Model Last Millennium Ensemble (LME) to evaluate how climate, ecological, and human factors contributed to burned area over the past millennium, and uses the Global Charcoal Database (GCD) record of fire activity as a constraint. The offline fire model is similar to the fire module within the NCAR Community Land Model. The LME experiment includes 13 simulations of the Earth system from 850 CE through 2005 CE, and the fire model simulates burned area using LME climate and vegetation with imposed land use and land cover change. The fire model trends are compared to GCD records of charcoal accumulation rates derived from sediment cores. The comparisons are a way to assess the skill of the fire model, but also set up a methodology to directly test hypotheses of the main drivers of fire patterns over the past millennium. The focus is on regions selected from the GCD with high data density, and that have lake sediment cores that best capture the last millennium. Preliminary results are based on a fire model which excludes burning cropland and pasture land cover types, but this allows some assessment of how climate variability is captured by the fire model. Generally, there is good agreement between modeled burned area trends and fire trends from GCD for many regions of interest, suggesting the strength of climate variability as a control. At the global scale, trends and features are similar from 850 to 1700, which includes the Medieval Climate Anomaly and the Little Ice Age. After 1700, the trends significantly deviate, which may be due to non-cultivated land being converted to cultivated. In key regions of high data density in the GCD such as the Western USA, the trends agree from 850 to 1200 but diverge from 1200 to 1300. From 1300 to 1800, the trends show good agreement again. Implementing processes to include burning cultivated land within the fire model is anticipated to

  4. Detection of 10B distributions in histological samples by NCAR using thermal and cold neutrons and photoluminiscent imaging plates. New results

    International Nuclear Information System (INIS)

    Rant, J.; Skvarc, J.; Ilic, R.; Gabel, D.; Bayon, G.; Yanagie, H.; Kobayashi, H.; Lehmann, E.; Kuehne, G.

    1999-01-01

    The Neutron Capture Autoradiography (NCAR) using various Solid State Nuclear Track Detectors (SSNTDs) is a well established and accurate method to detect and measure the distributions of 10 B in the ppm range on macroscopic and microscopic level in biological samples, such as histological sections of tumours loaded with 10 B compounds used for BNCT (e.g. 1,2). recently a new technique of NCAR using sensitive photoluminescent Imaging Plates (IP) has been proposed to detect 10 B distributions in histological sections (3), exploiting excellent detection properties of IP systems such as very high detection sensitivity and quantum detection efficiency, broad linear response and dynamic range, very small image distortion, reusability of IP and possibilities of digital autoradiography. The advantage of IP-NCAR vs. NCAR with SSNTDs should be the much lower neutron fluence (10 7 10 9 vs. 10 10 10 13 n/cm 2 with SSNTDs), no intermediate chemical treatment (track etching) and direct and fast compuitational handling and evaluation of the digitized autoradiographic image. However, the spatial resolution of the present available IP detection systems is somewhat lower (∼ 0,04 mm) than with SSNTDs (∼ 0,01 mm). Another problem with IP NCAR is rather high sensitivity of IP to all types of ionizing radiations. Therefore the background of direct and induced gamma-rays as well as of epithermal and fast neutrons has to be filtered out of thermal neutron beam to be used for IP-NCAR. To improve the signal/background ratio and to increase the detectibility of 10 B we propose to use clean cold neutron beams for the IP-NCAR of 10 B distributions in histological samples in BNCT experiments (4,5). In the present work the recent results of experiments in IP-NCAR with cold neutrons from the neutron radiographic channel of the ORPHEE reactor in Saclay and with the rather clean thermal neutron beam of the NEUTRA neutron radiography facility of the PSI (Villingen) will be presented. For the

  5. A Diagnostic PDF Cloud Scheme to Improve Subtropical Low Clouds in NCAR Community Atmosphere Model (CAM5)

    Science.gov (United States)

    Qin, Yi; Lin, Yanluan; Xu, Shiming; Ma, Hsi-Yen; Xie, Shaocheng

    2018-02-01

    Low clouds strongly impact the radiation budget of the climate system, but their simulation in most GCMs has remained a challenge, especially over the subtropical stratocumulus region. Assuming a Gaussian distribution for the subgrid-scale total water and liquid water potential temperature, a new statistical cloud scheme is proposed and tested in NCAR Community Atmospheric Model version 5 (CAM5). The subgrid-scale variance is diagnosed from the turbulent and shallow convective processes in CAM5. The approach is able to maintain the consistency between cloud fraction and cloud condensate and thus alleviates the adjustment needed in the default relative humidity-based cloud fraction scheme. Short-term forecast simulations indicate that low cloud fraction and liquid water content, including their diurnal cycle, are improved due to a proper consideration of subgrid-scale variance over the southeastern Pacific Ocean region. Compared with the default cloud scheme, the new approach produced the mean climate reasonably well with improved shortwave cloud forcing (SWCF) due to more reasonable low cloud fraction and liquid water path over regions with predominant low clouds. Meanwhile, the SWCF bias over the tropical land regions is also alleviated. Furthermore, the simulated marine boundary layer clouds with the new approach extend further offshore and agree better with observations. The new approach is able to obtain the top of atmosphere (TOA) radiation balance with a slightly alleviated double ITCZ problem in preliminary coupled simulations. This study implies that a close coupling of cloud processes with other subgrid-scale physical processes is a promising approach to improve cloud simulations.

  6. Climate data system supports FIRE

    Science.gov (United States)

    Olsen, Lola M.; Iascone, Dominick; Reph, Mary G.

    1990-01-01

    The NASA Climate Data System (NCDS) at Goddard Space Flight Center is serving as the FIRE Central Archive, providing a centralized data holding and data cataloging service for the FIRE project. NCDS members are carrying out their responsibilities by holding all reduced observations and data analysis products submitted by individual principal investigators in the agreed upon format, by holding all satellite data sets required for FIRE, by providing copies of any of these data sets to FIRE investigators, and by producing and updating a catalog with information about the FIRE holdings. FIRE researchers were requested to provide their reduced data sets in the Standard Data Format (SDF) to the FIRE Central Archive. This standard format is proving to be of value. An improved SDF document is now available. The document provides an example from an actual FIRE SDF data set and clearly states the guidelines for formatting data in SDF. NCDS has received SDF tapes from a number of investigators. These tapes were analyzed and comments provided to the producers. One product which is now available is William J. Syrett's sodar data product from the Stratocumulus Intensive Field Observation. Sample plots from all SDF tapes submitted to the archive will be available to FSET members. Related cloud products are also available through NCDS. Entries describing the FIRE data sets are being provided for the NCDS on-line catalog. Detailed information for the Extended Time Observations is available in the general FIRE catalog entry. Separate catalog entries are being written for the Cirrus Intensive Field Observation (IFO) and for the Marine Stratocumulus IFO. Short descriptions of each FIRE data set will be installed into the NCDS Summary Catalog.

  7. Management system, organizational climate and performance relationships

    Science.gov (United States)

    Davis, B. D.

    1979-01-01

    Seven aerospace firms were investigated to determine if a relationship existed among management systems, organizational climate, and organization performance. Positive relationships were found between each of these variables, but a statistically significant relationship existed only between the management system and organizational climate. The direction and amount of communication and the degree of decentralized decision-making, elements of the management system, also had a statistically significant realtionship with organization performance.

  8. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Li, J.; Zhang, J.; Wang, W.

    2015-12-01

    Both the National Research Council Decadal Survey and the latest Intergovernmental Panel on Climate Change Assessment Report stressed the need for the comprehensive and innovative evaluation of climate models with the synergistic use of global satellite observations in order to improve our weather and climate simulation and prediction capabilities. The abundance of satellite observations for fundamental climate parameters and the availability of coordinated model outputs from CMIP5 for the same parameters offer a great opportunity to understand and diagnose model biases in climate models. In addition, the Obs4MIPs efforts have created several key global observational datasets that are readily usable for model evaluations. However, a model diagnostic evaluation process requires physics-based multi-variable comparisons that typically involve large-volume and heterogeneous datasets, making them both computationally- and data-intensive. In response, we have developed a novel methodology to diagnose model biases in contemporary climate models and implementing the methodology as a web-service based, cloud-enabled, provenance-supported climate-model evaluation system. The evaluation system is named Climate Model Diagnostic Analyzer (CMDA), which is the product of the research and technology development investments of several current and past NASA ROSES programs. The current technologies and infrastructure of CMDA are designed and selected to address several technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. In particular, we have three key technology components: (1) diagnostic analysis methodology; (2) web-service based, cloud-enabled technology; (3) provenance-supported technology. The diagnostic analysis methodology includes random forest feature importance ranking, conditional probability distribution function, conditional sampling, and time-lagged correlation map. We have implemented the

  9. Understanding the interaction between wild fire and vegetation distribution within the NCAR CESM framework

    Science.gov (United States)

    Seo, H.; Kim, Y.; Kim, H. J.

    2017-12-01

    Every year wild fire brings about 400Mha of land burned therefore 2Pg of carbon emissions from the surface occur. In this way fire not only affects the carbon circulation but also has an effect on the terrestrial ecosystems. This study aims to understand role of fire on the geographic vegetation distribution and the terrestrial carbon balances within the NCAR CESM framework, specifically with the CLM-BGC and CLM-BGC-DV. Global climate data from Climate Research Unit (CRU)-National Centers for Environmental Prediction (NCEP) data ranging from 1901 to 2010 are used to drive the land models. First, by comparing fire-on and fire-off simulations with the CLM-BGC-DV, the fire impacts in dynamic vegetation are quantified by the fractional land areas of the different plant functional types. In addition, we examine how changes in vegetation distribution affect the total sum of the burned areas and the carbon balances. This study would provide the limits of and suggestions for the fire and dynamic vegetation modules of the CLM-BGC. AcknowledgementsThis work was supported by Basic Science Research Program through the National Research Foundation of Korea (NRF) funded by the Ministry of Science, ICT & Future Planning (2015R1C1A2A01054800) and by the Korea Meteorological Administration R&D Program under Grant KMIPA 2015-6180. This work was also supported by the Yonsei University Future-leading Research Initiative of 2015(2016-22-0061).

  10. Climate change impacts on food system

    Science.gov (United States)

    Zhang, X.; Cai, X.; Zhu, T.

    2014-12-01

    Food system includes biophysical factors (climate, land and water), human environments (production technologies and food consumption, distribution and marketing), as well as the dynamic interactions within them. Climate change affects agriculture and food systems in various ways. Agricultural production can be influenced directly by climatic factors such as mean temperature rising, change in rainfall patterns, and more frequent extreme events. Eventually, climate change could cause shift of arable land, alteration of water availability, abnormal fluctuation of food prices, and increase of people at risk of malnutrition. This work aims to evaluate how climate change would affect agricultural production biophysically and how these effects would propagate to social factors at the global level. In order to model the complex interactions between the natural and social components, a Global Optimization model of Agricultural Land and Water resources (GOALW) is applied to the analysis. GOALW includes various demands of human society (food, feed, other), explicit production module, and irrigation water availability constraint. The objective of GOALW is to maximize global social welfare (consumers' surplus and producers' surplus).Crop-wise irrigation water use in different regions around the world are determined by the model; marginal value of water (MVW) can be obtained from the model, which implies how much additional welfare benefit could be gained with one unit increase in local water availability. Using GOALW, we will analyze two questions in this presentation: 1) how climate change will alter irrigation requirements and how the social system would buffer that by price/demand adjustment; 2) how will the MVW be affected by climate change and what are the controlling factors. These results facilitate meaningful insights for investment and adaptation strategies in sustaining world's food security under climate change.

  11. The NCAR Research Data Archive's Hybrid Approach for Data Discovery and Access

    Science.gov (United States)

    Schuster, D.; Worley, S. J.

    2013-12-01

    The NCAR Research Data Archive (RDA http://rda.ucar.edu) maintains a variety of data discovery and access capabilities for it's 600+ dataset collections to support the varying needs of a diverse user community. In-house developed and standards-based community tools offer services to more than 10,000 users annually. By number of users the largest group is external and access the RDA through web based protocols; the internal NCAR HPC users are fewer in number, but typically access more data volume. This paper will detail the data discovery and access services maintained by the RDA to support both user groups, and show metrics that illustrate how the community is using the services. The distributed search capability enabled by standards-based community tools, such as Geoportal and an OAI-PMH access point that serves multiple metadata standards, provide pathways for external users to initially discover RDA holdings. From here, in-house developed web interfaces leverage primary discovery level metadata databases that support keyword and faceted searches. Internal NCAR HPC users, or those familiar with the RDA, may go directly to the dataset collection of interest and refine their search based on rich file collection metadata. Multiple levels of metadata have proven to be invaluable for discovery within terabyte-sized archives composed of many atmospheric or oceanic levels, hundreds of parameters, and often numerous grid and time resolutions. Once users find the data they want, their access needs may vary as well. A THREDDS data server running on targeted dataset collections enables remote file access through OPENDAP and other web based protocols primarily for external users. In-house developed tools give all users the capability to submit data subset extraction and format conversion requests through scalable, HPC based delayed mode batch processing. Users can monitor their RDA-based data processing progress and receive instructions on how to access the data when it is

  12. Same-source parallel implementation of the PSU/NCAR MM5

    Energy Technology Data Exchange (ETDEWEB)

    Michalakes, J.

    1997-12-31

    The Pennsylvania State/National Center for Atmospheric Research Mesoscale Model is a limited-area model of atmospheric systems, now in its fifth generation, MM5. Designed and maintained for vector and shared-memory parallel architectures, the official version of MM5 does not run on message-passing distributed memory (DM) parallel computers. The authors describe a same-source parallel implementation of the PSU/NCAR MM5 using FLIC, the Fortran Loop and Index Converter. The resulting source is nearly line-for-line identical with the original source code. The result is an efficient distributed memory parallel option to MM5 that can be seamlessly integrated into the official version.

  13. The Next Generation of Airborne Polarimetric Doppler Weather Radar: NCAR/EOL Airborne Phased Array Radar (APAR) Development

    Science.gov (United States)

    Moore, James; Lee, Wen-Chau; Loew, Eric; Vivekanandan, Jothiram; Grubišić, Vanda; Tsai, Peisang; Dixon, Mike; Emmett, Jonathan; Lord, Mark; Lussier, Louis; Hwang, Kyuil; Ranson, James

    2017-04-01

    The National Center for Atmospheric Research (NCAR) Earth observing Laboratory (EOL) is entering the third year of preliminary system design studies, engineering prototype testing and project management plan preparation for the development of a novel Airborne Phased Array Radar (APAR). This system being designed by NCAR/EOL will be installed and operated on the NSF/NCAR C-130 aircraft. The APAR system will consist of four removable C-band Active Electronically Scanned Arrays (AESA) strategically placed on the fuselage of the aircraft. Each AESA measures approximately 1.5 x 1.9 m and is composed of 3000 active radiating elements arranged in an array of line replaceable units (LRU) to simplify maintenance. APAR will provide unprecedented observations, and in conjunction with the advanced radar data assimilation schema, will be able to address the key science questions to improve understanding and predictability of significant and high-impact weather APAR, operating at C-band, allows the measurement of 3-D kinematics of the more intense portions of storms (e.g. thunderstorm dynamics and tornadic development, tropical cyclone rainband structure and evolution) with less attenuation compared with current airborne Doppler radar systems. Polarimetric measurements are not available from current airborne tail Doppler radars. However, APAR, with dual-Doppler and dual polarization diversity at a lesser attenuating C-band wavelength, will further advance the understanding of the microphysical processes within a variety of precipitation systems. The radar is sensitive enough to provide high resolution measurements of winter storm dynamics and microphysics. The planned APAR development that would bring the system to operational readiness for research community use aboard the C-130 is expected to take 8 years once major funding support is realized. The authors will review the overall APAR design and provide new details of the system based on our Technical Requirements Document

  14. Climate change mitigation through livestock system transitions

    Science.gov (United States)

    Havlík, Petr; Valin, Hugo; Herrero, Mario; Obersteiner, Michael; Schmid, Erwin; Rufino, Mariana C.; Mosnier, Aline; Thornton, Philip K.; Böttcher, Hannes; Conant, Richard T.; Frank, Stefan; Fritz, Steffen; Fuss, Sabine; Kraxner, Florian; Notenbaert, An

    2014-01-01

    Livestock are responsible for 12% of anthropogenic greenhouse gas emissions. Sustainable intensification of livestock production systems might become a key climate mitigation technology. However, livestock production systems vary substantially, making the implementation of climate mitigation policies a formidable challenge. Here, we provide results from an economic model using a detailed and high-resolution representation of livestock production systems. We project that by 2030 autonomous transitions toward more efficient systems would decrease emissions by 736 million metric tons of carbon dioxide equivalent per year (MtCO2e⋅y−1), mainly through avoided emissions from the conversion of 162 Mha of natural land. A moderate mitigation policy targeting emissions from both the agricultural and land-use change sectors with a carbon price of US$10 per tCO2e could lead to an abatement of 3,223 MtCO2e⋅y−1. Livestock system transitions would contribute 21% of the total abatement, intra- and interregional relocation of livestock production another 40%, and all other mechanisms would add 39%. A comparable abatement of 3,068 MtCO2e⋅y−1 could be achieved also with a policy targeting only emissions from land-use change. Stringent climate policies might lead to reductions in food availability of up to 200 kcal per capita per day globally. We find that mitigation policies targeting emissions from land-use change are 5 to 10 times more efficient—measured in “total abatement calorie cost”—than policies targeting emissions from livestock only. Thus, fostering transitions toward more productive livestock production systems in combination with climate policies targeting the land-use change appears to be the most efficient lever to deliver desirable climate and food availability outcomes. PMID:24567375

  15. Evaluation of Forecasted Southeast Pacific Stratocumulus in the NCAR, GFDL and ECMWF Models

    Energy Technology Data Exchange (ETDEWEB)

    Hannay, C; Williamson, D L; Hack, J J; Kiehl, J T; Olson, J G; Klein, S A; Bretherton, C S; K?hler, M

    2008-01-24

    We examine forecasts of Southeast Pacific stratocumulus at 20S and 85W during the East Pacific Investigation of Climate (EPIC) cruise of October 2001 with the ECMWF model, the Atmospheric Model (AM) from GFDL, the Community Atmosphere Model (CAM) from NCAR, and the CAM with a revised atmospheric boundary layer formulation from the University of Washington (CAM-UW). The forecasts are initialized from ECMWF analyses and each model is run for 3 days to determine the differences with the EPIC field data. Observations during the EPIC cruise show a stable and well-mixed boundary layer under a sharp inversion. The inversion height and the cloud layer have a strong and regular diurnal cycle. A key problem common to the four models is that the forecasted planetary boundary layer (PBL) height is too low when compared to EPIC observations. All the models produce a strong diurnal cycle in the Liquid Water Path (LWP) but there are large differences in the amplitude and the phase compared to the EPIC observations. This, in turn, affects the radiative fluxes at the surface. There is a large spread in the surface energy budget terms amongst the models and large discrepancies with observational estimates. Single Column Model (SCM) experiments with the CAM show that the vertical pressure velocity has a large impact on the PBL height and LWP. Both the amplitude of the vertical pressure velocity field and its vertical structure play a significant role in the collapse or the maintenance of the PBL.

  16. GPM GROUND VALIDATION NCAR CLOUD MICROPHYSICS PARTICLE PROBES MC3E V1

    Data.gov (United States)

    National Aeronautics and Space Administration — The GPM Ground Validation NCAR Cloud Microphysics Particle Probes MC3E dataset was collected during the Midlatitude Continental Convective Clouds Experiment (MC3E),...

  17. Improving Convection and Cloud Parameterization Using ARM Observations and NCAR Community Atmosphere Model CAM5

    Energy Technology Data Exchange (ETDEWEB)

    Zhang, Guang J. [Univ. of California, San Diego, CA (United States)

    2016-11-07

    The fundamental scientific objectives of our research are to use ARM observations and the NCAR CAM5 to understand the large-scale control on convection, and to develop improved convection and cloud parameterizations for use in GCMs.

  18. Interoperable Access to NCAR Research Data Archive Collections

    Science.gov (United States)

    Schuster, D.; Ji, Z.; Worley, S. J.; Manross, K.

    2014-12-01

    The National Center for Atmospheric Research (NCAR) Research Data Archive (RDA) provides free access to 600+ observational and gridded dataset collections. The RDA is designed to support atmospheric and related sciences research, updated frequently where datasets have ongoing production, and serves data to 10,000 unique users annually. The traditional data access options include web-based direct archive file downloads, user selected data subsets and format conversions produced by server-side computations, and client and cURL-based APIs for routine scripted data retrieval. To enhance user experience and utility, the RDA now also offers THREDDS Data Server (TDS) access for many highly valued dataset collections. TDS offered datasets are presented as aggregations, enabling users to access an entire dataset collection, that can be comprised of 1000's of files, through a single virtual file. The OPeNDAP protocol, supported by the TDS, allows compatible tools to open and access these virtual files remotely, and make the native data file format transparent to the end user. The combined functionality (TDS/OPeNDAP) gives users the ability to browse, select, visualize, and download data from a complete dataset collection without having to transfer archive files to a local host. This presentation will review the TDS basics and describe the specific TDS implementation on the RDA's diverse archive of GRIB-1, GRIB-2, and gridded NetCDF formatted dataset collections. Potential future TDS implementation on in-situ observational dataset collections will be discussed. Illustrative sample cases will be used to highlight the end users benefits from this interoperable data access to the RDA.

  19. Space-time variability of hydrological drought and wetness in Iran using NCEP/NCAR and GPCC datasets

    Directory of Open Access Journals (Sweden)

    T. Raziei

    2010-10-01

    Full Text Available Space-time variability of hydrological drought and wetness over Iran is investigated using the National Centers for Environmental Prediction/National Center for Atmospheric Research (NCEP/NCAR reanalysis and the Global Precipitation Climatology Centre (GPCC dataset for the common period 1948–2007. The aim is to complement previous studies on the detection of long-term trends in drought/wetness time series and on the applicability of reanalysis data for drought monitoring in Iran. Climate conditions of the area are assessed through the Standardized Precipitation Index (SPI on 24-month time scale, while Principal Component Analysis (PCA and Varimax rotation are used for investigating drought/wetness variability, and drought regionalization, respectively. Singular Spectrum Analysis (SSA is applied to the time series of interest to extract the leading nonlinear components and compare them with linear fittings.

    Differences in drought and wetness area coverage resulting from the two datasets are discussed also in relation to the change occurred in recent years. NCEP/NCAR and GPCC are in good agreement in identifying four sub-regions as principal spatial modes of drought variability. However, the climate variability in each area is not univocally represented by the two datasets: a good agreement is found for south-eastern and north-western regions, while noticeable discrepancies occur for central and Caspian sea regions. A comparison with NCEP Reanalysis II for the period 1979–2007, seems to exclude that the discrepancies are merely due to the introduction of satellite data into the reanalysis assimilation scheme.

  20. Organizational Climate Assessment: a Systemic Perspective

    Science.gov (United States)

    Argentero, Piergiorgio; Setti, Ilaria

    A number of studies showed how the set up of an involving and motivating work environment represents a source for organizational competitive advantage: in this view organizational climate (OC) research occupies a preferred position in current I/O psychology. The present study is a review carried out to establish the breadth of the literature on the characteristics of OC assessment considered in a systemic perspective. An organization with a strong climate is a work environment whose members have similar understanding of the norms and practices and share the same expectations. OC should be considered as a sort of emergent entity and, as such, it can be studied only within a systemic perspective because it is linked with some organizational variables, in terms of antecedents (such as the organization's internal structure and its environmental features) and consequences (such as job performance, psychological well-being and withdrawal) of the climate itself. In particular, when employees have a positive view of their organizational environment, consistently with their values and interests, they are more likely to identify their personal goals with those of the organization and, in turn, to invest a greater effort to pursue them: the employees' perception of the organizational environment is positively related to the key outcomes such as job involvement, effort and performance. OC analysis could also be considered as an effective Organizational Development (OD) tool: in particular, the Survey Feedback, that is the return of the OC survey results, could be an effective instrument to assess the efficacy of specific OD programs, such as Team Building, TQM and Gainsharing. The present study is focused on the interest to investigate all possible variables which are potential moderators of the climate - outcome relationship: therefore future researches in the OC field should consider a great variety of organizational variables, considered in terms of antecedents and effects

  1. Indicators of climate impacts for forests: recommendations for the US National Climate Assessment indicators system

    Science.gov (United States)

    Linda S. Heath; Sarah M. Anderson; Marla R. Emery; Jeffrey A. Hicke; Jeremy Littell; Alan Lucier; Jeffrey G. Masek; David L. Peterson; Richard Pouyat; Kevin M. Potter; Guy Robertson; Jinelle Sperry; Andrzej Bytnerowicz; Sarah Jovan; Miranda H. Mockrin; Robert Musselman; Bethany K. Schulz; Robert J. Smith; Susan I. Stewart

    2015-01-01

    The Third National Climate Assessment (NCA) process for the United States focused in part on developing a system of indicators to communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness to inform decisionmakers and the public. Initially, 13 active teams were formed to recommend indicators in a range of categories, including...

  2. System and Method for Providing a Climate Data Persistence Service

    Science.gov (United States)

    Schnase, John L. (Inventor); Ripley, III, William David (Inventor); Duffy, Daniel Q. (Inventor); Thompson, John H. (Inventor); Strong, Savannah L. (Inventor); McInerney, Mark (Inventor); Sinno, Scott (Inventor); Tamkin, Glenn S. (Inventor); Nadeau, Denis (Inventor)

    2018-01-01

    A system, method and computer-readable storage devices for providing a climate data persistence service. A system configured to provide the service can include a climate data server that performs data and metadata storage and management functions for climate data objects, a compute-storage platform that provides the resources needed to support a climate data server, provisioning software that allows climate data server instances to be deployed as virtual climate data servers in a cloud computing environment, and a service interface, wherein persistence service capabilities are invoked by software applications running on a client device. The climate data objects can be in various formats, such as International Organization for Standards (ISO) Open Archival Information System (OAIS) Reference Model Submission Information Packages, Archive Information Packages, and Dissemination Information Packages. The climate data server can enable scalable, federated storage, management, discovery, and access, and can be tailored for particular use cases.

  3. An assessment of oceanic variability in the NCEP climate forecast system reanalysis

    Energy Technology Data Exchange (ETDEWEB)

    Xue, Yan; Hu, Zeng-Zhen; Kumar, Arun [Climate Prediction Center, NCEP/NOAA, Camp Springs, MD (United States); Huang, Boyin; Wen, Caihong [Climate Prediction Center, NCEP/NOAA, Camp Springs, MD (United States); Wyle Information System, Camp Springs, MD (United States); Behringer, David; Nadiga, Sudhir [Environmental Modeling Center, NCEP/NOAA, Camp Springs, MD (United States)

    2011-12-15

    At the National Centers for Environmental Prediction (NCEP), a reanalysis of the atmosphere, ocean, sea ice and land over the period 1979-2009, referred to as the climate forecast system reanalysis (CFSR), was recently completed. The oceanic component of CFSR includes many advances: (a) the MOM4 ocean model with an interactive sea-ice, (b) the 6 h coupled model forecast as the first guess, (c) inclusion of the mean climatological river runoff, and (d) high spatial (0.5 x 0.5 ) and temporal (hourly) model outputs. Since the CFSR will be used by many in initializing/validating ocean models and climate research, the primary motivation of the paper is to inform the user community about the saline features in the CFSR ocean component, and how the ocean reanalysis compares with in situ observations and previous reanalysis. The net ocean surface heat flux of the CFSR has smaller biases compared to the sum of the latent and sensible heat fluxes from the objectively analyzed air-sea fluxes (OAFlux) and the shortwave and longwave radiation fluxes from the International Satellite Cloud Climatology Project (ISCCP-FD) than the NCEP/NCAR reanalysis (R1) and NCEP/DOE reanalysis (R2) in both the tropics and extratropics. The ocean surface wind stress of the CFSR has smaller biases and higher correlation with the ERA40 produced by the European Centre for Medium-Range Weather Forecasts than the R1 and R2, particularly in the tropical Indian and Pacific Ocean. The CFSR also has smaller errors compared to the QuickSCAT climatology for September 1999 to October 2009 than the R1 and R2. However, the trade winds of the CFSR in the central equatorial Pacific are too strong prior to 1999, and become close to observations once the ATOVS radiance data are assimilated in late 1998. A sudden reduction of easterly wind bias is related to the sudden onset of a warm bias in the eastern equatorial Pacific temperature around 1998/1999. The sea surface height and top 300 m heat content (HC300) of

  4. Managing climate change risks in rangeland systems [Chapter 15

    Science.gov (United States)

    Linda A. Joyce; Nadine A. Marshall

    2017-01-01

    The management of rangelands has long involved adapting to climate variability to ensure that economic enterprises remain viable and ecosystems sustainable; climate change brings the potential for change that surpasses the experience of humans within rangeland systems. Adaptation will require an intentionality to address the effects of climate change. Knowledge of...

  5. Effect of Climate Change on the Food Supply System: Implications ...

    African Journals Online (AJOL)

    Climate change has become an issue of great concern in recent years due to its effect on every aspect of life. The ecosystem, agriculture, industry, households and human well-being are all intertwined with climate change issues. The food supply system worldwide has been affected and is also contributing to climate ...

  6. Orbital Noise in the Earth System and Climate Fluctuations

    Science.gov (United States)

    Liu, Han-Shou; Smith, David E. (Technical Monitor)

    2001-01-01

    Frequency noise in the variations of the Earth's obliquity (tilt) can modulate the insolation signal for climate change. Including this frequency noise effect on the incoming solar radiation, we have applied an energy balance climate model to calculate the climate fluctuations for the past one million years. Model simulation results are in good agreement with the geologically observed paleoclimate data. We conclude that orbital noise in the Earth system may be the major cause of the climate fluctuation cycles.

  7. Cold Climate Structural Fire Danger Rating System?

    Directory of Open Access Journals (Sweden)

    Maria-Monika Metallinou

    2018-03-01

    Full Text Available Worldwide, fires kill 300,000 people every year. The fire season is usually recognized to be in the warmer periods of the year. Recent research has, however, demonstrated that the colder season also has major challenges regarding severe fires, especially in inhabited (heated wood-based structures in cold-climate areas. Knowledge about the effect of dry cellulose-based materials on fire development, indoor and outdoor, is a motivation for monitoring possible changes in potential fire behavior and associated fire risk. The effect of wind in spreading fires to neighboring structures points towards using weather forecasts as information on potential fire spread behavior. As modern weather forecasts include temperature and relative humidity predictions, there may already be sufficient information available to develop a structural fire danger rating system. Such a system may include the following steps: (1 Record weather forecasts and actual temperature and relative humidity inside and outside selected structures; (2 Develop a meteorology-data-based model to predict indoor relative humidity levels; (3 Perform controlled drying chamber experiments involving typical hygroscopic fire fuel; (4 Compare the results to the recorded values in selected structures; and (5 Develop the risk model involving the results from drying chamber experiments, weather forecasts, and separation between structures. Knowledge about the structures at risk and their use is also important. The benefits of an automated fire danger rating system would be that the society can better plan for potentially severe cold-climate fires and thereby limit the negative impacts of such fires.

  8. Collaborative Education in Climate Change Sciences and Adaptation through Interactive Learning

    Science.gov (United States)

    Ozbay, G.; Sriharan, S.; Fan, C.

    2014-12-01

    As a result of several funded climate change education grants, collaboration between VSU, DSU, and MSU, was established to provide the innovative and cohesive education and research opportunities to underrepresented groups in the climate related sciences. Prior to offering climate change and adaptation related topics to the students, faculty members of the three collaborating institutions participated at a number of faculty training and preparation workshops for teaching climate change sciences (i.e. AMS Diversity Project Workshop, NCAR Faculty-Student Team on Climate Change, NASA-NICE Program). In order to enhance the teaching and student learning on various issues in the Environmental Sciences Programs, Climatology, Climate Change Sciences and Adaptation or related courses were developed at Delaware State University and its partner institutions (Virginia State University and Morgan State University). These courses were prepared to deliver information on physical basis for the earth's climate system and current climate change instruction modules by AMS and historic climate information (NOAA Climate Services, U.S. and World Weather Data, NCAR and NASA Climate Models). By using Global Seminar as a Model, faculty members worked in teams to engage students in videoconferencing on climate change through Contemporary Global Studies and climate courses including Climate Change and Adaptation Science, Sustainable Agriculture, Introduction to Environmental Sciences, Climatology, and Ecology and Adaptation courses. All climate change courses have extensive hands-on practices and research integrated into the student learning experiences. Some of these students have presented their classroom projects during Earth Day, Student Climate Change Symposium, Undergraduate Summer Symposium, and other national conferences.

  9. Designing the Climate Observing System of the Future

    Science.gov (United States)

    Weatherhead, Elizabeth C.; Wielicki, Bruce A.; Ramaswamy, V.; Abbott, Mark; Ackerman, Thomas P.; Atlas, Robert; Brasseur, Guy; Bruhwiler, Lori; Busalacchi, Antonio J.; Butler, James H.; Clack, Christopher T. M.; Cooke, Roger; Cucurull, Lidia; Davis, Sean M.; English, Jason M.; Fahey, David W.; Fine, Steven S.; Lazo, Jeffrey K.; Liang, Shunlin; Loeb, Norman G.; Rignot, Eric; Soden, Brian; Stanitski, Diane; Stephens, Graeme; Tapley, Byron D.; Thompson, Anne M.; Trenberth, Kevin E.; Wuebbles, Donald

    2018-01-01

    Climate observations are needed to address a large range of important societal issues including sea level rise, droughts, floods, extreme heat events, food security, and freshwater availability in the coming decades. Past, targeted investments in specific climate questions have resulted in tremendous improvements in issues important to human health, security, and infrastructure. However, the current climate observing system was not planned in a comprehensive, focused manner required to adequately address the full range of climate needs. A potential approach to planning the observing system of the future is presented in this article. First, this article proposes that priority be given to the most critical needs as identified within the World Climate Research Program as Grand Challenges. These currently include seven important topics: melting ice and global consequences; clouds, circulation and climate sensitivity; carbon feedbacks in the climate system; understanding and predicting weather and climate extremes; water for the food baskets of the world; regional sea-level change and coastal impacts; and near-term climate prediction. For each Grand Challenge, observations are needed for long-term monitoring, process studies and forecasting capabilities. Second, objective evaluations of proposed observing systems, including satellites, ground-based and in situ observations as well as potentially new, unidentified observational approaches, can quantify the ability to address these climate priorities. And third, investments in effective climate observations will be economically important as they will offer a magnified return on investment that justifies a far greater development of observations to serve society's needs.

  10. Running climate model on a commercial cloud computing environment: A case study using Community Earth System Model (CESM) on Amazon AWS

    Science.gov (United States)

    Chen, Xiuhong; Huang, Xianglei; Jiao, Chaoyi; Flanner, Mark G.; Raeker, Todd; Palen, Brock

    2017-01-01

    The suites of numerical models used for simulating climate of our planet are usually run on dedicated high-performance computing (HPC) resources. This study investigates an alternative to the usual approach, i.e. carrying out climate model simulations on commercially available cloud computing environment. We test the performance and reliability of running the CESM (Community Earth System Model), a flagship climate model in the United States developed by the National Center for Atmospheric Research (NCAR), on Amazon Web Service (AWS) EC2, the cloud computing environment by Amazon.com, Inc. StarCluster is used to create virtual computing cluster on the AWS EC2 for the CESM simulations. The wall-clock time for one year of CESM simulation on the AWS EC2 virtual cluster is comparable to the time spent for the same simulation on a local dedicated high-performance computing cluster with InfiniBand connections. The CESM simulation can be efficiently scaled with the number of CPU cores on the AWS EC2 virtual cluster environment up to 64 cores. For the standard configuration of the CESM at a spatial resolution of 1.9° latitude by 2.5° longitude, increasing the number of cores from 16 to 64 reduces the wall-clock running time by more than 50% and the scaling is nearly linear. Beyond 64 cores, the communication latency starts to outweigh the benefit of distributed computing and the parallel speedup becomes nearly unchanged.

  11. Vulnerability of ecological systems for nuclear war climatic consequences

    International Nuclear Information System (INIS)

    Kharuehll, M.; Khatchinson, T.; Kropper, U.; Kharuehll, K.

    1988-01-01

    Vulnerability of ecological systems of Northern hemisphere (terrestrial, aquatic and tropical) as well as Southern one in relation to climatic changes following large nuclear war is considered. When analyzing potential sensitivity of ecological systems to climatic changes, possible consequences are considered for different stress categories under various war scenarios. The above-mentioned stresses correspond to those adopted in published work by Pittok and others. To estimate the less important climatic disturbances a few additional computer-simulated models are developed

  12. A Regional Climate Model Evaluation System

    Data.gov (United States)

    National Aeronautics and Space Administration — Develop a packaged data management infrastructure for the comparison of generated climate model output to existing observational datasets that includes capabilities...

  13. Uncertainties in Future Regional Sea Level Trends: How to Deal with the Internal Climate Variability?

    Science.gov (United States)

    Becker, M.; Karpytchev, M.; Hu, A.; Deser, C.; Lennartz-Sassinek, S.

    2017-12-01

    Today, the Climate models (CM) are the main tools for forecasting sea level rise (SLR) at global and regional scales. The CM forecasts are accompanied by inherent uncertainties. Understanding and reducing these uncertainties is becoming a matter of increasing urgency in order to provide robust estimates of SLR impact on coastal societies, which need sustainable choices of climate adaptation strategy. These CM uncertainties are linked to structural model formulation, initial conditions, emission scenario and internal variability. The internal variability is due to complex non-linear interactions within the Earth Climate System and can induce diverse quasi-periodic oscillatory modes and long-term persistences. To quantify the effects of internal variability, most studies used multi-model ensembles or sea level projections from a single model ran with perturbed initial conditions. However, large ensembles are not generally available, or too small, and computationally expensive. In this study, we use a power-law scaling of sea level fluctuations, as observed in many other geophysical signals and natural systems, which can be used to characterize the internal climate variability. From this specific statistical framework, we (1) use the pre-industrial control run of the National Center for Atmospheric Research Community Climate System Model (NCAR-CCSM) to test the robustness of the power-law scaling hypothesis; (2) employ the power-law statistics as a tool for assessing the spread of regional sea level projections due to the internal climate variability for the 21st century NCAR-CCSM; (3) compare the uncertainties in predicted sea level changes obtained from a NCAR-CCSM multi-member ensemble simulations with estimates derived for power-law processes, and (4) explore the sensitivity of spatial patterns of the internal variability and its effects on regional sea level projections.

  14. Long-term climate monitoring by the global climate observing system

    International Nuclear Information System (INIS)

    Karl, T.R.

    1995-12-01

    Is the climate warming? Is the hydrologic cycle changing? Is the atmospheric/oceanic circulation changing? Is the climate becoming more variable or extreme? Is radiative forcing of the climate changing? are complex questions not only from the standpoint of a multi-variate problem, but because of the various aspects of spatial and temporal sampling that must be considered on a global scale. The development of a Global Climate Observing System (GCOS) offers the opportunity for scientists to do something about existing observing deficiencies in light of the importance of documenting long-term climate changes that may already be affected by anthropogenic changes of atmospheric composition and land use as well as other naturally occurring changes. As an important step toward improving the present inadequacies, a workshop was held to help define the long-term monitoring requirements minimally needed to address the five questions posed above, with special emphasis on detecting anthropogenic climate change and its potential impact on managed and unmanaged systems The workshop focussed on three broad areas related to long-term climate monitoring: (a) the scientific rationale for the long-term climate products (including their accuracy, resolution, and homogeneity) required from our observing systems as related to climate monitoring and climate change detection and attribution; (b) the status of long-term climate products and the observing systems from which these data are derived; and (c) implementation strategies necessary to fulfill item (a) in light of existing systems. Item (c) was treated more in terms of feasibility rather than as a specific implementation plan. figs., tabs., refs

  15. Climate Model Diagnostic Analyzer Web Service System

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Jiang, J. H.

    2014-12-01

    We have developed a cloud-enabled web-service system that empowers physics-based, multi-variable model performance evaluations and diagnoses through the comprehensive and synergistic use of multiple observational data, reanalysis data, and model outputs. We have developed a methodology to transform an existing science application code into a web service using a Python wrapper interface and Python web service frameworks. The web-service system, called Climate Model Diagnostic Analyzer (CMDA), currently supports (1) all the observational datasets from Obs4MIPs and a few ocean datasets from NOAA and Argo, which can serve as observation-based reference data for model evaluation, (2) many of CMIP5 model outputs covering a broad range of atmosphere, ocean, and land variables from the CMIP5 specific historical runs and AMIP runs, and (3) ECMWF reanalysis outputs for several environmental variables in order to supplement observational datasets. Analysis capabilities currently supported by CMDA are (1) the calculation of annual and seasonal means of physical variables, (2) the calculation of time evolution of the means in any specified geographical region, (3) the calculation of correlation between two variables, (4) the calculation of difference between two variables, and (5) the conditional sampling of one physical variable with respect to another variable. A web user interface is chosen for CMDA because it not only lowers the learning curve and removes the adoption barrier of the tool but also enables instantaneous use, avoiding the hassle of local software installation and environment incompatibility. CMDA will be used as an educational tool for the summer school organized by JPL's Center for Climate Science in 2014. In order to support 30+ simultaneous users during the school, we have deployed CMDA to the Amazon cloud environment. The cloud-enabled CMDA will provide each student with a virtual machine while the user interaction with the system will remain the same

  16. The resilience of integrated agricultural systems to climate change

    NARCIS (Netherlands)

    Dias Bernardes Gil, Juliana; Cohn, Avery S.; Duncan, John; Newton, Peter; Vermeulen, Sonja

    2017-01-01

    We reviewed studies addressing the extent to which more integrated agricultural systems (IAS) have been found to be more resilient to climate variability and climate change than more specialized agricultural systems. We found limited literature directly addressing the topic, necessitating the use of

  17. African Religion, Climate Change and Knowledge Systems

    NARCIS (Netherlands)

    Tarusarira, Joram

    2017-01-01

    This article argues that as humanity is now changing the composition of the atmosphere at a rate that is very exceptional on the geological time scale, resulting in global warming, humans must deal with climate change holistically, including the often overlooked religion factor. Human-caused climate

  18. Arctic melt ponds and bifurcations in the climate system

    Science.gov (United States)

    Sudakov, I.; Vakulenko, S. A.; Golden, K. M.

    2015-05-01

    Understanding how sea ice melts is critical to climate projections. In the Arctic, melt ponds that develop on the surface of sea ice floes during the late spring and summer largely determine their albedo - a key parameter in climate modeling. Here we explore the possibility of a conceptual sea ice climate model passing through a bifurcation point - an irreversible critical threshold as the system warms, by incorporating geometric information about melt pond evolution. This study is based on a bifurcation analysis of the energy balance climate model with ice-albedo feedback as the key mechanism driving the system to bifurcation points.

  19. Integrated regional changes in arctic climate feedbacks: Implications for the global climate system

    Science.gov (United States)

    McGuire, A.D.; Chapin, F. S.; Walsh, J.E.; Wirth, C.; ,

    2006-01-01

    The Arctic is a key part of the global climate system because the net positive energy input to the tropics must ultimately be resolved through substantial energy losses in high-latitude regions. The Arctic influences the global climate system through both positive and negative feedbacks that involve physical, ecological, and human systems of the Arctic. The balance of evidence suggests that positive feedbacks to global warming will likely dominate in the Arctic during the next 50 to 100 years. However, the negative feedbacks associated with changing the freshwater balance of the Arctic Ocean might abruptly launch the planet into another glacial period on longer timescales. In light of uncertainties and the vulnerabilities of the climate system to responses in the Arctic, it is important that we improve our understanding of how integrated regional changes in the Arctic will likely influence the evolution of the global climate system. Copyright ?? 2006 by Annual Reviews. All rights reserved.

  20. Climate Forecast System Reforecast (CFSR), for 1981 to 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCEP Climate Forecast System Reanalysis (CFSR) was designed and executed as a global, high resolution, coupled atmosphere-ocean-land surface-sea ice system to...

  1. Energy policies avoiding a tipping point in the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Bahn, Olivier [GERAD and Department of Management Sciences, HEC Montreal, Montreal (Qc) (Canada); Edwards, Neil R. [Earth and Environmental Sciences, CEPSAR, Open University, Milton Keynes MK7 6AA (United Kingdom); Knutti, Reto [Institute for Atmospheric and Climate Science, ETH Zurich, CH-8092 Zurich (Switzerland); Stocker, Thomas F. [Climate and Environmental Physics, Physics Institute, and Oeschger Centre for Climate Change Research, University of Bern, CH-3012 Bern (Switzerland)

    2011-01-15

    Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems. (author)

  2. DEVELOPMENT OF AUTOMATED SYSTEM OF CLIMATE CONDITIONS MANAGEMENT

    Directory of Open Access Journals (Sweden)

    Novikova L.V.

    2017-12-01

    Full Text Available The scientific work is devoted to the analysis and development of the automated control system of the climatic conditions of the minites. The analysis of existing automated control systems is carried out, in particular attention is paid to the systems of climate control of greenhouses. The technical means of the control system are determined. As a platform, Arduino®Uno is selected.

  3. Inferring climate sensitivity from volcanic events

    Energy Technology Data Exchange (ETDEWEB)

    Boer, G.J. [Environment Canada, University of Victoria, Canadian Centre for Climate Modelling and Analysis, Victoria, BC (Canada); Stowasser, M.; Hamilton, K. [University of Hawaii, International Pacific Research Centre, Honolulu, HI (United States)

    2007-04-15

    The possibility of estimating the equilibrium climate sensitivity of the earth-system from observations following explosive volcanic eruptions is assessed in the context of a perfect model study. Two modern climate models (the CCCma CGCM3 and the NCAR CCSM2) with different equilibrium climate sensitivities are employed in the investigation. The models are perturbed with the same transient volcano-like forcing and the responses analysed to infer climate sensitivities. For volcano-like forcing the global mean surface temperature responses of the two models are very similar, despite their differing equilibrium climate sensitivities, indicating that climate sensitivity cannot be inferred from the temperature record alone even if the forcing is known. Equilibrium climate sensitivities can be reasonably determined only if both the forcing and the change in heat storage in the system are known very accurately. The geographic patterns of clear-sky atmosphere/surface and cloud feedbacks are similar for both the transient volcano-like and near-equilibrium constant forcing simulations showing that, to a considerable extent, the same feedback processes are invoked, and determine the climate sensitivity, in both cases. (orig.)

  4. Planning for climate change on the National Wildlife Refuge System

    Science.gov (United States)

    B. Czech; S. Covington; T. M. Crimmins; J. A. Ericson; C. Flather; M. Gale; K. Gerst; M. Higgins; M. Kaib; E. Marino; T. Moran; J. Morton; N. Niemuth; H. Peckett; D. Savignano; L. Saperstein; S. Skorupa; E. Wagener; B. Wilen; B. Wolfe

    2014-01-01

    This document originated in 2008 as a collaborative project of the U.S. Fish and Wildlife Service (FWS) and the University of Maryland's Graduate Program in Sustainable Development and Conservation Biology. The original title was A Primer on Climate Change for the National Wildlife Refuge System. The Primer has evolved into Planning for Climate Change on the...

  5. Gauging the System: Trends in School Climate Measurement and Intervention

    Science.gov (United States)

    O'Malley, Meagan; Katz, Kristin; Renshaw, Tyler L.; Furlong, Michael J.

    2011-01-01

    Researchers and educators are giving increasing scrutiny to systems-level constructs that contribute to safe, supportive, and effective schools, including school climate. School climate is a multifaceted construct that is commonly conceptualized as school community members' subjective experiences of the structural and contextual elements of a…

  6. Organizational Climate, Services, and Outcomes in Child Welfare Systems

    Science.gov (United States)

    Glisson, Charles; Green, Philip

    2011-01-01

    Objective: This study examines the association of organizational climate, casework services, and youth outcomes in child welfare systems. Building on preliminary findings linking organizational climate to youth outcomes over a 3-year follow-up period, the current study extends the follow-up period to 7 years and tests main, moderating and…

  7. Applying "Climate" system to teaching basic climatology and raising public awareness of climate change issues

    Science.gov (United States)

    Gordova, Yulia; Okladnikov, Igor; Titov, Alexander; Gordov, Evgeny

    2016-04-01

    While there is a strong demand for innovation in digital learning, available training programs in the environmental sciences have no time to adapt to rapid changes in the domain content. A joint group of scientists and university teachers develops and implements an educational environment for new learning experiences in basics of climatic science and its applications. This so-called virtual learning laboratory "Climate" contains educational materials and interactive training courses developed to provide undergraduate and graduate students with profound understanding of changes in regional climate and environment. The main feature of this Laboratory is that students perform their computational tasks on climate modeling and evaluation and assessment of climate change using the typical tools of the "Climate" information-computational system, which are usually used by real-life practitioners performing such kind of research. Students have an opportunity to perform computational laboratory works using information-computational tools of the system and improve skills of their usage simultaneously with mastering the subject. We did not create an artificial learning environment to pass the trainings. On the contrary, the main purpose of association of the educational block and computational information system was to familiarize students with the real existing technologies for monitoring and analysis of data on the state of the climate. Trainings are based on technologies and procedures which are typical for Earth system sciences. Educational courses are designed to permit students to conduct their own investigations of ongoing and future climate changes in a manner that is essentially identical to the techniques used by national and international climate research organizations. All trainings are supported by lectures, devoted to the basic aspects of modern climatology, including analysis of current climate change and its possible impacts ensuring effective links between

  8. Feedback attribution of the land-sea warming contrast in a global warming simulation of the NCAR CCSM4

    International Nuclear Information System (INIS)

    Sejas, Sergio A; Albert, Oriene S; Cai, Ming; Deng, Yi

    2014-01-01

    One of the salient features in both observations and climate simulations is a stronger land warming than sea. This paper provides a quantitative understanding of the main processes that contribute to the land-sea warming asymmetry in a global warming simulation of the NCAR CCSM4. The CO 2 forcing alone warms the surface nearly the same for both land and sea, suggesting that feedbacks are responsible for the warming contrast. Our analysis on one hand confirms that the principal contributor to the above-unity land-to-sea warming ratio is the evaporation feedback; on the other hand the results indicate that the sensible heat flux feedback has the largest land-sea warming difference that favors a greater ocean than land warming. Therefore, the results uniquely highlight the importance of other feedbacks in establishing the above-unity land-to-sea warming ratio. Particularly, the SW cloud feedback and the ocean heat storage in the transient response are key contributors to the greater warming over land than sea. (letter)

  9. Climate Services Information System Activities in Support of The Global Framework for Climate Services Implementation

    Science.gov (United States)

    Timofeyeva-Livezey, M. M.; Horsfall, F. M. C.; Pulwarty, R. S.; Klein-Tank, A.; Kolli, R. K.; Hechler, P.; Dilley, M.; Ceron, J. P.; Goodess, C.

    2017-12-01

    The WMO Commission on Climatology (CCl) supports the implementation of the Global Framework for Climate Services (GFCS) with a particular focus on the Climate Services Information System (CSIS), which is the core operational component of GFCS at the global, regional, and national level. CSIS is designed for producing, packaging and operationally delivering authoritative climate information data and products through appropriate operational systems, practices, data exchange, technical standards, authentication, communication, and product delivery. Its functions include climate analysis and monitoring, assessment and attribution, prediction (monthly, seasonal, decadal), and projection (centennial scale) as well as tailoring the associated products tUEAo suit user requirements. A central, enabling piece of implementation of CSIS is a Climate Services Toolkit (CST). In its development phase, CST exists as a prototype (www.wmo.int/cst) as a compilation of tools for generating tailored data and products for decision-making, with a special focus on national requirements in developing countries. WMO provides a server to house the CST prototype as well as support operations and maintenance. WMO members provide technical expertise and other in-kind support, including leadership of the CSIS development team. Several recent WMO events have helped with the deployment of CST within the eight countries that have been recognized by GFCS as illustrative for developing their climate services at national levels. Currently these countries are developing climate services projects focusing service development and delivery for selected economic sectors, such as for health, agriculture, energy, water resources, and hydrometeorological disaster risk reduction. These countries are working together with their respective WMO Regional Climate Centers (RCCs), which provide technical assistance with implementation of climate services projects at the country level and facilitate development of

  10. System's flips in climate-related energy (CRE) systems

    Science.gov (United States)

    Ramos, Maria-Helena; Creutin, Jean-Dominique; Engeland, Kolbjørn; François, Baptiste; Renard, Benjamin

    2014-05-01

    Several modern environmental questions invite to explore the complex relationships between natural phenomena and human behaviour at a range of space and time scales. This usually involves a number of cause-effect (causal) relationships, linking actions and events. In lay terms, 'effect' can be defined as 'what happened' and 'cause', 'why something happened.' In a changing world or merely moving from one scale to another, shifts in perspective are expected, bringing some phenomena into the foreground and putting others to the background. Systems can thus flip from one set of causal structures to another in response to environmental perturbations and human innovations or behaviors, for instance, as space-time signatures are modified. The identification of these flips helps in better understanding and predicting how societies and stakeholders react to a shift in perspective. In this study, our motivation is to investigate possible consequences of the shift to a low carbon economy in terms of socio-technico systems' flips. The focus is on the regional production of Climate-Related Energy (CRE) (hydro-, wind- and solar-power). We search for information on historic shifts that may help defining the forcing conditions of abrupt changes and extreme situations. We identify and present a series of examples in which we try to distinguish the various tipping points, thresholds, breakpoints and regime shifts that are characteristic of complex systems in the CRE production domain. We expect that with these examples our comprehension of the question will be enriched, providing us the elements needed to better validate modeling attempts, to predict and manage flips of complex CRE production systems. The work presented is part of the FP7 project COMPLEX (Knowledge based climate mitigation systems for a low carbon economy; http://www.complex.ac.uk/).

  11. The impact of climate change on the European energy system

    International Nuclear Information System (INIS)

    Dowling, Paul

    2013-01-01

    Climate change can affect the economy via many different channels in many different sectors. The POLES global energy model has been modified to widen the coverage of climate change impacts on the European energy system. The impacts considered are changes in heating and cooling demand in the residential and services sector, changes in the efficiency of thermal power plants, and changes in hydro, wind (both on- and off-shore) and solar PV electricity output. Results of the impacts of six scenarios on the European energy system are presented, and the implications for European energy security and energy imports are presented. Main findings include: demand side impacts (heating and cooling in the residential and services sector) are larger than supply side impacts; power generation from fossil-fuel and nuclear sources decreases and renewable energy increases; and impacts are larger in Southern Europe than in Northern Europe. There remain many more climate change impacts on the energy sector that cannot currently be captured due to a variety of issues including: lack of climate data, difficulties translating climate data into energy-system-relevant data, lack of detail in energy system models where climate impacts act. This paper does not attempt to provide an exhaustive analysis of climate change impacts in the energy sector, it is rather another step towards an increasing coverage of possible impacts. - Highlights: • Expanded coverage of climate change impacts on European energy system. • Demand side impacts are larger than supply side impacts. • Power from fossil and nuclear sources decreases, renewable energy increases. • Impacts are larger in Southern Europe than in Northern Europe. • Synergies exist between climate change mitigation and climate change adaptation

  12. Impact of biogenic emissions on feedbacks in the climate system

    Science.gov (United States)

    Krüger, Olaf

    2017-04-01

    Impact of biogenic emissions on feedbacks in the climate system Bio-geophysical feedback between marine or continental ecosystems and the atmosphere potentially can alter climate change. A prominent feedback loop which is under discussion since 1983 bases on the emission of biologically produced gases - molecular oxygen, sulphur containing compounds and possibly isoprene, supersaturated in oceanic waters - into the marine troposphere. These by-products of phytoplankton metabolism lead to aerosol production and procure sustained influence on climate via modulation of cloud optical properties. In this contribution some findings related to the above mentioned climate processes are presented with special emphasis on marine ecosystems. A comparison of marine and continental ecosystems is made and different processes with major impact on feedbacks in the climate system are discussed.

  13. Climate Forecast System Reanalysis (CFSR), for 1979 to 2011

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The NCEP Climate Forecast System Reanalysis (CFSR) was initially completed for the 31-year period from 1979 to 2009, in January 2010. The CFSR was designed and...

  14. Climate Forecast System Version 2 (CFSv2) Operational Forecasts

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  15. Climate Forecast System Version 2 (CFSv2) Operational Analysis

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Climate Forecast System Version 2 (CFSv2) produced by the NOAA National Centers for Environmental Prediction (NCEP) is a fully coupled model representing the...

  16. Quantifying the increasing sensitivity of power systems to climate variability

    Science.gov (United States)

    Bloomfield, H. C.; Brayshaw, D. J.; Shaffrey, L. C.; Coker, P. J.; Thornton, H. E.

    2016-12-01

    Large quantities of weather-dependent renewable energy generation are expected in power systems under climate change mitigation policies, yet little attention has been given to the impact of long term climate variability. By combining state-of-the-art multi-decadal meteorological records with a parsimonious representation of a power system, this study characterises the impact of year-to-year climate variability on multiple aspects of the power system of Great Britain (including coal, gas and nuclear generation), demonstrating why multi-decadal approaches are necessary. All aspects of the example system are impacted by inter-annual climate variability, with the impacts being most pronounced for baseload generation. The impacts of inter-annual climate variability increase in a 2025 wind-power scenario, with a 4-fold increase in the inter-annual range of operating hours for baseload such as nuclear. The impacts on peak load and peaking-plant are comparably small. Less than 10 years of power supply and demand data are shown to be insufficient for providing robust power system planning guidance. This suggests renewable integration studies—widely used in policy, investment and system design—should adopt a more robust approach to climate characterisation.

  17. INTRODUCTION: Focus on Climate Engineering: Intentional Intervention in the Climate System

    Science.gov (United States)

    2009-12-01

    Geoengineering techniques for countering climate change have been receiving much press recently as a `Plan B' if a global deal to tackle climate change is not agreed at the COP15 negotiations in Copenhagen this December. However, the field is controversial as the methods may have unforeseen consequences, potentially making temperatures rise in some regions or reducing rainfall, and many aspects remain under-researched. This focus issue of Environmental Research Letters is a collection of research articles, invited by David Keith, University of Calgary, and Ken Caldeira, Carnegie Institution, that present and evaluate different methods for engineering the Earth's climate. Not only do the letters in this issue highlight various methods of climate engineering but they also detail the arguments for and against climate engineering as a concept. Further reading Focus on Geoengineering at http://environmentalresearchweb.org/cws/subject/tag=geoengineering IOP Conference Series: Earth and Environmental Science is an open-access proceedings service available at www.iop.org/EJ/journal/ees Focus on Climate Engineering: Intentional Intervention in the Climate System Contents Modification of cirrus clouds to reduce global warming David L Mitchell and William Finnegan Climate engineering and the risk of rapid climate change Andrew Ross and H Damon Matthews Researching geoengineering: should not or could not? Martin Bunzl Of mongooses and mitigation: ecological analogues to geoengineering H Damon Matthews and Sarah E Turner Toward ethical norms and institutions for climate engineering research David R Morrow, Robert E Kopp and Michael Oppenheimer On the possible use of geoengineering to moderate specific climate change impacts Michael C MacCracken The impact of geoengineering aerosols on stratospheric temperature and ozone P Heckendorn, D Weisenstein, S Fueglistaler, B P Luo, E Rozanov, M Schraner, L W Thomason and T Peter The fate of the Greenland Ice Sheet in a geoengineered

  18. System for climate regulation broke down

    International Nuclear Information System (INIS)

    Zackova, K.

    2003-01-01

    Climatologists claim that during the last 25 years the concentration of CO 2 increased by 32 percent and in case of methane this increase reached 150 percent. This is considered to be causing global temperature rise. 'Compared to situation in last century the average temperatures in Slovakia have risen by 1 degree and the amount of rainfalls decreased in average by 5.6 percent,' said Chief Co-ordinator of National Climate Program from Slovak Hydro-Meteorological Institute, Pavel Stastny. In his opinion it is the global rise of temperatures that causes extreme weather conditions - floods last year, drought this year. Experts cannot reach an in agreement in regards to what is causing this changes of climate. A majority of then, and Slovakia is no exception, talks about greenhouse gases. (Author)

  19. Comments on Current Space Systems Observing the Climate

    Science.gov (United States)

    Fisk, L. A.

    2016-07-01

    The Global Climate Observing System (GCOS), which was established in 1992, has been effective in specifying the observations needed for climate studies, and advocating that these observations be made. As a result, there are essential climate variables being observed, particularly from space, and these have formed the basis for our ever-improving models of how the Earth system functions and the human impact on it. We cannot conclude, however, that the current observing system in space is adequate. Climate change is accelerating, and we need to ensure that our observations capture, with completeness and with proper resolution and cadence, the most important changes. Perhaps of most significance, we need to use observations from space to guide the mitigation and adaptation strategies on which at last our civilization seems prepared to embark. And we need to use our observations to educate particularly policy makers on the reality of climate change, so that none deny the need to act. COSPAR is determined to play its part in highlighting the need to strengthen the climate observing system and notably its research component. This is being accomplished through events like the present roundtable, through the work of its Scientific Commission A, its Task Group on GEO (where COSPAR is serving as a member of its Program Board), and by promoting among space agencies and policy-makers the recently released scientific roadmap on Integrated Earth System Science for the period 2016-2025.

  20. A global conservation system for climate-change adaptation.

    Science.gov (United States)

    Hannah, Lee

    2010-02-01

    Climate change has created the need for a new strategic framework for conservation. This framework needs to include new protected areas that account for species range shifts and management that addresses large-scale change across international borders. Actions within the framework must be effective in international waters and across political frontiers and have the ability to accommodate large income and ability-to-pay discrepancies between countries. A global protected-area system responds to these needs. A fully implemented global system of protected areas will help in the transition to a new conservation paradigm robust to climate change and will ensure the integrity of the climate services provided by carbon sequestration from the world's natural habitats. The internationally coordinated response to climate change afforded by such a system could have significant cost savings relative to a system of climate adaptation that unfolds solely at a country level. Implementation of a global system is needed very soon because the effects of climate change on species and ecosystems are already well underway.

  1. Energy policies avoiding a tipping point in the climate system

    International Nuclear Information System (INIS)

    Bahn, Olivier; Edwards, Neil R.; Knutti, Reto; Stocker, Thomas F.

    2011-01-01

    Paleoclimate evidence and climate models indicate that certain elements of the climate system may exhibit thresholds, with small changes in greenhouse gas emissions resulting in non-linear and potentially irreversible regime shifts with serious consequences for socio-economic systems. Such thresholds or tipping points in the climate system are likely to depend on both the magnitude and rate of change of surface warming. The collapse of the Atlantic thermohaline circulation (THC) is one example of such a threshold. To evaluate mitigation policies that curb greenhouse gas emissions to levels that prevent such a climate threshold being reached, we use the MERGE model of Manne, Mendelsohn and Richels. Depending on assumptions on climate sensitivity and technological progress, our analysis shows that preserving the THC may require a fast and strong greenhouse gas emission reduction from today's level, with transition to nuclear and/or renewable energy, possibly combined with the use of carbon capture and sequestration systems. - Research Highlights: → Preserving the THC may require a fast and strong greenhouse gas emission reduction. → This could be achieved through strong changes in the energy mix. → Similar results would apply to any climate system tipping points.

  2. Safety climate and culture: Integrating psychological and systems perspectives.

    Science.gov (United States)

    Casey, Tristan; Griffin, Mark A; Flatau Harrison, Huw; Neal, Andrew

    2017-07-01

    Safety climate research has reached a mature stage of development, with a number of meta-analyses demonstrating the link between safety climate and safety outcomes. More recently, there has been interest from systems theorists in integrating the concept of safety culture and to a lesser extent, safety climate into systems-based models of organizational safety. Such models represent a theoretical and practical development of the safety climate concept by positioning climate as part of a dynamic work system in which perceptions of safety act to constrain and shape employee behavior. We propose safety climate and safety culture constitute part of the enabling capitals through which organizations build safety capability. We discuss how organizations can deploy different configurations of enabling capital to exert control over work systems and maintain safe and productive performance. We outline 4 key strategies through which organizations to reconcile the system control problems of promotion versus prevention, and stability versus flexibility. (PsycINFO Database Record (c) 2017 APA, all rights reserved).

  3. Developing a National Climate Indicators System to Track Climate Changes, Impacts, Vulnerabilities, and Preparedness

    Science.gov (United States)

    Kenney, M. A.; Janetos, A. C.; Arndt, D.; Chen, R. S.; Pouyat, R.; Anderson, S. M.

    2013-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years. Part of the vision, which is now under development, for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks, Atmospheric Composition, Physical Climate Variability and Change, Sectors and Resources of Concern, and Adaptation and Mitigation Responses. This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at spatial

  4. Investigations of the Climate System Response to Climate Engineering in a Hierarchy of Models

    Science.gov (United States)

    McCusker, Kelly E.

    Global warming due to anthropogenic emissions of greenhouse gases is causing negative impacts on diverse ecological and human systems around the globe, and these impacts are projected to worsen as climate continues to warm. In the absence of meaningful greenhouse gas emissions reductions, new strategies have been proposed to engineer the climate, with the aim of preventing further warming and avoiding associated climate impacts. We investigate one such strategy here, falling under the umbrella of `solar radiation management', in which sulfate aerosols are injected into the stratosphere. We use a global climate model with a coupled mixed-layer depth ocean and with a fully-coupled ocean general circulation model to simulate the stabilization of climate by balancing increasing carbon dioxide with increasing stratospheric sulfate concentrations. We evaluate whether or not severe climate impacts, such as melting Arctic sea ice, tropical crop failure, or destabilization of the West Antarctic ice sheet, could be avoided. We find that while tropical climate emergencies might be avoided by use of stratospheric aerosol injections, avoiding polar emergencies cannot be guaranteed due to large residual climate changes in those regions, which are in part due to residual atmospheric circulation anomalies. We also find that the inclusion of a fully-coupled ocean is important for determining the regional climate response because of its dynamical feedbacks. The efficacy of stratospheric sulfate aerosol injections, and solar radiation management more generally, depends on its ability to be maintained indefinitely, without interruption from a variety of possible sources, such as technological failure, a breakdown in global cooperation, lack of funding, or negative unintended consequences. We next consider the scenario in which stratospheric sulfate injections are abruptly terminated after a multi- decadal period of implementation while greenhouse gas emissions have continued unabated

  5. Developing a System of National Climate Assessment Indicators to Track Climate Change Impacts, Vulnerabilities, and Preparedness

    Science.gov (United States)

    Janetos, A. C.; Kenney, M. A.; Chen, R. S.; Arndt, D.

    2012-12-01

    The National Climate Assessment (NCA) is being conducted under the auspices of the U.S. Global Change Research Program (USGCRP), pursuant to the Global Change Research Act of 1990, Section 106, which requires a report to Congress every 4 years (http://globalchange.gov/what-we-do/assessment/). Part of the vision for the sustained National Climate Assessment (NCA) process is a system of physical, ecological, and societal indicators that communicate key aspects of the physical climate, climate impacts, vulnerabilities, and preparedness for the purpose of informing both decision makers and the public with scientifically valid information that is useful to inform decision-making processes such as the development and implementation of climate adaptation strategies in a particular sector or region. These indicators will be tracked as a part of ongoing assessment activities, with adjustments as necessary to adapt to changing conditions and understanding. The indicators will be reviewed and updated so that the system adapts to new information. The NCA indicator system is not intended to serve as a vehicle for documenting rigorous cause and effect relationships. It is reasonable, however, for it to serve as a guide to those factors that affect the evolution of variability and change in the climate system, the resources and sectors of concern that are affected by it, and how society chooses to respond. Different components of the end-to-end climate issue serve as categories within which to organize an end-to-end system of indicators: Greenhouse Gas Emissions and Sinks Atmospheric Composition Physical Climate Variability and Change Sectors and Resources of Concern Adaptation and Mitigation Responses This framing has several advantages. It can be used to identify the different components of the end-to-end climate issue that both decision-makers and researchers are interested in. It is independent of scale, and therefore allows the indicators themselves to be described at

  6. Climate proxy data as groundwater tracers in regional flow systems

    Science.gov (United States)

    Clark, J. F.; Morrissey, S. K.; Stute, M.

    2008-05-01

    The isotopic and chemical signatures of groundwater reflect local climate conditions. By systematically analyzing groundwater and determining their hydrologic setting, records of past climates can be constructed. Because of their chemistries and relatively uncomplicated source functions, dissolved noble gases have yielded reliable records of continental temperatures for the last 30,000 to 50,000 years. Variations in the stable isotope compositions of groundwater due to long term climate changes have also been documented over these time scales. Because glacial - interglacial climate changes are relatively well known, these climate proxies can be used as "stratigraphic" markers within flow systems and used to distinguish groundwaters that have recharged during the Holocene from those recharged during the last glacial period, important time scales for distinguishing regional and local flow systems in many aquifers. In southern Georgia, the climate proxy tracers were able to identify leakage from surface aquifers into the Upper Floridan aquifer in areas previously thought to be confined. In south Florida, the transition between Holocene and glacial signatures in the Upper Floridan aquifer occurs mid-way between the recharge area and Lake Okeechobee. Down gradient of the lake, the proxies are uniform, indicating recharge during the last glacial period. Furthermore, there is no evidence for leakage from the shallow aquifers into the Upper Floridan. In the Lower Floridan, the climate proxies indicate that the saline water entered the aquifer after sea level rose to its present level.

  7. A Web-Based Geovisual Analytical System for Climate Studies

    Directory of Open Access Journals (Sweden)

    Zhenlong Li

    2012-12-01

    Full Text Available Climate studies involve petabytes of spatiotemporal datasets that are produced and archived at distributed computing resources. Scientists need an intuitive and convenient tool to explore the distributed spatiotemporal data. Geovisual analytical tools have the potential to provide such an intuitive and convenient method for scientists to access climate data, discover the relationships between various climate parameters, and communicate the results across different research communities. However, implementing a geovisual analytical tool for complex climate data in a distributed environment poses several challenges. This paper reports our research and development of a web-based geovisual analytical system to support the analysis of climate data generated by climate model. Using the ModelE developed by the NASA Goddard Institute for Space Studies (GISS as an example, we demonstrate that the system is able to (1 manage large volume datasets over the Internet; (2 visualize 2D/3D/4D spatiotemporal data; (3 broker various spatiotemporal statistical analyses for climate research; and (4 support interactive data analysis and knowledge discovery. This research also provides an example for managing, disseminating, and analyzing Big Data in the 21st century.

  8. Arctic melt ponds and energy balance in the climate system

    Science.gov (United States)

    Sudakov, Ivan

    2017-02-01

    Elements of Earth's cryosphere, such as the summer Arctic sea ice pack, are melting at precipitous rates that have far outpaced the projections of large scale climate models. Understanding key processes, such as the evolution of melt ponds that form atop Arctic sea ice and control its optical properties, is crucial to improving climate projections. These types of critical phenomena in the cryosphere are of increasing interest as the climate system warms, and are crucial for predicting its stability. In this paper, we consider how geometrical properties of melt ponds can influence ice-albedo feedback and how it can influence the equilibria in the energy balance of the planet.

  9. Climate change adaptability of cropping and farming systems for Europe

    DEFF Research Database (Denmark)

    Justes, Eric; Rossing, Walter; Vermue, Anthony

    systems to CC through a gradient of adaptation strategies. Methods: The adaptation strategies are evaluated at cropping and farming systems as well as regional levels for nine “Adaptation Pilots” along a North-South climate gradient in the EU. Three categories of strategies are evaluated: i) Resistance...... and foster learning in participatory co-design workshops. Results and expectations: The expected results of the Climate-CAFE on-going project will produce an overview of potential CC adaptation measures for selected sites across the EU, along with mutual learning experiences for improved understanding......Introduction: Prospective studies showed that the European agriculture will be impacted by climate change (CC) with different effects depending on the geographic region. The ERA-Net+ project Climate-CAFE (call of FACCE-JPI) aims to improve the “adaptive capacity” of arable and forage based farming...

  10. Implications of climate change (global warming) for the healthcare system.

    Science.gov (United States)

    Raffa, R B; Eltoukhy, N S; Raffa, K F

    2012-10-01

    Temperature-sensitive pathogenic species and their vectors and hosts are emerging in previously colder regions as a consequence of several factors, including global warming. As a result, an increasing number of people will be exposed to pathogens against which they have not previously needed defences. We illustrate this with a specific example of recent emergence of Cryptococcus gattii infections in more temperate climates. The outbreaks in more temperate climates of the highly virulent--but usually tropically restricted--C. gattii is illustrative of an anticipated growing challenge for the healthcare system. There is a need for preparedness by healthcare professionals in anticipation and for management of such outbreaks, including other infections whose recent increased prevalence in temperate climates can be at least partly associated with global warming. (Re)emergence of temperature-sensitive pathogenic species in more temperate climates will present new challenges for healthcare systems. Preparation for outbreaks should precede their occurrence. © 2012 Blackwell Publishing Ltd.

  11. Revista Espinhaço entrevistaDra. Bette Otto Bliesner(NCAR Boulder

    Directory of Open Access Journals (Sweden)

    Kourosh Behzadian

    2016-12-01

    Full Text Available Dra. Bette Otto Bliesner foi entrevistada pela Revista Espinhaço durante o BIARI 2016, que ocorreu em Providence (EUA na Brown University. Para este volume especial da Revista Espihaço, a Dra. Bette, pesquisadora do National Center for Atmospheric Research (NCAR e especialista em modelagem climática e paleo-climatologia, traz reflexões sobre seu recente trabalho no IPCC.Esta entrevista foi conduzida por Kourosh Behzadian (University of West London, Douglas Sathler (FIH/Cegeo/UFVJM and Lorena Fleury (UFRGS.

  12. Climate information for public health: the role of the IRI climate data library in an integrated knowledge system.

    Science.gov (United States)

    del Corral, John; Blumenthal, M Benno; Mantilla, Gilma; Ceccato, Pietro; Connor, Stephen J; Thomson, Madeleine C

    2012-09-01

    Public health professionals are increasingly concerned about the potential impact of climate variability and change on health outcomes. Protecting public health from the vagaries of climate requires new working relationships between the public health sector and the providers of climate data and information. The Climate Information for Public Health Action initiative at the International Research Institute for Climate and Society (IRI) is designed to increase the public health community's capacity to understand, use and demand appropriate climate data and climate information to mitigate the public health impacts of the climate. Significant challenges to building the capacity of health professionals to use climate information in research and decision-making include the difficulties experienced by many in accessing relevant and timely quality controlled data and information in formats that can be readily incorporated into specific analysis with other data sources. We present here the capacities of the IRI climate data library and show how we have used it to build an integrated knowledge system in the support of the use of climate and environmental information in climate-sensitive decision-making with respect to health. Initiated as an aid facilitating exploratory data analysis for climate scientists, the IRI climate data library has emerged as a powerful tool for interdisciplinary researchers focused on topics related to climate impacts on society, including health.

  13. The Geopolitics of Climate Change: Challenges to the International System

    International Nuclear Information System (INIS)

    Halden, Peter

    2007-12-01

    This report analyses the consequences of climate change and global warming for international politics in general and international security in particular. The report focuses on whether and in what way climate change may alter the conditions of international security. From this perspective, the initial effects of climate change will vary according to existing economic, political and social structures in different world regions. Organised violence is more likely in regions with weak states and conflictual inter-state dynamics than in those characterised by co-operative relations. In the short- to medium term, climate change is unlikely to alter the constitutive structures of international security. However, depending on the severity of climate change, these conditions may change over the long term. Such changes will probably depend on the secondary effects that change has on the world and regional economies. Climate change is unlikely to lead to an increase in conflicts in the short- to medium term, but a long-term development marked by unmitigated climate change could very well have serious consequences for international security. The report argues that, although necessary, mitigation and adaptation measures may have consequences for international politics. These are due to the changes in social and political systems that they entail

  14. The Geopolitics of Climate Change: Challenges to the International System

    Energy Technology Data Exchange (ETDEWEB)

    Halden, Peter

    2007-12-15

    This report analyses the consequences of climate change and global warming for international politics in general and international security in particular. The report focuses on whether and in what way climate change may alter the conditions of international security. From this perspective, the initial effects of climate change will vary according to existing economic, political and social structures in different world regions. Organised violence is more likely in regions with weak states and conflictual inter-state dynamics than in those characterised by co-operative relations. In the short- to medium term, climate change is unlikely to alter the constitutive structures of international security. However, depending on the severity of climate change, these conditions may change over the long term. Such changes will probably depend on the secondary effects that change has on the world and regional economies. Climate change is unlikely to lead to an increase in conflicts in the short- to medium term, but a long-term development marked by unmitigated climate change could very well have serious consequences for international security. The report argues that, although necessary, mitigation and adaptation measures may have consequences for international politics. These are due to the changes in social and political systems that they entail.

  15. 7th International Seminar on Climate System and Climate Change(ISCS) through the Eyes of a Trainee

    Institute of Scientific and Technical Information of China (English)

    Karen K.Y.Shum

    2010-01-01

    @@ At the invitation of Dr.Dahe Qin,the president of ISCS and the Co-Chair of IPCC WGI,the Hong Kong Observatory has been obliged to participate and benefit from the International Seminar in Beijing,China on 19-30 July 2010.Seminar topics included atmospheric chemistry and climate effects of aerosol biogeochemical cycles,cryosphere and its role in the climate system and climate change,climate models and its application in climate change research,climate change adaptation and mitigation.Data is a common ground for these multi-disciplinary studies around the globe.

  16. Modeling lakes and reservoirs in the climate system

    Science.gov (United States)

    MacKay, M.D.; Neale, P.J.; Arp, C.D.; De Senerpont Domis, L. N.; Fang, X.; Gal, G.; Jo, K.D.; Kirillin, G.; Lenters, J.D.; Litchman, E.; MacIntyre, S.; Marsh, P.; Melack, J.; Mooij, W.M.; Peeters, F.; Quesada, A.; Schladow, S.G.; Schmid, M.; Spence, C.; Stokes, S.L.

    2009-01-01

    Modeling studies examining the effect of lakes on regional and global climate, as well as studies on the influence of climate variability and change on aquatic ecosystems, are surveyed. Fully coupled atmosphere-land surface-lake climate models that could be used for both of these types of study simultaneously do not presently exist, though there are many applications that would benefit from such models. It is argued here that current understanding of physical and biogeochemical processes in freshwater systems is sufficient to begin to construct such models, and a path forward is proposed. The largest impediment to fully representing lakes in the climate system lies in the handling of lakes that are too small to be explicitly resolved by the climate model, and that make up the majority of the lake-covered area at the resolutions currently used by global and regional climate models. Ongoing development within the hydrological sciences community and continual improvements in model resolution should help ameliorate this issue.

  17. Climate Change and Malaria in Canada: A Systems Approach

    Directory of Open Access Journals (Sweden)

    L. Berrang-Ford

    2009-01-01

    Full Text Available This article examines the potential for changes in imported and autochthonous malaria incidence in Canada as a consequence of climate change. Drawing on a systems framework, we qualitatively characterize and assess the potential direct and indirect impact of climate change on malaria in Canada within the context of other concurrent ecological and social trends. Competent malaria vectors currently exist in southern Canada, including within this range several major urban centres, and conditions here have historically supported endemic malaria transmission. Climate change will increase the occurrence of temperature conditions suitable for malaria transmission in Canada, which, combined with trends in international travel, immigration, drug resistance, and inexperience in both clinical and laboratory diagnosis, may increase malaria incidence in Canada and permit sporadic autochthonous cases. This conclusion challenges the general assumption of negligible malaria risk in Canada with climate change.

  18. Terrestrial biogeochemistry in the community climate system model (CCSM)

    Energy Technology Data Exchange (ETDEWEB)

    Hoffman, Forrest [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States); Fung, Inez [University of California at Berkeley, Berkeley, California (United States); Randerson, Jim [University of California at Irvine, Irvine, California (United States); Thornton, Peter [National Center for Atmospheric Research, Boulder, Colorado (United States); Foley, Jon [University of Wisconsin at Madison, Madison, Wisconsin (United States); Covey, Curtis [Program for Climate Model Diagnosis and Intercomparison, Lawrence Livermore National Laboratory, Livermore, California (United States); John, Jasmin [University of California at Berkeley, Berkeley, California (United States); Levis, Samuel [National Center for Atmospheric Research, Boulder, Colorado (United States); Post, W Mac [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States); Vertenstein, Mariana [National Center for Atmospheric Research, Boulder, Colorado (United States); Stoeckli, Reto [Colorado State University, Ft. Collins, Colorado (United States); Running, Steve [University of Montana, Missoula, Montana (United States); Heinsch, Faith Ann [University of Montana, Missoula, Montana (United States); Erickson, David [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States); Drake, John [Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831-6016 (United States)

    2006-09-15

    Described here is the formulation of the CASA{sup '} biogeochemistry model of Fung, et al., which has recently been coupled to the Community Land Model Version 3 (CLM3) and the Community Climate System Model Version 3 (CCSM3). This model is presently being used for Coupled Climate/Carbon Cycle Model Intercomparison Project (C{sup 4}MIP) Phase 1 experiments. In addition, CASA{sup '} is one of three models - in addition to CN (Thornton, et al.) and IBIS (Thompson, et al.) - that are being run within CCSM to investigate their suitability for use in climate change predictions in a future version of CCSM. All of these biogeochemistry experiments are being performed on the Computational Climate Science End Station (Dr. Warren Washington, Principle Investigator) at the National Center for Computational Sciences at Oak Ridge National Laboratory.

  19. Terrestrial biogeochemistry in the community climate system model (CCSM)

    International Nuclear Information System (INIS)

    Hoffman, Forrest; Fung, Inez; Randerson, Jim; Thornton, Peter; Foley, Jon; Covey, Curtis; John, Jasmin; Levis, Samuel; Post, W Mac; Vertenstein, Mariana; Stoeckli, Reto; Running, Steve; Heinsch, Faith Ann; Erickson, David; Drake, John

    2006-01-01

    Described here is the formulation of the CASA ' biogeochemistry model of Fung, et al., which has recently been coupled to the Community Land Model Version 3 (CLM3) and the Community Climate System Model Version 3 (CCSM3). This model is presently being used for Coupled Climate/Carbon Cycle Model Intercomparison Project (C 4 MIP) Phase 1 experiments. In addition, CASA ' is one of three models - in addition to CN (Thornton, et al.) and IBIS (Thompson, et al.) - that are being run within CCSM to investigate their suitability for use in climate change predictions in a future version of CCSM. All of these biogeochemistry experiments are being performed on the Computational Climate Science End Station (Dr. Warren Washington, Principle Investigator) at the National Center for Computational Sciences at Oak Ridge National Laboratory

  20. Rainwater catchment system design using simulated future climate data

    Science.gov (United States)

    Wallace, Corey D.; Bailey, Ryan T.; Arabi, Mazdak

    2015-10-01

    Rainwater harvesting techniques are used worldwide to augment potable water supply, provide water for small-scale irrigation practices, increase rainwater-use efficiency for sustained crop growth in arid and semi-arid regions, decrease urban stormwater flow volumes, and in general to relieve dependency on urban water resources cycles. A number of methods have been established in recent years to estimate reliability of rainwater catchment systems (RWCS) and thereby properly size the components (roof catchment area, storage tank size) of the system for a given climatic region. These methods typically use historical or stochastically-generated rainfall patterns to quantify system performance and optimally size the system, with the latter accounting for possible rainfall scenarios based on statistical relationships of historical rainfall patterns. To design RWCS systems that can sustainably meet water demand under future climate conditions, this paper introduces a method that employs climatic data from general circulation models (GCMs) to develop a suite of catchment area vs. storage size design curves that capture uncertainty in future climate scenarios. Monthly rainfall data for the 2010-2050 time period is statistically downscaled to daily values using a Markov chain algorithm, with results used only from GCMs that yield rainfall patterns that are statistically consistent with historical rainfall patterns. The process is demonstrated through application to two climatic regions of the Federated States of Micronesia (FSM) in the western Pacific, wherein the majority of the population relies on rainwater harvesting for potable water supply. Through the use of design curves, communities can provide household RWCS that achieve a certain degree of storage reliability. The method described herein can be applied generally to any geographic region. It can be used to first, assess the future performance of existing household systems; and second, to design or modify systems

  1. Climate control systems using pozzolan materials

    KAUST Repository

    Almadhoun, Mahmoud Nassar Mahmoud

    2016-01-01

    A system and method for conditioning air is provided that optimizes the use of sustainable and locally sourced materials with agrarian, residential, and industrial applications. The system can be formed with a porous siliceous, or siliceous

  2. Successfully Integrating Climate Change Education into School System Curriculum

    Science.gov (United States)

    Scallion, M.

    2017-12-01

    Maryland's Eastern Shore is threatened by climate change driven sea level rise. By working with school systems, rather than just with individual teachers, educators can gain access to an entire grade level of students, assuring that all students, regardless of socioeconomic background or prior coursework have an opportunity to explore the climate issue and be part of crafting community level solutions for their communities. We will address the benefits of working with school system partners to achieve a successful integration of in-school and outdoor learning by making teachers and administrators part of the process. We will explore how, through the Maryland and Delaware Climate Change Education, Assessment, and Research Project, teachers, content supervisors and informal educators worked together to create a climate curriculum with local context that effectively meets Common Core and Next Generation Science Standards. Over the course of several weeks during the year, students engage in a series of in-class and field activities directly correlated with their science curriculum. Wetlands and birds are used as examples of the local wildlife and habitat being impacted by climate change. Through these lessons led by Pickering Creek Audubon Center educators and strengthened by material covered by classroom teachers, students get a thorough introduction to the mechanism of climate change, local impacts of climate change on habitats and wildlife, and actions they can take as a community to mitigate the effects of climate change. The project concludes with a habitat and carbon stewardship project that gives students and teachers a sense of hope as they tackle this big issue on a local scale. We'll explore how the MADE-CLEAR Informal Climate Change Education (ICCE) Community of Practice supports Delaware and Maryland environmental educators in collaboratively learning and expanding their programming on the complex issue of climate change. Participants will learn how to

  3. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    International Nuclear Information System (INIS)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio; Vecchio, Antonio

    2017-01-01

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  4. Comparative Climates of the Trappist-1 Planetary System: Results from a Simple Climate-vegetation Model

    Energy Technology Data Exchange (ETDEWEB)

    Alberti, Tommaso; Carbone, Vincenzo; Lepreti, Fabio [Dipartimento di Fisica, Università della Calabria, Ponte P. Bucci, Cubo 31C, I-87036, Rende (CS) (Italy); Vecchio, Antonio, E-mail: tommaso.alberti@unical.it, E-mail: tommasoalberti89@gmail.com [LESIA—Observatoire de Paris, PSL Research University, 5 place Jules Janssen, F-92190, Meudon (France)

    2017-07-20

    The recent discovery of the planetary system hosted by the ultracool dwarf star TRAPPIST-1 could open new paths for investigations of the planetary climates of Earth-sized exoplanets, their atmospheres, and their possible habitability. In this paper, we use a simple climate-vegetation energy-balance model to study the climate of the seven TRAPPIST-1 planets and the climate dependence on various factors: the global albedo, the fraction of vegetation that could cover their surfaces, and the different greenhouse conditions. The model allows us to investigate whether liquid water could be maintained on the planetary surfaces (i.e., by defining a “surface water zone (SWZ)”) in different planetary conditions, with or without the presence of a greenhouse effect. It is shown that planet TRAPPIST-1d seems to be the most stable from an Earth-like perspective, since it resides in the SWZ for a wide range of reasonable values of the model parameters. Moreover, according to the model, outer planets (f, g, and h) cannot host liquid water on their surfaces, even with Earth-like conditions, entering a snowball state. Although very simple, the model allows us to extract the main features of the TRAPPIST-1 planetary climates.

  5. Validation of the space fields and the median zonal of the temperature of the air in surface and of the precipitation in Colombia, simulated by the pattern CCM3 and the data of the NCEP/NCAR Reanalysis

    International Nuclear Information System (INIS)

    Zea Mazo, Jorge Anibal; Leon Aristizabal Gloria Esperanza; Eslava Ramirez, Jesus Antonio

    2001-01-01

    This work presents an analysis of the basic fields of the surface temperature and the precipitation for the national territory, from two sources of information: the data originated by the national meteorological network and the generated ones at world-wide level by means of the NCEP/NCAR Reanalysis project for the assimilation of data coming from diverse world-wide networks. With them reference scenes are constructed to validate the CCM3 model which is used like tool for the projection of the climatic change in Colombia

  6. Guiding climate change adaptation within vulnerable natural resource management systems.

    Science.gov (United States)

    Bardsley, Douglas K; Sweeney, Susan M

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  7. Guiding Climate Change Adaptation Within Vulnerable Natural Resource Management Systems

    Science.gov (United States)

    Bardsley, Douglas K.; Sweeney, Susan M.

    2010-05-01

    Climate change has the potential to compromise the sustainability of natural resources in Mediterranean climatic systems, such that short-term reactive responses will increasingly be insufficient to ensure effective management. There is a simultaneous need for both the clear articulation of the vulnerabilities of specific management systems to climate risk, and the development of appropriate short- and long-term strategic planning responses that anticipate environmental change or allow for sustainable adaptive management in response to trends in resource condition. Governments are developing climate change adaptation policy frameworks, but without the recognition of the importance of responding strategically, regional stakeholders will struggle to manage future climate risk. In a partnership between the South Australian Government, the Adelaide and Mt Lofty Ranges Natural Resource Management Board and the regional community, a range of available research approaches to support regional climate change adaptation decision-making, were applied and critically examined, including: scenario modelling; applied and participatory Geographical Information Systems modelling; environmental risk analysis; and participatory action learning. As managers apply ideas for adaptation within their own biophysical and socio-cultural contexts, there would be both successes and failures, but a learning orientation to societal change will enable improvements over time. A base-line target for regional responses to climate change is the ownership of the issue by stakeholders, which leads to an acceptance that effective actions to adapt are now both possible and vitally important. Beyond such baseline knowledge, the research suggests that there is a range of tools from the social and physical sciences available to guide adaptation decision-making.

  8. Systems in peril: Climate change, agriculture and biodiversity in Australia

    International Nuclear Information System (INIS)

    Cocklin, Chris; Dibden, Jacqui

    2009-01-01

    This paper reflects on the interplay amongst three closely linked systems - climate, agriculture and biodiversity - in the Australian context. The advance of a European style of agriculture has imperilled Australian biodiversity. The loss and degradation of biodiversity has, in turn, had negative consequences for agriculture. Climate change is imposing new pressures on both agriculture and biodiversity. From a policy and management perspective, though, it is possible to envisage mitigation and adaptation responses that would alleviate pressures on all three systems (climate, agriculture, biodiversity). In this way, the paper seeks to make explicit the important connections between science and policy. The paper outlines the distinctive features of both biodiversity and agriculture in the Australian context. The discussion then addresses the impacts of agriculture on biodiversity, followed by an overview of how climate change is impacting on both of these systems. The final section of the paper offers some commentary on current policy and management strategies that are targeted at mitigating the loss of biodiversity and which may also have benefits in terms of climate change.

  9. Cropping Systems and Climate Change in Humid Subtropical Environments

    Directory of Open Access Journals (Sweden)

    Ixchel M. Hernandez-Ochoa

    2018-02-01

    Full Text Available In the future, climate change will challenge food security by threatening crop production. Humid subtropical regions play an important role in global food security, with crop rotations often including wheat (winter crop and soybean and maize (summer crops. Over the last 30 years, the humid subtropics in the Northern Hemisphere have experienced a stronger warming trend than in the Southern Hemisphere, and the trend is projected to continue throughout the mid- and end of century. Past rainfall trends range, from increases up to 4% per decade in Southeast China to −3% decadal decline in East Australia; a similar trend is projected in the future. Climate change impact studies suggest that by the middle and end of the century, wheat yields may not change, or they will increase up to 17%. Soybean yields will increase between 3% and 41%, while maize yields will increase by 30% or decline by −40%. These wide-ranging climate change impacts are partly due to the region-specific projections, but also due to different global climate models, climate change scenarios, single-model uncertainties, and cropping system assumptions, making it difficult to make conclusions from these impact studies and develop adaptation strategies. Additionally, most of the crop models used in these studies do not include major common stresses in this environment, such as heat, frost, excess water, pests, and diseases. Standard protocols and impact assessments across the humid subtropical regions are needed to understand climate change impacts and prepare for adaptation strategies.

  10. Terrestrial Biosphere Dynamics in the Climate System: Past and Future

    Science.gov (United States)

    Overpeck, J.; Whitlock, C.; Huntley, B.

    2002-12-01

    The paleoenvironmental record makes it clear that climate change as large as is likely to occur in the next two centuries will drive change in the terrestrial biosphere that is both large and difficult to predict, or plan for. Many species, communities and ecosystems could experience rates of climate change, and "destination climates" that are unprecedented in their time on earth. The paleorecord also makes it clear that a wide range of possible climate system behavior, such as decades-long droughts, increases in large storm and flood frequency, and rapid sea level rise, all occurred repeatedly in the past, and for poorly understood reasons. These types of events, if they were to reoccur in the future, could have especially devastating impacts on biodiversity, both because their timing and spatial extent cannot be anticipated, and because the biota's natural defenses have been compromised by land-use, reductions in genetic flexibility, pollution, excess water utilization, invasive species, and other human influences. Vegetation disturbance (e.g., by disease, pests and fire) will undoubtedly be exacerbated by climate change (stress), but could also speed the rate at which terrestrial biosphere change takes place in the future. The paleoenvironmental record makes it clear that major scientific challenges include an improved ability to model regional biospheric change, both past and future. This in turn will be a prerequisite to obtaining realistic estimates of future biogeochemical and biophysical feedbacks, and thus to obtaining better assessments of future climate change. These steps will help generate the improved understanding of climate variability that is needed to manage global biodiversity. However, the most troubling message from the paleoenvironmental record is that unchecked anthropogenic climate change could make the Earth's 6th major mass extinction unavoidable.

  11. Regional Scale/Regional Climate Model Development and Its Applications at Goddard

    Science.gov (United States)

    Tao, W.-K.; Lau, W.; Qian, J.; Jia, Y.; Wetzel, P.; Chou, M.-D.; Wang, Y.; Lynn, B.

    2000-01-01

    A Regional Land-Atmosphere Climate Simulation System (RELACS) is being developed and implemented at NASA Goddard Space Flight Center. One of the major goals of RELACS is to use a regional scale model (Penn State/NCAR MM5) with improved physical processes and in particular land-related processes, to understand the role of the land surface and its interaction with convection and radiation as well as the water/energy cycles in the Indo-China/South China Sea (SCS)/China, N. America and S. America region.

  12. Couplings between changes in the climate system and biogeochemistry

    Energy Technology Data Exchange (ETDEWEB)

    Menon, Surabi; Denman, Kenneth L.; Brasseur , Guy; Chidthaisong, Amnat; Ciais, Philippe; Cox, Peter M.; Dickinson, Robert E.; Hauglustaine, Didier; Heinze, Christoph; Holland, Elisabeth; Jacob , Daniel; Lohmann, Ulrike; Ramachandran, Srikanthan; Leite da Silva Dias, Pedro; Wofsy, Steven C.; Zhang, Xiaoye

    2007-10-01

    The Earth's climate is determined by a number of complex connected physical, chemical and biological processes occurring in the atmosphere, land and ocean. The radiative properties of the atmosphere, a major controlling factor of the Earth's climate, are strongly affected by the biophysical state of the Earth's surface and by the atmospheric abundance of a variety of trace constituents. These constituents include long-lived greenhouse gases (LLGHGs) such as carbon dioxide (CO{sub 2}), methane (CH{sub 4}) and nitrous oxide (N{sub 2}O), as well as other radiatively active constituents such as ozone and different types of aerosol particles. The composition of the atmosphere is determined by processes such as natural and anthropogenic emissions of gases and aerosols, transport at a variety of scales, chemical and microphysical transformations, wet scavenging and surface uptake by the land and terrestrial ecosystems, and by the ocean and its ecosystems. These processes and, more generally the rates of biogeochemical cycling, are affected by climate change, and involve interactions between and within the different components of the Earth system. These interactions are generally nonlinear and may produce negative or positive feedbacks to the climate system. An important aspect of climate research is to identify potential feedbacks and assess if such feedbacks could produce large and undesired responses to perturbations resulting from human activities. Studies of past climate evolution on different time scales can elucidate mechanisms that could trigger nonlinear responses to external forcing. The purpose of this chapter is to identify the major biogeochemical feedbacks of significance to the climate system, and to assess current knowledge of their magnitudes and trends. Specifically, this chapter will examine the relationships between the physical climate system and the land surface, the carbon cycle, chemically reactive atmospheric gases and aerosol

  13. DESYCO: a Decision Support System to provide climate services for coastal stakeholders dealing with climate change impacts.

    Science.gov (United States)

    Torresan, S.; Gallina, V.; Giannini, V.; Rizzi, J.; Zabeo, A.; Critto, A.; Marcomini, A.

    2012-04-01

    At the international level climate services are recognized as innovative tools aimed at providing and distributing climate data and information according to the needs of end-users. Furthermore, needs-based climate services are extremely effective to manage climate risks and take advantage of the opportunities associated with climate change impacts. To date, climate services are mainly related to climate models that supply climate data (e.g. temperature, precipitations) at different spatial and time scales. However, there is a significant gap of tools aimed at providing information about risks and impacts induced by climate change and allowing non-expert stakeholders to use both climate-model and climate-impact data. DESYCO is a GIS-Decision Support System aimed at the integrated assessment of multiple climate change impacts on vulnerable coastal systems (e.g. beaches, river deltas, estuaries and lagoons, wetlands, agricultural and urban areas). It is an open source software that manages different input data (e.g. raster or shapefiles) coming from climate models (e.g. global and regional climate projections) and high resolution impact models (e.g. hydrodynamic, hydrological and biogeochemical simulations) in order to provide hazard, exposure, susceptibility, risk and damage maps for the identification and prioritization of hot-spot areas and to provide a basis for the definition of coastal adaptation and management strategies. Within the CLIM-RUN project (FP7) DESYCO is proposed as an helpful tool to bridge the gap between climate data and stakeholder needs and will be applied to the coastal area of the North Adriatic Sea (Italy) in order to provide climate services for local authorities involved in coastal zone management. Accordingly, a first workshop was held in Venice (Italy) with coastal authorities, climate experts and climate change risk experts, in order to start an iterative exchange of information about the knowledge related to climate change, climate

  14. A Standardized Evaluation System for Decadal Climate Prediction

    Science.gov (United States)

    Kadow, C.; Cubasch, U.

    2012-12-01

    The evaluation of decadal prediction systems is a scientific challenge as well as a technical challenge in the climate research. The major project MiKlip (www.fona-miklip.de) for medium-term climate prediction funded by the Federal Ministry of Education and Research in Germany (BMBF) has the aim to create a model system that can provide reliable decadal forecasts on climate and weather. The model system to be developed will be novel in several aspects, with great challenges for the methodology development. This concerns especially the determination of the initial conditions, the inclusion into the model of processes relevant to decadal predictions, the increase of the spatial resolution through regionalisation, the improvement or adjustment of statistical post-processing, and finally the synthesis and validation of the entire model system. Therefore, a standardized evaluation system will be part of the MiKlip system to validate it - developed by the project 'Integrated data and evaluation system for decadal scale prediction' (INTEGRATION). The presentation gives an overview of the different linkages of such a project, shows the different development stages and gives an outlook for users and possible end users in climate service. The technical interface combines all projects inside of MiKlip and invites them to participate in a common evaluation system. The system design and the validation strategy from a standalone tool in the beginning to a user friendly web based system using GRID technologies to an integrated part of the operational MiKlip system for industry and society will give the opportunity to enhance the MiKlip strategy. First results of different possibilities of such a system will be shown to present the scientific background through Taylor diagrams, ensemble skill scores and e.g. climatological means to show the usability and possibilities of MiKlip and the INTEGRATION project.

  15. Climate control systems using pozzolan materials

    KAUST Repository

    Almadhoun, Mahmoud Nassar Mahmoud

    2016-02-18

    A system and method for conditioning air is provided that optimizes the use of sustainable and locally sourced materials with agrarian, residential, and industrial applications. The system can be formed with a porous siliceous, or siliceous and aluminous material that is sufficiently porous, to allow conditioning fluid to flow there through. The material can also be formed into a structure that includes one or more passageways configured to allow air to be conditioned to also pass there through. The structure can be configured to cause the conditioning fluid passing through the porous portions of the structure to intersect and mix with air passing there through. The structure may include a plurality of passageways and intersections and may include a plurality of air inlets and outlets for air passage. The system may additionally include a means for storing, collecting, and driving conditioning fluid through the system and a means for collecting solar radiation to drive airflow and regenerate conditioning fluid.

  16. Long-term climate monitoring by the global climate observing system: report of breakout group 1 - climate forcings and feedbacks

    International Nuclear Information System (INIS)

    Miller, C.; Bretherton, F.

    1995-01-01

    The assignment for Breakout Group A was to re-visit and expand upon the plenary session discussion on climate forcings and feedbacks and to develop a set of recommendations for each of the science disciplines or activities covered within this breakout category. Working guidelines for the group included identifying: (1) what has to be done; (2) why it has to be done, i.e. who is the customer? (3) the process for remedying deficiencies and, specifically, how to leverage the activities at operational centers; and (4) priorities (recognizing that it is premature to distinguish between major systems). The science ares addressed included: greenhouse gases (GHGs); radiation budget; water vapor; aerosols; clouds; precipitation; tropospheric ozone; and solar radiation. The role of climate satellites was also noted

  17. Analysis of Climatic and Environmental Changes Using CLEARS Web-GIS Information-Computational System: Siberia Case Study

    Science.gov (United States)

    Titov, A. G.; Gordov, E. P.; Okladnikov, I.; Shulgina, T. M.

    2011-12-01

    Analysis of recent climatic and environmental changes in Siberia performed on the basis of the CLEARS (CLimate and Environment Analysis and Research System) information-computational system is presented. The system was developed using the specialized software framework for rapid development of thematic information-computational systems based on Web-GIS technologies. It comprises structured environmental datasets, computational kernel, specialized web portal implementing web mapping application logic, and graphical user interface. Functional capabilities of the system include a number of procedures for mathematical and statistical analysis, data processing and visualization. At present a number of georeferenced datasets is available for processing including two editions of NCEP/NCAR Reanalysis, JMA/CRIEPI JRA-25 Reanalysis, ECMWF ERA-40 and ERA Interim Reanalysis, meteorological observation data for the territory of the former USSR, and others. Firstly, using functionality of the computational kernel employing approved statistical methods it was shown that the most reliable spatio-temporal characteristics of surface temperature and precipitation in Siberia in the second half of 20th and beginning of 21st centuries are provided by ERA-40/ERA Interim Reanalysis and APHRODITE JMA Reanalysis, respectively. Namely those Reanalyses are statistically consistent with reliable in situ meteorological observations. Analysis of surface temperature and precipitation dynamics for the territory of Siberia performed on the base of the developed information-computational system reveals fine spatial and temporal details in heterogeneous patterns obtained for the region earlier. Dynamics of bioclimatic indices determining climate change impact on structure and functioning of regional vegetation cover was investigated as well. Analysis shows significant positive trends of growing season length accompanied by statistically significant increase of sum of growing degree days and total

  18. Black Sea's wind wave parameters derived from numerical simulations driven by NCEP/NCAR and NCEP CFSR reanalyses

    Science.gov (United States)

    Gippius, Fedor; Myslenkov, Stanislav; Stoliarova, Elena; Arkhipkin, Victor

    2017-04-01

    This study is focused on typical features of spatiotemporal distribution of wind wave parameters on the Black Sea. These parameters were calculated during two experiments using the third-generation spectral wind wave model SWAN. During the first run a 5x5 km rectangular grid covering the entire Black Sea was used. Forcing parameters - wind speed and direction - were derived from the NCEP/NCAR reanalysis for the period between 1948 and 2010. During the second run high resolution wind fields form the NCEP-CFSR reanalysis were used as forcing for the period from 1979 till 2010. For the period form 2011 till 2015 the second version of this reanalysis was used. The computations were performed on an unstructured computational grid with cell size depending on the sea depth. The distance between grid points varies from 10—15 km in deep-water regions till 500 m in coastal areas. Calculated values of significant wave heights (SWH) obtained during both runs were validated against instrumental measurements data. In the first case we used satellite altimetry data from the AVISO project. It turned out that calculated SWH values are typically lower than observed ones - the deviation between them was 0.3 m on the average, its maximum was of 1.67 m. Therefore, an empirical formula was applied to correct the modeling results obtained during the first experiment. For the second experiment in situ measurements performed by a Datawell buoy installed 7 km off the city Gelendzhik were used for validation. The comparison of measured and modelled values of SWH shows a good agreement between these parameters in this case. No correction was applied to the results of the second experiment. We applied the results of the NCEP/NCAR experiment to assess various features of the wave climate of the entire Black Sea. Thus, maximal SWH are observed in winter and autumn in two areas in the southwestern and northeastern parts of the sea; SWH values in these areas exceed 9 m. To define areas with most

  19. The Need to Introduce System Thinking in Teaching Climate Change

    Science.gov (United States)

    Roychoudhury, Anita; Shepardson, Daniel P.; Hirsch, Andrew; Niyogi, Devdutta; Mehta, Jignesh; Top, Sara

    2017-01-01

    Research related to teaching climate change, system thinking, current reform in science education, and the research on reform-oriented assessment indicate that we need to explore student understanding in greater detail instead of only testing for an incremental gain in disciplinary knowledge. Using open-ended items we assessed details in student…

  20. geographic information systems for assessment of climate change

    African Journals Online (AJOL)

    ACSS

    We examined the spatial implications of climate change on areas suitable for teff, and ... Based on the current area under teff in Ethiopia, this equals an overall reduction in .... differing greenhouse gas emission scenarios, ..... Water availability .... CO2 effects, and agricultural management systems. All these contribute to ...

  1. Certification of passive houses : Lessons from real indoor climate systems

    NARCIS (Netherlands)

    Mlecnik, E.

    2009-01-01

    This paper examines if and how indoor climate systems are important for passive house certification. The research subjects are passive houses in Belgium, occupied by owner-clients. These have received a quality assurance certificate from an independent organization. Through interviews with the

  2. Resilience of Athabascan subsistence systems to interior Alaska's changing climate

    Science.gov (United States)

    Gary P. Kofinas; F. Stuart Chapin; Shauna BurnSilver; Jennifer I. Schmidt; Nancy L. Fresco; Knut Kielland; Stephanie Martin; Anna Springsteen; T. Scott Rupp

    2010-01-01

    Subsistence harvesting and wild food production by Athabascan peoples is part of an integrated social-ecological system of interior Alaska. We describe effects of recent trends and future climate change projections on the boreal ecosystem of interior Alaska and relate changes in ecosystem services to Athabascan subsistence. We focus primarily on moose, a keystone...

  3. Intercomparison of IPCC AR4 models with ERA-40 and NCEP/NCAR reanalysis within the AFRICA-CORDEX domain

    Science.gov (United States)

    León, M.; González, Y.; Díaz, J. P.; Expósito, F. J.; Pérez, J. C.; González, A.

    2012-04-01

    One of the most useful techniques to obtain regional climate projections along the XXI century is to run a mesoscale model driven by coarse input data (initial and boundaries conditions) obtained from Atmosphere-Ocean coupled Global Circulation Models (AOGCM). This is the dynamical downscaling approach. To correctly configure the dynamical downscaling approach it is necessary to choose the correct input dataset that project the climatic situation in a more accurate way and to establish a boundary to the errors in the results associated to these input data. In this study, we consider that the agreement of models with present observations is a way to assign confidence to the quality of a model. With this aim we intercompare the surface temperature of 21 IPCC AR4 runs models with the results from the reanalysis databases ERA40 and NCEP/NCAR in the CORDEX-AFRICA domain in the period 1961-2000. Thus, we have studied the seasonal cycles of the four decades of this period in addition to the probability density functions (PDFs) of the IPCC models. The statistical study allows us to classify the IPCC AR4 models according to their discrepancies with reanalysis data for the CORDEX domain. In general, the MRI CGCM 2.3.2 IPCC AR4 model presents the best fits compared with the reanalysis databases regarding to the correlation factor, root mean square (rms) and PDF skill score. For the intercomparison with ERA-40, the percentage of points with rms lower than 2°C is over 80%, for the four decades; with 89% of the points showing correlations coefficients larger than 0.80 and a 76 % of the data presents skill-scores values, based on the common areas of the PDFs, above a threshold of 0.7. Acknowledgements The authors acknowledge to the MEC (Ministry of Education and Science, Spain) for the next supports: projects CGL2007-66477-C02-02/CLI, CGL2008-04740/CLI, CGL2010-21366-C04-01 and UNLL08-3E-007.

  4. Identifying User Experience Goals for Interactive Climate Management Business Systems

    DEFF Research Database (Denmark)

    Clemmensen, Torkil; Barlow, Stephanie

    2013-01-01

    This paper presents findings from interpretative phenomenological interviews about the user experience of interactive climate management with six growers and crop consultants. The focus of user experience research has been on quantitative studies of consumers’ initial usage experiences, for example...... of mobile phones or e-commerce websites. In contrast, this empirical paper provides an example of how to capture user experience in work contexts and with a qualitative methodology. We present a model of the essence of the emotional user experience of interactive climate management. Then we suggest...... of interactive climate management in this and other domains. The overall aim with the paper is to take the concept of user experience into the IS community and to describe and understand what are individual workers’ positive emotional use experiences when interacting with workplace systems....

  5. Earth System Grid II, Turning Climate Datasets into Community Resources

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Don

    2006-08-01

    The Earth System Grid (ESG) II project, funded by the Department of Energy’s Scientific Discovery through Advanced Computing program, has transformed climate data into community resources. ESG II has accomplished this goal by creating a virtual collaborative environment that links climate centers and users around the world to models and data via a computing Grid, which is based on the Department of Energy’s supercomputing resources and the Internet. Our project’s success stems from partnerships between climate researchers and computer scientists to advance basic and applied research in the terrestrial, atmospheric, and oceanic sciences. By interfacing with other climate science projects, we have learned that commonly used methods to manage and remotely distribute data among related groups lack infrastructure and under-utilize existing technologies. Knowledge and expertise gained from ESG II have helped the climate community plan strategies to manage a rapidly growing data environment more effectively. Moreover, approaches and technologies developed under the ESG project have impacted datasimulation integration in other disciplines, such as astrophysics, molecular biology and materials science.

  6. Climate impact on social systems. The risk assessment approach

    International Nuclear Information System (INIS)

    Svirezhev, Y.M.; Schellnhuber, H.-J.

    1993-01-01

    A novel approach to the problem of estimating climate impact on social systems is suggested. This approach is based on a risk concept, where the notion of critical events is introduced and the probability of such event is estimated. The estimation considers both the real stochasticity of climatic processes and the artificial stochasticity of climate predictions due to scientific uncertainties. The method is worked out in some detail for the regional problem of crop production and the risks associated with global climate change, and illustrated by a case study (Kursk region of the FSU). In order to get local climatic characteristics (weather) a so-called 'statistical weather generator' is used. One interesting finding is that the 3%-risk level remains constant up to 1- -1.1 deg. C rise of mean seasonal temperature, if the variance does not change. On the other hand, the risk grows rapidly with increasing variance (even if the mean temperature rises very slowly). The risk approach allows to separate two problems: (i) assessment of Global Change impact and (ii) decision-making. The main task for the scientific community is to provide the politicians with different options; the choice of admissible (from the social point of view) critical events and the corresponding risk levels is the business of decision makers. (au)

  7. Bioaerosols in the Earth system: Climate, health, and ecosystem interactions

    Energy Technology Data Exchange (ETDEWEB)

    Fröhlich-Nowoisky, Janine; Kampf, Christopher J.; Weber, Bettina; Huffman, J. Alex; Pöhlker, Christopher; Andreae, Meinrat O.; Lang-Yona, Naama; Burrows, Susannah M.; Gunthe, Sachin S.; Elbert, Wolfgang; Su, Hang; Hoor, Peter; Thines, Eckhard; Hoffmann, Thorsten; Després, Viviane R.; Pöschl, Ulrich

    2016-12-01

    Aerosols of biological origin play a vital role in the Earth system, particularly in the in-teractions between atmosphere, biosphere, climate, and public health. Airborne bacteria, fungal spores, pollen, and other bioparticles are essential for the reproduction and spread of organisms across various ecosystems, and they can cause or enhance human, animal, and plant diseases. Moreover, they can serve as nuclei for cloud droplets, ice crystals, and precipitation, thus influencing the hydrological cycle and climate. The actual formation, abundance, composition, and effects of biological aerosols and the atmospheric microbi-ome are, however, not yet well characterized and constitute a large gap in the scientific understanding of the interaction and co-evolution of life and climate in the Earth system. This review presents an overview of the state of bioaerosol research and highlights recent advances in terms of bioaerosol identification, characterization, transport, and transfor-mation processes, as well as their interactions with climate, health, and ecosystems, focus-ing on the role bioaerosols play in the Earth system.

  8. Avoiding Dangerous Anthropogenic Interference with the Climate System

    Energy Technology Data Exchange (ETDEWEB)

    Keller, K. [Department of Geosciences, Penn State, PA (United States); Hall, M. [Brookings Institution, Washington, DC (United States); Kim, Seung-Rae [Woodrow Wilson School of Public and International Affairs, Princeton University, Princeton, NJ (United States); Bradford, D.F. [Department of Economics, Princeton University, Princeton, NJ (United States); Oppenheimer, M. [Woodrow Wilson School and Department of Geosciences, Princeton University, Robertson Hall 448, Princeton, NJ, 08544 (United States)

    2005-12-01

    The UN Framework Convention on Climate Change calls for the avoidance of 'dangerous anthropogenic interference with the climate system'. Among the many plausible choices, dangerous interference with the climate system may be interpreted as anthropogenic radiative forcing causing distinct and widespread climate change impacts such as a widespread demise of coral reefs or a disintegration of the West Antarctic ice sheet. The geological record and numerical models suggest that limiting global warming below critical temperature thresholds significantly reduces the likelihood of these eventualities. Here we analyze economically optimal policies that may ensure this risk-reduction. Reducing the risk of a widespread coral reef demise implies drastic reductions in greenhouse gas emissions within decades. Virtually unchecked greenhouse gas emissions to date (combined with the inertia of the coupled natural and human systems) may have already committed future societies to a widespread demise of coral reefs. Policies to reduce the risk of a West Antarctic ice sheet disintegration allow for a smoother decarbonization of the economy within a century and may well increase consumption in the long run.

  9. Regional Water System Vulnerabilities and Strengths for Unavoidable Climate Adaptation

    Science.gov (United States)

    Gleick, P. H.; Palaniappan, M.; Christian-Smith, J.; Cooley, H.

    2011-12-01

    A wide range of options are available to help water systems prepare and adapt for unavoidable climate impacts, but these options vary depending on region, climatic conditions, economic status, and technical infrastructure in place. Drawing on case studies from the United States, India, and elsewhere, and from both urban and agricultural water systems, risks to water supply and quality are evaluated and summarized and categories of responses to help improve the effectiveness of adaptation policies are reviewed. Among the issues to be discussed are characteristics unique to developing country cities, such as the predominance of informal actors in the water sector. The formal, or government sector, which often exclusively manages water access and distribution in developed country cities, is only one among many players in the water sector in developing country cities. Informal access to water includes direct access by individuals through private groundwater systems, private water markets using vendors or sales of bottled water, and rainwater harvesting systems on individual homes. In this environment, with already existing pressures on water availability and use, the impacts of climate change on water will be strongly felt. This complicates planning for water supply and demand and risks increasing already prevalent water insecurity, especially for urban poor. In wealthier countries, any planning for water-related climate impacts tends to take the form of "business as usual" responses, such as efforts to expand supply with new infrastructure, manage demand through conservation programs, or simply put off addressing the problem to the next generation of managers and users. These approaches can be effective, but also risk missing unusual, non-linear, or threshold impacts. Examples of more informed and innovative efforts to substantively address climate change risks will be presented.

  10. Economic Value of an Advanced Climate Observing System

    Science.gov (United States)

    Wielicki, B. A.; Cooke, R.; Young, D. F.; Mlynczak, M. G.

    2013-12-01

    Scientific missions increasingly need to show the monetary value of knowledge advances in budget-constrained environments. For example, suppose a climate science mission promises to yield decisive information on the rate of human caused global warming within a shortened time frame. How much should society be willing to pay for this knowledge today? The US interagency memo on the social cost of carbon (SCC) creates a standard yardstick for valuing damages from carbon emissions. We illustrate how value of information (VOI) calculations can be used to monetize the relative value of different climate observations. We follow the SCC, setting uncertainty in climate sensitivity to a truncated Roe and Baker (2007) distribution, setting discount rates of 2.5%, 3% and 5%, and using one of the Integrated Assessment Models sanctioned in SCC (DICE, Nordhaus 2008). We consider three mitigation scenarios: Business as Usual (BAU), a moderate mitigation response DICE Optimal, and a strong response scenario (Stern). To illustrate results, suppose that we are on the BAU emissions scenario, and that we would switch to the Stern emissions path if we learn with 90% confidence that the decadal rate of temperature change reaches or exceeds 0.2 C/decade. Under the SCC assumptions, the year in which this happens, if it happens, depends on the uncertain climate sensitivity and on the emissions path. The year in which we become 90% certain that it happens depends, in addition, on our Earth observations, their accuracy, and their completeness. The basic concept is that more accurate observations can shorten the time for societal decisions. The economic value of the resulting averted damages depends on the discount rate, and the years in which the damages occur. A new climate observation would be economically justified if the net present value (NPV) of the difference in averted damages, relative to the existing systems, exceeds the NPV of the system costs. Our results (Cooke et al. 2013

  11. The Milankovitch theory and climate sensitivity. I - Equilibrium climate model solutions for the present surface conditions. II - Interaction between the Northern Hemisphere ice sheets and the climate system

    Science.gov (United States)

    Neeman, Binyamin U.; Ohring, George; Joseph, Joachim H.

    1988-01-01

    A seasonal climate model was developed to test the climate sensitivity and, in particular, the Milankovitch (1941) theory. Four climate model versions were implemented to investigate the range of uncertainty in the parameterizations of three basic feedback mechanisms: the ice albedo-temperature, the outgoing long-wave radiation-temperature, and the eddy transport-meridional temperature gradient. It was found that the differences between the simulation of the present climate by the four versions were generally small, especially for annually averaged results. The climate model was also used to study the effect of growing/shrinking of a continental ice sheet, bedrock sinking/uplifting, and sea level changes on the climate system, taking also into account the feedback effects on the climate of the building of the ice caps.

  12. Climate balance of biogas upgrading systems

    International Nuclear Information System (INIS)

    Pertl, A.; Mostbauer, P.; Obersteiner, G.

    2010-01-01

    One of the numerous applications of renewable energy is represented by the use of upgraded biogas where needed by feeding into the gas grid. The aim of the present study was to identify an upgrading scenario featuring minimum overall GHG emissions. The study was based on a life-cycle approach taking into account also GHG emissions resulting from plant cultivation to the process of energy conversion. For anaerobic digestion two substrates have been taken into account: (1) agricultural resources and (2) municipal organic waste. The study provides results for four different upgrading technologies including the BABIU (Bottom Ash for Biogas Upgrading) method. As the transport of bottom ash is a critical factor implicated in the BABIU-method, different transport distances and means of conveyance (lorry, train) have been considered. Furthermore, aspects including biogas compression and energy conversion in a combined heat and power plant were assessed. GHG emissions from a conventional energy supply system (natural gas) have been estimated as reference scenario. The main findings obtained underlined how the overall reduction of GHG emissions may be rather limited, for example for an agricultural context in which PSA-scenarios emit only 10% less greenhouse gases than the reference scenario. The BABIU-method constitutes an efficient upgrading method capable of attaining a high reduction of GHG emission by sequestration of CO 2 .

  13. Dansgaard–Oeschger events: bifurcation points in the climate system

    Directory of Open Access Journals (Sweden)

    A. A. Cimatoribus

    2013-02-01

    Full Text Available Dansgaard–Oeschger events are a prominent mode of variability in the records of the last glacial cycle. Various prototype models have been proposed to explain these rapid climate fluctuations, and no agreement has emerged on which may be the more correct for describing the palaeoclimatic signal. In this work, we assess the bimodality of the system, reconstructing the topology of the multi-dimensional attractor over which the climate system evolves. We use high-resolution ice core isotope data to investigate the statistical properties of the climate fluctuations in the period before the onset of the abrupt change. We show that Dansgaard–Oeschger events have weak early warning signals if the ensemble of events is considered. We find that the statistics are consistent with the switches between two different climate equilibrium states in response to a changing external forcing (e.g. solar, ice sheets, either forcing directly the transition or pacing it through stochastic resonance. These findings are most consistent with a model that associates Dansgaard–Oeschger with changing boundary conditions, and with the presence of a bifurcation point.

  14. Collaborative Research: Towards Advanced Understanding and Predictive Capability of Climate Change in the Arctic Using a High-Resolution Regional Arctic Climate Model

    Energy Technology Data Exchange (ETDEWEB)

    Cassano, John [Principal Investigator

    2013-06-30

    The primary research task completed for this project was the development of the Regional Arctic Climate Model (RACM). This involved coupling existing atmosphere, ocean, sea ice, and land models using the National Center for Atmospheric Research (NCAR) Community Climate System Model (CCSM) coupler (CPL7). RACM is based on the Weather Research and Forecasting (WRF) atmospheric model, the Parallel Ocean Program (POP) ocean model, the CICE sea ice model, and the Variable Infiltration Capacity (VIC) land model. A secondary research task for this project was testing and evaluation of WRF for climate-scale simulations on the large pan-Arctic model domain used in RACM. This involved identification of a preferred set of model physical parameterizations for use in our coupled RACM simulations and documenting any atmospheric biases present in RACM.

  15. Impacts of climate change and variability on transportation systems and infrastructure : Gulf Coast study, phase 2 : task 2 : climate variability and change in Mobile, Alabama.

    Science.gov (United States)

    2012-09-01

    Despite increasing confidence in global climate change projections in recent years, projections of : climate effects at local scales remains scarce. Location-specific risks to transportation systems : imposed by changes in climate are not yet well kn...

  16. Games and Simulations for Climate, Weather and Earth Science Education

    Science.gov (United States)

    Russell, R. M.; Clark, S.

    2015-12-01

    We will demonstrate several interactive, computer-based simulations, games, and other interactive multimedia. These resources were developed for weather, climate, atmospheric science, and related Earth system science education. The materials were created by the UCAR Center for Science Education. These materials have been disseminated via our web site (SciEd.ucar.edu), webinars, online courses, teacher workshops, and large touchscreen displays in weather and Sun-Earth connections exhibits in NCAR's Mesa Lab facility in Boulder, Colorado. Our group has also assembled a web-based list of similar resources, especially simulations and games, from other sources that touch upon weather, climate, and atmospheric science topics. We'll briefly demonstrate this directory.

  17. Potential energy consumption reduction of automotive climate control systems

    International Nuclear Information System (INIS)

    Nielsen, Filip; Uddheim, Åsa; Dalenbäck, Jan-Olof

    2016-01-01

    Highlights: • Twenty-on energy saving measures for vehicle interior climate were evaluated. • Few single energy saving measures could reduce the energy use significantly. • The operation of the system in intermediate conditions determines the energy use. • Required heating/cooling of passenger compartment had small effect on energy use. - Abstract: In recent years fuel consumption of passenger vehicles has received increased attention by customers, the automotive industry, regulatory agencies and academia. One area which affect the fuel consumption is climate control systems. Twenty-one energy saving measures were evaluated regarding the total energy use for vehicle interior climate using simulation. Evaluated properties were heat flow into the passenger compartment, electrical and mechanical work. The simulation model included sub models of the passenger compartment, air-handling unit, Air Conditioning (AC) system, engine and engine cooling system. A real-world representative test cycle, which included tests in cold, intermediate and warm conditions, was used for evaluation. In general, few single energy saving measures could reduce the energy use significantly. The measures with most potential were increased blower efficiency with a reduction of 46% of the electrical work and increased AC-system disengage temperature with a reduction of 27% of the mechanical work. These results show that the operation of the climate control system had a large effect on the energy use, especially compared to the required heating and cooling of the passenger compartment. As a result energy saving measures need to address how heating and cooling is generated before reducing the heat flow into the passenger compartment.

  18. Does the public deserve free access to climate system science?

    Science.gov (United States)

    Grigorov, Ivo

    2010-05-01

    Some time ago it was the lack of public access to medical research data that really stirred the issue and gave inertia for legislation and a new publishing model that puts tax payer-funded medical research in the hands of those who fund it. In today's age global climate change has become the biggest socio-economic challenge, and the same argument resonates: climate affects us all and the publicly-funded science quantifying it should be freely accessible to all stakeholders beyond academic research. Over the last few years the ‘Open Access' movement to remove as much as possible subscription, and other on-campus barriers to academic research has rapidly gathered pace, but despite significant progress, the climate system sciences are not among the leaders in providing full access to their publications and data. Beyond the ethical argument, there are proven and tangible benefits for the next generation of climate researchers to adapt the way their output is published. Through the means provided by ‘open access', both data and ideas can gain more visibility, use and citations for the authors, but also result in a more rapid exchange of knowledge and ideas, and ultimately progress towards a sought solution. The presentation will aim to stimulate discussion and seek progress on the following questions: Should free access to climate research (& data) be mandatory? What are the career benefits of using ‘open access' for young scientists? What means and methods should, or could, be incorporated into current European graduate training programmes in climate research, and possible ways forward?

  19. NASA's Earth Observing System: The Transition from Climate Monitoring to Climate Change Prediction

    Science.gov (United States)

    King, Michael D.; Herring, David D.

    1998-01-01

    Earth's 4.5 billion year history is a study in change. Natural geological forces have been rearranging the surface features and climatic conditions of our planet since its beginning. There is scientific evidence that some of these natural changes have not only led to mass extinctions of species (e.g., dinosaurs), but have also severely impacted human civilizations. For instance, there is evidence that a relatively sudden climate change caused a 300-year drought that contributed to the downfall of Akkadia, one of the most powerful empires in the Middle-East region around 2200 BC. More recently, the "little ice age" from 1200-1400 AD forced the Vikings to abandon Greenland when temperatures there dropped by about 1.5 C, rendering it too difficult to grow enough crops to sustain the population. Today, there is compelling scientific evidence that human activities have attained the magnitude of a geological force and are speeding up the rate of global change. For example, carbon dioxide levels have risen 30 percent since the industrial revolution and about 40 percent of the world's land surface has been transformed by humans. We don't understand the cause-and-effect relationships among Earth's land, ocean, and atmosphere well enough to predict what, if any, impacts these rapid changes will have on future climate conditions. We need to make many measurements all over the world, over a long period of time, in order to assemble the information needed to construct accurate computer models that will enable us to forecast climate change. In 1988, the Earth System Sciences Committee, sponsored by NASA, issued a report calling for an integrated, long-term strategy for measuring the vital signs of Earth's climate system. The report urged that the measurements must all be intimately coupled with focused process studies, they must facilitate development of Earth system models, and they must be stored in an information system that ensures open access to consistent, long-term data

  20. Climate

    International Nuclear Information System (INIS)

    Fellous, J.L.

    2005-02-01

    This book starts with a series of about 20 preconceived ideas about climate and climatic change and analyses each of them in the light of the present day knowledge. Using this approach, it makes a status of the reality of the climatic change, of its causes and of the measures to be implemented to limit its impacts and reduce its most harmful consequences. (J.S.)

  1. Teaching climate change: A 16-year record of introducing undergraduates to the fundamentals of the climate system and its complexities

    Science.gov (United States)

    Winckler, G.; Pfirman, S. L.; Hays, J. D.; Schlosser, P.; Ting, M.

    2011-12-01

    Responding to climate change challenges in the near and far future, will require a wide range of knowledge, skills and a sense of the complexities involved. Since 1995, Columbia University and Barnard College have offered an undergraduate class that strives to provide students with some of these skills. The 'Climate System' course is a component of the three-part 'Earth Environmental Systems' series and provides the fundamentals needed for understanding the Earth's climate system and its variability. Being designed both for science majors and non-science majors, the emphasis of the course is on basic physical explanations, rather than mathematical derivations of the laws that govern the climate system. The course includes lectures, labs and discussion. Laboratory exercises primarily explore the climate system using global datasets, augmented by hands-on activities. Course materials are available for public use at http://eesc.columbia.edu/courses/ees/climate/camel_modules/ and http://ncseonline.org/climate/cms.cfm?id=3783. In this presentation we discuss the experiences, challenges and future demands of conveying the science of the Earth's Climate System and the risks facing the planet to a wide spectrum of undergraduate students, many of them without a background in the sciences. Using evaluation data we reflect how the course, the students, and the faculty have evolved over the past 16 years as the earth warmed, pressures for adaptation planning and mitigation measures increased, and public discourse became increasingly polarized.

  2. Characterizing hydrological activities over Yangtze River basin using the new HUST-Grace2016 model, MODIS, and NCEP/NCAR data

    Science.gov (United States)

    Zhou, H.; Luo, Z.; Tangdamrongsub, N.; He, L.

    2017-12-01

    Accurate TWS estimation is important to evaluate the situation of the water resource over the Yangtze River basin. This study exploits the TWS observation from the new gravity model, HUST-Grace06, which is developed by a new low-frequency noise processing strategy. A novel GRACE post-processing approach is proposed to enhance the quality of the TWS estimate, and the improved TWS is used to characterize the hydrological activities over the Yangtze River basin. The approach includes the effective noise reduction and the leakage error mitigation based on forward modeling. The HUST-Grace06 derived TWS presents good agreement with the CSR mascon solution as well as the PCR-GLOBWB hydrological model. Particularly, our solution provides remarkable performance in identifying the extreme climate events e.g., flood and drought over the Yangtze River basin. In addition, for the first time, the NCEP/NCAR reanalysis data is incorporated with GRACE in the exploration of the climate induced hydrological activities. The comparison between GRACE and the MODIS-derived NDVI data is also conducted to investigate their connection regarding temporal and spatial distribution. The analysis suggests that the terrestrial reflectance data can be used to represent the TWS information. Importantly, such information can be used to fill the missing data in case of the early termination of GRACE or during the prelaunch of the GRACE Follow-On mission.

  3. Algorithm of dynamic regulation of a system of duct, for a high accuracy climatic system

    Science.gov (United States)

    Arbatskiy, A. A.; Afonina, G. N.; Glazov, V. S.

    2017-11-01

    Currently, major part of climatic system, are stationary in projected mode only. At the same time, many modern industrial sites, require constant or periodical changes in technological process. That is 80% of the time, the industrial site is not require ventilation system in projected mode and high precision of climatic parameters must maintain. While that not constantly is in use for climatic systems, which use in parallel for different rooms, we will be have a problem for balance of duct system. For this problem, was created the algorithm for quantity regulation, with minimal changes. Dynamic duct system: Developed of parallel control system of air balance, with high precision of climatic parameters. The Algorithm provide a permanent pressure in main duct, in different a flow of air. Therefore, the ending devises air flow have only one parameter for regulation - flaps open area. Precision of regulation increase and the climatic system provide high precision for temperature and humidity (0,5C for temperature, 5% for relative humidity). Result: The research has been made in CFD-system - PHOENICS. Results for velocity of air in duct, for pressure of air in duct for different operation mode, has been obtained. Equation for air valves positions, with different parameters for climate in room’s, has been obtained. Energy saving potential for dynamic duct system, for different types of a rooms, has been calculated.

  4. Urbanism, climate change and health: systems approaches to governance.

    Science.gov (United States)

    Capon, Anthony G; Synnott, Emma S; Holliday, Sue

    2009-01-01

    Effective action on climate change health impacts and vulnerability will require systems approaches and integrated policy and planning responses from a range of government agencies. Similar responses are needed to address other complex problems, such as the obesity epidemic. Local government, with its focus on the governance of place, will have a key role in responding to these convergent agendas. Industry can also be part of the solution - indeed it must be, because it has a lead role in relevant sectors. Understanding the co-benefits for health of climate mitigation actions will strengthen the case for early action. There is a need for improved decision support tools to inform urban governance. These tools should be based on a systems approach and should incorporate a spatial perspective.

  5. Vulnerability and adaptation to climate variability and change in smallholder farming systems in Zimbabwe

    NARCIS (Netherlands)

    Rurinda, J.

    2014-01-01

    Keywords: Climate change; Increased climate variability; Vulnerability; Smallholder farmers; Adaptation

    Climate change and increased climate variability are currently seen as the major constraints to the already stressed smallholder farming livelihood system in

  6. Effects of primitive photosynthesis on Earth's early climate system

    Science.gov (United States)

    Ozaki, Kazumi; Tajika, Eiichi; Hong, Peng K.; Nakagawa, Yusuke; Reinhard, Christopher T.

    2018-01-01

    The evolution of different forms of photosynthetic life has profoundly altered the activity level of the biosphere, radically reshaping the composition of Earth's oceans and atmosphere over time. However, the mechanistic impacts of a primitive photosynthetic biosphere on Earth's early atmospheric chemistry and climate are poorly understood. Here, we use a global redox balance model to explore the biogeochemical and climatological effects of different forms of primitive photosynthesis. We find that a hybrid ecosystem of H2-based and Fe2+-based anoxygenic photoautotrophs—organisms that perform photosynthesis without producing oxygen—gives rise to a strong nonlinear amplification of Earth's methane (CH4) cycle, and would thus have represented a critical component of Earth's early climate system before the advent of oxygenic photosynthesis. Using a Monte Carlo approach, we find that a hybrid photosynthetic biosphere widens the range of geochemical conditions that allow for warm climate states well beyond either of these metabolic processes acting in isolation. Our results imply that the Earth's early climate was governed by a novel and poorly explored set of regulatory feedbacks linking the anoxic biosphere and the coupled H, C and Fe cycles. We suggest that similar processes should be considered when assessing the potential for sustained habitability on Earth-like planets with reducing atmospheres.

  7. The Aerosol-Monsoon Climate System of Asia

    Science.gov (United States)

    Lau, William K. M.; Kyu-Myong, Kim

    2012-01-01

    In Asian monsoon countries such as China and India, human health and safety problems caused by air-pollution are worsening due to the increased loading of atmospheric pollutants stemming from rising energy demand associated with the rapid pace of industrialization and modernization. Meanwhile, uneven distribution of monsoon rain associated with flash flood or prolonged drought, has caused major loss of human lives, and damages in crop and properties with devastating societal impacts on Asian countries. Historically, air-pollution and monsoon research are treated as separate problems. However a growing number of recent studies have suggested that the two problems may be intrinsically intertwined and need to be studied jointly. Because of complexity of the dynamics of the monsoon systems, aerosol impacts on monsoons and vice versa must be studied and understood in the context of aerosol forcing in relationship to changes in fundamental driving forces of the monsoon climate system (e.g. sea surface temperature, land-sea contrast etc.) on time scales from intraseasonal variability (weeks) to climate change ( multi-decades). Indeed, because of the large contributions of aerosols to the global and regional energy balance of the atmosphere and earth surface, and possible effects of the microphysics of clouds and precipitation, a better understanding of the response to climate change in Asian monsoon regions requires that aerosols be considered as an integral component of a fully coupled aerosol-monsoon system on all time scales. In this paper, using observations and results from climate modeling, we will discuss the coherent variability of the coupled aerosol-monsoon climate system in South Asia and East Asia, including aerosol distribution and types, with respect to rainfall, moisture, winds, land-sea thermal contrast, heat sources and sink distributions in the atmosphere in seasonal, interannual to climate change time scales. We will show examples of how elevated

  8. Integrated Information Systems Across the Weather-Climate Continuum

    Science.gov (United States)

    Pulwarty, R. S.; Higgins, W.; Nierenberg, C.; Trtanj, J.

    2015-12-01

    The increasing demand for well-organized (integrated) end-to-end research-based information has been highlighted in several National Academy studies, in IPCC Reports (such as the SREX and Fifth Assessment) and by public and private constituents. Such information constitutes a significant component of the "environmental intelligence" needed to address myriad societal needs for early warning and resilience across the weather-climate continuum. The next generation of climate research in service to the nation requires an even more visible, authoritative and robust commitment to scientific integration in support of adaptive information systems that address emergent risks and inform longer-term resilience strategies. A proven mechanism for resourcing such requirements is to demonstrate vision, purpose, support, connection to constituencies, and prototypes of desired capabilities. In this presentation we will discuss efforts at NOAA, and elsewhere, that: Improve information on how changes in extremes in key phenomena such as drought, floods, and heat stress impact management decisions for resource planning and disaster risk reduction Develop regional integrated information systems to address these emergent challenges, that integrate observations, monitoring and prediction, impacts assessments and scenarios, preparedness and adaptation, and coordination and capacity-building. Such systems, as illustrated through efforts such as NIDIS, have strengthened the integration across the foundational research enterprise (through for instance, RISAs, Modeling Analysis Predictions and Projections) by increasing agility for responding to emergent risks. The recently- initiated Climate Services Information System, in support of the WMO Global Framework for Climate Services draws on the above models and will be introduced during the presentation.

  9. Sensitivity of tropical climate to low-level clouds in the NCEP climate forecast system

    Energy Technology Data Exchange (ETDEWEB)

    Hu, Zeng-Zhen [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Huang, Bohua; Schneider, Edwin K. [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States); George Mason University, Department of Atmospheric, Oceanic, and Earth Sciences, College of Science, Fairfax, VA (United States); Hou, Yu-Tai; Yang, Fanglin [NCEP/NWS/NOAA, Environmental Modeling Center, Camp Springs, MD (United States); Wang, Wanqiu [NCEP/NWS/NOAA, Climate Prediction Center, Camp Springs, MD (United States); Stan, Cristiana [Center for Ocean-Land-Atmosphere Studies, Calverton, MD (United States)

    2011-05-15

    In this work, we examine the sensitivity of tropical mean climate and seasonal cycle to low clouds and cloud liquid water path (CLWP) by prescribing them in the NCEP climate forecast system (CFS). It is found that the change of low cloud cover alone has a minor influence on the amount of net shortwave radiation reaching the surface and on the warm biases in the southeastern Atlantic. In experiments where CLWP is prescribed using observations, the mean climate in the tropics is improved significantly, implying that shortwave radiation absorption by CLWP is mainly responsible for reducing the excessive surface net shortwave radiation over the southern oceans in the CFS. Corresponding to large CLWP values in the southeastern oceans, the model generates large low cloud amounts. That results in a reduction of net shortwave radiation at the ocean surface and the warm biases in the sea surface temperature in the southeastern oceans. Meanwhile, the cold tongue and associated surface wind stress in the eastern oceans become stronger and more realistic. As a consequence of the overall improvement of the tropical mean climate, the seasonal cycle in the tropical Atlantic is also improved. Based on the results from these sensitivity experiments, we propose a model bias correction approach, in which CLWP is prescribed only in the southeastern Atlantic by using observed annual mean climatology of CLWP. It is shown that the warm biases in the southeastern Atlantic are largely eliminated, and the seasonal cycle in the tropical Atlantic Ocean is significantly improved. Prescribing CLWP in the CFS is then an effective interim technique to reduce model biases and to improve the simulation of seasonal cycle in the tropics. (orig.)

  10. Linkages between the Urban Environment and Earth's Climate System

    Science.gov (United States)

    Shepherd, J. Marshall; Jin, Menglin

    2003-01-01

    Urbanization is one of the extreme cases of land use change. Although currently only 1.2% of the land is considered urban, the spatial coverage and density of cities are expected to rapidly increase in the near future. It is estimated that by the year 2025 60% of the world s population will live in cities (UNFP, 1999). Though urban areas are local in scale, human activity in urban environments has impacts at local, to global scale by changing atmospheric composition; impacting components of the water cycle; and modifying the carbon cycle 2nd ecosystems. For example, urban dwellers are undoubtedly familiar with "high" ozone pollution days, flash flooding in city streets, or heat stress on summer days. However, our understanding of urbanization on the total Earth-climate system is incomplete. Better understanding of how the Earth s weather, oceans, and land work together and the influence of the urban environment on this climate system is critical. This paper highlights some of the major and current issues involving interactions between urban environments and the Earth's climate system. It also captures some of the most current thinking and findings of the authors and key experts in the field.

  11. Leveling up: enabling diverse users to locate and effectively use unfamiliar data sets through NCAR's Research Data Archive

    Science.gov (United States)

    Peng, G. S.

    2016-12-01

    Research necessarily expands upon the volume and variety of data used in prior work. Increasingly, investigators look outside their primary areas of expertise for data to incorporate into their research. Locating and using the data that they need, which may be described in terminology from other fields of science or be encoded in unfamiliar data formats, present often insurmountable barriers for potential users. As a data provider of a diverse collection of over 600 atmospheric and oceanic data sets (DS) (http://rda.ucar.edu), we seek to reduce or remove those barriers. Serving a broadening and increasing user base with fixed and finite resources requires automation. Our software harvests metadata descriptors about the data from the data files themselves. Data curators/subject matter experts augment the machine-generated metadata as needed. Metadata powers our data search tools. Users may search for data in a myriad of ways ranging from free text queries to GCMD keywords to faceted searches capable of narrowing down selections by specific criteria. Users are offered customized lists of DSs fitting their criteria with links to DS main information pages that provide detailed information about each DS. Where appropriate, they link to the NCAR Climate Data Guide for expert guidance about strengths and weaknesses of that particular DS. Once users find the data sets they need, we provide modular lessons for common data tasks. The lessons may be data tool install guides, data recipes, blog posts, or short YouTube videos. Rather than overloading users with reams of information, we provide targeted lessons when the user is most receptive, e.g. when they want to use data in an unfamiliar format. We add new material when we discover common points of confusion. Each educational resource is tagged with DS ID numbers so that they are automatically linked with the relevant DSs. How can data providers leverage the work of other data providers? Can a common tagging scheme for data

  12. Responses of the ocean carbon cycle to climate change: Results from an earth system climate model simulation

    Institute of Scientific and Technical Information of China (English)

    WANG Shuang-Jing; CAO Long; LI Na

    2014-01-01

    Based on simulations using the University of Victoria’s Earth System Climate Model, we analyzed the responses of the ocean carbon cycle to increasing atmospheric CO2 levels and climate change from 1800 to 2500 following the RCP 8.5 scenario and its extension. Compared to simulations without climate change, the simulation with a climate sensitivity of 3.0 K shows that in 2100, due to increased atmospheric CO2 concentrations, the simulated sea surface temperature increases by 2.7 K, the intensity of the North Atlantic deep water formation reduces by4.5 Sv, and the oceanic uptake of anthropogenic CO2 decreases by 0.8 Pg C. Climate change is also found to have a large effect on the North Atlantic’s ocean column inventory of anthropogenic CO2. Between the years 1800 and 2500, compared with the simulation with no climate change, the simulation with climate change causes a reduction in the total anthropogenic CO2 column inventory over the entire ocean and in North Atlantic by 23.1% and 32.0%, respectively. A set of simulations with climate sensitivity variations from 0.5 K to 4.5 K show that with greater climate sensitivity climate change would have a greater effect in reducing the ocean’s ability to absorb CO2 from the atmosphere.

  13. The physics and dynamics of the climate system simulation of climate change

    International Nuclear Information System (INIS)

    Mitchell, J.F.B.

    1991-01-01

    The use of climate models is described, using examples related to: the greenhouse effect, the principal absorbers, past, present and future, climate feedbacks in CO2 experiments, equilibrium climate change due to increased CO2, modelling the transient response to increases in trace gases, uncertainties in the simulation and detection of the climatic effect of increased trace gas, simulations for 9000 years before present

  14. Chemistry and Climate in Asia - An Earth System Modeling Project

    Science.gov (United States)

    Barth, M. C.; Emmons, L. K.; Massie, S. T.; Pfister, G.; Romero Lankao, P.; Lamarque, J.; Carmichael, G. R.

    2011-12-01

    Asia is one of the most highly populated and economically dynamic regions in the world, with much of the population located in growing mega-cities. It is a region with significant emissions of greenhouse gases, aerosols and other pollutants, which pose high health risks to urban populations. Emissions of these aerosols and gases increased drastically over the last decade due to economic growth and urbanization and are expected to rise further in the near future. As such, the continent plays a role in influencing climate change via its effluent of aerosols and gaseous pollutants. Asia is also susceptible to adverse climate change through interactions between aerosols and clouds, which potentially can have serious implications for freshwater resources. We are developing an integrated inter-disciplinary program to focus on Asia, its climate, air quality, and impact on humans that will include connections with hydrology, ecosystems, extreme weather events, and human health. The primary goal of this project is to create a team to identify key scientific questions and establish networks of specialists to create a plan for future studies to address these questions. A second goal is to establish research facilities and a framework for investigating chemistry and climate over Asia. These facilities include producing high resolution Earth System Model simulations that have been evaluated with meteorological and chemical measurements, producing high-resolution emission inventories, analyzing satellite data, and analyzing the vulnerability of humans to air quality and extreme natural events. In this presentation we will describe in more detail these activities and discuss a future workshop on the impact of chemistry in climate on air quality and human health.

  15. Climate change adaptation for the US National Wildlife Refuge System

    Science.gov (United States)

    Griffith, Brad; Scott, J. Michael; Adamcik, Robert S.; Ashe, Daniel; Czech, Brian; Fischman, Robert; Gonzalez, Patrick; Lawler, Joshua J.; McGuire, A. David; Pidgorna, Anna

    2009-01-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species, pollution, and competition for water have stressed refuges for decades, but the interaction of climate change with these stressors presents the most recent, pervasive, and complex conservation challenge to the NWRS. Geographic isolation and small unit size compound the challenges of climate change, but a combined emphasis on species that refuges were established to conserve and on maintaining biological integrity, diversity, and environmental health provides the NWRS with substantial latitude to respond. Individual symptoms of climate change can be addressed at the refuge level, but the strategic response requires system-wide planning. A dynamic vision of the NWRS in a changing climate, an explicit national strategic plan to implement that vision, and an assessment of representation, redundancy, size, and total number of units in relation to conservation targets are the first steps toward adaptation. This adaptation must begin immediately and be built on more closely integrated research and management. Rigorous projections of possible futures are required to facilitate adaptation to change. Furthermore, the effective conservation footprint of the NWRS must be increased through land acquisition, creative partnerships, and educational programs in order for the NWRS to meet its legal mandate to maintain the biological integrity, diversity, and environmental health of the system and the species and ecosystems that it supports.

  16. Climate Change Science Teaching through Integration of Technology in Instruction and Research

    Science.gov (United States)

    Sriharan, S.; Ozbay, G.; Robinson, L.; Klimkowski, V.

    2015-12-01

    This presentation demonstrates the importance of collaborations between the institutions with common focus on offering the academic program on climate change science. Virginia State University (VSU) developed and established the course on climate change and adaptation, AGRI 350 for undergraduates, in cooperation with two HBCUs, Delaware State University (DSU) and Morgan State University (MSU). This program was developed to enhance the science curriculum with funding from the USDA NIFA. The hands-on research opportunities for students were supported by the NSF HBCU UP Supplement Grant at VSU. The technical guidance and lesson plans were available through the courtesy of the AMS and faculty/student team training at the NCAR. In the initial stages, the faculty members participated in faculty development workshops hosted by the AMS and NCAR. This contributed to trained faculty members developing the courses on Climate Change at VSU, DSU, and MSU. To create awareness of global climate change and exposure of students to international programs, seven students from VSU, MSU, and DSU participated in the Climate Change course (ENS 320) at the University of Sunshine Coast (USC), Australia. This international experience included faculty members in using SimCLIM for climate change data into decision-making with regard to potential changes to cropping systems and tree growth. The Climate Change program at VSU, DSU, and MSU is emerging into comprehensive academic program which includes use of case studies and exchange of students' reflections with their peers through discussion board and videoconferencing, hands-on research on water quality monitoring and mapping the study sites, and integration of geospatial technologies and i-Tree. In addition, the students' engagement in intensive research was conducted through hands-on experience with Scanning Electron Microscopy in the Marine Science Department, University of Hawaii at Hilo in summer 2015.

  17. Simulated climate adaptation in storm-water systems: Evaluating the efficiency of within-system flexibility

    Directory of Open Access Journals (Sweden)

    Adam D. McCurdy

    Full Text Available Changes in regional temperature and precipitation patterns resulting from global climate change may adversely affect the performance of long-lived infrastructure. Adaptation may be necessary to ensure that infrastructure offers consistent service and remains cost effective. But long service times and deep uncertainty associated with future climate projections make adaptation decisions especially challenging for managers. Incorporating flexibility into systems can increase their effectiveness across different climate futures but can also add significant costs. In this paper we review existing work on flexibility in climate change adaptation of infrastructure, such as robust decision-making and dynamic adaptive pathways, apply a basic typology of flexibility, and test alternative strategies for flexibility in distributed infrastructure systems comprised of multiple emplacements of a common, long-lived element: roadway culverts. Rather than treating a system of dispersed infrastructure elements as monolithic, we simulate “options flexibility” in which inherent differences in individual elements is incorporated into adaptation decisions. We use a virtual testbed of highway drainage crossing structures to examine the performance under different climate scenarios of policies that allow for multiple adaptation strategies with varying timing based on individual emplacement characteristics. Results indicate that a strategy with options flexibility informed by crossing characteristics offers a more efficient method of adaptation than do monolithic policies. In some cases this results in more cost-effective adaptation for agencies building long-lived, climate-sensitive infrastructure, even where detailed system data and analytical capacity is limited. Keywords: Climate adaptation, Stormwater management, Adaptation pathways

  18. The impact of climate change on hailstorms in southeastern Australia

    Science.gov (United States)

    Niall, Stephanie; Walsh, Kevin

    2005-11-01

    Data from a number of locations around southeastern Australia were analysed to determine the influence of climate change on the frequency and intensity of hail events in this region. The relationship between Convective Available Potential Energy (CAPE), frequently used as a measure of atmospheric instability, and hailstorms was investigated using both NCEP/NCAR reanalysis data (a data set comprising a blend of observations and model simulations) and also direct sounding data obtained from the Australian National Climate Centre. Two locations were chosen in southeastern Australia, Mount Gambier and Melbourne, over the months August to October for the period 1980-2001. A statistically significant relationship between hail incidence and CAPE values was established for both NCEP/NCAR and sounding data at both study sites. A stronger relationship was found between hail incidence and the CAPE, which was calculated using NCEP/NCAR data, than that between hail and the CAPE from the actual sounding data. A similar analysis was also conducted at both sites using the totals-totals index (TT index), which is an alternative measure of atmospheric instability.The CSIRO Mk3 Climate System Model was used to simulate values of CAPE for Mount Gambier in an environment containing double the pre-industrial concentrations of equivalent CO2. The results showed a significant decrease in CAPE values in the future. From this, assuming the relationship between CAPE and hail remains unchanged under enhanced greenhouse conditions, it is possible that there will be a decrease in the frequency of hail in southeastern Australia if current rates of CO2 emission are sustained. The severity of future hail events was investigated using crop-loss data from insurance companies. Strongest correlations were found between the crop-loss ratio (value of crop lost to hail damage over the total insured value of crop) and the number of days in a crop season with a TT index greater than 55. Results from the

  19. Development and validation of climate change system thinking instrument (CCSTI) for measuring system thinking on climate change content

    Science.gov (United States)

    Meilinda; Rustaman, N. Y.; Firman, H.; Tjasyono, B.

    2018-05-01

    The Climate Change System Thinking Instrument (CCSTI) is developed to measure a system thinking ability in the concept of climate change. CCSTI is developed in four phase’s development including instrument draft development, validation and evaluation including readable material test, expert validation, and field test. The result of field test is analyzed by looking at the readability score in Cronbach’s alpha test. Draft instrument is tested on college students majoring in Biology Education, Physics Education, and Chemistry Education randomly with a total number of 80 college students. Score of Content Validation Index at 0.86, which means that the CCSTI developed are categorized as very appropriate with question indicators and Cronbach’s alpha about 0.605 which mean categorized undesirable to minimal acceptable. From 45 questions of system thinking, there are 37 valid questions spread in four indicators of system thinking, which are system thinking phase I (pre-requirement), system thinking phase II (basic), system thinking phase III (intermediate), and system thinking phase IV (coherent expert).

  20. Climate Outreach Using Regional Coastal Ocean Observing System Portals

    Science.gov (United States)

    Anderson, D. M.; Hernandez, D. L.; Wakely, A.; Bochenek, R. J.; Bickel, A.

    2015-12-01

    Coastal oceans are dynamic, changing environments affected by processes ranging from seconds to millennia. On the east and west coast of the U.S., regional observing systems have deployed and sustained a remarkable diverse array of observing tools and sensors. Data portals visualize and provide access to real-time sensor networks. Portals have emerged as an interactive tool for educators to help students explore and understand climate. Bringing data portals to outreach events, into classrooms, and onto tablets and smartphones enables educators to address topics and phenomena happening right now. For example at the 2015 Charleston Science Technology Engineering and Math (STEM) Festival, visitors navigated the SECOORA (Southeast Coastal Ocean Observing regional Association) data portal to view the real-time marine meteorological conditions off South Carolina. Map-based entry points provide an intuitive interface for most students, an array of time series and other visualizations depict many of the essential principles of climate science manifest in the coastal zone, and data down-load/ extract options provide access to the data and documentation for further inquiry by advanced users. Beyond the exposition of climate principles, the portal experience reveals remarkable technologies in action and shows how the observing system is enabled by the activity of many different partners.

  1. Climate Ocean Modeling on a Beowulf Class System

    Science.gov (United States)

    Cheng, B. N.; Chao, Y.; Wang, P.; Bondarenko, M.

    2000-01-01

    With the growing power and shrinking cost of personal computers. the availability of fast ethernet interconnections, and public domain software packages, it is now possible to combine them to build desktop parallel computers (named Beowulf or PC clusters) at a fraction of what it would cost to buy systems of comparable power front supercomputer companies. This led as to build and assemble our own sys tem. specifically for climate ocean modeling. In this article, we present our experience with such a system, discuss its network performance, and provide some performance comparison data with both HP SPP2000 and Cray T3E for an ocean Model used in present-day oceanographic research.

  2. The Norwegian Earth System Model, NorESM1-M – Part 2: Climate response and scenario projections

    Directory of Open Access Journals (Sweden)

    T. Iversen

    2013-03-01

    Full Text Available NorESM is a generic name of the Norwegian earth system model. The first version is named NorESM1, and has been applied with medium spatial resolution to provide results for CMIP5 (http://cmip-pcmdi.llnl.gov/cmip5/index.html without (NorESM1-M and with (NorESM1-ME interactive carbon-cycling. Together with the accompanying paper by Bentsen et al. (2012, this paper documents that the core version NorESM1-M is a valuable global climate model for research and for providing complementary results to the evaluation of possible anthropogenic climate change. NorESM1-M is based on the model CCSM4 operated at NCAR, but the ocean model is replaced by a modified version of MICOM and the atmospheric model is extended with online calculations of aerosols, their direct effect and their indirect effect on warm clouds. Model validation is presented in the companion paper (Bentsen et al., 2012. NorESM1-M is estimated to have equilibrium climate sensitivity of ca. 2.9 K and a transient climate response of ca. 1.4 K. This sensitivity is in the lower range amongst the models contributing to CMIP5. Cloud feedbacks dampen the response, and a strong AMOC reduces the heat fraction available for increasing near-surface temperatures, for evaporation and for melting ice. The future projections based on RCP scenarios yield a global surface air temperature increase of almost one standard deviation lower than a 15-model average. Summer sea-ice is projected to decrease considerably by 2100 and disappear completely for RCP8.5. The AMOC is projected to decrease by 12%, 15–17%, and 32% for the RCP2.6, 4.5, 6.0, and 8.5, respectively. Precipitation is projected to increase in the tropics, decrease in the subtropics and in southern parts of the northern extra-tropics during summer, and otherwise increase in most of the extra-tropics. Changes in the atmospheric water cycle indicate that precipitation events over continents will become more intense and dry spells more frequent. Extra

  3. Taking a Multi-pronged Approach to Expand the Reach of Climate Research Results

    Science.gov (United States)

    Hauser, R.; Unger, M.; Eastburn, T.; Rockwell, A.; Laursen, K. K.; National CenterAtmospheric Research

    2011-12-01

    Recognizing the importance of tailoring content to a variety of audiences, the National Center for Atmospheric Research (NCAR) takes a multi-pronged approach to expand the reach of climate research results. The center's communications and education and outreach teams leverage Web 1.0 and 2.0 functionality - Google searches, Twitter, Facebook, YouTube - as well as face-to-face interactions and traditional media outlets to ensure climate change messages effectively connect with multiple audiences. Key to these efforts, NCAR seeks to frame messages that emphasize cultural cognition, that is, in a manner that recognizes and resonates with different audiences' values and thus their identities. Among the basic communications approaches NCAR uses to engage the public are one-on-one interactions with the visiting public, which ranges from school children and tourists, to dignitaries and journalists. As an example, the NCAR Journalism Fellowship brings a competitively selected group of internatoinal journalists to NCAR. During a week-long visit and ongoing contact, journalists are provided with a close-up, nuanced view of the science and individuals working on the bigger-picture research that drives climate-related sound bites reported by the press. NCAR provides media training for its scientists, giving them tools and practice in effectively handling interviews for print, Web and radio outlets. The institution hosts public events like "Super Science Saturday," and NCAR staff participate in external activities such as school science fairs, community events and continuing education sessions. In addition to interactive displays that allow the public to "experience" science directly and informally, NCAR develops educational programs and curricula targeted to specific age groups and levels of expertise. We will explore the importance of analogies, images and anecdotes in explaining complicated subjects to such a varied set of audiences, and identify key concepts in simplifying

  4. Intersects between Land, Energy, Water and the Climate System

    Science.gov (United States)

    Hibbard, K. A.; Skaggs, R.; Wilson, T.

    2012-12-01

    Climate change affects water, and land resources, and with growing human activity, each of these sectors relies increasingly on the others for critical resources. Events such as drought across the South Central U.S. during 2011 demonstrate that climatic impacts within each of these sectors can cascade through interactions between sectors. Energy, water, and land resources are each vulnerable to impacts on either of the other two sectors. For example, energy systems inherently require land and water. Increased electricity demands to contend with climate change can impose additional burdens on overly subscribed water resources. Within this environment, energy systems compete for water with agriculture, human consumption, and other needs. In turn, climate driven changes in landscape attributes and land use affect water quality and availability as well as energy demands. Diminishing water quality and availability impose additional demands for energy to access and purify water, and for land to store and distribute water. In some situations, interactions between water, energy, and land resources make options for reducing greenhouse gas emissions vulnerable to climate change. Energy options such as solar power or biofuel use can reduce net greenhouse gas emissions as well as U.S. dependence on foreign resources. As a result, the U.S. is expanding renewable energy systems. Advanced technology such as carbon dioxide capture with biofuels may offer a means of removing CO2 from the atmosphere. But as with fossil fuels, renewable energy sources can impose significant demands for water and land. For example, solar power mayrequire significant land to site facilities and water for cooling or to produce steam. Raising crops to produce biofuels uses arable land and water that might otherwise be available for food production. Thus, warmer and drier climate can compromise these renewable energy resources, and drought can stress water supplies creating competition between energy

  5. Extratropical cyclone variability in the Northern Hemisphere winter from the NCEP/NCAR reanalysis data

    Energy Technology Data Exchange (ETDEWEB)

    Gulev, S.K.; Zolina, O.; Grigoriev, S. [AN SSSR, Moscow (USSR). Inst. Okeanologii

    2001-07-01

    The winter climatology of Northern Hemisphere cyclone activity was derived from 6-hourly NCEP/NCAR reanalysis data for the period from 1958 to 1999, using software which provides improved accuracy in cyclone identification in comparison to numerical tracking schemes. Cyclone characteristics over the Kuroshio and Gulfstream are very different to those over continental North America and the Arctic. Analysis of Northern Hemisphere cyclones shows secular and decadal-scale changes in cyclone frequency, intensity, lifetime and deepening rates. The western Pacific and Atlantic are characterized by an increase in cyclone intensity and deepening during the 42-year period, although the eastern Pacific and continental North America demonstrate opposite tendencies in most cyclone characteristics. There is an increase of the number of cyclones in the Arctic and in the western Pacific and a downward tendency over the Gulf Stream and subpolar Pacific. Decadal scale variability in cyclone activity over the Atlantic and Pacific exhibits south-north dipole-like patterns. Atlantic and Pacific cyclone activity associated with the NAO and PNA is analyzed. Atlantic cyclone frequency demonstrates a high correlation with NAO and reflects the NAO shift in the mid 1970s, associated with considerable changes in European storm tracks. The PNA is largely linked to the eastern Pacific cyclone frequencies, and controls cyclone activity over the Gulf region and the North American coast during the last two decades. Assessment of the accuracy of the results and comparison with those derived using numerical algorithms, shows that biases inherent in numerical procedures are not negligible. (orig.)

  6. Complex systems approach to fire dynamics and climate change impacts

    Science.gov (United States)

    Pueyo, S.

    2012-04-01

    I present some recent advances in complex systems theory as a contribution to understanding fire regimes and forecasting their response to a changing climate, qualitatively and quantitatively. In many regions of the world, fire sizes have been found to follow, approximately, a power-law frequency distribution. As noted by several authors, this distribution also arises in the "forest fire" model used by physicists to study mechanisms that give rise to scale invariance (the power law is a scale-invariant distribution). However, this model does not give and does not pretend to give a realistic description of fire dynamics. For example, it gives no role to weather and climate. Pueyo (2007) developed a variant of the "forest fire" model that is also simple but attempts to be more realistic. It also results into a power law, but the parameters of this distribution change through time as a function of weather and climate. Pueyo (2007) observed similar patterns of response to weather in data from boreal forest fires, and used the fitted response functions to forecast fire size distributions in a possible climate change scenario, including the upper extreme of the distribution. For some parameter values, the model in Pueyo (2007) displays a qualitatively different behavior, consisting of simple percolation. In this case, fire is virtually absent, but megafires sweep through the ecosystem a soon as environmental forcings exceed a critical threshold. Evidence gathered by Pueyo et al. (2010) suggests that this is realistic for tropical rainforests (specifically, well-conserved upland rainforests). Some climate models suggest that major tropical rainforest regions are going to become hotter and drier if climate change goes ahead unchecked, which could cause such abrupt shifts. Not all fire regimes are well described by this model. Using data from a tropical savanna region, Pueyo et al. (2010) found that the dynamics in this area do not match its assumptions, even though fire

  7. Solar System Chaos and its climatic and biogeochemical consequences

    Science.gov (United States)

    Ikeda, M.; Tada, R.; Ozaki, K.; Olsen, P. E.

    2017-12-01

    Insolation changes caused by changes in Earth's orbital parameters are the main driver of climatic variations, whose pace has been used for astronomically-calibrated geologic time scales of high accuracy to understand Earth system dynamics. However, the astrophysical models beyond several tens of million years ago have large uncertainty due to chaotic behavior of the Solar System, and its impact on amplitude modulation of multi-Myr-scale orbital variations and consequent climate changes has become the subject of debate. Here we show the geologic constraints on the past chaotic behavior of orbital cycles from early Mesozoic monsoon-related records; the 30-Myr-long lake level records of the lacustrine sequence in Newark-Hartford basins (North America) and 70-Myr-long biogenic silica (BSi) burial flux record of pelagic deep-sea chert sequence in Inuyama area (Japan). BSi burial flux of chert could be considered as proportional to the dissolved Si (DSi) input from chemical weathering on timescales longer than the residence time of DSi ( 100 kyr), because chert could represent a major sink for oceanic dissolved silica (Ikeda et al., 2017).These geologic records show multi-Myr cycles with similar frequency modulations of eccentricity solution of astronomical model La2010d (Laskar et al., 2011) compared with other astronomical solutions, but not exactly same. Our geologic records provide convincing evidence for the past chaotic dynamical behaviour of the Solar System and new and challenging additional constraints for astrophysical models. In addition, we find that ˜10 Myr cycle detected in monsoon proxies and their amplitude modulation of ˜2 Myr cycle may be related to the amplitude modulation of ˜2 Myr eccentricity cycle through non-linear process(es) of Earth system dynamics, suggesting possible impact of the chaotic behavior of Solar planets on climate change. Further impact of multi-Myr orbital cycles on global biogeochemical cycles will be discussed.

  8. Ecosystem biophysical memory in the southwestern North America climate system

    International Nuclear Information System (INIS)

    Forzieri, G; Feyen, L; Vivoni, E R

    2013-01-01

    To elucidate the potential role of vegetation to act as a memory source in the southwestern North America climate system, we explore correlation structures of remotely sensed vegetation dynamics with precipitation, temperature and teleconnection indices over 1982–2006 for six ecoregions. We found that lagged correlations between vegetation dynamics and climate variables are modulated by the dominance of monsoonal or Mediterranean regimes and ecosystem-specific physiological processes. Subtropical and tropical ecosystems exhibit a one month lag positive correlation with precipitation, a zero- to one-month lag negative correlation with temperature, and modest negative effects of sea surface temperature (SST). Mountain forests have a zero month lag negative correlation with precipitation, a zero–one month lag negative correlation with temperature, and no significant correlation with SSTs. Deserts show a strong one–four month lag positive correlation with precipitation, a low zero–two month lag negative correlation with temperature, and a high four–eight month lag positive correlation with SSTs. The ecoregion-specific biophysical memories identified offer an opportunity to improve the predictability of land–atmosphere interactions and vegetation feedbacks onto climate. (letter)

  9. Climatic controls on arid continental basin margin systems

    Science.gov (United States)

    Gough, Amy; Clarke, Stuart; Richards, Philip; Milodowski, Antoni

    2016-04-01

    Alluvial fans are both dominant and long-lived within continental basin margin systems. As a result, they commonly interact with a variety of depositional systems that exist at different times in the distal extent of the basin as the basin evolves. The deposits of the distal basin often cycle between those with the potential to act as good aquifers and those with the potential to act as good aquitards. The interactions between the distal deposits and the basin margin fans can have a significant impact upon basin-scale fluid flow. The fans themselves are commonly considered as relatively homogeneous, but their sedimentology is controlled by a variety of factors, including: 1) differing depositional mechanisms; 2) localised autocyclic controls; 3) geometrical and temporal interactions with deposits of the basin centre; and, 4) long-term allocyclic climatic variations. This work examines the basin margin systems of the Cutler Group sediments of the Paradox Basin, western U.S.A and presents generalised facies models for the Cutler Group alluvial fans as well as for the zone of interaction between these fans and the contemporaneous environments in the basin centre, at a variety of scales. Small-scale controls on deposition include climate, tectonics, base level and sediment supply. It has been ascertained that long-term climatic alterations were the main control on these depositional systems. Models have been constructed to highlight how both long-term and short-term alterations in the climatic regime can affect the sedimentation in the basin. These models can be applied to better understand similar, but poorly exposed, alluvial fan deposits. The alluvial fans of the Brockram Facies, northern England form part of a once-proposed site for low-level nuclear waste decommissioning. As such, it is important to understand the sedimentology, three-dimensional geometry, and the proposed connectivity of the deposits from the perspective of basin-scale fluid flow. The developed

  10. Performance investigation of solid desiccant evaporative cooling system configurations in different climatic zones

    International Nuclear Information System (INIS)

    Ali, Muzaffar; Vukovic, Vladimir; Sheikh, Nadeem Ahmed; Ali, Hafiz M.

    2015-01-01

    Highlights: • Five configurations of a DEC system are analyzed in five climate zones. • DEC system model configurations are developed in Dymola/Modelica. • Performance analysis predicted a suitable DEC system configuration for each climate zone. • Results show that climate of Vienna, Sao Paulo, and Adelaide favors the ventilated-dunkle cycle. • While ventilation cycle configuration suits the climate of Karachi and Shanghai. - Abstract: Performance of desiccant evaporative cooling (DEC) system configurations is strongly influenced by the climate conditions and varies widely in different climate zones. Finding the optimal configuration of DEC systems for a specific climatic zone is tedious and time consuming. This investigation conducts performance analysis of five DEC system configurations under climatic conditions of five cities from different zones: Vienna, Karachi, Sao Paulo, Shanghai, and Adelaide. On the basis of operating cycle, three standard and two modified system configurations (ventilation, recirculation, dunkle cycles; ventilated-recirculation and ventilated-dunkle cycles) are analyzed in these five climate zones. Using an advance equation-based object-oriented (EOO) modeling and simulation approach, optimal configurations of a DEC system are determined for each climate zone. Based on the hourly climate data of each zone for its respective design cooling day, performance of each system configuration is estimated using three performance parameters: cooling capacity, COP, and cooling energy delivered. The results revealed that the continental/micro-thermal climate of Vienna, temperate/mesothermal climate of Sao Paulo, and dry-summer subtropical climate of Adelaide favor the use of ventilated-dunkle cycle configuration with average COP of 0.405, 0.89 and 1.01 respectively. While ventilation cycle based DEC configuration suits arid and semiarid climate of Karachi and another category of temperate/mesothermal climate of Shanghai with average COP of

  11. Assessment of climate change effects on Canada's National Park system.

    Science.gov (United States)

    Suffling, Roger; Scott, Daniel

    2002-03-01

    To estimate the magnitude of climate change anticipated for Canada's 38 National Parks (NPs) and Park Reserves, seasonal temperature and precipitation scenarios were constructed for 2050 and 2090 using the Canadian Centre for Climate Modelling and Analysis (CCCma) coupled model (CGCM1). For each park, we assessed impacts on physical systems, species, ecosystems and people. Important, widespread changes relate to marine and freshwater hydrology, glacial balance, waning permafrost, increased natural disturbance, shorter ice season, northern and upward altitudinal species and biome shifts, and changed visitation patterns. Other changes are regional (e.g., combined East coast subsidence and sea level rise increase coastal erosion and deposition, whereas, on the Pacific coast, tectonic uplift negates sea level rise). Further predictions concern individual parks (e.g., Unique fens of Bruce Peninsular NP will migrate lakewards with lowered water levels, but structural regulation of Lake Huron for navigation and power generation would destroy the fens). Knowledge gaps are the most important findings. For example: we could not form conclusions about glacial mass balance, or its effects on rivers and fjords. Likewise, for the East Coast Labrador Current we could neither estimate temperature and salinity effects of extra iceberg formation, nor the further effects on marine food chains, and breeding park seabirds. We recommend 1) Research on specific large knowledge gaps; 2) Climate change information exchange with protected area agencies in other northern countries; and 3) incorporating climate uncertainty into park plans and management. We discuss options for a new park management philosophy in the face of massive change and uncertainty.

  12. Managing Risks? Early Warning Systems for Climate Change

    Science.gov (United States)

    Sitati, A. M.; Zommers, Z. A.; Habilov, M.

    2014-12-01

    Early warning systems are a tool with which to minimize risks posed by climate related hazards. Although great strides have been made in developing early warning systems most deal with one hazard, only provide short-term warnings and do not reach the most vulnerable. This presentation will review research results of the United Nations Environment Programme's CLIM-WARN project. The project seeks to identify how governments can better communicate risks by designing multi-hazard early warning systems that deliver actionable warnings across timescales. Household surveys and focus group discussions were conducted in 36 communities in Kenya, Ghana and Burkina Faso in order to identify relevant climate related hazards, current response strategies and early warning needs. Preliminary results show significant variability in both risks and needs within and between countries. For instance, floods are more frequent in rural western parts of Kenya. Droughts are frequent in the north while populations in urban areas face a range of hazards - floods, droughts, disease outbreaks - that sometimes occur simultaneously. The majority of the rural population, especially women, the disabled and the elderly, do not have access to modern media such as radio, television, or internet. While 55% of rural populace never watches television, 64% of urban respondents watch television on a daily basis. Communities have different concepts of how to design warning systems. It will be a challenge for national governments to create systems that accommodate such diversity yet provide standard quality of service to all. There is a need for flexible and forward-looking early warning systems that deliver broader information about risks. Information disseminated through the system could not only include details of hazards, but also long-term adaptation options, general education, and health information, thus increasingly both capabilities and response options.

  13. Effects of adjusting cropping systems on utilization efficiency of climatic resources in Northeast China under future climate scenarios

    Science.gov (United States)

    Guo, Jianping; Zhao, Junfang; Xu, Yanhong; Chu, Zheng; Mu, Jia; Zhao, Qian

    Quantitatively evaluating the effects of adjusting cropping systems on the utilization efficiency of climatic resources under climate change is an important task for assessing food security in China. To understand these effects, we used daily climate variables obtained from the regional climate model RegCM3 from 1981 to 2100 under the A1B scenario and crop observations from 53 agro-meteorological experimental stations from 1981 to 2010 in Northeast China. Three one-grade zones of cropping systems were divided by heat, water, topography and crop-type, including the semi-arid areas of the northeast and northwest (III), the one crop area of warm-cool plants in semi-humid plain or hilly regions of the northeast (IV), and the two crop area in irrigated farmland in the Huanghuaihai Plain (VI). An agro-ecological zone model was used to calculate climatic potential productivities. The effects of adjusting cropping systems on climate resource utilization in Northeast China under the A1B scenario were assessed. The results indicated that from 1981 to 2100 in the III, IV and VI areas, the planting boundaries of different cropping systems in Northeast China obviously shifted toward the north and the east based on comprehensively considering the heat and precipitation resources. However, due to high temperature stress, the climatic potential productivity of spring maize was reduced in the future. Therefore, adjusting the cropping system is an effective way to improve the climatic potential productivity and climate resource utilization. Replacing the one crop in one year model (spring maize) by the two crops in one year model (winter wheat and summer maize) significantly increased the total climatic potential productivity and average utilization efficiencies. During the periods of 2011-2040, 2041-2070 and 2071-2100, the average total climatic potential productivities of winter wheat and summer maize increased by 9.36%, 11.88% and 12.13% compared to that of spring maize

  14. Integrated food–energy systems for climate-smart agriculture

    Directory of Open Access Journals (Sweden)

    Bogdanski Anne

    2012-07-01

    Full Text Available Abstract Food production needs to increase by 70%, mostly through yield increases, to feed the world in 2050. Increases in productivity achieved in the past are attributed in part to the significant use of fossil fuels. Energy use in agriculture is therefore also expected to rise in the future, further contributing to greenhouse emissions. At the same time, more than two-fifths of the world’s population still depends on unsustainably harvested wood energy for cooking and heating. Both types of energy use have detrimental impacts on the climate and natural resources. Continuing on this path is not an option as it will put additional pressure on the already stressed natural resource base and local livelihoods, while climate change is further reducing the resilience of agro-ecosystems and smallholder farmers. Ecosystem approaches that combine both food and energy production, such as agroforestry or integrated crop–livestock–biogas systems, could substantially mitigate these risks while providing both food and energy to rural and urban populations. Information and understanding on how to change course through the implementation of the practices outlined in this paper are urgently needed. Yet the scientific basis of such integrated systems, which is essential to inform decision-makers and to secure policy support, is still relatively scarce. The author therefore argues that new assessment methodologies based on a systems-oriented analysis are needed for analyzing these complex, multidisciplinary and large-scale phenomena.

  15. Impact of climate change on electricity systems and markets

    Science.gov (United States)

    Chandramowli, Shankar N.

    Climate change poses a serious threat to human welfare. There is now unequivocal scientific evidence that human actions are the primary cause of climate change. The principal climate forcing factor is the increasing accumulation of atmospheric carbon dioxide (CO2) due to combustion of fossil fuels for transportation and electricity generation. Generation of electricity account for nearly one-third of the greenhouse (GHG) emissions globally (on a CO2-equivalent basis). Any kind of economy-wide mitigation or adaptation effort to climate change must have a prominent focus on the electric power sector. I have developed a capacity expansion model for the power sector called LP-CEM (Linear Programming based Capacity Expansion Model). LP-CEM incorporates both the long-term climate change effects and the state/regional-level macroeconomic trends. This modeling framework is demonstrated for the electric power system in the Northeast region of United States. Some of the methodological advances introduced in this research are: the use of high-resolution temperature projections in a power sector capacity expansion model; the incorporation of changes in sectoral composition of electricity demand over time; the incorporation of the effects of climate change and variability on both the demand and supply-side of power sector using parameters estimated in the literature; and an inter-model coupling link with a macroeconomic model to account for price elasticity of demand and other effects on the broader macro-economy. LP-CEM-type models can be of use to state/regional level policymakers to plan for future mitigation and adaptation measures for the electric power sector. From the simulation runs, it is shown that scenarios with climate change effects and with high economic growth rates have resulted in higher capacity addition, optimal supply costs, wholesale/retail prices and total ratepayers' costs. LP-CEM is also adapted to model the implications of the proposed Clean Power Plan

  16. Improving Timeliness of Winter Wheat Production Forecast in United States of America, Ukraine and China Using MODIS Data and NCAR Growing Degree Day

    Science.gov (United States)

    Vermote, E.; Franch, B.; Becker-Reshef, I.; Claverie, M.; Huang, J.; Zhang, J.; Sobrino, J. A.

    2014-12-01

    Wheat is the most important cereal crop traded on international markets and winter wheat constitutes approximately 80% of global wheat production. Thus, accurate and timely forecasts of its production are critical for informing agricultural policies and investments, as well as increasing market efficiency and stability. Becker-Reshef et al. (2010) used an empirical generalized model for forecasting winter wheat production. Their approach combined BRDF-corrected daily surface reflectance from Moderate resolution Imaging Spectroradiometer (MODIS) Climate Modeling Grid (CMG) with detailed official crop statistics and crop type masks. It is based on the relationship between the Normalized Difference Vegetation Index (NDVI) at the peak of the growing season, percent wheat within the CMG pixel, and the final yields. This method predicts the yield approximately one month to six weeks prior to harvest. In this study, we include the Growing Degree Day (GDD) information extracted from NCEP/NCAR reanalysis data in order to improve the winter wheat production forecast by increasing the timeliness of the forecasts while conserving the accuracy of the original model. We apply this modified model to three major wheat-producing countries: United States of America, Ukraine and China from 2001 to 2012. We show that a reliable forecast can be made between one month to a month and a half prior to the peak NDVI (meaning two months to two and a half months prior to harvest) while conserving an accuracy of 10% in the production forecast.

  17. PERFORMANCE EVALUATION OF CEILING RADIANT COOLING SYSTEM IN COMPOSITE CLIMATE

    Energy Technology Data Exchange (ETDEWEB)

    Sharma, Anuj [Malaviya National Institute of Technology (MNIT), Jaipur, India; Mathur, Jyotirmay [Malaviya National Institute of Technology (MNIT), Jaipur, India; Bhandari, Mahabir S [ORNL

    2015-01-01

    Radiant cooling systems are proving to be an energy efficient solution due to higher thermal capacity of cooling fluid especially for the buildings that require individual zone controls and where the latent loads are moderate. The Conventional air conditioners work at very low temperature i.e.5-8 c (refrigerant evaporator inlet) while the radiant cooling systems, also referred as high temperature cooling system, work at high temperatures i.e. 14-18 c. The radiant cooling systems can maintain lower MRT (Mean Radiant Temperature) as ceiling panels maintain uniform temperature gradient inside room and provide higher human comfort. The radiant cooling systems are relatively new systems and their operation and energy savings potential are not quantified for a large number of buildings and operational parameters. Moreover, there are only limited numbers of whole building simulation studies have been carried out for these systems to have a full confidence in the capability of modelling tools to simulate these systems and predict the impact of various operating parameters. Theoretically, savings achieve due to higher temperature set point of chilled water, which reduces chiller-running time. However, conventional air conditioner runs continuously to maintain requisite temperature. In this paper, experimental study for performance evaluation of radiant cooling system carried out on system installed at Malaviya National Institute of Technology Jaipur. This paper quantifies the energy savings opportunities and effective temperature by radiant cooling system at different chilled water flow rates and temperature range. The data collected/ analysed through experimental study will used for calibration and validation of system model of building prepared in building performance simulation software. This validated model used for exploring optimized combinations of key parameters for composite climate. These optimized combinations will used in formulation of radiant cooling system

  18. Assessing Intraseasonal Variability Produced by Several Deep Convection Schemes in the NCAR CCM3.6

    Science.gov (United States)

    Maloney, E. D.

    2001-05-01

    The Hack, Zhang/McFarlane, and McRAS convection schemes produce very different simulations of intraseasonal variability in the NCAR CCM3.6. A robust analysis of simulation performance requires an expanded set of diagnostics. The use of only one criterion to analyze model Madden-Julian oscillation (MJO) variability, such as equatorial zonal wind variability, may give a misleading impression of model performance. Schemes that produce strong variability in zonal winds may sometimes lack a corresponding coherent signal in precipitation, suggesting that model convection and the large-scale circulation are not as strongly coupled as observed. The McRAS scheme, which includes a parametrization of unsaturated convective downdrafts, produces the best simulation of intraseasonal variability of the three schemes used. Downdrafts in McRAS create a moister equatorial troposphere, which increases equatorial convection. Composite analysis indicates a strong dependence of model intraseasonal variability on the frictional convergence mechanism, which may also be important in nature. The McRAS simulation has limitations, however. Indian Ocean variability is weak, and anomalous convection extends too far east across the Pacific. The dependence of convection on surface friction is too strong, and causes enhanced MJO convection to be associated with low-level easterly wind perturbations, unlike observed MJO convection. Anomalous vertical advection associated with surface convergence influences model convection by moistening the lower troposphere. Based on the work of Hendon (2000), coupling to an interactive ocean is unlikely to change the performance of the CCM3 with McRAS, due to the phase relationship between anomalous convection and zonal winds. Use of the analysis tools presented here indicates areas for improvement in the parametrization of deep convection by atmospheric GCMs.

  19. Testing cloud microphysics parameterizations in NCAR CAM5 with ISDAC and M-PACE observations

    Science.gov (United States)

    Liu, Xiaohong; Xie, Shaocheng; Boyle, James; Klein, Stephen A.; Shi, Xiangjun; Wang, Zhien; Lin, Wuyin; Ghan, Steven J.; Earle, Michael; Liu, Peter S. K.; Zelenyuk, Alla

    2011-01-01

    Arctic clouds simulated by the National Center for Atmospheric Research (NCAR) Community Atmospheric Model version 5 (CAM5) are evaluated with observations from the U.S. Department of Energy (DOE) Atmospheric Radiation Measurement (ARM) Indirect and Semi-Direct Aerosol Campaign (ISDAC) and Mixed-Phase Arctic Cloud Experiment (M-PACE), which were conducted at its North Slope of Alaska site in April 2008 and October 2004, respectively. Model forecasts for the Arctic spring and fall seasons performed under the Cloud-Associated Parameterizations Testbed framework generally reproduce the spatial distributions of cloud fraction for single-layer boundary-layer mixed-phase stratocumulus and multilayer or deep frontal clouds. However, for low-level stratocumulus, the model significantly underestimates the observed cloud liquid water content in both seasons. As a result, CAM5 significantly underestimates the surface downward longwave radiative fluxes by 20-40 W m-2. Introducing a new ice nucleation parameterization slightly improves the model performance for low-level mixed-phase clouds by increasing cloud liquid water content through the reduction of the conversion rate from cloud liquid to ice by the Wegener-Bergeron-Findeisen process. The CAM5 single-column model testing shows that changing the instantaneous freezing temperature of rain to form snow from -5°C to -40°C causes a large increase in modeled cloud liquid water content through the slowing down of cloud liquid and rain-related processes (e.g., autoconversion of cloud liquid to rain). The underestimation of aerosol concentrations in CAM5 in the Arctic also plays an important role in the low bias of cloud liquid water in the single-layer mixed-phase clouds. In addition, numerical issues related to the coupling of model physics and time stepping in CAM5 are responsible for the model biases and will be explored in future studies.

  20. Climate Changes and Their Impact on Agricultural Market Systems: Examples from Nepal

    Directory of Open Access Journals (Sweden)

    Andrea Karin Barrueto

    2017-11-01

    Full Text Available Global climate models foresee changes in temperature and precipitation regimes that shift regional climate zones and influence the viability of agricultural market systems. Understanding the influence of climate change on the different sub-sectors and functions of a market system is crucial to increasing the systems’ climate resilience and to ensuring the long-term viability of the sectors. Our research applies a new approach to climate change analysis to better understand the influence of climate change on each step of an agricultural market system—on its core (processing units, storage facilities and sales and support functions (sapling supply, research, insurance and agricultural policy. We use spatial climate analyses to investigate current and projected changes in climate for different regions in Nepal. We then analyse the risks and vulnerabilities of the sub-sectors banana, charcoal, coffee, macadamia, orange, vegetables and walnut. Our results show that temperatures and precipitation levels will change differently depending on the climatic regions, and that climate change elicits different responses from the market functions both between and within each of the different sub-sectors. We conclude that climate-related interventions in market systems must account for each different market function’s specific response and exposure to climate change, in order to select adaptation measures that ensure long-term climate resilience.

  1. The fire-vegetation-climate system: how ecology can contribute to earth system science

    CSIR Research Space (South Africa)

    Archibald, S

    2013-05-01

    Full Text Available and future state of global vegetation. A key complexity that is currently not well captured by Earth System models is that vegetation is not always deterministically responsive to climate and soils. Feedbacks within the Earth System, top-down controls...

  2. Extreme climatic events: reducing ecological and social systems vulnerabilities

    International Nuclear Information System (INIS)

    Decamps, H.; Amatore, C.; Bach, J.F.; Baccelli, F.; Balian, R.; Carpentier, A.; Charnay, P.; Cuzin, F.; Davier, M.; Dercourt, J.; Dumas, C.; Encrenaz, P.; Jeannerod, M.; Kahane, J.P.; Meunier, B.; Rebut, P.H.; Salencon, J.; Spitz, E.; Suquet, P.; Taquet, P.; Valleron, A.J.; Yoccoz, J.C.; Chapron, J.Y.; Fanon, J.; Andre, J.C.; Auger, P.; Bourrelier, P.H.; Combes, C.; Derrida, B.; Laubier, L.; Laval, K.; Le Maho, Y.; Marsily, G. De; Petit, M.; Schmidt-Laine, C.; Birot, Y.; Peyron, J.L.; Seguin, B.; Barles, S.; Besancenot, J.P.; Michel-Kerjan, E.; Hallegatte, S.; Dumas, P.; Ancey, V.; Requier-Desjardins, M.; Ducharnes, A.; Ciais, P.; Peylin, P.; Kaniewski, D.; Van Campo, E.; Planton, S.; Manuguerra, J.C.; Le Bars, Y.; Lagadec, P.; Kessler, D.; Pontikis, C.; Nussbaum, R.

    2010-01-01

    The Earth has to face more and more devastating extreme events. Between 1970 and 2009, at the worldwide scale, the 25 most costly catastrophes all took place after 1987, and for more than half of them after 2001. Among these 25 catastrophes, 23 were linked to climate conditions. France was not spared: the December 1999 storms led to 88 deaths, deprived 3.5 million households of electricity and costed more than 9 billion euros. The 2003 heat wave led to about 15000 supernumerary deaths between August 1 and August 20. The recent Xynthia storm, with its flood barrier ruptures, provoked 53 deaths in addition to many other tragedies that took place in areas liable to flooding. In the present day context of climate change, we know that we must be prepared to even more dangerous events, sometimes unexpected before. These events can have amplified effects because of the urban development, the overpopulation of coastal areas and the anthropization of natural environments. They represent real 'poverty traps' for the poorest countries of the Earth. The anticipation need is real but is our country ready to answer it? Does it have a sufficient contribution to international actions aiming at reducing risks? Is his scientific information suitable? France is not less vulnerable than other countries. It must reinforce its prevention, its response and resilience capacities in the framework of integrated policies of catastrophes risk management as well as in the framework of climate change adaptation plans. This reinforcement supposes the development of vigilance systems with a better risk coverage and benefiting by the advances gained in the meteorology and health domains. It supposes a town and country planning allowing to improve the viability of ecological and social systems - in particular by protecting their diversity. Finally, this reinforcement requires inciting financial coverage solutions for catastrophes prevention and for their management once they have taken place. A

  3. Study on the climate system and mass transport by a climate model

    International Nuclear Information System (INIS)

    Numaguti, A.; Sugata, S.; Takahashi, M.; Nakajima, T.; Sumi, A.

    1997-01-01

    The Center for Global Environmental Research (CGER), an organ of the National Institute for Environmental Studies of the Environment Agency of Japan, was established in October 1990 to contribute broadly to the scientific understanding of global change, and to the elucidation of and solution for our pressing environmental problems. CGER conducts environmental research from interdisciplinary, multiagency, and international perspective, provides research support facilities such as a supercomputer and databases, and offers its own data from long-term monitoring of the global environment. In March 1992, CGER installed a supercomputer system (NEC SX-3, Model 14) to facilitate research on global change. The system is open to environmental researchers worldwide. Proposed research programs are evaluated by the Supercomputer Steering Committee which consists of leading scientists in climate modeling, atmospheric chemistry, oceanic circulation, and computer science. After project approval, authorization for system usage is provided. In 1995 and 1996, several research proposals were designated as priority research and allocated larger shares of computer resources. The CGER supercomputer monograph report Vol. 3 is a report of priority research of CGER's supercomputer. The report covers the description of CCSR-NIES atmospheric general circulation model, lagragian general circulation based on the time-scale of particle motion, and ability of the CCSR-NIES atmospheric general circulation model in the stratosphere. The results obtained from these three studies are described in three chapters. We hope this report provides you with useful information on the global environmental research conducted on our supercomputer

  4. Three Connected Climate Education Interactives: Carbon Cycle, Earth System Energy Flows, and Climate Change Impacts/Adaptations

    Science.gov (United States)

    Sussman, A.

    2015-12-01

    The Pacific Islands Climate Education Partnership (PCEP) serves the U.S. Affiliated Pacific Island (USAPI) Region. The international entities served by PCEP are the state of Hawai'i (USA); three Freely Associated States (the Federated States of Micronesia, the Republic of the Marshall Islands, and the Republic of Palau), and three Territories (Guam, Commonwealth of Northern Mariana Islands, and American Samoa). Funded by NSF, the PCEP aims to educate the region's students and citizens in ways that exemplify modern science and indigenous environmental knowledge, address the urgency of climate change impacts, and focus on adaptation strategies that can increase resiliency with respect to climate change impacts. Unfortunately the vast majority of the science texts used in schools come from the US mainland and feature contexts that do not relate to the lives of Pacific island students. The curricular materials also tend to be older and to have very weak climate science content, especially with respect to tropical islands and climate change. In collaboration with public broadcast station WGBH, PCEP has developed three climate education interactives that sequentially provide an introduction to key climate change education concepts. The first in the series focuses on the global carbon cycle and connects increased atmospheric CO2 with rising global temperatures. The second analyzes Earth system energy flows to explain the key role of the increased greenhouse effect. The third focuses on four climate change impacts (higher temperatures, rising sea level, changes in precipitation, and ocean acidification), and adaptation strategies to increase resiliency of local ecosystems and human systems. While the interactives have a Pacific island visual and text perspective, they are broadly applicable for other education audiences. Learners can use the interactives to engage with the basic science concepts, and then apply the climate change impacts to their own contexts.

  5. The Grand Challenges of WCRP and the Climate Observing System of the Future

    Science.gov (United States)

    Brasseur, G. P.

    2017-12-01

    The successful implementation the Paris agreement on climate change (COP21) calls for a well-designed global monitoring system of essential climate variables, climate processes and Earth system budgets. The Grand Challenges implemented by the World Climate Research Programme (WCRP) provide an opportunity to investigate issues of high societal relevance, directly related to sea level rise, droughts, floods, extreme heat events, food security, and fresh water availability. These challenges would directly benefit from a well-designed suite of systematic climate observations. Quantification of the evolution of the global energy, water and carbon budgets as well as the development and the production of near-term and regional climate predictions require that a comprehensive, focused, multi-platform observing system (satellites, ground-based and in situ observations) be established in an international context. This system must be accompanied by the development of climate services that should translate and disseminate scientific outcomes as actionable information for users and stakeholders.

  6. An empirical system for probabilistic seasonal climate prediction

    Science.gov (United States)

    Eden, Jonathan; van Oldenborgh, Geert Jan; Hawkins, Ed; Suckling, Emma

    2016-04-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  7. A global empirical system for probabilistic seasonal climate prediction

    Science.gov (United States)

    Eden, J. M.; van Oldenborgh, G. J.; Hawkins, E.; Suckling, E. B.

    2015-12-01

    Preparing for episodes with risks of anomalous weather a month to a year ahead is an important challenge for governments, non-governmental organisations, and private companies and is dependent on the availability of reliable forecasts. The majority of operational seasonal forecasts are made using process-based dynamical models, which are complex, computationally challenging and prone to biases. Empirical forecast approaches built on statistical models to represent physical processes offer an alternative to dynamical systems and can provide either a benchmark for comparison or independent supplementary forecasts. Here, we present a simple empirical system based on multiple linear regression for producing probabilistic forecasts of seasonal surface air temperature and precipitation across the globe. The global CO2-equivalent concentration is taken as the primary predictor; subsequent predictors, including large-scale modes of variability in the climate system and local-scale information, are selected on the basis of their physical relationship with the predictand. The focus given to the climate change signal as a source of skill and the probabilistic nature of the forecasts produced constitute a novel approach to global empirical prediction. Hindcasts for the period 1961-2013 are validated against observations using deterministic (correlation of seasonal means) and probabilistic (continuous rank probability skill scores) metrics. Good skill is found in many regions, particularly for surface air temperature and most notably in much of Europe during the spring and summer seasons. For precipitation, skill is generally limited to regions with known El Niño-Southern Oscillation (ENSO) teleconnections. The system is used in a quasi-operational framework to generate empirical seasonal forecasts on a monthly basis.

  8. The non-linear paradigm: The climate system as an egg box''

    International Nuclear Information System (INIS)

    Iversen, Trond

    2000-01-01

    The article is the last of three dealing with the problems of climatic forecasting. It presents various ways of applying models and points out that regarding the climate system as non-linear and chaotic may be useful for interpreting observations and models. Some applications of the paradigm are presented. The emphasis is on climatic changes due to energy and human activities

  9. Change in Water Cycle- Important Issue on Climate Earth System

    Science.gov (United States)

    Singh, Pratik

    Change in Water Cycle- Important Issue on Climate Earth System PRATIK KUMAR SINGH1 1BALDEVRAM MIRDHA INSTITUTE OF TECHNOLOGY,JAIPUR (RAJASTHAN) ,INDIA Water is everywhere on Earth and is the only known substance that can naturally exist as a gas, liquid, and solid within the relatively small range of air temperatures and pressures found at the Earth's surface.Changes in the hydrological cycle as a consequence of climate and land use drivers are expected to play a central role in governing a vast range of environmental impacts.Earth's climate will undergo changes in response to natural variability, including solar variability, and to increasing concentrations of green house gases and aerosols.Further more, agreement is widespread that these changes may profoundly affect atmospheric water vapor concentrations, clouds and precipitation patterns.As we know that ,a warmer climate, directly leading to increased evaporation, may well accelerate the hydrological cycle, resulting in an increase in the amount of moisture circulating through the atmosphere.The Changing Water Cycle programmer will develop an integrated, quantitative understanding of the changes taking place in the global water cycle, involving all components of the earth system, improving predictions for the next few decades of regional precipitation, evapotranspiration, soil moisture, hydrological storage and fluxes.The hydrological cycle involves evaporation, transpiration, condensation, precipitation, and runoff. NASA's Aqua satellite will monitor many aspects of the role of water in the Earth's systems, and will do so at spatial and temporal scales appropriate to foster a more detailed understanding of each of the processes that contribute to the hydrological cycle. These data and the analyses of them will nurture the development and refinement of hydrological process models and a corresponding improvement in regional and global climate models, with a direct anticipated benefit of more accurate weather and

  10. Embedding complex hydrology in the climate system - towards fully coupled climate-hydrology models

    DEFF Research Database (Denmark)

    Butts, M.; Rasmussen, S.H.; Ridler, M.

    2013-01-01

    Motivated by the need to develop better tools to understand the impact of future management and climate change on water resources, we present a set of studies with the overall aim of developing a fully dynamic coupling between a comprehensive hydrological model, MIKE SHE, and a regional climate...... distributed parameters using satellite remote sensing. Secondly, field data are used to investigate the effects of model resolution and parameter scales for use in a coupled model. Finally, the development of the fully coupled climate-hydrology model is described and some of the challenges associated...... with coupling models for hydrological processes on sub-grid scales of the regional climate model are presented....

  11. Impacts of Subgrid Heterogeneous Mixing between Cloud Liquid and Ice on the Wegner-Bergeron-Findeisen Process and Mixed-phase Clouds in NCAR CAM5

    Science.gov (United States)

    Liu, X.; Zhang, M.; Zhang, D.; Wang, Z.; Wang, Y.

    2017-12-01

    Mixed-phase clouds are persistently observed over the Arctic and the phase partitioning between cloud liquid and ice hydrometeors in mixed-phase clouds has important impacts on the surface energy budget and Arctic climate. In this study, we test the NCAR Community Atmosphere Model Version 5 (CAM5) with the single-column and weather forecast configurations and evaluate the model performance against observation data from the DOE Atmospheric Radiation Measurement (ARM) Program's M-PACE field campaign in October 2004 and long-term ground-based multi-sensor remote sensing measurements. Like most global climate models, we find that CAM5 also poorly simulates the phase partitioning in mixed-phase clouds by significantly underestimating the cloud liquid water content. Assuming pocket structures in the distribution of cloud liquid and ice in mixed-phase clouds as suggested by in situ observations provides a plausible solution to improve the model performance by reducing the Wegner-Bergeron-Findeisen (WBF) process rate. In this study, the modification of the WBF process in the CAM5 model has been achieved with applying a stochastic perturbation to the time scale of the WBF process relevant to both ice and snow to account for the heterogeneous mixture of cloud liquid and ice. Our results show that this modification of WBF process improves the modeled phase partitioning in the mixed-phase clouds. The seasonal variation of mixed-phase cloud properties is also better reproduced in the model in comparison with the long-term ground-based remote sensing observations. Furthermore, the phase partitioning is insensitive to the reassignment time step of perturbations.

  12. Is the climate system an anticipatory system that minimizes free energy?

    Science.gov (United States)

    Rubin, Sergio; Crucifix, Michel

    2017-04-01

    All systems, whether they are alive or not are structured determined systems, i.e. their present states [x (t)] depends of past states [x (t - α)]. However it has been suggested [Rosen, 1985; Friston, 2013] that systems that contain life are capable of anticipation and active inference. The underlying principle is that state changes in living systems are best modelled as a function of past and future states [ x(t) = f (x (t - α), x(t), x (t + β)) ]. The reason for this is that living systems contain a predictive model of their ambiance on which they are active: they appear to model their ambiance to preserve their integrity and homeorhesis. We therefore formulate the following hypothesis: can the climate system be interpreted as an anticipatory system that minimizes free energy? Can its variability (catastrophe, bifurcation and/or tipping points) be interpreted in terms of active inference and anticipation failure? Here we present a mathematical formulation of the climate system as an anticipatory system that minimizes free energy and its possible implication in the future climate predictability. References Rosen, R. (1985). Anticipatory systems. In Anticipatory systems (pp. 313-370). Springer New York. Friston, K. (2013). Life as we know it. Journal of the Royal Society Interface, 10(86), 20130475.

  13. Integrated web system of geospatial data services for climate research

    Science.gov (United States)

    Okladnikov, Igor; Gordov, Evgeny; Titov, Alexander

    2016-04-01

    Georeferenced datasets are currently actively used for modeling, interpretation and forecasting of climatic and ecosystem changes on different spatial and temporal scales. Due to inherent heterogeneity of environmental datasets as well as their huge size (up to tens terabytes for a single dataset) a special software supporting studies in the climate and environmental change areas is required. An approach for integrated analysis of georefernced climatological data sets based on combination of web and GIS technologies in the framework of spatial data infrastructure paradigm is presented. According to this approach a dedicated data-processing web system for integrated analysis of heterogeneous georeferenced climatological and meteorological data is being developed. It is based on Open Geospatial Consortium (OGC) standards and involves many modern solutions such as object-oriented programming model, modular composition, and JavaScript libraries based on GeoExt library, ExtJS Framework and OpenLayers software. This work is supported by the Ministry of Education and Science of the Russian Federation, Agreement #14.613.21.0037.

  14. The Atlas of Climate Change. Based on SEAP-CMIP5. Super-ensemble projection and attribution (SEAP) of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Dong, Wenjie; Guo, Yan [Beijing Normal Univ. (China). Normal Univ. College of Global Change and Earth System Science; Ren, Fumin [China Meterological Administration, Beijing (China). National Climate Center; Huang, Jianbin [Tsinghua Univ., Beijing (China). Center for Earth System Science

    2013-02-01

    Outputs from the latest generation of earth system model from world class model development groups for IPCC AR5. Describes quantitatively state historical responsibility for global warming. Demonstrates how the Earth's climate system will change from today up to 2100. Describes how much climate change we may avoid if we take action according to Cancun Pledge ''The Atlas of Climate Change-Based on SEAP-CMIP5'' is intended to satisfy readers' curiosity: how will our climate system change over the next 100 years? It is the first showcase for the state-of -the-art earth system models that released their CMIP5 simulations for the IPCC AR5.The atlas focuses on both the past climate system change from 1850 and the projection of the future climate system change to 2100 using the RCP2.6, RCP4.5 and RCP8.5 scenarios based on climate models. This provides the research and application community interested in the impact of climate change on fields such as agriculture, ecosystem, environment,water resources, energy, health, economy, risk governance and international negotiation, etc. with the newest climate change projection information. Additionally, the atlas will show the historical responsibility of the developed/developing countries and possible contributions to the mitigation of climate change according to their pledge of GHG emission reduction after the Cancun Agreement as an extension numerical experiment to CMIP5 with NCAR's CESM1.0. The authors will update this atlas after future releases of CMIP5 model outputs and update the figures in the second edition of the atlas in 2012-2013.

  15. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States); Bohac, Dave [NorthernSTAR, St. Paul, MN (United States); McAlpine, Jack [NorthernSTAR, St. Paul, MN (United States); Hewett, Martha [NorthernSTAR, St. Paul, MN (United States)

    2017-06-01

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called "combi" systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  16. Retrofitting Forced Air Combi Systems: A Cold Climate Field Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Bohac, Dave [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; McAlpine, Jake [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership; Hewett, Martha [Univ. of Minnesota, St. Paul, MN (United States). NorthernSTAR Building America Partnership

    2017-06-23

    This project analyzed combined condensing water heaters or boilers and hydronic air coils to provide high efficiency domestic hot water (DHW) and forced air space heating. Called 'combi' systems, they provided similar space and water heating performance less expensively than installing two condensing appliances. The system's installed costs were cheaper than installing a condensing furnace and either a condensing tankless or condensing storage water heater. However, combi costs must mature and be reduced before they are competitive with a condensing furnace and power vented water heater (energy factor of 0.60). Better insulation and tighter envelopes are reducing space heating loads for new and existing homes. For many homes, decreased space heating loads make it possible for both space and domestic water heating loads to be provided with a single heating plant. These systems can also eliminate safety issues associated with natural draft appliances through the use of one common sealed combustion vent. The combined space and water heating approach was not a new idea. Past systems have used non-condensing heating plants, which limited their usefulness in climates with high heating loads. Previous laboratory work (Schoenbauer et al. 2012a) showed that proper installation was necessary to achieve condensing with high efficiency appliances. Careful consideration was paid to proper system sizing and minimizing the water temperature returning from the air handling unit to facilitate condensing operation.

  17. Mainstreaming of Climate Change into the Ghanaian Tertiary Educational System

    Science.gov (United States)

    Nyarko, B. K.

    2013-12-01

    The impact of Climate Change has a far-reaching implication for economies and people living in the fragile Regions of Africa analysts project that by 2020, between 75 million and 250 million people will be exposed various forms of Climate Change Stresses. Education as a key strategy identified under Agenda 21 has been incorporated into the efforts of various educational institutions as a means of mitigating climate change and enhancing sustainability. Climate Change education offers many opportunities and benefits for educators, researchers, learners, and for wider society, but there are also many challenges, which can hinder the successful mainstreaming of climate change education. The study aims at understanding barriers for Climate Change Education in selected tertiary institutions in Ghana. The study was conducted among Geoscience Departments of the 7 main public universities of Ghana. The transcript analysis identified issues that hinders the mainstreaming of Climate Change, these includes existing levels of knowledge and understanding of the concept of climate change, appreciating the threshold concepts, ineffective teaching of Climate Change and some Departments are slow in embracing Climate Change as a discipline. Hence to develop strategies to mainstream climate change education it is important to recognise that increasing the efficiency and delivery of Climate Change education requires greater attention and coordination of activities and updating the educators knowledge and skill's. Various Ministries should be challenged to develop and integrate climate change into education policies. In the design of curriculum, there is a need to integrate Climate Change Education into curricula without compromising already overstretched programmes of study. There is a need to encourage and enhance innovative teaching approaches such as Problem-based learning (PBL) is an approach that challenges students to learn through engagement in a real problem. Institutions and

  18. Impacts on Water Management and Crop Production of Regional Cropping System Adaptation to Climate Change

    Science.gov (United States)

    Zhong, H.; Sun, L.; Tian, Z.; Liang, Z.; Fischer, G.

    2014-12-01

    China is one of the most populous and fast developing countries, also faces a great pressure on grain production and food security. Multi-cropping system is widely applied in China to fully utilize agro-climatic resources and increase land productivity. As the heat resource keep improving under climate warming, multi-cropping system will also shifting northward, and benefit crop production. But water shortage in North China Plain will constrain the adoption of new multi-cropping system. Effectiveness of multi-cropping system adaptation to climate change will greatly depend on future hydrological change and agriculture water management. So it is necessary to quantitatively express the water demand of different multi-cropping systems under climate change. In this paper, we proposed an integrated climate-cropping system-crops adaptation framework, and specifically focused on: 1) precipitation and hydrological change under future climate change in China; 2) the best multi-cropping system and correspondent crop rotation sequence, and water demand under future agro-climatic resources; 3) attainable crop production with water constraint; and 4) future water management. In order to obtain climate projection and precipitation distribution, global climate change scenario from HADCAM3 is downscaled with regional climate model (PRECIS), historical climate data (1960-1990) was interpolated from more than 700 meteorological observation stations. The regional Agro-ecological Zone (AEZ) model is applied to simulate the best multi-cropping system and crop rotation sequence under projected climate change scenario. Finally, we use the site process-based DSSAT model to estimate attainable crop production and the water deficiency. Our findings indicate that annual land productivity may increase and China can gain benefit from climate change if multi-cropping system would be adopted. This study provides a macro-scale view of agriculture adaptation, and gives suggestions to national

  19. The physics and dynamics of the climate system simulation of climate change

    International Nuclear Information System (INIS)

    Mitchell, J.F.B.

    1991-01-01

    The increases in atmospheric Greenhouse gases since 1860 have a radiative effect equivalent to a 40% increase in carbon dioxide concentrations, and by the middle of the next century, are expected to be equivalent to a doubling of carbon dioxide concentration. Simulations with detailed climate models indicate that this would produce a warming of 2 to 5 K in global mean surface temperature at equilibrium, with accompanying changes in precipitation, sea level and other parameters. The observed increase of 0.5 K since 1900 is consistent with the lower range of the estimated potential increase, allowing for a possible slowing of the global mean warming due to the ocean's large thermal inertia. There is an ever pressing need to predict the likely changes in climate due to increases in trace gases and detailed 3-dimensional models of climate are the most promising method of providing the detailed information required for climatic impact assessment. This paper is arranged as follows: 1. Introduction, why model climate. 2. The Greenhouse effect. 3. The principal gases, past, present and future. 4. Climate feedbacks in CO 2 experiments. 5. Equilibrium climate change due to increased CO 2 . 6. Modelling the transient response to increases in trace gases. 7. Uncertainties in the simulation and detection of the climatic effect of increased trace gases. 8. Appeals to the past; simulations for 9000 years before present (9 K bp). 13 figs., 3 tabs., 33 refs

  20. Climate Change and Human Migration: Towards a Global Governance System to Protect Climate Refugees

    NARCIS (Netherlands)

    Biermann, F.; Boas, I.J.C.

    2012-01-01

    Climate change will fundamentally affect the lives of millions of people who will be forced over the next decades to leave their villages and cities to seek refuge in other areas. Although the exact numbers of climate refugees are unknowable and vary from assessment to assessment depending on

  1. Assessing the impacts of climate change on natural resource systems

    Energy Technology Data Exchange (ETDEWEB)

    Frederick, K.D.; Rosenberg, N.J. [eds.

    1994-11-30

    This volume is a collection of papers addressing the theme of potential impacts of climatic change. Papers are entitled Integrated Assessments of the Impacts of Climatic Change on Natural Resources: An Introductory Editorial; Framework for Integrated Assessments of Global Warming Impacts; Modeling Land Use and Cover as Part of Global Environmental Change; Assessing Impacts of Climatic Change on Forests: The State of Biological Modeling; Integrating Climatic Change and Forests: Economic and Ecological Assessments; Environmental Change in Grasslands: Assessment using Models; Assessing the Socio-economic Impacts of Climatic Change on Grazinglands; Modeling the Effects of Climatic Change on Water Resources- A Review; Assessing the Socioeconomic Consequences of Climate Change on Water Resources; and Conclusions, Remaining Issues, and Next Steps.

  2. Assessing the Uncertainty of Tropical Cyclone Simulations in NCAR's Community Atmosphere Model

    Directory of Open Access Journals (Sweden)

    Kevin A Reed

    2011-08-01

    Full Text Available The paper explores the impact of the initial-data, parameter and structural model uncertainty on the simulation of a tropical cyclone-like vortex in the National Center for Atmospheric Research's (NCAR Community Atmosphere Model (CAM. An analytic technique is used to initialize the model with an idealized weak vortex that develops into a tropical cyclone over ten simulation days. A total of 78 ensemble simulations are performed at horizontal grid spacings of 1.0°, 0.5° and 0.25° using two recently released versions of the model, CAM 4 and CAM 5. The ensemble members represent simulations with random small-amplitude perturbations of the initial conditions, small shifts in the longitudinal position of the initial vortex and runs with slightly altered model parameters. The main distinction between CAM 4 and CAM 5 lies within the physical parameterization suite, and the simulations with both CAM versions at the varying resolutions assess the structural model uncertainty. At all resolutions storms are produced with many tropical cyclone-like characteristics. The CAM 5 simulations exhibit more intense storms than CAM 4 by day 10 at the 0.5° and 0.25° grid spacings, while the CAM 4 storm at 1.0° is stronger. There are also distinct differences in the shapes and vertical profiles of the storms in the two variants of CAM. The ensemble members show no distinction between the initial-data and parameter uncertainty simulations. At day 10 they produce ensemble root-mean-square deviations from an unperturbed control simulation on the order of 1--5 m s-1 for the maximum low-level wind speed and 2--10 hPa for the minimum surface pressure. However, there are large differences between the two CAM versions at identical horizontal resolutions. It suggests that the structural uncertainty is more dominant than the initial-data and parameter uncertainties in this study. The uncertainty among the ensemble members is assessed and quantified.

  3. An assessment of global climate model-simulated climate for the western cordillera of Canada (1961-90)

    Science.gov (United States)

    Bonsal, Barrie R.; Prowse, Terry D.; Pietroniro, Alain

    2003-12-01

    Climate change is projected to significantly affect future hydrologic processes over many regions of the world. This is of particular importance for alpine systems that provide critical water supplies to lower-elevation regions. The western cordillera of Canada is a prime example where changes to temperature and precipitation could have profound hydro-climatic impacts not only for the cordillera itself, but also for downstream river systems and the drought-prone Canadian Prairies. At present, impact researchers primarily rely on global climate models (GCMs) for future climate projections. The main objective of this study is to assess several GCMs in their ability to simulate the magnitude and spatial variability of current (1961-90) temperature and precipitation over the western cordillera of Canada. In addition, several gridded data sets of observed climate for the study region are evaluated.Results reveal a close correspondence among the four gridded data sets of observed climate, particularly for temperature. There is, however, considerable variability regarding the various GCM simulations of this observed climate. The British, Canadian, German, Australian, and US GFDL models are superior at simulating the magnitude and spatial variability of mean temperature. The Japanese GCM is of intermediate ability, and the US NCAR model is least representative of temperature in this region. Nearly all the models substantially overestimate the magnitude of total precipitation, both annually and on a seasonal basis. An exception involves the British (Hadley) model, which best represents the observed magnitude and spatial variability of precipitation. This study improves our understanding regarding the accuracy of GCM climate simulations over the western cordillera of Canada. The findings may assist in producing more reliable future scenarios of hydro-climatic conditions over various regions of the country. Copyright

  4. Methane Feedbacks to the Global Climate System in a Warmer World

    Science.gov (United States)

    Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas; Aerts, Rien; Blauw, Luke G.; Egger, Matthias; Jetten, Mike S. M.; de Jong, Anniek E. E.; Meisel, Ove H.; Rasigraf, Olivia; Slomp, Caroline P.; in't Zandt, Michiel H.; Dolman, A. J.

    2018-03-01

    Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands, marine and freshwater systems, permafrost, and methane hydrates, through shifts in temperature, hydrology, vegetation, landscape disturbance, and sea level rise. Increased CH4 emissions from these systems would in turn induce further climate change, resulting in a positive climate feedback. Here we synthesize biological, geochemical, and physically focused CH4 climate feedback literature, bringing together the key findings of these disciplines. We discuss environment-specific feedback processes, including the microbial, physical, and geochemical interlinkages and the timescales on which they operate, and present the current state of knowledge of CH4 climate feedbacks in the immediate and distant future. The important linkages between microbial activity and climate warming are discussed with the aim to better constrain the sensitivity of the CH4 cycle to future climate predictions. We determine that wetlands will form the majority of the CH4 climate feedback up to 2100. Beyond this timescale, CH4 emissions from marine and freshwater systems and permafrost environments could become more important. Significant CH4 emissions to the atmosphere from the dissociation of methane hydrates are not expected in the near future. Our key findings highlight the importance of quantifying whether CH4 consumption can counterbalance CH4 production under future climate scenarios.

  5. Modelling the effects of climate change on the energy system-A case study of Norway

    International Nuclear Information System (INIS)

    Seljom, Pernille; Rosenberg, Eva; Fidje, Audun; Haugen, Jan Erik; Meir, Michaela; Rekstad, John; Jarlset, Thore

    2011-01-01

    The overall objective of this work is to identify the effects of climate change on the Norwegian energy system towards 2050. Changes in the future wind- and hydro-power resource potential, and changes in the heating and cooling demand are analysed to map the effects of climate change. The impact of climate change is evaluated with an energy system model, the MARKAL Norway model, to analyse the future cost optimal energy system. Ten climate experiments, based on five different global models and six emission scenarios, are used to cover the range of possible future climate scenarios and of these three experiments are used for detailed analyses. This study indicate that in Norway, climate change will reduce the heating demand, increase the cooling demand, have a limited impact on the wind power potential, and increase the hydro-power potential. The reduction of heating demand will be significantly higher than the increase of cooling demand, and thus the possible total direct consequence of climate change will be reduced energy system costs and lower electricity production costs. The investments in offshore wind and tidal power will be reduced and electric based vehicles will be profitable earlier. - Highlights: → Climate change will make an impact on the Norwegian energy system towards 2050. → An impact is lower Norwegian electricity production costs and increased electricity export. → Climate change gives earlier profitable investments in electric based vehicles. → Climate change reduces investments in offshore wind and tidal power.

  6. Cold-Climate Solar Domestic Hot Water Systems Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Burch, J.; Salasovich, J.; Hillman, T.

    2005-11-01

    The Solar Heating and Lighting Sub-program has set the key goal to reduce the cost of saved energy [Csav, defined as (total cost, $)/(total discounted savings, kWh_thermal)] for solar domestic water heaters (SDWH) by at least 50%. To determine if this goal is attainable and prioritize R&D for cold-climate SDWH, life-cycle analyses were done with hypothetical lower-cost components in glycol, drainback, and thermosiphon systems. Balance-of-system (BOS, everything but the collector) measures included replacing metal components with polymeric versions and system simplification. With all BOS measures in place, Csav could be reduced more than 50% with a low-cost, selectively-coated, glazed polymeric collector, and slightly less than 50% with either a conventional selective metal-glass or a non-selective glazed polymer collector. The largest percent reduction in Csav comes from replacing conventional pressurized solar storage tanks and metal heat exchangers with un-pressurized polymer tanks with immersed polymer heat exchangers, which could be developed with relatively low-risk R&D.

  7. Weather and Climate Manipulation as an Optimal Control for Adaptive Dynamical Systems

    Directory of Open Access Journals (Sweden)

    Sergei A. Soldatenko

    2017-01-01

    Full Text Available The weather and climate manipulation is examined as an optimal control problem for the earth climate system, which is considered as a complex adaptive dynamical system. Weather and climate manipulations are actually amorphous operations. Since their objectives are usually formulated vaguely, the expected results are fairly unpredictable and uncertain. However, weather and climate modification is a purposeful process and, therefore, we can formulate operations to manipulate weather and climate as the optimization problem within the framework of the optimal control theory. The complexity of the earth’s climate system is discussed and illustrated using the simplified low-order coupled chaotic dynamical system. The necessary conditions of optimality are derived for the large-scale atmospheric dynamics. This confirms that even a relatively simplified control problem for the atmospheric dynamics requires significant efforts to obtain the solution.

  8. Biofuels and climate neutrality - system analysis of production and utilisation

    International Nuclear Information System (INIS)

    Holmgren, Kristina; Eriksson, Erik; Olsson, Olle; Olsson, Mats; Hillring, Bengt; Parikka, Matti

    2007-06-01

    The objectives of this study were to investigate to what extent biofuels can be said to be climate neutral. An assessment of greenhouse gas emissions from the production and utilisation chains of a number of solid biofuels were made based on data available in the literature. The data has been used for making radiative forcing calculations. The study also includes a comparison between imported and domestic solid biofuels. We conclude that none of the investigated biofuel chains are 'climate neutral', since all of them result in net emissions of greenhouse gases. However, all of the chains result in lower emissions than corresponding emissions from the use of fossil fuels. The emission estimates for the fuel chains varies depending on fuels and on how system boundaries have been set in the different studies. The following factors can contribute significantly to the total emissions of greenhouse gases of the production and utilisation chain of a biofuel: impact of production system on soil carbon storage, land use methods (especially use of drained peatlands), the use of fertilisers (both direct and indirect), combustion technology, refining of the fuel (i.e. pelletisation) and storage (especially of comminuted fuels). Other sources that also contribute to the emissions during a production and utilisation chain are; harvesting machines, transportation and waste handling. The climate impacts of the greenhouse gas emissions from one of the biofuels, i.e. forest residues, were compared to the impacts of fossil fuels by the concept of radiative forcing. In the radiative forcing calculations the CO 2 emissions from combustion of biofuels and the CO 2 emissions that would have occurred if the residues had been left in the forest to decompose were included, and their different dynamics taken into consideration. The decomposition results in CO 2 emissions during a long time period and in an amount equalling those that are emitted during combustion. Only a minor part is due to

  9. Educational and Scientific Applications of Climate Model Diagnostic Analyzer

    Science.gov (United States)

    Lee, S.; Pan, L.; Zhai, C.; Tang, B.; Kubar, T. L.; Zhang, J.; Bao, Q.

    2016-12-01

    Climate Model Diagnostic Analyzer (CMDA) is a web-based information system designed for the climate modeling and model analysis community to analyze climate data from models and observations. CMDA provides tools to diagnostically analyze climate data for model validation and improvement, and to systematically manage analysis provenance for sharing results with other investigators. CMDA utilizes cloud computing resources, multi-threading computing, machine-learning algorithms, web service technologies, and provenance-supporting technologies to address technical challenges that the Earth science modeling and model analysis community faces in evaluating and diagnosing climate models. As CMDA infrastructure and technology have matured, we have developed the educational and scientific applications of CMDA. Educationally, CMDA supported the summer school of the JPL Center for Climate Sciences for three years since 2014. In the summer school, the students work on group research projects where CMDA provide datasets and analysis tools. Each student is assigned to a virtual machine with CMDA installed in Amazon Web Services. A provenance management system for CMDA is developed to keep track of students' usages of CMDA, and to recommend datasets and analysis tools for their research topic. The provenance system also allows students to revisit their analysis results and share them with their group. Scientifically, we have developed several science use cases of CMDA covering various topics, datasets, and analysis types. Each use case developed is described and listed in terms of a scientific goal, datasets used, the analysis tools used, scientific results discovered from the use case, an analysis result such as output plots and data files, and a link to the exact analysis service call with all the input arguments filled. For example, one science use case is the evaluation of NCAR CAM5 model with MODIS total cloud fraction. The analysis service used is Difference Plot Service of

  10. The 21st century Museum Climatic Monitoring System

    Science.gov (United States)

    Liu, W.-S.

    2015-08-01

    Technology has provided us work convenience and shaped our quality of life; it has enabled an unprecedented level of access to knowledge by flipping screen of a hand-held electronic device without going elsewhere but stay connected wireless communication. This kind of technology has been broadly acquired at museums in Hong Kong for preserving their valuable collections. Similar gadget was applied on the monitoring system to record climatic conditions of museum's stores and galleries. Sensors have been equipped with chips for the wireless transmission of RH/Temp, without installation of any conduit or LAN lines. Useful and important data will then be grouped into a packet format for efficient delivery. As long as the static IP address of the target workstation has been set, data can be accurately retrieved from one place to another via commercially available browsers, such as: Firefox or Internet Explorer, even on hand-held electronic devices. This paper will discuss the detail of this system, its pros and cons in comparison with the old model. After all, the new technology is highly significant in supporting the current needs and the future developments of the museum service.

  11. Methane feedbacks to the global climate system in a warmer world

    NARCIS (Netherlands)

    Dean, Joshua F.; Middelburg, Jack J.; Röckmann, Thomas; Aerts, Rien; Blauw, Luke G.; Egger, Matthias; Jetten, Mike S.M.; de Jong, Anniek E.E.; Meisel, Ove H.; Rasigraf, Olivia; Slomp, Caroline P.; in't Zandt, Michiel H.; Dolman, A. J.

    Methane (CH4) is produced in many natural systems that are vulnerable to change under a warming climate, yet current CH4 budgets, as well as future shifts in CH4 emissions, have high uncertainties. Climate change has the potential to increase CH4 emissions from critical systems such as wetlands,

  12. Yesterday's dinner, tomorrow's weather, today's news? US newspaper coverage of food system contributions to climate change.

    Science.gov (United States)

    Neff, Roni A; Chan, Iris L; Smith, Katherine Clegg

    2009-07-01

    There is strong evidence that what we eat and how it is produced affects climate change. The present paper examines coverage of food system contributions to climate change in top US newspapers. Using a sample of sixteen leading US newspapers from September 2005 to January 2008, two coders identified 'food and climate change' and 'climate change' articles based on specified criteria. Analyses examined variation across time and newspaper, the level of content relevant to food systems' contributions to climate change, and how such content was framed. There were 4582 'climate change' articles in these newspapers during this period. Of these, 2.4% mentioned food or agriculture contributions, with 0.4% coded as substantially focused on the issue and 0.5% mentioning food animal contributions. The level of content on food contributions to climate change increased across time. Articles initially addressed the issue primarily in individual terms, expanding to address business and government responsibility more in later articles. US newspaper coverage of food systems' effects on climate change during the study period increased, but still did not reflect the increasingly solid evidence of the importance of these effects. Increased coverage may lead to responses by individuals, industry and government. Based on co-benefits with nutritional public health messages and climate change's food security threats, the public health nutrition community has an important role to play in elaborating and disseminating information about food and climate change for the US media.

  13. Selection of the Climate Parameters for a Building Envelopes and Indoor Climate Systems Design

    Directory of Open Access Journals (Sweden)

    Oleg Samarin

    2017-09-01

    Full Text Available The current research considers the principles of selection of the climate information needed for the building envelope and indoor climate design and adopted in Russia and some European countries. Special reference has been made to the shortcoming of methodologies that include the notion of a typical year, and the advantages of climate data sets generated via software-based designs, using pseudo-random number generators. The results of the average temperature of the coldest five-day period with various supplies were calculated using the numerical Monte-Carlo simulations, as well as the current climate data. It has been shown that there is a fundamental overlap between the statistical distribution of temperatures of both instances and the possibility of implementation a probabilistic-statistical method principle in the development of certain climate data, relative to envelopes and thermal conditions of a building. The calculated values were combined with the analytic expression of the normal law of random distribution and the correlations needed for the main parameter selection.

  14. NASA/FAA/NCAR Supercooled Large Droplet Icing Flight Research: Summary of Winter 1996-1997 Flight Operations

    Science.gov (United States)

    Miller, Dean; Ratvasky, Thomas; Bernstein, Ben; McDonough, Frank; Strapp, J. Walter

    1998-01-01

    During the winter of 1996-1997, a flight research program was conducted at the NASA-Lewis Research Center to study the characteristics of Supercooled Large Droplets (SLD) within the Great Lakes region. This flight program was a joint effort between the National Aeronautics and Space Administration (NASA), the National Center for Atmospheric Research (NCAR), and the Federal Aviation Administration (FAA). Based on weather forecasts and real-time in-flight guidance provided by NCAR, the NASA-Lewis Icing Research Aircraft was flown to locations where conditions were believed to be conducive to the formation of Supercooled Large Droplets aloft. Onboard instrumentation was then used to record meteorological, ice accretion, and aero-performance characteristics encountered during the flight. A total of 29 icing research flights were conducted, during which "conventional" small droplet icing, SLD, and mixed phase conditions were encountered aloft. This paper will describe how flight operations were conducted, provide an operational summary of the flights, present selected experimental results from one typical research flight, and conclude with practical "lessons learned" from this first year of operation.

  15. Evaluation of economic impact of climatic change on agro-forestry systems

    Directory of Open Access Journals (Sweden)

    Vittorio Gallerani

    Full Text Available Climate change has a strong influence on agro-forestry systems. Present estimations evisage that changes in climate patterns and extreme events connected to climate change will have greater impacts in the future. This paper seeks to illustrate the articulation of the problems concerning the economic evaluation of climate change, with particularly attention to open problems and future lines of research. Research on this topic, though using methods and approaches consolidated in the disciplines of resource economics and evaluation, still have several open problems, particularly in the field of multidisciplinary studies of the man-environmental relations, policy evaluation and development of decision support systems for decision makers.

  16. Using Climate Regionalization to Understand Climate Forecast System Version 2 (CFSv2) Precipitation Performance for the Conterminous United States (CONUS)

    Science.gov (United States)

    Regonda, Satish K.; Zaitchik, Benjamin F.; Badr, Hamada S.; Rodell, Matthew

    2016-01-01

    Dynamically based seasonal forecasts are prone to systematic spatial biases due to imperfections in the underlying global climate model (GCM). This can result in low-forecast skill when the GCM misplaces teleconnections or fails to resolve geographic barriers, even if the prediction of large-scale dynamics is accurate. To characterize and address this issue, this study applies objective climate regionalization to identify discrepancies between the Climate Forecast SystemVersion 2 (CFSv2) and precipitation observations across the Contiguous United States (CONUS). Regionalization shows that CFSv2 1 month forecasts capture the general spatial character of warm season precipitation variability but that forecast regions systematically differ from observation in some transition zones. CFSv2 predictive skill for these misclassified areas is systematically reduced relative to correctly regionalized areas and CONUS as a whole. In these incorrectly regionalized areas, higher skill can be obtained by using a regional-scale forecast in place of the local grid cell prediction.

  17. Is climatic regionalization in frame of estimated pedologic-ecological system actual in 21st century?

    Science.gov (United States)

    Středová, Hana; Chuchma, Filip

    2014-09-01

    Climatic variables defining climatic regions of estimated pedologic-ecological system (EPEU) were calculated based on fifty-year climatic data from 1961 to 2010. Obtained results were subsequently compared to intervals determining individual climatic regions defined by previous climatic data (1901-1950). In many agricultural intense areas sum of air temperature and mean air temperature exceeded upper limit. In terms of precipitation it is especially noticeable in the wet (higher) altitudes. Significant volatility was found for probability of dry periods from April to September. The values of the moisture certainty from April to September for the period 1961-2010 reached to several tens. In the final analysis, the only safe prediction is that the present and future are likely to be very different from the past. It is necessary to take it into account for actualization of EPEU methodology. Among the strongest arguments justifying the need of this actualization is in particular climate development since 1901, technological progress and improved measurement technology as well as automation and development of climate models coupled with simulations of complex characteristics and estimates of future climate. It is evident that the development of climate and other factors have an enormous impact on soil fertility. This should be also taken into consideration when fixing the official price. It is necessary to consider the possible replacement of the existing characteristics by more suitable (for example soil moisture balance). The findings might be summarized in few words: old climatic regions do not reflect actual climatic conditions.

  18. Transportation system resilience, extreme weather and climate change : a thought leadership series

    Science.gov (United States)

    2014-09-01

    This report summarizes key findings from the Transportation System Resilience, Extreme Weather and Climate Change thought leadership series held at Volpe, the National Transportation Systems Center from fall 2013 to spring 2014.

  19. Computing and Systems Applied in Support of Coordinated Energy, Environmental, and Climate Planning

    Science.gov (United States)

    This talk focuses on how Dr. Loughlin is applying Computing and Systems models, tools and methods to more fully understand the linkages among energy systems, environmental quality, and climate change. Dr. Loughlin will highlight recent and ongoing research activities, including: ...

  20. Final report: The effect of climate change on the Norwegian Energy System towards 2050

    Energy Technology Data Exchange (ETDEWEB)

    Seljom, P.; Rosenberg, E.; Fidje, A.; Meir, M.; Haugen, J.E.; Jarlseth, T.

    2010-08-15

    The climate impact on the renewable resources, end use demand, and on the Norwegian energy system towards 2050 is identified. Climate change will reduce the heat demand, increase the cooling demand, result in no impact on the wind power potential, and increase the hydro power potential. The total impact is reduced energy system costs, and lower Norwegian electricity prices. The net electricity export will increase, and national investments in new renewable power production like offshore wind- , tidal- and wave power will decrease due to climate change. Additionally, the electricity consumption in the residential and in the commercial sector will decrease, and climate change will lead to an earlier profitable implementation of electric based vehicles in Norway. Despite great uncertainties in the future climate, various future emission scenarios are compatible regarding the Norwegian climate impact, although the magnitude of the impact varies. (Author)

  1. COLLABORATIVE RESEARCH: TOWARDS ADVANCED UNDERSTANDING AND PREDICTIVE CAPABILITY OF CLIMATE CHANGE IN THE ARCTIC USING A HIGH-RESOLUTION REGIONAL ARCTIC CLIMATE SYSTEM MODEL

    Energy Technology Data Exchange (ETDEWEB)

    Gutowski, William J.

    2013-02-07

    The motivation for this project was to advance the science of climate change and prediction in the Arctic region. Its primary goals were to (i) develop a state-of-the-art Regional Arctic Climate system Model (RACM) including high-resolution atmosphere, land, ocean, sea ice and land hydrology components and (ii) to perform extended numerical experiments using high performance computers to minimize uncertainties and fundamentally improve current predictions of climate change in the northern polar regions. These goals were realized first through evaluation studies of climate system components via one-way coupling experiments. Simulations were then used to examine the effects of advancements in climate component systems on their representation of main physics, time-mean fields and to understand variability signals at scales over many years. As such this research directly addressed some of the major science objectives of the BER Climate Change Research Division (CCRD) regarding the advancement of long-term climate prediction.

  2. Role of Biotechnology in Animal Production Systems in Hot Climates

    Directory of Open Access Journals (Sweden)

    P. J. Hansen

    1996-01-01

    Full Text Available Developments in the biological sciences in the last three decades have revolutionized mankind's ability to manipulate the genetics, cell biology and physiology of biological organisms. These techniques, collectively termed biotechnology, create the opportunity for modifying domestic animals in ways that markedly increase the efficiency of production. Among the procedures being developed for animal production systems are marker-assisted selection of specific alleles of a gene that are associated with high production, production of transgenic animals , super ovulation and embryo transfer, in vitro fertilization, embryo sexing and cloning, production of large amounts of previously-rare proteins through use of genetically -engineered bacteria or other cells, and identification of new biologically-active molecules as potential regulators of animal function. To date, most uses of biotechnology have concentrated on problems of general relevance to animal agriculture rather than specific problems related to livestock production in hot climates. However, it is likely that biotechnology will be used for this latter purpose also. Strategies to increase disease resistance using marker-assisted selection, production of transgenic animals expressing viral proteins, and recombinant cytokines to enhance immune function should prove useful to reducing the incidence and seventy of various tropical diseases. Additionally, there are methods to reduce effects of heat stress on oestrus detection and establishment of pregnancy. These include remote sensing of oestrus, ovulation synchronization systems and embryo transfer. More research regarding the physiological processes determining heat tolerance and of the pathways through which heat stress alters physiological function will be required before molecular biology techniques can be used to reduce the adverse effects of heat stress on animal production.

  3. Climate Change: Implications for South African Building Systems and Components

    CSIR Research Space (South Africa)

    Gibberd, Jeremy T

    2017-12-01

    Full Text Available to determine the implications of these changes for buildings. Proposals are made on how buildings may be adapted to climate change and recommendations on further research and development are outlined....

  4. System and Method for Providing a Climate Data Analytic Services Application Programming Interface Distribution Package

    Science.gov (United States)

    Schnase, John L. (Inventor); Duffy, Daniel Q. (Inventor); Tamkin, Glenn S. (Inventor)

    2016-01-01

    A system, method and computer-readable storage devices for providing a climate data analytic services application programming interface distribution package. The example system can provide various components. The system provides a climate data analytic services application programming interface library that enables software applications running on a client device to invoke the capabilities of a climate data analytic service. The system provides a command-line interface that provides a means of interacting with a climate data analytic service by issuing commands directly to the system's server interface. The system provides sample programs that call on the capabilities of the application programming interface library and can be used as templates for the construction of new client applications. The system can also provide test utilities, build utilities, service integration utilities, and documentation.

  5. Climate Change Education on Public Health Consequences and Impacts to the Human System - An Interdisciplinary Approach to Promoting Climate Literacy

    Science.gov (United States)

    Matiella Novak, M.; Paxton, L. J.

    2012-12-01

    - someone not like you. On the other hand, public health impacts are felt by millions and lead to very high costs and those impacts are something with which most people have direct experiences. We will discuss, for example, how climate change can be framed as a cost/benefit problem by looking at the long term costs of increase in disease and illness such as the startling trends in childhood asthma. Changes in water availability, and water and air quality, will result from a warming climate, with measureable consequences for public health: disease spread, food and water security, respiratory health, etc. By integrating this information with education efforts, society, educators and decision makers will have a better understanding of how climate change affects the human system, and what decisions can be made at the individual and community levels to mitigate and adapt to climate change. We will show how this can be achieved.

  6. Quantifying Key Climate Parameter Uncertainties Using an Earth System Model with a Dynamic 3D Ocean

    Science.gov (United States)

    Olson, R.; Sriver, R. L.; Goes, M. P.; Urban, N.; Matthews, D.; Haran, M.; Keller, K.

    2011-12-01

    Climate projections hinge critically on uncertain climate model parameters such as climate sensitivity, vertical ocean diffusivity and anthropogenic sulfate aerosol forcings. Climate sensitivity is defined as the equilibrium global mean temperature response to a doubling of atmospheric CO2 concentrations. Vertical ocean diffusivity parameterizes sub-grid scale ocean vertical mixing processes. These parameters are typically estimated using Intermediate Complexity Earth System Models (EMICs) that lack a full 3D representation of the oceans, thereby neglecting the effects of mixing on ocean dynamics and meridional overturning. We improve on these studies by employing an EMIC with a dynamic 3D ocean model to estimate these parameters. We carry out historical climate simulations with the University of Victoria Earth System Climate Model (UVic ESCM) varying parameters that affect climate sensitivity, vertical ocean mixing, and effects of anthropogenic sulfate aerosols. We use a Bayesian approach whereby the likelihood of each parameter combination depends on how well the model simulates surface air temperature and upper ocean heat content. We use a Gaussian process emulator to interpolate the model output to an arbitrary parameter setting. We use Markov Chain Monte Carlo method to estimate the posterior probability distribution function (pdf) of these parameters. We explore the sensitivity of the results to prior assumptions about the parameters. In addition, we estimate the relative skill of different observations to constrain the parameters. We quantify the uncertainty in parameter estimates stemming from climate variability, model and observational errors. We explore the sensitivity of key decision-relevant climate projections to these parameters. We find that climate sensitivity and vertical ocean diffusivity estimates are consistent with previously published results. The climate sensitivity pdf is strongly affected by the prior assumptions, and by the scaling

  7. Satellite Observation Systems for Polar Climate Change Studies

    Science.gov (United States)

    Comiso, Josefino C.

    2012-01-01

    The key observational tools for detecting large scale changes of various parameters in the polar regions have been satellite sensors. The sensors include passive and active satellite systems in the visible, infrared and microwave frequencies. The monitoring started with Tiros and Nimbus research satellites series in the 1970s but during the period, not much data was stored digitally because of limitations and cost of the needed storage systems. Continuous global data came about starting with the launch of ocean color, passive microwave, and thermal infrared sensors on board Nimbus-7 and Synthetic Aperture Radar, Radar Altimeter and Scatterometer on board SeaSat satellite both launched in 1978. The Nimbus-7 lasted longer than expected and provided about 9 years of useful data while SeaSat quit working after 3 months but provided very useful data that became the baseline for follow-up systems with similar capabilities. Over the years, many new sensors were launched, some from Japan Aeronautics and Space Agency (JAXA), some from the European Space Agency (ESA) and more recently, from RuSSia, China, Korea, Canada and India. For polar studies, among the most useful sensors has been the passive microwave sensor which provides day/night and almost all weather observation of the surface. The sensor provide sea surface temperature, precipitation, wind, water vapor and sea ice concentration data that have been very useful in monitoring the climate of the region. More than 30 years of such data are now available, starting with the Scanning Multichannel Microwave Radiometer (SMMR) on board the Nimbus-7, the Special Scanning Microwave/Imager (SSM/I) on board a Defense Meteorological Satellite Program (DMSP) and the Advanced Microwave Scanning Radiometer on board the EOS/ Aqua satellite. The techniques that have been developed to derive geophysical parameters from data provided by these and other sensors and associated instrumental and algorithm errors and validation techniques

  8. Flexible Environments for Grand-Challenge Simulation in Climate Science

    Science.gov (United States)

    Pierrehumbert, R.; Tobis, M.; Lin, J.; Dieterich, C.; Caballero, R.

    2004-12-01

    Current climate models are monolithic codes, generally in Fortran, aimed at high-performance simulation of the modern climate. Though they adequately serve their designated purpose, they present major barriers to application in other problems. Tailoring them to paleoclimate of planetary simulations, for instance, takes months of work. Theoretical studies, where one may want to remove selected processes or break feedback loops, are similarly hindered. Further, current climate models are of little value in education, since the implementation of textbook concepts and equations in the code is obscured by technical detail. The Climate Systems Center at the University of Chicago seeks to overcome these limitations by bringing modern object-oriented design into the business of climate modeling. Our ultimate goal is to produce an end-to-end modeling environment capable of configuring anything from a simple single-column radiative-convective model to a full 3-D coupled climate model using a uniform, flexible interface. Technically, the modeling environment is implemented as a Python-based software component toolkit: key number-crunching procedures are implemented as discrete, compiled-language components 'glued' together and co-ordinated by Python, combining the high performance of compiled languages and the flexibility and extensibility of Python. We are incrementally working towards this final objective following a series of distinct, complementary lines. We will present an overview of these activities, including PyOM, a Python-based finite-difference ocean model allowing run-time selection of different Arakawa grids and physical parameterizations; CliMT, an atmospheric modeling toolkit providing a library of 'legacy' radiative, convective and dynamical modules which can be knitted into dynamical models, and PyCCSM, a version of NCAR's Community Climate System Model in which the coupler and run-control architecture are re-implemented in Python, augmenting its flexibility

  9. Parallel analysis tools and new visualization techniques for ultra-large climate data set

    Energy Technology Data Exchange (ETDEWEB)

    Middleton, Don [National Center for Atmospheric Research, Boulder, CO (United States); Haley, Mary [National Center for Atmospheric Research, Boulder, CO (United States)

    2014-12-10

    ParVis was a project funded under LAB 10-05: “Earth System Modeling: Advanced Scientific Visualization of Ultra-Large Climate Data Sets”. Argonne was the lead lab with partners at PNNL, SNL, NCAR and UC-Davis. This report covers progress from January 1st, 2013 through Dec 1st, 2014. Two previous reports covered the period from Summer, 2010, through September 2011 and October 2011 through December 2012, respectively. While the project was originally planned to end on April 30, 2013, personnel and priority changes allowed many of the institutions to continue work through FY14 using existing funds. A primary focus of ParVis was introducing parallelism to climate model analysis to greatly reduce the time-to-visualization for ultra-large climate data sets. Work in the first two years was conducted on two tracks with different time horizons: one track to provide immediate help to climate scientists already struggling to apply their analysis to existing large data sets and another focused on building a new data-parallel library and tool for climate analysis and visualization that will give the field a platform for performing analysis and visualization on ultra-large datasets for the foreseeable future. In the final 2 years of the project, we focused mostly on the new data-parallel library and associated tools for climate analysis and visualization.

  10. An Agent-based Extensible Climate Control System for Sustainable Greenhouse Production

    DEFF Research Database (Denmark)

    Sørensen, Jan Corfixen; Jørgensen, Bo Nørregaard; Klein, Mark

    2011-01-01

    The slow adoption pace of new control strategies for sustainable greenhouse climate control by industrial growers is mainly due to the complexity of identifying and resolving potentially conflicting climate control requirements. In this paper, we present a multi-agent-based climate control system....... Negotiation is done using a novel multi-issue negotiation protocol that uses a generic algorithm to find an optimized solution within the search space. The Multi-Agent control system has been empirically evaluated in an ornamental floriculture research facility in Denmark. The evaluation showed...... that it is realistic to implement the climate control requirements as individual agents, thereby opening greenhouse climate control systems for integration of independently produced control strategies....

  11. The case for systems thinking about climate change and mental health

    Science.gov (United States)

    Berry, Helen L.; Waite, Thomas D.; Dear, Keith B. G.; Capon, Anthony G.; Murray, Virginia

    2018-04-01

    It is increasingly necessary to quantify the impacts of climate change on populations, and to quantify the effectiveness of mitigation and adaptation strategies. Despite growing interest in the health effects of climate change, the relationship between mental health and climate change has received little attention in research or policy. Here, we outline current thinking about climate change and mental health, and discuss crucial limitations in modern epidemiology for examining this issue. A systems approach, complemented by a new style of research thinking and leadership, can help align the needs of this emerging field with existing and research policy agendas.

  12. Combined analysis of climate, technological and price changes on future arable farming systems in Europe

    NARCIS (Netherlands)

    Wolf, J.; Kanellopoulos, Argyris; Kros, J.; Webber, H.; Zhao, G.; Britz, W.; Reinds, G.J.; Ewert, F.; Vries, de W.

    2015-01-01

    In this study, we compare the relative importance of climate change to technological, management, price and policy changes on European arable farming systems. This required linking four models: the SIMPLACE crop growth modelling framework to calculate future yields under climate change for arable

  13. Modeling the global society-biosphere-climate system : Part 2: Computed scenarios

    NARCIS (Netherlands)

    Alcamo, J.; Van Den Born, G.J.; Bouwman, A.F.; De Haan, B.J.; Klein Goldewijk, K.; Klepper, O.; Krabec, J.; Leemans, R.; Olivier, J.G.J.; Toet, A.M.C.; De Vries, H.J.M.; Van Der Woerd, H.J.

    1994-01-01

    This paper presents scenarios computed with IMAGE 2.0, an integrated model of the global environment and climate change. Results are presented for selected aspects of the society-biosphere-climate system including primary energy consumption, emissions of various greenhouse gases, atmospheric

  14. Effects of climate change and adaptation on the livestock component of mixed farming systems

    NARCIS (Netherlands)

    Descheemaeker, Katrien; Zijlstra, Mink; Masikati, Patricia; Crespo, Olivier; Homann-Kee Tui, Sabine

    2018-01-01

    Large uncertainties about the impacts of climate change and adaptation options on the livestock component of heterogeneous African farming systems hamper tailored decision making towards climate-smart agriculture. This study addressed this knowledge gap through the development and use of a

  15. Systemic range shift lags among a pollinator species assemblage following rapid climate change

    DEFF Research Database (Denmark)

    Bedford, Felicity E.; Whittaker, Robert J.; Kerr, Jeremy T.

    2012-01-01

    Contemporary climate change is driving widespread geographical range shifts among many species. If species are tracking changing climate successfully, then leading populations should experience similar climatic conditions through time as new populations establish beyond historical range margins....... Here, we investigate geographical range shifts relative to changing climatic conditions among a particularly well-sampled assemblage of butterflies in Canada. We assembled observations of 81 species and measured their latitudinal displacement between two periods: 1960–1975 (a period of little climate...... change) and 1990–2005 (a period with large climate change). We find an unexpected trend for species’ northern borders to shift progressively less relative to increasing minimum winter temperatures in northern Canada. This study demonstrates a novel, systemic latitudinal gradient in lags among a large...

  16. Climate scenarios for California

    Science.gov (United States)

    Cayan, Daniel R.; Maurer, Ed; Dettinger, Mike; Tyree, Mary; Hayhoe, Katharine; Bonfils, Celine; Duffy, Phil; Santer, Ben

    2006-01-01

    Possible future climate changes in California are investigated from a varied set of climate change model simulations. These simulations, conducted by three state-of-the-art global climate models, provide trajectories from three greenhouse gas (GHG) emission scenarios. These scenarios and the resulting climate simulations are not “predictions,” but rather are a limited sample from among the many plausible pathways that may affect California’s climate. Future GHG concentrations are uncertain because they depend on future social, political, and technological pathways, and thus the IPCC has produced four “families” of emission scenarios. To explore some of these uncertainties, emissions scenarios A2 (a medium-high emissions) and B1 (low emissions) were selected from the current IPCC Fourth climate assessment, which provides several recent model simulations driven by A2 and B1 emissions. The global climate model simulations addressed here were from PCM1, the Parallel Climate Model from the National Center for Atmospheric Research (NCAR) and U.S. Department of Energy (DOE) group, and CM2.1 from the National Oceanic and Atmospheric Administration (NOAA) Geophysical Fluids Dynamics Laboratory (GFDL).

  17. Climate system properties determining the social cost of carbon

    International Nuclear Information System (INIS)

    Otto, Alexander; Allen, Myles R; Todd, Benjamin J; Bowerman, Niel; Frame, David J

    2013-01-01

    The choice of an appropriate scientific target to guide global mitigation efforts is complicated by uncertainties in the temperature response to greenhouse gas emissions. Much climate policy discourse has been based on the equilibrium global mean temperature increase following a concentration stabilization scenario. This is determined by the equilibrium climate sensitivity (ECS) which, in many studies, shows persistent, fat-tailed uncertainty. However, for many purposes, the equilibrium response is less relevant than the transient response. Here, we show that one prominent policy variable, the social cost of carbon (SCC), is generally better constrained by the transient climate response (TCR) than by the ECS. Simple analytic expressions show the SCC to be directly proportional to the TCR under idealized assumptions when the rate at which we discount future damage equals 2.8%. Using ensemble simulations of a simple climate model we find that knowing the true value of the TCR can reduce the relative uncertainty in the SCC substantially more, up to a factor of 3, than knowing the ECS under typical discounting assumptions. We conclude that the TCR, which is better constrained by observations, less subject to fat-tailed uncertainty and more directly related to the SCC, is generally preferable to the ECS as a single proxy for the climate response in SCC calculations. (letter)

  18. Climate system properties determining the social cost of carbon

    Science.gov (United States)

    Otto, Alexander; Todd, Benjamin J.; Bowerman, Niel; Frame, David J.; Allen, Myles R.

    2013-06-01

    The choice of an appropriate scientific target to guide global mitigation efforts is complicated by uncertainties in the temperature response to greenhouse gas emissions. Much climate policy discourse has been based on the equilibrium global mean temperature increase following a concentration stabilization scenario. This is determined by the equilibrium climate sensitivity (ECS) which, in many studies, shows persistent, fat-tailed uncertainty. However, for many purposes, the equilibrium response is less relevant than the transient response. Here, we show that one prominent policy variable, the social cost of carbon (SCC), is generally better constrained by the transient climate response (TCR) than by the ECS. Simple analytic expressions show the SCC to be directly proportional to the TCR under idealized assumptions when the rate at which we discount future damage equals 2.8%. Using ensemble simulations of a simple climate model we find that knowing the true value of the TCR can reduce the relative uncertainty in the SCC substantially more, up to a factor of 3, than knowing the ECS under typical discounting assumptions. We conclude that the TCR, which is better constrained by observations, less subject to fat-tailed uncertainty and more directly related to the SCC, is generally preferable to the ECS as a single proxy for the climate response in SCC calculations.

  19. Impact of Antarctic mixed-phase clouds on climate.

    Science.gov (United States)

    Lawson, R Paul; Gettelman, Andrew

    2014-12-23

    Precious little is known about the composition of low-level clouds over the Antarctic Plateau and their effect on climate. In situ measurements at the South Pole using a unique tethered balloon system and ground-based lidar reveal a much higher than anticipated incidence of low-level, mixed-phase clouds (i.e., consisting of supercooled liquid water drops and ice crystals). The high incidence of mixed-phase clouds is currently poorly represented in global climate models (GCMs). As a result, the effects that mixed-phase clouds have on climate predictions are highly uncertain. We modify the National Center for Atmospheric Research (NCAR) Community Earth System Model (CESM) GCM to align with the new observations and evaluate the radiative effects on a continental scale. The net cloud radiative effects (CREs) over Antarctica are increased by +7.4 Wm(-2), and although this is a significant change, a much larger effect occurs when the modified model physics are extended beyond the Antarctic continent. The simulations show significant net CRE over the Southern Ocean storm tracks, where recent measurements also indicate substantial regions of supercooled liquid. These sensitivity tests confirm that Southern Ocean CREs are strongly sensitive to mixed-phase clouds colder than -20 °C.

  20. Robust cropping systems to tackle pests under climate change

    DEFF Research Database (Denmark)

    Lamichhane, Jay Ram; Barzman, Marco; Booij, Kees

    2015-01-01

    ) and the severity of their outbreaks. Increasing concerns over health and the environment as well as new legislation on pesticide use, particularly in the European Union, urge us to find sustainable alternatives to pesticide-based pest management. Here, we review the effect of climate change on crop protection......Agriculture in the twenty-first century faces the challenge of meeting food demands while satisfying sustainability goals. The challenge is further complicated by climate change which affects the distribution of crop pests (intended as insects, plants, and pathogenic agents injurious to crops...... and propose strategies to reduce the impact of future invasive as well as rapidly evolving resident populations. The major points are the following: (1) the main consequence of climate change and globalization is a heightened level of unpredictability of spatial and temporal interactions between weather...

  1. Devils Lake Climate, Weather, and Water Decision Support System

    Science.gov (United States)

    Horsfall, F. M.; Kluck, D. R.; Brewer, M.; Timofeyeva, M. M.; Symonds, J.; Dummer, S.; Frazier, M.; Shulski, M.; Akyuz, A.

    2010-12-01

    North Dakota’s Devils Lake area represents an example of a community struggling with a serious climate-related problem. The Devils Lake water level elevation has been rising since 1993 due to a prolonged wet period, and it is now approaching the spill stage into the Cheyenne River and ultimately into the Red River of the North. The impacts of the rising water have already caused significant disruption to the surrounding communities, and even greater impacts will be seen if the lake reaches the spill elevation. These impacts include flooding, water quality issues, impacts to agriculture and ecosystems, and impacts to local and regional economies. National Oceanic and Atmospheric Administration (NOAA), through the National Weather Service (NWS), the National Environmental Satellite, Data, and Information Service (NESDIS), and the Office of Oceanic and Atmospheric Research (OAR), provides the U.S. public with climate, water, and weather services, including meteorological, hydrological and climate data, warnings, and forecasts of weather and climate from near- to longer-term timescales. In support of the people of Devils Lake, the surrounding communities, the people of North Dakota, and the other Federal agencies with responsibilities in the area, NOAA launched the first ever climate-sensitive decision support web site (www.devilslake.noaa.gov) in July 2010. The website is providing integrated weather, water, and climate information for the area, and has links to information from other agencies, such as USGS, to help decision makers as they address this ongoing challenge. This paper will describe the website and other ongoing activities by NOAA in support of this community.

  2. Risk assessment of climate systems for national security.

    Energy Technology Data Exchange (ETDEWEB)

    Backus, George A.; Boslough, Mark Bruce Elrick; Brown, Theresa Jean; Cai, Ximing; Conrad, Stephen Hamilton; Constantine, Paul G; Dalbey, Keith R.; Debusschere, Bert J.; Fields, Richard; Hart, David Blaine; Kalinina, Elena Arkadievna; Kerstein, Alan R.; Levy, Michael; Lowry, Thomas Stephen; Malczynski, Leonard A.; Najm, Habib N.; Overfelt, James Robert; Parks, Mancel Jordan; Peplinski, William J.; Safta, Cosmin; Sargsyan, Khachik; Stubblefield, William Anthony; Taylor, Mark A.; Tidwell, Vincent Carroll; Trucano, Timothy Guy; Villa, Daniel L.

    2012-10-01

    Climate change, through drought, flooding, storms, heat waves, and melting Arctic ice, affects the production and flow of resource within and among geographical regions. The interactions among governments, populations, and sectors of the economy require integrated assessment based on risk, through uncertainty quantification (UQ). This project evaluated the capabilities with Sandia National Laboratories to perform such integrated analyses, as they relate to (inter)national security. The combining of the UQ results from climate models with hydrological and economic/infrastructure impact modeling appears to offer the best capability for national security risk assessments.

  3. Knowledge systems of societies for adaptation and mitigation of impacts of climate change

    Energy Technology Data Exchange (ETDEWEB)

    Nautiyal, Sunil; Raju, K.V. [Institute for Social and Economic Change, Bangalore (India). Centre for Ecological Economics and Natural Resources; Rao, K.S. [Delhi Univ. (India). Dept. of Botany; Kaechele, Harald [Leibniz Centre for Agricultural Landscape Research, Muencheberg (Germany). Inst. of Socioeconomics; Schaldach, Ruediger (ed.) [Kassel Univ. (Germany). Centre for Environmental System Research

    2013-07-01

    Climate change is broadly recognized as a key environmental issue affecting social and ecological systems worldwide. At the Cancun summit of the United Nations Framework Convention on Climate Change's 16th Conference, the parties jointly agreed that the vulnerable groups particularly in developing countries and whose livelihood is based on land use practices are the most common victims as in most cases their activities are shaped by the climate. Therefore, solving the climate dilemma through mitigation processes and scientific research is an ethical concern. Thus combining the knowledge systems of the societies and scientific evidences can greatly assist in the creation of coping mechanisms for sustainable development in a situation of changing climate. International Humboldt Kolleg focusing on ''knowledge systems of societies and Climate Change'' was organized at ISEC. This event was of unique importance, as the year 2011-12 was celebrated as the 60th Anniversary of Diplomatic Relations between India and Germany with the motto ''Germany and India - Infinite Opportunities.'' This volume is the outcome of the papers presented during the IHK 2011 at ISEC, India. It reports on the present knowledge systems in a third world country which has always practiced a live and let live philosophy. Furthermore it provides valuable information for understanding the complexity of socio-ecological systems in relation to the projected impacts of climate change.

  4. Knowledge systems of societies for adaptation and mitigation of impacts of climate change

    International Nuclear Information System (INIS)

    Nautiyal, Sunil; Raju, K.V.; Rao, K.S.; Kaechele, Harald; Schaldach, Ruediger

    2013-01-01

    Climate change is broadly recognized as a key environmental issue affecting social and ecological systems worldwide. At the Cancun summit of the United Nations Framework Convention on Climate Change's 16th Conference, the parties jointly agreed that the vulnerable groups particularly in developing countries and whose livelihood is based on land use practices are the most common victims as in most cases their activities are shaped by the climate. Therefore, solving the climate dilemma through mitigation processes and scientific research is an ethical concern. Thus combining the knowledge systems of the societies and scientific evidences can greatly assist in the creation of coping mechanisms for sustainable development in a situation of changing climate. International Humboldt Kolleg focusing on ''knowledge systems of societies and Climate Change'' was organized at ISEC. This event was of unique importance, as the year 2011-12 was celebrated as the 60th Anniversary of Diplomatic Relations between India and Germany with the motto ''Germany and India - Infinite Opportunities.'' This volume is the outcome of the papers presented during the IHK 2011 at ISEC, India. It reports on the present knowledge systems in a third world country which has always practiced a live and let live philosophy. Furthermore it provides valuable information for understanding the complexity of socio-ecological systems in relation to the projected impacts of climate change.

  5. Climate Intervention as an Optimization Problem

    Science.gov (United States)

    Caldeira, Ken; Ban-Weiss, George A.

    2010-05-01

    Typically, climate models simulations of intentional intervention in the climate system have taken the approach of imposing a change (eg, in solar flux, aerosol concentrations, aerosol emissions) and then predicting how that imposed change might affect Earth's climate or chemistry. Computations proceed from cause to effect. However, humans often proceed from "What do I want?" to "How do I get it?" One approach to thinking about intentional intervention in the climate system ("geoengineering") is to ask "What kind of climate do we want?" and then ask "What pattern of radiative forcing would come closest to achieving that desired climate state?" This involves defining climate goals and a cost function that measures how closely those goals are attained. (An important next step is to ask "How would we go about producing these desired patterns of radiative forcing?" However, this question is beyond the scope of our present study.) We performed a variety of climate simulations in NCAR's CAM3.1 atmospheric general circulation model with a slab ocean model and thermodynamic sea ice model. We then evaluated, for a specific set of climate forcing basis functions (ie, aerosol concentration distributions), the extent to which the climate response to a linear combination of those basis functions was similar to a linear combination of the climate response to each basis function taken individually. We then developed several cost functions (eg, relative to the 1xCO2 climate, minimize rms difference in zonal and annual mean land temperature, minimize rms difference in zonal and annual mean runoff, minimize rms difference in a combination of these temperature and runoff indices) and then predicted optimal combinations of our basis functions that would minimize these cost functions. Lastly, we produced forward simulations of the predicted optimal radiative forcing patterns and compared these with our expected results. Obviously, our climate model is much simpler than reality and

  6. Water vapor variability and comparisons in the subtropical Pacific from The Observing System Research and Predictability Experiment-Pacific Asian Regional Campaign (T-PARC) Driftsonde, Constellation Observing System for Meteorology, Ionosphere, and Climate (COSMIC), and reanalyses

    Science.gov (United States)

    Wang, Junhong; Zhang, Liangying; Lin, Po-Hsiung; Bradford, Mark; Cole, Harold; Fox, Jack; Hock, Terry; Lauritsen, Dean; Loehrer, Scot; Martin, Charlie; Vanandel, Joseph; Weng, Chun-Hsiung; Young, Kathryn

    2010-11-01

    During the THORPEX (The Observing System Research and Predictability Experiment) Pacific Asian Regional Campaign (T-PARC), from 1 August to 30 September 2008, ˜1900 high-quality, high vertical resolution soundings were collected over the Pacific Ocean. These include dropsondes deployed from four aircrafts and zero-pressure balloons in the stratosphere (NCAR's Driftsonde system). The water vapor probability distribution and spatial variability in the northern subtropical Pacific (14°-20°N, 140°E-155°W) are studied using Driftsonde and COSMIC (Constellation Observing System for Meteorology, Ionosphere, and Climate) data and four global reanalysis products. Driftsonde data analysis shows distinct differences of relative humidity (RH) distributions in the free troposphere between the Eastern and Western Pacific (EP and WP, defined as east and west of 180°, respectively), very dry with a single peak of ˜1% RH in the EP and bi-modal distributions in the WP with one peak near ice saturation and one varying with altitude. The frequent occurrences of extreme dry air are found in the driftsonde data with 59% and 19% of RHs less than or equal to 5% and at 1% at 500 hPa in the EP, respectively. RH with respect to ice in the free troposphere exhibits considerable longitudinal variations, very low (problems in Driftsonde, two National Center for Environmental Prediction (NCEP) reanalyses and COSMIC data. The moist layer at 200-100 hPa in the WP shown in the ERA-Interim, JRA and COSMIC is missing in Driftsonde data. Major problems are found in the RH means and variability over the study region for both NCEP reanalyses. Although the higher-moisture layer at 200-100 hPa in the WP in the COSMIC data agrees well with the ERA-Interim and JRA, it is primarily attributed to the first guess of the 1-Dimensional (1D) variational analysis used in the COSMIC retrieval rather than the refractivity measurements. The limited soundings (total 268) of Driftsonde data are capable of

  7. Climate Change and the Trading System: After Doha and Doha

    Directory of Open Access Journals (Sweden)

    Dan Ciuriak

    2013-11-01

    Full Text Available The international trade dispute over Ontario’s “green energy” policies is a harbinger of similar problems to come; an early example of the emerging conflict between industry rules aimed at reducing greenhouse gas emissions, and existing trade deals between national governments. We live in a world without formalized and sweeping multilateral climate change treaties between major economies, but one with many sweeping trade treaties between them. That discrepancy is setting up the conditions for more trade disputes in the future. Governments have every incentive to position climate change policies, as Ontario has, as support for new growth industries and the creation of local “green jobs.” But they also have every incentive to want to prevent the leakage of those envisioned economic benefits to outside parties, at the very least when those outside parties come from places that do not share the burden of climate change mitigation. The current trade-law framework has lent itself to the interpretation, by arbitration panels, that “free riders” — that is, industries and countries that bear little to no responsibility for shouldering the costs of climate change policies — are nevertheless entitled to share in the commercial benefits that may be created by climate policies in jurisdictions that do make efforts to reduce carbon emissions. In short, if a corporation or state-owned enterprise from a country lacking climate change policies wants to take advantage of the economic benefits of Ontario’s feed-in-tariff program, it would seem there is little Ontario can do to stop it, without running afoul of trade agreements. The result is a worst-case scenario. The problem of climate change continues to worsen, while governments — national and sub-national — face disincentives for implementing regulations and subsidies that might help mitigate the problem. This is because they cannot be sure that they will not be left to shoulder the

  8. Sensitivity of Distributions of Climate System Properties to Surface Temperature Datasets

    Science.gov (United States)

    Libardoni, A. G.; Forest, C. E.

    2011-12-01

    Predictions of climate change from models depend strongly on the representation of climate system properties emerging from the processes and feedbacks in the models. The quality of any model prediction can be evaluated by determining how well its output reproduces the observed climate system. With this evaluation, the reliability of climate projections derived from the model and provided for policy makers is assessed and quantified. In this study, surface temperature, upper-air temperature, and ocean heat content data are used to constrain the distributions of the parameters that define three climate system properties in the MIT Integrated Global Systems Model: climate sensitivity, the rate of ocean heat uptake into the deep ocean, and net anthropogenic aerosol forcing. In particular, we explore the sensitivity of the distributions to the surface temperature dataset used to estimate the likelihood of model output given the observed climate records. In total, five different reconstructions of past surface temperatures are used and the resulting parameter distribution functions differ from each other. Differences in estimates of climate sensitivity mode and mean are as great as 1 K between the datasets, with an overall range of 1.2 to 5.3 K using the 5-95 confidence intervals. Ocean effective diffusivity is poorly constrained regardless of which dataset is used. All distributions show broad distributions and only three show signs of a distribution mode. When a mode is present, they tend to be for low diffusivity values. Distributions for the net aerosol forcing show similar shapes and cluster into two groups that are shifted by approximately 0.1 watts per square meter. However, the overall spread of forcing values from the 5-95 confidence interval, -0.19 to -0.83 watts per square meter, is small compared to other uncertainties in climate forcings. Transient climate response estimates derived from these distributions range between 0.87 and 2.41 K. Similar to the

  9. Potential economic benefits of adapting agricultural production systems to future climate change

    Science.gov (United States)

    Fagre, Daniel B.; Pederson, Gregory; Bengtson, Lindsey E.; Prato, Tony; Qui, Zeyuan; Williams, Jimmie R.

    2010-01-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960–2005) and future climate period (2006–2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting

  10. Potential Economic Benefits of Adapting Agricultural Production Systems to Future Climate Change

    Science.gov (United States)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E.; Williams, Jimmy R.

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO2 emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs to

  11. Potential economic benefits of adapting agricultural production systems to future climate change.

    Science.gov (United States)

    Prato, Tony; Zeyuan, Qiu; Pederson, Gregory; Fagre, Dan; Bengtson, Lindsey E; Williams, Jimmy R

    2010-03-01

    Potential economic impacts of future climate change on crop enterprise net returns and annual net farm income (NFI) are evaluated for small and large representative farms in Flathead Valley in Northwest Montana. Crop enterprise net returns and NFI in an historical climate period (1960-2005) and future climate period (2006-2050) are compared when agricultural production systems (APSs) are adapted to future climate change. Climate conditions in the future climate period are based on the A1B, B1, and A2 CO(2) emission scenarios from the Intergovernmental Panel on Climate Change Fourth Assessment Report. Steps in the evaluation include: (1) specifying crop enterprises and APSs (i.e., combinations of crop enterprises) in consultation with locals producers; (2) simulating crop yields for two soils, crop prices, crop enterprises costs, and NFIs for APSs; (3) determining the dominant APS in the historical and future climate periods in terms of NFI; and (4) determining whether NFI for the dominant APS in the historical climate period is superior to NFI for the dominant APS in the future climate period. Crop yields are simulated using the Environmental/Policy Integrated Climate (EPIC) model and dominance comparisons for NFI are based on the stochastic efficiency with respect to a function (SERF) criterion. Probability distributions that best fit the EPIC-simulated crop yields are used to simulate 100 values for crop yields for the two soils in the historical and future climate periods. Best-fitting probability distributions for historical inflation-adjusted crop prices and specified triangular probability distributions for crop enterprise costs are used to simulate 100 values for crop prices and crop enterprise costs. Averaged over all crop enterprises, farm sizes, and soil types, simulated net return per ha averaged over all crop enterprises decreased 24% and simulated mean NFI for APSs decreased 57% between the historical and future climate periods. Although adapting APSs

  12. Development and application of an interactive climate-ecosystem model system

    Institute of Scientific and Technical Information of China (English)

    CHEN Ming; D. Pollard

    2003-01-01

    A regional climate-ecosystem model system is developed in this study. It overcomes the weakness in traditional one-way coupling models and enables detailed description of interactive process between climate and natural ecosystem. It is applied to interaction study between monsoon climate and ecosystem in East Asia, with emphasis on future climate and ecosystem change scenario forced by doubled CO2. The climate tends to be warmer and wetter under doubled CO2 in Jianghuai and the Yangzi River valley, but it becomes warmer and drier in inland areas of northern and northwestern China. The largest changes and feedbacks between vegetation and climate occur in northern China. Northern inland ecosystems experience considerable degradation and desertification, indicating a marked sensitivity and vulnerability to climatic change. The strongest vegetation response to climate change occurs in northern China and the weakest in southern China. Vegetation feedbacks intensify warming and reduce drying due to increased CO2 during summer in northern China. Generally, vegetation-climate interactions are much stronger in northern China than in southern China.

  13. Assessing climate adaptation options and uncertainties for cereal systems in West Africa

    Science.gov (United States)

    Guan, K.; Sultan, B.; Biasutti, M.; Lobell, D. B.

    2015-12-01

    The already fragile agriculture production system in West Africa faces further challenges in meeting food security in the coming decades, primarily due to a fast increasing population and risks of climate change. Successful adaptation of agriculture should not only benefit in the current climate but should also reduce negative (or enhance positive) impacts for climate change. Assessment of various possible adaptation options and their uncertainties provides key information for prioritizing adaptation investments. Here, based on the several robust aspects of climate projections in this region (i.e. temperature increases and rainfall pattern shifts), we use two well-validated crop models (i.e. APSIM and SARRA-H) and an ensemble of downscaled climate forcing to assess five possible and realistic adaptation options (late sowing, intensification, thermal time increase, water harvesting and increased resilience to heat stress) in West Africa for the staple crop production of sorghum. We adopt a new assessment framework to account for both the impacts of adaptation options in current climate and their ability to reduce impacts of future climate change, and also consider changes in both mean yield and its variability. Our results reveal that most proposed "adaptation options" are not more beneficial in the future than in the current climate, i.e. not really reduce the climate change impacts. Increased temperature resilience during grain number formation period is the main adaptation that emerges. We also find that changing from the traditional to modern cultivar, and later sowing in West Sahel appear to be robust adaptations.

  14. Future illumination systems and the climate change challenge

    DEFF Research Database (Denmark)

    Bjarklev, Araceli; Bjarklev, Anders Overgaard

    2010-01-01

    are met in conjunction with situations, where the esthetical design issues are addressed. Finally, our study also points out to the necessity of finding a trans-disciplinary cooperation across sectors to more effectively answer to the climate change challenge, when designing low-carbon technologies...

  15. Military Climate Resilience Planning and Contemporary Urban Systems Thinking

    Science.gov (United States)

    2017-12-11

    Knowledge Management Information Technology Laboratory (ERDC-ITL) ERDC/CERL MP-17-4 1 1 Introduction: Climate Change Adaptation and Military... fundamental transformation in thinking from emphasizing equilib- rium, homogeneity, and determinism to non-equilibrium, heterogeneity, and stochasticity, with...oriented culture of the military, overt statements of uncertainty are important in applying risk management strategies that pri- oritize limited

  16. Systems View of School Climate: A Theoretical Framework for Research

    Science.gov (United States)

    Rudasill, Kathleen Moritz; Snyder, Kate E.; Levinson, Heather; Adelson, Jill L.

    2018-01-01

    School climate has been widely examined through both empirical and theoretical means. However, there is little conceptual consensus underlying the landscape of this literature, offering inconsistent guidance for research examining this important construct. In order to best assist the efforts of developing causal models that describe how school…

  17. Safety and operations of hydrogen fuel infrastructure in northern climates : a collaborative complex systems approach.

    Science.gov (United States)

    2010-10-07

    "This project examined the safety and operation of hydrogen (H2) fueling system infrastructure in : northern climates. A multidisciplinary team lead by the University of Vermont (UVM), : combined with investigators from Zhejiang and Tsinghua Universi...

  18. Climate Prediction Center (CPC) NCEP-Global Forecast System (GFS) Precipitation Forecast Product

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Global Forecast System (GFS) forecast precipitation data at 37.5km resolution is created at the NOAA Climate Prediction Center for the purpose of near real-time...

  19. Response of carbon fluxes and climate to orbital forcing changes in the Community Climate System Model

    Science.gov (United States)

    Jochum, M.; Peacock, S.; Moore, J. K.; Lindsay, K. T.

    2009-12-01

    A global general circulation model coupled to an ocean ecosystem model is used to quantify the response of carbon fluxes and climate to changes in orbital forcing. Compared to the present-day simulation, the simulation with the Earth's orbital parameters from 115,000 years ago features significantly cooler northern high latitudes, but only moderately cooler southern high latitudes. This asymmetry is explained by a 30% reduction of the strength of the Atlantic Meridional Overturning Circulation that is caused by an increased Arctic sea-ice export and a resulting freshening of the North Atlantic. The strong northern high-latitude cooling and the direct insolation induced tropical warming lead to global shifts in precipitation and winds to the order of 10-20%. These climate shifts lead to regional differences in air-sea carbon fluxes of the same order. However, the differences in global net carbon fluxes are insignificant. This surprising result is due to several effects, two of which stand out: Firstly, colder sea surface temperature leads to a more effective solubility pump but also to increased sea-ice concentration which blocks air-sea exchange; and secondly, the weakening of Southern Ocean winds, which is predicted by some idealized studies, is small compared to its interannual variability.

  20. Cpl6: The New Extensible, High-Performance Parallel Coupler forthe Community Climate System Model

    Energy Technology Data Exchange (ETDEWEB)

    Craig, Anthony P.; Jacob, Robert L.; Kauffman, Brain; Bettge,Tom; Larson, Jay; Ong, Everest; Ding, Chris; He, Yun

    2005-03-24

    Coupled climate models are large, multiphysics applications designed to simulate the Earth's climate and predict the response of the climate to any changes in the forcing or boundary conditions. The Community Climate System Model (CCSM) is a widely used state-of-art climate model that has released several versions to the climate community over the past ten years. Like many climate models, CCSM employs a coupler, a functional unit that coordinates the exchange of data between parts of climate system such as the atmosphere and ocean. This paper describes the new coupler, cpl6, contained in the latest version of CCSM,CCSM3. Cpl6 introduces distributed-memory parallelism to the coupler, a class library for important coupler functions, and a standardized interface for component models. Cpl6 is implemented entirely in Fortran90 and uses Model Coupling Toolkit as the base for most of its classes. Cpl6 gives improved performance over previous versions and scales well on multiple platforms.

  1. Adaptation potential to climate change of the Peribonka River (Quebec, Canada) water resources system

    International Nuclear Information System (INIS)

    Minville, M.; Krau, S.; Brissette, F.; Leconte, R.

    2008-01-01

    This study investigated the influence of climatic change on the Peribonka water resources system. The impacts of climatic change on hydroelectric power reservoir operations in the region were assessed using a set of operating rules optimized for future hydrological regimes. Thirty climate change projections from 5 climate models, 2 greenhouse gas (GHG) scenarios, and 3 temporal horizons were used in the study. Climatic change projections were then downscaled using the Delta approach and coupled to a stochastic weather generator developed to account for natural variabilities in local climates. A lumped hydrological model was used to simulate future hydrological regimes. A stochastic dynamic programming technique was then used to optimize reservoir operating rules for various time series of future river flows. The operating rules were then used in conjunction with a river system simulation tool in order to determine reservoir and hydroelectric production scenarios under different climatic change regimes. Results of the study showed significant increases in hydroelectricity production for most of the climate change projections. However, nonproductive spillage was also increased. Reservoir reliability was also reduced. tabs., figs

  2. Co-development of climate smart flooded rice farming systems

    Science.gov (United States)

    de Neergaard, Andreas; Stoumann Jensen, Lars; Ly, Proyuth; Pandey, Arjun; Duong Vu, Quynh; Tariq, Azeem; Islam, Syed; van Groenigen, Jan Willem; Sander, Bjoern Ole; de Tourdonnet, Stephane; Van Mai, Trinh; Wassmann, Reiner

    2017-04-01

    -field trial in Vietnam, pre-planting and early season drainage was tested in spring and summer rice, under individual and community water management regimes, and at 2 straw application levels. Pre-season drainage was difficult for farmers to implement, due to the short duration of fallow between cropping seasons. Early season drainage was most effective in lowering methane emissions at both straw application levels. Unsurprisingly, the well-managed drainage control (community system) was significantly more effective in mitigating emissions, than the individually water management. Surveys among farming communities in Philippines, subject to agricultural campaigns on alternate-wetting-and-drying showed higher adoption among farmers who actively pumped water to their fields, compared to gravity-fed water supply, due to the direct savings experienced by farmers pumping water. Several other factors positively influenced adoption of mitigation techniques, including education level, access to extension services, wealth and farm size, and age of farmer (negatively correlated to adoption rate). In conclusion, drainage periods are even more important to mitigate emissions when including organic manures or residues in flooded rice, and early-season drainage should be further explored as a more safe and convenient option for smallholders. Participatory development of climate smart prototypes will be essential, and a model for such is presented.

  3. Anticipating Vulnerability to Climate Change in Dryland Pastoral Systems: Using Dynamic Systems Models for the Kalahari

    Directory of Open Access Journals (Sweden)

    Andrew J. Dougill

    2010-06-01

    Full Text Available It is vitally important to identify agroecosystems that may cease functioning because of changing climate or land degradation. However, identifying such systems is confounded on both conceptual and methodological grounds, especially in systems that are moving toward thresholds, a common trait of dryland environments. This study explores these challenges by analyzing how a range of external pressures affect the vulnerability of dryland pastoral systems in the Kalahari. This is achieved by employing dynamic systems modeling approaches to understand the pathways by which communities became vulnerable to drought. Specifically, we evaluate how external pressures have changed: (1 different agroecosystems' abilities to tolerate drought, i.e., ecosystem resilience; (2 rural communities' abilities to adapt to drought, mediated via their access to assets; and (3 the ability of institutions and policy interventions to play a role in mediating drought-related crises, i.e., socio-political governance. This is done by reanalyzing ecological and participatory research findings along with farm-scale livestock offtake data from across the Kalahari in Botswana. An iterative process was followed to establish narratives exploring how external drivers led to changes in agroecosystem resilience, access to assets, and the institutional capacity to buffer the system. We use "causal loop diagrams" and statistical dynamic system models to express key quantitative relationships and establish future scenarios to help define where uncertainties lie by showing where the system is most sensitive to change. We highlight how that greater sharing of land management knowledge and practices between private and communal land managers can provide 'win-win-win' benefits of reducing system vulnerability, increasing economic income, and building social capital. We use future scenario analyses to identify key areas for future studies of climate change adaptation across the Kalahari.

  4. Economic analysis of hybrid power systems (PV/diesel) in different climatic zones of Tamil Nadu

    International Nuclear Information System (INIS)

    Suresh Kumar, U.; Manoharan, P.S.

    2014-01-01

    Highlights: • Investigation on economic feasibility of PV/diesel system in various climatic zones. • HOMER is used to solve economic feasibility analysis. • By the sensitivity analysis, the net present cost is reduced. • Optimum climatic zone in Tamil Nadu, India is recommended. - Abstract: With the increasing threat to environment and the fast depleting fossil fuel resources, hybrid power systems consisting of two or more renewable energy sources such as solar PV, wind, biomass, ocean thermal-with or without the back up of diesel generator have come to the forefront. These hybrid systems are normally integrated with battery banks for total reliability; such systems have brought about better quality of life in remote areas of developing economics. The remote areas in the state of Tamil Nadu in India possess excellent renewable energy sources. These areas fall under different climatic zones, are sparsely populated and are in the process of development. Though these areas are connected to the grid, Tamil Nadu grid is not stable; it is currently experiencing 40% short fall in generation. Thus grid power is available to these remote areas only for 10 h a day and even when available, there are voltage frequency problems. This paper analyses the economic feasibility of installing and operating hybrid systems in these areas. The areas are divided into different climatic zones and the hybrid system economy is analyzed for each climatic zone on the basis of NPC (net present cost), consumption of diesel and renewable fraction for all climate zones. The analysis indicates that the interior climatic zone – the area would be the optimum climatic zone to install HPS PV/diesel. The sensitivity analysis proves that the NPC of such a system can be reduced. It is suggested that due to high initial cost, government subsidy is necessary to adopt the system on a large scale. Such a profit will encourage development of renewable energy utilization and bring about rapid

  5. Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa

    OpenAIRE

    Descheemaeker, Katrien; Oosting, Simon J.; Homann-Kee Tui, Sabine; Masikati, Patricia; Falconnier, Gatien N.; Giller, K.E.

    2016-01-01

    African mixed crop–livestock systems are vulnerable to climate change and need to adapt in order to improve productivity and sustain people’s livelihoods. These smallholder systems are characterized by high greenhouse gas emission rates, but could play a role in their mitigation. Although the impact of climate change is projected to be large, many uncertainties persist, in particular with respect to impacts on livestock and grazing components, whole-farm dynamics and heterogeneous farm popula...

  6. Planning and costing adaptation of perennial crop systems to climate change: Coffee and banana in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Ngabitsinze, Jean Chrysostome; Mukashema, Adrie; Ikirezi, Mireille; Niyitanga, Fidele

    2011-10-15

    The Rwandan economy is mainly based on agriculture. Since agricultural production in Rwanda depends almost exclusively on the quality of the rainy season and specific temperature ranges, it makes the country particularly vulnerable to climate variability and change. The study objective of evaluating and costing the most suitable climate change adaptation measures for this geographic context responds to the Rwandan Economic Development and Poverty Reduction Strategy, 2008-2012 (EDPRS) (MINECOFIN 2007), in which climate change and its adverse impacts were recently identified as a high priority. This study has particularly focused on coffee and banana farming systems and aimed at analysing shocks due to climate change from farmer to policymaker perspectives. The study found that in the last 30 years, Rwanda has experienced a series of climate fluctuations in terms of frequency, intensity, and persistence of existing extremes. Heavy rains, storms, heatwaves and droughts are the observed manifestations of climate change in specific areas of Rwanda. Changing weather patterns have an adverse impact on the country's agricultural production and thus on the country's GDP. Adaptation options for Rwanda include the following efficiency-enhancing agricultural interventions: 1. Adaption of crop calendars to new climate patterns (more effective distribution of inputs such as fertilizers and pesticides). 2. Investments in farming equipment. 3. Improvement of extension services and research. 4. Restructuring of the institutional frameworks and development plans. Integrated water resources management (IWRM); setting up information systems for early warning systems and rapid intervention mechanisms; intense agri-pastoral activities; and research on climate-resilient varieties were identified as primary requirements for agricultural adaption to climate change. In addition, developing alternative energy sources (e.g., substituting firewood) and the promotion of non

  7. Planning and costing adaptation of perennial crop systems to climate change: Coffee and banana in Rwanda

    Energy Technology Data Exchange (ETDEWEB)

    Ngabitsinze, Jean Chrysostome; Mukashema, Adrie; Ikirezi, Mireille; Niyitanga, Fidele

    2011-10-15

    The Rwandan economy is mainly based on agriculture. Since agricultural production in Rwanda depends almost exclusively on the quality of the rainy season and specific temperature ranges, it makes the country particularly vulnerable to climate variability and change. The study objective of evaluating and costing the most suitable climate change adaptation measures for this geographic context responds to the Rwandan Economic Development and Poverty Reduction Strategy, 2008-2012 (EDPRS) (MINECOFIN 2007), in which climate change and its adverse impacts were recently identified as a high priority. This study has particularly focused on coffee and banana farming systems and aimed at analysing shocks due to climate change from farmer to policymaker perspectives. The study found that in the last 30 years, Rwanda has experienced a series of climate fluctuations in terms of frequency, intensity, and persistence of existing extremes. Heavy rains, storms, heatwaves and droughts are the observed manifestations of climate change in specific areas of Rwanda. Changing weather patterns have an adverse impact on the country's agricultural production and thus on the country's GDP. Adaptation options for Rwanda include the following efficiency-enhancing agricultural interventions: 1. Adaption of crop calendars to new climate patterns (more effective distribution of inputs such as fertilizers and pesticides). 2. Investments in farming equipment. 3. Improvement of extension services and research. 4. Restructuring of the institutional frameworks and development plans. Integrated water resources management (IWRM); setting up information systems for early warning systems and rapid intervention mechanisms; intense agri-pastoral activities; and research on climate-resilient varieties were identified as primary requirements for agricultural adaption to climate change. In addition, developing alternative energy sources (e.g., substituting firewood) and the promotion of non-agricultural income

  8. Teaching Scales in the Climate System: An example of interdisciplinary teaching and learning

    Science.gov (United States)

    Baehr, Johanna; Behrens, Jörn; Brüggemann, Michael; Frisius, Thomas; Glessmer, Mirjam S.; Hartmann, Jens; Hense, Inga; Kaleschke, Lars; Kutzbach, Lars; Rödder, Simone; Scheffran, Jürgen

    2016-04-01

    Climate change is commonly regarded as one of 21st century's grand challenges that needs to be addressed by conducting integrated research combining natural and social sciences. To meet this need, how to best train future climate researchers should be reconsidered. Here, we present our experience from a team-taught semester-long course with students of the international master program "Integrated Climate System Sciences" (ICSS) at the University of Hamburg, Germany. Ten lecturers with different backgrounds in physical, mathematical, biogeochemical and social sciences accompanied by a researcher trained in didactics prepared and regularly participated in a course which consisted of weekly classes. The foundation of the course was the use of the concept of 'scales' - climate varying on different temporal and spatial scales - by developing a joint definition of 'scales in the climate system' that is applicable in the natural sciences and in the social sciences. By applying this interdisciplinary definition of 'scales' to phenomena from all components of the climate system and the socio-economic dimensions, we aimed for an integrated description of the climate system. Following the concept of research-driven teaching and learning and using a variety of teaching techniques, the students designed their own scale diagram to illustrate climate-related phenomena in different disciplines. The highlight of the course was the presentation of individually developed scale diagrams by every student with all lecturers present. Based on the already conducted course, we currently re-design the course concept to be teachable by a similarly large group of lecturers but with alternating presence in class. With further refinement and also a currently ongoing documentation of the teaching material, we will continue to use the concept of 'scales' as a vehicle for teaching an integrated view of the climate system.

  9. Influence of Geographic Factors on the Life Cycle Climate Change Impacts of Renewable Energy Systems

    Science.gov (United States)

    Fortier, M. O. P.

    2017-12-01

    Life cycle assessment (LCA) is a valuable tool to measure the cradle-to-grave climate change impacts of the sustainable energy systems that are planned to replace conventional fossil energy-based systems. The recent inclusion of geographic specificity in bioenergy LCAs has shown that the relative sustainability of these energy sources is often dependent on geographic factors, such as the climate change impact of changing the land cover and local resource availability. However, this development has not yet been implemented to most LCAs of energy systems that do not have biological feedstocks, such as wind, water, and solar-based energy systems. For example, the tidal velocity where tidal rotors are installed can significantly alter the life cycle climate change impacts of electricity generated using the same technology in different locations. For LCAs of solar updraft towers, the albedo change impacts arising from changing the reflectivity of the land that would be converted can be of the same magnitude as other life cycle process climate change impacts. Improvements to determining the life cycle climate change impacts of renewable energy technologies can be made by utilizing GIS and satellite data and by conducting site-specific analyses. This practice can enhance our understanding of the life cycle environmental impacts of technologies that are aimed to reduce the impacts of our current energy systems, and it can improve the siting of new systems to optimize a reduction in climate change impacts.

  10. Actor Network Theory Approach and its Application in Investigating Agricultural Climate Information System

    Directory of Open Access Journals (Sweden)

    Maryam Sharifzadeh

    2013-03-01

    Full Text Available Actor network theory as a qualitative approach to study complex social factors and process of socio-technical interaction provides new concepts and ideas to understand socio-technical nature of information systems. From the actor network theory viewpoint, agricultural climate information system is a network consisting of actors, actions and information related processes (production, transformation, storage, retrieval, integration, diffusion and utilization, control and management, and system mechanisms (interfaces and networks. Analysis of such systemsembody the identification of basic components and structure of the system (nodes –thedifferent sources of information production, extension, and users, and the understanding of how successfully the system works (interaction and links – in order to promote climate knowledge content and improve system performance to reach agricultural development. The present research attempted to introduce actor network theory as research framework based on network view of agricultural climate information system.

  11. Toward an ultra-high resolution community climate system model for the BlueGene platform

    International Nuclear Information System (INIS)

    Dennis, John M; Jacob, Robert; Vertenstein, Mariana; Craig, Tony; Loy, Raymond

    2007-01-01

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10 0 resolution for CICE, POP, and CLM models and 1/4 0 resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science

  12. Using Virtualization to Integrate Weather, Climate, and Coastal Science Education

    Science.gov (United States)

    Davis, J. R.; Paramygin, V. A.; Figueiredo, R.; Sheng, Y.

    2012-12-01

    To better understand and communicate the important roles of weather and climate on the coastal environment, a unique publically available tool is being developed to support research, education, and outreach activities. This tool uses virtualization technologies to facilitate an interactive, hands-on environment in which students, researchers, and general public can perform their own numerical modeling experiments. While prior efforts have focused solely on the study of the coastal and estuary environments, this effort incorporates the community supported weather and climate model (WRF-ARW) into the Coastal Science Educational Virtual Appliance (CSEVA), an education tool used to assist in the learning of coastal transport processes; storm surge and inundation; and evacuation modeling. The Weather Research and Forecasting (WRF) Model is a next-generation, community developed and supported, mesoscale numerical weather prediction system designed to be used internationally for research, operations, and teaching. It includes two dynamical solvers (ARW - Advanced Research WRF and NMM - Nonhydrostatic Mesoscale Model) as well as a data assimilation system. WRF-ARW is the ARW dynamics solver combined with other components of the WRF system which was developed primarily at NCAR, community support provided by the Mesoscale and Microscale Meteorology (MMM) division of National Center for Atmospheric Research (NCAR). Included with WRF is the WRF Pre-processing System (WPS) which is a set of programs to prepare input for real-data simulations. The CSEVA is based on the Grid Appliance (GA) framework and is built using virtual machine (VM) and virtual networking technologies. Virtualization supports integration of an operating system, libraries (e.g. Fortran, C, Perl, NetCDF, etc. necessary to build WRF), web server, numerical models/grids/inputs, pre-/post-processing tools (e.g. WPS / RIP4 or UPS), graphical user interfaces, "Cloud"-computing infrastructure and other tools into a

  13. Variance decomposition shows the importance of human-climate feedbacks in the Earth system

    Science.gov (United States)

    Calvin, K. V.; Bond-Lamberty, B. P.; Jones, A. D.; Shi, X.; Di Vittorio, A. V.; Thornton, P. E.

    2017-12-01

    The human and Earth systems are intricately linked: climate influences agricultural production, renewable energy potential, and water availability, for example, while anthropogenic emissions from industry and land use change alter temperature and precipitation. Such feedbacks have the potential to significantly alter future climate change. Current climate change projections contain significant uncertainties, however, and because Earth System Models do not generally include dynamic human (demography, economy, energy, water, land use) components, little is known about how climate feedbacks contribute to that uncertainty. Here we use variance decomposition of a novel coupled human-earth system model to show that the influence of human-climate feedbacks can be as large as 17% of the total variance in the near term for global mean temperature rise, and 11% in the long term for cropland area. The near-term contribution of energy and land use feedbacks to the climate on global mean temperature rise is as large as that from model internal variability, a factor typically considered in modeling studies. Conversely, the contribution of climate feedbacks to cropland extent, while non-negligible, is less than that from socioeconomics, policy, or model. Previous assessments have largely excluded these feedbacks, with the climate community focusing on uncertainty due to internal variability, scenario, and model and the integrated assessment community focusing on uncertainty due to socioeconomics, technology, policy, and model. Our results set the stage for a new generation of models and hypothesis testing to determine when and how bidirectional feedbacks between human and Earth systems should be considered in future assessments of climate change.

  14. Cropping system innovation for coping with climatic warming in China

    OpenAIRE

    Deng, Aixing; Chen, Changqing; Feng, Jinfei; Chen, Jin; Zhang, Weijian

    2017-01-01

    China is becoming the largest grain producing and carbon-emitting country in the world, with a steady increase in population and economic development. A review of Chinese experiences in ensuring food self-sufficiency and reducing carbon emission in the agricultural sector can provide a valuable reference for similar countries and regions. According to a comprehensive review of previous publications and recent field observations, China has experienced on average a larger and faster climatic wa...

  15. Using Weather Types to Understand and Communicate Weather and Climate Impacts

    Science.gov (United States)

    Prein, A. F.; Hale, B.; Holland, G. J.; Bruyere, C. L.; Done, J.; Mearns, L.

    2017-12-01

    A common challenge in atmospheric research is the translation of scientific advancements and breakthroughs to decision relevant and actionable information. This challenge is central to the mission of NCAR's Capacity Center for Climate and Weather Extremes (C3WE, www.c3we.ucar.edu). C3WE advances our understanding of weather and climate impacts and integrates these advances with distributed information technology to create tools that promote a global culture of resilience to weather and climate extremes. Here we will present an interactive web-based tool that connects historic U.S. losses and fatalities from extreme weather and climate events to 12 large-scale weather types. Weather types are dominant weather situations such as winter high-pressure systems over the U.S. leading to very cold temperatures or summertime moist humid air masses over the central U.S. leading to severe thunderstorms. Each weather type has a specific fingerprint of economic losses and fatalities in a region that is quantified. Therefore, weather types enable a direct connection of observed or forecasted weather situation to loss of life and property. The presented tool allows the user to explore these connections, raise awareness of existing vulnerabilities, and build resilience to weather and climate extremes.

  16. Infusion of Climate Change and Geospatial Science Concepts into Environmental and Biological Science Curriculum

    Science.gov (United States)

    Balaji Bhaskar, M. S.; Rosenzweig, J.; Shishodia, S.

    2017-12-01

    The objective of our activity is to improve the students understanding and interpretation of geospatial science and climate change concepts and its applications in the field of Environmental and Biological Sciences in the College of Science Engineering and Technology (COEST) at Texas Southern University (TSU) in Houston, TX. The courses of GIS for Environment, Ecology and Microbiology were selected for the curriculum infusion. A total of ten GIS hands-on lab modules, along with two NCAR (National Center for Atmospheric Research) lab modules on climate change were implemented in the "GIS for Environment" course. GIS and Google Earth Labs along with climate change lectures were infused into Microbiology and Ecology courses. Critical thinking and empirical skills of the students were assessed in all the courses. The student learning outcomes of these courses includes the ability of students to interpret the geospatial maps and the student demonstration of knowledge of the basic principles and concepts of GIS (Geographic Information Systems) and climate change. At the end of the courses, students developed a comprehensive understanding of the geospatial data, its applications in understanding climate change and its interpretation at the local and regional scales during multiple years.

  17. Climate mitigation comparison of woody biomass systems with the inclusion of land-use in the reference fossil system

    International Nuclear Information System (INIS)

    Haus, S.; Gustavsson, L.; Sathre, R.

    2014-01-01

    While issues of land-use have been considered in many direct analyses of biomass systems, little attention has heretofore been paid to land-use in reference fossil systems. Here we address this limitation by comparing forest biomass systems to reference fossil systems with explicit consideration of land-use in both systems. We estimate and compare the time profiles of greenhouse gas (GHG) emission and cumulative radiative forcing (CRF) of woody biomass systems and reference fossil systems. A life cycle perspective is used that includes all significant elements of both systems, including GHG emissions along the full material and energy chains. We consider the growth dynamics of forests under different management regimes, as well as energy and material substitution effects of harvested biomass. We determine the annual net emissions of CO 2 , N 2 O and CH 4 for each system over a 240-year period, and then calculate time profiles of CRF as a proxy measurement of climate change impact. The results show greatest potential for climate change mitigation when intensive forest management is applied in the woody biomass system. This methodological framework provides a tool to help determine optimal strategies for managing forests so as to minimize climate change impacts. The inclusion of land-use in the reference system improves the accuracy of quantitative projections of climate benefits of biomass-based systems. - Highlights: • We analyze the dynamics of GHG emissions from woody biomass and fossil systems. • With a life cycle perspective, we account for forest land-use in both systems. • Replacing more carbon intensive fossil fuels gives greater climate benefit. • Increasing the intensity of forest management gives greater climate benefit. • Methodological choices in defining temporal system boundaries are important

  18. The changing effects of Alaska's boreal forests on the climate system

    Energy Technology Data Exchange (ETDEWEB)

    Euskirchen, E.S.; Chapin, F.S. III [Alaska Univ., Fairbanks, AK (United States). Dept. of Biology, Inst. of Arctic Biology; McGuire, A.D. [United Sates Geological Survey, Fairbanks, AK (United States). Alaska Cooperative Fish and Wildlife Research Unit; Alaska Univ., Fairbanks, AK (United States); Rupp, T.S. [Alaska Univ., Fairbanks, AK (United States). Dept. of Forest Sciences

    2010-07-15

    The boreal forest is the northernmost forested biome and is expected to be sensitive to global warming. Recent climate warming in the boreal forests of Alaska has influenced the exchange of trace gases, water, and energy between the forests and the atmosphere. In turn, these changes in the structure and function of boreal forests can influence regional and global climates. This study examined the type and magnitude of the climate feedbacks from boreal forests in Alaska. Biogeophysical and biogeochemical feedbacks were examined with particular reference to surface energy balance across boreal ecosystems and over the full annual cycle. The impact of ground heat exchange on permafrost was studied in terms of vegetation dynamics and disturbance regimes such as fires and insect outbreaks. In general, research has indicated that the net effect of a warming climate is a positive regional feedback to warming. The main positive climate feedbacks are currently related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most dominant at the regional scale and reduce the resilience of the boreal vegetation by amplifying the rate of regional warming. This paper also described carbon and methane release from permafrost degradation, changes in lake area, changes in land use and snow season changes. The role of earth system models in representing climate feedbacks from Alaskan boreal forests was discussed. It was concluded that although the boreal forest provides climate regulation as an ecosystem service, the net effect of the climate feedbacks to climate warming are not fully understood. As such, there is a need to continue to evaluate feedback pathways, given the recent warming in Alaska and the large variety of associated mechanisms that can change terrestrial ecosystems and affect the climate system. 59 refs

  19. The Geographic Climate Information System Project (GEOCLIMA): Overview and preliminary results

    Science.gov (United States)

    Feidas, H.; Zanis, P.; Melas, D.; Vaitis, M.; Anadranistakis, E.; Symeonidis, P.; Pantelopoulos, S.

    2012-04-01

    The project GEOCLIMA aims at developing an integrated Geographic Information System (GIS) allowing the user to manage, analyze and visualize the information which is directly or indirectly related to climate and its future projections in Greece. The main components of the project are: a) collection and homogenization of climate and environmental related information, b) estimation of future climate change based on existing regional climate model (RCM) simulations as well as a supplementary high resolution (10 km x 10 km) simulation over the period 1961-2100 using RegCM3, c) compilation of an integrated uniform geographic database, and d) mapping of climate data, creation of digital thematic maps, and development of the integrated web GIS application. This paper provides an overview of the ongoing research efforts and preliminary results of the project. First, the trends in the annual and seasonal time series of precipitation and air temperature observations for all available stations in Greece are assessed. Then the set-up of the high resolution RCM simulation (10 km x 10 km) is discussed with respect to the selected convective scheme. Finally, the relationship of climatic variables with geophysical features over Greece such as altitude, location, distance from the sea, slope, aspect, distance from climatic barriers, land cover etc) is investigated, to support climate mapping. The research has been co-financed by the European Union (European Regional Development Fund) and Greek national funds through the Operational Program "Competitiveness and Entrepreneurship" of the National Strategic Reference Framework (NSRF) - Research Funding Program COOPERATION 2009.

  20. Atmospheric balance of the humidity and estimate of the precipitation recycled in Colombia according to the re-analysis NCEP/NCAR

    International Nuclear Information System (INIS)

    Cuartas, Adriana; Poveda, German

    2002-01-01

    The magnitudes of the entrance humidity flows and exit are considered and the amount of precipitable water at different levels from the atmospheric column on Colombia. The water balance is quantified in the Colombian atmosphere; the regions and the atmospheric levels of entrance and exit of humidity are identified. The hypothesis that in the long term the net atmospheric humidity influence must be equal to the average of long term of the net run-off is verified. In addition, the percentage of recycled precipitation is considered on the Colombian territory. The variability during the two phases of the ENSO is analyzed. The calculations are made with the information of the climatic project Reanalysis developed by the National Center for Environmental Prediction (NCEP)/National Center for Atmospheric Research (NCAR), with the collaboration of the National Oceanic and Atmospheric Administration (NOAA)/National Environmental Satellite of the U.S.A. For this work it was counted on monthly information of 41 years between 1958-1998. The hydrological information was obtained from the project Balances Hidrologicos de Colombia, 1999, made by the Posgrado de Recursos Hidraulicos, de la Universidad Nacional, with the support of COLCIENCIAS and the Unidad de Planeacion Minero Energetica-UPME. The results showed the average value of the net influence of humidity to the atmosphere of Colombia is of 5716 mm/year, with a great variability in both phases of the ENSO. The greater humidity advection towards Colombia occurs in the low levels of pressure (between 1000 and 850 hPa), and originating of all the directions, mainly of trade winds of the east and trade winds of the west. Also one was that the greater humidity transport towards Colombia occurs in trimesters DJF and MAM, with average values 505,1 and 606,6 mm/year, respectively. It was observed that the hypothesis that in the long term, the net atmospheric flux, is equal to the net terrestrial run-off, reasonably is adapted for

  1. Contributions of Heterogeneous Ice Nucleation, Large-Scale Circulation, and Shallow Cumulus Detrainment to Cloud Phase Transition in Mixed-Phase Clouds with NCAR CAM5

    Science.gov (United States)

    Liu, X.; Wang, Y.; Zhang, D.; Wang, Z.

    2016-12-01

    Mixed-phase clouds consisting of both liquid and ice water occur frequently at high-latitudes and in mid-latitude storm track regions. This type of clouds has been shown to play a critical role in the surface energy balance, surface air temperature, and sea ice melting in the Arctic. Cloud phase partitioning between liquid and ice water determines the cloud optical depth of mixed-phase clouds because of distinct optical properties of liquid and ice hydrometeors. The representation and simulation of cloud phase partitioning in state-of-the-art global climate models (GCMs) are associated with large biases. In this study, the cloud phase partition in mixed-phase clouds simulated from the NCAR Community Atmosphere Model version 5 (CAM5) is evaluated against satellite observations. Observation-based supercooled liquid fraction (SLF) is calculated from CloudSat, MODIS and CPR radar detected liquid and ice water paths for clouds with cloud-top temperatures between -40 and 0°C. Sensitivity tests with CAM5 are conducted for different heterogeneous ice nucleation parameterizations with respect to aerosol influence (Wang et al., 2014), different phase transition temperatures for detrained cloud water from shallow convection (Kay et al., 2016), and different CAM5 model configurations (free-run versus nudged winds and temperature, Zhang et al., 2015). A classical nucleation theory-based ice nucleation parameterization in mixed-phase clouds increases the SLF especially at temperatures colder than -20°C, and significantly improves the model agreement with observations in the Arctic. The change of transition temperature for detrained cloud water increases the SLF at higher temperatures and improves the SLF mostly over the Southern Ocean. Even with the improved SLF from the ice nucleation and shallow cumulus detrainment, the low SLF biases in some regions can only be improved through the improved circulation with the nudging technique. Our study highlights the challenges of

  2. Modelling climate change effects on a dutch coastal groundwater system using airborne electromagnetic measurements

    NARCIS (Netherlands)

    Faneca S̀anchez, M.; Gunnink, J.L.; Baaren, E.S. van; Oude Essink, G.H.P.; Siemon, B.; Auken, E.; Elderhorst, W.; Louw, P.G.B. de

    2012-01-01

    The forecast of climate change effects on the groundwater system in coastal areas is of key importance for policy makers. The Dutch water system has been deeply studied because of its complex system of low-lying areas, dunes, land won to the sea and dikes, but nowadays large efforts are still being

  3. The changing effects of Alaska’s boreal forests on the climate system

    Science.gov (United States)

    Euskirchen, E.S.; McGuire, A. David; Chapin, F.S.; Rupp, T.S.

    2010-01-01

    In the boreal forests of Alaska, recent changes in climate have influenced the exchange of trace gases, water, and energy between these forests and the atmosphere. These changes in the structure and function of boreal forests can then feed back to impact regional and global climates. In this manuscript, we examine the type and magnitude of the climate feedbacks from boreal forests in Alaska. Research generally suggests that the net effect of a warming climate is a positive regional feedback to warming. Currently, the primary positive climate feedbacks are likely related to decreases in surface albedo due to decreases in snow cover. Fewer negative feedbacks have been identified, and they may not be large enough to counterbalance the large positive feedbacks. These positive feedbacks are most pronounced at the regional scale and reduce the resilience of the boreal vegetation – climate system by amplifying the rate of regional warming. Given the recent warming in this region, the large variety of associated mechanisms that can alter terrestrial ecosystems and influence the climate system, and a reduction in the boreal forest resilience, there is a strong need to continue to quantify and evaluate the feedback pathways.

  4. Late Lutetian Thermal Maximum—Crossing a Thermal Threshold in Earth's Climate System?

    Science.gov (United States)

    Westerhold, T.; Röhl, U.; Donner, B.; Frederichs, T.; Kordesch, W. E. C.; Bohaty, S. M.; Hodell, D. A.; Laskar, J.; Zeebe, R. E.

    2018-01-01

    Recognizing and deciphering transient global warming events triggered by massive release of carbon into Earth's ocean-atmosphere climate system in the past are important for understanding climate under elevated pCO2 conditions. Here we present new high-resolution geochemical records including benthic foraminiferal stable isotope data with clear evidence of a short-lived (30 kyr) warming event at 41.52 Ma. The event occurs in the late Lutetian within magnetochron C19r and is characterized by a ˜2°C warming of the deep ocean in the southern South Atlantic. The magnitudes of the carbon and oxygen isotope excursions of the Late Lutetian Thermal Maximum are comparable to the H2 event (53.6 Ma) suggesting a similar response of the climate system to carbon cycle perturbations even in an already relatively cooler climate several million years after the Early Eocene Climate Optimum. Coincidence of the event with exceptionally high insolation values in the Northern Hemisphere at 41.52 Ma might indicate that Earth's climate system has a thermal threshold. When this tipping point is crossed, rapid positive feedback mechanisms potentially trigger transient global warming. The orbital configuration in this case could have caused prolonged warm and dry season leading to a massive release of terrestrial carbon into the ocean-atmosphere system initiating environmental change.

  5. Design Optimization of a Small-Scale Polygeneration Energy System in Different Climate Zones in Iran

    Directory of Open Access Journals (Sweden)

    Sara Ghaem Sigarchian

    2018-05-01

    Full Text Available Design and performance of polygeneration energy systems are highly influenced by several variables, including the climate zone, which can affect the load profile as well as the availability of renewable energy sources. To investigate the effects, in this study, the design of a polygeneration system for identical residential buildings that are located in three different climate zones in Iran has been investigated. To perform the study, a model has previously developed by the author is used. The performance of the polygeneration system in terms of energy, economy and environment were compared to each other. The results show significant energetic and environmental benefits of the implementation of polygeneration systems in Iran, especially in the building that is located in a hot climate, with a high cooling demand and a low heating demand. Optimal polygeneration system for an identical building has achieved a 27% carbon dioxide emission reduction in the cold climate, while this value is around 41% in the hot climate. However, when considering the price of electricity and gas in the current energy market in Iran, none of the systems are feasible and financial support mechanisms or other incentives are required to promote the application of decentralized polygeneration energy systems.

  6. New climate-proof cropping systems in dry areas of the Mediterranean region

    DEFF Research Database (Denmark)

    Jacobsen, Sven-Erik

    2014-01-01

    severe consequences of climate changes, under influence of multiple abiotic stresses. These stresses are becoming even more pronounced under changing climate, resulting in drier conditions, increasing temperatures and greater variability, causing desertification. This topic has been addressed in the EU...... FP7 project entitled 'Sustainable water use securing food production in dry areas of the Mediterranean region (SWUP-MED)' working on climate-proof cropping systems in Morocco, Syria, Turkey and southern Europe, collaborating with UK, Denmark and Australia. The results are valid for other parts...

  7. Leadership, organizational climate, and working alliance in a children's mental health service system.

    Science.gov (United States)

    Green, Amy E; Albanese, Brian J; Cafri, Guy; Aarons, Gregory A

    2014-10-01

    The goal of this study was to examine the relationships of transformational leadership and organizational climate with working alliance, in a children's mental health service system. Using multilevel structural equation modeling, the effect of leadership on working alliance was mediated by organizational climate. These results suggest that supervisors may be able to impact quality of care through improving workplace climate. Organizational factors should be considered in efforts to improve public sector services. Understanding these issues is important for program leaders, mental health service providers, and consumers because they can affect both the way services are delivered and ultimately, clinical outcomes.

  8. Climate Change Assessment of Precipitation in Tandula Reservoir System

    Science.gov (United States)

    Jaiswal, Rahul Kumar; Tiwari, H. L.; Lohani, A. K.

    2018-02-01

    The precipitation is the principle input of hydrological cycle affect availability of water in spatial and temporal scale of basin due to widely accepted climate change. The present study deals with the statistical downscaling using Statistical Down Scaling Model for rainfall of five rain gauge stations (Ambagarh, Bhanpura, Balod, Chamra and Gondli) in Tandula, Kharkhara and Gondli reservoirs of Chhattisgarh state of India to forecast future rainfall in three different periods under SRES A1B and A2 climatic forcing conditions. In the analysis, twenty-six climatic variables obtained from National Centers for Environmental Prediction were used and statistically tested for selection of best-fit predictors. The conditional process based statistical correlation was used to evolve multiple linear relations in calibration for period of 1981-1995 was tested with independent data of 1996-2003 for validation. The developed relations were further used to predict future rainfall scenarios for three different periods 2020-2035 (FP-1), 2046-2064 (FP-2) and 2081-2100 (FP-3) and compared with monthly rainfalls during base period (1981-2003) for individual station and all three reservoir catchments. From the analysis, it has been found that most of the rain gauge stations and all three reservoir catchments may receive significant less rainfall in future. The Thiessen polygon based annual and seasonal rainfall for different catchments confirmed a reduction of seasonal rainfall from 5.1 to 14.1% in Tandula reservoir, 11-19.2% in Kharkhara reservoir and 15.1-23.8% in Gondli reservoir. The Gondli reservoir may be affected the most in term of water availability in future prediction periods.

  9. AMOC decadal variability in Earth system models: Mechanisms and climate impacts

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, Alexey [Yale Univ., New Haven, CT (United States)

    2017-09-06

    This is the final report for the project titled "AMOC decadal variability in Earth system models: Mechanisms and climate impacts". The central goal of this one-year research project was to understand the mechanisms of decadal and multi-decadal variability of the Atlantic Meridional Overturning Circulation (AMOC) within a hierarchy of climate models ranging from realistic ocean GCMs to Earth system models. The AMOC is a key element of ocean circulation responsible for oceanic transport of heat from low to high latitudes and controlling, to a large extent, climate variations in the North Atlantic. The questions of the AMOC stability, variability and predictability, directly relevant to the questions of climate predictability, were at the center of the research work.

  10. Optimization of regional water - power systems under cooling constraints and climate change

    DEFF Research Database (Denmark)

    Payet-burin, Raphaël; Bertoni, Federica; Davidsen, Claus

    2018-01-01

    Thermo-electric generation represents 70% of Europe's electricity production and 43% of water withdrawals, and is therefore a key element of the water-energy nexus. In 2003, 2006 and 2009, several thermal power plants had to be switched off in Europe because of heat waves, showing the need...... to assess the impact of climate change on cooling constraints of thermal power plants. An integrated water-power model of the Iberian Peninsula was developed in this study. It includes a physical hydrologic representation, spatially and temporally resolved water demands, management of water infrastructure...... and a simple power system model. The system was evaluated under present and future climatic conditions using different climate change scenarios. The cost of cooling constraints is found to increase by 220–640 million €/year, for the period 2046–2065 depending on the climate change scenario. Average available...

  11. Climate, ecosystems, and planetary futures: The challenge to predict life in Earth system models.

    Science.gov (United States)

    Bonan, Gordon B; Doney, Scott C

    2018-02-02

    Many global change stresses on terrestrial and marine ecosystems affect not only ecosystem services that are essential to humankind, but also the trajectory of future climate by altering energy and mass exchanges with the atmosphere. Earth system models, which simulate terrestrial and marine ecosystems and biogeochemical cycles, offer a common framework for ecological research related to climate processes; analyses of vulnerability, impacts, and adaptation; and climate change mitigation. They provide an opportunity to move beyond physical descriptors of atmospheric and oceanic states to societally relevant quantities such as wildfire risk, habitat loss, water availability, and crop, fishery, and timber yields. To achieve this, the science of climate prediction must be extended to a more multifaceted Earth system prediction that includes the biosphere and its resources. Copyright © 2018, American Association for the Advancement of Science.

  12. A Power Efficient Exaflop Computer Design for Global Cloud System Resolving Climate Models.

    Science.gov (United States)

    Wehner, M. F.; Oliker, L.; Shalf, J.

    2008-12-01

    Exascale computers would allow routine ensemble modeling of the global climate system at the cloud system resolving scale. Power and cost requirements of traditional architecture systems are likely to delay such capability for many years. We present an alternative route to the exascale using embedded processor technology to design a system optimized for ultra high resolution climate modeling. These power efficient processors, used in consumer electronic devices such as mobile phones, portable music players, cameras, etc., can be tailored to the specific needs of scientific computing. We project that a system capable of integrating a kilometer scale climate model a thousand times faster than real time could be designed and built in a five year time scale for US$75M with a power consumption of 3MW. This is cheaper, more power efficient and sooner than any other existing technology.

  13. [Medication error management climate and perception for system use according to construction of medication error prevention system].

    Science.gov (United States)

    Kim, Myoung Soo

    2012-08-01

    The purpose of this cross-sectional study was to examine current status of IT-based medication error prevention system construction and the relationships among system construction, medication error management climate and perception for system use. The participants were 124 patient safety chief managers working for 124 hospitals with over 300 beds in Korea. The characteristics of the participants, construction status and perception of systems (electric pharmacopoeia, electric drug dosage calculation system, computer-based patient safety reporting and bar-code system) and medication error management climate were measured in this study. The data were collected between June and August 2011. Descriptive statistics, partial Pearson correlation and MANCOVA were used for data analysis. Electric pharmacopoeia were constructed in 67.7% of participating hospitals, computer-based patient safety reporting systems were constructed in 50.8%, electric drug dosage calculation systems were in use in 32.3%. Bar-code systems showed up the lowest construction rate at 16.1% of Korean hospitals. Higher rates of construction of IT-based medication error prevention systems resulted in greater safety and a more positive error management climate prevailed. The supportive strategies for improving perception for use of IT-based systems would add to system construction, and positive error management climate would be more easily promoted.

  14. COR1 Engineering Test Unit Measurements at the NCAR/HAO Vacuum Tunnel Facility, October-November 2002

    Science.gov (United States)

    Thompson, William

    2002-01-01

    The Engineering Test Unit (ETU) of COR1 was made in two configurations. The first configuration, ETU-1, was for vibration testing, while the second, ETU-2, was for optical testing. This is a report on the optical testing performed on ETU-2 at the NCAR/HAO Vacuum Tunnel Facility during the months of October and November, 2002. This was the same facility used to test the two previous breadboard models. In both configurations, the first two tube sections were complete, with all optical elements aligned. The vibration model ETU-1 had the remaining tube sections attached, with mass models for the remaining optics, for the various mechanisms, and for the focal plane assembly. It was then converted into the optical model ETU-2 by removing tube sections 3 to 5, and mounting the remaining optics on commercial mounts. (The bandpass filter was also installed into tube 2, which had been replaced in ETU-1 by a mass model, so that pre- and post-vibration optical measurements could be made.) Doublet 2 was installed in a Newport LP-2 carrier, and aligned to the other optics in the first two tube sections. The LP-2 adjustment screws were then uralened so that the alignment could be maintained during shipping. Because neither the flight polarizer nor Hollow Core Motor were available, they were simulated by a commercial polarizer and rotational mount, both from Oriel corporation. The Oriel rotational stage was not designed for vacuum use, but it was determined after consultation with the company, and lab testing, that the stage could be used in the moderate vacuum conditions at the NCAR/HAO facility. The shutter and focal plane assembly were simulated with the same camera used for the previous two breadboard tests. The focal plane mask was simulated with a plane of BK7 glass with a mask glued on, using the same procedure as for the Lyot spot on Doublet 1, and mounted in an adjustable LP-2 carrier. Two masks were made, one made to the precise specifications of the optical design, the

  15. Adaptation of Agricultural and Food Systems to Climate Change: An Economic and Policy Perspective

    OpenAIRE

    John M. Antle; Susan M. Capalbo

    2010-01-01

    Adaptation of agricultural and food systems to climate change involves private and public investment decisions in the face of climate and policy uncertainties. The authors present a framework for analysis of adaptation as an investment, based on elements of the economics, finance, and ecological economics literatures. They use this framework to assess critically impact and adaptation studies, and discuss how research could be designed to support public and private investment decisions. They t...

  16. Physical Impacts of Climate Change on the Western US Electricity System: A Scoping Study

    OpenAIRE

    Coughlin, Katie

    2008-01-01

    This paper presents an exploratory study of the possible physical impacts of climate change on the electric power system, and how these impacts could be incorporated into resource planning in the Western United States. While many aspects of climate change and energy have been discussed in the literature, there has not yet been a systematic review of the relationship between specific physical effects and the quantitative analyses that are commonly used in planning studies. The core of the prob...

  17. Impacts of climate change on rainfall extremes and urban drainage systems: A review

    DEFF Research Database (Denmark)

    Arnbjerg-Nielsen, Karsten; Willems, P.; Olsson, J.

    2013-01-01

    A review is made of current methods for assessing future changes in urban rainfall extremes and their effects on urban drainage systems, due to anthropogenic-induced climate change. The review concludes that in spite of significant advances there are still many limitations in our understanding of...... drainage infrastructure considering climate change impacts and co-optimizing these with other objectives will become ever more important to keep our cities habitable into the future. © IWA Publishing 2013....

  18. Performance of desiccant air conditioning system with geothermal energy under different climatic conditions

    International Nuclear Information System (INIS)

    El-Agouz, S.A.; Kabeel, A.E.

    2014-01-01

    Highlights: • The performance of the hybrid air conditioning system is studied. • The influence of important operating parameters are estimated. • The ventilation, makeup and mix cycles are investigated at different climate. • The highest COP of the hybrid air conditioning system is 1.03. • The hybrid system provides a human thermal comfort at different climates. - Abstract: Energy saving still and continue a major seek in our life, due to the continuous increase in energy consumptions. So, a desiccant air conditioning system with geothermal energy is conducted in the current study. The thermal analysis of air conditioning system with its different components desiccant wheel, solar collector, heat exchanger, ground heat exchanger and water spray evaporative cooler is presented. Three different air conditioning cycles are simulated in the current study for different zones like: hot-dry zone, warm-dry zone, hot-humid zone and the warm-humid zone. The results show that the desiccant air conditioning system successfully provides a better thermal comfort condition in different climates. This hybrid system significantly decreases the supplied air temperature from 12.7 to 21.7 °C at different climate zones. When ω in , air and T Reg increasing, COP decreases and the ventilation cycle provides the better COP. The highest COP value of the desiccant air conditioning system is about 1.03 while the lowest value is about 0.15. The SHR of makeup cycle is higher than that ventilation cycle at warm and hot-humid zone and vice versa at warm and hot-dry zone. The highest SHR value of the desiccant air conditioning system is about 0.99 while the lowest value is about 0.2. The T sup,air , ω sup,air , COP and SHR isolines may easily be used for pre-evaluating of various cooling cycles in different climates. The hybrid system provides a human thermal comfort at different climates

  19. Adaptation to Interannual and Interdecadal Climate Variability in Agricultural Production Systems of the Argentine Pampas

    Science.gov (United States)

    Podestá, G. P.; Bert, F.; Weber, E.; Laciana, C.; Rajagopalan, B.; Letson, D.

    2007-05-01

    Agricultural ecosystems play a central role in world food production and food security, and involve one of the most climate-sensitive sectors of society-agriculture. We focus on crop production in the Argentine Pampas, one of the world's major agricultural regions. Climate of the Pampas shows marked variability at both interannual and decadal time scales. We explored the scope for adaptive management in response to climate information on interannual scales. We show that different assumptions about what decision makers are trying to achieve (i.e., their objective functions) may change what actions are considered as "optimal" for a given climate context. Optimal actions also were used to estimate the economic value of forecasts of an ENSO phase. Decision constraints (e.g., crop rotations) have critical influence on value of the forecasting system. Gaps in knowledge or misconceptions about climate variability were identified in open-ended "mental model" interviews. Results were used to design educational interventions. A marked increase in precipitation since the 1970s, together with new production technologies, led to major changes in land use patterns in the Pampas. Continuous cropping has widely replaced agriculture-pasture rotations. Nevertheless, production systems that evolved partly in response to increased rainfall may not be viable if climate reverts to a drier epoch. We use historical data to define a range of plausible climate trajectories 20-30 years hence. Regional scenarios are downscaled using semi-parametric weather generators to produce multiple realizations of daily weather consistent with decadal scenarios. Finally, we use the synthetic climate, crop growth models, and realistic models of decision-making under risk to compute risk metrics (e.g., probability of yields or profits being below a threshold). Climatically optimal and marginal locations show differential responses: probabilities of negative economic results are much higher in currently

  20. Building Systems from Scratch: an Exploratory Study of Students Learning About Climate Change

    Science.gov (United States)

    Puttick, Gillian; Tucker-Raymond, Eli

    2018-01-01

    Science and computational practices such as modeling and abstraction are critical to understanding the complex systems that are integral to climate science. Given the demonstrated affordances of game design in supporting such practices, we implemented a free 4-day intensive workshop for middle school girls that focused on using the visual programming environment, Scratch, to design games to teach others about climate change. The experience was carefully constructed so that girls of widely differing levels of experience were able to engage in a cycle of game design. This qualitative study aimed to explore the representational choices the girls made as they took up aspects of climate change systems and modeled them in their games. Evidence points to the ways in which designing games about climate science fostered emergent systems thinking and engagement in modeling practices as learners chose what to represent in their games, grappled with the realism of their respective representations, and modeled interactions among systems components. Given the girls' levels of programming skill, parts of systems were more tractable to create than others. The educational purpose of the games was important to the girls' overall design experience, since it influenced their choice of topic, and challenged their emergent understanding of climate change as a systems problem.

  1. Radiation climate and water use studies in intercropping systems

    International Nuclear Information System (INIS)

    Sinha, A.K.; Nathan, K.K.; Singh, A.K.

    1985-01-01

    A study was conducted to find out radiation climate and water use in intercropping in order to select suitable crop components. Mustard, gram and pea were grown as intercrops of wheat at four irrigation water depth (IW) and cumulative pan evaporation (CPE) ratios. The photosynthetic active radiation (PAR) was again observed to be maximum (0.73 to 0.94 langley min -1 ) in mustard as compared to pure wheat (0.75 - 0.84 langley min -1 ), pea (0.20 - 0.84 langley min -1 ) and gram (0.64 - 0.82 langley min -1 ) in the mixture. Total radiation in wheat (1.33 - 1.5 langley min -1 ) with mustard as intercrop was very close to that of pure wheat. Light intensity (LI) was also higher (84.0 - 107.6 x 1000 lux) in mustard compared to pea (77.5 - 98.0 x 1000 lux) and gram (95.8 - 104.4 x 1000 lux). Wheat and mustard mixture was more productive than other intercrops with better water use efficiency and maximum utilization of radiation climate

  2. Edge states in the climate system: exploring global instabilities and critical transitions

    Science.gov (United States)

    Lucarini, Valerio; Bódai, Tamás

    2017-07-01

    Multistability is a ubiquitous feature in systems of geophysical relevance and provides key challenges for our ability to predict a system’s response to perturbations. Near critical transitions small causes can lead to large effects and—for all practical purposes—irreversible changes in the properties of the system. As is well known, the Earth climate is multistable: present astronomical and astrophysical conditions support two stable regimes, the warm climate we live in, and a snowball climate characterized by global glaciation. We first provide an overview of methods and ideas relevant for studying the climate response to forcings and focus on the properties of critical transitions in the context of both stochastic and deterministic dynamics, and assess strengths and weaknesses of simplified approaches to the problem. Following an idea developed by Eckhardt and collaborators for the investigation of multistable turbulent fluid dynamical systems, we study the global instability giving rise to the snowball/warm multistability in the climate system by identifying the climatic edge state, a saddle embedded in the boundary between the two basins of attraction of the stable climates. The edge state attracts initial conditions belonging to such a boundary and, while being defined by the deterministic dynamics, is the gate facilitating noise-induced transitions between competing attractors. We use a simplified yet Earth-like intermediate complexity climate model constructed by coupling a primitive equations model of the atmosphere with a simple diffusive ocean. We refer to the climatic edge states as Melancholia states and provide an extensive analysis of their features. We study their dynamics, their symmetry properties, and we follow a complex set of bifurcations. We find situations where the Melancholia state has chaotic dynamics. In these cases, we have that the basin boundary between the two basins of attraction is a strange geometric set with a nearly zero

  3. Climate and atmosphere simulator for experiments on ecological systems in changing environments.

    Science.gov (United States)

    Verdier, Bruno; Jouanneau, Isabelle; Simonnet, Benoit; Rabin, Christian; Van Dooren, Tom J M; Delpierre, Nicolas; Clobert, Jean; Abbadie, Luc; Ferrière, Régis; Le Galliard, Jean-François

    2014-01-01

    Grand challenges in global change research and environmental science raise the need for replicated experiments on ecosystems subjected to controlled changes in multiple environmental factors. We designed and developed the Ecolab as a variable climate and atmosphere simulator for multifactor experimentation on natural or artificial ecosystems. The Ecolab integrates atmosphere conditioning technology optimized for accuracy and reliability. The centerpiece is a highly contained, 13-m(3) chamber to host communities of aquatic and terrestrial species and control climate (temperature, humidity, rainfall, irradiance) and atmosphere conditions (O2 and CO2 concentrations). Temperature in the atmosphere and in the water or soil column can be controlled independently of each other. All climatic and atmospheric variables can be programmed to follow dynamical trajectories and simulate gradual as well as step changes. We demonstrate the Ecolab's capacity to simulate a broad range of atmospheric and climatic conditions, their diurnal and seasonal variations, and to support the growth of a model terrestrial plant in two contrasting climate scenarios. The adaptability of the Ecolab design makes it possible to study interactions between variable climate-atmosphere factors and biotic disturbances. Developed as an open-access, multichamber platform, this equipment is available to the international scientific community for exploring interactions and feedbacks between ecological and climate systems.

  4. The computational future for climate and Earth system models: on the path to petaflop and beyond.

    Science.gov (United States)

    Washington, Warren M; Buja, Lawrence; Craig, Anthony

    2009-03-13

    The development of the climate and Earth system models has had a long history, starting with the building of individual atmospheric, ocean, sea ice, land vegetation, biogeochemical, glacial and ecological model components. The early researchers were much aware of the long-term goal of building the Earth system models that would go beyond what is usually included in the climate models by adding interactive biogeochemical interactions. In the early days, the progress was limited by computer capability, as well as by our knowledge of the physical and chemical processes. Over the last few decades, there has been much improved knowledge, better observations for validation and more powerful supercomputer systems that are increasingly meeting the new challenges of comprehensive models. Some of the climate model history will be presented, along with some of the successes and difficulties encountered with present-day supercomputer systems.

  5. Using AgMIP Regional Integrated Assessment Methods to Evaluate Vulnerability, Resilience and Adaptive Capacity for Climate Smart Agricultural Systems

    NARCIS (Netherlands)

    Antle, John M.; Homann-Kee Tui, S.; Descheemaeker, K.K.E.; Masikati, Patricia; Valdivia, Roberto O.

    2018-01-01

    The predicted effects of climate change call for a multi-dimensional method to assess the performance of various agricultural systems across economic, environmental and social dimensions. Climate smart agriculture (CSA) recognizes that the three goals of climate adaptation, mitigation and resilience

  6. Vulnerability of ecological systems to climatic effects of nuclear war

    International Nuclear Information System (INIS)

    Harwell, M.A.; Hutchinson, T.C.; Cropper, W.P. Jr.; Harwell, C.C.

    1985-01-01

    The authors' analyses are based on a suite of approaches: physiological information, historical analogs, simulation and statistical analyses, and expert judgment. Because of the great complexity of ecosystems across the global landscape and the temporal and spatial complexity of potential nuclear-war induced climatic disturbances, it is not possible uniquely to characterize the effects on ecosystems. A biome approach has been chosen as an appropriate level for generalization of potential effects. Northern Hemisphere temperate terrestrial ecosystems, aquatic ecosystems, tropical ecosystems, and Southern Hemisphere extra-tropical ecosystems are addressed. The ecosystem discussions emphasize effects on the primary producers, in large part because those components are fundamental to the total ecosystem and are often especially vulnerable to the types of perturbations considered here. Estimates of effects on fauna are largely based on those mediated through changes in food supplies. Further study of effects on trophic structures and of indirect effects on species propagated through the complex interactions of ecosystems is required

  7. Characterization of the Dynamics of Climate Systems and Identification of Missing Mechanisms Impacting the Long Term Predictive Capabilities of Global Climate Models Utilizing Dynamical Systems Approaches to the Analysis of Observed and Modeled Climate

    Energy Technology Data Exchange (ETDEWEB)

    Bhatt, Uma S. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Wackerbauer, Renate [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Polyakov, Igor V. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Atmospheric Sciences; Newman, David E. [Univ. of Alaska, Fairbanks, AK (United States). Dept. of Physics; Sanchez, Raul E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States). Fusion Energy Division; Univ. Carlos III de Madrid (Spain)

    2015-11-13

    The goal of this research was to apply fractional and non-linear analysis techniques in order to develop a more complete characterization of climate change and variability for the oceanic, sea ice and atmospheric components of the Earth System. This research applied two measures of dynamical characteristics of time series, the R/S method of calculating the Hurst exponent and Renyi entropy, to observational and modeled climate data in order to evaluate how well climate models capture the long-term dynamics evident in observations. Fractional diffusion analysis was applied to ARGO ocean buoy data to quantify ocean transport. Self organized maps were applied to North Pacific sea level pressure and analyzed in ways to improve seasonal predictability for Alaska fire weather. This body of research shows that these methods can be used to evaluate climate models and shed light on climate mechanisms (i.e., understanding why something happens). With further research, these methods show promise for improving seasonal to longer time scale forecasts of climate.

  8. The Roles of Convection Parameterization in the Formation of Double ITCZ Syndrome in the NCAR CESM: I. Atmospheric Processes

    Science.gov (United States)

    Song, Xiaoliang; Zhang, Guang J.

    2018-03-01

    Several improvements are implemented in the Zhang-McFarlane (ZM) convection scheme to investigate the roles of convection parameterization in the formation of double intertropical convergence zone (ITCZ) bias in the NCAR CESM1.2.1. It is shown that the prominent double ITCZ biases of precipitation, sea surface temperature (SST), and wind stress in the standard CESM1.2.1 are largely eliminated in all seasons with the use of these improvements in convection scheme. This study for the first time demonstrates that the modifications of convection scheme can eliminate the double ITCZ biases in all seasons, including boreal winter and spring. Further analysis shows that the elimination of the double ITCZ bias is achieved not by improving other possible contributors, such as stratus cloud bias off the west coast of South America and cloud/radiation biases over the Southern Ocean, but by modifying the convection scheme itself. This study demonstrates that convection scheme is the primary contributor to the double ITCZ bias in the CESM1.2.1, and provides a possible solution to the long-standing double ITCZ problem. The atmospheric model simulations forced by observed SST show that the original ZM convection scheme tends to produce double ITCZ bias in high SST scenario, while the modified convection scheme does not. The impact of changes in each core component of convection scheme on the double ITCZ bias in atmospheric model is identified and further investigated.

  9. A regional climate model for the Arctic and the North Atlantic; Ein regionales Klimamodell fuer die Arktis und den Nordatlantik

    Energy Technology Data Exchange (ETDEWEB)

    Berndt, H

    2001-07-01

    The Arctic and the subpolar region of the North Atlantic with their complex net of mechanisms and feedbacks play an important role in the climate system. Because of the sparse observations and the low resolution of the global models the high-resolution regional climate model REMO provides an improved tool to investigate arctic processes. REMO is based on the former numerical weather prediction model EM of the German Weather Service (DWD) and was further developed at the Max-Planck-Institute for Meteorology (MPIfM) in Hamburg. It has two different parameterization schemes - the original one called DWD-physics and additionally the ECHAM4-physics from MPIfM. The dynamical scheme is in both cases identical. In a first step REMO is adapted to the new domain. This configuration covers the Arctic and the North Atlantic down to 40 N with a horizontal resolution of 0.5 x 0.5 and 121 x 145 grid points. Different periods are simulated with DWD- and ECHAM4-Physics in forecast - as well as in climate-mode. Lateral boundary conditions are taken from NCEP/NCAR-reanalysis. Comparing REMO with ship observations in the Labrador Sea yields a better correspondence than the reanalysis data. Simulated precipitation is overestimated most probably due to unrealistic high humidity in the NCEP/NCAR-reanalysis. Observed sensible heat fluxes are much lower than the REMO and NCEP/NCAR simulated fluxes. REMO simulations in climate- and forecast-mode with ECHAM4-parameterizations are compared with measured surface temperatures and precipitation distributions. While there are numerically generated spectral spikes in the NCEP/NCAR precipitation fields in the Arctic, they are not found in the REMO results. In a sensitivity study the impact of higher surface roughness in the marginal ice zone is investigated. Ensemble experiments show the high internal variability masking any signals due to the changed roughness length. This high internal variability is mostly due to the large model domain and the

  10. Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training

    Science.gov (United States)

    2016-03-01

    identifying the model’s elements and influential individuals, define spheres of influence and construct a model that details the ecological systems...Research Report 1997 Ecological Systems Theory: Using Spheres of Influence to Support Small-unit Climate and Training...Technical review by: Sena Garven, U.S. Army Research Institute Michael D. Wood , Walter Reed Army Institute of Research

  11. A control-oriented model for combined building climate comfort and aquifer thermal energy storage system

    NARCIS (Netherlands)

    Rostampour Samarin, Vahab; Bloemendal, J.M.; Jaxa-Rozen, M.; Keviczky, T.

    2016-01-01

    This paper presents a control-oriented model for combined building climate comfort and aquifer thermal energy storage (ATES) system. In particular, we first provide a description of building operational systems together with control framework variables. We then focus on the derivation of an

  12. Transmission of climate, sea-level, and tectonic singals across river systems

    NARCIS (Netherlands)

    Forzoni, A.

    2015-01-01

    This thesis investigates the impact of climatic, tectonic, and sea-level changes (external forcing) on river systems (source-to-sink) and how these changes are recorded in the stratigraphic record. It describes a newly developed numerical tool (PaCMod) to simulate the complex fluvial system sediment

  13. Climate change adaptation and mitigation in smallholder crop–livestock systems in sub-Saharan Africa

    NARCIS (Netherlands)

    Descheemaeker, Katrien; Oosting, Simon J.; Homann-Kee Tui, Sabine; Masikati, Patricia; Falconnier, Gatien N.; Giller, K.E.

    2016-01-01

    African mixed crop–livestock systems are vulnerable to climate change and need to adapt in order to improve productivity and sustain people’s livelihoods. These smallholder systems are characterized by high greenhouse gas emission rates, but could play a role in their mitigation. Although the

  14. Regional Approaches to Climate Change for Inland Pacific Northwest Cereal Production Systems

    Science.gov (United States)

    Eigenbrode, S. D.; Abatzoglou, J. T.; Burke, I. C.; Capalbo, S.; Gessler, P.; Huggins, D. R.; Johnson-Maynard, J.; Kruger, C.; Lamb, B. K.; Machado, S.; Mote, P.; Painter, K.; Pan, W.; Petrie, S.; Paulitz, T. C.; Stockle, C.; Walden, V. P.; Wulfhorst, J. D.; Wolf, K. J.

    2011-12-01

    The long-term environmental and economic sustainability of agriculture in the Inland Pacific Northwest (northern Idaho, north central Oregon, and eastern Washington) depends upon improving agricultural management, technology, and policy to enable adaptation to climate change and to help realize agriculture's potential to contribute to climate change mitigation. To address this challenge, three land-grant institutions (Oregon State University, the University of Idaho and Washington State University) (OSU, UI, WSU) and USDA Agricultural Research Service (ARS) units are partners in a collaborative project - Regional Approaches to Climate Change for Pacific Northwest Agriculture (REACCH-PNA). The overarching goal of REACCH is to enhance the sustainability of Inland Pacific Northwest (IPNW) cereal production systems under ongoing and projected climate change while contributing to climate change mitigation. Supporting goals include: - Develop and implement sustainable agricultural practices for cereal production within existing and projected agroecological zones throughout the region as climate changes, - Contribute to climate change mitigation through improved fertilizer, fuel, and pesticide use efficiency, increased sequestration of soil carbon, and reduced greenhouse gas (GHG) emissions consistent with the 2030 targets set by the USDA National Institute for Food and Agriculture (NIFA), - Work closely with stakeholders and policymakers to promote science-based agricultural approaches to climate change adaptation and mitigation, - Increase the number of scientists, educators, and extension professionals with the skills and knowledge to address climate change and its interactions with agriculture. In this poster, we provide an overview of the specific goals of this project and activities that are underway since its inception in spring of 2011.

  15. Integrating components of the earth system to model global climate changes: implications for the simulation of the climate of the next million years

    International Nuclear Information System (INIS)

    Duplessy, J.C.

    2009-01-01

    The climate system is complex because it is made up of several components (atmosphere, ocean, sea ice, continental surface, ice sheets), each of which has its own response time. The paleo-climate record provides ample evidence that these components interact nonlinearly with each other and also with global biogeochemical cycles, which drive greenhouse gas concentration in the atmosphere. Forecasting the evolution of future climate is therefore an extremely complex problem. In addition, since the nineteenth century, human activities are releasing great quantities of greenhouse gases (CO 2 , CH 4 , CFC, etc.) into the atmosphere. As a consequence, the atmospheric content of these gases has tremendously increased. As they have a strong greenhouse effect, their concentration is now large enough to perturb the natural evolution of the earth's climate. In this paper, we shall review the strategy which has been used to develop and validate tools that would allow to simulate the future long-term behaviour of the Earth's climate. This strategy rests on two complementary approaches: developing numerical models of the climate system and validating them by comparing their output with present-day meteorological data and paleo-climatic reconstructions. We shall then evaluate the methods available to simulate climate at the regional scale and the major uncertainties that must be solved to reasonable estimate the long-term evolution of a region, which would receive a geological repository for nuclear wastes. (author)

  16. The DSET Tool Library: A software approach to enable data exchange between climate system models

    Energy Technology Data Exchange (ETDEWEB)

    McCormick, J. [Lawrence Livermore National Lab., CA (United States)

    1994-12-01

    Climate modeling is a computationally intensive process. Until recently computers were not powerful enough to perform the complex calculations required to simulate the earth`s climate. As a result standalone programs were created that represent components of the earth`s climate (e.g., Atmospheric Circulation Model). However, recent advances in computing, including massively parallel computing, make it possible to couple the components forming a complete earth climate simulation. The ability to couple different climate model components will significantly improve our ability to predict climate accurately and reliably. Historically each major component of the coupled earth simulation is a standalone program designed independently with different coordinate systems and data representations. In order for two component models to be coupled, the data of one model must be mapped to the coordinate system of the second model. The focus of this project is to provide a general tool to facilitate the mapping of data between simulation components, with an emphasis on using object-oriented programming techniques to provide polynomial interpolation, line and area weighting, and aggregation services.

  17. Linking climate change education through the integration of a kite-borne remote sensing system

    Directory of Open Access Journals (Sweden)

    Yichun Xie

    2014-09-01

    Full Text Available A majority of secondary science teachers are found to include the topic of climate change in their courses. However, teachers informally and sporadically discuss climate change and students rarely understand the underlying scientific concepts. The project team developed an innovative pedagogical approach, in which teachers and students learn climate change concepts by analyzing National Aeronautics and Space Administration (NASA global data collected through satellites and by imitating the NASA data collection process through NASA Airborne Earth Research Observation Kites And Tethered Systems (AEROKATS, a kite-borne remote sensing system. Besides AEROKATS, other major components of this system include a web-collection of NASA and remote sensing data and related educational resources, project-based learning for teacher professional development, teacher and student field trips, iOS devices, smart field data collector apps, portable weather stations, probeware, and a virtual teacher collaboratory supported with a GIS-enabled mapping portal. Three sets of research instruments, the NASA Long-Term Experience –Educator End of Event Survey, the Teacher End of Project Survey, and the pre-and-post-Investigating Climate Change and Remote Sensing (ICCARS project student exams, are adapted to study the pedagogical impacts of the NASA AEROKATS remote sensing system. These findings confirm that climate change education is more effective when both teachers and students actively participate in authentic scientific inquiry by collecting and analyzing remote sensing data, developing hypotheses, designing experiments, sharing findings, and discussing results.

  18. Integrated monitoring and information systems for managing aquatic invasive species in a changing climate

    Science.gov (United States)

    Lee, Henry; Reusser, Deborah A.; Olden, Julian D.; Smith, Scott S.; Graham, Jim; Burkett, Virginia; Dukes, Jeffrey S.; Piorkowski, Robert J.; Mcphedran, John

    2008-01-01

    Changes in temperature, precipitation, and other climatic drivers and sea-level rise will affect populations of existing native and non-native aquatic species and the vulnerability of aquatic environments to new invasions. Monitoring surveys provide the foundation for assessing the combined effects of climate change and invasions by providing baseline biotic and environmental conditions, although the utility of a survey depends on whether the results are quantitative or qualitative, and other design considerations. The results from a variety of monitoring programs in the United States are available in integrated biological information systems, although many include only non-native species, not native species. Besides including natives, we suggest these systems could be improved through the development of standardized methods that capture habitat and physiological requirements and link regional and national biological databases into distributed Web portals that allow drawing information from multiple sources. Combining the outputs from these biological information systems with environmental data would allow the development of ecological-niche models that predict the potential distribution or abundance of native and non-native species on the basis of current environmental conditions. Environmental projections from climate models can be used in these niche models to project changes in species distributions or abundances under altered climatic conditions and to identify potential high-risk invaders. There are, however, a number of challenges, such as uncertainties associated with projections from climate and niche models and difficulty in integrating data with different temporal and spatial granularity. Even with these uncertainties, integration of biological and environmental information systems, niche models, and climate projections would improve management of aquatic ecosystems under the dual threats of biotic invasions and climate change

  19. Synergies in the Asian energy system: Climate change, energy security, energy access and air pollution

    International Nuclear Information System (INIS)

    Vliet, Oscar van; Krey, Volker; McCollum, David; Pachauri, Shonali; Nagai, Yu; Rao, Shilpa; Riahi, Keywan

    2012-01-01

    We use the MESSAGE model to examine multiple dimensions of sustainable development for three Asian regions in a set of scenarios developed for the Asian Modelling Exercise. Using climate change mitigation as a starting point for the analysis, we focus on the interaction of climate and energy with technology choice, energy security, energy access, and air pollution, which often have higher policy priority than climate change. Stringent climate policies drive the future energy supply in Asia from being dominated by coal and oil to a more diversified system based mostly on natural gas, coal with CCS, nuclear and renewable energy. The increase in diversity helps to improve the energy security of individual countries and regions. Combining air pollution control policies and universal energy access policies with climate policy can further help to reduce both outdoor and indoor air pollution related health impacts. Investments into the energy system must double by 2030 to achieve stringent climate goals, but are largely offset by lower costs for O and M and air pollution abatement. Strong focus on end-use efficiency also helps lowering overall total costs and allows for limiting or excluding supply side technologies from the mitigation portfolio. Costs of additional energy access policies and measures are a small fraction of total energy system costs. - Highlights: ► Half of added investments in energy offset by lower costs for O and M and air pollution. ► Costs for achieving universal energy access much smaller than energy system costs. ► Combined emissions and access policies further reduce air pollution impacts on health. ► Strong focus on end-use efficiency allows for more flexibility on energy sources. ► Stringent climate policy can improve energy security of Asian regions.

  20. Collective behaviour of climate indices in the North Pacific air-sea system and its potential relationships with decadal climate changes

    Institute of Scientific and Technical Information of China (English)

    Wang Xiao-Juan; Zhi Rong; He Wen-Ping; Gong Zhi-Qiang

    2012-01-01

    A climate network of six climate indices of the North Pacific air-sea system is constructed during the period of 1948-2009.In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift,the synchronization behaviour and the coupling behaviour of these indices are investigated.Results indicate that climate network synchronization happened around the beginning of the 1960s,in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately.These synchronization states were always followed by the decrease of the coupling coefficient.Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal vaiues of North Pacific sea-surface temperature and 500-hPa height,among which the one that happened in the middle of the 1970s is the most noticeable climate shift.We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices.That is to say,abrupt climate shift in North Pacific air-sea system is not only shown by the phase or trend changes of climate indices,but also night be indicated by the synchronizing and the coupling of climate indices.Furthermore,at the turning point of 1975,there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific,which further proves the probability of climate index synchronization and coupling shift in air-sea systems.

  1. Collective behaviour of climate indices in the North Pacific air—sea system and its potential relationships with decadal climate changes

    International Nuclear Information System (INIS)

    Wang Xiao-Juan; Zhi Rong; He Wen-Ping; Gong Zhi-Qiang

    2012-01-01

    A climate network of six climate indices of the North Pacific air—sea system is constructed during the period of 1948–2009. In order to find out the inherent relationship between the intrinsic mechanism of climate index network and the important climate shift, the synchronization behaviour and the coupling behaviour of these indices are investigated. Results indicate that climate network synchronization happened around the beginning of the 1960s, in the middle of the 1970s and at the beginnings of the 1990s and the 2000s separately. These synchronization states were always followed by the decrease of the coupling coefficient. Each synchronization of the network was well associated with the abrupt phase or trend changes of annually accumulated abnormal values of North Pacific sea-surface temperature and 500-hPa height, among which the one that happened in the middle of the 1970s is the most noticeable climate shift. We can also obtain this mysterious shift from the first mode of the empirical orthogonal function of six indices. That is to say, abrupt climate shift in North Pacific air—sea system is not only shown by the phase or trend changes of climate indices, but also might be indicated by the synchronizing and the coupling of climate indices. Furthermore, at the turning point of 1975, there are also abrupt correlation changes in the yearly mode of spatial degree distribution of the sea surface temperature and 500-hPa height in the region of the North Pacific, which further proves the probability of climate index synchronization and coupling shift in air—sea systems. (geophysics, astronomy, and astrophysics)

  2. Addressing Value and Belief Systems on Climate Literacy in the Southeastern United States

    Science.gov (United States)

    McNeal, K. S.

    2012-12-01

    The southeast (SEUS; AL, AR, GA, FL, KY, LA, NC, SC, TN, E. TX) faces the greatest impacts as a result of climate change of any region in the U.S. which presents considerable and costly adaptation challenges. Paradoxically, people in the SEUS hold attitudes and perceptions that are more dismissive of climate change than those of any other region. An additional mismatch exists between the manner in which climate science is generally communicated and the underlying core values and beliefs held by a large segment of people in the SEUS. As a result, people frequently misinterpret and/or distrust information sources, inhibiting efforts to productively discuss and consider climate change and related impacts on human and environmental systems, and possible solutions and outcomes. The Climate Literacy Partnership in the Southeast (CLiPSE) project includes an extensive network of partners throughout the SEUS from faith, agriculture, culturally diverse, leisure, and K-20 educator communities that aim to address this educational need through a shared vision. CLiPSE has conducted a Climate Stewardship Survey (CSS) to determine the knowledge and perceptions of individuals in and beyond the CLiPSE network. The descriptive results of the CSS indicate that religion, predominantly Protestantism, plays a minor role in climate knowledge and perceptions. Likewise, political affiliation plays a minimal role in climate knowledge and perceptions between religions. However, when Protestants were broken out by political affiliation, statistically significant differences (t(30)=2.44, p=0.02) in knowledge related to the causes of climate change exist. Those Protestants affiliated with the Democratic Party (n=206) tended to maintain a statistically significant stronger knowledge of the causes of global climate change than their Republican counterparts. When SEUS educator (n=277) group was only considered, similar trends were evidenced, indicating that strongly held beliefs potentially

  3. Modeling European ruminant production systems: facing the challenges of climate change

    DEFF Research Database (Denmark)

    Kipling, Richard Philip; Bannink, Andre; Bellocchi, Gianni

    2016-01-01

    Ruminant production systems are important producers of food, support rural communities and culture, and help to maintain a range of ecosystem services including the sequestering of carbon in grassland soils. However, these systems also contribute significantly to climate change through greenhouse...... gas (GHG) emissions, while intensification of production has driven biodiversity and nutrient loss, and soil degradation. Modeling can offer insights into the complexity underlying the relationships between climate change, management and policy choices, food production, and the maintenance...... of ecosystem services. This paper 1) provides an overview of how ruminant systems modeling supports the efforts of stakeholders and policymakers to predict, mitigate and adapt to climate change and 2) provides ideas for enhancing modeling to fulfil this role. Many grassland models can predict plant growth...

  4. Motivated recall in the service of the economic system: The case of anthropogenic climate change.

    Science.gov (United States)

    Hennes, Erin P; Ruisch, Benjamin C; Feygina, Irina; Monteiro, Christopher A; Jost, John T

    2016-06-01

    The contemporary political landscape is characterized by numerous divisive issues. Unlike many other issues, however, much of the disagreement about climate change centers not on how best to take action to address the problem, but on whether the problem exists at all. Psychological studies indicate that, to the extent that sustainability initiatives are seen as threatening to the socioeconomic system, individuals may downplay environmental problems in order to defend and protect the status quo. In the current research, participants were presented with scientific information about climate change and later asked to recall details of what they had learned. Individuals who were experimentally induced (Study 1) or dispositionally inclined (Studies 2 and 3) to justify the economic system misremembered the evidence to be less serious, and this was associated with increased skepticism. However, when high system justifiers were led to believe that the economy was in a recovery, they recalled climate change information to be more serious than did those assigned to a control condition. When low system justifiers were led to believe that the economy was in recession, they recalled the information to be less serious (Study 3). These findings suggest that because system justification can impact information processing, simply providing the public with scientific evidence may be insufficient to inspire action to mitigate climate change. However, linking environmental information to statements about the strength of the economic system may satiate system justification needs and break the psychological link between proenvironmental initiatives and economic risk. (PsycINFO Database Record (c) 2016 APA, all rights reserved).

  5. Quantitative assessment of Vulnerability of Forest ecosystem to Climate Change in Korea

    Science.gov (United States)

    Byun, J.; Lee, W.; Choi, S.; Oh, S.; Climate Change Model Team

    2011-12-01

    The purpose of this study was to assess the vulnerability of forest ecosystem to climate change in Korea using outputs of vegetation models(HyTAG and MC1) and socio-ecological indicators. Also it suggested adaptation strategies in forest management through analysis of three vulnerability components: exposure, sensitivity and adaptive capacity. For the model simulation of past years(1971-2000), the climatic data was prepared by the Korea Meteorological Administration(KMA). In addition, for the future simulation, the Fifth-Generation NCAR/Penn State Mesoscale Model(MM5) coupling with atmosphere-ocean circulation model(ECHO-G) provide the future climatic data under the A1B scenarios. HyTAG (Hydrological and Thermal Analogy Groups), korean model of forest distribution on a regional-scale, could show extent of sensitivity and adaptive capacity in connection with changing frequency and changing direction of vegetation. MC1 model could provide variation and direction of NPP(Net Primary Production) and SCS(Soil Carbon Storage). In addition, the sensitivity and adaptation capacity were evaluated for each. Besides indicators from models, many other indicators such as financial affairs and number of officers were included in the vulnerability components. As a result of the vulnerability assessment, south western part and Je-ju island of Korea had relatively high vulnerability. This finding is considered to come from a distinctively adaptative capacity. Using these results, we could propose actions against climate change and develop decision making systems on forest management.

  6. Sensitivity test of parameterizations of subgrid-scale orographic form drag in the NCAR CESM1

    Science.gov (United States)

    Liang, Yishuang; Wang, Lanning; Zhang, Guang Jun; Wu, Qizhong

    2017-05-01

    Turbulent drag caused by subgrid orographic form drag has significant effects on the atmosphere. It is represented through parameterization in large-scale numerical prediction models. An indirect parameterization scheme, the Turbulent Mountain Stress scheme (TMS), is currently used in the National Center for Atmospheric Research Community Earth System Model v1.0.4. In this study we test a direct scheme referred to as BBW04 (Beljaars et al. in Q J R Meteorol Soc 130:1327-1347, 10.1256/qj.03.73), which has been used in several short-term weather forecast models and earth system models. Results indicate that both the indirect and direct schemes increase surface wind stress and improve the model's performance in simulating low-level wind speed over complex orography compared to the simulation without subgrid orographic effect. It is shown that the TMS scheme produces a more intense wind speed adjustment, leading to lower wind speed near the surface. The low-level wind speed by the BBW04 scheme agrees better with the ERA-Interim reanalysis and is more sensitive to complex orography as a direct method. Further, the TMS scheme increases the 2-m temperature and planetary boundary layer height over large areas of tropical and subtropical Northern Hemisphere land.

  7. Toward an ultra-high resolution community climate system model for the BlueGene platform

    Energy Technology Data Exchange (ETDEWEB)

    Dennis, John M [Computer Science Section, National Center for Atmospheric Research, Boulder, CO (United States); Jacob, Robert [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (United States); Vertenstein, Mariana [Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO (United States); Craig, Tony [Climate and Global Dynamics Division, National Center for Atmospheric Research, Boulder, CO (United States); Loy, Raymond [Mathematics and Computer Science Division, Argonne National Laboratory, Argonne, IL (United States)

    2007-07-15

    Global climate models need to simulate several small, regional-scale processes which affect the global circulation in order to accurately simulate the climate. This is particularly important in the ocean where small scale features such as oceanic eddies are currently represented with adhoc parameterizations. There is also a need for higher resolution to provide climate predictions at small, regional scales. New high-performance computing platforms such as the IBM BlueGene can provide the necessary computational power to perform ultra-high resolution climate model integrations. We have begun to investigate the scaling of the individual components of the Community Climate System Model to prepare it for integrations on BlueGene and similar platforms. Our investigations show that it is possible to successfully utilize O(32K) processors. We describe the scalability of five models: the Parallel Ocean Program (POP), the Community Ice CodE (CICE), the Community Land Model (CLM), and the new CCSM sequential coupler (CPL7) which are components of the next generation Community Climate System Model (CCSM); as well as the High-Order Method Modeling Environment (HOMME) which is a dynamical core currently being evaluated within the Community Atmospheric Model. For our studies we concentrate on 1/10{sup 0} resolution for CICE, POP, and CLM models and 1/4{sup 0} resolution for HOMME. The ability to simulate high resolutions on the massively parallel petascale systems that will dominate high-performance computing for the foreseeable future is essential to the advancement of climate science.

  8. European monitoring systems and data for assessing environmental and climate impacts on human infectious diseases.

    Science.gov (United States)

    Nichols, Gordon L; Andersson, Yvonne; Lindgren, Elisabet; Devaux, Isabelle; Semenza, Jan C

    2014-04-09

    Surveillance is critical to understanding the epidemiology and control of infectious diseases. The growing concern over climate and other drivers that may increase infectious disease threats to future generations has stimulated a review of the surveillance systems and environmental data sources that might be used to assess future health impacts from climate change in Europe. We present an overview of organizations, agencies and institutions that are responsible for infectious disease surveillance in Europe. We describe the surveillance systems, tracking tools, communication channels, information exchange and outputs in light of environmental and climatic drivers of infectious diseases. We discuss environmental and climatic data sets that lend themselves to epidemiological analysis. Many of the environmental data sets have a relatively uniform quality across EU Member States because they are based on satellite measurements or EU funded FP6 or FP7 projects with full EU coverage. Case-reporting systems for surveillance of infectious diseases should include clear and consistent case definitions and reporting formats that are geo-located at an appropriate resolution. This will allow linkage to environmental, social and climatic sources that will enable risk assessments, future threat evaluations, outbreak management and interventions to reduce disease burden.

  9. A Systems Approach to Climate, Water and Diarrhea in Hubli-Dharward, India

    Science.gov (United States)

    Mellor, J. E.; Zimmerman, J.

    2014-12-01

    Although evidence suggests that climate change will negatively impact water resources and hence diarrheal disease rates in the developing world, there is uncertainty surrounding prior studies. This is due to the complexity of the pathways by which climate impacts diarrhea rates making it difficult to develop interventions. Therefore, our goal was to develop a mechanistic systems approach that incorporates the complex climate, human, engineered and water systems to relate climate change to diarrhea rates under future climate scenarios.To do this, we developed an agent-based model (ABM). Our agents are households and children living in Hubli-Dharward, India. The model was informed with 15 months of weather, water quality, ethnographic and diarrhea incidence data. The model's front end is a stochastic weather simulator incorporating 15 global climate models to simulate rainfall and temperature. The water quality available to agents (residents) on a model "day" is a function of the simulated day's weather and is fully validated with field data. As with the field data, as the ambient temperature increases or it rains, the quality of water available to residents in the model deteriorates. The propensity for an resident to get diarrhea is calculated with an integrated Quantitative Microbial Risk Assessment model with uncertainty simulated with a bootstrap method. Other factors include hand-washing, improved water sources, household water treatment and improved sanitation.The benefits of our approach are as follows: Our mechanistic method allows us to develop scientifically derived adaptation strategies. We can quantitatively link climate scenarios with diarrhea incidence over long time periods. We can explore the complex climate and water system dynamics, rank risk factor importance, examine a broad range of scenarios and identify tipping points. Our approach is modular and expandable such that new datasets can be integrated to study climate impacts on a larger scale. Our

  10. Monsoon and cyclone induced wave climate over the near shore waters off Puduchery, south western Bay of Bengal

    Digital Repository Service at National Institute of Oceanography (India)

    Glejin, J.; SanilKumar, V.; Nair, T.M.B.

    . Reanalysis data, NCEP / NCAR (Kalnay et al. 1996), provided by the NOAA-CIRES Climate Diagnostics Center, Boulder, Colorado at http://www.cdc.noaa.gov/ at 10 m height with a temporal resolution of 6 hour intervals is used to analyze the wind pattern...

  11. Challenges in the Management and Stewardship of Airborne Observational Data at the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL)

    Science.gov (United States)

    Aquino, J.; Daniels, M. D.

    2015-12-01

    The National Science Foundation (NSF) provides the National Center for Atmospheric Research (NCAR) Earth Observing Laboratory (EOL) funding for the operation, maintenance and upgrade of two research aircraft: the NSF/NCAR High-performance Instrumented Airborne Platform for Environmental Research (HIAPER) Gulfstream V and the NSF/NCAR Hercules C-130. A suite of in-situ and remote sensing airborne instruments housed at the EOL Research Aviation Facility (RAF) provide a basic set of measurements that are typically deployed on most airborne field campaigns. In addition, instruments to address more specific research requirements are provided by collaborating participants from universities, industry, NASA, NOAA or other agencies (referred to as Principal Investigator, or PI, instruments). At the 2014 AGU Fall Meeting, a poster (IN13B-3639) was presented outlining the components of Airborne Data Management included field phase data collection, formats, data archival and documentation, version control, storage practices, stewardship and obsolete data formats, and public data access. This talk will cover lessons learned, challenges associated with the above components, and current developments to address these challenges, including: tracking data workflows for aircraft instrumentation to facilitate identification, and correction, of gaps in these workflows; implementation of dataset versioning guidelines; and assignment of Digital Object Identifiers (DOIs) to data and instrumentation to facilitate tracking data and facility use in publications.

  12. Integrated assessment of water-power grid systems under changing climate

    Science.gov (United States)

    Yan, E.; Zhou, Z.; Betrie, G.

    2017-12-01

    Energy and water systems are intrinsically interconnected. Due to an increase in climate variability and extreme weather events, interdependency between these two systems has been recently intensified resulting significant impacts on both systems and energy output. To address this challenge, an Integrated Water-Energy Systems Assessment Framework (IWESAF) is being developed to integrate multiple existing or developed models from various sectors. In this presentation, we are focusing on recent improvement in model development of thermoelectric power plant water use simulator, power grid operation and cost optimization model, and model integration that facilitate interaction among water and electricity generation under extreme climate events. A process based thermoelectric power water use simulator includes heat-balance, climate, and cooling system modules that account for power plant characteristics, fuel types, and cooling technology. The model is validated with more than 800 power plants of fossil-fired, nuclear and gas-turbine power plants with different cooling systems. The power grid operation and cost optimization model was implemented for a selected regional in the Midwest. The case study will be demonstrated to evaluate the sensitivity and resilience of thermoelectricity generation and power grid under various climate and hydrologic extremes and potential economic consequences.

  13. Potential Impact of Climate Change on Resilience and Livelihoods in Mixed Crop-Livestock Systems in East Africa

    OpenAIRE

    Mario Herrero; Peter G Jones; Stanley Karanja; Ianetta Mutie; Mariana C Rufino; Philip K Thornton

    2013-01-01

    Climate-induced livelihood transitions in the agricultural systems of Africa are increasingly likely. A recent study by Jones and Thornton (2009) points to the possibility of such climate-induced livelihood transitions in the mixed crop-livestock rainfed arid-semiarid systems of Africa. These mixed systems cover over one million square kilometers of farmland in West Africa, Eastern Africa,...

  14. Towards a comprehensive system of methodological considerations for cities' climate targets

    International Nuclear Information System (INIS)

    Kramers, Anna; Wangel, Josefin; Johansson, Stefan; Höjer, Mattias; Finnveden, Göran; Brandt, Nils

    2013-01-01

    Climate targets for cities abound. However, what these targets really imply is dependent on a number of decisions regarding system boundaries and methods of calculation. In order to understand and compare cities' climate targets, there is a need for a generic and comprehensive framework of key methodological considerations. This paper identifies eight key methodological considerations for the different choices that can be made when setting targets for GHG emissions in a city and arranges them in four categories: temporal scope of target, object for target setting, unit of target, and range of target. To explore how target setting is carried out in practice, the climate targets of eight European cities were analysed. The results showed that these targets cover only a limited part of what could be included. Moreover, the cities showed quite limited awareness of what is, or could be, include in the targets. This makes comparison and benchmarking between cities difficult. - Highlights: • Cities' climate targets are almost impossible to compare and benchmark. • There is a need for consistent protocols and frameworks supporting target setting. • A framework with key methodological considerations for cities' climate targets is identified. • The framework is used to explore the climate targets for eight European cities. • The difference between production- and consumption based accounting is illustrated in a new way

  15. Terrestrial biogeochemical feedbacks in the climate system: from past to future

    Energy Technology Data Exchange (ETDEWEB)

    Arneth, A.; Harrison, S. P.; Zaehle, S.; Tsigaridis, K; Menon, S; Bartlein, P.J.; Feichter, J; Korhola, A; Kulmala, M; O' Donnell, D; Schurgers, G; Sorvari, S; Vesala, T

    2010-01-05

    The terrestrial biosphere plays a major role in the regulation of atmospheric composition, and hence climate, through multiple interlinked biogeochemical cycles (BGC). Ice-core and other palaeoenvironmental records show a fast response of vegetation cover and exchanges with the atmosphere to past climate change, although the phasing of these responses reflects spatial patterning and complex interactions between individual biospheric feedbacks. Modern observations show a similar responsiveness of terrestrial biogeochemical cycles to anthropogenically-forced climate changes and air pollution, with equally complex feedbacks. For future conditions, although carbon cycle-climate interactions have been a major focus, other BGC feedbacks could be as important in modulating climate changes. The additional radiative forcing from terrestrial BGC feedbacks other than those conventionally attributed to the carbon cycle is in the range of 0.6 to 1.6 Wm{sup -2}; all taken together we estimate a possible maximum of around 3 Wm{sup -2} towards the end of the 21st century. There are large uncertainties associated with these estimates but, given that the majority of BGC feedbacks result in a positive forcing because of the fundamental link between metabolic stimulation and increasing temperature, improved quantification of these feedbacks and their incorporation in earth system models is necessary in order to develop coherent plans to manage ecosystems for climate mitigation.

  16. Extending Climate Analytics-As to the Earth System Grid Federation

    Science.gov (United States)

    Tamkin, G.; Schnase, J. L.; Duffy, D.; McInerney, M.; Nadeau, D.; Li, J.; Strong, S.; Thompson, J. H.

    2015-12-01

    We are building three extensions to prior-funded work on climate analytics-as-a-service that will benefit the Earth System Grid Federation (ESGF) as it addresses the Big Data challenges of future climate research: (1) We are creating a cloud-based, high-performance Virtual Real-Time Analytics Testbed supporting a select set of climate variables from six major reanalysis data sets. This near real-time capability will enable advanced technologies like the Cloudera Impala-based Structured Query Language (SQL) query capabilities and Hadoop-based MapReduce analytics over native NetCDF files while providing a platform for community experimentation with emerging analytic technologies. (2) We are building a full-featured Reanalysis Ensemble Service comprising monthly means data from six reanalysis data sets. The service will provide a basic set of commonly used operations over the reanalysis collections. The operations will be made accessible through NASA's climate data analytics Web services and our client-side Climate Data Services (CDS) API. (3) We are establishing an Open Geospatial Consortium (OGC) WPS-compliant Web service interface to our climate data analytics service that will enable greater interoperability with next-generation ESGF capabilities. The CDS API will be extended to accommodate the new WPS Web service endpoints as well as ESGF's Web service endpoints. These activities address some of the most important technical challenges for server-side analytics and support the research community's requirements for improved interoperability and improved access to reanalysis data.

  17. The Community Earth System Model-Polar Climate Working Group and the status of CESM2.

    Science.gov (United States)

    Bailey, D. A.; Holland, M. M.; DuVivier, A. K.

    2017-12-01

    The Polar Climate Working Group (PCWG) is a consortium of scientists who are interested in modeling and understanding the climate in the Arctic and the Antarctic, and how polar climate processes interact with and influence climate at lower latitudes. Our members come from universities and laboratories, and our interests span all elements of polar climate, from the ocean depths to the top of the atmosphere. In addition to conducting scientific modeling experiments, we are charged with contributing to the development and maintenance of the state-of-the-art sea ice model component (CICE) used in the Community Earth System Model (CESM). A recent priority for the PCWG has been to come up with innovative ways to bring the observational and modeling communities together. This will allow for more robust validation of climate model simulations, the development and implementation of more physically-based model parameterizations, improved data assimilation capabilities, and the better use of models to design and implement field experiments. These have been informed by topical workshops and scientific visitors that we have hosted in these areas. These activities will be discussed and information on how the better integration of observations and models has influenced the new version of the CESM, which is due to be released in late 2017, will be provided. Additionally, we will address how enhanced interactions with the observational community will contribute to model developments and validation moving forward.

  18. Wind Energy Forecasting: A Collaboration of the National Center for Atmospheric Research (NCAR) and Xcel Energy

    Energy Technology Data Exchange (ETDEWEB)

    Parks, K.; Wan, Y. H.; Wiener, G.; Liu, Y.

    2011-10-01

    The focus of this report is the wind forecasting system developed during this contract period with results of performance through the end of 2010. The report is intentionally high-level, with technical details disseminated at various conferences and academic papers. At the end of 2010, Xcel Energy managed the output of 3372 megawatts of installed wind energy. The wind plants span three operating companies1, serving customers in eight states2, and three market structures3. The great majority of the wind energy is contracted through power purchase agreements (PPAs). The remainder is utility owned, Qualifying Facilities (QF), distributed resources (i.e., 'behind the meter'), or merchant entities within Xcel Energy's Balancing Authority footprints. Regardless of the contractual or ownership arrangements, the output of the wind energy is balanced by Xcel Energy's generation resources that include fossil, nuclear, and hydro based facilities that are owned or contracted via PPAs. These facilities are committed and dispatched or bid into day-ahead and real-time markets by Xcel Energy's Commercial Operations department. Wind energy complicates the short and long-term planning goals of least-cost, reliable operations. Due to the uncertainty of wind energy production, inherent suboptimal commitment and dispatch associated with imperfect wind forecasts drives up costs. For example, a gas combined cycle unit may be turned on, or committed, in anticipation of low winds. The reality is winds stayed high, forcing this unit and others to run, or be dispatched, to sub-optimal loading positions. In addition, commitment decisions are frequently irreversible due to minimum up and down time constraints. That is, a dispatcher lives with inefficient decisions made in prior periods. In general, uncertainty contributes to conservative operations - committing more units and keeping them on longer than may have been necessary for purposes of maintaining reliability

  19. Optimization of Domestic-Size Renewable Energy System Designs Suitable for Cold Climate Regions

    Science.gov (United States)

    Akpan, Itoro Etim; Sasaki, Masafumi; Endoh, Noboru

    Five different kinds of domestic-size renewable energy system configurations for very cold climate regions were investigated. From detailed numerical modeling and system simulations, it was found that the consumption of fuel oil for the auxiliary boiler in residential-type households can almost be eliminated with a renewable energy system that incorporates photovoltaic panel arrays for electricity generation and two storage tanks: a well-insulated electric water storage tank that services the hot water loads, and a compact boiler/geothermal heat pump tank for room heating during very cold seasons. A reduction of Greenhouse Gas Emissions (GHG) of about 28% was achieved for this system compared to an equivalent conventional system. The near elimination of the use of fuel oil in this system makes it very promising for very cold climate regions in terms of energy savings because the running cost is not so dependent on the unstable nature of global oil prices.

  20. HVAC systems in a field laboratory for indoor climate study

    DEFF Research Database (Denmark)

    Fang, Lei; Melikov, Arsen Krikor; Olesen, Bjarne W.

    2012-01-01

    This paper presents the design of a HVAC system for a field lab. The design integrated mixing ventilation, displacement ventilation, low impulse vertical ventilation, personalized ventilation, natural ventilation, hybrid ventilation, active chilled beams, radiant ceiling and floor, and heat...... with the controlled room temperature in the range from 10 to 35 °C and relative humidity in the range from 15 to 80 %. The field lab can be used to test the performance of each system included in the field lab as well as the combined performance of two or more systems....

  1. Climate change induced transformations of agricultural systems: insights from a global model

    Science.gov (United States)

    Leclère, D.; Havlík, P.; Fuss, S.; Schmid, E.; Mosnier, A.; Walsh, B.; Valin, H.; Herrero, M.; Khabarov, N.; Obersteiner, M.

    2014-12-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis.

  2. Climate change induced transformations of agricultural systems: insights from a global model

    International Nuclear Information System (INIS)

    Leclère, D; Havlík, P; Mosnier, A; Walsh, B; Valin, H; Khabarov, N; Obersteiner, M; Fuss, S; Schmid, E; Herrero, M

    2014-01-01

    Climate change might impact crop yields considerably and anticipated transformations of agricultural systems are needed in the coming decades to sustain affordable food provision. However, decision-making on transformational shifts in agricultural systems is plagued by uncertainties concerning the nature and geography of climate change, its impacts, and adequate responses. Locking agricultural systems into inadequate transformations costly to adjust is a significant risk and this acts as an incentive to delay action. It is crucial to gain insight into how much transformation is required from agricultural systems, how robust such strategies are, and how we can defuse the associated challenge for decision-making. While implementing a definition related to large changes in resource use into a global impact assessment modelling framework, we find transformational adaptations to be required of agricultural systems in most regions by 2050s in order to cope with climate change. However, these transformations widely differ across climate change scenarios: uncertainties in large-scale development of irrigation span in all continents from 2030s on, and affect two-thirds of regions by 2050s. Meanwhile, significant but uncertain reduction of major agricultural areas affects the Northern Hemisphere’s temperate latitudes, while increases to non-agricultural zones could be large but uncertain in one-third of regions. To help reducing the associated challenge for decision-making, we propose a methodology exploring which, when, where and why transformations could be required and uncertain, by means of scenario analysis. (letter)

  3. Designing domestic rainwater harvesting systems under different climatic regimes in Italy.

    Science.gov (United States)

    Campisano, A; Gnecco, I; Modica, C; Palla, A

    2013-01-01

    Nowadays domestic rainwater harvesting practices are recognized as effective tools to improve the sustainability of drainage systems within the urban environment, by contributing to limiting the demand for potable water and, at the same time, by mitigating the generation of storm water runoff at the source. The final objective of this paper is to define regression curves to size domestic rainwater harvesting (DRWH) systems in the main Italian climatic regions. For this purpose, the Köppen-Geiger climatic classification is used and, furthermore, suitable precipitation sites are selected for each climatic region. A behavioural model is implemented to assess inflow, outflow and change in storage volume of a rainwater harvesting system according to daily mass balance simulations based on historical rainfall observations. The performance of the DRWH system under various climate and operational conditions is examined as a function of two non-dimensional parameters, namely the demand fraction (d) and the modified storage fraction (sm). This last parameter allowed the evaluation of the effects of the rainfall intra-annual variability on the system performance.

  4. Climatic effects during passage of the solar system through interstellar clouds

    International Nuclear Information System (INIS)

    Talbot, R.J. Jr.; Butler, D.M.; Newman, M.J.

    1976-01-01

    It is thought likely that the solar system passes through regions where there are a large number of dense interstellar clouds. When this occurs several processes may cause significant changes in the climate of the Earth and other planets. Matters here discussed include the influences of compression of the solar wind cavity, accretion of matter by the Sun, and particulate input into the Earth's atmosphere. Gravitational energy released by the accretion of interstellar material by the Sun may enhance the solar luminosity, and considerations of terrestrial heat balance suggest that luminosity enhancements of 1% or more will produce significant variations of climate. Observational evidence suggests that there is some mechanism producing a relationship between solar wind flow and climate. One proposed mechanism is that contemporary solar wind modulation of galactic cosmic rays influences climate, and the fact that the Earth would be outside the solar wind cavity for all or part of the year may have an effect on terrestrial climate. Relatively small variations of solar UV radiation input may have perceptible influences on climate, and if a 1% variation in radiation input to the stratosphere has a significant effect then accretion may have a large impact on terrestrial conditions, even though the change in the total heat balance is negligible.With regard to dust input into the Earth's atmosphere it is estimated that during the lifetime of the solar system the mass of dust grains accreted by the Earth should have been about 10 16 to 10 18 g; the matter of evidence for their presence is discussed. It is concluded that the processes proposed have very complex implications for global weather patterns; and at present it is not possible to evaluate which, if any, will unquestionably affect the Earth's climate. (U.K.)

  5. 100% Renewable energy systems, climate mitigation and economic growth

    DEFF Research Database (Denmark)

    Vad Mathiesen, Brian; Lund, Henrik; Karlsson, Kenneth Bernard

    2011-01-01

    that implementing energy savings, renewable energy and more efficient conversion technologies can have positive socio-economic effects, create employment and potentially lead to large earnings on exports. If externalities such as health effects are included, even more benefits can be expected. 100% Renewable energy......Greenhouse gas mitigation strategies are generally considered costly with world leaders often engaging in debate concerning the costs of mitigation and the distribution of these costs between different countries. In this paper, the analyses and results of the design of a 100% renewable energy...... system by the year 2050 are presented for a complete energy system including transport. Two short-term transition target years in the process towards this goal are analysed for 2015 and 2030. The energy systems are analysed and designed with hour-by-hour energy system analyses. The analyses reveal...

  6. Developing the evidence base for mainstreaming adaptation of stormwater systems to climate change.

    Science.gov (United States)

    Gersonius, B; Nasruddin, F; Ashley, R; Jeuken, A; Pathirana, A; Zevenbergen, C

    2012-12-15

    In a context of high uncertainty about hydro-climatic variables, the development of updated methods for climate impact and adaptation assessment is as important, if not more important than the provision of improved climate change data. In this paper, we introduce a hybrid method to facilitate mainstreaming adaptation of stormwater systems to climate change: i.e., the Mainstreaming method. The Mainstreaming method starts with an analysis of adaptation tipping points (ATPs), which is effect-based. These are points of reference where the magnitude of climate change is such that acceptable technical, environmental, societal or economic standards may be compromised. It extends the ATP analysis to include aspects from a bottom-up approach. The extension concerns the analysis of adaptation opportunities in the stormwater system. The results from both analyses are then used in combination to identify and exploit Adaptation Mainstreaming Moments (AMMs). Use of this method will enhance the understanding of the adaptive potential of stormwater systems. We have applied the proposed hybrid method to the management of flood risk for an urban stormwater system in Dordrecht (the Netherlands). The main finding of this case study is that the application of the Mainstreaming method helps to increase the no-/low-regret character of adaptation for several reasons: it focuses the attention on the most urgent effects of climate change; it is expected to lead to potential cost reductions, since adaptation options can be integrated into infrastructure and building design at an early stage instead of being applied separately; it will lead to the development of area-specific responses, which could not have been developed on a higher scale level; it makes it possible to take account of local values and sensibilities, which contributes to increased public and political support for the adaptive strategies. Copyright © 2012 Elsevier Ltd. All rights reserved.

  7. The Fire INventory from NCAR (FINN: a high resolution global model to estimate the emissions from open burning

    Directory of Open Access Journals (Sweden)

    C. Wiedinmyer

    2011-07-01

    Full Text Available The Fire INventory from NCAR version 1.0 (FINNv1 provides daily, 1 km resolution, global estimates of the trace gas and particle emissions from open burning of biomass, which includes wildfire, agricultural fires, and prescribed burning and does not include biofuel use and trash burning. Emission factors used in the calculations have been updated with recent data, particularly for the non-methane organic compounds (NMOC. The resulting global annual NMOC emission estimates are as much as a factor of 5 greater than some prior estimates. Chemical speciation profiles, necessary to allocate the total NMOC emission estimates to lumped species for use by chemical transport models, are provided for three widely used chemical mechanisms: SAPRC99, GEOS-CHEM, and MOZART-4. Using these profiles, FINNv1 also provides global estimates of key organic compounds, including formaldehyde and methanol. Uncertainties in the emissions estimates arise from several of the method steps. The use of fire hot spots, assumed area burned, land cover maps, biomass consumption estimates, and emission factors all introduce error into the model estimates. The uncertainty in the FINNv1 emission estimates are about a factor of two; but, the global estimates agree reasonably well with other global inventories of biomass burning emissions for CO, CO2, and other species with less variable emission factors. FINNv1 emission estimates have been developed specifically for modeling atmospheric chemistry and air quality in a consistent framework at scales from local to global. The product is unique because of the high temporal and spatial resolution, global coverage, and the number of species estimated. FINNv1 can be used for both hindcast and forecast or near-real time model applications and the results are being critically evaluated with models and observations whenever possible.

  8. Livestock in a changing climate: production system transitions as an adaptation strategy for agriculture

    International Nuclear Information System (INIS)

    Weindl, Isabelle; Lotze-Campen, Hermann; Popp, Alexander; Müller, Christoph; Schmitz, Christoph; Rolinski, Susanne; Havlík, Petr; Herrero, Mario

    2015-01-01

    Livestock farming is the world’s largest land use sector and utilizes around 60% of the global biomass harvest. Over the coming decades, climate change will affect the natural resource base of livestock production, especially the productivity of rangeland and feed crops. Based on a comprehensive impact modeling chain, we assess implications of different climate projections for agricultural production costs and land use change and explore the effectiveness of livestock system transitions as an adaptation strategy. Simulated climate impacts on crop yields and rangeland productivity generate adaptation costs amounting to 3% of total agricultural production costs in 2045 (i.e. 145 billion US$). Shifts in livestock production towards mixed crop-livestock systems represent a resource- and cost-efficient adaptation option, reducing agricultural adaptation costs to 0.3% of total production costs and simultaneously abating deforestation by about 76 million ha globally. The relatively positive climate impacts on grass yields compared with crop yields favor grazing systems inter alia in South Asia and North America. Incomplete transitions in production systems already have a strong adaptive and cost reducing effect: a 50% shift to mixed systems lowers agricultural adaptation costs to 0.8%. General responses of production costs to system transitions are robust across different global climate and crop models as well as regarding assumptions on CO 2 fertilization, but simulated values show a large variation. In the face of these uncertainties, public policy support for transforming livestock production systems provides an important lever to improve agricultural resource management and lower adaptation costs, possibly even contributing to emission reduction. (letter)

  9. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    International Nuclear Information System (INIS)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin

    2014-01-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  10. Flexible global ocean-atmosphere-land system model. A modeling tool for the climate change research community

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tianjun; Yu, Yongqiang; Liu, Yimin; Wang, Bin (eds.) [Chinese Academy of Sciences, Beijing, (China). Inst. of Atmospheric Physics

    2014-04-01

    First book available on systematic evaluations of the performance of the global climate model FGOALS. Covers the whole field, ranging from the development to the applications of this climate system model. Provide an outlook for the future development of the FGOALS model system. Offers brief introduction about how to run FGOALS. Coupled climate system models are of central importance for climate studies. A new model known as FGOALS (the Flexible Global Ocean-Atmosphere-Land System model), has been developed by the State Key Laboratory of Numerical Modeling for Atmospheric Sciences and Geophysical Fluid Dynamics, Institute of Atmospheric Physics, Chinese Academy of Sciences (LASG/IAP, CAS), a first-tier national geophysical laboratory. It serves as a powerful tool, both for deepening our understanding of fundamental mechanisms of the climate system and for making decadal prediction and scenario projections of future climate change. ''Flexible Global Ocean-Atmosphere-Land System Model: A Modeling Tool for the Climate Change Research Community'' is the first book to offer systematic evaluations of this model's performance. It is comprehensive in scope, covering both developmental and application-oriented aspects of this climate system model. It also provides an outlook of future development of FGOALS and offers an overview of how to employ the model. It represents a valuable reference work for researchers and professionals working within the related areas of climate variability and change.

  11. Reproductive responses to climatic heat induced by management systems in swamp buffaloes

    International Nuclear Information System (INIS)

    Dollah, M.A.; Ramakrishnan, N.; Nordin, Y.; Abdullah Sani, R.

    1990-01-01

    Climatic heat is one of the factors influencing the reproductive performance of swamp buffaloes. Any management system that imposes high climatic heat stress tends to reduce reproductive performance. Buffaloes grazing in an open hilly ranch system reached puberty later (at an age of 33 months) and at heavier body weight (365 kg) than animals raised in confinement (26 months and 289 kg). Physiological data (water metabolism and thyroid activity) indicated that grazing animals had to tolerate a higher heat load. High climatic temperatures were found to depress ovarian activity, especially during the dry season. The effect was observed only in cycling buffaloes denied wallow. Buffaloes having access to wallows were able to maintain their heat balance under various levels of heat load by adjusting their water requirements, mobilizing their body water and adjusting their metabolic rate (thyroid activity). It is concluded that stressful climatic temperatures can depress the reproductive performance of young heifers and adult swamp buffaloes, and that climatic heat stress directly depresses ovarian activity in swamp buffaloes. (author). 16 refs, 1 fig., 4 tabs

  12. 2014 Earth System Grid Federation and Ultrascale Visualization Climate Data Analysis Tools Conference Report

    Energy Technology Data Exchange (ETDEWEB)

    Williams, Dean N. [Lawrence Livermore National Lab. (LLNL), Livermore, CA (United States)

    2015-01-27

    The climate and weather data science community met December 9–11, 2014, in Livermore, California, for the fourth annual Earth System Grid Federation (ESGF) and Ultrascale Visualization Climate Data Analysis Tools (UV-CDAT) Face-to-Face (F2F) Conference, hosted by the Department of Energy, National Aeronautics and Space Administration, National Oceanic and Atmospheric Administration, the European Infrastructure for the European Network of Earth System Modelling, and the Australian Department of Education. Both ESGF and UVCDATremain global collaborations committed to developing a new generation of open-source software infrastructure that provides distributed access and analysis to simulated and observed data from the climate and weather communities. The tools and infrastructure created under these international multi-agency collaborations are critical to understanding extreme weather conditions and long-term climate change. In addition, the F2F conference fosters a stronger climate and weather data science community and facilitates a stronger federated software infrastructure. The 2014 F2F conference detailed the progress of ESGF, UV-CDAT, and other community efforts over the year and sets new priorities and requirements for existing and impending national and international community projects, such as the Coupled Model Intercomparison Project Phase Six. Specifically discussed at the conference were project capabilities and enhancements needs for data distribution, analysis, visualization, hardware and network infrastructure, standards, and resources.

  13. Vulnerability of social-ecological system to climate change in Mongolia

    Science.gov (United States)

    Kakinuma, K.; Yanagawa, A.; Sasaki, T.; Kanae, S.

    2017-12-01

    Coping with future climate changes are one of the most important issues in the world. IPCC (2014) suggested that vulnerability and exposure of social-ecological systems to extreme climatic events (hazard) determine the impact of climate changes. Although the schematic framework is widely accepted, there are high uncertainty of vulnerability of social and ecological systems and it makes difficult to examine it in empirical researches. Our objective is to assess the climate change impact on the social-ecological system in Mongolia. We review researches about trends of climate (Hazard), vegetation, pastoral mobility (Vulnerability) and livestock distribution (Exposure) across Mongolia Climate trends are critical for last several decades and thus hazard may be increasing in Mongolia. Temperature is increasing with high confidence in all regions. Precipitation are slightly decreasing with medium confidence across the country, especially in northern and central regions. Exposure would also be increasing especially in northern, central and western regions, because livestock population are concentrating these regions after 1990. Generally, less productive ecosystems (e.g. few plant productivity and less species richness) are vulnerable to extreme climatic events such as drought. In that sense, southern region may be more vulnerable to climate changes than other regions. However, if we focus on pastoral mobility forms for drought, we get contractive conclusions. Pastoralists in southern region keep mobility to variable and scarce vegetation while pastoralists in northern region less mobile because of stable and much vegetation. Exclusive managements in northern region is able to maximized the number of livestock only under stable precipitation regimes. But at the same time, it is difficult to escape from hazardous areas when it is drought. Thus, in term of rangeland management, northern region would be more vulnerable to increase of drought intensity. Although northern and

  14. Load calculation and system evaluation for electric vehicle climate control

    International Nuclear Information System (INIS)

    Aceves-Saborio, S.; Comfort, W.J.

    1994-01-01

    Providing air conditioning for electric vehicles (EV's) represents an important challenge, because vapor-compression air conditioners, which are common in gasoline-powered vehicles, may consume a substantial part of the total energy stored in the EV battery. The authors' work has two major parts: a cooling and heating load calculation for EV's, and an evaluation of several systems that can be used to provide the desired cooling and heating in EV's. Four cases are studied: short-range and full-range EV's are each analyzed twice, first with the regular vehicle equipment, and then with a fan and heat-reflecting windows, to reduce hot soak. Results indicate that for the batteries currently available for EV propulsion, an ice storage system has the minimum weight of all the systems considered. Vapor-compression air conditioners have the minimum for battery storage capacities above 270 kJ/kg

  15. Dynamics of the larch taiga-permafrost coupled system in Siberia under climate change

    International Nuclear Information System (INIS)

    Zhang Ningning; Yasunari, Tetsuzo; Ohta, Takeshi

    2011-01-01

    Larch taiga, also known as Siberian boreal forest, plays an important role in global and regional water-energy-carbon (WEC) cycles and in the climate system. Recent in situ observations have suggested that larch-dominated taiga and permafrost behave as a coupled eco-climate system across a broad boreal zone of Siberia. However, neither field-based observations nor modeling experiments have clarified the synthesized dynamics of this system. Here, using a new dynamic vegetation model coupled with a permafrost model, we reveal the processes of interaction between the taiga and permafrost. The model demonstrates that under the present climate conditions in eastern Siberia, larch trees maintain permafrost by controlling the seasonal thawing of permafrost, which in turn maintains the taiga by providing sufficient water to the larch trees. The experiment without permafrost processes showed that larch would decrease in biomass and be replaced by a dominance of pine and other species that suffer drier hydroclimatic conditions. In the coupled system, fire not only plays a destructive role in the forest, but also, in some cases, preserves larch domination in forests. Climate warming sensitivity experiments show that this coupled system cannot be maintained under warming of about 2 deg. C or more. Under such conditions, a forest with typical boreal tree species (dark conifer and deciduous species) would become dominant, decoupled from the permafrost processes. This study thus suggests that future global warming could drastically alter the larch-dominated taiga-permafrost coupled system in Siberia, with associated changes of WEC processes and feedback to climate.

  16. Dynamics of the larch taiga-permafrost coupled system in Siberia under climate change

    Energy Technology Data Exchange (ETDEWEB)

    Zhang Ningning [Graduate School of Environmental Studies, Nagoya University, Nagoya, Aichi 464-8601 (Japan); Yasunari, Tetsuzo [Hydrospheric Atmospheric Research Center, Nagoya University, Nagoya 464-8601 (Japan); Ohta, Takeshi, E-mail: zhangningning@lasg.iap.ac.cn [Study Consortium for Earth-Life Interactive Systems (SELIS) of Nagoya University, Nagoya (Japan)

    2011-04-15

    Larch taiga, also known as Siberian boreal forest, plays an important role in global and regional water-energy-carbon (WEC) cycles and in the climate system. Recent in situ observations have suggested that larch-dominated taiga and permafrost behave as a coupled eco-climate system across a broad boreal zone of Siberia. However, neither field-based observations nor modeling experiments have clarified the synthesized dynamics of this system. Here, using a new dynamic vegetation model coupled with a permafrost model, we reveal the processes of interaction between the taiga and permafrost. The model demonstrates that under the present climate conditions in eastern Siberia, larch trees maintain permafrost by controlling the seasonal thawing of permafrost, which in turn maintains the taiga by providing sufficient water to the larch trees. The experiment without permafrost processes showed that larch would decrease in biomass and be replaced by a dominance of pine and other species that suffer drier hydroclimatic conditions. In the coupled system, fire not only plays a destructive role in the forest, but also, in some cases, preserves larch domination in forests. Climate warming sensitivity experiments show that this coupled system cannot be maintained under warming of about 2 deg. C or more. Under such conditions, a forest with typical boreal tree species (dark conifer and deciduous species) would become dominant, decoupled from the permafrost processes. This study thus suggests that future global warming could drastically alter the larch-dominated taiga-permafrost coupled system in Siberia, with associated changes of WEC processes and feedback to climate.

  17. Good Practice in Designing and Implementing National Monitoring Systems for Adaptation to Climate Change

    DEFF Research Database (Denmark)

    Naswa, Prakriti; Trærup, Sara Lærke Meltofte; Bouroncle, Claudia

    In this report, we identify, analyse and compare international good practices in the design and implementation of national monitoring and evaluating indicator systems for climate change adaptation. This first chapter provides an introduction to the context and key terminology in the domain...

  18. The climate-wildfire-air quality system: interactions and feedbacks across spatial and temporal scales

    Science.gov (United States)

    E. Natasha Stavros; Donald McKenzie; Narasimhan. Larkin

    2014-01-01

    Future climate change and its effects on social and ecological systems present challenges for preserving valued ecosystem services, including local and regional air quality. Wildfire is a major source of air-quality impact in some locations, and a substantial contributor to pollutants of concern, including nitrogen oxides and particulate matter, which are regulated to...

  19. Adapting Nyando smallholder farming systems to climate change and variability through modelling

    NARCIS (Netherlands)

    Recha, T.O.; Gachene, C.K.K.; Claessens, L.F.G.

    2017-01-01

    This study was done in Nyando, Kenya to model maize production under different climate scenarios and project the yields up to 2030 and 2050 using Decision Support System for Agrotechnology Transfer (DSSAT) under rain fed conditions. Three maize varieties were used; Katumani Comp B as early maturing

  20. On the role of the Agulhas system in ocean circulation and climate

    NARCIS (Netherlands)

    Beal, L.M.; de Ruijter, W.P.M.; Biastoch, A.; Zahn, R.; SCOR/WCRP/IAPSO Working Group 136; Zinke, J.; Ridderinkhof, H.

    2011-01-01

    The Atlantic Ocean receives warm, saline water from the Indo-Pacific Ocean through Agulhas leakage around the southern tip of Africa. Recent findings suggest that Agulhas leakage is a crucial component of the climate system and that ongoing increases in leakage under anthropogenic warming could

  1. Energy systems and climate policy - Long-term scenarios for an uncertain future

    NARCIS (Netherlands)

    Vuuren, D.P. van

    2007-01-01

    In this thesis various forms of scenario analysis are discussed both to explore 1) how energy system and associated greenhouse gas emissions may develop in the absence of climate policy and 2) how strategies aimed at drastically reducing greenhouse gas emissions may turn out. As uncertainties

  2. Performance of laying hens and economic viability of different climatization systems

    Directory of Open Access Journals (Sweden)

    Gabriela F. Silva

    2013-06-01

    Full Text Available Since thermal environment affects production, egg quality and laying hens’ mortality rates, it is highly relevant to control the thermal environment within poultry houses so that the best financial profits could be obtained. Three commercial poultry houses with different climatization systems are analyzed in current research: a poultry house with tunnel-like ventilation and pad cooling; a poultry house with natural ventilation and nebulization; a poultry house with simple natural ventilation. Their thermal environment, production, egg quality and laying hens’ mortality rates among different poultry houses and at different areas of the same poultry house are compared. Economic profits based on difference in electric energy consumption by climatization systems and on the laying hens’ productivity of each poultry house are calculated. Electricity meters were installed within the electrical circuits of the climatization and light systems of the three poultry houses. Data were registered between December 2011 and March 2012 and results showed that all the poultry houses featured heterogeneity in internal thermal environment with faults in the climatization systems. Important differences were reported in egg production and quality caused by overheating. The poultry house with tunnel-like ventilation and pad cooling had the best thermal isolation from the external environment that resulted in a 12.04% improvement in production, decrease between 30 and 40% in laying hens’ mortality rates and the best economic result.

  3. High Performance Work System, HRD Climate and Organisational Performance: An Empirical Study

    Science.gov (United States)

    Muduli, Ashutosh

    2015-01-01

    Purpose: This paper aims to study the relationship between high-performance work system (HPWS) and organizational performance and to examine the role of human resource development (HRD) Climate in mediating the relationship between HPWS and the organizational performance in the context of the power sector of India. Design/methodology/approach: The…

  4. Introducing integrated food-energy systems that work for people and climate

    Energy Technology Data Exchange (ETDEWEB)

    Bogdanski, Anne [Food and Agriculture Organisation of the United Nations (FAO), Rome (Italy)

    2011-07-01

    Bioenergy can be part of the implementation of climate-smart agricultural development. However, it is crucial to develop bioenergy operations in ways that mitigate risks and harness benefits. Integrated Food-Energy Systems (IFES) can play an important role in doing so. (orig.)

  5. Enhancing resilience of farmer seed system to climate-induced stresses

    NARCIS (Netherlands)

    Kansiime, Monica K.; Mastenbroek, Astrid

    2016-01-01

    Given the challenges facing African agriculture resulting from climate-induced stresses, building resilience is a priority. Seed systems are important for enhancing such resilience as seed security has direct links to food security, and resilient livelihoods in general. Using data from a case

  6. Climate Science: How Earth System Models are Reshaping the Science Policy Interface.

    Science.gov (United States)

    Ruane, Alex

    2015-01-01

    This talk is oriented at a general audience including the largest French utility company, and will describe the basics of climate change before moving into emissions scenarios and agricultural impacts that we can test with our earth system models and impacts models.

  7. Direct nitrous oxide emissions in Mediterranean climate cropping systems

    NARCIS (Netherlands)

    Cayuela, Maria L.; Aguilera, Eduardo; Sanz-Cobena, Alberto; Adams, Dean C.; Abalos Rodriguez, Diego; Barton, Louise; Ryals, Rebecca; Silver, Whendee L.; Alfaro, Marta A.; Pappa, Valentini A.; Bouwman, Lex; Lassaletta, Luis

    2017-01-01

    Many recent reviews and meta-analyses of N2O emissions do not include data from Mediterranean studies. In this paper we present a meta-analysis of the N2O emissions from Mediterranean cropping systems, and propose a more robust and reliable regional emission factor (EF) for

  8. Climate change adaptation for the US national wildlife refuge system

    Science.gov (United States)

    Brad Griffith; J. Michael Scott; Robert Adamcik; Daniel Ashe; Brian Czech; Robert Fischman; Patrick Gonzalez; Joshua Lawler; A. David McGuire; Anna. Pidgorna

    2009-01-01

    Since its establishment in 1903, the National Wildlife Refuge System (NWRS) has grown to 635 units and 37 Wetland Management Districts in the United States and its territories. These units provide the seasonal habitats necessary for migratory waterfowl and other species to complete their annual life cycles. Habitat conversion and fragmentation, invasive species,...

  9. Impact of climate change on human health and health systems in Tanzania: a review.

    Science.gov (United States)

    Mboera, Leonard E G; Mayala, Benjamin K; Kweka, Eliningaya J; Mazigo, Humphrey D

    2011-12-01

    Climate change (CC) has a number of immediate and long-term impacts on the fundamental determinants of human health. A number of potential human health effects have been associated either directly or indirectly with global climate change. Vulnerability to the risks associated with CC may exacerbate ongoing socio-economic challenges. The objective of this review was to analyse the potential risk and vulnerability in the context of climate-sensitive human diseases and health system in Tanzania. Climate sensitive vector- and waterborne diseases and other health related problems and the policies on climate adaptation in Tanzania during the past 50 years are reviewed. The review has shown that a number of climate-associated infectious disease epidemics have been reported in various areas of the country; mostly being associated with increase in precipitation and temperature. Although, there is no single policy document that specifically addresses issues of CC in the country, the National Environmental Management Act of 1997 recognizes the importance of CC and calls for the government to put up measures to address the phenomenon. A number of strategies and action plans related to CC are also in place. These include the National Biodiversity Strategy and Action Plan, the National Action Programme, and the National Bio-safety Framework. The government has put in place a National Climate Change Steering Committee and the National Climate Change Technical Committee to oversee and guide the implementation of CC activities in the country. Recognizing the adverse impacts of natural disasters and calamities, the government established a Disaster Management Division under the Prime Minister's Office. Epidemic Preparedness and Response Unit of the Ministry of Health and Social Welfare is responsible for emergency preparedness, mostly disease outbreaks. However, specific climate changes associated with human health issues are poorly addressed in the MoHSW strategies and the national

  10. Energy analysis of the personalized ventilation system in hot and humid climates

    DEFF Research Database (Denmark)

    Schiavon, S.; Melikov, Arsen Krikor; Sekhar, C.

    2010-01-01

    , inhaled air quality, thermal comfort, and self-estimated productivity. Little is known about its energy performance. In this study, the energy consumption of a personalized ventilation system introduced in an office building located in a hot and humid climate (Singapore) has been investigated by means...... effectiveness of PV; (b) increasing the maximum allowed room air temperature due to PV capacity to control the microclimate; (c) supplying the outdoor air only when the occupant is at the desk. The strategy to control the supply air temperature does not affect the energy consumption in a hot and humid climate....

  11. Risks of Climate Change with Respect to the Singapore-Malaysia High Speed Rail System

    OpenAIRE

    Sazrul Leena Binti Sa’adin; Sakdirat Kaewunruen; David Jaroszweski

    2016-01-01

    Warming of the climate system is unequivocal, and many of the observed changes are unprecedented over the past five decades. Globally, the atmosphere and the ocean are becoming increasingly warmer, the amount of ice on the earth is decreasing over the oceans, and the sea level has risen. According to the Intergovernmental Panel on Climate Change, the average increase in global temperature (combined land and surface) between the 1850–1900 period and the 2003–2012 period was 0.78 °C (0.72 to 0....

  12. Historical and idealized climate model experiments: an intercomparison of Earth system models of intermediate complexity

    DEFF Research Database (Denmark)

    Eby, M.; Weaver, A. J.; Alexander, K.

    2013-01-01

    Both historical and idealized climate model experiments are performed with a variety of Earth system models of intermediate complexity (EMICs) as part of a community contribution to the Intergovernmental Panel on Climate Change Fifth Assessment Report. Historical simulations start at 850 CE...... and continue through to 2005. The standard simulations include changes in forcing from solar luminosity, Earth's orbital configuration, CO2, additional greenhouse gases, land use, and sulphate and volcanic aerosols. In spite of very different modelled pre-industrial global surface air temperatures, overall 20...

  13. Climate and weather of the Sun-Earth system (CAWSES) highlights from a priority program

    CERN Document Server

    Lübken, Franz-Josef

    2012-01-01

    CAWSES (Climate and Weather of the Sun-Earth System) is the most important scientific program of SCOSTEP (Scientific Committee on Solar-Terrestrial Physics). CAWSES has triggered a scientific priority program within the German Research Foundation for a period of 6 years. Approximately 30 scientific institutes and 120 scientists were involved in Germany with strong links to international partners. The priority program focuses on solar influence on climate, atmospheric coupling processes, and space climatology. This book summarizes the most important results from this program covering some impor

  14. Canadian snow and sea ice: assessment of snow, sea ice, and related climate processes in Canada's Earth system model and climate-prediction system

    Science.gov (United States)

    Kushner, Paul J.; Mudryk, Lawrence R.; Merryfield, William; Ambadan, Jaison T.; Berg, Aaron; Bichet, Adéline; Brown, Ross; Derksen, Chris; Déry, Stephen J.; Dirkson, Arlan; Flato, Greg; Fletcher, Christopher G.; Fyfe, John C.; Gillett, Nathan; Haas, Christian; Howell, Stephen; Laliberté, Frédéric; McCusker, Kelly; Sigmond, Michael; Sospedra-Alfonso, Reinel; Tandon, Neil F.; Thackeray, Chad; Tremblay, Bruno; Zwiers, Francis W.

    2018-04-01

    The Canadian Sea Ice and Snow Evolution (CanSISE) Network is a climate research network focused on developing and applying state-of-the-art observational data to advance dynamical prediction, projections, and understanding of seasonal snow cover and sea ice in Canada and the circumpolar Arctic. This study presents an assessment from the CanSISE Network of the ability of the second-generation Canadian Earth System Model (CanESM2) and the Canadian Seasonal to Interannual Prediction System (CanSIPS) to simulate and predict snow and sea ice from seasonal to multi-decadal timescales, with a focus on the Canadian sector. To account for observational uncertainty, model structural uncertainty, and internal climate variability, the analysis uses multi-source observations, multiple Earth system models (ESMs) in Phase 5 of the Coupled Model Intercomparison Project (CMIP5), and large initial-condition ensembles of CanESM2 and other models. It is found that the ability of the CanESM2 simulation to capture snow-related climate parameters, such as cold-region surface temperature and precipitation, lies within the range of currently available international models. Accounting for the considerable disagreement among satellite-era observational datasets on the distribution of snow water equivalent, CanESM2 has too much springtime snow mass over Canada, reflecting a broader northern hemispheric positive bias. Biases in seasonal snow cover extent are generally less pronounced. CanESM2 also exhibits retreat of springtime snow generally greater than observational estimates, after accounting for observational uncertainty and internal variability. Sea ice is biased low in the Canadian Arctic, which makes it difficult to assess the realism of long-term sea ice trends there. The strengths and weaknesses of the modelling system need to be understood as a practical tradeoff: the Canadian models are relatively inexpensive computationally because of their moderate resolution, thus enabling their

  15. Just-in time system and climate change

    Energy Technology Data Exchange (ETDEWEB)

    Caceres, J.; Richards, D.

    1999-10-01

    The recent trends in freight transportation and its relationship with production and distribution were analyzed. This was done in an effort to help policy makers develop strategies to reduce greenhouse gas emissions and to develop a freight transportation system and a route system that is environmentally, economically and socially sustainable. One of the ways to find a solution is to restructure the overall industry organization and its link to transportation and the economy. However, this method is met with a lot of resistance by policy makers. Another method would be to find a way to delay or avoid restructuring; for example, by using unlimited greenhouse gas emissions trading. By doing so, emissions reductions would be targeted where they are most economically efficient. 18 refs., 1 fig.

  16. Control of climatics environments to enhance reliability of electronics systems

    International Nuclear Information System (INIS)

    Sekhon, K.S.

    1979-01-01

    The techniques to control temperature and humidity to reduce failures in semiconductor devices are presented. The maximum operating junction temperature affects the electronic system reliability, and the equation for the junction temperature of the device shows that internal and external thermal resistances affect component life. Junction temperature reductions up to 60 C were achieved by the development of heat pipes for microcircuits, which will enhance electronics life by 32 times. Humidity control by improved sealing and use of heaters to prevent moisture condensation proved difficult and costly, and high pressure dehydrators were heavy and expensive. Therefore, low pressure dehydrator was developed which is smaller, lighter, and less expensive. The development of low pressure dehumidifying system including test data is presented

  17. Quantifying conditional risks for water and energy systems using climate information

    Science.gov (United States)

    Lall, U.

    2016-12-01

    There has been a growing recognition of the multi-scale spatio-temporal organization of climate dynamics, and its implications for predictable, structured risk exposure to populations and infrastructure systems. At the most base level is an understanding that there are some identifiable climate modes, such as ENSO, that are associated with such outcomes. This has led to the emergence of a small cottage industry of analysts who relate different "climate indices" to specific regional outcomes. Such efforts and the associated media interest in these simplified "stories" have led to an increasing appreciation of the phenomenon, and some formal and informal efforts at decision making using such information. However, as was demonstrated through the 2014-16 El Nino forecasting season, many climate scientists over-emphasized the potential risks, while others cautioned the media as to the caveats and uncertainties associated with assuming that the forecasts of ENSO and the expected teleconnections may pan out. At least in certain sectors and regions, significant efforts or expectations as to outcomes were put in place, and some were beneficial, while others failed to manifest. Climate informed predictions for water and energy systems can be thought of as efforts to infer conditional distributions of specific outcomes given information on climate state. Invariably, the climate state may be presented as a very high dimensional spatial set of variables, with limited temporal sampling, while the water and energy attributes may be regional and constitute a much smaller dimension. One may, of course, be interested in the fact that the same climate state may lead to synchronous positive and negative effects across many locations, as may be expected under mid-latitude stationary and transient wave interaction. In this talk, I will provide examples of a few modern statistical and machine learning tools that allow a decomposition of the high dimensional climate state and its relation

  18. Impact of climate change on operations and planning of Hydro-Quebec's generation system

    International Nuclear Information System (INIS)

    Raymond, M.P.; Houle, B.; Robert, S.

    2008-01-01

    Studies that are underway at OURANOS indicate that some of the probable climate change scenarios in the coming years will have an effect on Quebec's watersheds hydrology and on temperatures. For Hydro-Quebec, who draws more than 95% of its generation from hydraulic resources and whose electricity loads depend pretty much on temperatures, such climate changes will definitely have a significant impact on many aspects of the planning and operations of its system. Our presentation will be divided into three parts. First, to bridge the gap between climate change scientists and water managers, we will present a list of the types of parameters needed from the scientists in order for the water managers to assess the impacts of climate changes on a hydroelectric system such as Hydro-Quebec's. These parameters will include changes in annual and seasonal distribution and variability of natural inflows and, most importantly, the timing of the changes in the coming years. The second part will focus on the types of adaptive decisions and strategies that will have to be taken ahead of time in order to implement the changes on a hydroelectric generation system such as Hydro-Quebec's. They will cover different areas such as generation planning, operations planning and optimization, refurbishment and replacement of infrastructures, dam safety, flood control and protection, maintenance planning and reliability. Finally, we will present more specific results of the impact of some climate change scenarios on Hydro-Quebec's overall generation system, showing differences between regions, and a case study on one of its river systems. (author)

  19. Climate Literacy: Progress in Climate and Global Change Undergraduate Courses in Meteorology and Earth System Science Programs at Jackson State University

    Science.gov (United States)

    Reddy, S. R.; Tuluri, F.; Fadavi, M.

    2017-12-01

    JSU Meteorology Program will be offering AMS Climate Studies undergraduate course under MET 210: Climatology in spring 2013. AMS Climate Studies is offered as a 3 credit hour laboratory course with 2 lectures and 1 lab sessions per week. Although this course places strong intellectual demands upon each student, the instructors' objective is to help each student to pass the course with an adequate understanding of the fundamentals and advanced and advanced courses. AMS Climate Studies is an introductory college-level course developed by the American Meteorological Society for implementation at undergraduate institutions nationwide. The course places students in a dynamic and highly motivational educational environment where they investigate Earth's climate system using real-world environmental data. The AMS Climate Studies course package consists of a textbook, investigations manual, course website, and course management system-compatible files. Instructors can use these resources in combinations that make for an exciting learning experience for their students. This is a content course in Earth Science. It introduces a new concept that views Earth as a synergistic physical system applied concepts of climatology, for him/her to understand basic atmospheric/climate processes, physical and dynamical climatology, regional climatology, past and future climates and statistical analysis using climate data and to be prepared to profit from studying more of interrelated phenomenon governed by complex processes involving the atmosphere, the hydrosphere, the biosphere, and the solid Earth. The course emphasizes that the events that shape the physical, chemical, and biological processes of the Earth do not occur in isolation. Rather, there is a delicate relationship between the events that occur in the ocean, atmosphere, and the solid Earth. The course provides a multidimensional approach in solving scientific issues related to Earth-related sciences,

  20. Avaliação de mudanças na frequência de sistemas frontais sobre o sul da América do Sul em projeções do clima futuro Changes in frequency of frontal systems over southern of South America in projections of future climate

    Directory of Open Access Journals (Sweden)

    Kelen Martins Andrade

    2012-06-01

    Full Text Available A frequência de sistemas frontais sobre o sul da América do Sul identificada na reanálise do NCEP/NCAR é comparada com as simulações dos modelos GFDL e Hadley e projetadas no clima futuro. As análises para identificar casos de sistemas frontais foram feitas em três regiões que cobrem áreas do Brasil, Uruguai, Paraguai e Argentina. Esta análise foi realizada com o fim de investigar as características de eventos extremos no clima presente e em projeções do clima futuro. Para o clima presente observou-se que os modelos analisados simularam bem as características sinóticas dos sistemas frontais. No entanto, quando se compara a frequência de ocorrência das frentes entre a reanálise e as simulações, observa-se que os modelos GFDL e Hadley superestimam seu número e apenas o GFDL consegue reproduzir a variabilidade mensal. O modelo Hadley superestima ainda mais em relação ao NCEP e GFDL no clima presente. A tendência positiva no número de frentes observada na área 3 (65ºW-60ºW, 33ºS-38ºS nos resultados da reanálise não é simulada pelos modelos. Quando os casos mais intensos são selecionados, o modelo GFDL é o que superestima mais o número de sistemas frontais. Os dois modelos indicam aumento na frequência de sistemas frontais no futuro nas três áreas, porém em menor proporção na área 3.The frequency of frontal systems reaching the south of South America is compared with reanalysis NCEP/NCAR and results of GFDL and Hadley models for the future climate. Three regions were analyzed to identify the frontal systems, in areas of Brazil, Uruguay, Paraguay and Argentina. The following criteria were used: increase of sea surface pressure, reduction of the temperature and change of the meridional wind at 850hPa, in two consecutive days. Selected cases with temperature drop above five degrees, considered the most intense, were also analyzed. For the present climate it was observed that the models simulated well the

  1. Impacts of Rainfall Variability and Expected Rainfall Changes on Cost-Effective Adaptation of Water Systems to Climate Change

    NARCIS (Netherlands)

    Pol, van der T.D.; Ierland, van E.C.; Gabbert, S.G.M.; Weikard, H.P.; Hendrix, E.M.T.

    2015-01-01

    Stormwater drainage and other water systems are vulnerable to changes in rainfall and runoff and need to be adapted to climate change. This paper studies impacts of rainfall variability and changing return periods of rainfall extremes on cost-effective adaptation of water systems to climate change

  2. The vehicle data translator V3.0 system description.

    Science.gov (United States)

    2011-05-30

    With funding and support from the USDOT RITA and direction from the FHWA Road Weather Management Program, NCAR is developing a Vehicle Data Translator (VDT) software system that incorporates vehicle-based measurements of the road and surrounding atmo...

  3. Community Earth System Model (CESM) Tutorial 2016 Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Lamarque, Jean-Francois [Univ. Corporation for Atmospheric Research (UCAR) and National Center for Atmospheric Research (NCAR) and Climate and Global Dynamics Laboratory (CGD), Boulder, CO (United States)

    2017-05-09

    For the 2016 tutorial, NCAR/CGD requested a total budget of $70,000 split equally between DOE and NSF. The funds were used to support student participation (travel, lodging, per diem, etc.). Lectures and practical session support was primarily provided by local participants at no additional cost (see list below). The seventh annual Community Earth System Model (CESM) tutorial (2016) for students and early career scientists was held 8 – 12 August 2016. As has been the case over the last few years, this event was extremely successful and there was greater demand than could be met. There was continued interest in support of the NSF’s EaSM Infrastructure awards, to train these awardees in the application of the CESM. Based on suggestions from previous tutorial participants, the 2016 tutorial experience again provided direct connection to Yellowstone for each individual participant (rather than pairs), and used the NCAR Mesa Library. The 2016 tutorial included lectures on simulating the climate system and practical sessions on running CESM, modifying components, and analyzing data. These were targeted to the graduate student level. In addition, specific talks (“Application” talks) were introduced this year to provide participants with some in-depth knowledge of some specific aspects of CESM.

  4. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D. [Home Innovation Research Labs, Upper Marlboro, MD (United States); Wiehagen, J. [Home Innovation Research Labs, Upper Marlboro, MD (United States)

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate.

  5. Coupled water-energy modelling to assess climate change impacts on the Iberian Power System

    DEFF Research Database (Denmark)

    Pereira Cardenal, Silvio Javier; Madsen, H.; Riegels, N.

    and marginal costs of the power producers. Two effects of climate change on the power system were studied: changes in the hydropower production caused by changes in precipitation and temperature, and changes in the electricity demand over the year caused by temperature changes. A rainfall-runoff model......Water resources systems and power systems are strongly linked; water is needed for most power generation technologies, and electricity is required in every stage of water usage. In the Iberian Peninsula, climate change is expected to have a negative impact on the power system: changes in runoff...... was established to estimate the impact of precipitation and temperature changes on reservoir inflows. The model was calibrated using observed precipitation, temperature and river discharge time series. Potential evapotranspiration was estimated from temperature data, and snow accumulation/melt was modelled using...

  6. Sensitivity of marine systems to climate and fishing: Concepts, issues and management responses

    DEFF Research Database (Denmark)

    Perry, Ian; Cury, Philippe; Brander, Keith

    2010-01-01

    forcing. Fishing is unlikely to alter the sensitivities of individual finfish and invertebrates to climate forcing. It will remove individuals with specific characteristics from the gene pool, thereby affecting structure and function at higher levels of organisation. Fishing leads to a loss of older age......Modern fisheries research and management must understand and take account of the interactions between climate and fishing, rather than try to disentangle their effects and address each separately. These interactions are significant drivers of change in exploited marine systems and have...... but will be manifest as the accumulation of the interactions between fishing and climate variability — unless threshold limits are exceeded. Marine resource managers need to develop approaches which maintain the resilience of individuals, populations, communities and ecosystems to the combined and interacting effects...

  7. Satellite lidar and radar: Key components of the future climate observing system

    Science.gov (United States)

    Winker, D. M.

    2017-12-01

    Cloud feedbacks represent the dominant source of uncertainties in estimates of climate sensitivity and aerosols represent the largest source of uncertainty in climate forcing. Both observation of long-term changes and observational constraints on the processes responsible for those changes are necessary. The existing 30-year record of passive satellite observations has not yet provided constraints to significantly reduce these uncertainties, though. We now have more than a decade of experience with active sensors flying in the A-Train. These new observations have demonstrated the strengths of active sensors and the benefits of continued and more advanced active sensors. This talk will discuss the multiple roles for active sensors as an essential component of a global climate observing system.

  8. Modelling sequential Biosphere systems under Climate change for radioactive waste disposal. Project BIOCLIM

    International Nuclear Information System (INIS)

    Texier, D.; Degnan, P.; Loutre, M.F.; Lemaitre, G.; Paillard, D.; Thorne, M.

    2000-01-01

    The BIOCLIM project (Modelling Sequential Biosphere systems under Climate change for Radioactive Waste Disposal) is part of the EURATOM fifth European framework programme. The project was launched in October 2000 for a three-year period. It is coordinated by ANDRA, the French national radioactive waste management agency. The project brings together a number of European radioactive waste management organisations that have national responsibilities for the safe disposal of radioactive wastes, and several highly experienced climate research teams. Waste management organisations involved are: NIREX (UK), GRS (Germany), ENRESA (Spain), NRI (Czech Republic) and ANDRA (France). Climate research teams involved are: LSCE (CEA/CNRS, France), CIEMAT (Spain), UPMETSIMM (Spain), UCL/ASTR (Belgium) and CRU (UEA, UK). The Environmental Agency for England and Wales provides a regulatory perspective. The consulting company Enviros Consulting (UK) assists ANDRA by contributing to both the administrative and scientific aspects of the project. This paper describes the project and progress to date. (authors)

  9. Arctic systems in the Quaternary: ecological collision, faunal mosaics and the consequences of a wobbling climate.

    Science.gov (United States)

    Hoberg, E P; Cook, J A; Agosta, S J; Boeger, W; Galbreath, K E; Laaksonen, S; Kutz, S J; Brooks, D R

    2017-07-01

    Climate oscillations and episodic processes interact with evolution, ecology and biogeography to determine the structure and complex mosaic that is the biosphere. Parasites and parasite-host assemblages are key components in a general explanatory paradigm for global biodiversity. We explore faunal assembly in the context of Quaternary time frames of the past 2.6 million years, a period dominated by episodic shifts in climate. Climate drivers cross a continuum from geological to contemporary timescales and serve to determine the structure and distribution of complex biotas. Cycles within cycles are apparent, with drivers that are layered, multifactorial and complex. These cycles influence the dynamics and duration of shifts in environmental structure on varying temporal and spatial scales. An understanding of the dynamics of high-latitude systems, the history of the Beringian nexus (the intermittent land connection linking Eurasia and North America) and downstream patterns of diversity depend on teasing apart the complexity of biotic assembly and persistence. Although climate oscillations have dominated the Quaternary, contemporary dynamics are driven by tipping points and shifting balances emerging from anthropogenic forces that are disrupting ecological structure. Climate change driven by anthropogenic forcing has supplanted a history of episodic variation and is eliminating ecological barriers and constraints on development and distribution for pathogen transmission. A framework to explore interactions of episodic processes on faunal structure and assembly is the Stockholm Paradigm, which appropriately shifts the focus from cospeciation to complexity and contingency in explanations of diversity.

  10. Systems Approach to Climate, Water, and Diarrhea in Hubli-Dharwad, India.

    Science.gov (United States)

    Mellor, Jonathan; Kumpel, Emily; Ercumen, Ayse; Zimmerman, Julie

    2016-12-06

    Anthropogenic climate change will likely increase diarrhea rates for communities with inadequate water, sanitation, or hygiene facilities including those with intermittent water supplies. Current approaches to study these impacts typically focus on the effect of temperature on all-cause diarrhea while excluding precipitation and diarrhea etiology while not providing actionable adaptation strategies. We develop a partially mechanistic, systems approach to estimate future diarrhea prevalence and design adaptation strategies. The model incorporates downscaled global climate models, water quality data, quantitative microbial risk assessment, and pathogen prevalence in an agent-based modeling framework incorporating precipitation and diarrhea etiology. It is informed using water quality and diarrhea data from Hubli-Dharwad, India-a city with an intermittent piped water supply exhibiting seasonal water quality variability vulnerable to climate change. We predict all-cause diarrhea prevalence to increase by 4.9% (Range: 1.5-9.0%) by 2011-2030, 11.9% (Range: 7.1-18.2%) by 2046-2065, and 18.2% (Range: 9.1-26.2%) by 2080-2099. Rainfall is an important modifying factor. Rotavirus prevalence is estimated to decline by 10.5% with Cryptosporidium and E. coli prevalence increasing by 9.9% and 6.3%, respectively, by 2080-2099 in this setting. These results suggest that ceramic water filters would be recommended as a climate adaptation strategy over chlorination. This work highlights the vulnerability of intermittent water supplies to climate change and the urgent need for improvements.

  11. Assessment of the climate change impacts on fecal coliform contamination in a tidal estuarine system.

    Science.gov (United States)

    Liu, Wen-Cheng; Chan, Wen-Ting

    2015-12-01

    Climate change is one of the key factors affecting the future microbiological water quality in rivers and tidal estuaries. A coupled 3D hydrodynamic and fecal coliform transport model was developed and applied to the Danshuei River estuarine system for predicting the influences of climate change on microbiological water quality. The hydrodynamic and fecal coliform model was validated using observational salinity and fecal coliform distributions. According to the analyses of the statistical error, predictions of the salinity and the fecal coliform concentration from the model simulation quantitatively agreed with the observed data. The validated model was then applied to predict the fecal coliform contamination as a result of climate change, including the change of freshwater discharge and the sea level rise. We found that the reduction of freshwater discharge under climate change scenarios resulted in an increase in the fecal coliform concentration. The sea level rise would decrease fecal coliform distributions because both the water level and the water volume increased. A reduction in freshwater discharge has a negative impact on the fecal coliform concentration, whereas a rising sea level has a positive influence on the fecal coliform contamination. An appropriate strategy for the effective microbiological management in tidal estuaries is required to reveal the persistent trends of climate in the future.

  12. Scenario Analysis With Economic-Energy Systems Models Coupled to Simple Climate Models

    Science.gov (United States)

    Hanson, D. A.; Kotamarthi, V. R.; Foster, I. T.; Franklin, M.; Zhu, E.; Patel, D. M.

    2008-12-01

    Here, we compare two scenarios based on Stanford University's Energy Modeling Forum Study 22 on global cooperative and non-cooperative climate policies. In the former, efficient transition paths are implemented including technology Research and Development effort, energy conservation programs, and price signals for greenhouse gas (GHG) emissions. In the non-cooperative case, some countries try to relax their regulations and be free riders. Total emissions and costs are higher in the non-cooperative scenario. The simulations, including climate impacts, run to the year 2100. We use the Argonne AMIGA-MARS economic-energy systems model, the Texas AM University's Forest and Agricultural Sector Optimization Model (FASOM), and the University of Illinois's Integrated Science Assessment Model (ISAM), with offline coupling between the FASOM and AMIGA-MARS and an online coupling between AMIGA-MARS and ISAM. This set of models captures the interaction of terrestrial systems, land use, crops and forests, climate change, human activity, and energy systems. Our scenario simulations represent dynamic paths over which all the climate, terrestrial, economic, and energy technology equations are solved simultaneously Special attention is paid to biofuels and how they interact with conventional gasoline/diesel fuel markets. Possible low-carbon penetration paths are based on estimated costs for new technologies, including cellulosic biomass, coal-to-liquids, plug-in electric vehicles, solar and nuclear energy. We explicitly explore key uncertainties that affect mitigation and adaptation scenarios.

  13. Impact of climate change on operations and planning of Hydro-Quebec's generation system

    International Nuclear Information System (INIS)

    Raymond, M.P.; Houle, B.; Robert, S.

    2008-01-01

    Hydraulic resources currently account for more than 95 per cent of Hydro-Quebec's generation capacity. Hydro-Quebec also plans to purchase more wind power in the future. However, the utility wind and hydroelectric resources will be affected by climatic change in the future. This paper outlined research needed by hydroelectric and water resource managers in order to accurately determine the impacts of climatic change. Parameters included changes in annual and seasonal distribution as well as changes in the variability of natural inflows. The research will be used to determine the configuration of new projects as well as the refurbishment and replacement of existing infrastructure. Load profiles for the future indicate that electricity use will change, with less heating needed in winter, and more air conditioning required in summer months. The Delta method was used to determine impacts of future inflows and hydrological regimes. A case study of climate change impacts and management strategies for the Outardes River system up to the year 2050 was presented. The study showed that higher inflows are expected to produce more energy. Maintenance planning and flood control techniques were also discussed. The study showed that the effects of climate change on each of Hydro-Quebec's systems is expected to follow a similar pattern to the Outardes system. tabs., figs

  14. The Role of the Agulhas System in Regional and Global Climate

    Science.gov (United States)

    de Ruijter, Wilhelmus P. M.; Beal, Lisa; Biastoch, Arne; Zahn, Rainer

    2013-03-01

    The AGU Chapman Conference on the Agulhas system was the first held on the African continent. There was a feeling of excitement among participants about the great diversity of ongoing research related to the Agulhas Current system, including its role in global and regional climate, its possible influence on human origins in southern Africa, its link to the Madagascar phytoplankton bloom, and its influence on South Atlantic hurricane development (Catarina) through warming related to Agulhas leakage over the past decades.

  15. Stormwater runoff in watersheds: a system for prediciting impacts of development and climate change

    Science.gov (United States)

    Ann Blair; Denise Sanger; Susan Lovelace

    2016-01-01

    The Stormwater Runoff Modeling System (SWARM) enhances understanding of impacts of land-use and climate change on stormwater runoff in watersheds. We developed this singleevent system based on US Department of Agriculture, Natural Resources Conservation Service curve number and unit hydrograph methods. We tested SWARM using US Geological Survey discharge and rain data...

  16. Improved Analysis of Earth System Models and Observations using Simple Climate Models

    Science.gov (United States)

    Nadiga, B. T.; Urban, N. M.

    2016-12-01

    Earth system models (ESM) are the most comprehensive tools we have to study climate change and develop climate projections. However, the computational infrastructure required and the cost incurred in running such ESMs precludes direct use of such models in conjunction with a wide variety of tools that can further our understanding of climate. Here we are referring to tools that range from dynamical systems tools that give insight into underlying flow structure and topology to tools that come from various applied mathematical and statistical techniques and are central to quantifying stability, sensitivity, uncertainty and predictability to machine learning tools that are now being rapidly developed or improved. Our approach to facilitate the use of such models is to analyze output of ESM experiments (cf. CMIP) using a range of simpler models that consider integral balances of important quantities such as mass and/or energy in a Bayesian framework.We highlight the use of this approach in the context of the uptake of heat by the world oceans in the ongoing global warming. Indeed, since in excess of 90% of the anomalous radiative forcing due greenhouse gas emissions is sequestered in the world oceans, the nature of ocean heat uptake crucially determines the surface warming that is realized (cf. climate sensitivity). Nevertheless, ESMs themselves are never run long enough to directly assess climate sensitivity. So, we consider a range of models based on integral balances--balances that have to be realized in all first-principles based models of the climate system including the most detailed state-of-the art climate simulations. The models range from simple models of energy balance to those that consider dynamically important ocean processes such as the conveyor-belt circulation (Meridional Overturning Circulation, MOC), North Atlantic Deep Water (NADW) formation, Antarctic Circumpolar Current (ACC) and eddy mixing. Results from Bayesian analysis of such models using

  17. Detailed performance analysis of realistic solar photovoltaic systems at extensive climatic conditions

    International Nuclear Information System (INIS)

    Gupta, Ankit; Chauhan, Yogesh K.

    2016-01-01

    In recent years, solar energy has been considered as one of the principle renewable energy source for electric power generation. In this paper, single diode photovoltaic (PV) system and double/bypass diode based PV system are designed in MATLAB/Simulink environment based on their mathematical modeling and are validated with a commercially available solar panel. The novelty of the paper is to include the effect of climatic conditions i.e. variable irradiation level, wind speed, temperature, humidity level and dust accumulation in the modeling of both the PV systems to represent a realistic PV system. The comprehensive investigations are made on both the modeled PV systems. The obtained results show the satisfactory performance for realistic models of the PV system. Furthermore, an in depth comparative analysis is carried out for both PV systems. - Highlights: • Modeling of Single diode and Double diode PV systems in MATLAB/Simulink software. • Validation of designed PV systems with a commercially available PV panel. • Acquisition and employment of key climatic factors in modeling of the PV systems. • Evaluation of main model parameters of both the PV systems. • Detailed comparative assessment of both the modeled PV system parameters.

  18. Climate Model Evaluation using New Datasets from the Clouds and the Earth's Radiant Energy System (CERES)

    Science.gov (United States)

    Loeb, Norman G.; Wielicki, Bruce A.; Doelling, David R.

    2008-01-01

    There are some in the science community who believe that the response of the climate system to anthropogenic radiative forcing is unpredictable and we should therefore call off the quest . The key limitation in climate predictability is associated with cloud feedback. Narrowing the uncertainty in cloud feedback (and therefore climate sensitivity) requires optimal use of the best available observations to evaluate and improve climate model processes and constrain climate model simulations over longer time scales. The Clouds and the Earth s Radiant Energy System (CERES) is a satellite-based program that provides global cloud, aerosol and radiative flux observations for improving our understanding of cloud-aerosol-radiation feedbacks in the Earth s climate system. CERES is the successor to the Earth Radiation Budget Experiment (ERBE), which has widely been used to evaluate climate models both at short time scales (e.g., process studies) and at decadal time scales. A CERES instrument flew on the TRMM satellite and captured the dramatic 1998 El Nino, and four other CERES instruments are currently flying aboard the Terra and Aqua platforms. Plans are underway to fly the remaining copy of CERES on the upcoming NPP spacecraft (mid-2010 launch date). Every aspect of CERES represents a significant improvement over ERBE. While both CERES and ERBE measure broadband radiation, CERES calibration is a factor of 2 better than ERBE. In order to improve the characterization of clouds and aerosols within a CERES footprint, we use coincident higher-resolution imager observations (VIRS, MODIS or VIIRS) to provide a consistent cloud-aerosol-radiation dataset at climate accuracy. Improved radiative fluxes are obtained by using new CERES-derived Angular Distribution Models (ADMs) for converting measured radiances to fluxes. CERES radiative fluxes are a factor of 2 more accurate than ERBE overall, but the improvement by cloud type and at high latitudes can be as high as a factor of 5

  19. A bamboo braced frame system for tropical climates

    Directory of Open Access Journals (Sweden)

    Echeverria, J.

    2014-12-01

    Full Text Available A low-cost housing system was developed for use in tropical countries, specifically Haiti, with the aims of minimizing environmental impact (including carbon emissions, maximizing use of local and preferably recycled materials, and using local labor. The housing system integrates low-strength concrete blocks (made using recycled concrete aggregate, an innovative seismically-resistant bamboo frame, earthen plasters, bamboo trusses, and metal deck roofs. The bamboo frame relies on flexural yielding of a short rebar dowel to provide ductile performance at a controlled strength level. The plinth walls below the frame and short rebar dowel protects the bamboo from moisture. The top of a plastic soda bottle is used to protect the rebar from moisture and to seal the base of the bamboo culm, allowing mortar to be introduced into the culm above. This paper focuses on the experimental and analytical results of the flexural yielding of the rebar dowel to establish the structural design of this critical component of the system for resisting wind and seismic loads.En este artículo se presenta un sistema de construcción de viviendas de bajo coste para países tropicales en los cuales existe riesgo sísmico. Los objetivos de este trabajo son generar bajo impacto medioambiental (incluyendo las emisiones de carbono, empleo de materiales locales, preferiblemente reciclados, y mano de obra local. Para esta construcción se han empleado bloques de hormigón de baja resistencia (con agregado reciclado junto con un innovador sistema de pórticos de bambú, botellas de plástico, vigas de bambú y cubiertas de chapa. El comportamiento dúctil de la estructura se garantiza introduciendo una barra de acero en la base del pórtico de bambú. Para proteger el bambú de la humedad, el pórtico se monta sobre un zócalo. Los resultados experimentales y analíticos obtenidos se utilizan para el diseño estructural del sistema frente a cargas de viento y sísmicas.

  20. Unraveling the Importance of Climate Change Resilience in Planning the Future Sustainable Energy System

    Science.gov (United States)

    Tarroja, B.; AghaKouchak, A.; Forrest, K.; Chiang, F.; Samuelsen, S.

    2017-12-01

    In response to concerns regarding the environmental impacts of the current energy resource mix, significant research efforts have been focused on determining the future energy resource mix to meet emissions reduction and environmental sustainability goals. Many of these studies focus on various constraints such as costs, grid operability requirements, and environmental performance, and develop different plans for the rollout of energy resources between the present and future years. One aspect that has not yet been systematically taken into account in these planning studies, however, is the potential impacts that changing climates may have on the availability and performance of key energy resources that compose these plans. This presentation will focus on a case study for California which analyzes the impacts of climate change on the greenhouse gas emissions and renewable resource utilization of an energy resource plan developed by Energy Environmental Economics for meeting the state's year 2050 greenhouse gas goal of 80% reduction in emissions by the year 2050. Specifically, climate change impacts on three aspects of the energy system are investigated: 1) changes in hydropower generation due to altered precipitation, streamflow and runoff patterns, 2) changes in the availability of solar thermal and geothermal power plant capacity due to shifting water availability, and 3) changes in the residential and commercial electric building loads due to increased temperatures. These impacts were discovered to cause the proposed resource plan to deviate from meeting its emissions target by up to 5.9 MMT CO2e/yr and exhibit a reduction in renewable resource penetration of up to 3.1% of total electric energy. The impacts of climate change on energy system performance were found to be mitigated by increasing the flexibility of the energy system through increased storage and electric load dispatchability. Overall, this study highlights the importance of taking into account and

  1. Insulated Concrete Form Walls Integrated With Mechanical Systems in a Cold Climate Test House

    Energy Technology Data Exchange (ETDEWEB)

    Mallay, D.; Wiehagen, J.

    2014-09-01

    Transitioning from standard light frame to a thermal mass wall system in a high performance home will require a higher level of design integration with the mechanical systems. The much higher mass in the ICF wall influences heat transfer through the wall and affects how the heating and cooling system responds to changing outdoor conditions. This is even more important for efficient, low-load homes with efficient heat pump systems in colder climates where the heating and cooling peak loads are significantly different from standard construction. This report analyzes a range of design features and component performance estimates in an effort to select practical, cost-effective solutions for high performance homes in a cold climate. Of primary interest is the influence of the ICF walls on developing an effective air sealing strategy and selecting an appropriate heating and cooling equipment type and capacity. The domestic water heating system is analyzed for costs and savings to investigate options for higher efficiency electric water heating. A method to ensure mechanical ventilation air flows is examined. The final solution package includes high-R mass walls, very low infiltration rates, multi-stage heat pump heating, solar thermal domestic hot water system, and energy recovery ventilation. This solution package can be used for homes to exceed 2012 International Energy Conservation Code requirements throughout all climate zones and achieves the DOE Challenge Home certification.

  2. Desert dust and anthropogenic aerosol interactions in the Community Climate System Model coupled-carbon-climate model

    Directory of Open Access Journals (Sweden)

    N. Mahowald

    2011-02-01

    Full Text Available Coupled-carbon-climate simulations are an essential tool for predicting the impact of human activity onto the climate and biogeochemistry. Here we incorporate prognostic desert dust and anthropogenic aerosols into the CCSM3.1 coupled carbon-climate model and explore the resulting interactions with climate and biogeochemical dynamics through a series of transient anthropogenic simulations (20th and 21st centuries and sensitivity studies. The inclusion of prognostic aerosols into this model has a small net global cooling effect on climate but does not significantly impact the globally averaged carbon cycle; we argue that this is likely to be because the CCSM3.1 model has a small climate feedback onto the carbon cycle. We propose a mechanism for including desert dust and anthropogenic aerosols into a simple carbon-climate feedback analysis to explain the results of our and previous studies. Inclusion of aerosols has statistically significant impacts on regional climate and biogeochemistry, in particular through the effects on the ocean nitrogen cycle and primary productivity of altered iron inputs from desert dust deposition.

  3. An Integrated Control System for Heating and Indoor Climate Applications

    DEFF Research Database (Denmark)

    Tahersima, Fatemeh

    2012-01-01

    which geothermal heat pump, solar driven heat pumps and the other types are categorized as renewable or renewable energy sources. In the present study, we investigated modeling and control of hydronic heat emitters integrated with a ground-source heat pump. Optimization of the system performance...... in terms of energy efficiency, associated energy cost and occupants’ thermal comfort is the main objective to be fulfilled via design of an integrated controller. We also proposed control strategies to manage energy consumption of the building to turn domestic heat demands into a flexible load in the smart...... in order to maximize the heat pump’s efficiency and by this means reduce the power consumption of the heat pump. The hypothesis is that such an optimal point coincides with saturation of at least one of the subsystems control valves. The idea is implemented experimentally using simple PI and on...

  4. Energy systems and climate change: Approaches to formulating responses

    International Nuclear Information System (INIS)

    Wilson, Deborah.

    1993-04-01

    A method is presented for computing the direct and indirect radiative forcings of emissions of carbon dioxide, nitrous oxide and methane and comparing them in terms of their carbon-equivalent radiative forcing potential as a common unit. Examples illustrate application of the method in comparisons of the carbon-equivalent emissions from coal-, oil- and natural gas-based electricity and combined heat and power production assuming near-, medium- and long-term perspectives. The second article provides a systematic approach to calculating the net cost of avoiding greenhouse-gas emissions by adopting individual supply- and demand-side fuel switching and energy efficiency measures instead of proceeding down business as usual energy paths. Individual measures are grouped and ranked to form scenario packages for total and average costs of avoided carbon equivalent emissions. Examples are presented for Sweden, the United States and the state of Karnataka, India. A key finding is that there appears to exist significant emission avoiding potential that can be exploited at a net economic benefit to society. This potential is insufficient, however, to stabilize atmospheric concentrations of the greenhouse gases. The suggestion that changes can be made to energy systems leading to significant levels of avoided carbon dioxide emissions at little or no cost to society has been refuted by economic theoreticians, whose writings warn that policies aimed at avoiding greenhouse gas emissions will incur exorbitant costs. A case study of the potential to use ethanol produced from sugar cane as a transportation fuel in Thailand is used to illustrate an integrated approach to evaluating components of alternative energy systems

  5. Examining Challenges Related to the Production of Actionable Climate Knowledge for Adaptation Decision-Making: A Focus on Climate Knowledge System Producers

    Science.gov (United States)

    Ernst, K.; Preston, B. L.; Tenggren, S.; Klein, R.; Gerger-Swartling, Å.

    2017-12-01

    Many challenges to adaptation decision-making and action have been identified across peer-reviewed and gray literature. These challenges have primarily focused on the use of climate knowledge for adaptation decision-making, the process of adaptation decision-making, and the needs of the decision-maker. Studies on climate change knowledge systems often discuss the imperative role of climate knowledge producers in adaptation decision-making processes and stress the need for producers to engage in knowledge co-production activities and to more effectively meet decision-maker needs. While the influence of climate knowledge producers on the co-production of science for adaptation decision-making is well-recognized, hardly any research has taken a direct approach to analyzing the challenges that climate knowledge producers face when undertaking science co-production. Those challenges can influence the process of knowledge production and may hinder the creation, utilization, and dissemination of actionable knowledge for adaptation decision-making. This study involves semi-structured interviews, focus groups, and participant observations to analyze, identify, and contextualize the challenges that climate knowledge producers in Sweden face as they endeavor to create effective climate knowledge systems for multiple contexts, scales, and levels across the European Union. Preliminary findings identify complex challenges related to education, training, and support; motivation, willingness, and culture; varying levels of prioritization; professional roles and responsibilities; the type and amount of resources available; and professional incentive structures. These challenges exist at varying scales and levels across individuals, organizations, networks, institutions, and disciplines. This study suggests that the creation of actionable knowledge for adaptation decision-making is not supported across scales and levels in the climate knowledge production landscape. Additionally

  6. The treatment of climate science in Integrated Assessment Modelling: integration of climate step function response in an energy system integrated assessment model.

    Science.gov (United States)

    Dessens, Olivier

    2016-04-01

    Integrated Assessment Models (IAMs) are used as crucial inputs to policy-making on climate change. These models simulate aspect of the economy and climate system to deliver future projections and to explore the impact of mitigation and adaptation policies. The IAMs' climate representation is extremely important as it can have great influence on future political action. The step-function-response is a simple climate model recently developed by the UK Met Office and is an alternate method of estimating the climate response to an emission trajectory directly from global climate model step simulations. Good et al., (2013) have formulated a method of reconstructing general circulation models (GCMs) climate response to emission trajectories through an idealized experiment. This method is called the "step-response approach" after and is based on an idealized abrupt CO2 step experiment results. TIAM-UCL is a technology-rich model that belongs to the family of, partial-equilibrium, bottom-up models, developed at University College London to represent a wide spectrum of energy systems in 16 regions of the globe (Anandarajah et al. 2011). The model uses optimisation functions to obtain cost-efficient solutions, in meeting an exogenously defined set of energy-service demands, given certain technological and environmental constraints. Furthermore, it employs linear programming techniques making the step function representation of the climate change response adapted to the model mathematical formulation. For the first time, we have introduced the "step-response approach" method developed at the UK Met Office in an IAM, the TIAM-UCL energy system, and we investigate the main consequences of this modification on the results of the model in term of climate and energy system responses. The main advantage of this approach (apart from the low computational cost it entails) is that its results are directly traceable to the GCM involved and closely connected to well-known methods of

  7. Energy and parametric analysis of solar absorption cooling systems in various Moroccan climates

    Directory of Open Access Journals (Sweden)

    Y. Agrouaz

    2017-03-01

    Full Text Available The aim of this work is to investigate the energetic performance of a solar cooling system using absorption technology under Moroccan climate. The solar fraction and the coefficient of performance of the solar cooling system were evaluated for various climatic conditions. It is found that the system operating in Errachidia shows the best average annual solar fraction (of 30% and COP (of 0.33 owing to the high solar capabilities of this region. Solar fraction values in other regions varied between 19% and 23%. Moreover, the coefficient of performance values shows in the same regions a significant variation from 0.12 to 0.33 all over the year. A detailed parametric study was as well carried out to evidence the effect of the operating and design parameters on the solar air conditioner performance.

  8. Pilot climate data system: A state-of-the-art capability in scientific data management

    Science.gov (United States)

    Smith, P. H.; Treinish, L. A.; Novak, L. V.

    1983-01-01

    The Pilot Climate Data System (PCDS) was developed by the Information Management Branch of NASA's Goddard Space Flight Center to manage a large collection of climate-related data of interest to the research community. The PCDS now provides uniform data catalogs, inventories, access methods, graphical displays and statistical calculations for selected NASA and non-NASA data sets. Data manipulation capabilities were developed to permit researchers to easily combine or compare data. The current capabilities of the PCDS include many tools for the statistical survey of climate data. A climate researcher can examine any data set of interest via flexible utilities to create a variety of two- and three-dimensional displays, including vector plots, scatter diagrams, histograms, contour plots, surface diagrams and pseudo-color images. The graphics and statistics subsystems employ an intermediate data storage format which is data-set independent. Outside of the graphics system there exist other utilities to select, filter, list, compress, and calculate time-averages and variances for any data of interest. The PCDS now fully supports approximately twenty different data sets and is being used on a trial basis by several different in-house research grounds.

  9. Climate Change Impact Assessment of Dike Safety and Flood Risk in the Vidaa River System

    DEFF Research Database (Denmark)

    Madsen, H.; Sunyer Pinya, Maria Antonia; Larsen, J.

    2013-01-01

    The impact of climate change on the flood risk and dike safety in the Vidaa River system, a cross-border catchment located in the southern part of Jutland, Denmark and northern Germany, is analysed. The river discharges to the Wadden Sea through a tidal sluice, and extreme water level conditions...... in the river system occur in periods of high sea water levels where the sluice is closed and increased catchment run-off take place. Climate model data from the ENSEMBLES data archive are used to assess the changes in climate variables and the resulting effect on catchment run-off. Extreme catchment run......-off is expected to increase about 8 % in 2050 and 14 % in 2100. The changes in sea water level is assessed considering climate projections of mean sea level rise, isostatic changes, and changes in storm surge statistics. At the Vidaa sluice a mean sea level rise of 0.15–0.39 m in 2050 and 0.41–1.11 m in 2010...

  10. A Scalable and Extensible Earth System Model for Climate Change Science

    Energy Technology Data Exchange (ETDEWEB)

    Gent, Peter; Lamarque, Jean-Francois; Conley, Andrew; Vertenstein, Mariana; Craig, Anthony

    2013-02-13

    The objective of this award was to build a scalable and extensible Earth System Model that can be used to study climate change science. That objective has been achieved with the public release of the Community Earth System Model, version 1 (CESM1). In particular, the development of the CESM1 atmospheric chemistry component was substantially funded by this award, as was the development of the significantly improved coupler component. The CESM1 allows new climate change science in areas such as future air quality in very large cities, the effects of recovery of the southern hemisphere ozone hole, and effects of runoff from ice melt in the Greenland and Antarctic ice sheets. Results from a whole series of future climate projections using the CESM1 are also freely available via the web from the CMIP5 archive at the Lawrence Livermore National Laboratory. Many research papers using these results have now been published, and will form part of the 5th Assessment Report of the United Nations Intergovernmental Panel on Climate Change, which is to be published late in 2013.

  11. Understanding Student Cognition about Complex Earth System Processes Related to Climate Change

    Science.gov (United States)

    McNeal, K. S.; Libarkin, J.; Ledley, T. S.; Dutta, S.; Templeton, M. C.; Geroux, J.; Blakeney, G. A.

    2011-12-01

    The Earth's climate system includes complex behavior and interconnections with other Earth spheres that present challenges to student learning. To better understand these unique challenges, we have conducted experiments with high-school and introductory level college students to determine how information pertaining to the connections between the Earth's atmospheric system and the other Earth spheres (e.g., hydrosphere and cryosphere) are processed. Specifically, we include psychomotor tests (e.g., eye-tracking) and open-ended questionnaires in this research study, where participants were provided scientific images of the Earth (e.g., global precipitation and ocean and atmospheric currents), eye-tracked, and asked to provide causal or relational explanations about the viewed images. In addition, the students engaged in on-line modules (http://serc.carleton.edu/eslabs/climate/index.html) focused on Earth system science as training activities to address potential cognitive barriers. The developed modules included interactive media, hands-on lessons, links to outside resources, and formative assessment questions to promote a supportive and data-rich learning environment. Student eye movements were tracked during engagement with the materials to determine the role of perception and attention on understanding. Students also completed a conceptual questionnaire pre-post to determine if these on-line curriculum materials assisted in their development of connections between Earth's atmospheric system and the other Earth systems. The pre-post results of students' thinking about climate change concepts, as well as eye-tracking results, will be presented.

  12. Elucidation of circulation mechanism on climatic changing vapor caused by water field ecology system

    International Nuclear Information System (INIS)

    Harada, Shigeki; Doi, Taeko; Watanabe, Masataka; Inamori, Yuhei

    1999-01-01

    As climatic change caused by increase of carbon dioxide amounts emitted by industrial development is much anxious, it is well-known that water field ecology system relaxes change of carbon dioxide in atmosphere. Carbon dioxide, which is a climatic changing gas and has a closed relationship to the earth warming, is caught from atmosphere in the water field ecology system to be fixed as organic carbon and constitutes a starting point of food chains thereafter. In this study, in order to examine change of carbon dioxide, which is one of climatic changing gas or greenhouse effect gas caused by water field ecology system, 14-C was added to microcosm, which constructs a water field ecology system model, to measure 14-C amounts in each organism. As a result, it was found that carbon transfer in the system could be examined. And, it was also found that it was possible to understand more precise flow of substances and to elucidate quantitatively absorption of carbon dioxide and flow of carbon thereafter under different conditions, by future attempts on upgrading precision such as changing amounts of adding RI, and so forth. (G.K.)

  13. Experimental performance of evaporative cooling pad systems in greenhouses in humid subtropical climates

    International Nuclear Information System (INIS)

    Xu, J.; Li, Y.; Wang, R.Z.; Liu, W.; Zhou, P.

    2015-01-01

    Highlights: • Experimental performance of evaporative cooling in humid climate is investigated. • 5 working modes are studied in the greenhouse. • Vertical and horizontal temperature and relative humidity variations are analysed. • Indoor temperature can be kept in required level by proper working modes. - Abstract: To solve the overheating problem caused by the solar radiation and to keep the indoor temperature and humidity at a proper level for plants or crops, cooling technologies play vital role in greenhouse industry, and among which evaporative cooling is one of the most commonly-used methods. However, the main challenge of the evaporative cooling is its suitability to local climatic and agronomic condition. In this study, the performance of evaporative cooling pads was investigated experimentally in a 2304-m 2 glass multi-span greenhouse in Shanghai in the southeast of China. Temperature and humidity distributions were measured and reported for different working modes, including the use of evaporative cooling alone and the use of evaporative cooling with shading or ventilation. These experiments were conducted in humid subtropical climates where were considered unfavourable for evaporative cooling pad systems. Quantified analyses from the energy perspective are also made based on the experimental results and the evaporative cooling fan–pad system is demonstrated to be an effective option for greenhouse cooling even in the humid climate. Suggestions and possible solutions for further improving the performance of the system are proposed. The results of this work will be useful for the optimisation of the energy management of greenhouses in humid climates and for the validation of the mathematical model in future work

  14. Climate Change Impacts on Sediment Transport In a Lowland Watershed System: Controlling Processes and Projection

    Science.gov (United States)

    al Aamery, N. M. H.; Mahoney, D. T.; Fox, J.

    2017-12-01

    Future climate change projections suggest extreme impacts on watershed hydrologic systems for some regions of the world including pronounced increases in surface runoff and instream flows. Yet, there remains a lack of research focused on how future changes in hydrologic extremes, as well as relative hydrologic mean changes, impact sediment redistribution within a watershed and sediment flux from a watershed. The authors hypothesized that variations in mean and extreme changes in turn may impact sediments in depositional and erosional dominance in a manner that may not be obvious to the watershed manager. Therefore, the objectives of this study were to investigate the inner processes connecting the combined effect of extreme climate change projections on the vegetation, upland erosion, and instream processes to produce changes in sediment redistribution within watersheds. To do so, research methods were carried out by the authors including simulating sediment processes in forecast and hindcast periods for a lowland watershed system. Publically available climate realizations from several climate factors and the Soil Water Assessment Tool (SWAT) were used to predict hydrologic conditions for the South Elkhorn Watershed in central Kentucky, USA to 2050. The results of the simulated extreme and mean hydrological components were used in simulating upland erosion with the connectivity processes consideration and thereafter used in building and simulating the instream erosion and deposition of sediment processes with the consideration of surface fine grain lamina (SFGL) layer controlling the benthic ecosystem. Results are used to suggest the dominance of erosional and depositional redistribution of sediments under different scenarios associated with extreme and mean hydrologic forecasting. The results are discussed in reference to the benthic ecology of the stream system providing insight on how water managers might consider sediment redistribution in a changing climate.

  15. Designing a new cropping system for high productivity and sustainable water usage under climate change

    Science.gov (United States)

    Meng, Qingfeng; Wang, Hongfei; Yan, Peng; Pan, Junxiao; Lu, Dianjun; Cui, Zhenling; Zhang, Fusuo; Chen, Xinping

    2017-02-01

    The food supply is being increasingly challenged by climate change and water scarcity. However, incremental changes in traditional cropping systems have achieved only limited success in meeting these multiple challenges. In this study, we applied a systematic approach, using model simulation and data from two groups of field studies conducted in the North China Plain, to develop a new cropping system that improves yield and uses water in a sustainable manner. Due to significant warming, we identified a double-maize (M-M; Zea mays L.) cropping system that replaced the traditional winter wheat (Triticum aestivum L.) -summer maize system. The M-M system improved yield by 14-31% compared with the conventionally managed wheat-maize system, and achieved similar yield compared with the incrementally adapted wheat-maize system with the optimized cultivars, planting dates, planting density and water management. More importantly, water usage was lower in the M-M system than in the wheat-maize system, and the rate of water usage was sustainable (net groundwater usage was ≤150 mm yr-1). Our study indicated that systematic assessment of adaptation and cropping system scale have great potential to address the multiple food supply challenges under changing climatic conditions.

  16. Optimization of Photovoltaic Electrolyzer Hybrid systems; taking into account the effect of climate conditions

    International Nuclear Information System (INIS)

    Sayedin, Farid; Maroufmashat, Azadeh; Sattari, Sourena; Elkamel, Ali; Fowler, Michael

    2016-01-01

    Highlights: • The optimal size of directly coupled Photovoltaic–Electrolyzer (PV/EL) is studied. • The effect of climate condition on the performance of PV/EL is studied. • PV/EL energy transfer loss and the levelized cost of hydrogen production minimized. • The model is applied to locations with different climate and solar irradiations. • Solar to electricity/electricity to hydrogen/solar to hydrogen efficiencies are derived. - Abstract: Solar energy will make a valuable contribution for power generation in the future. However the intermittency of solar energy has become an important issue in the utilization of PV system, especially small scale distributed solar energy conversion systems. The issue can be addressed through the management of production and storage of the energy in the form of hydrogen. The hydrogen can be produced by solar photovoltaic (PV) powered electrolysis of water. The amount of transferred energy to an electrolyzer from a PV module is a function of the distance between maximum power points (MPP) of PV module and the electrolyzer operating points. The distance can be minimized by optimizing the number of series and parallel units of the electrolyzer. However the maximum power points are subject to PV module characteristics, solar irradiation and ambient temperature. This means the climate condition can substantially influence the MPP and therefore the optimal size of the PV–Electrolyzer (PV/EL) system. On the other hand, system size can affect the levelized cost of hydrogen production as well. In this paper, the impact of climate conditions on the optimal size and operating conditions of a direct coupled photovoltaic–electrolyzer system has been studied. For this purpose, the optimal size of electrolyzer for six cities which have different climate condition is obtained by considering two solution scenarios, regarding two objectives which are annual energy transfer loss and levelized costs of hydrogen production and then the

  17. Exploring the implication of climate process uncertainties within the Earth System Framework

    Science.gov (United States)

    Booth, B.; Lambert, F. H.; McNeal, D.; Harris, G.; Sexton, D.; Boulton, C.; Murphy, J.

    2011-12-01

    Uncertainties in the magnitude of future climate change have been a focus of a great deal of research. Much of the work with General Circulation Models has focused on the atmospheric response to changes in atmospheric composition, while other processes remain outside these frameworks. Here we introduce an ensemble of new simulations, based on an Earth System configuration of HadCM3C, designed to explored uncertainties in both physical (atmospheric, oceanic and aerosol physics) and carbon cycle processes, using perturbed parameter approaches previously used to explore atmospheric uncertainty. Framed in the context of the climate response to future changes in emissions, the resultant future projections represent significantly broader uncertainty than existing concentration driven GCM assessments. The systematic nature of the ensemble design enables interactions between components to be explored. For example, we show how metrics of physical processes (such as climate sensitivity) are also influenced carbon cycle parameters. The suggestion from this work is that carbon cycle processes represent a comparable contribution to uncertainty in future climate projections as contributions from atmospheric feedbacks more conventionally explored. The broad range of climate responses explored within these ensembles, rather than representing a reason for inaction, provide information on lower likelihood but high impact changes. For example while the majority of these simulations suggest that future Amazon forest extent is resilient to the projected climate changes, a small number simulate dramatic forest dieback. This ensemble represents a framework to examine these risks, breaking them down into physical processes (such as ocean temperature drivers of rainfall change) and vegetation processes (where uncertainties point towards requirements for new observational constraints).

  18. Between information systems and physical structure of the city: New causes of climate changes

    Directory of Open Access Journals (Sweden)

    Mihajlov Vladimir

    2011-01-01

    Full Text Available Because of the frequent and significant spatial transformations, an increasing climate change regime in urban areas occurs. In this paper a comprehensive reflection on these changes is analyzed, concerning one of the major causes - the social transformation and the growing use of information, networks and technology, used by city dwellers in everyday life. Advanced communications and the Internet provide urban concentration and decentralization, creating new spatial and geographic network, with a new allocation of space, for manufacturing and services. The consequence may be recognized in increasing individualization and social habits of city dwellers, as well as in modified way of households use, changing neighbourhoods and public spaces, transport systems, as the final outcome is the climate change. In this paper, the interdependence between information networks is emphasized - between virtual and physical environment, as well as changes in the way of life of the city, which ultimately lead to a new trigger for climate change. Users have never been more mobile in the physical space (commuting and tourist travel, while in the virtual space they are associated with the fixed points - everybody can be located, by using email or social network. Unexpectedly, the cause of the problem which is considered in this paper, is increased mobility in the real space, while city dwellers remain in one place, by using their virtual electronic connections. Thus, the role of city dwellers in creating climate change depends upon their spatial distribution and relationship towards information's and network activity. As a result, the drivers in city development are recognized on network nodes. Current crises in the global environment (economic, climate and social indicate the need to develop multi-functional environment and a greater appreciation of natural factors. Therefore, as a decisive factor for the adaptation of urban structure on climate change is the

  19. Climate change and climate systems influence and control the atmospheric dispersion of desert dust: implications for human health

    Science.gov (United States)

    Griffin, Dale W.; Ragaini, Richard C.

    2010-01-01

    The global dispersion of desert dust through Earth’s atmosphere is greatly influenced by temperature. Temporal analyses of ice core data have demonstrated that enhanced dust dispersion occurs during glacial events. This is due to an increase in ice cover, which results in an increase in drier terrestrial cover. A shorter temporal analysis of dust dispersion data over the last 40 years has demonstrated an increase in dust transport. Climate systems or events such as the North Atlantic Oscillation, the Indian Ocean subtropical High, Pacific Decadal Oscillation, and El Nino-Sothern Oscillation are known to influence global short-term dust dispersion occurrence and transport routes. Anthropogenic influences on dust transport include deforestation, harmful use of topsoil for agriculture as observed during the American Dust Bowl period, and the creation of dry seas (Aral Sea) and lakes (Lake Owens in California and Lake Chad in North Africa) through the diversion of source waters (for irrigation and drinking water supplies). Constituents of desert dust both from source regions (pathogenic microorganisms, organic and inorganic toxins) and those scavenged through atmospheric transport (i.e., industrial and agricultural emissions) are known to directly impact human and ecosystem health. This presentation will present a review of global scale dust storms and how these events can be both a detriment and benefit to various organisms in downwind environments.

  20. Which complexity of regional climate system models is essential for downscaling anthropogenic climate change in the Northwest European Shelf?

    Science.gov (United States)

    Mathis, Moritz; Elizalde, Alberto; Mikolajewicz, Uwe

    2018-04-01

    Climate change impact studies for the Northwest European Shelf (NWES) make use of various dynamical downscaling strategies in the experimental setup of regional ocean circulation models. Projected change signals from coupled and uncoupled downscalings with different domain sizes and forcing global and regional models show substantial uncertainty. In this paper, we investigate influences of the downscaling strategy on projected changes in the physical and biogeochemical conditions of the NWES. Our results indicate that uncertainties due to different downscaling strategies are similar to uncertainties due to the choice of the parent global model and the downscaling regional model. Downscaled change signals reveal to depend stronger on the downscaling strategy than on the model skills in simulating present-day conditions. Uncoupled downscalings of sea surface temperature (SST) changes are found to be tightly constrained by the atmospheric forcing. The incorporation of coupled air-sea interaction, by contrast, allows the regional model system to develop independently. Changes in salinity show a higher sensitivity to open lateral boundary conditions and river runoff than to coupled or uncoupled atmospheric forcings. Dependencies on the downscaling strategy for changes in SST, salinity, stratification and circulation collectively affect changes in nutrient import and biological primary production.

  1. Using the CLEAN educational resource collection for building three-dimensional lessons to teach the climate system

    Science.gov (United States)

    Gold, A. U.; Sullivan, S. M.; Manning, C. L. B.; Ledley, T. S.; Youngman, E.; Taylor, J.; Niepold, F., III; Kirk, K.; Lockwood, J.; Bruckner, M. Z.; Fox, S.

    2017-12-01

    The impacts of climate change are a critical societal challenge of the 21st century. Educating students about the globally connected climate system is key in supporting the development of mitigation and adaptation strategies. Systems thinking is required for students to understand the complex, dynamic climate systems and the role that humans play within them. The interdisciplinary nature of climate science challenges educators, who often don't have formal training in climate science, to identify resources that are scientifically accurate before weaving them together into units that teach about the climate system. The Climate Literacy and Energy Awareness Network (CLEAN) supports this work by providing over 700 peer-reviewed, classroom-ready resources on climate and energy topics. The resource collection itself provide only limited instructional guidance, so educators need to weave the resources together to build multi-dimensional lessons that develop systems thinking skills. The Next Generation Science Standards (NGSS) science standards encourage educators to teach science in a 3-dimensional approach that trains students in systems thinking. The CLEAN project strives to help educators design NGSS-style, three-dimensional lessons about the climate system. Two approaches are currently being modeled on the CLEAN web portal. The first is described in the CLEAN NGSS "Get Started Guide" which follows a step-by-step process starting with the Disciplinary Core Idea and then interweaves the Cross-Cutting Concepts (CCC) and the Science and Engineering Practices (SEP) based on the teaching strategy chosen for the lesson or unit topic. The second model uses a climate topic as a starting place and the SEP as the guide through a four-step lesson sequence called "Earth Systems Investigations". Both models use CLEAN reviewed lessons as the core activity but provide the necessary framework for classroom implementation. Sample lessons that were developed following these two

  2. A bottom-up approach to identifying the maximum operational adaptive capacity of water resource systems to a changing climate

    Science.gov (United States)

    Culley, S.; Noble, S.; Yates, A.; Timbs, M.; Westra, S.; Maier, H. R.; Giuliani, M.; Castelletti, A.

    2016-09-01

    Many water resource systems have been designed assuming that the statistical characteristics of future inflows are similar to those of the historical record. This assumption is no longer valid due to large-scale changes in the global climate, potentially causing declines in water resource system performance, or even complete system failure. Upgrading system infrastructure to cope with climate change can require substantial financial outlay, so it might be preferable to optimize existing system performance when possible. This paper builds on decision scaling theory by proposing a bottom-up approach to designing optimal feedback control policies for a water system exposed to a changing climate. This approach not only describes optimal operational policies for a range of potential climatic changes but also enables an assessment of a system's upper limit of its operational adaptive capacity, beyond which upgrades to infrastructure become unavoidable. The approach is illustrated using the Lake Como system in Northern Italy—a regulated system with a complex relationship between climate and system performance. By optimizing system operation under different hydrometeorological states, it is shown that the system can continue to meet its minimum performance requirements for more than three times as many states as it can under current operations. Importantly, a single management policy, no matter how robust, cannot fully utilize existing infrastructure as effectively as an ensemble of flexible management policies that are updated as the climate changes.

  3. Climate change and livestock system in mountain: Understanding from Gandaki River basin of Nepal Himalaya.

    Science.gov (United States)

    Dahal, P.; Shrestha, N. S.; Krakauer, N.; Lakhankar, T.; Panthi, J., Sr.; Pradhanang, S.; Jha, A. K.; Shrestha, M.; Sharma, M.

    2015-12-01

    In recent years climate change has emerged as a source of vulnerability for agro-livestock smallholders in Nepal where people are mostly dependent on rain-fed agriculture and livestock farming for their livelihoods. There is a need to understand and predict the potential impacts of climate change on agro-livestock farmer to develop effective mitigation and adaptation strategies. To understand dynamics of this vulnerability, we assess the farmers' perceptions of climate change, analysis of historical and future projections of climatic parameters and try to understand impact of climate change on livestock system in Gandaki River Basin of Central Nepal. During the period of 1981-2012, as reported by the mountain communities, the most serious hazards for livestock system and agriculture are the increasing trend of temperature, erratic rainfall patterns and increase in drought. Poor households without irrigated land are facing greater risks and stresses than well-off people. Analysis of historical climate data also supports the farmer perception. Result shows that there is increasing trend of temperature but no consistent trend in precipitation but a notable finding is that wet areas are getting wetter and dry areas getting drier. Besides that, there is increase in percentage of warm days and nights with decrease in the cool nights and days. The magnitude of the trend is found to be higher in high altitude. Trend of wet days has found to be increasing with decreasing in rainy days. Most areas are characterized by increases in both severity and frequency of drought and are more evident in recent years. The summers of 2004/05/06/09 and winters of 2006/08/09 were the worst widespread droughts and have a serious impact on livestock since 1981. Future projected change in temperature and precipitation obtained from downscaling the data global model by regional climate model shows that precipitation in central Nepal will change by -8% to 12% and temperature will change by 1

  4. Direct and semi-direct aerosol radiative effect on the Mediterranean climate variability using a coupled regional climate system model

    Science.gov (United States)

    Nabat, Pierre; Somot, Samuel; Mallet, Marc; Sevault, Florence; Chiacchio, Marc; Wild, Martin

    2015-02-01

    A fully coupled regional climate system model (CNRM-RCSM4) has been used over the Mediterranean region to investigate the direct and semi-direct effects of aerosols, but also their role in the radiation-atmosphere-ocean interactions through multi-annual ensemble simulations (2003-2009) with and without aerosols and ocean-atmosphere coupling. Aerosols have been taken into account in CNRM-RCSM4 through realistic interannual monthly AOD climatologies. An evaluation of the model has been achieved, against various observations for meteorological parameters, and has shown the ability of CNRM-RCSM4 to reproduce the main patterns of the Mediterranean climate despite some biases in sea surface temperature (SST), radiation and cloud cover. The results concerning the aerosol radiative effects show a negative surface forcing on average because of the absorption and scattering of the incident radiation. The SW surface direct effect is on average -20.9 Wm-2 over the Mediterranean Sea, -14.7 Wm-2 over Europe and -19.7 Wm-2 over northern Africa. The LW surface direct effect is weaker as only dust aerosols contribute (+4.8 Wm-2 over northern Africa). This direct effect is partly counterbalanced by a positive semi-direct radiative effect over the Mediterranean Sea (+5.7 Wm-2 on average) and Europe (+5.0 Wm-2) due to changes in cloud cover and atmospheric circulation. The total aerosol effect is consequently negative at the surface and responsible for a decrease in land (on average -0.4 °C over Europe, and -0.5 °C over northern Africa) and sea surface temperature (on average -0.5 °C for the Mediterranean SST). In addition, the latent heat loss is shown to be weaker (-11.0 Wm-2) in the presence of aerosols, resulting in a decrease in specific humidity in the lower troposphere, and a reduction in cloud cover and precipitation. Simulations also indicate that dust aerosols warm the troposphere by absorbing solar radiation, and prevent radiation from reaching the surface, thus

  5. The GLOBE Carbon Cycle Project: Using a systems approach to understand carbon and the Earth's climate system

    Science.gov (United States)

    Silverberg, S. K.; Ollinger, S. V.; Martin, M. E.; Gengarelly, L. M.; Schloss, A. L.; Bourgeault, J. L.; Randolph, G.; Albrechtova, J.

    2009-12-01

    National Science Content Standards identify systems as an important unifying concept across the K-12 curriculum. While this standard exists, there is a recognized gap in the ability of students to use a systems thinking approach in their learning. In a similar vein, both popular media as well as some educational curricula move quickly through climate topics to carbon footprint analyses without ever addressing the nature of carbon or the carbon cycle. If students do not gain a concrete understanding of carbon’s role in climate and energy they will not be able to successfully tackle global problems and develop innovative solutions. By participating in the GLOBE Carbon Cycle project, students learn to use a systems thinking approach, while at the same time, gaining a foundation in the carbon cycle and it's relation to climate and energy. Here we present the GLOBE Carbon Cycle project and materials, which incorporate a diverse set of activities geared toward upper middle and high school students with a variety of learning styles. A global carbon cycle adventure story and game let students see the carbon cycle as a complete system, while introducing them to systems thinking concepts including reservoirs, fluxes and equilibrium. Classroom photosynthesis experiments and field measurements of schoolyard vegetation brings the global view to the local level. And the use of computer models at varying levels of complexity (effects on photosynthesis, biomass and carbon storage in global biomes, global carbon cycle) not only reinforces systems concepts and carbon content, but also introduces students to an important scientific tool necessary for understanding climate change.

  6. Climate change

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    In this paper, the authors discuss in brief the magnitude and rate of past changes in climate and examine the various factors influencing climate in order to place the potential warming due to increasing greenhouse gas concentrations in context. Feedback mechanisms that can amplify or lessen imposed climate changes are discussed next. The overall sensitivity of climate to changes in forcing is then considered, followed by a discussion of the time-dependent response of the Earth system. The focus is on global temperature as an indicator for the magnitude of climatic change

  7. Planning and costing agricultural adaptation to climate change in the pastoral livestock system of Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Tumbo, S.; Mutabazi, K.; Kimambo, A.; Rwehumbiza, F.

    2011-08-15

    farmers (such as those involving temporary and permanent migration). From this study, some policy-relevant recommendations have been formulated: 1. The need to establish an environmental section in the Ministry of Livestock and Fisheries Development (MLFD). 2. The necessity for increased investment systems and structures for animal agriculture. 3. The need for increased investment in research, extension and training. 4. The requirement for more bottom-up studies on the economics of climate change in agriculture to be undertaken in order to fill knowledge gaps, apply existing and emerging methods, and improve the estimates.

  8. Planning and costing agricultural adaptation to climate change in the pastoral livestock system of Tanzania

    Energy Technology Data Exchange (ETDEWEB)

    Tumbo, S; Mutabazi, K; Kimambo, A; Rwehumbiza, F

    2011-08-15

    farmers (such as those involving temporary and permanent migration). From this study, some policy-relevant recommendations have been formulated: 1. The need to establish an environmental section in the Ministry of Livestock and Fisheries Development (MLFD). 2. The necessity for increased investment systems and structures for animal agriculture. 3. The need for increased investment in research, extension and training. 4. The requirement for more bottom-up studies on the economics of climate change in agriculture to be undertaken in order to fill knowledge gaps, apply existing and emerging methods, and improve the estimates.

  9. An automated system for access to derived climate indices in support of ecological impacts assessments and resource management

    Science.gov (United States)

    Walker, J.; Morisette, J. T.; Talbert, C.; Blodgett, D. L.; Kunicki, T.

    2012-12-01

    A U.S. Geological Survey team is working with several providers to establish standard data services for the climate projection data they host. To meet the needs of climate adaptation science and landscape management communities, the team is establishing a set of climate index calculation algorithms that will consume data from various providers and provide directly useful data derivatives. Climate projections coming from various scenarios, modeling centers, and downscaling methods are increasing in number and size. Global change impact modeling and assessment, generally, requires inputs in the form of climate indices or values derived from raw climate projections. This requirement puts a large burden on a community not familiar with climate data formats, semantics, and processing techniques and requires storage capacity and computing resources out of the reach of most. In order to fully understand the implications of our best available climate projections, assessments must take into account an ensemble of climate projections and potentially a range of parameters for calculation of climate indices. These requirements around data access and processing are not unique from project to project, or even among projected climate data sets, pointing to the need for a reusable tool to generate climate indices. The U.S. Geological Survey has developed a pilot application and supporting web service framework that automates the generation of climate indices. The web service framework consists of standards-based data servers and a data integration broker. The resulting system allows data producers to publish and maintain ownership of their data and data consumers to access climate derivatives via a simple to use "data product ordering" workflow. Data access and processing is completed on enterprise "cloud" computing resources and only the relatively small, derived climate indices are delivered to the scientist or land manager. These services will assist the scientific and land

  10. Integrating research tools to support the management of social-ecological systems under climate change

    Science.gov (United States)

    Miller, Brian W.; Morisette, Jeffrey T.

    2014-01-01

    Developing resource management strategies in the face of climate change is complicated by the considerable uncertainty associated with projections of climate and its impacts and by the complex interactions between social and ecological variables. The broad, interconnected nature of this challenge has resulted in calls for analytical frameworks that integrate research tools and can support natural resource management decision making in the face of uncertainty and complex interactions. We respond to this call by first reviewing three methods that have proven useful for climate change research, but whose application and development have been largely isolated: species distribution modeling, scenario planning, and simulation modeling. Species distribution models provide data-driven estimates of the future distributions of species of interest, but they face several limitations and their output alone is not sufficient to guide complex decisions for how best to manage resources given social and economic considerations along with dynamic and uncertain future conditions. Researchers and managers are increasingly exploring potential futures of social-ecological systems through scenario planning, but this process often lacks quantitative response modeling and validation procedures. Simulation models are well placed to provide added rigor to scenario planning because of their ability to reproduce complex system dynamics, but the scenarios and management options explored in simulations are often not developed by stakeholders, and there is not a clear consensus on how to include climate model outputs. We see these strengths and weaknesses as complementarities and offer an analytical framework for integrating these three tools. We then describe the ways in which this framework can help shift climate change research from useful to usable.

  11. <