WorldWideScience

Sample records for navy geothermal plan

  1. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  2. Evaluation of the Navy Master Planning Program

    Science.gov (United States)

    1976-05-01

    Navy planning directives, interviews with Navy planning personnel, researc " of applicable literature on planning and program evaluation, and the...master planning has absorbed the additional roles of program management and public relations marketing . The Navy planner is now deeply involved in...master planning 62conducted by NAVFAC headquarters in 1972, various Navy planning directives, a " Market Survey" of NAVFAC services and customer 63

  3. U.S. Navy Energy Plan

    Science.gov (United States)

    1977-01-01

    plans) be assessed to determine environ- mental effects. If these assessments show "significant effect on the human environment," or are, in any way...specific energy conservation and management areas for review by the Inspector General of the Navy. (II) Act as Program and Resourec Sponsor for Navy

  4. FY97 Geothermal R&D Program Plan

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-09-01

    This is the Sandia National Laboratories Geothermal program plan. This is a DOE Geothermal Program planning and control document. Many of these reports were issued only in draft form. This one is of special interest for historical work because it contains what seems to be a complete list of Sandia geothermal program publications (citations / references) from about 1975 to late 1996. (DJE 2005)

  5. Organizational Analysis of Energy Manpower Requirements in the United States Navy

    Science.gov (United States)

    2013-06-01

    Since 1987, the Navy has been producing clean power through the use of geothermal power plants at the Naval Air Weapons Station China Lake. Figure 6...traditional petroleum-based fuel. (From Navy, 2011).....................................10  Figure 5.  The Navy 1 geothermal plant near COSO Hot Springs...photovoltaic, nuclear, biomass, geothermal , and intelligent design of facilities in an attempt to move away from traditional energy sources. Geographical

  6. The Oregon Geothermal Planning Conference

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-10-02

    Oregon's geothermal resources represent a large portion of the nation's total geothermal potential. The State's resources are substantial in size, widespread in location, and presently in various stages of discovery and utilization. The exploration for, and development of, geothermal is presently dependent upon a mixture of engineering, economic, environmental, and legal factors. In response to the State's significant geothermal energy potential, and the emerging impediments and incentives for its development, the State of Oregon has begun a planning program intended to accelerate the environmentally prudent utilization of geothermal, while conserving the resource's long-term productivity. The program, which is based upon preliminary work performed by the Oregon Institute of Technology's Geo-Heat Center, will be managed by the Oregon Department of Energy, with the assistance of the Departments of Economic Development, Geology and Mineral Industries, and Water Resources. Funding support for the program is being provided by the US Department of Energy. The first six-month phase of the program, beginning in July 1980, will include the following five primary tasks: (1) coordination of state and local agency projects and information, in order to keep geothermal personnel abreast of the rapidly expanding resource literature, resource discoveries, technological advances, and each agency's projects. (2) Analysis of resource commercialization impediments and recommendations of incentives for accelerating resource utilization. (3) Compilation and dissemination of Oregon geothermal information, in order to create public and potential user awareness, and to publicize technical assistance programs and financial incentives. (4) Resource planning assistance for local governments in order to create local expertise and action; including a statewide workshop for local officials, and the formulation of two specific community resource development

  7. Geothermal development plan: Maricopa County

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Goldstone, L.A.

    1982-08-01

    The Maricopa County Geothermal Development Plan evaluated the market potential for utilizing geothermal energy. The study identified six potential geothermal resource areas with temperatures less than 100{sup 0}C (212{sup 0}F) and in addition, four suspected intermediate temperature areas (90{sup 0} to 150{sup 0}C, 194{sup 0} to 300{sup 0}F). Geothermal resources are found to occur in and near the Phoenix metropolitan area where average population growth rates of two to three percent per year are expected over the next 40 years. Rapid growth in the manufacturing, trade and service sectors of the regional economy provides opportunities for the direct utilization of geothermal energy. A regional energy use analysis is included containing energy use and price projections. Water supplies are found to be adequate to support this growth, though agricultural water use is expected to diminish. The study also contains a detailed section matching geothermal resources to potential users. Two comparative analyses providing economic details for space heating projects are incorporated.

  8. Computational methods for planning and evaluating geothermal energy projects

    International Nuclear Information System (INIS)

    Goumas, M.G.; Lygerou, V.A.; Papayannakis, L.E.

    1999-01-01

    In planning, designing and evaluating a geothermal energy project, a number of technical, economic, social and environmental parameters should be considered. The use of computational methods provides a rigorous analysis improving the decision-making process. This article demonstrates the application of decision-making methods developed in operational research for the optimum exploitation of geothermal resources. Two characteristic problems are considered: (1) the economic evaluation of a geothermal energy project under uncertain conditions using a stochastic analysis approach and (2) the evaluation of alternative exploitation schemes for optimum development of a low enthalpy geothermal field using a multicriteria decision-making procedure. (Author)

  9. DARPA Workshop on Geothermal Energy for Military Operations

    Science.gov (United States)

    2010-05-01

    is administered by its Geothermal Program Office (GPO) at the Navy Air Weapons Station, China Lake, CA. GPO manages the Coso Geo- thermal Field at...advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military would be able to take advantage. Supplying geothermal...was con- vened to explore whether investment in advanced geothermal technologies might reduce the risk and cost to the point where the U.S. military

  10. Evaluation of geothermal energy in Arizona. Arizona geothermal planning/commercialization team. Quarterly topical progress report, July 1-September 30, 1980

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.; Mancini, F.; Goldstone, L.A.; Malysa, L.

    1980-01-01

    Progress is reviewed on the following: area development plans, evaluation of geothermal applications, continued evaluation of geothermal resources, engineering and economic analyses, technical assistance in the state of Arizona, the impact of various growth patterns upon geothermal energy development, and the outreach program. (MHR)

  11. Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress

    Science.gov (United States)

    2016-03-17

    industrial base. Detailed coverage of certain individual Navy shipbuilding programs can be found in the following CRS reports:  CRS Report RS20643...U.S. Offset Strategy and its Implications for Partners and Allies, As Delivered by Deputy Secretary of Defense Bob Work, Willard Hotel , January 28...Contracting in Defense Acquisition : Background and Issues for Congress, by Ronald O’Rourke and Moshe Schwartz. Navy Force Structure and Shipbuilding Plans

  12. A Stakeholder Analysis of the Navy's Thirty-Year Shipbuilding Plan

    National Research Council Canada - National Science Library

    O'Loughlin, Patrick R

    2007-01-01

    Using a stakeholder management approach, this thesis helps the U.S. Navy understand who the external stakeholders are with respect to the Thirty-Year Shipbuilding Plan, the priority of differing stakeholder claims, and the nature...

  13. Geothermal development plan: Maricopa county

    Energy Technology Data Exchange (ETDEWEB)

    White, D.H.

    1981-01-01

    Maricopa county is the area of Arizona receiving top priority since it contains over half of the state's population. The county is located entirely within the Basin and Range physiographic region in which geothermal resources are known to occur. Several approaches were taken to match potential users to geothermal resources. One approach involved matching some of the largest facilities in the county to nearby geothermal resources. Other approaches involved identifying industrial processes whose heat requirements are less than the average assessed geothermal reservoir temperature of 110/sup 0/C (230/sup 0/F). Since many of the industries are located on or near geothermal resources, geothermal energy potentially could be adapted to many industrial processes.

  14. Colorado geothermal commercialization planning. Semi-annual progress report, January 1, 1979-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.

    1979-01-01

    The potential for developing the geothermal resources of Colorado is detailed. Constraints that are limiting geothermal energy development are described. Area development plans, an institutional analysis, and the outreach program are presented. (MHR)

  15. Texas geothermal R D and D program planning support document. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.J.; Conover, M.F.; Keeney, R.C.; Personett, M.L.; Richmann, D.L.

    1981-08-28

    Program planning support was provided by; developing a geothermal RD and D program structure, characterizing the status of geothermal RD and D through review of literature and interaction with the geothermal research community, developing a candidate list of future Texas geothermal projects, and prioritizing the candidate projects based on appropriate evaluation criteria. The method used to perform this study and the results thereof are presented. Summary reviews of selected completed and ongoing projects and summary descriptions and evaluations of the candidate RD and D projects ar provided. A brief discussion emerging federal RD and D policies is presented. References and independent project rankings by three of the GRP members are included. (MHR)

  16. Geothermal-subsidence research program plan and review

    Energy Technology Data Exchange (ETDEWEB)

    Goldstein, N.E.; Noble, J.E.; Simkin, T.L.

    1980-09-01

    The revised Geothermal Subsidence Research Plan (GSRP) presented here is the result of two years of research based on the recommendations of a technical advisory committee and on the DOE/DGE's wish to include specific components applicable to the geopressure resources on the Gulf Coast. This revised plan describes events leading up to FY 1979 and 1980 and the resulting research activities completed for that period. At the time of this writing most of the projects are completed; this document summarizes the accomplishments of the GSRP during FY 1979 and 1980 and includes recommendations for the FY 1981 and 1982 programs.

  17. The significance of "geothermal microzonation" for the correct planning of low-grade source geothermal systems

    Science.gov (United States)

    Viccaro, Marco; Pezzino, Antonino; Belfiore, Giuseppe Maria; Campisano, Carlo

    2016-04-01

    Despite the environmental-friendly energy systems are solar thermal technologies, photovoltaic and wind power, other advantageous technologies exist, although they have not found wide development in countries such as Italy. Given the almost absent environmental impact and the rather favorable cost/benefit ratio, low-enthalpy geothermal systems are, however, likely to be of strategic importance also in Italy during the next years. The importance of geology for a sustainable exploitation of the ground through geothermal systems from low-grade sources is becoming paramount. Specifically, understanding of the lithological characteristics of the subsurface along with structures and textures of rocks is essential for a correct planning of the probe/geo-exchanger field and their associated ground source heat pumps. The complex geology of Eastern Sicily (Southern Italy), which includes volcanic, sedimentary and metamorphic units over limited extension, poses the question of how thermal conductivity of rocks is variable at the scale of restricted areas (even within the same municipality). This is the innovative concept of geothermal microzonation, i.e., how variable is the geothermal potential as a function of geology at the microscale. Some pilot areas have been therefore chosen to test how the geological features of the subsurface can influence the low-enthalpy geothermal potential of an area. Our geologically based evaluation and micro-zonation of the low-grade source geothermal potential of the selected areas have been verified to be fundamental for optimization of all the main components of a low-enthalpy geothermal system. Saving realization costs and limiting the energy consumption through correct sizing of the system are main ambitions to have sustainable development of this technology with intensive utilization of the subsurface. The variegated territory of countries such as Italy implies that these goals can be only reached if, primarily, the geological features

  18. Geothermal Small Business Workbook [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2003-05-01

    Small businesses are the cornerstone of the American economy. Over 22 million small businesses account for approximately 99% of employers, employ about half of the private sector workforce, and are responsible for about two-thirds of net new jobs. Many small businesses fared better than the Fortune 500 in 2001. Non-farm proprietors income rose 2.4% in 2001 while corporate profits declined 7.2%. Yet not all is rosy for small businesses, particularly new ones. One-third close within two years of opening. From 1989 to 1992, almost half closed within four years; only 39.5% were still open after six years. Why do some new businesses thrive and some fail? What helps a new business succeed? Industry knowledge, business and financial planning, and good management. Small geothermal businesses are no different. Low- and medium-temperature geothermal resources exist throughout the western United States, the majority not yet tapped. A recent survey of ten western states identified more than 9,000 thermal wells and springs, over 900 low- to moderate-temperature geothermal resource areas, and hundreds of direct-use sites. Many opportunities exist for geothermal entrepreneurs to develop many of these sites into thriving small businesses. The ''Geothermal Small Business Workbook'' (''Workbook'') was written to give geothermal entrepreneurs, small businesses, and developers the tools they need to understand geothermal applications--both direct use and small-scale power generation--and to write a business and financing plan. The Workbook will: Provide background, market, and regulatory data for direct use and small-scale (< 1 megawatt) power generation geothermal projects; Refer you to several sources of useful information including owners of existing geothermal businesses, trade associations, and other organizations; Break down the complicated and sometimes tedious process of writing a business plan into five easy steps; Lead you

  19. Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress

    Science.gov (United States)

    2017-02-02

    international relations and strategy of basic world geographic features such as the size and location of continents, oceans, and individual countries. From...Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress Ronald O’Rourke Specialist in Naval Affairs February 2, 2017...

  20. Geothermal energy systems plan for Boise City

    Energy Technology Data Exchange (ETDEWEB)

    1979-01-01

    This is a plan for development of a downtown Boise geothermal district space heating system incorporating legal, engineering, organizational, geological, and economic requirements. Topics covered include: resource characteristics, system design and feasibility, economic feasibility, legal overview, organizational alternatives, and conservation. Included in appendices are: property ownership patterns on the Boise Front, existing hot well data, legal briefs, environmental data, decision point communications, typical building heating system retrofit schematics, and background assumptions and data for cost summary. (MHR)

  1. Frontier Observatory for Research in Geothermal Energy: Phase 1 Topical Report Fallon, NV

    Energy Technology Data Exchange (ETDEWEB)

    Blankenship, Douglas A. [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Akerley, John [Ormat Nevada Inc., Reno, NV (United States); Blake, Kelly [U.S. Navy Geothermal Program Office, China Lake, CA (United States); Calvin, Wendy [Univ. of Nevada, Reno, NV (United States). Dept. of Geological Sciences and Engineering; Faulds, James E. [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Glen, Jonathan [U.S. Geological Survey, Menlo Park, CA (United States); Hickman, Stephen [U.S. Geological Survey, Menlo Park, CA (United States); Hinz, Nick [Univ. of Nevada, Reno, NV (United States). Nevada Bureau of Mines and Geology; Kaven, Ole [U.S. Geological Survey, Menlo Park, CA (United States); Lazaro, Mike [U.S. Navy Geothermal Program Office, China Lake, CA (United States); Meade, David [U.S. Navy Geothermal Program Office, China Lake, CA (United States); Kennedy, Mack [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Phelps, Geoff [U.S. Geological Survey, Menlo Park, CA (United States); Sabin, Andrew [U.S. Navy Geothermal Program Office, China Lake, CA (United States); Schoenball, Martin [U.S. Geological Survey, Menlo Park, CA (United States); Silar, Drew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Robertson-Tait, Ann [GeothermEx/Schlumberger, Richmond, CA (United States); Williams, Colin [U.S. Geological Survey, Menlo Park, CA (United States)

    2016-09-01

    The Department of Energy (DOE) Frontier Observatory for Research in Geothermal Energy (FORGE) is to be a dedicated site where the subsurface scientific and engineering community can develop, test, and improve technologies and techniques for the creation of cost-effective and sustainable enhanced geothermal systems (EGS) in a controlled, ideal environment. The establishment of FORGE will facilitate development of an understanding of the key mechanisms controlling a successful EGS. Execution of FORGE is occurring in three phases with five distinct sub-phases (1, 2A, 2B, 2C, and 3). This report focuses on Phase 1 activities. During Phase 1, critical technical and logistical tasks necessary to demonstrate the viability of the Fallon FORGE Project site were completed and the commitment and capability of the Fallon FORGE team to execute FORGE was demonstrated. As part of Phase 1, the Fallon FORGE Team provided an assessment of available relevant data and integrated these geologic and geophysical data to develop a conceptual 3-D geologic model of the proposed test location. Additionally, the team prepared relevant operational plans for full FORGE implementation, provided relevant site data to the science and engineering community, engaged in outreach and communications with interested stakeholders, and performed a review of the environmental and permitting activities needed to allow FORGE to progress through Phase 3. The results of these activities are provided as Appendices to this report. The Fallon FORGE Team is diverse, with deep roots in geothermal science and engineering. The institutions and key personnel that comprise the Fallon FORGE Team provide a breadth of geoscience and geoengineering capabilities, a strong and productive history in geothermal research and applications, and the capability and experience to manage projects with the complexity anticipated for FORGE. Fallon FORGE Team members include the U.S. Navy, Ormat Nevada Inc., Sandia National Laboratories

  2. Geothermal energy

    International Nuclear Information System (INIS)

    Le Du, H.; Bouchot, V.; Lopez, S.; Bialkowski, A.; Colnot, A.; Rigollet, C.; Sanjuan, B.; Millot, R.; Brach, M.; Asmundsson, R.; Giroud, N.

    2010-01-01

    Geothermal energy has shown a revival for several years and should strongly develop in a near future. Its potentiality is virtually unexhaustible. Its uses are multiple and various: individual and collective space heating, heat networks, power generation, heat storage, heat exchanges etc.. Re-launched by the demand of renewable energy sources, geothermal energy has become credible thanks to the scientific works published recently which have demonstrated its economical and technical relevance. Its image to the public is changing as well. However, lot of work remains to do to make geothermal energy a real industry in France. Several brakes have to be removed rapidly which concern the noise pollution of geothermal facilities, the risk of bad results of drillings, the electricity costs etc. This dossier gives an overview of today's main research paths in the domain of geothermal energy: 1 - geothermal energy in France: historical development, surface and deep resources, ambitions of the French national energy plan (pluri-annual investment plan for heat generation, incentives, regional 'climate-air-energy' schemes), specific regulations; 2 - geothermal energy at the city scale - sedimentary basins: Ile-de-France 40 years of Dogger reservoir exploitation, potentialities of clastic reservoirs - the Chaunoy sandstones example; 3 - geothermal power generation: conventional reservoirs - the Bouillante model (Guadeloupe, French Indies); the Soultz-sous-Forets pilot plant (Bas-Rhin, France); the supercritical reservoirs - the Krafla geothermal area (Iceland). (J.S.)

  3. Summary of the planning, management, and evaluation process for the Geothermal Program Review VI conference

    Energy Technology Data Exchange (ETDEWEB)

    1988-10-01

    The purpose of this document is to present an overview of the planning, facilitation, and evaluation process used to conduct the Geothermal Program Review VI (PR VI) conference. This document was also prepared to highlight lessons learned from PR VI and, by utilizing the evaluation summaries and recommendations, be used as a planning tool for PR VII. The conference, entitled Beyond Goals and Objectives,'' was sponsored by the US Department of Energy's (DOE) Geothermal Technology Division (GTD), PR VI was held in San Francisco, California on April 19--21, 1988 and was attended by 127 participants. PR VI was held in conjunction with the National Geothermal Association's (NGA) Industry Round Table. This document presents a brief summary of the activities, responsibilities, and resources for implementing the PR VI meeting and provides recommendations, checklists, and a proposed schedule for assisting in planning PR VII.

  4. Navy Manpower Planning

    Science.gov (United States)

    2017-03-31

    enormously during the past 20 years. Female participation in the workforce has grown dramatically in the past 60 years: women were roughly 27...a Navy that’s about 25 percent women . At that level workplace relationships get normalized. 13 Ref: Stars & Stripes, May 2015 . 77 Progress in...nontraditional roles is now routine. A practical concern regarding women serving on sea duty is ensuring that there is female accommodation. Making

  5. Geothermal development and land use/energy planning by the State of California and its political subdivisions

    Energy Technology Data Exchange (ETDEWEB)

    1978-07-30

    California law contains several vehicles for the implementation of geothermal planning. These mechanisms and their impact are examined. First, at the State level upon the California Energy Commission and the Division of Oil and Gas in the Department of Conservation. After some background on county planning in California, the unique situation in the counties of greatest geothermal potential is presented: Imperial County and the four Geysers counties as well as their joint powers agency. Conclusions and recommendations are included. (MHR)

  6. Geothermal country update of Japan

    International Nuclear Information System (INIS)

    Higo, M.

    1990-01-01

    This paper reports on the status of geothermal energy in Japan. Topics covered include: present and planned production of electricity, present utilization of geothermal energy for direct heat, information about geothermal localities, and wells drilled for electrical utilization of geothermal resources to January 1, 1990

  7. NATIONAL GEOTHERMAL DATA SYSTEM (NGDS) GEOTHERMAL DATA DOMAIN: ASSESSMENT OF GEOTHERMAL COMMUNITY DATA NEEDS

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-01-01

    To satisfy the critical need for geothermal data to ad- vance geothermal energy as a viable renewable ener- gy contender, the U.S. Department of Energy is in- vesting in the development of the National Geother- mal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to sup- ply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are dis- cussed. In particular, this paper addresses the various types of data required to effectively assess geother- mal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS in- cludes a work plan that addresses data assets and re- sources of interest to users, a survey of data provid- ers, data content models, and how data will be ex- changed and promoted, as well as lessons learned within the geothermal community.

  8. GEOTHERM programme supports geothermal energy world-wide. Geothermal energy, a chance for East African countries; GEOTHERM: BGR foerdert weltweit Nutzung geothermischer Energie. Geothermie - eine Chance fuer ostafrikanische Laender

    Energy Technology Data Exchange (ETDEWEB)

    Kraml, M.; Kessels, K.; Kalberkamp, U.; Ochmann, N.; Stadtler, C. [Bundesanstalt fuer Geowissenschaften und Rohstoffe (BGR), Hannover (Germany)

    2007-02-15

    The high geothermal potential of East Africa, especially of the Eastern Rift, is known for a long time. Since these pioneer studies, geothermal plants have been constructed at three sites in East Africa. Nevertheless, up to now geothermal has been a success story only in Kenya. The steam power plant Olkaria I in Kenya is running reliability since 25 years. Today, the country produces more than 12% of its electricity from geothermal. Now, Eritrea, Djibouti, Uganda, Tanzania and Ethiopia which are also situated along the East African Rift, are planning similar projects. The countries need to develop new energy sources because oil prices have reached a critical level. In the past, hydro power was regarded to be a reliable source of energy, but increased droughts changed the situation. Thus, the african states are searching for alternatives to be able to stabilise their energy supply and to cover the growing energy demand. There is much hope that the success of the Kenyan geothermal power plants will be repeated in the neighbouring countries. The East African countries have joined their forces to give impetus to the use of the regional geothermal resources. On behalf of the Federal Ministry for Economic Cooperation and Development, the Federal Institute for Geosciences and Natural Resources supports the countries in realising their plans as part of the GEOTHERM Programme. Together with further donors (Iceland, France, USA, Global Environment Facility) the path will be paved for geothermal power plants in the above mentioned six East African countries. The following main steps are necessary: - Awareness raising of political decision makers about the advantages of including geothermal into the national power plans - Improvement of knowledge about potentials geothermal sites - Development of a regional equipment pool including the necessary geophysical equipment, laboratories, etc. - Training in geothermal exploration and plant maintenance, to minimise risks of site

  9. Geothermal program review 16: Proceedings. A strategic plan for geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-12-31

    The proceedings contain 21 papers arranged under the following topical sections: Exploration technology (4 papers); Reservoir technology (5 papers); Energy conversion technology (8 papers); Drilling technology (2 papers); and Direct use and geothermal heat pump technology (2 papers). An additional section contains a report on a workshop on dual-use technologies for hydrothermal and advanced geothermal reservoirs.

  10. A guide for developing an ADP security plan for Navy Finance Center, Cleveland, Ohio

    OpenAIRE

    Barber, Daniel E.; Hodnett, Elwood Thomas, Jr.

    1982-01-01

    Approved for public release; distribution is unlimited This paper is intended to be used as a guide by personnel at the Navy Finance Center (NFC) Cleveland, Ohio in developing an Automatic Data Processing (ADP) Security Plan. An effort has been made to combine the requirements for an ADP security plan established by OPNAVINST5239.1A with pertinent information from other selected readings. The importance of the devotion of personnel, time and funds to ADP security planning has been emphas...

  11. Geothermal for kids

    International Nuclear Information System (INIS)

    Nemzer, M.; Condy, M.

    1990-01-01

    This paper reports that educating children about geothermal energy is crucial to the future growth of the geothermal industry. The Geothermal Education Office (GEO) was founded in 1989 to provide materials and support to teachers and the geothermal community in educating grades K-12 about geothermal energy. GEO's goals are to: provide easy access to or referral to appropriate sources of geothermal information; foster teacher interest; create posters, booklets, lesson plans and other educational materials; monitor and review textbooks, encyclopedias and other educational materials distributed by educational groups to ensure inclusion of appropriate, accurate information and to encourage fair treatment of alternative energy resources; contribute articles to industry, science and educational publications; and foster communication and cooperation among GEO, the geothermal industry, government agencies, and educational and environmental groups

  12. Geothermal Program Review XII: proceedings. Geothermal Energy and the President's Climate Change Action Plan

    Energy Technology Data Exchange (ETDEWEB)

    1994-12-31

    Geothermal Program Review XII, sponsored by the Geothermal Division of US Department of Energy, was held April 25--28, 1994, in San Francisco, California. This annual conference is designed to promote effective technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal energy developers; suppliers of geothermal goods and services; representatives from federal, state, and local agencies; and others with an interest in geothermal energy. In-depth reviews of the latest technological advancements and research results are presented during the conference with emphasis on those topics considered to have the greatest potential to impact the near-term commercial development of geothermal energy.

  13. Geothermal fields of China

    Science.gov (United States)

    Kearey, P.; HongBing, Wei

    1993-08-01

    There are over 2500 known occurrences of geothermal phenomena in China. These lie mainly in four major geothermal zones: Xizang (Tibet)-Yunnan, Taiwan, East Coast and North-South. Hot water has also been found in boreholes in major Mesozoic-Cenozoic sedimentary basins. This paper presents a summary of present knowledge of these geothermal zones. The geological settings of geothermal occurrences are associated mainly with magmatic activity, fault uplift and depressional basins and these are described by examples of each type. Increased multipurpose utilisation of geothermal resources is planned and examples are given of current usages.

  14. Final Report and Strategic Plan on the Feasibility Study to Assess Geothermal Potential on Warm Springs Reservation Lands. Report No. DOE/GO/15177

    Energy Technology Data Exchange (ETDEWEB)

    James Manion, Warm Springs Power & Water Enterprises; David McClain, McClain & Associates

    2007-05-17

    In 2005 the Confederated Tribes of Warm Springs Tribal Council authorized an evaluation of the geothermal development potential on the Confederated Tribes of Warm Springs Reservation of Oregon. Warm Springs Power & Water Enterprises obtained a grant from the U.S. Department of Energy to conduct a geological assessment and development estimate. Warm Springs Power & Water Enterprises utilized a team of expert consultants to conduct the study and develop a strategic plan. The resource assessment work was completed in 2006 by GeothermEx Inc., a consulting company specializing in geothermal resource assessments worldwide. The GeothermEx report indicates there is a 90% probability that a commercial geothermal resource exists on tribal lands in the Mt. Jefferson area. The geothermal resource assessment and other cost, risk and constraints information has been incorporated into the strategic plan.

  15. Deep geothermal energy probe Heubach. Project plan and facility planning by using a practical example; Tiefen-Erdwaermesonde Heubach. Projektablauf und Anlagenplanung anhand eines Praxisbeispiels

    Energy Technology Data Exchange (ETDEWEB)

    Kuntz, David; Kuebert, Markus; Walker-Hertkorn, Simone [tewag GmbH, Starzach-Felldorf (Germany); Lemes, Zijad [HEAG Suedhessische Energie AG (HSE), Darmstadt (Germany). Q100 Regenerative Energien; Fritsche, Johann-Gerhard; Koett, Anne [Hessisches Landesamt fuer Umwelt und Geologie (HLUG), Wiesbaden (Germany)

    2012-10-16

    For the decentralized supply of an industrial company in Heubach nearby Gross-Umbach (Federal Republic of Germany) with geothermal energy for heating and cooling, the first geothermal deep drilling was performed in the German federal state of Hesse. The concept of a sustainable energy supply is based on the utilization of heat and cold from near-surface geothermal energy as well as on the heat production from an 800 metre coaxial deep geothermal probe (K-TEWS). HEAG Suedhessische Energie AG (Darmstadt, Bundesrepublik Deutschland) is the project manager. The company H. Anger's Soehne (Hessisch Lichtenau, Federal Republic of Germany) as a project partner is responsible for the execution of the drilling. Due to the innovative character and the outstanding importance for the future utilization of the geothermal energy for the energy supply, this project was promoted by the Hessian Ministry for the Environment, Energy, Agriculture and Consumer Protection (Wiesbaden, Federal Republic of Germany). The Hessian Agency for the Environment and Geology (Wiesbaden, Federal Republic of Germany) as well as the University Kassel (Kassel, Federal Republic of Germany) serve as scientific counterparts. Tewag GmbH (Regensburg, Federal Republic of Germany) is the technical planner of the geotechnical component of the execution of construction work, and is in charge of the thermal simulation and elaboration of the optimal extension concept. By means of this research and demonstration project, experiences on the heat supply using TEWS systems as well as on the project plan have to be acquired. Furthermore, experiences on the optimization in the planning and implementation are to be acquired in order to evaluate the transferability and economic efficiency at future locations practically. After presentation of the project, the authors of the contribution under consideration describe the planning phases of the project, some aspects of the public relations, the planning approaches, the

  16. National Geothermal Data System (NGDS) Geothermal Data: Community Requirements and Information Engineering

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Arlene [United States Department of Energy; Blackwell, David [Southern Methodist University; Chickering, Cathy [Southern Methodist University; Boyd, Toni [Oregon Institute of Technology; Horne, Roland [Stanford University; MacKenzie, Matthew [Uberity Technology Corporation; Moore, Joseph [University of Utah; Nickull, Duane [Uberity Technology Corporation; Richard, Stephen [Arizona Geological survey; Shevenell, Lisa A. [University of Nevada, Reno

    2013-10-01

    To satisfy the critical need for geothermal data to advance geothermal energy as a viable renewable energy contender, the U.S. Department of Energy is investing in the development of the National Geothermal Data System (NGDS). This paper outlines efforts among geothermal data providers nationwide to supply cutting edge geo-informatics. NGDS geothermal data acquisition, delivery, and methodology are discussed. In particular, this paper addresses the various types of data required to effectively assess geothermal energy potential and why simple links to existing data are insufficient. To create a platform for ready access by all geothermal stakeholders, the NGDS includes a work plan that addresses data assets and resources of interest to users, a survey of data providers, data content models, and how data will be exchanged and promoted, as well as lessons learned within the geothermal community.

  17. Geothermal power development in Hawaii. Volume I. Review and analysis

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    The history of geothermal exploration in Hawaii is reviewed briefly. The nature and occurrences of geothermal resources are presented island by island. An overview of geothermal markets is presented. Other topies covered are: potential markets of the identified geothermal areas, well drilling technology, hydrothermal fluid transport, overland and submarine electrical transmission, community aspects of geothermal development, legal and policy issues associated with mineral and land ownership, logistics and infrastructure, legislation and permitting, land use controls, Regulation 8, Public Utilities Commission, political climate and environment, state plans, county plans, geothermal development risks, and business planning guidelines.

  18. 2012 geothermal energy congress. Proceedings

    International Nuclear Information System (INIS)

    2012-01-01

    Within the Geothermal Energy Congress 2012 from 13th to 16th November 2012, in Karlsruhe (Federal Republic of Germany), the following lectures were held: (1) Comparison of different methods for the design of geothermal probes on the example of the thermal utilization of smouldering fires at heaps (Sylvia Kuerten); (2) Determination of the thermo-physical features of loose rocks (Johannes Stegner); (3) Tools for the planning and operation of district heating grids (Werner Seichter); (4) geo:build - System optimisation of the cooling mode of the ground-source heat and cooling supply (Franziska Bockelmann); (5) Successful and economic conception, planning and optimization of district heating grids (Werner Seichter); (6) Treacer / Heat transfer decoupling in a heterogeneous hydrothermal reservoir characterized by geological faults in the Upper Rhine Graben (I. Ghergut); (7) Determination of the porosity, thermal conductivity and particle size distribution in selected sections of the Meisenheim-1 drilling core (Saar-Nahe basin, Rheinland-Palatinate) under consideration of geothermally relevant formulation of questions (Gillian Inderwies); (8) Innovative technologies of exploration in the Jemez Geothermal project, New Mexico, USA (Michael Albrecht); (9) Geothermal energy, heat pump and TABS - optimization of planning, operational control and control (Franziska Bockelmann); (10) The impact of large-scale geothermal probes (storage probes) on the heat transfer and heat loss (Christopher Steins); (11) Numeric modelling of the permocarbon in the northern Upper Rhine Graben (L. Dohrer); (12) Engineering measurement solutions on quality assurance in the exploitation of geothermal fields (C. Lehr); (13) Evaluation and optimization of official buildings with the near-surface geothermal energy for heating and cooling (Franziska Bockelmann); (14) On-site filtration for a rapid and cost-effective quantification of the particle loading in the thermal water stream (Johannes Birner

  19. Imperial County geothermal development annual meeting: summary

    Energy Technology Data Exchange (ETDEWEB)

    1983-01-01

    All phases of current geothermal development in Imperial County are discussed and future plans for development are reviewed. Topics covered include: Heber status update, Heber binary project, direct geothermal use for high-fructose corn sweetener production, update on county planning activities, Brawley and Salton Sea facility status, status of Imperial County projects, status of South Brawley Prospect 1983, Niland geothermal energy program, recent and pending changes in federal procedures/organizations, plant indicators of geothermal fluid on East Mesa, state lands activities in Imperial County, environmental interests in Imperial County, offshore exploration, strategic metals in geothermal fluids rebuilding of East Mesa Power Plant, direct use geothermal potential for Calipatria industrial Park, the Audubon Society case, status report of the Cerro Prieto geothermal field, East Brawley Prospect, and precision gravity survey at Heber and Cerro Prieto geothermal fields. (MHR)

  20. Geothermal Program Review XVII: proceedings. Building on 25 years of Geothermal Partnership with Industry

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-10-01

    The US Department of Energy's Office (DOE) of Geothermal Technologies conducted its annual Program Review XVII in Berkeley, California, on May 18--20, 1999. The theme this year was "Building on 25 Years of Geothermal Partnership with Industry". In 1974, Congress enacted Public Law 93-410 which sanctioned the Geothermal Energy Coordination and Management Project, the Federal Government's initial partnering with the US geothermal industry. The annual program review provides a forum to foster this federal partnership with the US geothermal industry through the presentation of DOE-funded research papers from leaders in the field, speakers who are prominent in the industry, topical panel discussions and workshops, planning sessions, and the opportunity to exchange ideas. Speakers and researchers from both industry and DOE presented an annual update on research in progress, discussed changes in the environment and deregulated energy market, and exchanged ideas to refine the DOE Strategic Plan for research and development of geothermal resources in the new century. A panel discussion on Climate Change and environmental issues and regulations provided insight into the opportunities and challenges that geothermal project developers encounter. This year, a pilot peer review process was integrated with the program review. A team of geothermal industry experts were asked to evaluate the research in progress that was presented. The evaluation was based on the Government Performance and Results Act (GPRA) criteria and the goals and objectives of the Geothermal Program as set forth in the Strategic Plan. Despite the short timeframe and cursory guidance provided to both the principle investigators and the peer reviewers, the pilot process was successful. Based on post review comments by both presenters and reviewers, the process will be refined for next year's program review.

  1. Geothermal survey handbook

    Energy Technology Data Exchange (ETDEWEB)

    1974-01-01

    The objective of this handbook is to publicize widely the nature of geothermal surveys. It covers geothermal survey planning and measurement as well as measurement of thermal conductivity. Methods for the detection of eruptive areas, the measurement of radiative heat using snowfall, the measurement of surface temperature using infrared radiation and the measurement of thermal flow are described. The book also contains information on physical detection of geothermal reservoirs, the measurement of spring wells, thermographic measurement of surface heat, irregular layer surveying, air thermographics and aerial photography. Isotope measurement techniques are included.

  2. California Geothermal Forum: A Path to Increasing Geothermal Development in California

    Energy Technology Data Exchange (ETDEWEB)

    Young, Katherine R. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2017-01-01

    The genesis of this report was a 2016 forum in Sacramento, California, titled 'California Geothermal Forum: A Path to Increasing Geothermal Development in California.' The forum was held at the California Energy Commission's (CEC) headquarters in Sacramento, California with the primary goal being to advance the dialogues for the U.S. Department of Energy's Geothermal Technologies Office (GTO) and CEC technical research and development (R&D) focuses for future consideration. The forum convened a diverse group of stakeholders from government, industry, and research to lay out pathways for new geothermal development in California while remaining consistent with critical Federal and State conservation planning efforts, particularly at the Salton Sea.

  3. Potential Navy Force Structure and Shipbuilding Plans: Background and Issues for Congress

    National Research Council Canada - National Science Library

    O'Rourke, Ronald

    2005-01-01

    In February 2005, the Navy testified that the Navy in future years may require a total of 260 to 325 ships, or possibly 243 to 302 ships, depending on how much the Navy uses new technologies and a new...

  4. Geothermal Energy: Prospects and Problems

    Science.gov (United States)

    Ritter, William W.

    1973-01-01

    An examination of geothermal energy as a means of increasing the United States power resources with minimal pollution problems. Developed and planned geothermal-electric power installations around the world, capacities, installation dates, etc., are reviewed. Environmental impact, problems, etc. are discussed. (LK)

  5. Geothermal energy as a source of electricity. A worldwide survey of the design and operation of geothermal power plants

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1980-01-01

    An overview of geothermal power generation is presented. A survey of geothermal power plants is given for the following countries: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, Philippines, Turkey, USSR, and USA. A survey of countries planning geothermal power plants is included. (MHR)

  6. Geothermal Money Book [Geothermal Outreach and Project Financing

    Energy Technology Data Exchange (ETDEWEB)

    Elizabeth Battocletti

    2004-02-01

    Small business lending is big business and growing. Loans under $1 million totaled $460 billion in June 2001, up $23 billion from 2000. The number of loans under $100,000 continued to grow at a rapid rate, growing by 10.1%. The dollar value of loans under $100,000 increased 4.4%; those of $100,000-$250,000 by 4.1%; and those between $250,000 and $1 million by 6.4%. But getting a loan can be difficult if a business owner does not know how to find small business-friendly lenders, how to best approach them, and the specific criteria they use to evaluate a loan application. This is where the Geothermal Money Book comes in. Once a business and financing plan and financial proposal are written, the Geothermal Money Book takes the next step, helping small geothermal businesses locate and obtain financing. The Geothermal Money Book will: Explain the specific criteria potential financing sources use to evaluate a proposal for debt financing; Describe the Small Business Administration's (SBA) programs to promote lending to small businesses; List specific small-business friendly lenders for small geothermal businesses, including those which participate in SBA programs; Identify federal and state incentives which are relevant to direct use and small-scale (< 1 megawatt) power generation geothermal projects; and Provide an extensive state directory of financing sources and state financial incentives for the 19 states involved in the GeoPowering the West (GPW). GPW is a U.S. Department of Energy-sponsored activity to dramatically increase the use of geothermal energy in the western United States by promoting environmentally compatible heat and power, along with industrial growth and economic development. The Geothermal Money Book will not: Substitute for financial advice; Overcome the high exploration, development, and financing costs associated with smaller geothermal projects; Remedy the lack of financing for the exploration stage of a geothermal project; or Solve

  7. Mexican geothermal development and the future

    International Nuclear Information System (INIS)

    Serrano, J.M.E.V.

    1998-01-01

    Geothermics in Mexico started in 1954, by drilling the first geothermal well in Pathe, State of Hidalgo, which reached a depth of 237 meters. In 1959 electrical generation from geothermal origin began, with an installed capacity of 3.5 MW. From 1959 to 1994 Mexico increased its installed capacity to 753 MW, by developing three geothermal fields: Cerro Prieto, Los Azufres, and Los Humeros. Currently, 177 wells produce steam at a rate of 36 tons per hour (t/h) each. Comision Federal de Electricidad (CFE, Federal Commission of Electricity) has planned to increase the geothermal-electric installed capacity through construction and installation of several projects. Repowering of operating units and development of new geothermal zones will also allow Mexican geothermal growth

  8. Geothermal pilot study final report: creating an international geothermal energy community

    Energy Technology Data Exchange (ETDEWEB)

    Bresee, J.C.; Yen, W.W.S.; Metzler, J.E. (eds.)

    1978-06-01

    The Geothermal Pilot Study under the auspices of the Committee on the Challenges of Modern Society (CCMS) was established in 1973 to apply an action-oriented approach to international geothermal research and development, taking advantage of the established channels of governmental communication provided by the North Atlantic Treaty Organization (NATO). The Pilot Study was composed of five substudies. They included: computer-based information systems; direct application of geothermal energy; reservoir assessment; small geothermal power plants; and hot dry rock concepts. The most significant overall result of the CCMS Geothermal Pilot Study, which is now complete, is the establishment of an identifiable community of geothermal experts in a dozen or more countries active in development programs. Specific accomplishments include the creation of an international computer file of technical information on geothermal wells and fields, the development of studies and reports on direct applications, geothermal fluid injection and small power plants, and the operation of the visiting scientist program. In the United States, the computer file has aready proven useful in the development of reservoir models and of chemical geothermometers. The state-of-the-art report on direct uses of geothermal energy is proving to be a valuable resource document for laypersons and experts in an area of increasing interest to many countries. Geothermal fluid injection studies in El Salvador, New Zealand, and the United States have been assisted by the Reservoir Assessment Substudy and have led to long-range reservoir engineering studies in Mexico. At least seven small geothermal power plants are in use or have been planned for construction around the world since the Small Power Plant Substudy was instituted--at least partial credit for this increased application can be assigned to the CCMS Geothermal Pilot Study. (JGB)

  9. Advanced biochemical processes for geothermal brines FY 1998 annual operating plan

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-10-01

    As part of the overall Geothermal Energy Research which is aimed at the development of economical geothermal resources production systems, the aim of the Advanced Biochemical Processes for Geothermal Brines (ABPGB) effort is the development of economic and environmentally acceptable methods for disposal of geothermal wastes and conversion of by-products to useful forms. Methods are being developed for dissolution, separation and immobilization of geothermal wastes suitable for disposal, usable in inert construction materials, suitable for reinjection into the reservoir formation, or used for recovery of valuable metals.

  10. Geothermal heat can cool, too

    International Nuclear Information System (INIS)

    Wellstein, J.

    2008-01-01

    This article takes a look at how geothermal energy can not only be used to supply heating energy, but also be used to provide cooling too. The article reports on a conference on heating and cooling with geothermal energy that was held in Duebendorf, Switzerland, in March 2008. The influence of climate change on needs for heating and cooling and the need for additional knowledge and data on deeper rock layers is noted. The seasonal use of geothermal systems to provide heating in winter and cooling in summer is discussed. The planning of geothermal probe fields and their simulation is addressed. As an example, the geothermal installations under the recently renewed and extended 'Dolder Grand' luxury hotel in Zurich are quoted. The new SIA 384/6 norm on geothermal probes issued by the Swiss Association of Architects SIA is briefly reviewed.

  11. Energy conversion processes for the use of geothermal heat

    Energy Technology Data Exchange (ETDEWEB)

    Minder, R. [Minder Energy Consulting, Oberlunkhofen (Switzerland); Koedel, J.; Schaedle, K.-H.; Ramsel, K. [Gruneko AG, Basel (Switzerland); Girardin, L.; Marechal, F. [Swiss Federal Institute of Technology (EPFL), Laboratory for industrial energy systems (LENI), Lausanne (Switzerland)

    2007-03-15

    This comprehensive final report for the Swiss Federal Office of Energy (SFOE) presents the results of a study made on energy conversion processes that can be used when geothermal heat is to be used. The study deals with both theoretical and practical aspects of the conversion of geothermal heat to electricity. The report is divided into several parts and covers general study, practical experience, planning and operation of geothermal power plants as well as methodology for the optimal integration of energy conversion systems in geothermal power plants. In the first part, the specific properties and characteristics of geothermal resources are discussed. Also, a general survey of conversion processes is presented with special emphasis on thermo-electric conversion. The second part deals with practical aspects related to planning, construction and operation of geothermal power plant. Technical basics, such as relevant site-specific conditions, drilling techniques, thermal water or brine quality and materials requirements. Further, planning procedures are discussed. Also, operation and maintenance aspects are examined and some basic information on costs is presented. The third part of the report presents the methodology and results for the optimal valorisation of the thermodynamic potential of deep geothermal systems.

  12. Navy POD

    Science.gov (United States)

    Navy Personnel Command (NPC) Navy SAPR Navy EEO Inclusion And Diversity Navy Standard Integrated Operations Security (OPSEC) Navy Trademarks Military One Source USA.gov U.S. Office of Special Counsel Social Inclusion And Diversity Navy Standard Integrated Personnel System (NSIPS) My Navy Portal Board of

  13. Seismic characterisation for geothermal energy prospecting

    NARCIS (Netherlands)

    Huck, A.; Groot, P. de; Simmelink, E.; Vandeweijer, V.P.; Willemsen, A.

    2009-01-01

    The city of The Hague intends to use geothermal energy to heat approx. 4000 houses in a planned urban development area called The Hague South-West. This paper describes the application of advanced seismic interpretation workflows to help positioning a geothermal doublet consisting of one injector -

  14. Technology, market and policy aspects of geothermal energy in Europe

    Science.gov (United States)

    Shortall, Ruth; Uihlein, Andreas

    2017-04-01

    The Strategic Energy Technology Plan (SET-Plan) is the technology pillar of the EU's energy and climate policy. The goal of the SET-Plan is to achieve EU worldwide leadership in the production of energy technological solutions capable of delivering EU 2020 and 2050 targets for a low carbon economy. The Joint Research Centre (JRC) runs and manages the SET-Plan Information System (SETIS) to support the SET-Plan. Under SETIS, the JRC publishes a number of regularly updated key references on the state of low carbon technology, research and innovation in Europe. Within the framework of the SET-Plan, the geothermal sector is placed into context with other power and heat generation technologies. The talk will give an introduction to some of JRC's geothermal research activities. Amongst others, the JRC Geothermal status report will be presented. This report aims to contribute to the general knowledge about the geothermal sector, its technology, economics and policies, with a focus on innovation, research, development and deployment activities as well as policy support schemes within the European Union. The speech will present the main findings of the report, providing an overview of the activities and progress made by the geothermal energy sector, the status of its sub-technologies and current developments. In addition, the speech will discuss the economic, market and policy aspects of geothermal energy for power production, direct use and ground source heat pumps in Europe and beyond.

  15. Arizona geothermal institutional handbook: Arizona geothermal commercialization planning team, January 1-December 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Malysa, L.

    1980-05-01

    The purpose of this handbook is to assist in understanding the various procedures and requirements necessary for the development of geothermal energy in the State of Arizona. It contains the names of key persons and agencies who are directly or indirectly involved in the institutional process. A detailed assessment of all agencies and the role they play in geothermal energy development is provided. The handbook is divided into four sections: State and Local rules and regulations, the Federal rules and regulations, references, and a technical bibliography. (MHR)

  16. Navy Directory

    Science.gov (United States)

    Youtube US Navy Flickr US Navy Instagram US Navy Snapchat US Navy Pinterest US Navy Periscope NAVY GROUPS Facebook Twitter Instagram EDIT Chief of Naval Operations Facebook Twitter YouTube Instagram EDIT Chief of Facebook Twitter YouTube Instagram EDIT Chief of Supply Corps Facebook EDIT CNE MPP 413 Twitter EDIT CNIC

  17. South Dakota Geothermal Commercialization Project. Final report, July 1979-October 1985

    Energy Technology Data Exchange (ETDEWEB)

    Wegman, S.

    1985-01-01

    This report describes the activities of the South Dakota Energy Office in providing technical assistance, planning, and commercialization projects for geothermal energy. Projects included geothermal prospect identification, area development plans, and active demonstration/commercialization projects. (ACR)

  18. Environmental assessmental, geothermal energy, Heber geothermal binary-cycle demonstration project: Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    The proposed design, construction, and operation of a commercial-scale (45 MWe net) binary-cycle geothermal demonstration power plant are described using the liquid-dominated geothermal resource at Heber, Imperial County, California. The following are included in the environmental assessment: a description of the affected environment, potential environmental consequences of the proposed action, mitigation measures and monitoring plans, possible future developmental activities at the Heber anomaly, and regulations and permit requirements. (MHR)

  19. Policy for geothermal energy development

    Energy Technology Data Exchange (ETDEWEB)

    Kiuchi, S [Public Utilities Bureau, Ministry of International Trade and Industry, Japan

    1973-01-01

    Government actions related to Japanese geothermal energy development in the past include: a mining and industrial research subsidy of 27 million yen granted to Kyushu Electric Power Co. in 1952, a mining and industrial research subsidy of 13 million yen granted to Japan Metals and Chemicals Co. in 1960, a study on steam production technology for geothermal power generation by Japan Metals and Chemicals Co. funded at 3.5 hundred million yen from the Research Development Corporation of Japan, and a study on steam production technology for large scale geothermal power generation by Japan Metals and Chemicals Co. funded at 7.6 hundred million yen by the Research Development Corporation of Japan. The following projects are planned by the Ministry of International Trade and Industry for 1973: a two-year geothermal power promotion including investigations into the utilization of hot water, new methods for geothermal reservoir detection and steam well drilling, and environmental effects, studies on hydrothermal systems, basic investigations for geothermal indicators in 30 areas, and a means to finance the construction of geothermal power plants in Kakkonda (Iwate Prefecture) and Hatchobara (Oita Prefecture).

  20. Status of geothermal resources in Mexico

    International Nuclear Information System (INIS)

    Le-Bert, G.

    1990-01-01

    Except for some isolated instances with tourist or therapeutic objectives and some attempts in the Cerro Prieto geothermal field, there are no projects for direct heat utilization of geothermal resources in Mexico. Therefore, all places that are studied are studied with geothermal-electric objectives. It is convenient to keep in mind that in Mexico, by law, the Comision Federal de Electricidad (CFE) is the public utility in charge of electrical energy service. This institution is directly responsible for the exploration, development and commercial use of geothermal energy for electrical generation. Therefore, this paper includes the present and planned exploration and utilization of geothermal resources only for electricity generation for the period 1985 to the present. Likewise, starting 5 years ago, the CFE efforts have been directed toward the development of high enthalpy fields

  1. Drilling series. 4. ; Planning geothermal drilling (rotary type). Kussaku series. 4. ; Chinetsusei no kussaku keikaku (shutoshite rotary gata)

    Energy Technology Data Exchange (ETDEWEB)

    Ito, T. (S.K. Engineering Co. Ltd., Tokyo (Japan))

    1994-01-31

    The present report explained how to plan the drilling of geothermal well, and select the easing, drilling mud water and drilling rig in order to obtain the steam and hot water. The geothermal wells can be generally classified into exploration wells, production wells and reduction wells. The exploration well is a well to survey the underground strata, geological structure, and existence of steam and hot water, while the production well is a well to produce the steam and hot water. The reduction well is a well to condense the hot water produced by the production well and steam having passed through the power-generating turbine, and return them as condensate underground. The geothermal well is characterized by its high temperature, mud leakage, corrosive matter and scale, all of which make its drilling difficult and its management troublesome for the production and reduction. To plan the drilling, the order of processing are distinct conditioning of drilling differently by type of well, collection of geological survey data, programing for the casing and selection of drilling rig. The present report also gave the stress to affect the casing and standard of steel pipes to be used for the casing. 3 figs., 4 tabs.

  2. OMEGA (Offshore Membrane for Enclosing Algae). NASA-NAVY: A Strategic Planning Discussion

    Science.gov (United States)

    Trent, Jonathan

    2010-01-01

    This briefing packet provides a short introduction to OMEGA and a truncated version of our project approach, with an example of the kind of work break down structure (WBS) used to guide our Phase I activities. It is meant to give you an impression of how we are approaching the challenge of creating the world's first marine photobioreactor (PBR) that will scale to address the strategic energy problems confronting the United States and the world. Some of our conceptual PBR designs and plans for logistics are included to communicate the path we have taken. We have also included an aerial photograph of the experimental tanks we are using at the Cal Fish and Game, followed by concluding remarks. The overarching purpose of the strategic planning discussion in Norfolk is to establish the relationship between the NASA OMEGA Team and the Navy, to unite the strengths of both agencies, and to map a mutual way forward along the project's established critical path.

  3. Deep Geothermal Energy Production in Germany

    Directory of Open Access Journals (Sweden)

    Thorsten Agemar

    2014-07-01

    Full Text Available Germany uses its low enthalpy hydrothermal resources predominantly for balneological applications, space and district heating, but also for power production. The German Federal government supports the development of geothermal energy in terms of project funding, market incentives and credit offers, as well as a feed-in tariff for geothermal electricity. Although new projects for district heating take on average six years, geothermal energy utilisation is growing rapidly, especially in southern Germany. From 2003 to 2013, the annual production of geothermal district heating stations increased from 60 GWh to 530 GWh. In the same time, the annual power production increased from 0 GWh to 36 GWh. Currently, almost 200 geothermal facilities are in operation or under construction in Germany. A feasibility study including detailed geological site assessment is still essential when planning a new geothermal facility. As part of this assessment, a lot of geological data, hydraulic data, and subsurface temperatures can be retrieved from the geothermal information system GeotIS, which can be accessed online [1].

  4. Status of geothermal development in Hawaii - 1992

    International Nuclear Information System (INIS)

    Lesperance, G.O.

    1992-01-01

    Hawaii plans that geothermal will be a significant part of its energy mix to reduce its 90% dependency on imported oil for its electricity. The resource on the Big Island of Hawaii appears promising. However, the geothermal program in Hawaii continues to face stiff opposition from a few people who are determined to stop development at any cost. The efforts of geothermal developers, together with the State and County regulatory framework have inadvertently created situations that have impeded progress. However, after a 20-year effort the first increment of commercial geothermal energy is expected on line in 1992

  5. Geothermal Program Review XIV: proceedings. Keeping Geothermal Energy Competitive in Foreign and Domestic Markets

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-01-01

    The U.S. Department of Energy`s Office of Geothermal Technologies conducted its annual Program Review XIV in Berkeley, April 8-10, 1996. The geothermal community came together for an in-depth review of the federally-sponsored geothermal research and development program. This year`s theme focused on ``Keeping Geothermal Energy Competitive in Foreign and Domestic Markets.`` This annual conference is designed to promote technology transfer by bringing together DOE-sponsored researchers; utility representatives; geothermal developers; equipment and service suppliers; representatives from local, state, and federal agencies; and others with an interest in geothermal energy. Program Review XIV consisted of eight sessions chaired by industry representatives. Introductory and overview remarks were presented during every session followed by detailed reports on specific DOE-funded research projects. The progress of R&D projects over the past year and plans for future activities were discussed. The government-industry partnership continues to strengthen -- its success, achievements over the past twenty years, and its future direction were highlighted throughout the conference. The comments received from the conference evaluation forms are published in this year`s proceedings. Individual papers have been processed for inclusion in the Energy Science and Technology Database.

  6. Real Time Analysis: Does Navy Have a Plan?

    Science.gov (United States)

    2015-06-12

    our militaries face. Peter Tran, senior director of the worldwide advanced cyber defense practice at RSA , commented that “Historically, the...should look like for analysis on the data Navy needs to analyze when he stated: Computers, communications links, encryption devices, and other IT allow

  7. INEL Geothermal Environmental Program. 1979 annual report

    Energy Technology Data Exchange (ETDEWEB)

    Thurow, T.L.; Sullivan, J.F.

    1980-04-01

    The Raft River Geothermal Environmental Program is designed to assess beneficial and detrimental impacts to the ecosystem resulting from the development of moderate temperature geothermal resources in the valley. The results of this research contribute to developing an understanding of Raft River Valley ecology and provide a basis for making management decisions to reduce potential long-term detrimental impacts on the environment. The environmental monitoring and research efforts conducted during the past six years of geothermal development and planned future research are summarized.

  8. Environmental impacts during geothermal development: Some examples from Central America

    International Nuclear Information System (INIS)

    Goff, S.; Goff, F.

    1997-01-01

    The impacts of geothermal development projects are usually positive. However, without appropriate monitoring plans and mitigation actions firmly incorporated into the project planning process, there exists the potential for significant negative environmental impacts. The authors present five examples from Central America of environmental impacts associated with geothermal development activities. These brief case studies describe landslide hazards, waste brine disposal, hydrothermal explosions, and air quality issues. Improved Environmental Impact Assessments are needed to assist the developing nations of the region to judiciously address the environmental consequences associated with geothermal development

  9. Navy.mil - Photo Galleries

    Science.gov (United States)

    Personnel Command (NPC) Navy SAPR Navy EEO Inclusion And Diversity Navy Standard Integrated Personnel System (OPSEC) Navy Trademarks Military One Source USA.gov U.S. Office of Special Counsel Social Media Directory Links Navy Reserve Navy.mil Underway Navy Personnel Command (NPC) Navy SAPR Navy EEO Inclusion And

  10. Doubling Geothermal Generation Capacity by 2020. A Strategic Analysis

    Energy Technology Data Exchange (ETDEWEB)

    Wall, Anna [National Renewable Energy Lab. (NREL), Golden, CO (United States); Young, Katherine [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2016-01-01

    This report identifies the potential of U.S. geothermal resource and the current market to add an additional 3 GW of geothermal by 2020, in order to meet the goal set forth in the Climate Action Plan.

  11. Geothermal Program Review X: proceedings. Geothermal Energy and the Utility Market -- the Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R&D program. The conference serves several purposes: a status report on current R&D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year`s conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, ``Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,`` focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R&D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  12. Colorado geothermal commercialization program. Geothermal energy opportunities at four Colorado towns: Durango, Glenwood Springs, Idaho Springs, Ouray

    Energy Technology Data Exchange (ETDEWEB)

    Coe, B.A.; Zimmerman, J.

    1981-01-01

    The potential of four prospective geothermal development sites in Colorado was analyzed and hypothetical plans prepared for their development. Several broad areas were investigated for each site. The first area of investigation was the site itself: its geographic, population, economic, energy demand characteristics and the attitudes of its residents relative to geothermal development potential. Secondly, the resource potential was described, to the extent it was known, along with information concerning any exploration or development that has been conducted. The third item investigated was the process required for development. There are financial, institutional, environmental, technological and economic criteria for development that must be known in order to realistically gauge the possible development. Using that information, the next concern, the geothermal energy potential, was then addressed. Planned, proposed and potential development are all described, along with a possible schedule for that development. An assessment of the development opportunities and constraints are included. Technical methodologies are described in the Appendix. (MHR)

  13. Geothermal direct-heat study: Imperial County, California

    Energy Technology Data Exchange (ETDEWEB)

    1983-05-01

    Potential applications of geothermal energy which would be compatible with the agricultural activities in the county were identified and a plan to attract potential users to the area was developed. The intent of the first effort was to identify general classifications of industries which could utilize geothermal heat in production processes. Two levels of analyses were utilized for this effort. Initially, activities relying on previously developed engineering and industrial concepts were investigated to determine capital costs, employment, and potential energy savings. Second, innovative concepts not yet fully developed were investigated to determine their potential applicability to the agricultural base of the county. These investigations indicated that the major potential applications of geothermal heat would involve industries related to food processing or other direct agriculture-related uses of raw materials produced or imported to the county. An implementation plan which can be utilized by the county to market direct heat applications was developed. A socioeconomics analysis examined the potential effects on the county from development of direct heat projects. The county's planning and permitting requirements for dirct heat projects were also examined.

  14. Novel approaches for an enhanced geothermal development of residential sites

    Science.gov (United States)

    Schelenz, Sophie; Firmbach, Linda; Shao, Haibing; Dietrich, Peter; Vienken, Thomas

    2015-04-01

    An ongoing technological enhancement drives an increasing use of shallow geothermal systems for heating and cooling applications. However, even in areas with intensive shallow geothermal use, planning of geothermal systems is in many cases solely based on geological maps, drilling databases, and literature references. Thus, relevant heat transport parameters are rather approximated than measured for the specific site. To increase the planning safety and promote the use of renewable energies in the domestic sector, this study investigates a novel concept for an enhanced geothermal development of residential neighbourhoods. This concept is based on a site-specific characterization of subsurface conditions and the implementation of demand-oriented geothermal usage options. Therefore, an investigation approach has been tested that combines non-invasive with minimum-invasive exploration methods. While electrical resistivity tomography has been applied to characterize the geological subsurface structure, Direct Push soundings enable a detailed, vertical high-resolution characterization of the subsurface surrounding the borehole heat exchangers. The benefit of this site-specific subsurface investigation is highlighted for 1) a more precise design of shallow geothermal systems and 2) a reliable prediction of induced long-term changes in groundwater temperatures. To guarantee the financial feasibility and practicability of the novel geothermal development, three different options for its implementation in residential neighbourhoods were consequently deduced.

  15. Update of geothermal energy development in Greece

    International Nuclear Information System (INIS)

    Koutroupis, N.

    1992-01-01

    Following the completion of the Geothermal Reconnaissance Study in Greece and the successful drilling of seven deep geothermal wells in the Aegean islands of Milos and Nisyros, PPC started the first step towards geothermal development for electricity production as follows: A geothermal electric pilot plant of 2 MW e nominal capacity was installed on the Zephyria plain in Milos island (1985). During a nine month operation of the plant, problems connected with its long term operation were solved (hot reinjection of the high salinity brine, turbine washing etc). A feasibility study regarding exploitation of the Nisyros geothermal resources was completed and PPC connected Nisyros island electrically to Kos island via submarine cables. As consequence of the reaction against geothermal development by the people of Milos in early 1989, the power plant is still out of operation and the feasibility study planned for Milos has been postponed. For similar reasons the Nisyros drilling contract for five new geothermal deep wells has not come into force as yet. This paper summarizes the main PPC geothermal activities to date, the problems caused by the reactions of the Milos and Nisyros population and the relevant PPC countermeasures, as well as outlining the PPC development program for the near future

  16. First geothermal pilot power plant in Hungary

    Directory of Open Access Journals (Sweden)

    Tóth Anikó

    2007-01-01

    Full Text Available The Hungarian petroleum industry has always participated in the utilization of favourable geothermal conditions in the country. Most of the Hungarian geothermal wells were drilled by the MOL Ltd. as CH prospect holes. Accordingly, the field of geothermics belonged to the petroleum engineering, although marginally. It was therefore a surprise to hear of the decision of MOL Ltd. to build a geothermal power plant of about 2-5 MW. The tender was published in 2004.The site selected for the geothermal project is near the western border of an Hungarian oilfield, close to the Slovenian border. The location of the planned geothermal power plant was chosen after an analysis of suitable wells owned by the MOL Rt. The decision was made on the bases of different reservoir data. The existence of a reservoir of the necessary size, temperature, permeability, productivity and the water chemistry data was proved. The wells provide an enough information to understand the character of the reservoir and will be the production wells used by the planned power plant.The depth of the wells is about 2930 - 3200 m. The Triassic formation is reached at around 2851 m. The production and the reinjection wells are planned. The primary objective of the evaluation is to further learn the nature of the geothermal system. First a one-day discharge test is carried out. If this short-term test is successful, a six-months long-term discharge test will follow. The first period of the test is a transient phenomenon. Within the well test, the wellhead pressure, the flow rate, the outflowing water temperature, the dynamic fluid level, and the chemical components will be measured. The heat transfer around the bore-hole is influenced by the flow rate and the time. For the right appreciation of the measured data, it is very important to analyse the heat transfer processes around the bore-hole. The obtained data from the experiments must be also fitted into the framework of a mathematical

  17. Geothermal Grows Up

    Science.gov (United States)

    Johnson, William C.; Kraemer, Steven; Ormond, Paul

    2011-01-01

    Self-declared energy and carbon reduction goals on the part of progressive colleges and universities have driven ground source geothermal space heating and cooling systems into rapid evolution, as part of long-term climate action planning efforts. The period of single-building or single-well solutions is quickly being eclipsed by highly engineered…

  18. Geothermal handbook

    Science.gov (United States)

    1976-01-01

    The Bureau of Land Management offered over 400,000 hectares (one million acres) for geothermal exploration and development in 1975, and figure is expected to double this year. The Energy Research and Development Administration hopes for 10-15,000 megawatts of geothermal energy by 1985, which would require, leasing over 16.3 million hectares (37 million acres) of land, at least half of which is federal land. Since there is an 8 to 8-1/2 year time laf between initial exploration and full field development, there would have to be a ten-fold increase in the amount of federal land leased within the next three years. Seventy percent of geothermal potential, 22.3 million hectares (55 million acres), is on federal lands in the west. The implication for the Service are enormous and the problems immediate. Geothermal resource are so widespread they are found to some extent in most biomes and ecosystems in the western United States. In most cases exploitation and production of geothermal resources can be made compatible with fish and wildlife management without damage, if probable impacts are clearly understood and provided for before damage has unwittingly been allowed to occur. Planning for site suitability and concern with specific operating techniques are crucial factors. There will be opportunities for enhancement: during exploration and testing many shallow groundwater bodies may be penetrated which might be developed for wildlife use. Construction equipment and materials needed for enhancement projects will be available in areas heretofore considered remote projects will be available in areas heretofore considered remote by land managers. A comprehensive knowledge of geothermal development is necessary to avoid dangers and seize opportunities. This handbook is intended to serve as a working tool in the field. It anticipated where geothermal resource development will occur in the western United States in the near future. A set of environmental assessment procedures are

  19. Geothermal energy in California: Status report

    Energy Technology Data Exchange (ETDEWEB)

    Citron, O.; Davis, C.; Fredrickson, C.; Granit, R.; Kerrisk, D.; Leibowitz, L.; Schulkin, B.; Wornack, J.

    1976-06-30

    The potential for electric energy from geothermal resources in California is currently estimated to be equivalent to the output from 14 to 21 large (1000 MW) central station power plants. In addition, since over 30 California cities are located near potential geothermal resources, the non-electric applications of geothermal heat (industrial, agriculture, space heating, etc.) could be enormous. Therefore, the full-scale utilization of geothermal resources would have a major impact upon the energy picture of the state. This report presents a summary of the existing status of geothermal energy development in the state of California as of the early part of 1976. The report provides data on the extent of the resource base of the state and the present outlook for its utilization. It identifies the existing local, state, and federal laws, rules and regulations governing geothermal energy development and the responsibilities of each of the regulatory agencies involved. It also presents the differences in the development requirements among several counties and between California and its neighboring states. Finally, it describes on-going and planned activities in resource assessment and exploration, utilization, and research and development. Separate abstracts are prepared for ERDA Energy Research Abstracts (ERA) for Sections II--VI and the three Appendixes.

  20. New Mexico geothermal commercialization planning. Semi-annual progress report, January 1, 1979-June 30, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez, P.; Scudella, G.; Fedor, D.

    1979-06-01

    The market potential for geothermal energy development in New Mexico is estimated. Barriers to market penetration and geothermal development initiatives were identified. Statutes and regulations affecting geothermal development are appended.

  1. Geothermal research at Oklahoma State University: An integrated approach

    Energy Technology Data Exchange (ETDEWEB)

    Smith, M.D.

    1997-12-31

    Oklahoma State University and the International Ground Source Heat Pump Association (IGSHPA) are active in providing technical support to government and industry through technology transfer, technology development, technical assistance, and business development support. Technology transfer includes geothermal heat pump (GHP) system training for installers and architects and engineers, national teleconferences, brochures, and other publications. Technology development encompasses design software development, GLHEPRO, in-situ thermal conductivity testing methods and verification of data reduction techniques, and specifications and standards for GHP systems. Examples of technical assistance projects are a Navy officers quarters and a NASA Visitors Center which required design assistance and supporting information in reducing the life cycle cost to make them viable projects.

  2. Geothermal energy

    International Nuclear Information System (INIS)

    Rummel, F.; Kappelmeyer, O.; Herde, O.A.

    1992-01-01

    Objective of this brochure is to present the subject Geothermics and the possible use of geothermal energy to the public. The following aspects will be refered to: -present energy situation -geothermal potential -use of geothermal energy -environemental aspects -economics. In addition, it presents an up-dated overview of geothermal projects funded by the German government, and a list of institutions and companies active in geothermal research and developments. (orig./HP) [de

  3. Geothermal energy in Alaska: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Markle, D.

    1979-04-01

    The following are presented: the history of geothermal energy in Alaska; a history of Alaska land ownership; legal and institutional barriers; and economics. Development, the socio-economic and physical data concerning geothermal energy are documented by regions. The six regions presented are those of the present Alaska State Planning Activities and those of the Federal Land Use Commission. Site data summaries of the one hundred and four separate geothermal spring locations are presented by these regions. (MHR)

  4. Program planner's guide to geothermal development in California

    Energy Technology Data Exchange (ETDEWEB)

    Yen, W.W.S.; Chambers, D.M.; Elliott, J.F.; Whittier, J.P.; Schnoor, J.J.; Blachman, S.

    1980-09-30

    The resource base, status of geothermal development activities, and the state's energy flow are summarized. The present and projected geothermal share of the energy market is discussed. The public and private sector initiatives supporting geothermal development in California are described. These include legislation to provide economic incentives, streamline regulation, and provide planning assistance to local communities. Private sector investment, research, and development activities are also described. The appendices provide a ready reference of financial incentives. (MHR)

  5. Uncertainty analysis of geothermal energy economics

    Science.gov (United States)

    Sener, Adil Caner

    This dissertation research endeavors to explore geothermal energy economics by assessing and quantifying the uncertainties associated with the nature of geothermal energy and energy investments overall. The study introduces a stochastic geothermal cost model and a valuation approach for different geothermal power plant development scenarios. The Monte Carlo simulation technique is employed to obtain probability distributions of geothermal energy development costs and project net present values. In the study a stochastic cost model with incorporated dependence structure is defined and compared with the model where random variables are modeled as independent inputs. One of the goals of the study is to attempt to shed light on the long-standing modeling problem of dependence modeling between random input variables. The dependence between random input variables will be modeled by employing the method of copulas. The study focuses on four main types of geothermal power generation technologies and introduces a stochastic levelized cost model for each technology. Moreover, we also compare the levelized costs of natural gas combined cycle and coal-fired power plants with geothermal power plants. The input data used in the model relies on the cost data recently reported by government agencies and non-profit organizations, such as the Department of Energy, National Laboratories, California Energy Commission and Geothermal Energy Association. The second part of the study introduces the stochastic discounted cash flow valuation model for the geothermal technologies analyzed in the first phase. In this phase of the study, the Integrated Planning Model (IPM) software was used to forecast the revenue streams of geothermal assets under different price and regulation scenarios. These results are then combined to create a stochastic revenue forecast of the power plants. The uncertainties in gas prices and environmental regulations will be modeled and their potential impacts will be

  6. Geothermal resources of the UK

    International Nuclear Information System (INIS)

    Batchelor, A.S.

    1990-01-01

    This paper reports that geothermal energy applications and research are being actively pursued in the United Kingdom despite the relatively normal heat flow regime. The cumulative expenditure on geothermal activity from 1975 to 1989 has been approximately Brit-pounds 46 million of 32% of the Renewable Energy Research Budget to date. The first practical application is a 2 MWt scheme at Southampton as part of a district heating scheme. Commercial operation started in February 1988 and further expansion is planned. The UK's enthusiasm for Hot Dry Rock has dimmed slightly as the entire program is reappraised and the long heralded deep exploration hole has yet to materialize. Future activity looks likely to focus on geothermal opportunities that have multiple uses or applications for the fluids in small scale schemes and Hot Dry Rock research will probably be linked to a pan-European program based in France

  7. Geothermal Today: 2003 Geothermal Technologies Program Highlights (Revised)

    Energy Technology Data Exchange (ETDEWEB)

    2004-05-01

    This outreach publication highlights milestones and accomplishments of the DOE Geothermal Technologies Program for 2003. Included in this publication are discussions of geothermal fundamentals, enhanced geothermal systems, direct-use applications, geothermal potential in Idaho, coating technology, energy conversion R&D, and the GeoPowering the West initiative.

  8. Geothermal energy in Montana: site data base and development status

    Energy Technology Data Exchange (ETDEWEB)

    Brown, K.E.

    1979-11-01

    A short description of the state's geothermal characteristics, economy, and climate is presented. More specific information is included under the planning regions and site specific data summaries. A brief discussion of the geothermal characteristics and a listing of a majority of the known hot springs is included. The factors which influence geothermal development were researched and presented, including: economics, financing, state leasing, federal leasing, direct-use technology, water quality laws, water rights, and the Major Facility Siting Act. (MHR)

  9. Compact, Deep-Penetrating Geothermal Heat Flow Instrumentation for Lunar Landers

    Science.gov (United States)

    Nagihara, S.; Zacny, K.; Hedlund, M.; Taylor, P. T.

    2012-01-01

    Geothermal heat flow is obtained as a product of the two separate measurements of geothermal gradient in, and thermal conductivity of, the vertical soi/rock/regolith interval penetrated by the instrument. Heat flow measurements are a high priority for the geophysical network missions to the Moon recommended by the latest Decadal Survey [I] and previously the International Lunar Network [2]. The two lunar-landing missions planned later this decade by JAXA [3] and ESA [4] also consider geothermal measurements a priority.

  10. Development of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1995-09-01

    This paper describes the geothermal development promotion survey project. NEDO is taking the lead in investigation and development to reduce risks for private business entities and promote their development. The program is being moved forward by dividing the surveys into three ranks of A, B and C from prospects of geothermal resource availability and the state of data accumulation. The survey A lacks number of data, but covers areas as wide as 100 to 300 km{sup 2}, and studies possible existence of high-temperature geothermal energy. The survey B covers areas of 50 to 70 km{sup 2}, investigates availability of geothermal resources, and assesses environmental impacts. The survey C covers areas of 5 to 10 km{sup 2}, and includes production well drilling and long-term discharge tests, other than those carried out by the surveys A and B. Results derived in each fiscal year are evaluated and judged to establish development plans for the subsequent fiscal year. This paper summarizes development results on 38 areas from among 45 areas surveyed since fiscal 1980. Development promotion surveys were carried out over seven areas in fiscal 1994. Development is in progress not only on utilization of high-temperature steam, but also on binary cycle geothermal power generation utilizing hot waters of 80 to 150{degree}C. Fiscal 1994 has carried out discussions for spread and practical use of the systems (particularly on economic effects), and development of small-to-medium scale binary systems. 2 figs., 1 tab.

  11. A geographically weighted regression model for geothermal potential assessment in mediterranean cultural landscape

    Science.gov (United States)

    D'Arpa, S.; Zaccarelli, N.; Bruno, D. E.; Leucci, G.; Uricchio, V. F.; Zurlini, G.

    2012-04-01

    Geothermal heat can be used directly in many applications (agro-industrial processes, sanitary hot water production, heating/cooling systems, etc.). These applications respond to energetic and environmental sustainability criteria, ensuring substantial energy savings with low environmental impacts. In particular, in Mediterranean cultural landscapes the exploitation of geothermal energy offers a valuable alternative compared to other exploitation systems more land-consuming and visual-impact. However, low enthalpy geothermal energy applications at regional scale, require careful design and planning to fully exploit benefits and reduce drawbacks. We propose a first example of application of a Geographically Weighted Regression (GWR) for the modeling of geothermal potential in the Apulia Region (South Italy) by integrating hydrological (e.g. depth to water table, water speed and temperature), geological-geotechnical (e.g. lithology, thermal conductivity) parameters and land-use indicators. The GWR model can effectively cope with data quality, spatial anisotropy, lack of stationarity and presence of discontinuities in the underlying data maps. The geothermal potential assessment required a good knowledge of the space-time variation of the numerous parameters related to the status of geothermal resource, a contextual analysis of spatial and environmental features, as well as the presence and nature of regulations or infrastructures constraints. We create an ad hoc geodatabase within ArcGIS 10 collecting relevant data and performing a quality assessment. Cross-validation shows high level of consistency of the spatial local models, as well as error maps can depict areas of lower reliability. Based on low enthalpy geothermal potential map created, a first zoning of the study area is proposed, considering four level of possible exploitation. Such zoning is linked and refined by the actual legal constraints acting at regional or province level as enforced by the regional

  12. FY 1998 report on the verification survey of geothermal exploration technology, etc. 1/2. Survey of deep geothermal resource; 1998 nendo chinetsu tansa gijutsu nado kensho chosa hokokusho. 1/2. Shinbu chinetsu shigen chosa

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1999-12-01

    For the purpose of commercializing deep geothermal resource, a deep exploration well of 4000m class was drilled in the existing geothermal development area to survey the situation of deep geothermal resource existence and the availability. Concretely, the deep geothermal exploration well was drilled for study in the Kakkonda area, Shizukuishi town, Iwate prefecture, to clarify the situation of deep geothermal resource existence and the whole image of geothermal system. Consideration was made of the deep geothermal exploration method, systematization of deep high temperature drilling technology, and availability of deep geothermal resource. The results of the survey were summed up as follows: 1) general remarks; 2) deep exploration well drilling work; 3) details of the study. 1) and 2) were included in this report, and 3) in the next report. In 1), the items were as follows: the study plan/gist of study execution, the details and results of the deep geothermal resource survey, the outline of the deep exploration well drilling work, and the outline of the results of the FY 1998 study. In 2), the drilling work plan/the actual results of the drilling work were summed up. As to the results of the study, summarized were the acquisition of survey data on deep exploration well, heightening of accuracy of the deep geothermal resource exploration method, etc. (NEDO)

  13. Coso geothermal environmental overview study ecosystem quality

    Energy Technology Data Exchange (ETDEWEB)

    Leitner, P.

    1981-09-01

    The Coso Known Geothermal Resource Area is located just east of the Sierra Nevada, in the broad transition zone between the Mohave and Great Basin desert ecosystems. The prospect of large-scale geothermal energy development here in the near future has led to concern for the protection of biological resources. Objectives here are the identification of ecosystem issues, evaluation of the existing data base, and recommendation of additional studies needed to resolve key issues. High-priority issues include the need for (1) site-specific data on the occurrence of plant and animal species of special concern, (2) accurate and detailed information on the nature and extent of the geothermal resource, and (3) implementation of a comprehensive plan for ecosystem protection.

  14. Building a regulatory framework for geothermal energy development in the NWT

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, Peggy; Dagg, Jennifer [Pembina Institute (Canada)

    2011-03-15

    There is a high potential in Canada's Northwest Territories (NWT) for using geothermal energy, the thermal energy generated and stored in the Earth, and this could help the NWT meet their greenhouse gas emissions reduction targets. The Pembina Institute was engaged by the government of the NWT to perform a jurisdictional analysis of geothermal energy legislation and policy around the world; this report presents its findings. The jurisdictional review was carried out in 9 countries and interviews were conducted with various geothermal energy experts. Following this research, the Pembina Institute made recommendations to the NWT government on the development of a geothermal energy regulatory framework which would cover the need to define geothermal energy legislation and resource ownership as well as a plan and vision for geothermal energy use. This report highlighted that with an effective government policy in place, the use of geothermal energy in the NWT could provide the territories with a stable and secure energy supply.

  15. Building a regulatory framework for geothermal energy development in the NWT

    Energy Technology Data Exchange (ETDEWEB)

    Holroyd, Peggy; Dagg, Jennifer [Pembina Institute (Canada)

    2011-03-15

    There is a high potential in Canada's Northwest Territories (NWT) for using geothermal energy, the thermal energy generated and stored in the Earth, and this could help the NWT meet their greenhouse gas emissions reduction targets. The Pembina Institute was engaged by the government of the NWT to perform a jurisdictional analysis of geothermal energy legislation and policy around the world; this report presents its findings. The jurisdictional review was carried out in 9 countries and interviews were conducted with various geothermal energy experts. Following this research, the Pembina Institute made recommendations to the NWT government on the development of a geothermal energy regulatory framework which would cover the need to define geothermal energy legislation and resource ownership as well as a plan and vision for geothermal energy use. This report highlighted that with an effective government policy in place, the use of geothermal energy in the NWT could provide the territories with a stable and secure energy supply.

  16. Geothermal Potential Evaluation for Northern Chile and Suggestions for New Energy Plans

    Directory of Open Access Journals (Sweden)

    Monia Procesi

    2014-08-01

    Full Text Available Chile is a country rich in natural resources, and it is the world’s largest producer and exporter of copper. Mining is the main industry and is an essential part of the Chilean economy, but the country has limited indigenous fossil fuels—over 90% of the country’s fossil fuels must be imported. The electricity market in Chile comprises two main independent systems: the Northern Interconnected Power Grid (SING and the Central Interconnected Power Grid (SIC. Currently, the primary Chilean energy source is imported fossil fuels, whereas hydropower represents the main indigenous source. Other renewables such as wind, solar, biomass and geothermics are as yet poorly developed. Specifically, geothermal energy has not been exploited in Chile, but among all renewables it has the greatest potential. The transition from thermal power plants to renewable energy power plants is an important target for the Chilean Government in order to reduce dependence on imported fossil fuels. In this framework, the proposed study presents an evaluation of the geothermal potential for northern Chile in terms of power generation. The El Tatio, Surire, Puchuldiza, Orriputunco-Olca and Apacheta geothermal fields are considered for the analysis. The estimated electrical power is approximately 1300 MWe, and the energy supply is 10,200 GWh/year. This means that more than 30% of the SING energy could be provided from geothermal energy, reducing the dependence on imported fossil fuels, saving 8 Mton/year of CO2 and supplying the mining industry, which is Chile’s primary energy user.

  17. Isotope and hydrogeochemical studies of southern Jiangxi geothermal systems, China

    International Nuclear Information System (INIS)

    Zhou Wenbin; Li Xueli; Shi Weijun; Sun Zhanxue

    1999-01-01

    Southern Jiangxi is a geothermally active region, especially in Hengjing area. According to the work plan of IAEA Regional Collaboration in the Development of Geothermal Energy Resources and Environment Management through Isotope Techniques in East Asia and the Pacific (RAS-8-075), field investigation was carried out in Hengjing, southern Jiangxi Province, to demonstrate the use of isotope and geochemical techniques in low to medium temperature geothermal system. During the field investigation, 19 samples were taken from cold springs, hot springs and surface water in the area to determine their hydrochemical and gas compositions, hydrogen, oxygen, carbon and helium isotopes. The results of the study have shown that the geothermal waters in the studying region are of the same characteristics with the local meteoric water in oxygen and hydrogen isotope composition, indicating the geothermal waters are mainly derived from the local precipitation, while the gas composition and carbon and helium isotopes reveal that some gases in the geothermal waters have mantle origin. (author)

  18. Geothermal project will predetermine future of the Kosice heating plant

    International Nuclear Information System (INIS)

    Hirman, K.

    2003-01-01

    Geoterm, a.s. manager O. Halas describes economic and technical parameters of geothermal energy source by village Durkov near Kosice. It is planned to exploitate geothermal energy source for Kosicka heating plant (TEKO). Three basic variants of technical connecting to geothermal source are developed. Temperature at TEKO entrance should reach 125 degrees, annual heating energy supply will reach 2100 TJ and source output will reach 100 MWt, while admissible deviation at all indicators reaches 10%. The first geothermal energy should by supplied to TEKO in 2007. The investments overlapping 3 billions Slovak crowns are necessary to realize whole project. According to O. Halas a credit from World Bank guaranteed by state is crucial

  19. Geothermal Energy

    International Nuclear Information System (INIS)

    Haluska, Oscar P.; Tangir, Daniel; Perri, Matias S.

    2002-01-01

    A general overview of geothermal energy is given that includes a short description of the active and stable areas in the world. The possibilities of geothermal development in Argentina are analyzed taking into account the geothermal fields of the country. The environmental benefits of geothermal energy are outlined

  20. Mechanism of Fiscal and Taxation Policies in the Geothermal Industry in China

    Directory of Open Access Journals (Sweden)

    Yong Jiang

    2016-09-01

    Full Text Available Geothermal energy is one of the cleanest sources of energy which is gaining importance as an alternative to hydrocarbons. Geothermal energy reserves in China are enormous and it has a huge potential for exploitation and utilization. However, the development of the geothermal industry in China lags far behind other renewable energy sources because of the lack of fiscal and taxation policy support. In this paper, we adopt the system dynamics method and use the causal loop diagram to explore the development mechanism of fiscal and taxation policies in the geothermal industry. The effect of the fiscal and taxation policy on the development of the geothermal industry is analyzed. In order to promote sustainable development of the geothermal industry in China, the government should pay more attention to subsidies for the geothermal industry in the life-cycle stage of the geothermal industry. Furthermore, a plan is necessary to provide a reasonable system of fiscal and taxation policies.

  1. Significant Problems in Geothermal Development in California, Final Report on Four Workshops, December 1978 - March 1979

    Energy Technology Data Exchange (ETDEWEB)

    None

    1979-07-15

    From November 1978 through March 1979 the California Geothermal Resources Board held four workshops on the following aspects of geothermal development in California: County Planning for Geothermal Development; Federal Leasing and Environmental Review Procedures; Transmission Corridor Planning; and Direct Heat Utilization. One of the objectives of the workshops was to increase the number of people aware of geothermal resources and their uses. This report is divided into two parts. Part 1 provides summaries of all the key information discussed in the workshops. For those people who were not able to attend, this part of the report provides you with a capsule version of the workshop sessions. Part 2 focuses on the key issues raised at the workshops which need to be acted upon to expedite geothermal resource development that is acceptable to local government and environmentally prudent. For the purpose of continuity, similar Geothermal Resources Task Force recommendations are identified.

  2. Geotherm: the U.S. geological survey geothermal information system

    Science.gov (United States)

    Bliss, J.D.; Rapport, A.

    1983-01-01

    GEOTHERM is a comprehensive system of public databases and software used to store, locate, and evaluate information on the geology, geochemistry, and hydrology of geothermal systems. Three main databases address the general characteristics of geothermal wells and fields, and the chemical properties of geothermal fluids; the last database is currently the most active. System tasks are divided into four areas: (1) data acquisition and entry, involving data entry via word processors and magnetic tape; (2) quality assurance, including the criteria and standards handbook and front-end data-screening programs; (3) operation, involving database backups and information extraction; and (4) user assistance, preparation of such items as application programs, and a quarterly newsletter. The principal task of GEOTHERM is to provide information and research support for the conduct of national geothermal-resource assessments. The principal users of GEOTHERM are those involved with the Geothermal Research Program of the U.S. Geological Survey. Information in the system is available to the public on request. ?? 1983.

  3. Geothermal energy and the utility market -- the opportunities and challenges for expanding geothermal energy in a competitive supply market: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    1992-01-01

    Each year the Geothermal Division of the US Department of Energy conducts an in-depth review of its entire geothermal R D program. The conference serves several purposes: a status report on current R D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal city. This year's conference, Program Review X, was held in San Francisco on March 24--26, 1992. The theme of the review, Geothermal Energy and the Utility Market -- The Opportunities and Challenges for Expanding Geothermal Energy in a Competitive Supply Market,'' focused on the needs of the electric utility sector. Geothermal energy, with its power capacity potential of 10 GWe by the year 2010, can provide reliable, enviromentally clean electricity which can help offset the projected increase in demand. Program Review X consisted of seven sessions including an opening session with presentations by Mr. Vikram Budhraja, Vice President of System Planning and Operations, Southern California Edison Company, and Mr. Richard Jaros, President and Chief Operating Officer, California Energy Company. The six technical sessions included presentations by the relevant field researchers covering DOE-sponsored R D in hydrothermal, hot dry rock, and geopressured energy. Individual projects are processed separately for the data bases.

  4. Geothermal Exploration Case Studies on OpenEI (Presentation)

    Energy Technology Data Exchange (ETDEWEB)

    Young, K.; Bennett, M.; Atkins, D.

    2014-03-01

    The U.S. Geological Survey (USGS) resource assessment (Williams et al., 2008) outlined a mean 30 GWe of undiscovered hydrothermal resource in the western United States. One goal of the U.S. Department of Energy's (DOE) Geothermal Technology Office (GTO) is to accelerate the development of this undiscovered resource. DOE has focused efforts on helping industry identify hidden geothermal resources to increase geothermal capacity in the near term. Increased exploration activity will produce more prospects, more discoveries, and more readily developable resources. Detailed exploration case studies akin to those found in oil and gas (e.g. Beaumont and Foster, 1990-1992) will give developers central location for information gives models for identifying new geothermal areas, and guide efficient exploration and development of these areas. To support this effort, the National Renewable Energy Laboratory (NREL) has been working with GTO to develop a template for geothermal case studies on the Geothermal Gateway on OpenEI. In 2012, the template was developed and tested with two case studies: Raft River Geothermal Area (http://en.openei.org/wiki/Raft_River_Geothermal_Area) and Coso Geothermal Area (http://en.openei.org/wiki/Coso_Geothermal_Area). In 2013, ten additional case studies were completed, and Semantic MediaWiki features were developed to allow for more data and the direct citations of these data. These case studies are now in the process of external peer review. In 2014, NREL is working with universities and industry partners to populate additional case studies on OpenEI. The goal is to provide a large enough data set to start conducting analyses of exploration programs to identify correlations between successful exploration plans for areas with similar geologic occurrence models.

  5. Exploitation and Utilization of Oilfield Geothermal Resources in China

    Directory of Open Access Journals (Sweden)

    Shejiao Wang

    2016-09-01

    Full Text Available Geothermal energy is a clean, green renewable resource, which can be utilized for power generation, heating, cooling, and could effectively replace oil, gas, and coal. In recent years, oil companies have put more efforts into exploiting and utilizing geothermal energy with advanced technologies for heat-tracing oil gathering and transportation, central heating, etc., which has not only reduced resource waste, but also improved large-scale and industrial resource utilization levels, and has achieved remarkable economic and social benefits. Based on the analysis of oilfield geothermal energy development status, resource potential, and exploitation and utilization modes, the advantages and disadvantages of harnessing oilfield geothermal resource have been discussed. Oilfield geothermal energy exploitation and utilization have advantages in resources, technical personnel, technology, and a large number of abandoned wells that could be reconstructed and utilized. Due to the high heat demand in oilfields, geothermal energy exploitation and utilization can effectively replace oil, gas, coal, and other fossil fuels, and has bright prospects. The key factors limiting oilfield geothermal energy exploitation and utilization are also pointed out in this paper, including immature technologies, lack of overall planning, lack of standards in resource assessment, and economic assessment, lack of incentive policies, etc.

  6. Interagency Geothermal Coordinating Council fifth annual report. Final draft

    Energy Technology Data Exchange (ETDEWEB)

    Abel, Fred H.

    1981-07-07

    Geothermal energy is the natural heat of the earth, and can be tapped as a clean, safe, economical alternative source of energy. Much of the geothermal energy resource is recoverable with current or near-current technology and could make a significant contribution both to increasing domestic energy supplies and to reducing the US dependence on imported oil. Geothermal energy can be used for electric power production, residential and commercial space heating and cooling, industrial process heat, and agricultural process applications. This report describes the progress for fiscal year 1980 (FY80) of the Federal Geothermal Program. It also summarizes the goals, strategy, and plans which form the basis for the FY81 and FY82 program activities and reflects the recent change in national policy affecting Federal research, development and demonstration programs. The Interagency Geothermal Coordinating Council (IGCC) believes that substantial progress can and will be made in the development of geothermal energy. The IGCC goals are: (1) reduce the institutional barriers so that geothermal projects can be on-line in one-half the current time; (2) make moderate temperature resources an economically competitive source of electricity; (3) remove the backlog of noncompetitive lease applications; (4) competitive lease all KGRA lands; and (5) cut the cost of hydrothermal technology by 25%.

  7. Geothermal energy

    International Nuclear Information System (INIS)

    Laplaige, Ph.; Lemale, J.

    2008-01-01

    Geothermal energy is a renewable energy source which consists in exploiting the heat coming from the Earth. It covers a wide range of techniques and applications which are presented in this article: 1 - the Earth, source of heat: structure of the Earth, geodynamic model and plate tectonics, origin of heat, geothermal gradient and terrestrial heat flux; 2 - geothermal fields and resources; 3 - implementation of geothermal resources: exploration, main characteristic parameters, resource exploitation; 4 - uses of geothermal resources: power generation, thermal uses, space heating and air conditioning heat pumps, district heating, addition of heat pumps; 5 - economical aspects: power generation, heat generation for district heating; 6 - environmental aspects: conditions of implementation, impacts as substitute to fossil fuels; 7 - geothermal energy in France: resources, organisation; 8 - conclusion. (J.S.)

  8. Potential for offshore geothermal developments using deep gas wells

    Energy Technology Data Exchange (ETDEWEB)

    Teodoriu, C.; Falcone, G. [Technische Univ. Clausthal, Clausthal-Zellerfeld (Germany). ITE

    2013-08-01

    The development of geothermal resources is steadily increasing as operators meet the challenge of maximising the temperature difference between production and injection wells, while minimising the wellhead temperature of the latter. At present, the minimum working wellhead temperature reported for the heat-to-electricity conversion cycles is limited to about 80 C. The cycle efficiency can be improved by reducing the injection temperature, which is the temperature at which the fluid exits the process. This paper evaluates the potential for generating electricity with a subsea geothermal plant using the difference between downhole reservoir temperature and that of the cold seawater at the mud line. The temperature in the world's oceans is relatively constant, ranging from 0 to 4 C at around 400 meters water depth. The use of these lower offshore water temperatures may help boost geothermal energy development. Deep gas resources are considered to be held within reservoirs below 4600 meters (15000 feet) and are relatively undeveloped as the risks and costs involved in drilling and producing such resources are extremely high. These deep resources have high reservoir temperatures, which offer an opportunity for geothermal exploitation if a new development concept can be formulated. In particular, the well design and reservoir development plan should consider reutilising existing well stock, including dry and plugged and abandoned wells for geothermal application once the gas field has been depleted. The major risks considered in this study include alternative uses of wells in no flow or rapid depletion situations. Reutilisation of the wells of depleted gas reservoirs will invariably lead to lower geothermal development costs compared with starting a geothermal campaign by drilling new wells. In particular, the well design and reservoir development plan should consider reutilising existing well stock, including dry and plugged and abandoned wells for geothermal

  9. Residential heating costs: A comparison of geothermal solar and conventional resources

    Science.gov (United States)

    Bloomster, C. H.; Garrett-Price, B. A.; Fassbender, L. L.

    1980-08-01

    The costs of residential heating throughout the United States using conventional, solar, and geothermal energy were determined under current and projected conditions. These costs are very sensitive to location, being dependent on the local prices of conventional energy supplies, local solar insolation, climate, and the proximity and temperature of potential geothermal resources. The sharp price increases in imported fuels during 1979 and the planned decontrol of domestic oil and natural gas prices have set the stage for geothermal and solar market penetration in the 1980's.

  10. Geothermal spas

    International Nuclear Information System (INIS)

    Woodruff, J.L.; Takahashi, P.K.

    1990-01-01

    The spa business, part of the health and fitness industry that has sprung up in recent years, is highly successful world-wide. The most traditional type of spa is the geothermal spa, found in geothermal areas around the world. In Japan, for example, some 2,000 geothermal spas and resorts generate $6 billion annually. Hawaii has an ideal environment for geothermal spas, and several locations in the islands could supply warm mineral water for spa development. Hawaii receives about 6 million visitors annually, a high percentage of whom are familiar with the relaxing and therapeutic value of geothermal spas, virtually guaranteeing the success of this industry in Hawaii. Presently, Hawaii does not have a single geothermal spa. This paper reports that the geothermal spa business is an industry whose time has come, an industry that offers very promising investment opportunities, and one that would improve the economy while expanding the diversity of pleasurable vacation options in Hawaii

  11. Geothermal energy

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1991-01-01

    Geothermal energy is the natural heat of the earth. It represents an inexhaustible source of energy. In many countries, which are mostly located within the geothermal belts of the world, geothermal energy is being used since many decades for electricity generation and direct heating applications comprising municipal, industrial and agricultural heating. Outside the geothermal anomalous volcanic regions, hot ground water from deep rock formations at temperatures above 70 o C is used for process heat and space heating. Low prices for gas and oil hinder the development of geothermal plants in areas outside positive geothermal anomalies; the cost of drilling to reach depths, where temperatures are above 50 o C to 70 o C, is high. The necessary total investment per MW th installed capacity is in the order of 5 Mio- DM/MW th (3 Mio $/MW th ). Experience shows, that an economic break even with oil is reached at an oil price of 30$ per barrel or if an adequate bonus for the clean, environmentally compatible production of geothermal heat is granted. Worldwide the installed electric capacity of geothermal power plants is approximately 6 000 MW e . About 15 000 MW th of thermal capacity is being extracted for process heat and space heat. The importance of the terrestrial heat as an energy resource would be substantially increased, if the heat, stored in the hot crystalline basement could be extracted at economical production costs. Geothermal energy is a competitive energy source in areas with high geothermal gradients (relative low cost for drilling) and would be competitive in areas with normal geothermal gradients, if a fair compensation for environmental implications from fossil and nuclear power production would be granted. (author) 2 figs., 1 tab., 6 refs

  12. Application for Underground Injection Control Permit for the PUNA Geothermal Venture Project

    Energy Technology Data Exchange (ETDEWEB)

    None

    1989-06-01

    Puna Geothermal Venture (PGV) plans to construct and operate the 25 MW Puna Geothermal Venture Project in the Puna District of the Island of Hawaii. The project will drill geothermal wells within a dedicated 500-acre project area, use the produced geothermal fluid to generate electricity for sale to the Hawaii Electric Light Company for use on the Island of Hawaii, and inject all the produced geothermal fluids back into the geothermal reservoir. Since the project will use injection wells, it will require an Underground Injection Control (UIC) permit from the Drinking Water Section of the State of Hawaii Department of Health. The PGV Project is consistent with the State and County of Hawaii's stated objectives of providing energy self-sufficiency and diversifying Hawaii's economic base. The project will develop a new alternate energy source as well as provide additional information about the nature of the geothermal resource.

  13. Pregnancy and Parenthood in the Navy: Results of the 2012-2013 Survey

    Science.gov (United States)

    2016-05-12

    fathers and 6,000 single Navy mothers; most Sailors do use birth control, predominantly the birth control pill and/or the condom; women are most...with few women having orders to their next duty station when they become pregnant. 15. SUBJECT TERMS pregnancy, single parent, Navy parent, birth...pregnancies are planned, with 38% of enlisted and 14% of officer women being single at the time they became pregnant. Few women assigned to shore or

  14. Geothermal modeling along a two-dimensional crustal profile in Southern Portugal

    Czech Academy of Sciences Publication Activity Database

    Correia, A.; Šafanda, Jan

    2002-01-01

    Roč. 34, č. 1 (2002), s. 47-61 ISSN 0264-3707. [Geothermics at the turn of the century. Evora, 03.04.2000-07.04.2000] Institutional research plan: CEZ:AV0Z3012916 Keywords : geothermal modeling * Southern Portugal * surface heat flow * crustal profile Subject RIV: DC - Siesmology, Volcanology, Earth Structure Impact factor: 1.058, year: 2002

  15. Supply Management Analysis of the Chilean Navy Acquisition System

    Science.gov (United States)

    2014-12-01

    52 LIST OF REFERENCES Armada de Chile, N. (1986). Manual de Logistica de la Armada de Chile [Manual of logistics of the Chilean Navy]. Chile... transportation • Quality control • Demand and supply planning • Receiving, materials handling, and storage 11 • Material or inventory control...Order purchasing • Production planning, scheduling, and control • Warehousing and distribution • Shipping • Outbound transportation • Customer

  16. Value distribution assessment of geothermal development in Lake County, CA

    Energy Technology Data Exchange (ETDEWEB)

    Churchman, C.W.; Nelson, H.G.; Eacret, K.

    1977-10-01

    A value distribution assessment is defined as the determination of the distribution of benefits and costs of a proposed or actual development, with the intent of comparing such a development with alternative plans. Included are not only the social and economic effects, but also people's perceptions of their roles and how they are affected by the proposed or actual development. Discussion is presented under the following section headings: on morality and ethics; the vanishing community; case study of pre-development planning--Lake County; methodology for research; Lake County geothermal energy resource; decision making; Planning Commission hearing; communication examples; benefit tracing; response to issues raised by the report of the State Geothermal Task Force; and, conclusions and recommendations. (JGB)

  17. Review of international geothermal activities and assessment of US industry opportunities: Summary report

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This report summarizes a study initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  18. Review of international geothermal activities and assessment of US industry opportunities: Final report

    Energy Technology Data Exchange (ETDEWEB)

    1987-08-01

    This study was initiated to review and assess international developments in the geothermal energy field and to define business opportunities for the US geothermal industry. The report establishes data bases on the status of worldwide geothermal development and the competitiveness of US industry. Other factors identified include existing legislation, tax incentives, and government institutions or agencies and private sector organizations that promote geothermal exports. Based on the initial search of 177 countries and geographic entities, 71 countries and areas were selected as the most likely targets for the expansion of the geothermal industry internationally. The study then determined to what extent their geothermal resource had been developed, what countries had aided or participated in this development, and what plans existed for future development. Data on the energy, economic, and financial situations were gathered.

  19. Fiscal 1999 geothermal energy development promotion survey. Report on resource assessment for Shiramizugoe area; 1999 nendo chinetsu kaihatsu sokushin chosa hokokusho. Shiramizugoe chiiki shigen hyoka

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-03-01

    Under an assumed plan of building a geothermal power station in the Shiramizugoe area of Makizono-cho, Aira-gun, Kagoshima Prefecture, investigations will be conducted under a 4-year program into the amount of geothermal resources, the dimensions and cost performance of a geothermal power station under consideration, and the environmental impact that the locating of such will incur, through for example identifying areas containing geothermal reservoirs suitable for geothermal power generation. In fiscal 1999, activities were conducted in the three fields of (1) survey plan preparation, (2) comprehensive analysis, and (3) environmental assessment. Under item (1), a survey and coordination implementation plan was prepared, existing data were analyzed for the construction of geothermal models out of which a suitable geothermal structure was specified for digging, and a list was drafted of locations for borehole digging for fiscal 2000. Under item (2), it was found that most of the past surveys covered the Ogiri area and that the Shiramizugoe area was but poorly covered. Discussion was made on the geological structure, geothermal structure, geothermal water hydraulic structure, and the geothermal water system. Under item (3), the plan was summarily explained to the local administration, associations of hot spring hotels, and inhabitants in the vicinity, and their consent was obtained. (NEDO)

  20. United States Navy DL Perspective

    Science.gov (United States)

    2010-08-10

    United States Navy DL Perspective CAPT Hank Reeves Navy eLearning Project Director 10 August 2010 Report Documentation Page Form ApprovedOMB No...Marine Corps (USMC) Navy eLearning Ongoing Shared with USMC, Coast Guard 9 NeL Help Site https://ile-help.nko.navy.mil/ile/ https://s-ile

  1. Implementation Plan for the Hawaii Geothermal Project Environmental Impact Statement (DOE Review Draft:)

    Energy Technology Data Exchange (ETDEWEB)

    None

    1992-09-18

    The US Department of Energy (DOE) is preparing an Environmental Impact Statement (EIS) that identifies and evaluates the environmental impacts associated with the proposed Hawaii Geothermal Project (HGP), as defined by the State of Hawaii in its 1990 proposal to Congress (DBED 1990). The location of the proposed project is shown in Figure 1.1. The EIS is being prepared pursuant to the requirements of the National Environmental Policy Act of 1969 (NEPA), as implemented by the President's Council on Environmental Quality (CEQ) regulations (40 CFR Parts 1500-1508) and the DOE NEPA Implementing Procedures (10 CFR 1021), effective May 26, 1992. The State's proposal for the four-phase HGP consists of (1) exploration and testing of the geothermal resource beneath the slopes of the active Kilauea volcano on the Island of Hawaii (Big Island), (2) demonstration of deep-water power cable technology in the Alenuihaha Channel between the Big Island and Mau, (3) verification and characterization of the geothermal resource on the Big Island, and (4) construction and operation of commercial geothermal power production facilities on the Big Island, with overland and submarine transmission of electricity from the Big Island to Oahu and possibly other islands. DOE prepared appropriate NEPA documentation for separate federal actions related to Phase 1 and 2 research projects, which have been completed. This EIS will consider Phases 3 and 4, as well as reasonable alternatives to the HGP. Such alternatives include biomass coal, solar photovoltaic, wind energy, and construction and operation of commercial geothermal power production facilities on the Island of Hawaii (for exclusive use on the Big Island). In addition, the EIs will consider the reasonable alternatives among submarine cable technologies, geothermal extraction, production, and power generating technologies; pollution control technologies; overland and submarine power transmission routes; sites reasonably suited to

  2. Briefing Book, Interagency Geothermal Coordinating Council (IGCC) Meeting of April 28, 1988

    Energy Technology Data Exchange (ETDEWEB)

    None

    1988-04-28

    The IGCC of the U.S. government was created under the intent of Public Law 93-410 (1974) to serve as a forum for the discussion of Federal plans, activities, and policies that are related to or impact on geothermal energy. Eight Federal Departments were represented on the IGCC at the time of this meeting. The main presentations in this report were on: Department of Energy Geothermal R&D Program, the Ormat binary power plant at East Mesa, CA, Potential for direct use of geothermal at Defense bases in U.S. and overseas, Department of Defense Geothermal Program at China Lake, and Status of the U.S. Geothermal Industry. The IGCC briefing books and minutes provide a historical snapshot of what development and impact issues were important at various time. (DJE 2005)

  3. Economic Feasibility Analysis of the Application of Geothermal Energy Facilities to Public Building Structures

    Directory of Open Access Journals (Sweden)

    Sangyong Kim

    2014-03-01

    Full Text Available This study aims to present an efficient plan for the application of a geothermal energy facility at the building structure planning phase. Energy consumption, energy cost and the primary energy consumption of buildings were calculated to enable a comparison of buildings prior to the application of a geothermal energy facility. The capacity for energy savings and the costs related to the installation of such a facility were estimated. To obtain more reliable criteria for economic feasibility, the lifecycle cost (LCC analysis incorporated maintenance costs (reflecting repair and replacement cycles based on construction work specifications of a new renewable energy facility and initial construction costs (calculated based on design drawings for its practical installation. It is expected that the findings of this study will help in the selection of an economically viable geothermal energy facility at the building construction planning phase.

  4. Evaluation of the Geothermal Public Power Utility Workshops in California

    Energy Technology Data Exchange (ETDEWEB)

    Farhar, B. C.

    2004-10-01

    The federal government devotes significant resources to educating consumers and businesses about geothermal energy. Yet little evidence exists for defining the kinds of information needed by the various audiences with specialized needs. This paper presents the results of an evaluation of the Geothermal Municipal Utility Workshops that presented information on geothermal energy to utility resource planners at customer-owned utilities in California. The workshops were sponsored by the Western Area Power Administration and the U.S. Department of Energy's GeoPowering the West Program and were intended to qualitatively assess the information needs of municipal utilities relative to geothermal energy and get feedback for future workshops. The utility workshop participants found the geothermal workshops to be useful and effective for their purposes. An important insight from the workshops is that utilities need considerable lead-time to plan a geothermal project. They need to know whether it is better to own a project or to purchase geothermal electricity from another nonutility owner. California customer-owned utilities say they do not need to generate more electricity to meet demand, but they do need to provide more electricity from renewable resources to meet the requirements of the state's Renewable Portfolio Standard.

  5. Navy Operational Planner - Undersea Warfare Module

    Science.gov (United States)

    2016-09-01

    concepts are considered in NOP–USW that are not in previous research: time phasing of missions, mutually exclusive missions, and asset availability...operational planning efforts. NOP–USW suggests the correct allocation of assets across a wide theater of operation to accomplish missions in the...Master’s thesis 4. TITLE AND SUBTITLE NAVY OPERATIONAL PLANNER – UNDERSEA WARFARE MODULE 5. FUNDING NUMBERS 6. AUTHOR(S) Guy A. Molina 7

  6. Geothermal power plants around the world. A sourcebook on the production of electricity from geothermal energy, draft of Chapter 10

    Energy Technology Data Exchange (ETDEWEB)

    DiPippo, R.

    1979-02-01

    This report constitutes a consolidation and a condensation of several individual topical reports dealing with the geothermal electric power stations around the world. An introduction is given to various types of energy conversion systems for use with geothermal resouces. Power plant performance and operating factors are defined and discussed. Existing geothermal plants in the following countries are covered: China, El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, the Philippines, Turkey, the Union of Soviet Socialist Republics, and the United States. In each case, the geological setting is outlined, the geothermal fluid characteristics are given, the gathering system, energy conversion system, and fluid disposal method are described, and the environmental impact is discussed. In some cases the economics of power generation are also presented. Plans for future usage of geothermal energy are described for the above-mentioned countries and the following additional ones: the Azores (Portugal), Chile, Costa Rica, Guatemala, Honduras, Indonesia, Kenya, Nicaragua, and Panama. Technical data is presented in twenty-two tables; forty-one figures, including eleven photographs, are also included to illustrate the text. A comprehensive list of references is provided for the reader who wishes to make an in-depth study of any of the topics mentioned.

  7. Oilfield geothermal exploitation in China-A case study from the Liaohe oilfield in Bohai Bay Basin

    Science.gov (United States)

    Wang, Shejiao; Yao, Yanhua; Fan, Xianli; Yan, Jiahong

    2017-04-01

    The clean geothermal energy can play a huge role in solving the problem of severe smog in China as it can replace large coal-fired heating in winter. Chinese government has paid close attention on the development and utilization of geothermal energy. In the "13th Five-Year" plan, the geothermal development is included into the national plan for the first time. China is very rich in the medium and low-temperature geothermal resources, ranking first in the geothermal direct use in the world for a long time. The geothermal resources are mainly concentrated in sedimentary basins, especially in petroliferous basins distributed in North China (in North China, heating is needed in winter). These basins are usually close to the large- and medium-sized cities. Therefore, tapping oilfield geothermal energy have attracted a great attention in the last few years as the watercut achieved above 90% in most oilfields and significant progress has been made. In this paper, taking the Liaohe Oilfield in the Bohai Bay Basin as an example, we discussed the distribution and potential of the geothermal resources, discussed how to use the existed technology to harness geothermal energy more effectively, and forecasted the development prospect of the oilfield geothermal energy. By using the volumetric method, we calculated the geothermal resources of the Guantao Formation, Dongying Formation, Shahejie Formation and basement rock in the Liaohe depression. We tested the geothermal energy utilization efficiency in different conditions by applying different pump technologies and utilizing geothermal energy in different depth, such as shallow geothermal energy (0-200m), middle-deep depth geothermal energy (200-4000m), and oilfield sewage heat produced with oil production. For the heat pump systems, we tested the conventional heat pump system, high-temperature heat pump system, super high-temperature heat pump system, and gas heat pump system. Finally, based on the analysis of national policy

  8. Navy Enterprise Resource Planning Program: Governance Challenges in Deploying an Enterprise-Wide Information Technology System in the Department of the Navy

    Science.gov (United States)

    2010-12-01

    Douglas E. Brinkley, Support Advisor _____________________________________ William R. Gates, Dean Graduate School of Business and...Washington, DC: Assistant Secretary of the Navy for Research, Development and Acquisition. Blackstone , John H., and James F. Cox. 2005. APICS Dictionary

  9. Geothermal studies in China

    International Nuclear Information System (INIS)

    Wang Ji-Yang; Chen Mo-Xiang; Wang Ji-An; Deng Xiao; Wang Jun; Shen Hsien-Chieh; Hsiung Liang-Ping; Yan Shu-Zhen; Fan Zhi-Cheng; Liu Xiu-Wen

    1981-01-01

    Geothermal studies have been conducted in China continuosly since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research of geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; (3) geothermal studies in mines. (orig./ME)

  10. Natural resource economic implications of geothermal area use

    Energy Technology Data Exchange (ETDEWEB)

    Darby, d' E Charles

    1993-01-28

    Large-scale use of geothermal energy is likely to result in depletion of natural resources that support both biodiversity and other human uses. Most of the problems could be averted with competent planning and adherence to agreed conditions, but they commonly develop because they are not perceived to be directly geothermal in origin and hence are not taken into account adequately. Some of the implications of such issues are discussed below, with particular reference to countries where all or most resources are held under traditional principals of custom ownership.

  11. A Comparative Analysis of the Budget Process in the Venezuelan and U.S. Navies.

    Science.gov (United States)

    1979-12-01

    accounting problems in particular agencies. The DINCA developed a document, Sistema de Contabilidad de la Ejecucion Financiera del Presupuesto para...orienta- tion of the "Plan Operativo Anual" (POA) - Operative Annual Plan. During the Navy’s mid-range planning process the POA is produced. By means of

  12. Review of International Geothermal Activities and Assessment of US Industry Opportunites: Final Report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1987-08-01

    This report contains detailed summaries, with bibliographies, of past, present, and planned geothermal development in 71 selected countries and areas. The report gives a pretty good description of types of work that had been done in each country by the mid 1980s, but does not tell much about which geothermal-provider country did the work. There are maps for most of the countries. There are numbers for market factors, but not for estimated geothermal potential. The information in this document has been superceded by the country summaries in the World Geothermal Congress Transactions of 1995, 2000, and 2005. This report was prepared by Meridian Corporation, Alexandria, VA. (DJE 2005)

  13. Use of environmental radioactive isotopes in geothermal prospecting

    International Nuclear Information System (INIS)

    Balcazar, M.; Lopez M, A.; Huerta, M.; Flores R, J. H.; Pena, P.

    2010-10-01

    Oil resources decrease and environmental impact of burning fossil fuels support the use of alternative energies around the world. By far nuclear energy is the alternative which can supply huge amount of clean energy. Mexico has two nuclear units and has also explored and exploited the use of other complementary renewal energies, as wind and geothermal. Mexico is the third geothermal-energy producer in the world with an installed capacity of 960 MW and is planning the installation of 146 MW for the period 2010-2011, according to information of the Mexican Federal Electricity Board. This paper presents a study case, whose goal is to look for areas where the heat source can be located in geothermal energy fields under prospecting. The method consist in detecting a natural radioactive tracer, which is transported to the earth surface by geo-gases, generated close to the heat source, revealing areas of high permeability properties and open active fractures. Those areas are cross correlated to other resistivity, gravimetric and magnetic geophysical parameters in the geothermal filed to better define the heat source in the field. (Author)

  14. The Pawsey Supercomputer geothermal cooling project

    Science.gov (United States)

    Regenauer-Lieb, K.; Horowitz, F.; Western Australian Geothermal Centre Of Excellence, T.

    2010-12-01

    The Australian Government has funded the Pawsey supercomputer in Perth, Western Australia, providing computational infrastructure intended to support the future operations of the Australian Square Kilometre Array radiotelescope and to boost next-generation computational geosciences in Australia. Supplementary funds have been directed to the development of a geothermal exploration well to research the potential for direct heat use applications at the Pawsey Centre site. Cooling the Pawsey supercomputer may be achieved by geothermal heat exchange rather than by conventional electrical power cooling, thus reducing the carbon footprint of the Pawsey Centre and demonstrating an innovative green technology that is widely applicable in industry and urban centres across the world. The exploration well is scheduled to be completed in 2013, with drilling due to commence in the third quarter of 2011. One year is allocated to finalizing the design of the exploration, monitoring and research well. Success in the geothermal exploration and research program will result in an industrial-scale geothermal cooling facility at the Pawsey Centre, and will provide a world-class student training environment in geothermal energy systems. A similar system is partially funded and in advanced planning to provide base-load air-conditioning for the main campus of the University of Western Australia. Both systems are expected to draw ~80-95 degrees C water from aquifers lying between 2000 and 3000 meters depth from naturally permeable rocks of the Perth sedimentary basin. The geothermal water will be run through absorption chilling devices, which only require heat (as opposed to mechanical work) to power a chilled water stream adequate to meet the cooling requirements. Once the heat has been removed from the geothermal water, licensing issues require the water to be re-injected back into the aquifer system. These systems are intended to demonstrate the feasibility of powering large-scale air

  15. HOMER Economic Models - US Navy

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Jason William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Myers, Kurt Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This LETTER REPORT has been prepared by Idaho National Laboratory for US Navy NAVFAC EXWC to support in testing pre-commercial SIREN (Simulated Integration of Renewable Energy Networks) computer software models. In the logistics mode SIREN software simulates the combination of renewable power sources (solar arrays, wind turbines, and energy storage systems) in supplying an electrical demand. NAVFAC EXWC will create SIREN software logistics models of existing or planned renewable energy projects at five Navy locations (San Nicolas Island, AUTEC, New London, & China Lake), and INL will deliver additional HOMER computer models for comparative analysis. In the transient mode SIREN simulates the short time-scale variation of electrical parameters when a power outage or other destabilizing event occurs. In the HOMER model, a variety of inputs are entered such as location coordinates, Generators, PV arrays, Wind Turbines, Batteries, Converters, Grid costs/usage, Solar resources, Wind resources, Temperatures, Fuels, and Electric Loads. HOMER's optimization and sensitivity analysis algorithms then evaluate the economic and technical feasibility of these technology options and account for variations in technology costs, electric load, and energy resource availability. The Navy can then use HOMER’s optimization and sensitivity results to compare to those of the SIREN model. The U.S. Department of Energy (DOE) Idaho National Laboratory (INL) possesses unique expertise and experience in the software, hardware, and systems design for the integration of renewable energy into the electrical grid. NAVFAC EXWC will draw upon this expertise to complete mission requirements.

  16. France in the front line for geothermal energy

    International Nuclear Information System (INIS)

    Richard, Aude; Talpin, Juliette

    2016-01-01

    A set of articles illustrates that France is among the European leaders in heat networks fed by deep aquifers in sedimentary basins, and will soon possess new types of plants to valorise this hot water. A first article describes the operation principle and the distinction between the different geothermal energy levels (very low, low and medium, high). The still slow but actual development of geothermal energy is commented. It notably concerns local communities and industries, but not yet individuals. A brief focus is proposed on the case of the Aquitaine basin and of Bordeaux, and on the use of geothermal energy to cool the wine. The case of Ferney-Voltaire is then discussed: a whole district will be supplied with probe-based tempered water loops. The interest of the ADEME in geo-cooling is evoked. An article comments the development of a new model of deep geothermal energy developed by France and Germany: a dozen of plants are planned to be built by 2020, and the Ecogi plant in Rittershoffen is a showcase of a first application of fractured rock geothermal technology (the operation is described). A map indicates locations of geothermal search permits which have been awarded for 16 sites in France. An overview is given of various initiatives in Ile-de-France. The case of Geothermie Bouillante plant in Guadeloupe is evoked: it has been purchased by an American group and will multiply its electricity production by a factor 4 by 2025. The two last articles respectively address the need to boost the very low geothermal energy sector, and the use of geothermal energy in cities near Paris (Grigny and Viry-Chatillon) which aim at supplying energy at lower prices, and thus struggle against energy poverty

  17. Geothermal energy

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This chapter discusses the role of geothermal energy may have on the energy future of the US. The topics discussed in the chapter include historical aspects of geothermal energy, the geothermal resource, hydrothermal fluids, electricity production, district heating, process heating, geopressured brines, technology and costs, hot dry rock, magma, and environmental and siting issues

  18. Geothermal in transition

    International Nuclear Information System (INIS)

    Anderson, J.L.

    1991-01-01

    This article examines the current market for geothermal projects in the US and overseas. The topics of the article include future capacity needs, upgrading the Coso Geothermal project, the productivity of the Geysers area of Northern California, the future of geothermal, and new projects at Soda Lake, Carson Basin, Unalaska Island, and the Puna Geothermal Venture in Hilo, Hawaii

  19. Planning for the Future: Why the U.S. Navy Needs a Separate Strategy and Plans Community

    Science.gov (United States)

    2018-04-09

    change decisively. They are like a great river that maintains its course, but adjusts its flow.” – Sun Tzu NOP v. Navy Strategy – Similarities...36 BIBLIOGRAPHY ...January 2016), 9. 3 Ibid, 9. 38 BIBLIOGRAPHY Air University. “School of Advanced Air and Space Studies,” http://www.airuniversity.af.mil/SAASS

  20. Geothermal tomorrow 2008

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2009-01-18

    Contributors from the Geothermal Technologies Program and the geothermal community highlight the current status and activities of the Program and the development of the global resource of geothermal energy.

  1. World geothermal congress

    International Nuclear Information System (INIS)

    Povarov, O.A.; Tomarov, G.V.

    2001-01-01

    The World geothermal congress took place in the period from 28 May up to 10 June 2000 in Japan. About 2000 men from 43 countries, including specialists in the area of developing geothermal fields, creating and operating geothermal electrical and thermal plants and various systems for the earth heat application, participated in the work of the Congress. It was noted at the Congress, that development of the geothermal power engineering in the world is characterized by the large-scale application of geothermal resources for the electrical energy generation [ru

  2. Community Geothermal Technology Program: Experimental lumber drying kiln. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Leaman, D.; Irwin, B.

    1989-10-01

    Goals were to demonstrate feasibility of using the geothermal waste effluent from the HGP-A well as a heat source for a kiln operation to dry hardwoods, develop drying schedules, and develop automatic systems to monitor/control the geothermally heated lumber dry kiln systems. The feasibility was demonstrated. Lumber was dried in periods of 2 to 6 weeks in the kiln, compared to 18 months air drying and 6--8 weeks using a dehumidified chamber. Larger, plate-type heat exchangers between the primary fluid and water circulation systems may enable the kiln to reach the planned temperatures (180--185 F). However, the King Koa partnership cannot any longer pursue the concept of geothermal lumber kilns.

  3. Geothermal probabilistic cost study

    Energy Technology Data Exchange (ETDEWEB)

    Orren, L.H.; Ziman, G.M.; Jones, S.C.; Lee, T.K.; Noll, R.; Wilde, L.; Sadanand, V.

    1981-08-01

    A tool is presented to quantify the risks of geothermal projects, the Geothermal Probabilistic Cost Model (GPCM). The GPCM model is used to evaluate a geothermal reservoir for a binary-cycle electric plant at Heber, California. Three institutional aspects of the geothermal risk which can shift the risk among different agents are analyzed. The leasing of geothermal land, contracting between the producer and the user of the geothermal heat, and insurance against faulty performance are examined. (MHR)

  4. Performance Assessment in Management: an application to the health care system of the Brazilian Navy

    Directory of Open Access Journals (Sweden)

    Marcelino José Jorge

    2013-08-01

    Full Text Available Budgetary restrictions have become much more binding for the Brazilian Navy and both users’ access to health services provided by the Navy Health Service as well as hospitals’ access to new technologies appears to be endangered. This paper aims to evaluate the efficiency of naval hospitals in the light of these concerns, with a view toward designing better managerial tools to enhance health services in the Brazilian Navy. The paper presents an application of Data Envelopment Analysis (DEA to the study of productive efficiency in selected hospital units of the Brazilian Navy in order to suggest improvements on the use of productive resources by the Navy Health Service. Productive efficiency of hospital units located throughout the country are measured and compared. Data Envelopment Analysis models were used to calculate an efficient frontier for the seven naval hospitals assessed and to identify the group of relatively efficient naval hospitals which were used as benchmarks for calculating the pro-efficiency operation plans for the inefficient units.

  5. Technical Proposal Salton Sea Geothermal Power Pilot Plant Program

    Energy Technology Data Exchange (ETDEWEB)

    None

    1975-03-28

    The proposed Salton Sea Geothermal Power Pilot Plant Program comprises two phases. The objective of Phase 1 is to develop the technology for power generation from high-temperature, high-salinity geothermal brines existing in the Salton Sea known geothermal resources area. Phase 1 work will result in the following: (a) Completion of a preliminary design and cost estimate for a pilot geothermal brine utilization facility. (b) Design and construction of an Area Resource Test Facility (ARTF) in which developmental geothermal utilization concepts can be tested and evaluated. Program efforts will be divided into four sub-programs; Power Generation, Mineral Extraction, Reservoir Production, and the Area Resources Test Facility. The Power Generation Subprogram will include testing of scale and corrosion control methods, and critical power cycle components; power cycle selection based on an optimization of technical, environmental and economic analyses of candidate cycles; preliminary design of a pilot geothermal-electric generating station to be constructed in Phase 2 of this program. The Mineral Extraction Subprogram will involve the following: selection of an optimum mineral recovery process; recommendation of a brine clean-up process for well injection enhancement; engineering, construction and operation of mineral recovery and brine clean-up facilities; analysis of facility operating results from environmental, economical and technical point-of-view; preliminary design of mineral recovery and brine clean-up facilities of sufficient size to match the planned pilot power plant. The Reservoir Production Subprogram will include monitoring the operation and maintenance of brine production, handling and injection systems which were built with private funding in phase 0, and monitoring of the brine characteristics and potential subsidence effects during well production and injection. Based on the above, recommendations and specifications will be prepared for production and

  6. Economic impacts of geothermal development in Malheur County, Oregon

    International Nuclear Information System (INIS)

    Sifford, A.; Beale, K.

    1993-01-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Malheur County, shown in Figure 1. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Malheur County was chosen as it has both identified resources and industry interest. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued responding as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. Public service impacts include costs such as education, fire protection, roads, waste disposal, and water supply. The project assumption discussion notes experiences at other geothermal areas. The background section compares geothermal with conventional power plants. Power plant fuel distinguishes geothermal from other power sources. Other aspects of development are similar to small scale conventional thermal sources. The process of geothermal development is then explained. Development consists of well drilling, gathering system construction, power plant construction, plant operation and maintenance, and wellfield maintenance

  7. Economic impacts of geothermal development in Harney County, Oregon

    International Nuclear Information System (INIS)

    Sifford, A.; Beale, K.

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300 degrees F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant

  8. Economic impacts of geothermal development in Deschutes County, Oregon

    International Nuclear Information System (INIS)

    Sifford, A.; Beale, K.

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300 degrees F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant

  9. Economic Impacts of Geothermal Development in Deschutes County, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be Deschutes County. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Deschutes County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economical impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result for the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  10. Economic Impacts of Geothermal Development in Harney County, Oregon.

    Energy Technology Data Exchange (ETDEWEB)

    Sifford, Alex; Beale, Kasi

    1991-12-01

    This study provides local economic impact estimates for a 100 megawatt (MW) geothermal power project in Oregon. The hypothetical project would be in Harney Count. Bonneville Power Administration commissioned this study to quantify such impacts as part of regional confirmation work recommended by the Northwest Power Planning Council and its advisors. Harney County was chosen as it has both identified resources and industry interest. Geothermal energy is defined as the heat of the earth. For purposes of this study, geothermal energy is heat capable of economically generating electricity (using available technology). That translates to steam or hot water over 300{degrees}F. Local economic impacts include direct, indirect, and induced changes in the local economy. Direct economic impacts result from the costs of plant development, construction, and operation. Indirect impacts result from household and local government purchases. Induced impacts result from continued respending as goods and services to support the households and local governments are purchased. Employment impacts of geothermal development follow a pattern similar to the economic impacts. The workers associated with plant development bring their families to the area. Additional labor is required to provide support services for the new population. Local government services must also increase to support the new community growth and the geothermal plant itself. These changes yield indirect and induced employment impacts associated with the geothermal plant.

  11. Hawaii geothermal project

    Science.gov (United States)

    Kamins, R. M.

    1974-01-01

    Hawaii's Geothermal Project is investigating the occurrence of geothermal resources in the archipelago, initially on the Island of Hawaii. The state's interest in geothermal development is keen, since it is almost totally dependent on imported oil for energy. Geothermal development in Hawaii may require greater participation by the public sector than has been true in California. The initial exploration has been financed by the national, state, and county governments. Maximization of net benefits may call for multiple use of geothermal resources; the extraction of by-products and the application of treated effluents to agricultural and aquacultural uses.

  12. Environmental assessment for geothermal loan guarantee: South Brawley geothermal exploration project

    Energy Technology Data Exchange (ETDEWEB)

    1979-11-01

    The foregoing analysis indicates that the proposed geothermal field experiment could result in several adverse environmental effects. Such effects would lie primarily in the areas of air quality, noise, aesthetics, land use, and water consumption. However, for the most part, mitigating measures have been, or easily could be, included in project plans to reduce these adverse effects to insignificant levels. Those aspects of the project which are not completely amenable to mitigation by any reasonable means include air quality, noise, aesthetics, land use and water use.

  13. University Campus Bielefeld. Geothermal systems built-up points; Hochschulcampus Bielefeld. Erdwaermesysteme in Bebauungsschwerpunkten

    Energy Technology Data Exchange (ETDEWEB)

    Kohlsch, Oliver; Heske, Claus [CDM Smith, Bochum (Germany); Bussmann, Werner [MEDIAfrac, Geeste (Germany)

    2012-07-01

    Three new buildings with greater geothermal plants are established on the area of the University Campus Bielefeld (Federal Republic of Germany). Due to the more than 100 geothermal probes as well as due to more than 400 energy piles within a radius of only 500 meter, extremely high demands are made on the planning of geothermal energy systems. The mutual interference of the different systems, the impacts on the surrounding buildings as well as the official requirements and the obligations on the later monitoring had to be considered.

  14. Geothermal energy

    International Nuclear Information System (INIS)

    Vuataz, F.-D.

    2005-01-01

    This article gives a general overview of the past and present development of geothermal energy worldwide and a more detailed one in Switzerland. Worldwide installed electrical power using geothermal energy sources amounts to 8900 MW el . Worldwide utilization of geothermal energy for thermal applications amounts to 28,000 MW th . The main application (56.5%) is ground-coupled heat pumps, others are thermal spas and swimming pools (17.7%), space heating (14.9%), heating of greenhouses (4.8%), fish farming (2.2%), industrial uses (1,8%), cooling and melting of snow (1.2%), drying of agricultural products (0.6 %). Switzerland has become an important user of geothermal energy only in the past 25 years. Earlier, only the exploitation of geothermal springs (deep aquifers) in Swiss thermal baths had a long tradition, since the time of the Romans. Today, the main use of geothermal energy is as a heat source for heat pumps utilizing vertical borehole heat exchangers of 50 to 350 meters length. 35,000 installations of this type with heating powers ranging from a few kW to 1000 kW already exist, representing the highest density of such installations worldwide. Other developments are geostructures and energy piles, the use of groundwater for heating and cooling, geothermal district heating, the utilization of draining water from tunnels and the project 'Deep Heat Mining' allowing the combined production of heat and electric power

  15. Advanced Geothermal Turbodrill

    Energy Technology Data Exchange (ETDEWEB)

    W. C. Maurer

    2000-05-01

    Approximately 50% of the cost of a new geothermal power plant is in the wells that must be drilled. Compared to the majority of oil and gas wells, geothermal wells are more difficult and costly to drill for several reasons. First, most U.S. geothermal resources consist of hot, hard crystalline rock formations which drill much slower than the relatively soft sedimentary formations associated with most oil and gas production. Second, high downhole temperatures can greatly shorten equipment life or preclude the use of some technologies altogether. Third, producing viable levels of electricity from geothermal fields requires the use of large diameter bores and a high degree of fluid communication, both of which increase drilling and completion costs. Optimizing fluid communication often requires creation of a directional well to intersect the best and largest number of fracture capable of producing hot geothermal fluids. Moineau motor stators made with elastomers cannot operate at geothermal temperatures, so they are limited to the upper portion of the hole. To overcome these limitations, Maurer Engineering Inc. (MEI) has developed a turbodrill that does not use elastomers and therefore can operate at geothermal temperatures. This new turbodrill uses a special gear assembly to reduce the output speed, thus allowing a larger range of bit types, especially tri-cone roller bits, which are the bits of choice for drilling hard crystalline formations. The Advanced Geothermal Turbodrill (AGT) represents a significant improvement for drilling geothermal wells and has the potential to significantly reduce drilling costs while increasing production, thereby making geothermal energy less expensive and better able to compete with fossil fuels. The final field test of the AGT will prepare the tool for successful commercialization.

  16. Russian Navy Fresh Fuel MPC and A Training

    International Nuclear Information System (INIS)

    Forehand, Harry M.; O'Shell, Parker; Opanassiouk, Yuri R.; Rexroth, Paul E.; Shmelev, Vladimir; Sukhoruchkin, Vladimir K.

    1999-01-01

    The goal of the Russian Navy Fuels Program is to incorporate nuclear fuel that is in the custody of the Russian Navy into a materials protection, control and accounting program. In addition to applying MPC and A upgrades to existing facilities, a program is underway to train site personnel in MPC and A activities. The goal is to assure that the upgraded facilities are managed, operated and maintained in an effective, sustainable manner. Training includes both the conceptual and necessary operational aspects of the systems and equipment. The project began with a Needs Assessment to identify priorities and objectives of required training. This led to the creation of a series of classes developed by Kurchatov Institute. One course was developed to allow attendees to get a general understanding of goals and objectives of nuclear MPC and A systems in the context of the Russian Navy. A follow-on course provided the detailed skills necessary for the performance of specialized duties. Parallel sessions with hands-on exercises provided the specific training needed for different personnel requirements. The courses were presented at KI facilities in Moscow. This paper reviews the work to date and future plans for this program

  17. Guidebook to Geothermal Finance

    Energy Technology Data Exchange (ETDEWEB)

    Salmon, J. P.; Meurice, J.; Wobus, N.; Stern, F.; Duaime, M.

    2011-03-01

    This guidebook is intended to facilitate further investment in conventional geothermal projects in the United States. It includes a brief primer on geothermal technology and the most relevant policies related to geothermal project development. The trends in geothermal project finance are the focus of this tool, relying heavily on interviews with leaders in the field of geothermal project finance. Using the information provided, developers and investors may innovate in new ways, developing partnerships that match investors' risk tolerance with the capital requirements of geothermal projects in this dynamic and evolving marketplace.

  18. The Education and Development of Strategic Planners in the Navy

    Science.gov (United States)

    1990-12-01

    Financial assistance programs exist iLncluding Tuition Assistance (TA) under the Navy Campus, plus many educational benefit programs for which the...area of Strategic Planning by the Naval Postgraluate School (NPS) or civilian instituitions (CIVINS) actually go on to ase their education? 0 41% NPS and

  19. Assessment of the geothermal/geopressure potential of the Gulf Coastal Plan of Alabama. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Wilson, G.V.; Wang, G.C.; Mancini, E.A.; Benson, D.J.

    1980-01-01

    Geothermal and geopressure as well as geologic and geophysical data were studied to evaluate the potential for future development of geothermal resources underlying the Alabama Coastal Plain. Wire-line log data compiled and interpreted from more than 1300 oil and gas test wells included maximum recorded temperatures, mud weights, rock resistivities as related to geopressure, formation tops, fault locations, and depths to basement rock. The Alabama Coastal Plain area is underlain by a conduction dominated, deep sedimentary basin where geothermal gradients are low to moderate (1.0 to 1.8/sup 0/F/100 feet). In some areas of southwest Alabama, abnormally high temperatures are found in association with geopressured zones within the Haynesville Formation of Jurassic age; however, rocks of poor reservoir quality dominate this formation, with the exception of a 200-square-mile area centered in southernmost Clarke County where a porous and permeable sand unit is encased within massive salt deposits of the lower Haynesville. The results of a petrograhic study of the Smackover Formation, which underlies the Haynesville, indicate that this carbonate rock unit has sufficient porosity in some areas to be considered a potential geothermal reservoir. Future development of geothermal resources in south Alabama will be restricted to low or moderate temperature, non-electric applications, which constitute a significant potential energy source for applications in space heating and cooling and certain agricultural and industrial processes.

  20. Resource assessment/commercialization planning meeting

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-01-24

    The U.S. Department of Energy, Division of Geothermal Energy and Division of Geothermal Resource Management, sponsored a Resource Assessment/Commercialization Planning meeting in Salt Lake City on January 21-24, 1980. The meeting included presentations by state planning and resource teams from all DOE regions. An estimated 130 people representing federal, state and local agencies, industry and private developers attended.

  1. Technology and Navy Recruiting

    National Research Council Canada - National Science Library

    Golfin, Peggy

    1997-01-01

    Since November 1996, CNA has participated on a Technology Task Force established by the Commander, Navy Recruiting Command, to address several issues concerning the use of technology and Navy recruiting...

  2. Strategic use of the underground for an energy mix plan, synergies among CO2 and CH4 Geological Storage and Geothermal Energy: Italian Energy review and Latium case study

    Science.gov (United States)

    Procesi, M.; Cantucci, B.; Buttinelli, M.; Armezzani, G.; Quattrocchi, F.

    2012-04-01

    Since the world-wide energy demand has been growing so much in the last years, it is necessary to develop a strategic mix-energy plan to supply low GHG (GreenHouseGas) emissions energy and solve the problem of CO2 emission increasing. A recent study published by European Commission shows that, if existing trends continue, by 2050 CO2 emissions will be unsustainably high: 900-1000 parts per million by volume. The European Commission in 2007 underline the necessity to elaborate, at European level, a Strategic Energy Technology Plan focused on non-carbon or reduced-carbon sources of energy, as renewable energies, CO2 capture and storage technologies, smart energy networks and energy efficiency and savings. Future scenarios for 2030 elaborated by the International Energy Agency (IEA) shows as a mix energy plan could reduce the global CO2 emissions from 27Gt to 23 Gt (about 15%). A strategic use of the underground in terms of: - development of CCS (Carbon dioxide Capture and Storage) associated to fossil fuel combustion; - increase of CH4 geological storage sites; - use of renewable energies as geothermic for power generation; could open a new energy scenario, according to the climate models published by IPCC. Nowadays CCS market is mainly developed in USA and Canada, but still not much accounted in Europe. In Italy there aren't active CCS projects, even if potential areas have been already identified. Many CH4 storage sites are located in Northern America, while other are present in Europe and Italy, but the number of sites is limited despite the huge underground potentiality. In Italy the power generation from geothermal energy comes exclusively from Tuscany (Larderello-Travale and Mt. Amiata geothermal fields) despite the huge potentiality of other regions as Latium, Campania and Sicily (Central and South Italy). The energy deficit and the relevant CO2 emissions represent a common status for many Italian regions, especially for the Latium Region. This suggests that a

  3. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2017-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  4. Geothermal energy

    Science.gov (United States)

    Manzella, A.

    2017-07-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology), spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Produced geothermal heat in the world accounts to 164.6 TWh, with a capacity of 70.9 GW. Geothermal technology, which has focused for decades on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth's crust.

  5. Generalized Pan-European Geological Database for Shallow Geothermal Installations

    Directory of Open Access Journals (Sweden)

    Johannes Müller

    2018-01-01

    Full Text Available The relatively high installation costs for different types of shallow geothermal energy systems are obstacles that have lowered the impact of geothermal solutions in the renewable energy market. In order to reduce planning costs and obtain a lithological overview of geothermal potentials and drilling conditions, a pan-European geological overview map was created using freely accessible JRC (Joint Research Centre data and ArcGIS software. JRC data were interpreted and merged together in order to collect information about the expenditure of installing geothermal systems in specific geological set-ups, and thereby select the most economic drilling technique. Within the four-year project of the European Union’s Horizon 2020 Research and Innovation Program, which is known as “Cheap-GSHPs” (the Cheap and efficient application of reliable Ground Source Heat exchangers and Pumps, the most diffused lithologies and corresponding drilling costs were analyzed to provide a 1 km × 1 km raster with the required underground information. The final outline map should be valid throughout Europe, and should respect the INSPIRE (INfrastructure for SPatial InfoRmation in Europe guidelines.

  6. Geothermal energy worldwide

    International Nuclear Information System (INIS)

    Barbier, Enriko

    1997-01-01

    Geothermal energy, as a natural steam and hot water, has been exploited for decades in order to generate electricity as well as district heating and industrial processes. The present geothermal electrical installed capacity in the world is about 10.000 MWe and the thermal capacity in non-electrical uses is about 8.200 MWt. Electricity is produced with an efficiency of 10-17%, and the cost of the kWh is competitive with conventional energy sources. In the developing countries, where a total installed electrical power is still low, geothermal energy can play a significant role: in El Salvador, for example, 25% of electricity comes from geothermal spring, 20% in the Philippines and 8% in Kenya. Present technology makes it possible to control the environmental impact of geothermal exploitation. Geothermal energy could also be extracted from deep geopressured reservoirs in large sedimentary basins, hot dry rock systems and magma bodies. (author)

  7. A proposal to investigate higher enthalpy geothermal systems in the USA

    Science.gov (United States)

    Elders, W. A.

    2013-12-01

    After more than 50 years of development only ~3,400 MWe of electric power is currently being produced from geothermal resources in the USA. That is only about 0.33% of the country's total installed electrical capacity. In spite of the large demonstrated potential of geothermal resources, only ~2,500 MWe of new geothermal electrical capacity are under development, and the growth rate of this environmentally benign energy resource is overshadowed by the rapid increase in the installed capacity of wind and solar energy. Most of the new geothermal developments in the USA involve relatively small, moderate-temperature, geothermal systems. In contrast, development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Disadvantages include that the fact that locations of suitable geothermal systems are restricted to young volcanic terrains, production of very high enthalpy fluids usually requires drilling deeper wells and may require enhanced geothermal (EGS) technology, and drilling deep into hot hostile environments is technologically challenging. However the potential for very favorable economic returns suggests that the USA should begin developing such a program. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope an investigation. An excellent example of such a collaboration is the Iceland Deep Drilling Project (IDDP) which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. This industry-government consortium planned to drill a deep well in the volcanic caldera of Krafla in NE Iceland. However drilling had to be terminated at 2.1 km depth when 900°C rhyolite magma flowed into the well. The resultant well was highly

  8. Geothermal energy use in terms of a more balanced & sustainable urban-rural development of Southeast Serbia, with focus on Nis region

    Directory of Open Access Journals (Sweden)

    Jovanović Aleksandar

    2017-01-01

    Full Text Available The surrounding of Nis has been known for various geothermal manifestations (see Figure 3 and 4. The city itself has direct use of Nis Spa, where a couple of sites have been used for balneology and where heating systems have been installed. However, other local resources in Nis surrounding are little known. Also, Sokobanja has a long history of thermal waters 'use throughout its rich history, from the Antiquity throughout the middle ages and Turkish rule. This is also present in towns of Bela Palanka and Svrljig in South-East Serbian region surrounding Nis. These resources can be used for supplying the cities and villages with heat in the future. More importantly, communities in local towns in the region can be supported by more proficient use of geothermal potentials, as this idea supports the alleviated concentration of inhabitants in the region. It supports local renewable energy sources and a greater ration between potentials and actual use of geothermal sources, which tends to be very low in Serbian cities and rural places. In this paper, these resources are going to be presented, for the community in Serbia to have an insight and to be reminded of its potentials and significance for regional development and local resource utilization. Built heritage and urban-architectural wholes in some of these towns and in the villages, are neglected and geothermal resources in their vicinity underused. A more organized use of geothermal potentials can lead to their regenerations. It can support the idea of a more balanced rural-urban development of the region of Nis. However, geothermal energy can also be beneficial for future regional energy planning and cooperation between towns and villages in South-Eastern Serbian regions like Nis region. And this can be an important strategy in regional planning and energy planning for the future, once the economic crisis would stop to prevail in Serbia. The authors of this paper point out to the long

  9. Geothermal energy

    OpenAIRE

    Manzella A.

    2017-01-01

    Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG) emissions. Geothermal energy is the thermal energy stored in the underground, including any contained fluid, which is available for extraction and conversion into energy products. Electricity generation, which nowadays produces 73.7 TWh (12.7 GW of capacity) worldwide, usually requires geothermal resources temperatures of over 100 °C. Fo...

  10. Multidisciplinary exploratory study of a geothermal resource in the active volcanic arc of Basse-Terre (Guadeloupe, Lesser Antilles)

    Science.gov (United States)

    Navelot, Vivien; Favier, Alexiane; Géraud, Yves; Diraison, Marc; Corsini, Michel; Verati, Chrystèle; Lardeaux, Jean-Marc; Mercier de Lépinay, Jeanne; Munschy, Marc

    2017-04-01

    The GEOTREF project (high enthalpy geothermal energy in fractured reservoirs), supported by the French government program, "Investissements d'avenir" develops a sustainable geothermal resource in the Vieux Habitants area, 8-km south of the currently exploited Bouillante geothermal field. The Basse Terre Island is a recent volcanic arc (meta-andesite. This metamorphism forms cleavage plans thanks to a pressure-solution mechanism. Mineralogical transformations associated with these cleavage planes have an impact on petrophysical properties. The solid phase density and porosity decrease. An anisotropy of permeability develops due to cleavage plans. Thermodynamics modelling based on the rock chemical composition and petrography observations emphasizes a steady-state mineral assemblage between 1.5 - 2 kbar and 280 - 320˚ C. This is consistent with an in situ measured volcanic arc conductive geothermal gradient of 70 ˚ C/km.

  11. Direct use applications of geothermal resources at Desert Hot Springs, California. Final report, May 23, 1977--July 31, 1978. Volume II: appendixes

    Energy Technology Data Exchange (ETDEWEB)

    Christiansen, C.C.

    1978-07-01

    The following appendixes are included: Desert Hot Springs (DHS) Geothermal Project Advisory Board, Geothermal Citizens Advisory Committee, community needs assessment, geothermal resource characterization, a detailed discussion of the geothermal applications considered for DHS, space/water heating, agricultural operations, detailed analysis of a geothermal aquaculture facility, detailed discussion of proposed energy cascading systems for DHS, regulatory requirements, environmental impact assessment, resource management plan, and geothermal resources property rights and powers of cities to regulate indigenous geothermal resources and to finance construction of facilities for utilization of such resources. (MHR)

  12. Navy Occupational Health Information Management System (NOHIMS). Implementation and Training Plan

    Science.gov (United States)

    1988-01-01

    CALIBRATOR BALANCE BROADBAND ISOTROPIC RAD METER BROADBAND ’:SOTROF’:C RAD PROE CARBON MONO XTDE METER DATA’ itCi3GER DET-ECTOR TUBE SAMPL ING FUtOP DIRECT...112. NEUMOCONIOSIS ---PERIODIC HEALTH EVALUATION NAVY ASBESTOS MEDICAL SURVEILLANCE PROGRAM SeaMI t3.1071-7-302. 5031 u0d W12. T tl, 1 u iS L.dW IN

  13. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2008-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  14. Geothermal system 'Toplets' and geothermal potential of Dojran region

    International Nuclear Information System (INIS)

    Karakashev, Deljo; Delipetrov, Marjan; Jovanov, Kosta

    2007-01-01

    The Toplets geothermal spring that expands into a wide geothermal net in the watershed of Lake Dojran along the geophysical exploration work carried out in the terrain, indicated the presence of a significant geothermal potential in the region. In the future it may become the major factor for the development of vegetable growing, the use of the medicinal properties of the mineral spas and tourism as well as the prosperity of the region. Water temperature in Lake Dojran amounts 15°C to 28°C during the year that is mach higher compared with the temperature of water lakes in neighbouring Greece. This indicates that beneath Lake Dojran there are other geothermal sources that replenish the lake with thermal water. Such manifestations of geothermal energy in the region along with other thermal phenomena speak for the presence of large reserves of geothermal energy in the Dojran depression. (Author)

  15. Geothermal System Extensions

    Energy Technology Data Exchange (ETDEWEB)

    Gunnerson, Jon [Boise City Corporation, ID (United States); Pardy, James J. [Boise City Corporation, ID (United States)

    2017-09-30

    This material is based upon work supported by the Department of Energy under Award Number DE-EE0000318. The City of Boise operates and maintains the nation’s largest geothermal heating district. Today, 91 buildings are connected, providing space heating to over 5.5 million square feet, domestic water heating, laundry and pool heating, sidewalk snowmelt and other related uses. Approximately 300 million gallons of 177°F geothermal water is pumped annually to buildings and institutions located in downtown Boise. The closed loop system returns all used geothermal water back into the aquifer after heat has been removed via an Injection Well. Water injected back into the aquifer has an average temperature of 115°F. This project expanded the Boise Geothermal Heating District (Geothermal System) to bring geothermal energy to the campus of Boise State University and to the Central Addition Eco-District. In addition, this project also improved the overall system’s reliability and increased the hydraulic capacity.

  16. GEOTHERMAL / SOLAR HYBRID DESIGNS: USE OF GEOTHERMAL ENERGY FOR CSP FEEDWATER HEATING

    Energy Technology Data Exchange (ETDEWEB)

    Craig Turchi; Guangdong Zhu; Michael Wagner; Tom Williams; Dan Wendt

    2014-10-01

    This paper examines a hybrid geothermal / solar thermal plant design that uses geothermal energy to provide feedwater heating in a conventional steam-Rankine power cycle deployed by a concentrating solar power (CSP) plant. The geothermal energy represents slightly over 10% of the total thermal input to the hybrid plant. The geothermal energy allows power output from the hybrid plant to increase by about 8% relative to a stand-alone CSP plant with the same solar-thermal input. Geothermal energy is converted to electricity at an efficiency of 1.7 to 2.5 times greater than would occur in a stand-alone, binary-cycle geothermal plant using the same geothermal resource. While the design exhibits a clear advantage during hybrid plant operation, the annual advantage of the hybrid versus two stand-alone power plants depends on the total annual operating hours of the hybrid plant. The annual results in this draft paper are preliminary, and further results are expected prior to submission of a final paper.

  17. Capital cost models for geothermal power plants and fluid transmission systems. [GEOCOST

    Energy Technology Data Exchange (ETDEWEB)

    Schulte, S.C.

    1977-09-01

    The GEOCOST computer program is a simulation model for evaluating the economics of developing geothermal resources. The model was found to be both an accurate predictor of geothermal power production facility costs and a valid designer of such facilities. GEOCOST first designs a facility using thermodynamic optimization routines and then estimates costs for the selected design using cost models. Costs generated in this manner appear to correspond closely with detailed cost estimates made by industry planning groups. Through the use of this model, geothermal power production costs can be rapidly and accurately estimated for many alternative sites making the evaluation process much simpler yet more meaningful.

  18. Geothermal energy

    Directory of Open Access Journals (Sweden)

    Manzella A.

    2015-01-01

    Full Text Available Geothermal technologies use renewable energy resources to generate electricity and direct use of heat while producing very low levels of greenhouse-gas (GHG emissions. Geothermal energy is stored in rocks and in fluids circulating in the underground. Electricity generation usually requires geothermal resources temperatures of over 100°C. For heating, geothermal resources spanning a wider range of temperatures can be used in applications such as space and district heating (and cooling, with proper technology, spa and swimming pool heating, greenhouse and soil heating, aquaculture pond heating, industrial process heating and snow melting. Geothermal technology, which has focused so far on extracting naturally heated steam or hot water from natural hydrothermal reservoirs, is developing to more advanced techniques to exploit the heat also where underground fluids are scarce and to use the Earth as a potential energy battery, by storing heat. The success of the research will enable energy recovery and utilization from a much larger fraction of the accessible thermal energy in the Earth’s crust.

  19. Geothermal energy in Jordan

    International Nuclear Information System (INIS)

    Al-Dabbas, Moh'd A. F.

    1993-11-01

    The potential of geothermal energy utilization in Jordan was discussed. The report gave a summary of the location of geothermal anomalies in Jordan, and of ongoing projects that utilize geothermal energy for greenhouse heating, fish farming, refrigeration by absorption, and water desalination of deep aquifers. The problems facing the utilization of geothermal energy in Jordan were identified to be financial (i.e. insufficient allocation of local funding, and difficulty in getting foreign financing), and inadequate expertise in the field of geothermal energy applications. The report gave a historical account of geothermal energy utilization activities in Jordan, including cooperation activities with international organizations and foreign countries. A total of 19 reports already prepared in the areas of geochemical and hydrological studies were identified. The report concluded that the utilization of geothermal energy offers some interesting economic possibilities. (A.M.H.). 4 refs. 1 map

  20. Enhanced Geothermal System Development of the AmeriCulture Leasehold in the Animas Valley; FINAL

    International Nuclear Information System (INIS)

    Duchane, David V; Seawright, Gary L; Sewright, Damon E; Brown, Don; Witcher, James c.; Nichols, Kenneth E.

    2001-01-01

    Working under the grant with AmeriCulture, Inc., and its team of geothermal experts, assembled a plan to apply enhanced geothermal systems (EGS) techniques to increase both the temperature and flow rate of the geothermal waters on its leasehold. AmeriCulture operates a commercial aquaculture facility that will benefit from the larger quantities of thermal energy and low cost electric power that EGS technology can provide. The project brought together a team of specialists that, as a group, provided the full range of expertise required to successfully develop and implement the project

  1. Success in geothermal development

    International Nuclear Information System (INIS)

    Stefansson, V.

    1992-01-01

    Success in geothermal development can be defined as the ability to produce geothermal energy at compatible energy prices to other energy sources. Drilling comprises usually the largest cost in geothermal development, and the results of drilling is largely influencing the final price of geothermal energy. For 20 geothermal fields with operating power plants, the ratio between installed capacity and the total number of well in the field is 1.9 MWe/well. The drilling history in 30 geothermal fields are analyzed by plotting the average cumulative well outputs as function of the number of wells drilled in the field. The range of the average well output is 1-10 MWe/well with the mean value 4.2 MWe/well for the 30 geothermal fields studied. A leaning curve is defined as the number of wells drilled in each field before the average output per well reaches a fairly constant value, which is characteristic for the geothermal reservoir. The range for this learning time is 4-36 wells and the average is 13 wells. In general, the average well output in a given field is fairly constant after some 10-20 wells has been drilled in the field. The asymptotic average well output is considered to be a reservoir parameter when it is normalized to the average drilling depth. In average, this reservoir parameter can be expressed as 3.3 MWe per drilled km for the 30 geothermal fields studied. The lifetime of the resource or the depletion time of the geothermal reservoir should also be considered as a parameter influencing the success of geothermal development. Stepwise development, where the reservoir response to the utilization for the first step is used to determine the timing of the installment of the next step, is considered to be an appropriate method to minimize the risk for over investment in a geothermal field

  2. Geothermal materials development at Brookhaven National Laboratory

    Energy Technology Data Exchange (ETDEWEB)

    Kukacka, L.E. [Brookhaven National Lab., Upton, NY (United States)

    1997-12-31

    As part of the DOE/OGT response to recommendations and priorities established by industrial review of their overall R&D program, the Geothermal Materials Program at Brookhaven National Laboratory (BNL) is focusing on topics that can reduce O&M costs and increase competitiveness in foreign and domestic markets. Corrosion and scale control, well completion materials, and lost circulation control have high priorities. The first two topics are included in FY 1997 BNL activities, but work on lost circulation materials is constrained by budgetary limitations. The R&D, most of which is performed as cost-shared efforts with U.S. geothermal firms, is rapidly moving into field testing phases. FY 1996 and 1997 accomplishments in the development of lightweight CO{sub 2}-resistant cements for well completions; corrosion resistant, thermally conductive polymer matrix composites for heat exchange applications; and metallic, polymer and ceramic-based corrosion protective coatings are given in this paper. In addition, plans for work that commenced in March 1997 on thermally conductive cementitious grouting materials for use with geothermal heat pumps (GHP), are discussed.

  3. Navy Medicine - World Class Care... Anytime, Anywhere

    Science.gov (United States)

    Search Saturday, May 26th, 2018 Home About Disclaimer Search Navy Medicine Navy Medicine World Class Care... Anytime, Anywhere Home Disclaimer Navy Medicine WebSite About Leadership Readiness Health Partnerships Inside Navy Medicine Dental Corps Hospital Corps Medical Corps Medical Service Corps Nurse Corps

  4. Innovative exploration technologies in the Jemez Geothermal Project, New Mexico, USA; Innovative Explorationstechniken im Jemez Geothermal Projekt, New Mexico, USA

    Energy Technology Data Exchange (ETDEWEB)

    Albrecht, Michael [TBAPower Inc., Salt Lake City, UT (United States); Tenzer, Helmut; Sperber, Axel; Bussmann, Werner [uutGP GmbH, Geeste (Germany)

    2012-10-16

    First geothermal explorations were carried out in the year 1989 in the sovereign Indian Reservation situated nearly 70 km northwest of Albuquerque. (New Mexico, United States of America). In 1991, an exploration drilling at a depth of 80 meter supplied artesian 52 Celsius hot water with xx L/s. Different feasibility studies on the geothermal utilization and on different utilization concepts were established. The economic situation of the region has to be improved by means of a coupled geothermal utilization. The region was explored by means of magnetotellurics (up to depth of 8 kilometre) and reflection seismics (up to a depth of 2.2 kilometre). A graben structure between the Indian Spring fault in the west and the Vallecitos fault in the east are indicative of a geothermal convection zone. Subsequently, an innovative seismic data analysis by means of Elastic Wave Reverse-Time Migration and Wavefield-Separation Imaging Condition was performed. The previous model could be improved considerably. A preliminary drilling program up to a depth of 2,000 meter with Casing design and planning of the borepath occurred. Under socio-economic aspects, up to nine members of the tribe enjoyed an education or further training to engineers under the control of TBA Power Inc. (Salt Laky City, Utah, United State of America).

  5. The geothermal power organization

    Energy Technology Data Exchange (ETDEWEB)

    Scholl, K.L. [National Renewable Energy Lab., Golden, CO (United States)

    1997-12-31

    The Geothermal Power Organization is an industry-led advisory group organized to advance the state-of-the-art in geothermal energy conversion technologies. Its goal is to generate electricity from geothermal fluids in the most cost-effective, safe, and environmentally benign manner possible. The group achieves this goal by determining the Member`s interest in potential solutions to technological problems, advising the research and development community of the needs of the geothermal energy conversion industry, and communicating research and development results among its Members. With the creation and adoption of a new charter, the Geothermal Power Organization will now assist the industry in pursuing cost-shared research and development projects with the DOE`s Office of Geothermal Technologies.

  6. Nuclear or conventional power for surface combatant ships: Department of the Navy. Report to the Congress

    International Nuclear Information System (INIS)

    1977-01-01

    GAO reviewed the controversy over whether the Navy's major surface combatant ships should be all nuclear powered, all conventionally powered, or a mix of both. Nuclear ships are more capable but cost more and their relative cost-effectiveness cannot be measured because Navy analysts cannot quantify many benefits of nuclear power. The Congress, in reviewing Navy shipbuilding plans for surface combatant ships, should be cognizant that buying only conventional ships will maximize naval firepower; buying only nuclear ships will provide mobility and greater freedom from logistics support; and buying a mix is a third option providing, to varying degrees, the advantages and disadvantages of the all-nuclear and all-conventional options

  7. Geothermal reservoir engineering

    CERN Document Server

    Grant, Malcolm Alister

    2011-01-01

    As nations alike struggle to diversify and secure their power portfolios, geothermal energy, the essentially limitless heat emanating from the earth itself, is being harnessed at an unprecedented rate.  For the last 25 years, engineers around the world tasked with taming this raw power have used Geothermal Reservoir Engineering as both a training manual and a professional reference.  This long-awaited second edition of Geothermal Reservoir Engineering is a practical guide to the issues and tasks geothermal engineers encounter in the course of their daily jobs. The bo

  8. Project GeoPower: Basic subsurface information for the utilization of geothermal energy in the Danish-German border region

    DEFF Research Database (Denmark)

    Kirsch, Reinhard; Balling, Niels; Fuchs, Sven

    and require reliable cross-border management and planning tools. In the framework of the Interreg4a GeoPower project, fundamental geological and geophysical information of importance for the planning of geothermal energy utilization in the Danish-German border region was compiled and analyzed. A 3D geological......Information on both hydraulic and thermal conditions of the subsurface is fundamental for the planning and use of hydrothermal energy. This is paramount in particular for densely populated international border regions, where different subsurface applications may introduce conflicts of use...... on potential geothermal reservoirs, and a new 3D structural geological model was developed. The interpretation of petrophysical data (core data and well logs) allows to evaluate the hydraulic and thermal rock properties of geothermal formations and to develop a parameterized 3D thermal conductive subsurface...

  9. Investigations of Very High Enthalpy Geothermal Resources in Iceland.

    Science.gov (United States)

    Elders, W. A.; Fridleifsson, G. O.

    2012-12-01

    The Iceland Deep Drilling Project (IDDP) is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs. Earlier modeling indicates that the power output of a geothermal well producing from a supercritical reservoir could potentially be an order of magnitude greater than that from a conventional hot geothermal reservoir, at the same volumetric flow rate. However, even in areas with an unusually high geothermal gradient, for normal hydrostatic pressure gradients reaching supercritical temperatures and pressures will require drilling to depths >4 km. In 2009 the IDDP attempted to drill the first deep supercritical well, IDDP-01, in the caldera of the Krafla volcano, in NE Iceland. However drilling had to be terminated at only 2.1 km depth when ~900°C rhyolite magma flowed into the well. Our studies indicate that this magma formed by partial melting of hydrothermally altered basalts within the Krafla caldera. Although this well was too shallow to reach supercritical pressures, it is highly productive, and is estimated to be capable of generating up to 36 MWe from the high-pressure, superheated steam produced from the upper contact zone of the intrusion. With a well-head temperature of ~440°C, it is at present apparently the hottest producing geothermal well in the world. A pilot plant is investigating the optimal utilization of this magmatically heated resource. A special issue of the journal Geothermics with 16 papers reporting on the IDDP-01 is in preparation. However, in order to continue the search for supercritical geothermal resources, planning is underway to drill a 4.5 km deep well at Reykjanes in SW Iceland in 2013-14. Although drilling deeper towards the heat source of this already developed high-temperature geothermal field will be more expensive, if a supercritical resource is found, this cost increase should be offset by the considerable increase in the power output and lifetime of the Reykjanes geothermal

  10. An economic prefeasibility study of geothermal energy development at Platonares, Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Trocki, L.K.

    1989-01-01

    The expected economic benefits from development of a geothermal power plant at Plantanares in the Department of Copan, Honduras are evaluated in this report. The economic benefits of geothermal plants ranging in size from a 10-MW plant in the shallow reservoir to a 20-, 30-, 55-, or 110-MW plant in the assumed deeper reservoir were measured by computing optimal expansion plans for each size of geothermal computing optimal expansion plans for each size of geothermal plant. Savings are computed as the difference in present value cost between a plan that contains no geothermal plant and one that does. Present value savings in millions of 1987 dollars range from $25 million for the 10-MW plant to $110 million for the 110-MW plant -- savings of 6% to 25% over the time period 1988 through 2008. The existence of the shallow reservoir is relatively well-characterized, and much indirect scientific evidence indicate the existence of the deeper reservoir. Based on probability distributions estimated by geologists of temperature, areal extent, depth, and porosity, the expected size of power plant that the deep reservoir can support was estimated with the following results: O-MW -- 16% (i.e., there is a 16% chance that the deep reservoir will not support a power plant); 20-MW -- 38%; 30-MW -- 25%; 55-MW -- 19%; and 110-MW -- 2%. When the cost savings from each size of plant are weighted by the probability that the reservoir will support a plant of that size, the expected monetary value of the deep reservoir can be computed. It is $42 million in present value 1987 dollars -- a cost savings of 10%. The expected savings from the 10-MW plant in the shallow reservoir are expected to be close to the computed value of $25 million, i.e., the probability that the shallow reservoir can support the plant is high. 4 refs., 3 figs., 2 tabs.

  11. Geothermal systems: Principles and case histories

    Science.gov (United States)

    Rybach, L.; Muffler, L. J. P.

    The classification of geothermal systems is considered along with the geophysical and geochemical signatures of geothermal systems, aspects of conductive heat transfer and regional heat flow, and geothermal anomalies and their plate tectonic framework. An investigation of convective heat and mass transfer in hydrothermal systems is conducted, taking into account the mathematical modelling of hydrothermal systems, aspects of idealized convective heat and mass transport, plausible models of geothermal reservoirs, and preproduction models of hydrothermal systems. Attention is given to the prospecting for geothermal resources, the application of water geochemistry to geothermal exploration and reservoir engineering, heat extraction from geothermal reservoirs, questions of geothermal resource assessment, and environmental aspects of geothermal energy development. A description is presented of a number of case histories, taking into account the low enthalpy geothermal resource of the Pannonian Basin in Hungary, the Krafla geothermal field in Northeast Iceland, the geothermal system of the Jemez Mountains in New Mexico, and extraction-reinjection at the Ahuachapan geothermal field in El Salvador.

  12. Potential of near-surface geothermal heat - Experiences from the planning practice; Potential der oberflaechennahen Geothermie. Erfahrungen aus der Planungspraxis

    Energy Technology Data Exchange (ETDEWEB)

    Kuebert, Markus; Kuntz, David; Walker-Hertkorn, Simone [systherma GmbH, Planungsbuero fuer Erdwaermesysteme, Starzach-Felldorf (Germany)

    2010-07-01

    Near-surface geothermal applications as a heat source for ground source heat pump systems are an approved energy source in the area of residential buildings. Within the commercial range, the near-surface geothermal energy also can supply coldness in order to cool buildings. In the contribution under consideration, a flow chart of a geothermal project is presented by examining the feasibility up to the acceptance of work. With this approach it is possible to exhaust optimally the geothermal potential at a location including the trades and planners involved. In particular, the significance of the preliminary design for the entire later smooth course of the project is to be stated. Practical examples for possible operational areas of the geothermal energy and to their borders are described.

  13. Semiannual progress report for the Idaho Geothermal Program, April 1--September 30, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Blake, G.L. (ed.)

    1978-11-01

    Research and development performed by the Idaho Geothermal Program between April 1 and September 30, 1978 are discussed. Well drilling and facility construction at the Raft River geothermal site are described. Efforts to understand the geothermal reservoir are explained, and attempts to predict the wells' potential are summarized. Investigations into the direct uses of geothermal water, such as for industrial drying, fish farming, and crop irrigation, are reported. The operation of the facility's first electrical generator is described. Construction of the first 5-megawatt power plant is recounted. The design effort for the second pilot power plant is also described. University of Utah work with direct-contact heat exchangers is outlined. Special environmental studies of injection tests, ferruginous hawks, and dental fluorisis are summarized. The regional planning effort for accelerated commercialization is described. Demonstration projects in Oregon, Utah, and South Dakota are noted. A bibliographical appendix lists each internal and external report the Idaho Geothermal Program has published since its beginning in 1973.

  14. Cerro Prieto geothermal field: exploration during exploitation

    Energy Technology Data Exchange (ETDEWEB)

    1982-07-01

    Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. The description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field are presented. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development.

  15. Geothermal training at the International Institute of Geothermal Research in Pisa, Italy

    International Nuclear Information System (INIS)

    Dickson, M.H.; Fanelli, M.

    1990-01-01

    Between 1985 and 1990 the International School of Geothermics of Pisa has held 5 long-term courses, attended by 93 trainees. This paper reports that since 1970, when it began its activity, the Italian geothermal training center has prepared a total of 293 goethermists from 64 countries. Under its present structure the International School of Geothermics organizes short courses and seminars, along with the long-term courses directed mainly at geothermal exploration

  16. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  17. Geothermal Power Technologies

    DEFF Research Database (Denmark)

    Montagud, Maria E. Mondejar; Chamorro, C.R.

    2017-01-01

    Although geothermal energy has been widely deployed for direct use in locations with especial geologic manifestations, its potential for power generation has been traditionally underestimated. Recent technology developments in drilling techniques and power conversion technologies from low......-temperature heat resources are bringing geothermal energy to the spotlight as a renewable baseload energy option for a sustainable energy mix. Although the environmental impact and economic viability of geothermal exploitation must be carefully evaluated for each case, the use of deep low-temperature geothermal...... reservoirs could soon become an important contributor to the energy generation around the world....

  18. Geothermal Risk Reduction via Geothermal/Solar Hybrid Power Plants. Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Wendt, Daniel [Idaho National Lab. (INL), Idaho Falls, ID (United States); Mines, Greg [Idaho National Lab. (INL), Idaho Falls, ID (United States); Turchi, Craig [National Renewable Energy Lab. (NREL), Golden, CO (United States); Zhu, Guangdong [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2015-11-01

    There are numerous technical merits associated with a renewable geothermal-solar hybrid plant concept. The performance of air-cooled binary plants is lowest when ambient temperatures are high due to the decrease in air-cooled binary plant performance that occurs when the working fluid condensing temperature, and consequently the turbine exhaust pressure, increases. Electrical power demand is generally at peak levels during periods of elevated ambient temperature and it is therefore especially important to utilities to be able to provide electrical power during these periods. The time periods in which air-cooled binary geothermal power plant performance is lowest generally correspond to periods of high solar insolation. Use of solar heat to increase air-cooled geothermal power plant performance during these periods can improve the correlation between power plant output and utility load curves. While solar energy is a renewable energy source with long term performance that can be accurately characterized, on shorter time scales of hours or days it can be highly intermittent. Concentrating solar power (CSP), aka solar-thermal, plants often incorporate thermal energy storage to ensure continued operation during cloud events or after sunset. Hybridization with a geothermal power plant can eliminate the need for thermal storage due to the constant availability of geothermal heat. In addition to the elimination of the requirement for solar thermal storage, the ability of a geothermal/solar-thermal hybrid plant to share a common power block can reduce capital costs relative to separate, stand-alone geothermal and solar-thermal power plant installations. The common occurrence of long-term geothermal resource productivity decline provides additional motivation to consider the use of hybrid power plants in geothermal power production. Geothermal resource productivity decline is a source of significant risk in geothermal power generation. Many, if not all, geothermal resources

  19. Geothermal energy

    International Nuclear Information System (INIS)

    Lemale, J.

    2009-01-01

    The geothermal energy, listed among the new and renewable energy sources, is characterized by a huge variety of techniques and applications. This book deals with the access to underground geothermal resources and with their energy valorization as well. After a presentation of the main geological, hydrogeological and thermal exploitation aspects of this resource, the book presents the different geothermal-related industries in detail, in particular the district heating systems, the aquifer-based heat pumps, the utilizations in the agriculture, fishery and balneology sectors, and the power generation. (J.S.)

  20. Coordination of geothermal research

    Energy Technology Data Exchange (ETDEWEB)

    Jessop, A.M.; Drury, M.J.

    1983-01-01

    Visits were made in 1983 to various investigators and institutions in Canada to examine developments in geothermal research. Proposals for drilling geothermal wells to provide hot water for heating at a college in Prince Edward Island were made. In Alberta, the first phase of a program examining the feasibility of mapping sedimentary geothermal reservoirs was discussed. Some sites for possible geothermal demonstration projects were identified. In British Columbia, discussions were held between BC Hydro and Energy, Mines and Resources Canada on the drilling of a research hole into the peak of a temperature anomaly in the Meager Creek Valley. The British Columbia government has offered blocks of land in the Mount Cayley volcanic complex for lease to develop geothermal resources. A list of papers of interest to the Canadian geothermal energy program is appended.

  1. Geothermal Information Dissemination and Outreach

    Energy Technology Data Exchange (ETDEWEB)

    Clutter, Ted J. [Geothermal Resources Council (United States)

    2005-02-18

    Project Purpose. To enhance technological and topical information transfer in support of industry and government efforts to increase geothermal energy use in the United States (power production, direct use, and geothermal groundsource heat pumps). Project Work. GRC 2003 Annual Meeting. The GRC convened the meeting on Oct. 12-15, 2003, at Morelia's Centro de Convenciones y ExpoCentro in Mexico under the theme, International Collaboration for Geothermal Energy in the Americas. The event was also sponsored by the Comision Federal de Electricidad. ~600 participants from more than 20 countries attended the event. The GRC convened a Development of Geothermal Projects Workshop and Geothermal Exploration Techniques Workshop. GRC Field Trips included Los Azufres and Paricutin Volcano on Oct. 11. The Geothermal Energy Association (Washington, DC) staged its Geothermal Energy Trade Show. The Annual Meeting Opening Session was convened on Oct. 13, and included the governor of Michoacan, the Mexico Assistant Secretary of Energy, CFE Geothermal Division Director, DOE Geothermal Program Manager, and private sector representatives. The 2003 Annual Meeting attracted 160 papers for oral and poster presentations. GRC 2004. Under the theme, Geothermal - The Reliable Renewable, the GRC 2004 Annual Meeting convened on Aug. 29-Sept. 1, 2004, at the Hyatt Grand Champions Resort at Indian Wells, CA. Estimated total attendance (including Trade Show personnel, guests and accompanying persons) was ~700. The event included a workshop, Geothermal Production Well Pump Installation, Operation and Maintenance. Field trips went to Coso/Mammoth and Imperial Valley/Salton Sea geothermal fields. The event Opening Session featured speakers from the U.S. Department of Energy, U.S. Department of the Interior, and the private sector. The Geothermal Energy Association staged its Geothermal Energy Trade Show. The Geothermal Education Office staged its Geothermal Energy Workshop. Several local radio and

  2. Classification of public lands valuable for geothermal steam and associated geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    Goodwin, L.H.; Haigler, L.B.; Rioux, R.L.; White, D.E.; Muffler, L.J.P.; Wayland, R.G.

    1973-01-01

    The Organic Act of 1879 (43 USC 31) that established the US Geological Survey provided, among other things, for the classification of the public lands and for the examination of the geological structure, mineral resources, and products of the national domain. In order to provide uniform executive action in classifying public lands, standards for determining which lands are valuable for mineral resources, for example, leasable mineral lands, or for other products are prepared by the US Geological Survey. This report presents the classification standards for determining which Federal lands are classifiable as geothermal steam and associated geothermal resources lands under the Geothermal Steam Act of 1970 (84 Stat. 1566). The concept of a geothermal resouces province is established for classification of lands for the purpose of retention in Federal ownership of rights to geothermal resources upon disposal of Federal lands. A geothermal resources province is defined as an area in which higher than normal temperatures are likely to occur with depth and in which there is a resonable possiblity of finding reservoir rocks that will yield steam or heated fluids to wells. The determination of a known geothermal resources area is made after careful evaluation of the available geologic, geochemical, and geophysical data and any evidence derived from nearby discoveries, competitive interests, and other indicia. The initial classification required by the Geothermal Steam Act of 1970 is presented.

  3. Boise geothermal district heating system

    Energy Technology Data Exchange (ETDEWEB)

    Hanson, P.J.

    1985-10-01

    This document describes the Boise geothermal district heating project from preliminary feasibility studies completed in 1979 to a fully operational system by 1983. The report includes information about the two local governments that participated in the project - the City of Boise, Idaho and the Boise Warm Springs Water District. It also discusses the federal funding sources; the financial studies; the feasibility studies conducted; the general system planning and design; design of detailed system components; the legal issues involved in production; geological analysis of the resource area; distribution and disposal; the program to market system services; and the methods of retrofitting buildings to use geothermal hot water for space heating. Technically this report describes the Boise City district heating system based on 170/sup 0/F water, a 4000 gpm production system, a 41,000 foot pipeline system, and system economies. Comparable data are also provided for the Boise Warm Springs Water District. 62 figs., 31 tabs.

  4. "Assistance to States on Geothermal Energy"

    Energy Technology Data Exchange (ETDEWEB)

    Linda Sikkema; Jennifer DeCesaro

    2006-07-10

    This final report summarizes work carried out under agreement with the U.S. Department of Energy, related to geothermal energy policy issues. This project has involved a combination of outreach and publications on geothermal energy—Contract Number DE-FG03-01SF22367—with a specific focus on educating state-level policymakers. Education of state policymakers is vitally important because state policy (in the form of incentives or regulation) is a crucial part of the success of geothermal energy. State policymakers wield a significant influence over all of these policies. They are also in need of high quality, non-biased educational resources which this project provided. This project provided outreach to legislatures, in the form of responses to information requests on geothermal energy and publications. The publications addressed: geothermal leasing, geothermal policy, constitutional and statutory authority for the development of geothermal district energy systems, and state regulation of geothermal district energy systems. These publications were distributed to legislative energy committee members, and chairs, legislative staff, legislative libraries, and other related state officials. The effect of this effort has been to provide an extensive resource of information about geothermal energy for state policymakers in a form that is useful to them. This non-partisan information has been used as state policymakers attempt to develop their own policy proposals related to geothermal energy in the states. Coordination with the National Geothermal Collaborative: NCSL worked and coordinated with the National Geothermal Collaborative (NGC) to ensure that state legislatures were represented in all aspects of the NGC's efforts. NCSL participated in NGC steering committee conference calls, attended and participated in NGC business meetings and reviewed publications for the NGC. Additionally, NCSL and WSUEP staff drafted a series of eight issue briefs published by the

  5. Geothermal energy in Switzerland - outline lecture; Uebersichtsvortrag Geothermie Schweiz

    Energy Technology Data Exchange (ETDEWEB)

    Brunner, M [Bundesamt fuer Energiewirtschaft, Bern (Switzerland); Gorhan, H L [Elektrowatt Engineering AG, Zuerich (Switzerland)

    1997-12-01

    CO{sub 2}- emission in Switzerland need to be reduced over the next 50 years. In 1990, a first step towards improvement was taken by the Swiss Feseral Office of Energy by establishing the ``Energy 2000`` action plan. Apart from practical recommendations for general energy saving measures, this programme provides also clear objectives in respect to increased and more effecient utilization of indigenious and renewable energy resources. Geothermal energy is one of these resources. In addition to the amount of geothermal heat delivered in 1990, it is planned to produce a further 170 GWh of geothermal energy by the year 2000. This correesponnds to about 6% of a total of 3000 GWh which, it is envisaged, will be produced by all alternative heat resources together by the year 2000. Today, most geothermal energy is provided by shallow borehole heat exchangers. However, intensive development of wide ranging and innovative geothermal techniques is taking place at present. These R and D activities, as well as projects at present being realised, receive significant support from the Swiss Federal Office of Energy. (orig.) [Deutsch] In den kommenden 50 Jahren soll und muss CO{sub 2}-Emission in der Sweiz betraechtlich reduziert werden. Einen ersten Schritt dazu bildet das. im Jahre 1990 vom bundesamtes fuer Energiewirtschaft erarbeitete, Programm ``Energie 2000``. Nebst konkreten Vorschlaegen zum allgemeinen Energiesparen wurden in diesem programm auch Zielsetzungen fuer eine vermehrte, innovative und efficiente Nutzung von einheimischen und erneuerbaren Energieressourcen formuliert. Dazu zaelt auch die Geometrie. Zusaetzlich zur bereits im Jahre 1990 produzierten Waerme soll die Geometrie im Jahr 2000 ca. 170 GWh an Waermeenergie lifern. Das entspricht ca.6% der fuer das Jahr 2000 geplanten Gesamtalternativ- Energieproduktion von 3000 GWh. Bei der geothermischen Energieproduktion satmmt bis heute der groesste Anteil von untiefen Erdwaermesonden. Die Anwendung neuer und

  6. Geothermal Energy Program overview

    International Nuclear Information System (INIS)

    1991-12-01

    The mission of the Geothermal Energy Program is to develop the science and technology necessary for tapping our nation's tremendous heat energy sources contained with the Earth. Geothermal energy is a domestic energy source that can produce clean, reliable, cost- effective heat and electricity for our nation's energy needs. Geothermal energy -- the heat of the Earth -- is one of our nation's most abundant energy resources. In fact, geothermal energy represents nearly 40% of the total US energy resource base and already provides an important contribution to our nation's energy needs. Geothermal energy systems can provide clean, reliable, cost-effective energy for our nation's industries, businesses, and homes in the form of heat and electricity. The US Department of Energy's (DOE) Geothermal Energy Program sponsors research aimed at developing the science and technology necessary for utilizing this resource more fully. Geothermal energy originates from the Earth's interior. The hottest fluids and rocks at accessible depths are associated with recent volcanic activity in the western states. In some places, heat comes to the surface as natural hot water or steam, which have been used since prehistoric times for cooking and bathing. Today, wells convey the heat from deep in the Earth to electric generators, factories, farms, and homes. The competitiveness of power generation with lower quality hydrothermal fluids, geopressured brines, hot dry rock, and magma ( the four types of geothermal energy) still depends on the technical advancements sought by DOE's Geothermal Energy Program

  7. An Exploratory Analysis of Projected Navy Officer Inventory Strength Using Data Farming

    Science.gov (United States)

    2016-09-01

    prone to error (Sibley, 2012). The latest software version is built in Microsoft Visual Basic ( VBA ) and houses its data files in Microsoft Access . The...transition to VBA and Access circumvents government restrictions, expanding OSAM’s access and use by Navy strength planners and manpower analysts...by FY2022. Additionally, implementing a low accession plan and a high transfer plan is the most robust in correcting OSD. When implemented correctly

  8. Messing with paradise: Air quality and geothermal development in Hawaii

    International Nuclear Information System (INIS)

    Campbell, A.W.

    1993-01-01

    In the last decade, scientists and the media have publicized several significant air-quality-related issues facing our nation and threatening the Earth. Our need for energy is at the heart of many environmental problems. Most of us would not dispute that global issues are vitally important. However, to many of us, who have live one day at a time, global issues are often overshadowed by those at the microcosmic (i.e., regional or local) level. This paper focuses on a continuing problem citizens experienced by the resident of Hawaii: controversial air quality and health issues linked to geothermal resource development. In Hawaii, air quality degradation and related health issues have been associated with geothermal development on the Kilauea volcano on the Big Island. This paper begins with an overview of Hawaii's ambient air quality based on data collected by the State Department of Health (DOH). A chronology of geothermal resource development in Hawaii follows. The potential atmospheric contaminants from development of the Hawaiian resource are listed, and health effects of acute and chronic exposures are identified. Public controversy about geothermal development and the efforts of local and state agencies and officials to effectively control geothermal development in concert with protection of public health and safety use discussed, in particular the recent development and promulgation of a State of Hawaii H 2 S standard. This paper concludes with some suggestions for integrating the diverse interests of government, regulators, citizens, and geothermal developers in seeking to meet the energy and economic needs of Hawaii while carefully planning geothermal development in a safe and environmentally responsible manner

  9. Geothermal studies in China

    Science.gov (United States)

    Ji-Yang, Wang; Mo-Xiang, Chen; Ji-An, Wang; Xiao, Deng; Jun, Wang; Hsien-Chieh, Shen; Liang-Ping, Hsiung; Shu-Zhen, Yan; Zhi-Cheng, Fan; Xiu-Wen, Liu; Ge-Shan, Huang; Wen-Ren, Zhang; Hai-Hui, Shao; Rong-Yan, Zhang

    1981-01-01

    Geothermal studies have been conducted in China continuously since the end of the 1950's with renewed activity since 1970. Three areas of research are defined: (1) fundamental theoretical research on geothermics, including subsurface temperatures, terrestrial heat flow and geothermal modeling; (2) exploration for geothermal resources and exploitation of geothermal energy; and (3) geothermal studies in mines. Regional geothermal studies have been conducted recently in North China and more than 2000 values of subsurface temperature have been obtained. Temperatures at a depth of 300 m generally range from 20 to 25°C with geothermal gradients from 20 to 40°C/km. These values are regarded as an average for the region with anomalies related to geological factors. To date, 22 reliable heat flow data from 17 sites have been obtained in North China and the data have been categorized according to fault block tectonics. The average heat flow value at 16 sites in the north is 1.3 HFU, varying from 0.7 to 1.8 HFU. It is apparent that the North China fault block is characterized by a relatively high heat flow with wide variations in magnitude compared to the mean value for similar tectonic units in other parts of the world. It is suggested that although the North China fault block can be traced back to the Archaean, the tectonic activity has been strengthening since the Mesozoic resulting in so-called "reactivation of platform" with large-scale faulting and magmatism. Geothermal resources in China are extensive; more than 2000 hot springs have been found and there are other manifestations including geysers, hydrothermal explosions, hydrothermal steam, fumaroles, high-temperature fountains, boiling springs, pools of boiling mud, etc. In addition, there are many Meso-Cenozoic sedimentary basins with widespread aquifers containing geothermal water resources in abundance. The extensive exploration and exploitation of these geothermal resources began early in the 1970's. Since then

  10. Geothermal energy development - a boon to Philippine energy self-reliance efforts

    International Nuclear Information System (INIS)

    Alcaraz, A.P.; Ogena, M.S.

    1997-01-01

    The Philippine success story in geothermal energy development is the first of the nation's intensified search for locally available alternative energy sources to oil. Due to its favorable location in the Pacific belt of fire, together with the presence of the right geologic conditions for the formation of geothermal (earth heat) reservoirs, the country has been able to develop commercially six geothermal fields. These are the Makiling-Banahaw area, just south of Manila, Tiwi in Albay, Bacon-Manito in Sorsogon, Tongonan in Leyte, Palinpinon in Southern Negros, and the Mt. Apo region of Mindanao. Together these six geothermal fields have a combined installed generation capacity of 1,448 Mwe, which the Philippines second largest user geothermal energy in the world today. Since 1977 to mid-1997, a total of 88,475 gigawatt-hours have been generated equivalent to 152.54 million barrels of oil. Based on the average yearly price of oil for the period, this translates into a savings of $3,122 billion for the country that otherwise would have gone for oil importations. It is planned that by the year 2000, geothermal shall be accounting for 28.4% of the 42,000 gigawatt-hours of the energy needed for that year, coal-based plants will contribute 24.6% and hydropower 18.6%. This will reduce oil-based contribution to just 28.4%. Geothermal energy as an indigenous energy resource provides the country a sustainable option to other conventional energy sources such as coal, oil and even hydro. Technologies have long been developed to maintain the environmental quality of the geothermal site. It serves to minimize changes in the support systems found on the land, water and air environments. The country has hopped, skipped and jumped towards energy self-reliance anchored on development of its large geothermal resources. And as the Philippines pole-vaults into the 21st century, the nation can look forward to geothermal energy to remain as one of the pillars of its energy self

  11. Geothermics in Aquitaine

    International Nuclear Information System (INIS)

    Dane, J.P.

    1995-01-01

    The geothermal exploitation of the Aquitanian Basin (S W France) started 15 years ago and has extended today to 12 different places. Three main aquifers of different depth are exploited in Bordeaux region: the old alluvial deposits of Garonne river (20-30 m), the Middle Eocene aquifer (300-400 m), and the Cenomanian-Turonian aquifer (900-1100 m) which is the deepest and most exploited for geothermal purposes. The drinkable quality of the water and the use of single-well technique are important factors that reduce the operating costs. Geothermics remains competitive with other energy sources due to the long-term stability of geothermal energy costs. (J.S.). 2 figs., 1 tab., 5 photos

  12. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Cross, J.; Freeman, J.

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the U.S. DOE's Geothermal Technology Program's (GTP's) involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including geothermal heat pumps (GHPs). The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  13. Environmental overview for the development of geothermal resources in the State of New Mexico. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Bryant, M.; Starkey, A.H.; Dick-Peddie, W.A.

    1980-06-01

    A brief overview of the present day geothermal applications for hydrothermal electrical generation and direct heat use and their environmental implications is provided. Technologies and environmental impacts are considered at all points on the pathway of development resource exploration; well field, plant and transmission line construction; and plant operation. The technologies for electrical generation-direct, dry steam conversion; separated steam conversion; single-flash conversion, separated-steam/single-flash conversion and binary cycle conversion and the technologies for direct heat use - direct use of geothermal waters, surface heat exhanger, down-the hole heat exchanger and heat pump are described. A summary of the geothermal technologies planned or in operation within New Mexico geothermal areas is provided. A review of regulations that affect geothermal development and its related environmental impact in New Mexico is presented. The regulatory pathway, both state and federal, of geothermal exploration after the securing of appropriate leases, development, and construction and implementation of a geothermal facility are described. Six categories (Geophysical, Water, Air, Noise, Biota and Socioeconomics) were selected for environmental assessment. The data available is described.

  14. South Dakota geothermal handbook

    Energy Technology Data Exchange (ETDEWEB)

    1980-06-01

    The sources of geothermal fluids in South Dakota are described and some of the problems that exist in utilization and materials selection are described. Methods of heat extraction and the environmental concerns that accompany geothermal fluid development are briefly described. Governmental rules, regulations and legislation are explained. The time and steps necessary to bring about the development of the geothermal resource are explained in detail. Some of the federal incentives that encourage the use of geothermal energy are summarized. (MHR)

  15. Surface-near geothermal power. Handling of hydro-economic requirements in the practice; Oberflaechennahe Geothermie. Umgang mit den wasserwirtschaftlichen Anforderungen in der Praxis

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2009-12-15

    Within the meeting of the Bavarian Environment Agency (Augsburg, Federal Republic of Germany) at 1st December, 2009, the following lectures were held: (1) Hydro-economical requirements and working assistance of the Bavarian Environment Agency (Hannes Berger); (2) Technology, dimensioning and safety devices for heat pumps and heat source plants soil - groundwater (Erich Ramming); (3) Well devices for the thermal utilization of the groundwater - planning, production and quality assurance (Michael Thoren); (4) Geothermal probes: Handling of raw materials and welding at the building site (Hubert Graf); (5) Geothermal probes - planning and calculation (Burkhard Sanner); (6) Geothermal probes - drilling operations (Sven Tewes); (7) Certification of drilling companies according to W 120 (Udo Peth); (8) Operation of geothermal plants - Examples from one-family house to football stadium (Arno Poehlmann).

  16. Investigating ultra high-enthalpy geothermal systems: a collaborative initiative to promote scientific opportunities

    Science.gov (United States)

    Elders, W. A.; Nielson, D.; Schiffman, P.; Schriener, A., Jr.

    2014-12-01

    Scientists, engineers, and policy makers gathered at a workshop in the San Bernardino Mountains of southern California in October 2013 to discuss the science and technology involved in developing high-enthalpy geothermal fields. A typical high-enthalpy geothermal well between 2000 and 3000 m deep produces a mixture of hot water and steam at 200-300 °C that can be used to generate about 5-10 MWe of electric power. The theme of the workshop was to explore the feasibility and economic potential of increasing the power output of geothermal wells by an order of magnitude by drilling deeper to reach much higher pressures and temperatures. Development of higher enthalpy geothermal systems for power production has obvious advantages; specifically higher temperatures yield higher power outputs per well so that fewer wells are needed, leading to smaller environmental footprints for a given size of power plant. Plans for resource assessment and drilling in such higher enthalpy areas are already underway in Iceland, New Zealand, and Japan. There is considerable potential for similar developments in other countries that already have a large production of electricity from geothermal steam, such as Mexico, the Philippines, Indonesia, Italy, and the USA. However drilling deeper involves technical and economic challenges. One approach to mitigating the cost issue is to form a consortium of industry, government and academia to share the costs and broaden the scope of investigation. An excellent example of such collaboration is the Iceland Deep Drilling Project (IDDP), which is investigating the economic feasibility of producing electricity from supercritical geothermal reservoirs, and this approach could serve as model for future developments elsewhere. A planning committee was formed to explore creating a similar initiative in the USA.

  17. Navy Advertising: Targeting Generation Z

    Science.gov (United States)

    2015-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT NAVY ADVERTISING : TARGETING GENERATION Z December......study recommends improvements for Navy advertising efficiency by examining characteristics of recruits defined as Generation Z. Data gathered from five

  18. Eighteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Horne, R.J.; Kruger, P.; Miller, F.G.; Brigham, W.E.; Cook, J.W. (Stanford Geothermal Program)

    1993-01-28

    PREFACE The Eighteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 26-28, 1993. There were one hundred and seventeen registered participants which was greater than the attendance last year. Participants were from eight foreign countries: Italy, Japan, United Kingdom, Mexico, New Zealand, the Philippines, Guatemala, and Iceland. Performance of many geothermal fields outside the United States was described in several of the papers. Dean Gary Ernst opened the meeting and welcomed the visitors to the campus. The key note speaker was J.E. ''Ted'' Mock who gave a brief overview of the Department of Energy's current plan. The Stanford Geothermal Program Reservoir Engineering Award for Excellence in Development of Geothermal Energy was awarded to Dr. Mock who also spoke at the banquet. Thirty-nine papers were presented at the Workshop with two papers submitted for publication only. Technical papers were organized in twelve sessions concerning: field operations, The Geysers, geoscience, hot-dry-rock, injection, modeling, slim hole wells, geochemistry, well test and wellbore. Session chairmen were major contributors to the program and we thank: John Counsil, Kathleen Enedy, Harry Olson, Eduardo Iglesias, Marcelo Lippmann, Paul Atkinson, Jim Lovekin, Marshall Reed, Antonio Correa, and David Faulder. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank Pat Ota, Ted Sumida, and Terri A. Ramey who also produces the Proceedings Volumes for publication. We owe a great deal of thanks to our students who operate audiovisual equipment and to John Hornbrook who coordinated the meeting arrangements for the Workshop. Henry J. Ramey, Jr. Roland N. Horne Frank G. Miller Paul Kruger William E. Brigham Jean W. Cook

  19. Use of Geothermal Energy for Electric Power Generation

    Energy Technology Data Exchange (ETDEWEB)

    Mashaw, John M.; Prichett, III, Wilson (eds.)

    1980-10-23

    The National Rural Electric Cooperative Association and its 1,000 member systems are involved in the research, development and utilization of many different types of supplemental and alternative energy resources. We share a strong commitment to the wise and efficient use of this country's energy resources as the ultimate answer to our national prosperity and economic growth. WRECA is indebted to the United States Department of Energy for funding the NRECA/DOE Geothermal Workshop which was held in San Diego, California in October, 1980. We would also like to express our gratitude to each of the workshop speakers who gave of their time, talent and experience so that rural electric systems in the Western U. S. might gain a clearer understanding of the geothermal potential in their individual service areas. The participants were also presented with practical, expert opinion regarding the financial and technical considerations of using geothermal energy for electric power production. The organizers of this conference and all of those involved in planning this forum are hopeful that it will serve as an impetus toward the full utilization of geothermal energy as an important ingredient in a more energy self-sufficient nation. The ultimate consumer of the rural electric system, the member-owner, expects the kind of leadership that solves the energy problems of tomorrow by fully utilizing the resources at our disposal today.

  20. Comparison of the Navy Working Capital Fund and Mission Funding as Applied to Navy Shipyards

    National Research Council Canada - National Science Library

    Cain, Andrew M

    2006-01-01

    .... Specifically, the Navy has shifted two of its four shipyards, with authorization to shift the other two in FY07, from the Navy Working Capital Fund to mission funding through direct congressional appropriations...

  1. Idaho geothermal commercialization program. Semi-annual report, January-June 1979

    Energy Technology Data Exchange (ETDEWEB)

    McClain, D.W.; Eastlake, W.B.

    1979-06-01

    The task accomplished during the first six months of the cooperative agreement between the US Department of Energy and the Idaho Office of Energy is summarized, concentrating on geothermal resource data, regional and local development plans, energy and economic factors and institutional factors.

  2. Navy Quality of Life Survey: Structural Equation Modeling

    National Research Council Canada - National Science Library

    Craiger, J

    1997-01-01

    ...: conflict between being in the Navy and one's personal life, Navy life compared with civilian life, and the extent to which Navy experiences matched expectations. Computer software was developed for the first model, so that Navy managers could predict the impact of life domain experiences on perceived QOL.

  3. Logistics planning and logistics planning factors for humanitarian operations

    OpenAIRE

    Sullivan, Donna Marie.

    1995-01-01

    Due to the increasing demand on the military to conduct humanitarian operations, the need for logistics planning factors that are applicable to these operations has arisen. This thesis develops a model for humanitarian operations and employs the model to develop logistics planning factors for material consumption and a computer-assisted planning aid relating to the support of the victim population. U.S. Navy (U.S.N.) author.

  4. Developing NaviCanPlan: A Mobile Web Resource Locator for Cancer Providers and Survivors.

    Science.gov (United States)

    Vollmer Dahlke, Deborah; Kellstedt, Debra; Weinberg, Armin D

    2015-12-01

    As of January, 2012, an estimated 13.7 million persons are living as cancer survivors. This population is expected to grow to nearly 18 million by 2022. While their treatment may be considered successful, many cancer survivors experience long-term physical, emotional, and psychosocial late effects of treatment. Our focus was on community-based cancer care-both rural and urban-as almost 90% of cancer care occurs in community settings, where a full complement of supportive healthcare professionals may not be available. This study describes the results of stakeholder engagement and the feedback processes used to create NaviCanPlan, a mobile web resource locator designed to educate and inform both providers and survivors in finding health-related services, often in noncancer center settings. Individual interviews with survivors and providers regarding resource needs to address a variety of physical and psychosocial late effects were supplemented with site visits, web-based polling, and webinars discussions. Overall, the results indicated a need for a programmatic approach to providing education about community, medical, and nonmedical resources for providers and survivors. Design and content criteria for a web-based mobile resource locator were defined, articulated, and implemented.

  5. Geothermal Today - 1999

    Energy Technology Data Exchange (ETDEWEB)

    None

    2000-05-01

    U.S. Department of Energy 1999 Geothermal Energy Program Highlights The Hot Facts Getting into Hot Water Turning Waste water into Clean Energy Producing Even Cleaner Power Drilling Faster and Cheaper Program in Review 1999: The Year in Review JanuaryCal Energy announced sale of Coso geothermal power plants at China Lake, California, to Caithness Energy, for $277 million. U.S. Export-Import Bank completed a $50 million refinancing of the Leyte Geothermal Optimization Project in the Philippines. F

  6. An Analysis of the Navy’s Fiscal Year 2017 Shipbuilding Plan

    Science.gov (United States)

    2017-02-01

    Navy would build a larger fleet of about 350 ships (see Table 5). Those three alternatives were chosen for illustrative purposes because variations ...3.2 billion. 2. For more on procedures for estimating and applying learning curves, see Matthew S. Goldberg and Anduin E. Touw, Statistical Methods...guidance from Matthew Goldberg (formerly of CBO) and David Mosher. Raymond Hall of CBO’s Budget Analysis Division produced the cost estimates with

  7. Navy Radon Assessment and Mitigation Program: Work/quality assurance project plan screening phase

    International Nuclear Information System (INIS)

    1991-03-01

    In 1987, the military services of the United States were tasked to take appropriate action to establish an indoor radon assessment and mitigation program. As a result, the Naval Facilities Engineering Command (NAVFACENGCOM) was assigned the responsibility of identifying potential hazards to personnel from exposure to naturally occurring radon gas and prioritizing corrective actions and to coordinating these actions with the major claimants. NAVRAMP is based upon current US Environmental Protection Agency (EPA) guidelines. The program has been separated into four phases. The screening phase will concentrate on evaluating radon levels, based on statistical samples, in those buildings that have been determined to be at most at risk to elevated levels of radon, such as base housing, schools, day-care centers, hospitals, brigs, Base Officer Quarters, and Base Enlisted Quarters. During the assessment phase, every building that contains personnel for over 4 h/day will be evaluated. Mitigation work will be accomplished by Navy or Navy-contracted personnel. HAZWRAP services during the mitigation phase will consist of determining the extent of reduction in radon levels after the mitigation effort. 7 refs., 11 figs

  8. Human Resources in Geothermal Development

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, I.B.

    1995-01-01

    Some 80 countries are potentially interested in geothermal energy development, and about 50 have quantifiable geothermal utilization at present. Electricity is produced from geothermal in 21 countries (total 38 TWh/a) and direct application is recorded in 35 countries (34 TWh/a). Geothermal electricity production is equally common in industrialized and developing countries, but plays a more important role in the developing countries. Apart from China, direct use is mainly in the industrialized countries and Central and East Europe. There is a surplus of trained geothermal manpower in many industrialized countries. Most of the developing countries as well as Central and East Europe countries still lack trained manpower. The Philippines (PNOC) have demonstrated how a nation can build up a strong geothermal workforce in an exemplary way. Data from Iceland shows how the geothermal manpower needs of a country gradually change from the exploration and field development to monitoring and operations.

  9. Geothermal energy in Denmark. The Committee for Geothermal Energy of the Danish Energy Agency

    International Nuclear Information System (INIS)

    1998-06-01

    The Danish Energy Agency has prepared a report on the Danish geothermal resources and their contribution to the national energy potential.Environmental and socio-economic consequences of geothermal power systems implementation are reviewed. Organizational models and financing of geothermal-seismic research are discussed, and the Committee of the Energy Agency for Geothermal Energy recommends financing of a pilot plant as well as a prompt elucidation of concession/licensing problems. (EG)

  10. Groundwater Monitoring and Engineered Geothermal Systems: The Newberry EGS Demonstration

    Science.gov (United States)

    Grasso, K.; Cladouhos, T. T.; Garrison, G.

    2013-12-01

    Engineered Geothermal Systems (EGS) represent the next generation of geothermal energy development. Stimulation of multiple zones within a single geothermal reservoir could significantly reduce the cost of geothermal energy production. Newberry Volcano in central Oregon represents an ideal location for EGS research and development. As such, the goals of the Newberry EGS Demonstration, operated by AltaRock Energy, Inc., include stimulation of a multiple-zone EGS reservoir, testing of single-well tracers and a demonstration of EGS reservoir viability through flow-back and circulation tests. A shallow, local aquifer supplied the approximately 41,630 m3 (11 million gals) of water used during stimulation of NWG 55-29, a deep geothermal well on the western flank of Newberry Volcano. Protection of the local aquifer is of primary importance to both the Newberry EGS Demonstration and the public. As part of the Demonstration, AltaRock Energy, Inc. has developed and implemented a groundwater monitoring plan to characterize the geochemistry of the local aquifer before, during and after stimulation. Background geochemical conditions were established prior to stimulation of NWG 55-29, which was completed in 2012. Nine sites were chosen for groundwater monitoring. These include the water supply well used during stimulation of NWG 55-29, three monitoring wells, three domestic water wells and two hot seeps located in the Newberry Caldera. Together, these nine monitoring sites represent up-, down- and cross-gradient locations. Groundwater samples are analyzed for 25 chemical constituents, stable isotopes, and geothermal tracers used during stimulation. In addition, water level data is collected at three monitoring sites in order to better characterize the effects of stimulation on the shallow aquifer. To date, no significant geochemical changes and no geothermal tracers have been detected in groundwater samples from these monitoring sites. The Newberry EGS Demonstration groundwater

  11. Proceedings of NEDO International Geothermal Symposium

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-03-11

    This is a proceedings of the NEDO International Geothermal Symposium held in Sendai in 1997. The worldwide geothermal energy power generation capacity exceeds 7000 MW. Geothermal energy is widely used also for heating, snow melting, greenhouse cultivation as well as electric power generation. Geothermal energy generates far less CO2 causing the global warming than fossil fuels. The geothermal energy is clean and renewable. Considering the environmental issue and energy supply/demand of the world, we have to exert further efforts for the geothermal development. In this conference, discussions were made on each country`s experiences of the geothermal development, and future prediction and strategies for geothermal utilization in the Asia/Pacific region, in particular. Further, in the technical session, conducted were the IEA study and technical presentation/discussion for technical cooperation. The proceedings includes research reports of more than 30, which are clarified into three fields: impacts of the geothermal development on the environment, technical development of the hot dry rock power generation system, and development of technology for collecting deep-seated geothermal resource

  12. A combined energetic and economic approach for the sustainable design of geothermal plants

    International Nuclear Information System (INIS)

    Franco, Alessandro; Vaccaro, Maurizio

    2014-01-01

    Highlights: • Exploitation of medium to low temperature geothermal sources: ORC power plants. • Integrated energetic and economic approach for the analysis of geothermal power plants. • A brief overview of the cost items of geothermal power plants. • Analysis of specific cost of geothermal power plants based on the method proposed. • Analysis of sustainability of geothermal energy systems based on resource durability. - Abstract: The perspectives of future development of geothermal power plants, mainly of small size for the exploitation of medium–low temperature reservoirs, are discussed and analyzed in the present paper. Even if there is a general interest in new power plants and investments in this sector are recognized, the new installations are reduced; the apparent advantage of null cost of the energy source is negatively balanced by the high drilling and installation costs. A key element for the design of a geothermal plant for medium temperature geothermal source is the definition of the power of the plant (size): this is important in order to define not only the economic plan but also the durability of the reservoir. Considering that it is not possible that the development of geothermal industry could be driven only by an economic perspective, the authors propose a method for joining energetic and economic approaches. The result of the combined energetic and economic analysis is interesting particularly in case of Organic Rankine Cycle (ORC) power plants in order to define a suitable and optimal size and to maximize the resource durability. The method is illustrated with reference to some particular case studies, showing that the sustainability of small size geothermal plants will be approached only if the research for more economic solutions will be combined with efforts in direction of efficiency increase

  13. Deep geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    The hot-dry-rocks located at 3-4 km of depth correspond to low permeable rocks carrying a large amount of heat. The extraction of this heat usually requires artificial hydraulic fracturing of the rock to increase its permeability before water injection. Hot-dry-rocks geothermics or deep geothermics is not today a commercial channel but only a scientific and technological research field. The Soultz-sous-Forets site (Northern Alsace, France) is characterized by a 6 degrees per meter geothermal gradient and is used as a natural laboratory for deep geothermal and geological studies in the framework of a European research program. Two boreholes have been drilled up to 3600 m of depth in the highly-fractured granite massif beneath the site. The aim is to create a deep heat exchanger using only the natural fracturing for water transfer. A consortium of german, french and italian industrial companies (Pfalzwerke, Badenwerk, EdF and Enel) has been created for a more active participation to the pilot phase. (J.S.). 1 fig., 2 photos

  14. Geothermal energy: a brief assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lunis, B.C.; Blackett, R.; Foley, D. (eds.)

    1982-07-01

    This document includes discussions about geothermal energy, its applications, and how it is found and developed. It identifies known geothermal resources located in Western's power marketing area, and covers the use of geothermal energy for both electric power generation and direct applications. Economic, institutional, environmental, and other factors are discussed, and the benefits of the geothermal energy resource are described.

  15. Navy Ford (CVN-78) Class Aircraft Carrier Program: Background and Issues for Congress

    Science.gov (United States)

    2013-10-22

    states: The CVN 78 is experiencing cost growth due to “first of class” material availability (i.e., valves, actuators ), construction labor...assessment during IOT &E [initial operational test and evaluation]. • The current TEMP [test and evaluation master plan] does not adequately address...developmental testing significantly raises the likelihood of the discovery of platform-level problems during IOT &E. • The Navy plans to deliver CVN-78 in

  16. Geothermal energy. A national proposal for geothermal resources research

    Energy Technology Data Exchange (ETDEWEB)

    Denton, J.C. (ed.)

    1972-01-01

    Discussions are given for each of the following topics: (1) importance to the Nation of geothermal resources, (2) budget recommendations, (3) overview of geothermal resources, (4) resource exploration, (5) resource assessment, (6) resource development and production, (7) utilization technology and economics, (8) environmental effects, (9) institutional considerations, and (10) summary of research needs.

  17. PYRAMID LAKE RENEWEABLE ENERGY PLAN

    Energy Technology Data Exchange (ETDEWEB)

    HIGH DESERT GEOCULTURE, LLC

    2009-06-06

    The Pyramid Lake Renewable Energy Plan covers these areas: energy potential (primarily focusing on geothermal resource potential, but also more generally addressing wind energy potential); renewable energy market potential; transmission system development; geothermal direct use potential; and business structures to accomplish the development objectives of the Pyramid Lake Paiute Tribe.

  18. High- and middle-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    High and middle energy geothermal resources correspond to temperature intervals of 220-350 C and 90-180 C, respectively, and are both exploited for electricity production. Exploitation techniques and applications of high and of middle energy geothermics are different. High energy geothermics is encountered in active volcanic and tectonic zones, such as the circum-Pacific fire-belt, the lesser Antilles, the peri-Mediterranean Alpine chain or the African rift zone. The geothermal steam is directly expanded in a turbine protected against gas and minerals corrosion. About 350 high energy plants are distributed in more than 20 different countries and represent 6000 M We. The cost of high energy installed geothermal kWh ranges from 0.20 to 0.50 French Francs. Middle energy geothermics is encountered in sedimentary basins (between 2000 and 4000 m of depth), in localized fractured zones or at lower depth in the high energy geothermal fields. Heat exchangers with organic fluid Rankine cycle technology is used to produce electricity. Unit power of middle energy plants generally ranges from few hundreds of k W to few MW and correspond to a worldwide installed power of about 400 M We. The annual progression of geothermal installed power is estimated to 4 to 8 % in the next years and concerns principally the circum-Pacific countries. In France, geothermal resources are mainly localized in overseas departments. (J.S.). 3 photos

  19. Health impacts of geothermal energy

    International Nuclear Information System (INIS)

    Layton, D.W.; Anspaugh, L.R.

    1982-01-01

    Geothermal resources are used to produce electrical energy and to supply heat for non-electric applications like residential heating and crop drying. The utilization of geothermal energy consists of the extraction of hot water or steam from an underground reservoir followed by different methods of surface processing along with the disposal of liquid, gaseous, and even solid wastes. The focus of this paper is on electric power production using geothermal resources greater than 150 0 C because this form of geothermal energy utilization has the most serious health-related consequences. Based on measurements and experience at existing geothermal power plants, atmospheric emissions of non-condensing gases such as hydrogen sulphide and benzene pose the greatest hazards to public health. Surface and ground waters contaminated by discharges of spent geothermal fluids constitute another health hazard. In this paper it is shown that hydrogen sulphide emissions from most geothermal power plants are apt to cause odour annoyances among members of the exposed public -some of whom can detect this gas at concentrations as low as 0.002 ppmv. A risk-assessment model is used to estimate the lifetime risk of incurring leukaemia from atmospheric benzene caused by 2000 MW(e) of geothermal development in California's Imperial Valley. Also assessed is the risk of skin cancer due to the ingestion of river water in New Zealand that is contaminated by waste geothermal fluids containing arsenic. Finally, data on the occurrence of occupational disease in the geothermal industry is briefly summarized. (author)

  20. Thirteenth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P.; Horne, R.N.; Brigham, W.E.; Miller, F.G.; Cook, J.W. (Stanford Geothermal Program)

    1988-01-21

    PREFACE The Thirteenth Workshop on Geothermal Reservoir Engineering was held at Stanford University on January 19-21, 1988. Although 1987 continued to be difficult for the domestic geothermal industry, world-wide activities continued to expand. Two invited presentations on mature geothermal systems were a keynote of the meeting. Malcolm Grant presented a detailed review of Wairakei, New Zealand and highlighted plans for new development. G. Neri summarized experience on flow rate decline and well test analysis in Larderello, Italy. Attendance continued to be high with 128 registered participants. Eight foreign countries were represented: England, France, Iceland, Italy, New Zealand, Japan, Mexico and The Philippines. A discussion of future workshops produced a strong recommendation that the Stanford Workshop program continue for the future. There were forty-one technical presentations at the Workshop. All of these are published as papers in this Proceedings volume. Four technical papers not presented at the Workshop are also published. In addition to these forty five technical presentations or papers, the introductory address was given by Henry J. Ramey, Jr. from the Stanford Geothermal Program. The Workshop Banquet speaker was Gustavo Calderon from the Inter-American Development Bank. We thank him for sharing with the Workshop participants a description of the Bank???s operations in Costa Rica developing alternative energy resources, specifically Geothermal, to improve the country???s economic basis. His talk appears as a paper in the back of this volume. The chairmen of the technical sessions made an important contribution to the workshop. Other than Stanford faculty members they included: J. Combs, G. T. Cole, J. Counsil, A. Drenick, H. Dykstra, K. Goyal, P. Muffler, K. Pruess, and S. K. Sanyal. The Workshop was organized by the Stanford Geothermal Program faculty, staff and students. We would like to thank Marilyn King, Pat Oto, Terri Ramey, Bronwyn Jones

  1. Fact sheets relating to use of geothermal energy in the United States

    Energy Technology Data Exchange (ETDEWEB)

    None

    1980-12-01

    A compilation of data relating to geothermal energy in each of the 50 states is presented. The data are summarized on one page for each state. All summary data sheets use a common format. Following the summary data sheet there are additional data on the geology of each state pertaining to possible hydrothermal/geothermal resources. Also there is a list of some of the reports available pertaining to the state and state energy contacts. The intent of these documents is to present in a concise form reference data for planning by the Department of Energy.

  2. THE PROPERTIES OF HOUSES IN TERMS OF GEOTHERMAL CENTRAL HEATING AND THE APPROACH OF DENIZLI TO GEOTHERMAL ENERGY

    Directory of Open Access Journals (Sweden)

    Halil KARAHAN

    1996-01-01

    Full Text Available Although the geothermal fluid, which is discharged into Büyük Menderes River after electric generation at Kızıldere Geothermal power plant, has been considered as a solution the air pollution problem of Denizli province, there has been no work carried out to determine the number of house, the area of house, the type of heating, coal consumption for each house, heat isolation, and centrally heated houses. The existing works includes only the applications at local places comparing to Denizli. In order to get maximum benefit from the planned project, it is necessary to collect data for Denizli and evaluate the data at the feasibility and application phases of the project. For this purpose questionnaire forms have been given to 15000 houses and offices at the different places in Denizli. The questionnaire forms were collected and the results have been evaluated and presented in graphics.

  3. Research status of geothermal resources in China

    Science.gov (United States)

    Zhang, Lincheng; Li, Guang

    2017-08-01

    As the representative of the new green energy, geothermal resources are characterized by large reserve, wide distribution, cleanness and environmental protection, good stability, high utilization factor and other advantages. According to the characteristics of exploitation and utilization, they can be divided into high-temperature, medium-temperature and low-temperature geothermal resources. The abundant and widely distributed geothermal resources in China have a broad prospect for development. The medium and low temperature geothermal resources are broadly distributed in the continental crustal uplift and subsidence areas inside the plate, represented by the geothermal belt on the southeast coast, while the high temperature geothermal resources concentrate on Southern Tibet-Western Sichuan-Western Yunnan Geothermal Belt and Taiwan Geothermal Belt. Currently, the geothermal resources in China are mainly used for bathing, recuperation, heating and power generation. It is a country that directly makes maximum use of geothermal energy in the world. However, China’s geothermal power generation, including installed generating capacity and power generation capacity, are far behind those of Western European countries and the USA. Studies on exploitation and development of geothermal resources are still weak.

  4. China Naval Modernization: Implications for U.S. Navy Capabilities - Background and Issues for Congress

    Science.gov (United States)

    2008-11-19

    shipbuilder Empresa Nacional Bazan (now Navantia) offered to build for the PLAN a low-cost, lightweight conventional-takeoff-and-landing (CTOL) aircraft...observers stated that: Chinese researchers display intimate familiarity with all U.S. Navy submarine force programs, including the most cutting-edge

  5. Reinjection of geothermal water-imperative of geothermal system Geoterma - Kochani

    International Nuclear Information System (INIS)

    Naunov, Jordan

    2007-01-01

    Geothermal locality 'Podlog-Banja' - Kochani, Republic of Macedonia, represent one of the more significant aquifers of geothermal water, not only in local frames but also in world scale, especially if we have in mind the possible capacity of exploitation of 300 l, with average temperature of 75° C. Many years of exploitation was escorted with constant irreversible drop down of piezo metric level of underground waters and because of this reason, there was a necessary of installation of reinjection system of used geothermal water, especially for two factors: Keeping of balance conditions in the underground from one side and reduction of thermal pollution to the environment especially from energetic and ecological aspect. In this written effort beside the basic information for geothermal system 'Geoterma' will be present all significant phases and elements of the system for reinjection, it's exploration, implementation, construction and of course the effects from the same one. (Author)

  6. Microgrid Controller Design, Implementation, and Deployment: A Journey from Conception to Implementation at the Philadelphia Navy Yard

    Energy Technology Data Exchange (ETDEWEB)

    Uluski, R.; Kumar, J.; Venkata, S. S. Mani; Vishwakarma, D.; Schneider, K.; Mehrizi-Sani, Ali; Terry, Rudy; Agate, Will

    2017-07-01

    The Philadelphia Navy Yard is a fast-evolving community microgrid, currently home to over 150 companies and four Navy activity centers occupying nearly 7 million ft2 of buildings in which approximately 12,000 people are employed. The Navy Yard (TNY) is a national center of excellence for energy research, education, and commercialization, focused specifically on community microgrid design and development. TNY microgrid is equipped with the most cost-effective and sustainable means for meeting electric capacity and energy needs through renewable resources, energy efficiency, and distribution grid infrastructure. This article briefly describes how the community microgrid was conceived and planned to produce a great success story of microgrid implementation and the details of the design, development, and implementation of the TNY microgrid controller.

  7. INTEGRATED EXPLORATION OF GEOTHERMAL RESOURCES

    Directory of Open Access Journals (Sweden)

    A. B. Alkhasov

    2016-01-01

    Full Text Available The aim. The aim is to develop the energy efficient technologies to explore hydro geothermal resources of different energy potential.Methods. Evaluation of the effectiveness of the proposed technologies has been carried out with the use of physical and mathematical, thermodynamic and optimization methods of calculation and the physical and chemical experimental research.Results. We propose the technology of integrated exploration of low-grade geothermal resources with the application of heat and water resource potential on various purposes. We also argue for the possibility of effective exploration of geothermal resources by building a binary geothermal power plant using idle oil and gas wells. We prove the prospect of geothermal steam and gas technologies enabling highly efficient use of thermal water of low energy potential (80 - 100 ° C degrees to generate electricity; the prospects of complex processing of high-temperature geothermal brine of Tarumovsky field. Thermal energy is utilized in a binary geothermal power plant in the supercritical Rankine cycle operating with a low-boiling agent. The low temperature spent brine from the geothermal power plant with is supplied to the chemical plant, where the main chemical components are extracted - lithium carbonate, magnesium burning, calcium carbonate and sodium chloride. Next, the waste water is used for various water management objectives. Electricity generated in the binary geothermal power plant is used for the extraction of chemical components.Conclusions. Implementation of the proposed technologies will facilitate the most efficient development of hydro geothermal resources of the North Caucasus region. Integrated exploration of the Tarumovsky field resources will fully meet Russian demand for lithium carbonate and sodium chloride.

  8. Geothermal energy utilization in Russia

    Energy Technology Data Exchange (ETDEWEB)

    Svalova, V. [Institute of Environmental Geoscience, RAS, Moscow (Russian Federation)

    2011-07-01

    Geothermal energy use is the way to clean, sustainable energy development for the world. Russia has rich high and low temperature geothermal resources and is making progress using them - mostly with low-temperature geothermal resources and heat pumps This is optimal for many regions of Russia -in the European part, in the Urals and others. Electricity is generated by some geothermal power plants (GeoPP) only in the Kamchatka Peninsula and Kuril Islands There are two possible ways of using geothermal resources, depending on the properties of thermal waters heat/power and mineral extraction. The mineral-extraction direction is basic for geothermal waters, which contain valuable components in industrial quantities The most significant deposits of thermal waters represent the brines containing from 35 up to 400 and more g/l of salts. These are the minerals of many chemical dements. (author)

  9. 32 CFR 705.29 - Navy Art Collection.

    Science.gov (United States)

    2010-07-01

    ...-sponsored show, certification that 24-hour security will be provided for the paintings while in custody. (vi... Information, Navy Department, Washington, DC 20350. (d) Exhibition of Navy Art: (1) Operation Palette I” is a... World War II. The schedule of “Operation Palette I” is promulgated by the Officer-in-Charge, Navy...

  10. Geothermal exploration in the Virunga Prospect, Northern Rwanda

    Science.gov (United States)

    Jolie, E.

    2009-04-01

    German technical cooperation has taken the initiative to support partner countries in geothermal energy use. Therefore the Federal Institute for Geosciences and Natural Resources (BGR) on behalf of the Federal Ministry for Economic Cooperation and Development (BMZ) is carrying out the technical cooperation programme GEOTHERM. As an example of the ongoing project activities, preliminary results of studies carried out in the Virunga geothermal prospect in Northern Rwanda will be presented. The study area is located along the Western branch of the East African Rift System. Weak geothermal surface manifestations, e.g. hot springs and bubbling pools, indicate an existing hydrothermal system. Previous studies did not determine location, distribution, quality and quantity of the heat source. Consequently the aim of this study is to detect and assess the heat source with a multi method approach. Remote sensing techniques, geochemical analyses and geophysical measurements have been applied to make a first serious attempt. More detailed geophysical investigations and gas measurements are planned to start in spring 2009. Aerial photographs and satellite images were used for a high-resolution structural analysis to determine major fault zones, which are dominating the flow paths of hydrothermal fluids. In the frame of a regional geophysical survey (Magnetotellurics and Transient Electromagnetics) a zone of low resistivity values could be detected SW of the Karisimbi stratovolcano, which is corresponding with the results of the geochemical analyses. Assumptions are made that a magmatic body may exist in a depth of 5 km below surface.

  11. Accelerating Geothermal Research (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-05-01

    Geothermal research at the National Renewable Energy Laboratory (NREL) is advancing geothermal technologies to increase renewable power production. Continuous and not dependent on weather, the geothermal resource has the potential to jump to more than 500 gigawatts in electricity production, which is equivalent to roughly half of the current U.S. capacity. Enhanced geothermal systems have a broad regional distribution in the United States, allowing the potential for development in many locations across the country.

  12. An economic prefeasibility study of geothermal energy development at Platanares, Honduras. Estudio economico de prefactibilidad del desarrollo de energia geotermica en Platanares, Honduras

    Energy Technology Data Exchange (ETDEWEB)

    Trocki, L.K.

    1989-09-01

    The expected economic benefits from development of a geothermal power plant at Platanares in the Department of Copan, Honduras are evaluated in this report. The economic benefits of geothermal plants ranging in size from a 10-MW plant in the shallow reservoir to a 20-, 30-, 55-, or 110-MW plant in the assumed deeper reservoir were measured by computing optimal expansion plans for each size of geothermal plant. Savings are computed as the difference in present value cost between a plan that contains no geothermal plant and one that does. Present value savings in millions of 1987 dollars range from $25 million for the 10-MW plant to $110 million for the 110-MW plant -- savings of 6% to 25% over the time period 1988 through 2008. 8 refs., 9 figs., 6 tabs.

  13. A survey of geothermal process heat applications in Guatemala: An engineering survey

    Energy Technology Data Exchange (ETDEWEB)

    Altseimer, J.H.; Edeskuty, F.J.

    1988-08-01

    This study investigates how process heat from Guatemala's geothermal energy resources can be developed to reduce Guatemala's costly importation of oil, create new employment by encouraging new industry, and reduce fuel costs for existing industry. This investigation was funded by the US Agency for International Development and carried out jointly by the Guatemalan Government and the Los Alamos National Laboratory. Two sites, Amatitlan and Zunil, are being developed geothermally. Amatitlan is in the better industrial area but Zunil's geothermal development is more advanced. The industry around Zunil is almost exclusively agricultural and the development of an agricultural processing plant (freezing, dehydration, and cold storage) using geothermal heat is recommended. Similar developments throughout the volcanic zones of Guatemala are possible. Later, when the field at Amatitlan has been further developed, an industrial park can be planned. Potential Amatitlan applications are the final stage of salt refining, a thermal power plant, hospital/hotel heating and cooling, steam curing of concrete blocks, production of alcohol from sugar cane, and production of polyethylene from ethanol. Other special developments such as water pumping for the city of Guatemala and the use of moderate-temperature geothermal fluids for localized power production are also possible. 12 refs., 13 figs., 14 tabs.

  14. The possibilities of utilisation of heat from Tattapani Geothermal field, India

    Energy Technology Data Exchange (ETDEWEB)

    Sarolkar, P.B. [Geological Survey of India, Hyderabad (India); Pitale, U.L. [Geological Survey of India, Nagpur (India)

    1996-12-31

    The Tattapani Geothermal field produces + 1800 1pm thermal water of 100{degrees}C from five production wells. The hot water production can sustain electricity production of 300 kWe by using a binary cycle power plant. The heat energy of effluent water from power plant can be utilized for direct heat utilization on horticulture, aquaculture, cold storage, silviculture etc; to augment the economics of the power plant be spot can be developed as a centre for tourist attraction by constructing botanical park, greenhouse, geyser show and crocodile farm. The direct heat utilization shemes can be planned in cascading order to achieve maximum utility of thermal water. Additional deep drilling is essential for optimum commercial utilization of the Geothermal energy. The direct heat utilisation shemes along with binary cycle power plant may help in development of the geothermal energy and boosting the economy of this region.

  15. Navy fuel cell demonstration project.

    Energy Technology Data Exchange (ETDEWEB)

    Black, Billy D.; Akhil, Abbas Ali

    2008-08-01

    This is the final report on a field evaluation by the Department of the Navy of twenty 5-kW PEM fuel cells carried out during 2004 and 2005 at five Navy sites located in New York, California, and Hawaii. The key objective of the effort was to obtain an engineering assessment of their military applications. Particular issues of interest were fuel cell cost, performance, reliability, and the readiness of commercial fuel cells for use as a standalone (grid-independent) power option. Two corollary objectives of the demonstration were to promote technological advances and to improve fuel performance and reliability. From a cost perspective, the capital cost of PEM fuel cells at this stage of their development is high compared to other power generation technologies. Sandia National Laboratories technical recommendation to the Navy is to remain involved in evaluating successive generations of this technology, particularly in locations with greater environmental extremes, and it encourages their increased use by the Navy.

  16. Navy Mobility Fuels Forecasting System. Phase I report

    Energy Technology Data Exchange (ETDEWEB)

    Davis, R.M.; Hadder, G.R.; Singh, S.P.N.; Whittle, C.

    1985-07-01

    The Department of the Navy (DON) requires an improved capability to forecast mobility fuel availability and quality. The changing patterns in fuel availability and quality are important in planning the Navy's Mobility Fuels R and D Program. These changes come about primarily because of the decline in the quality of crude oil entering world markets as well as the shifts in refinery capabilities domestically and worldwide. The DON requested ORNL's assistance in assembling and testing a methodology for forecasting mobility fuel trends. ORNL reviewed and analyzed domestic and world oil reserve estimates, production and price trends, and recent refinery trends. Three publicly available models developed by the Department of Energy were selected as the basis of the Navy Mobility Fuels Forecasting System. The system was used to analyze the availability and quality of jet fuel (JP-5) that could be produced on the West Coast of the United States under an illustrative business-as-usual and a world oil disruption scenario in 1990. Various strategies were investigated for replacing the lost JP-5 production. This exercise, which was strictly a test case for the forecasting system, suggested that full recovery of lost fuel production could be achieved by relaxing the smoke point specifications or by increasing the refiners' gate price for the jet fuel. A more complete analysis of military mobility fuel trends is currently under way.

  17. CEMENT SLURRIES FOR GEOTHERMAL WELLS CEMENTING

    Directory of Open Access Journals (Sweden)

    Nediljka Gaurina-Međimurec

    1994-12-01

    Full Text Available During a well cementing special place belongs to the cement slurry design. To ensure the best quality of cementing, a thorough understanding of well parameters is essential, as well as behaviour of cement slurry (especially at high temperatures and application of proven cementing techniques. Many cement jobs fail because of bad job planning. Well cementing without regarding what should be accomplished, can lead to well problems (channels in the cement, unwanted water, gas or fluid production, pipe corrosion and expensive well repairs. Cementing temperature conditions are important because bot-tomhole circulating temperatures affect slurry thickening time, arheology, set time and compressive strength development. Knowing the actual temperature which cement encounters during placement allows the selection of proper cementing materials for a specific application. Slurry design is affected by well depth, bottom hole circulating temperature and static temperature, type or drilling fluid, slurry density, pumping time, quality of mix water, fluid loss control, flow regime, settling and free water, quality of cement, dry or liquid additives, strength development, and quality of the lab cement testing and equipment. Most Portland cements and Class J cement have shown suitable performances in geot-hermal wells. Cement system designs for geothermal wells differ from those for conventional high temperature oil and gas wells in the exclusive use of silica flour instead of silica sand, and the avoidance of fly ash as an extender. In this paper, Portland cement behaviour at high temperatures is described. Cement slurry and set cement properties are also described. Published in literature, the composition of cement slurries which were tested in geothermal conditions and which obtained required compressive strength and water permeability are listed. As a case of our practice geothermal wells Velika Ciglena-1 and Velika Ciglena-la are described.

  18. Pahoa geothermal industrial park. Engineering and economic analysis for direct applications of geothermal energy in an industrial park at Pahoa, Hawaii

    Energy Technology Data Exchange (ETDEWEB)

    Moreau, J.W.

    1980-12-01

    This engineering and economic study evaluated the potential for developing a geothermal industrial park in the Puna District near Pahoa on the Island of Hawaii. Direct heat industrial applications were analyzed from a marketing, engineering, economic, environmental, and sociological standpoint to determine the most viable industries for the park. An extensive literature search produced 31 existing processes currently using geothermal heat. An additional list was compiled indicating industrial processes that require heat that could be provided by geothermal energy. From this information, 17 possible processes were selected for consideration. Careful scrutiny and analysis of these 17 processes revealed three that justified detailed economic workups. The three processes chosen for detailed analysis were: an ethanol plant using bagasse and wood as feedstock; a cattle feed mill using sugar cane leaf trash as feedstock; and a papaya processing facility providing both fresh and processed fruit. In addition, a research facility to assess and develop other processes was treated as a concept. Consideration was given to the impediments to development, the engineering process requirements and the governmental support for each process. The study describes the geothermal well site chosen, the pipeline to transmit the hydrothermal fluid, and the infrastructure required for the industrial park. A conceptual development plan for the ethanol plant, the feedmill and the papaya processing facility was prepared. The study concluded that a direct heat industrial park in Pahoa, Hawaii, involves considerable risks.

  19. Navy Reserve: Not Ready for OLC

    Science.gov (United States)

    2010-06-11

    Navy. Additionally, the need for qualified personnel inspired the Navy to create a new reserve program, the Women Accepted for Volunteer Emergency...Service (WAVES), which peaked at 86,000 women serving in stateside assignments. The Korean War required the mobilization of over 182,000 Navy...Office of Naval Intelligence 3348 3427 1590 47.49 24.50 ONR - NRL 211 231 0 0.00 0.00 Selective Service 42 29 0 0.00 0.00 Space & Warfare Systems Command

  20. Development of an Internet based geothermal information system for Germany; Aufbau eines geothermischen Informationssystems fuer Deutschland

    Energy Technology Data Exchange (ETDEWEB)

    Schulz, R.; Agemar, T.; Alten, J.A.; Kuehne, K.; Maul, A.A.; Pester, S.; Wirth, W. [Inst. fuer Geowissenschaftliche Gemeinschaftsaufgaben (GGA), Hannover (Germany)

    2007-02-15

    The Leibniz Institute for Applied Geosciences (GGA-Institut) is setting up an internet based information system on geothermal resources in close collaboration with partners. For a start, the geothermal information system will contain data about hydrogeothermal resources only. The project aims at an improvement of quality in the planning of geothermal plants and at a minimization of exploration risks. The key parameters for this purpose are production rate (Q) and temperature (T). The basis for the estimation of subsurface hydraulic properties comes from the information system on hydrocarbons. This information system provides permeability and porosity values derived from the analyses of drilling cores. The IT targets will be realised by a relational database providing all data relevant to the project. A 3D model of the ground provides the basis for visualisation and calculation of geothermal resources. As a prototype, a data-recall facility of geothermal sites in Germany is available online. (orig.)

  1. National Geothermal Data System: Transforming the Discovery, Access, and Analytics of Data for Geothermal Exploration

    Energy Technology Data Exchange (ETDEWEB)

    Patten, Kim [Arizona Geological Survey

    2013-05-01

    Compendium of Papers from the 38th Workshop on Geothermal Reservoir Engineering Stanford University, Stanford, California February 11-13, 2013 The National Geothermal Data System (NGDS) is a distributed, interoperable network of data collected from state geological surveys across all fifty states and the nation’s leading academic geothermal centers. The system serves as a platform for sharing consistent, reliable, geothermal-relevant technical data with users of all types, while supplying tools relevant for their work. As aggregated data supports new scientific findings, this content-rich linked data ultimately broadens the pool of knowledge available to promote discovery and development of commercial-scale geothermal energy production. Most of the up-front risks associated with geothermal development stem from exploration and characterization of subsurface resources. Wider access to distributed data will, therefore, result in lower costs for geothermal development. NGDS is on track to become fully operational by 2014 and will provide a platform for custom applications for accessing geothermal relevant data in the U.S. and abroad. It is being built on the U.S. Geoscience Information Network (USGIN) data integration framework to promote interoperability across the Earth sciences community. The basic structure of the NGDS employs state-of-the art informatics to advance geothermal knowledge. The following four papers comprising this Open-File Report are a compendium of presentations, from the 38th Annual Workshop on Geothermal Reservoir Engineering, taking place February 11-13, 2013 at Stanford University, Stanford, California. “NGDS Geothermal Data Domain: Assessment of Geothermal Community Data Needs,” outlines the efforts of a set of nationwide data providers to supply data for the NGDS. In particular, data acquisition, delivery, and methodology are discussed. The paper addresses the various types of data and metadata required and why simple links to existing

  2. Outline of geothermal activity in Czechoslovakia

    International Nuclear Information System (INIS)

    Franko, O.; Bodis, D.; Dendek, M.; Remsik, A.

    1990-01-01

    This paper reports that in respect of different geothermal conditions in the Bohemian Massif (unfavorable) and in the West Carpathians (favorable), the development and utilization of geothermal energy are concentrated in Slovakia. THe utilization of geothermal energy for the heating of buildings in spas commenced in 1958. Thermal energy of geothermal waters was used for direct heating through heat exchangers, and in one case by a heat pump. Concentrated continuous development and utilization of geothermal energy started in 1971

  3. Developing a framework for assessing the impact of geothermal development phases on ecosystem services

    Science.gov (United States)

    Semedi, Jarot M.; Willemen, Louise; Nurlambang, Triarko; van der Meer, Freek; Koestoer, Raldi H.

    2017-12-01

    The 2014 Indonesian National Energy Policy has set a target to provide national primary energy usage reached 2.500 kWh per capita in the year 2025 and reached 7.000 kWh in the year 2050. The National Energy Policy state that the development of energy should consider the balance of energy economic values, energy supply security, and the conservation of the environment. This has led to the prioritization of renewable energy sources. Geothermal energy a renewable energy source that produces low carbon emissions and is widely available in Indonesia due to the country’s location in the “volcanic arc”. The development of geothermal energy faces several problems related to its potential locations in Indonesia. The potential sites for geothermal energy are mostly located in the volcanic landscapes that have a high hazard risk and are often designated protected areas. Local community low knowledge of geothermal use also a challenge for geothermal development where sometimes strong local culture stand in the way. Each phase of geothermal energy development (exploration, construction, operation and maintenance, and decommissioning) will have an impact on the landscape and everyone living in it. Meanwhile, natural and other human-induced drivers will keep landscapes and environments changing. This conference paper addresses the development of an integrated assessment to spatially measure the impact of geothermal energy development phases on ecosystem services. Listing the effects on the ecosystem services induced by each geothermal development phases and estimating the spatial impact using Geographic Information System (GIS) will result in an overview on where and how much each geothermal development phase affects the ecosystem and how this information could be included to improve national spatial planning.

  4. 2008 Geothermal Technologies Market Report

    Energy Technology Data Exchange (ETDEWEB)

    Jonathan Cross

    2009-07-01

    This report describes market-wide trends for the geothermal industry throughout 2008 and the beginning of 2009. It begins with an overview of the GTP’s involvement with the geothermal industry and recent investment trends for electric generation technologies. The report next describes the current state of geothermal power generation and activity within the United States, costs associated with development, financing trends, an analysis of the levelized cost of energy (LCOE), and a look at the current policy environment. The report also highlights trends regarding direct use of geothermal energy, including GHPs.† The final sections of the report focus on international perspectives, employment and economic benefits from geothermal energy development, and potential incentives in pending national legislation.

  5. Renewability of geothermal resources

    Energy Technology Data Exchange (ETDEWEB)

    O' Sullivan, Michael; Yeh, Angus [Department of Engineering Science, University of Auckland, Auckland (New Zealand); Mannington, Warren [Contact Energy Limited, Taupo (New Zealand)

    2010-12-15

    In almost all geothermal projects worldwide, the rate of extraction of heat energy exceeds the pre-exploitation rate of heat flow from depth. For example, current production of geothermal heat from the Wairakei-Tauhara system exceeds the natural recharge of heat by a factor of 4.75. Thus, the current rate of heat extraction from Wairakei-Tauhara is not sustainable on a continuous basis, and the same statement applies to most other geothermal projects. Nevertheless, geothermal energy resources are renewable in the long-term because they would fully recover to their pre-exploitation state after an extended shut-down period. The present paper considers the general issue of the renewability of geothermal resources and uses computer modeling to investigate the renewability of the Wairakei-Tauhara system. In particular, modeling is used to simulate the recovery of Wairakei-Tauhara after it is shut down in 2053 after a hundred years of production. (author)

  6. Using Facilities And Potential Of Geothermal Resources In The Canakkale Province - NW Turkey

    Science.gov (United States)

    Deniz, Ozan; Acar Deniz, Zahide

    2016-04-01

    been still used only for spa tourism. Residential heating and greenhouse activities do not exist in the region yet. However, the only geothermal power plant which is settled in NW Turkey is located in Tuzla geothermal field (7.5 MW capacity). This area is both the most high-temperature area in the region and one of the most important geothermal fields in Turkey. Very little thermal centers in Turkey have thermal water potential of the coastal area like Çanakkale province. Climatic features of this area allows both thermal and sea tourism applications in all season of a year such as open-air curing, heliotherapy and thalassotherapy. Çanakkale province is located in "Troy North Aegean Culture and Thermal Tourism Development Zone". This area is being planned within the framework of health, thermal and rural tourism by the Republic of Turkey Ministry of Culture and Tourism. Keywords: Geothermal, Hydrogeochemistry, Çanakkale, Turkey

  7. Geothermal electricity generation

    International Nuclear Information System (INIS)

    Eliasson, E.T.

    1991-01-01

    Geothermal conversion, as discussed here, is the conversion of the heat bound within the topmost three kilometres of the upper crust of the earth into useful energy, principally electricity. The characteristics of a geothermal reservoir and its individual technical features are highly site-specific. Applications therefore must be designed to match the specific geothermal reservoir. An estimate of the electric energy potential world-wide made by the Electric Power Research Institute (United States) in 1978 and based on sustaining a continuous 30-year operation is given in the box at the right for comparison purposes only. 8 refs, 5 figs

  8. Case studies for utilizing groundwater-source and low-enthalpy geothermal resources in Korea

    Science.gov (United States)

    Kim, K.-H.; Shin, J.; Lee, K.-K.; Lee, T. J.

    2012-04-01

    As one of the top 10 oil-consuming countries in the world, Korea recently has had a great interest in extending the ways to utilize renewable energy. In this regard, geothermal energy resource is attracting more concerns from both of the government and the research field. Korea has neither active volcanic sites nor areas with abnormally higher heat flow. In spite of these natural conditions, many efforts have been exerted to utilize geothermal energy. Here, we introduce two case studies of using groundwater-source geothermal energy with relatively low-enthalpy: One is a riverbank filtration facility, which has been using some of its riverbank filtrate water for the indoor air-conditioning. The other is the first EGS plant planning site, where a few fault-related artesian wells reaching 70C were discovered lately. Numerical simulations to predict the temperature evolution of the two sites, which is dominated by several hydrogeologic factors, were carried out and compared. Simulation of temperature profile of riverbank filtrate water using HydroGeoSphere shows that the primary factor in determining filtrate water temperature is the pumping rate. It also shows that maintaining the facility operation with present pumping rate for the next 30 years will not cause any significant change of water temperature. However, following the new plan of the facility to install additional 37 wells with 6 times higher pumping rate than the current rate might cause about 2C decrease in filtrate water temperature in 10 years after the extension. Simulation for the temperature evolution in a faulted geothermal reservoir in EGS planning site under the supposed injection-extraction operating conditions were carried out using TOUGH2. A MINC model including a hydraulic discontinuity, which reflected the analysis from several geophysical explorations, was generated. Temperature distribution calculated from the simulation shows a rise of relatively hot geothermal water along the fault plane

  9. A case study of radial jetting technology for enhancing geothermal energy systems at Klaipeda geothermal demonstration plant

    NARCIS (Netherlands)

    Nair, R.; Peters, E.; Sliaupa, S.; Valickas, R.; Petrauskas, S.

    2017-01-01

    In 1996 a geothermal energy project was initiated at Klaipėda, Lithuania, to demonstrate the feasibility of using low enthalpy geothermal water as a renewable energy resource in district heating systems. The Klaipėda geothermal plant is situated within the West Lithuanian geothermal anomaly with a

  10. Geothermal energy and the public: A case study on deliberative citizens’ engagement in central Italy

    International Nuclear Information System (INIS)

    Pellizzone, Anna; Allansdottir, Agnes; De Franco, Roberto; Muttoni, Giovanni; Manzella, Adele

    2017-01-01

    This paper reports on a case study on the citizens’ engagement with developments towards the harnessing of geothermal energy in central Italy. The research has been conducted within the framework of a larger project on the feasibility of further geothermal developments in Italy, funded by the Italian government. The aims of the case study research were first to explore the role of public and stakeholder engagement in the processes of innovation in the geothermal energy sector. Second, to design, implement and consolidate a methodological framework for comparative analysis of case studies on citizens’ engagement, thus bringing a social scientific perspective into geothermal energy research. The results show general support for renewable energy but knowledge and understanding of the potential of geothermal is remarkably low. Lack of trust in politics and unsure public communication emerged as prominent themes where the common good and community developments are sharply contrasted with corporate and private interests. As geothermal energy is included and encouraged under the European Strategic Energy Plan and in the Paris agreement on halting climate change, the results can make significant input into future policy making, by providing concrete guidelines on citizens’ engagement in processes of culturally sustainable innovation. - Highlights: • Original research, case study on citizens’ engagement with geothermal energy. • Considerable public uncertainty over geothermal energy. • Information is a key issue for all stakeholder and citizens cooperation in the energy sector. • Everyday notions of “the common good” strongly shape community discussions about energy. • Geothermal energy developments need to take the views of communities into account.

  11. Boron isotopes in geothermal systems

    International Nuclear Information System (INIS)

    Aggarwal, J.

    1997-01-01

    Boron is a highly mobile element and during water-rock reactions, boron is leached out of rocks with no apparent fractionation. In geothermal systems where the water recharging the systems are meteoric in origin, the B isotope ratio of the geothermal fluid reflects the B isotope ratio of the rocks. Seawater has a distinctive B isotope ratio and where seawater recharges the geothermal system, the B isotope ratio of the geothermal system reflects the mixing of rock derived B and seawater derived B. Any deviations of the actual B isotope ratio of a mixture reflects subtle differences in the water-rock ratios in the cold downwelling limb of the hydrothermal system. This paper will present data from a variety of different geothermal systems, including New Zealand; Iceland; Yellowston, USA; Ibusuki, Japan to show the range in B isotope ratios in active geothermal systems. Some of these systems show well defined mixing trends between seawater and the host rocks, whilst others show the boron isotope ratios of the host rock only. In geothermal systems containing high amounts of CO 2 boron isotope ratios from a volatile B source can also be inferred. (auth)

  12. Potential of geothermal systems in Picardy

    OpenAIRE

    Dourlat, Estelle

    2017-01-01

    Geothermal systems are not only about electrical plants or urban heating networks, but also concerned with geothermal energy assisted with a heat pump. In the former region of Picardy (North of France), 97% of the territory is suitable for very low temperature geothermal power. The French Agency for the Environment and Energy Management and the Picardy Region decided in 2016 to finance a facilitator to encourage geothermal use. To carry out this aim, it is important to consider the geothermal...

  13. Group Counseling for Navy Children.

    Science.gov (United States)

    Mitchum, Nancy Taylor

    1991-01-01

    Conducted six-session group counseling program for Navy children (n=22) enrolled in public schools whose fathers were on deployment. Pretest and posttest scores on the Coopersmith Self-Esteem Inventory suggest that participation in the group counseling unit positively affected self-esteem of Navy children whose fathers were on deployment. Found…

  14. Direct application of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Reistad, G.M.

    1980-01-01

    An overall treatment of direct geothermal applications is presented with an emphasis on the above-ground engineering. The types of geothermal resources and their general extent in the US are described. The potential market that may be served with geothermal energy is considered briefly. The evaluation considerations, special design aspects, and application approaches for geothermal energy use in each of the applications are considered. The present applications in the US are summarized and a bibliography of recent studies and applications is provided. (MHR)

  15. Relation between 1m depth temperature and average geothermal gradient at 75cm depth in geothermal fields

    OpenAIRE

    江原, 幸雄

    2009-01-01

    Shallow ground temperatures such as 1m depth temperature have been measured to delineate thermal anomalies of geothermal fields and also to estimate heat discharge rates from geothermal fields. As a result, a close linear relation between 1m depth temperature and average geothermal gradient at 75cm depth has been recognized in many geothermal fields and was used to estimate conductive heat discharge rates. However, such a linear relation may show that the shallow thermal regime in geothermal ...

  16. Geothermal energy from deep sedimentary basins: The Valley of Mexico (Central Mexico)

    Science.gov (United States)

    Lenhardt, Nils; Götz, Annette E.

    2015-04-01

    The geothermal potential of the Valley of Mexico has not been addressed in the past, although volcaniclastic settings in other parts of the world contain promising target reservoir formations. A first assessment of the geothermal potential of the Valley of Mexico is based on thermophysical data gained from outcrop analogues, covering all lithofacies types, and evaluation of groundwater temperature and heat flow values from literature. Furthermore, the volumetric approach of Muffler and Cataldi (1978) leads to a first estimation of ca. 4000 TWh (14.4 EJ) of power generation from Neogene volcanic rocks within the Valley of Mexico. Comparison with data from other sedimentary basins where deep geothermal reservoirs are identified shows the high potential of the Valley of Mexico for future geothermal reservoir utilization. The mainly low permeable lithotypes may be operated as stimulated systems, depending on the fracture porosity in the deeper subsurface. In some areas also auto-convective thermal water circulation might be expected and direct heat use without artificial stimulation becomes reasonable. Thermophysical properties of tuffs and siliciclastic rocks qualify them as promising target horizons (Lenhardt and Götz, 2015). The here presented data serve to identify exploration areas and are valuable attributes for reservoir modelling, contributing to (1) a reliable reservoir prognosis, (2) the decision of potential reservoir stimulation, and (3) the planning of long-term efficient reservoir utilization. References Lenhardt, N., Götz, A.E., 2015. Geothermal reservoir potential of volcaniclastic settings: The Valley of Mexico, Central Mexico. Renewable Energy. [in press] Muffler, P., Cataldi, R., 1978. Methods for regional assessment of geothermal resources. Geothermics, 7, 53-89.

  17. Geothermal Financing Workbook

    Energy Technology Data Exchange (ETDEWEB)

    Battocletti, E.C.

    1998-02-01

    This report was prepared to help small firm search for financing for geothermal energy projects. There are various financial and economics formulas. Costs of some small overseas geothermal power projects are shown. There is much discussion of possible sources of financing, especially for overseas projects. (DJE-2005)

  18. Effective use of environmental impact assessments (EIAs) for geothermal development projects

    International Nuclear Information System (INIS)

    Goff, S.J.

    2000-01-01

    Both the developed and developing nations of the world would like to move toward a position of sustainable development while paying attention to the restoration of natural resources, improving the environment, and improving the quality of life. The impacts of geothermal development projects are generally positive. It is important, however, that the environmental issues associated with development be addressed in a systematic fashion. Drafted early in the project planning stage, a well-prepared Environmental Impact Assessment (EIA) can significantly add to the quality of the overall project. An EIA customarily ends with the decision to proceed with the project. The environmental analysis process could be more effective if regular monitoring, detailed in the EIA, continues during project implementation. Geothermal development EIAs should be analytic rather than encyclopedic, emphasizing the impacts most closely associated with energy sector development. Air quality, water resources and quality, geologic factors, and socioeconomic issues will invariably be the most important factors. The purpose of an EIA should not be to generate paperwork, but to enable superb response. The EIA should be intended to help public officials make decisions that are based on an understanding of environmental consequences and take proper actions. The EIA process has been defined in different ways throughout the world. In fact, it appears that no two countries have defined it in exactly the same way. Going hand in hand with the different approaches to the process is the wide variety of formats available. It is recommended that the world geothermal community work towards the adoption of a standard. The Latin American Energy Organization (OLADE) and the Inter-American Development Bank (IDB)(OLADE, 1993) prepared a guide that presents a comprehensive discussion of the environmental impacts and suggested mitigation alternatives associated with geothermal development projects. The OLADE guide

  19. China Naval Modernization: Implications for U.S. Navy Capabilities -- Background and Issues for Congress

    Science.gov (United States)

    2008-09-12

    1995 the Spanish shipbuilder Empresa Nacional Bazan (now Navantia) offered to build for the PLAN a low-cost, lightweight conventional-takeoff-and...in one of China’s premier naval journals.172 These same observers stated that: Chinese researchers display intimate familiarity with all U.S. Navy

  20. Status of geothermal energy in Ethiopia

    International Nuclear Information System (INIS)

    Endeshaw, A.; Belaineh, M.

    1990-01-01

    This paper reports that there are several identified geothermal localities in Ethiopia. Ten geothermal localities have been studied with regional assessments, while three localities have had pre-feasibility studies. In one area, the Aluto-Langano geothermal field, the feasibility studies have been completed. However, the geothermal resources have not been utilized yet except in the traditional baths

  1. Defense Finance and Accounting Service Work on the Navy Defense Business Operations Fund FY 1995 Financial Statements

    National Research Council Canada - National Science Library

    lane, F

    1996-01-01

    ... Financial Statements of the Navy Defense Business Operations Fund. We also planned to determine whether FY 1995 ending balances reported by DFAS Cleveland Center are usable as beginning balances for FY 1996 financial statements...

  2. Geothermal progress monitor report No. 6

    Energy Technology Data Exchange (ETDEWEB)

    1982-06-01

    Geothermal Progress Monitor Report No. 6 presents a state-by-state summary of the status of geothermal leasing, exploration, and development in major physiographic regions where geothermal resource potential has been identified. Recent state-specific activities are reported at the end of each state status report, while recent activities of a more general nature are summarized briefly in Part II of the report. A list of recent publications of potential interest to the geothermal community and a directory of contributors to the geothermal progress monitoring system are also included.

  3. Geothermal low-temperature reservoir assessment program: A new DOE geothermal initiative

    International Nuclear Information System (INIS)

    Wright, P.M.; Lienau, P.J.; Mink, L.L.

    1992-01-01

    In Fiscal Year 1991, Congress appropriated money for the Department of Energy to begin a new program in the evaluation and use of low- and moderate-temperature geothermal resources. The objective of this program is to promote accelerated development of these resources to offset fossil-fuel use and help improve the environment. The program will consist of several components, including: (1) compilation of all available information on resource location and characteristics, with emphasis on resources located within 5 miles of population centers; (2) development and testing of techniques to discover and evaluate low- and moderate-temperature geothermal resources; (3) technical assistance to potential developers of low- and moderate-temperature geothermal resources; and (4) evaluation of the use of geothermal heat pumps in domestic and commercial applications. Program participants will include the Geo-Heat Center at the Oregon Institute of Technology, the University of Utah Research Institute, the Idaho Water Resources Research Institute and agencies of state governments in most of the western states

  4. Catalog of Audiovisual Productions. Volume 2. Navy and Marine Corps Productions

    Science.gov (United States)

    1984-06-01

    HAS BEEN CALLED THE -RAW NERVE OF INSTANT DEATH-. FLEMINGS CAREFULLY LAID BARREL, A AMERICAN DEMOCRATIC SOCIETY.. PLANS ARE UPSET WHEN HIS DAUGHTER AND...NoTCLEARED UNCL NoT CLEARED CONF SPAGHETTI, NOODLES , BEANS, MEAL, CEREALS. THIS FILM IS CLASSIFIED CONFIDENTIAL REMARKS: AVAILABLE AT NAVY GENERAL...TESTING. SHOWS USE OF ILLUSIGS, THE IMPORTANCE OF RECOGNIZING SATELLITE OPERATIONS IN RELATION TO INSTANT CRITERION REFERENCED TESTS TO MILITARY

  5. Case studies of geothermal leasing and development on federal lands

    Energy Technology Data Exchange (ETDEWEB)

    Trummel, Marc

    1978-09-29

    In response to a widely expressed need to examine the impact of the federal regulatory system on the rate of geothermal power development, the Department of Energy-Division of Geothermal Energy (DGE) has established a Streamlining Task Force in cooperation with appropriate federal agencies. The intent is to find a way of speeding development by modification of existing laws or regulations or by better understanding and mechanization of the existing ones. The initial focus was on the leasing and development of federal lands. How do the existing processes work? Would changes produce positive results in a variety of cases? These are questions which must be considered in a national streamlining process. This report presents case studies of federal leasing actions on seven diverse locations in the western region. Characteristics of existing high geothermal potential areas are quite diverse; geography, environment, industry interest and the attitudes and activities of the responsible federal land management agencies and the interested public vary widely. Included are descriptions of post and current activities in leasing exploration and development and discussions of the probable future direction of activities based on current plans. Implications of these plans are presented. The case studies were based on field interviews with the appropriate State and District BLM officer and with the regional forester's office and the particular forest office. Documentation was utilized to the extent possible and has been included in whole or in part in appendices as appropriate.

  6. The Momotombo Geothermal Field, Nicaragua: Exploration and development case history study

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-07-01

    This case history discusses the exploration methods used at the Momotombo Geothermal Field in western Nicaragua, and evaluates their contributions to the development of the geothermal field models. Subsequent reservoir engineering has not been synthesized or evaluated. A geothermal exploration program was started in Nicaragua in 1966 to discover and delineate potential geothermal reservoirs in western Nicaragua. Exploration began at the Momotombo field in 1970 using geological, geochemical, and geophysical methods. A regional study of thermal manifestations was undertaken and the area on the southern flank of Volcan Momotombo was chosen for more detailed investigation. Subsequent exploration by various consultants produced a number of geotechnical reports on the geology, geophysics, and geochemistry of the field as well as describing production well drilling. Geological investigations at Momotombo included photogeology, field mapping, binocular microscope examination of cuttings, and drillhole correlations. Among the geophysical techniques used to investigate the field sub-structure were: Schlumberger and electromagnetic soundings, dipole mapping and audio-magnetotelluric surveys, gravity and magnetic measurements, frequency domain soundings, self-potential surveys, and subsurface temperature determinations. The geochemical program analyzed the thermal fluids of the surface and in the wells. This report presents the description and results of exploration methods used during the investigative stages of the Momotombo Geothermal Field. A conceptual model of the geothermal field was drawn from the information available at each exploration phase. The exploration methods have been evaluated with respect to their contributions to the understanding of the field and their utilization in planning further development. Our principal finding is that data developed at each stage were not sufficiently integrated to guide further work at the field, causing inefficient use of

  7. Twenty-first workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1996-01-26

    PREFACE The Twenty-First Workshop on Geothermal Reservoir Engineering was held at the Holiday Inn, Palo Alto on January 22-24, 1996. There were one-hundred fifty-five registered participants. Participants came from twenty foreign countries: Argentina, Austria, Canada, Costa Rica, El Salvador, France, Iceland, Indonesia, Italy, Japan, Mexico, The Netherlands, New Zealand, Nicaragua, the Philippines, Romania, Russia, Switzerland, Turkey and the UK. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Sixty-six papers were presented in the technical sessions of the workshop. Technical papers were organized into twenty sessions concerning: reservoir assessment, modeling, geology/geochemistry, fracture modeling hot dry rock, geoscience, low enthalpy, injection, well testing, drilling, adsorption and stimulation. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bobbie Bishop-Gollan, Tom Box, Jim Combs, John Counsil, Sabodh Garg, Malcolm Grant, Marcel0 Lippmann, Jim Lovekin, John Pritchett, Marshall Reed, Joel Renner, Subir Sanyal, Mike Shook, Alfred Truesdell and Ken Williamson. Jim Lovekin gave the post-dinner speech at the banquet and highlighted the exciting developments in the geothermal field which are taking place worldwide. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager.

  8. Environmental Assessment Lakeview Geothermal Project

    Energy Technology Data Exchange (ETDEWEB)

    Treis, Tania [Southern Oregon Economic Development Department, Medford, OR (United States)

    2012-04-30

    The Town of Lakeview is proposing to construct and operate a geothermal direct use district heating system in Lakeview, Oregon. The proposed project would be in Lake County, Oregon, within the Lakeview Known Geothermal Resources Area (KGRA). The proposed project includes the following elements: Drilling, testing, and completion of a new production well and geothermal water injection well; construction and operation of a geothermal production fluid pipeline from the well pad to various Town buildings (i.e., local schools, hospital, and Lake County Industrial Park) and back to a geothermal water injection well. This EA describes the proposed project, the alternatives considered, and presents the environmental analysis pursuant to the National Environmental Policy Act. The project would not result in adverse effects to the environment with the implementation of environmental protection measures.

  9. Federal Geothermal Research Program Update Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently

  10. Federal Geothermal Research Program Update - Fiscal Year 2004

    Energy Technology Data Exchange (ETDEWEB)

    Patrick Laney

    2005-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. The Geothermal Technologies Program (GTP) works in partnership with industry to establish geothermal energy as an economically competitive contributor to the U.S. energy supply. Geothermal energy production, a $1.5 billion a year industry, generates electricity or provides heat for direct use applications. The technologies developed by the Geothermal Technologies Program will provide the Nation with new sources of electricity that are highly reliable and cost competitive and do not add to America's air pollution or the emission of greenhouse gases. Geothermal electricity generation is not subject to fuel price volatility and supply disruptions from changes in global energy markets. Geothermal energy systems use a domestic and renewable source of energy. The Geothermal Technologies Program develops innovative technologies to find, access, and use the Nation's geothermal resources. These efforts include emphasis on Enhanced Geothermal Systems (EGS) with continued R&D on geophysical and geochemical exploration technologies, improved drilling systems, and more efficient heat exchangers and condensers. The Geothermal Technologies Program is balanced between short-term goals of greater interest to industry, and long-term goals of importance to national energy interests. The program's research and development activities are expected to increase the number of new domestic geothermal fields, increase the success rate of geothermal well drilling, and reduce the costs of constructing and operating geothermal power plants. These improvements will increase the quantity of economically viable geothermal resources, leading in turn to an increased number of geothermal power facilities serving more energy demand. These new geothermal projects will take advantage of geothermal resources in locations where development is not currently possible or

  11. Three-Dimensional Modeling of Fracture Clusters in Geothermal Reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Ghassemi, Ahmad [Univ. of Oklahoma, Norman, OK (United States)

    2017-08-11

    The objective of this is to develop a 3-D numerical model for simulating mode I, II, and III (tensile, shear, and out-of-plane) propagation of multiple fractures and fracture clusters to accurately predict geothermal reservoir stimulation using the virtual multi-dimensional internal bond (VMIB). Effective development of enhanced geothermal systems can significantly benefit from improved modeling of hydraulic fracturing. In geothermal reservoirs, where the temperature can reach or exceed 350oC, thermal and poro-mechanical processes play an important role in fracture initiation and propagation. In this project hydraulic fracturing of hot subsurface rock mass will be numerically modeled by extending the virtual multiple internal bond theory and implementing it in a finite element code, WARP3D, a three-dimensional finite element code for solid mechanics. The new constitutive model along with the poro-thermoelastic computational algorithms will allow modeling the initiation and propagation of clusters of fractures, and extension of pre-existing fractures. The work will enable the industry to realistically model stimulation of geothermal reservoirs. The project addresses the Geothermal Technologies Office objective of accurately predicting geothermal reservoir stimulation (GTO technology priority item). The project goal will be attained by: (i) development of the VMIB method for application to 3D analysis of fracture clusters; (ii) development of poro- and thermoelastic material sub-routines for use in 3D finite element code WARP3D; (iii) implementation of VMIB and the new material routines in WARP3D to enable simulation of clusters of fractures while accounting for the effects of the pore pressure, thermal stress and inelastic deformation; (iv) simulation of 3D fracture propagation and coalescence and formation of clusters, and comparison with laboratory compression tests; and (v) application of the model to interpretation of injection experiments (planned by our

  12. Geothermal energy abstract sets. Special report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    Stone, C. (comp.)

    1985-01-01

    This bibliography contains annotated citations in the following areas: (1) case histories; (2) drilling; (3) reservoir engineering; (4) injection; (5) geothermal well logging; (6) environmental considerations in geothermal development; (7) geothermal well production; (8) geothermal materials; (9) electric power production; (10) direct utilization of geothermal energy; (11) economics of geothermal energy; and (12) legal, regulatory and institutional aspects. (ACR)

  13. Non-electrical uses of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Barber E.; Fanelli, M.

    1977-01-01

    A comprehensive review covers the recognition of natural hot fluids in ancient times and their use for therapeutic baths; the first production of electricity from geothermal steam at Larderello, Italy, in 1904; the widespread geographical occurrence of geothermal fluids; exploration techniques; the extraction of geothermal fluids and their uses in spas, agriculture, aquaculture, domestic heating, and industrial applications; geothermal greenhouse heating world-wide; geothermal heating of animal and poultry houses, in culture of alligators and crocodiles (in Atagawa, Japan), and in fish culture; piping arrangements for district heating, and a tabulation of district heating installations world-wide; downhole exchanger systems used in Klamath Falls, Oregon, for domestic heating; industrial heating applications; and methods of disposal of geothermal fluids. Maps, diagrams, graphs, photographs, tables, and 48 references are included.

  14. Optimizing the US Navy’s Combat Logistics Force

    Science.gov (United States)

    2008-01-01

    by some uniformed navy crew, “A” auxillary , “O” fuel oil, “E” explosive ord- nance, “F” refrigerated, and “K” general cargo. The respective crew...may govern the minimum or maximum days allowed between these planned events). 7.4. Decision Variables HITs,bg,d Binary indicator of shuttle s CONSOL...anticipating decisions to procure the T-AKE, shapes the fundamental questions: • How many T-AKEs will be enough? • What is the optimal T-AKE load of ordnance

  15. Hydrochemical Characteristics and Evolution of Geothermal Fluids in the Chabu High-Temperature Geothermal System, Southern Tibet

    Directory of Open Access Journals (Sweden)

    X. Wang

    2018-01-01

    Full Text Available This study defines reasonable reservoir temperatures and cooling processes of subsurface geothermal fluids in the Chabu high-temperature geothermal system. This system lies in the south-central part of the Shenzha-Xietongmen hydrothermal active belt and develops an extensive sinter platform with various and intense hydrothermal manifestations. All the geothermal spring samples collected systematically from the sinter platform are divided into three groups by cluster analysis of major elements. Samples of group 1 and group 3 are distributed in the central part and northern periphery of the sinter platform, respectively, while samples of group 2 are scattered in the transitional zone between groups 1 and 3. The hydrochemical characteristics show that the geothermal waters of the research area have generally mixed with shallow cooler waters in reservoirs. The reasonable reservoir temperatures and the mixing processes of the subsurface geothermal fluids could be speculated by combining the hydrochemical characteristics of geothermal springs, calculated results of the chemical geothermometers, and silica-enthalpy mixing models. Contour maps are applied to measured emerging temperatures, mass flow rates, total dissolved solids of spring samples, and reasonable subsurface temperatures. They indicate that the major cooling processes of the subsurface geothermal fluids gradually transform from adiabatic boiling to conduction from the central part to the peripheral belt. The geothermal reservoir temperatures also show an increasing trend. The point with the highest reservoir temperature (256°C appears in the east-central part of the research area, which might be the main up-flow zone. The cooling processes of the subsurface geothermal fluids in the research area can be shown on an enthalpy-chloride plot. The deep parent fluid for the Chabu geothermal field has a Cl− concentration of 290 mg/L and an enthalpy of 1550 J/g (with a water temperature of

  16. Geothermal Program Review VII: proceedings. DOE Research and Development for the Geothermal Marketplace

    Energy Technology Data Exchange (ETDEWEB)

    1989-01-01

    Each year the Geothermal Technology Division of the US Department of Energy conducts an indepth review of its entire geothermal R and D program. The 2--3 day conference serves several purposes: a status report on current R and D activities, an assessment of progress and problems, a review of management issues, and a technology transfer opportunity between DOE and the US geothermal industry. This year's conference, Program Review 7, was held in San Francisco on March 21--23, 1989. As indicated by its title, ''DOE Research and Development for the Geothermal Marketplace'', Program Review 7 emphasized developing technologies, concepts, and innovations having potential for commercial application in the foreseeable future. Program Review 7 was comprised of eight sessions including an opening session and a special presentation on the ''Role of Geothermal Energy in Minimizing Global Environmental Problems.'' The five technical sessions covered GTD-sponsored R and D in the areas of hydrothermal (two sessions), hot dry rock, geopressured, and magma. Presentations were made by the relevant field researchers, and sessions were chaired by the appropriate DOE Operations Office Geothermal Program Manager. The technical papers and commentary of invited speakers contained in these Proceedings have been compiled in the order in which they were presented at Program Review 7.

  17. Mutnovo geothermal power complex at Kamchatka

    International Nuclear Information System (INIS)

    Britvin, O.V.; Povarov, O.A.; Klochkov, E.F.; Tomarov, G.V.; Koshkin, N.L.; Luzin, V.E.

    2001-01-01

    The data on geothermal resources at Kamchatka and experience in their application are presented. The description of the geothermal power complex objects at the Mutnovo deposit is given. The basic trends and stages of the prospective geothermal power development in this region are indicated. It is specified for unique huge geothermal heat reserves, which by different estimates may provide for the total electrical and thermal capacity, exceeding 2000 MW [ru

  18. Geothermal Field Investigations of Turkey

    Science.gov (United States)

    Sayın, N.; Özer, N.

    2017-12-01

    Geothermal energy is a type of energy that are found in the accessible depth of the crust, in the reservoirs by way of the permeable rocks, specially in heated fluid. Geothermal system is made of 3 main components; heat source, reservoir, and fluid bearing heat. Geothermal system mechanism is comprise of fluid transmission. Convection current (heat transmission) is caused by heating and causes the fluid in the system to expand. Heated fluid with low density show tendency to rise in system. Geothermal system occurs with variable geophysics and geochemical properties. Geophysical methods can determine structural properties of shallow and deep reservoirs with temperature, mineralization, gas amount, fluid movement, faulting, and sudden change in lithostratigraphic strata. This study revealed possible reservoir structures and showed examples of geophysics and gas measuring results in Turkey which is wealthy in regard to Geothermal sources.

  19. Reservoir Simulation on the Cerro Prieto Geothermal Field: A Continuing Study

    Energy Technology Data Exchange (ETDEWEB)

    Castaneda, M.; Marquez, R.; Arellano, V.; Esquer, C.A.

    1983-12-15

    The Cerro Prieto geothermal field is a liquid-dominated geothermal reservoir of complex geological and hydrological structure. It is located at the southern end of the Salton-Mexicali trough which includes other geothermal anomalies as Heber and East Mesa. Although in 1973, the initial power plant installed capacity was 75 MW of electrical power, this amount increased to 180 MW in 1981 as field development continued. It is expected to have a generating capacity of 620 MW by the end of 1985, when two new plants will be completely in operation. Questions about field deliverability, reservoir life and ultimate recovery related to planned installations are being presently asked. Numerical modeling studies can give very valuable answers to these questions, even at the early stages in the development of a field. An effort to simulate the Cerro Prieto geothermal reservoir has been undergoing for almost two years. A joint project among Comision Federal de Electricidad (CFE), Instituto de Investigaciones Electricas (IIE) and Intercomp of Houstin, Texas, was created to perform reservoir engineering and simulation studies on this field. The final project objective is tosimulate the behavior of the old field region when production from additional wells located in the undeveloped field zones will be used for feeding the new power plants.

  20. Deep Seawater Intrusion Enhanced by Geothermal Through Deep Faults in Xinzhou Geothermal Field in Guangdong, China

    Science.gov (United States)

    Lu, G.; Ou, H.; Hu, B. X.; Wang, X.

    2017-12-01

    This study investigates abnormal sea water intrusion from deep depth, riding an inland-ward deep groundwater flow, which is enhanced by deep faults and geothermal processes. The study site Xinzhou geothermal field is 20 km from the coast line. It is in southern China's Guangdong coast, a part of China's long coastal geothermal belt. The geothermal water is salty, having fueled an speculation that it was ancient sea water retained. However, the perpetual "pumping" of the self-flowing outflow of geothermal waters might alter the deep underground flow to favor large-scale or long distant sea water intrusion. We studied geochemical characteristics of the geothermal water and found it as a mixture of the sea water with rain water or pore water, with no indication of dilution involved. And we conducted numerical studies of the buoyancy-driven geothermal flow in the deep ground and find that deep down in thousand meters there is favorable hydraulic gradient favoring inland-ward groundwater flow, allowing seawater intrude inland for an unusually long tens of kilometers in a granitic groundwater flow system. This work formed the first in understanding geo-environment for deep ground water flow.

  1. Russian Navy fresh fuel MPC and A training and regulations

    International Nuclear Information System (INIS)

    Forehand, H.M.; Rexroth, P.; Dove, A.; Shmelev, V.; Sukhoruchkin, V.; Roumiantsev, A.

    1998-01-01

    The Regulations and Training Projects are part of the US-Russian Federation Materials Protection, Control, and Accounting (MPC ampersand A) cooperative program to protect Russian Navy Fuels. This paper describes the general status of the projects, progress achieved to date, and long-term plans for further work in producing regulatory documents and training to support this effort. The regulatory development will result in a document set that will include general requirements and rules for the Russian Navy MPC ampersand A as well as specific instructions for operation and maintenance of each facility. The goals of the training program are to instill in managers a culture of sustainable commitment to MPC ampersand A through the understanding of its principles and philosophies. In addition, the training program will help ensure that upgrades are effectively utilized and maintained by training operators and maintenance personnel in MPC ampersand A principles as well in as the detailed operations of the systems

  2. Geothermal and volcanism in west Java

    Science.gov (United States)

    Setiawan, I.; Indarto, S.; Sudarsono; Fauzi I, A.; Yuliyanti, A.; Lintjewas, L.; Alkausar, A.; Jakah

    2018-02-01

    Indonesian active volcanoes extend from Sumatra, Jawa, Bali, Lombok, Flores, North Sulawesi, and Halmahera. The volcanic arc hosts 276 volcanoes with 29 GWe of geothermal resources. Considering a wide distribution of geothermal potency, geothermal research is very important to be carried out especially to tackle high energy demand in Indonesia as an alternative energy sources aside from fossil fuel. Geothermal potency associated with volcanoes-hosted in West Java can be found in the West Java segment of Sunda Arc that is parallel with the subduction. The subduction of Indo-Australian oceanic plate beneath the Eurasian continental plate results in various volcanic products in a wide range of geochemical and mineralogical characteristics. The geochemical and mineralogical characteristics of volcanic and magmatic rocks associated with geothermal systems are ill-defined. Comprehensive study of geochemical signatures, mineralogical properties, and isotopes analysis might lead to the understanding of how large geothermal fields are found in West Java compared to ones in Central and East Java. The result can also provoke some valuable impacts on Java tectonic evolution and can suggest the key information for geothermal exploration enhancement.

  3. Geothermal Technologies Program: Alaska

    Energy Technology Data Exchange (ETDEWEB)

    2005-02-01

    This fact sheets provides a summary of geothermal potential, issues, and current development in Alaska. This fact sheet was developed as part of DOE's GeoPowering the West initiative, part of the Geothermal Technologies Program.

  4. Project Title: Geothermal Play Fairway Analysis of Potential Geothermal Resources in NE California, NW Nevada, and Southern Oregon: A Transition between Extension$-$Hosted and Volcanically$-$Hosted Geothermal Fields

    Energy Technology Data Exchange (ETDEWEB)

    McClain, James S. [Univ. of California, Davis, CA (United States). Dept. of; Dobson, Patrick [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Glassley, William [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Schiffman, Peter [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zierenberg, Robert [Univ. of California, Davis, CA (United States). Dept. of Earth and Planetary Sciences; Zhang, Yingqi [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Conrad, Mark [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Siler, Drew [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Gasperikova, Erika [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States); Spycher, Nicolas F. [Lawrence Berkeley National Lab. (LBNL), Berkeley, CA (United States)

    2016-09-30

    Final report for the UCD-LBNL effort to apply Geothermal Play Fairway Analysis to a transition zone between a volcanically-hosted and extensionally-hosted geothermal. The project focusses on the geothermal resources in northeastern California.

  5. Geothermal Technologies Program Blue Ribbon Panel Recommendations

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-06-17

    The Geothermal Technologies Program assembled a geothermal Blue Ribbon Panel on March 22-23, 2011 in Albuquerque, New Mexico for a guided discussion on the future of geothermal energy in the United States and the role of the DOE Program. The Geothermal Blue Ribbon Panel Report captures the discussions and recommendations of the experts. An addendum is available here: http://www.eere.energy.gov/geothermal/pdfs/gtp_blue_ribbon_panel_report_addendum10-2011.pdf

  6. White paper on geothermal sustainability; Grundlagenpapier 'Geothermal sustainability - A review with identified research needs'

    Energy Technology Data Exchange (ETDEWEB)

    Rybach, L.; Megel, T.

    2006-12-15

    This comprehensive appendix contained in a comprehensive annual report 2006 for the Swiss Federal Office of Energy (SFOE) reviews research needs identified in connection with the topic of geothermal sustainability. It is noted that excessive production often pursued - mostly for economical reasons - can lead to the depletion of heat reservoirs. Sustainable production can be achieved with lower production rates and still provide similar total energy yields. The regeneration of geothermal resources following exploitation is discussed. The need for further research into geothermal production sustainability is noted. A doublet system realised in Riehen, Switzerland, is discussed, as is an Enhanced Geothermal System EGS using circulation in fractured rock layers. Research still needed is noted.

  7. Geothermal Progress Monitor: Report No. 14

    Energy Technology Data Exchange (ETDEWEB)

    1992-12-01

    This issue of the Geothermal Progress Monitor, the 14th since its inception in 1980, highlights the anticipated rapid growth in the use of geothermal heat pumps and documents the continued growth in the use of geothermal energy for power generation, both in this country and abroad. In countries with a relatively large demand for new generation capacity, geothermal, if available, is being called on as a preferable alternative to the use of domestic or imported oil. On the other hand, in this country where current demand for new capacity is less, geothermal energy is commonly being put to use in small power generation units operating on the hot water resource.

  8. Geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Gasparovic, N

    1962-07-01

    Live steam, transformed steam, and steam produced by expansion flashing are outlined with respect to their use in the production of electricity. The capacity, pressure, and temperature of a steam must be determined empirically by exploratory drilling. These factors are dependent on time and on the extent of nearby drilling-activity. Particulars of geothermal-steam power-plants such as steam dryness, hot-water flashing, condensation, gas extraction, and corrosion are discussed in detail. All available data (as per 1962) concerning the costs of operation and construction of geothermal power plants are tabulated. For space-heating purposes, two basic systems are utilized. When little corrosion or precipitation is expected, an open system is used, otherwise, closed systems are necessary. The space-heating system of Reykjavik, Iceland is cited as an example. A brief description of industrial applications of geothermal energy, such as the extraction of NaCl, D/sub 2/O, or boric acid, is provided. Thirty-two references are given.

  9. Environment - Geothermal, the energy to wake up - Stimulation rather than fracturing - Iceland, the Texas of geothermal energy

    International Nuclear Information System (INIS)

    Chandes, Camille; Moragues, Manuel

    2013-01-01

    A first article comments the current efforts for the development of geothermal in France after a period during which it has been given up. It evokes the project of a geothermal plant near Paris (to supply Arcueil and Gentilly with energy), the increasing number of projects in different countries. It outlines the French delay in this sector, and that geothermal energy is as difficult to find as oil. It evokes the new actors of the sector and outlines the fierce competition in front of Icelander, Italian, US and Japanese actors, and the opportunities for the French ones. A second article comments the use of the hydraulic stimulation in geothermal energy exploration rather than hydraulic fracturing as in shale gas exploration, and outlines that according to geothermal energy actors this technique avoids the risk of micro-earthquake. A last article describes the activity of the geothermal sector in Iceland: geothermal energy supplies two thirds of primary energy consumption in this country. It exploits the Icelander volcanism. This development has been particularly noticeable since 2000, but some questions are raised regarding the production potential

  10. Global geothermal energy scenario

    International Nuclear Information System (INIS)

    Singh, S.K.; Singh, A.; Pandey, G.N.

    1993-01-01

    To resolve the energy crisis efforts have been made in exploring and utilizing nonconventional energy resources since last few decades. Geothermal energy is one such energy resource. Fossil fuels are the earth's energy capital like money deposited in bank years ago. The energy to build this energy came mainly from the sun. Steam geysers and hot water springs are other manifestations of geothermal energy. Most of the 17 countries that today harness geothermal energy have simply tapped such resources where they occur. (author). 8 refs., 4 tabs., 1 fig

  11. Worldwide installed geothermal power

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    Worldwide electric energy production data are easy to compile, according to the informations given by individual countries. On the contrary, thermal applications of geothermics are difficult to quantify due to the variety of applications and the number of countries concerned. Exhaustive informations sometimes cannot be obtained from huge countries (China, Russia..) because of data centralization problems or not exploitable data transmission. Therefore, installed power data for geothermal heat production are given for 26 countries over the 57 that have answered the International Geothermal Association questionnaire. (J.S.). 1 fig., 2 tabs., 1 photo

  12. Geothermal Energy and its Prospects in Lithuania

    International Nuclear Information System (INIS)

    Radeckas, B.

    1995-01-01

    Data on the geothermal resources in lithuania and on their prospective usage are presented. The analysis covers water horizons of the geothermal anomaly in West Lithuania and their hydrogeology. The energy of the 3 km thick geothermal source was evaluated. Technical and economical possibilities of using geothermal energy in West Lithuania are described. Some aspects of the investment and of the project of a geothermal power plant in Klaipeda are considered. (author). 6 refs., 6 tabs., 2 figs

  13. Third workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    Ramey, H.J. Jr.; Kruger, P. (eds.)

    1977-12-15

    Workshop under the Stanford Geothermal Program was supported by a grant from DOE through a subcontract with the Lawrence Berkeley Laboratory of the University of California. A second significant event was the first conference under the ERDA (DOE)-ENEL cooperative program where many of the results of well testing in both nations were discussed. The Proceedings of that conference should be an important contribution to the literature. These Proceedings of the Third Workshop should also make an important contribution to the literature on geothermal reservoir engineering. Much of the data presented at the Workshop were given for the first time, and full technical papers on these subjects will appear in the professional journals. The results of these studies will assist markedly in developing the research programs to be supported by the Federal agencies, and in reducing the costs of research for individual developers and utilities. It is expected that future workshops of the Stanford Geothermal Program will be as successful as this third one. Planning and execution of the Workshop... [see file; ljd, 10/3/2005] The Program Committee recommended two novel sessions for the Third Workshop, both of which were included in the program. The first was the three overviews given at the Workshop by George Pinder (Princeton) on the Academic aspect, James Bresee (DOE-DGE) on the Government aspect, and Charles Morris (Phillips Petroleum) on the Industry aspect. These constituted the invited slate of presentations from the several sectors of the geothermal community. The Program Committee acknowledges their contributions with gratitude. Recognition of the importance of reservoir assurance in opting for geothermal resources as an alternate energy source for electric energy generation resulted in a Panel Session on Various Definitions of Geothermal Reservoirs. Special acknowledgments are offered to Jack Howard and Werner Schwarz (LBL) and to Jack Howard as moderator; to the panelists: James Leigh

  14. Business Continuity Management Plan

    Science.gov (United States)

    2014-12-01

    NAVAL POSTGRADUATE SCHOOL MONTEREY, CALIFORNIA MBA PROFESSIONAL REPORT BUSINESS CONTINUITY MANAGEMENT PLAN December 2014......maximum 200 words) Navy Supply Systems Command (NAVSUP) lacks a business process framework for the development of Business Continuity Management

  15. Federal Geothermal Research Program Update Fiscal Year 2002

    Energy Technology Data Exchange (ETDEWEB)

    2003-09-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The goals are: (1) Double the number of States with geothermal electric power facilities to eight by 2006; (2) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2002. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  16. Federal Geothermal Research Program Update Fiscal Year 2003

    Energy Technology Data Exchange (ETDEWEB)

    2004-03-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office. The goals are: (1) Reduce the levelized cost of generating geothermal power to 3-5 cents per kWh by 2007; (2) Double the number of States with geothermal electric power facilities to eight by 2006; and (3) Supply the electrical power or heat energy needs of 7 million homes and businesses in the United States by 2010. This Federal Geothermal Program Research Update reviews the accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2003. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy. balanced strategy for the Geothermal Program.

  17. Geothermal Direct Heat Applications Program Summary

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-25

    Because of the undefined risk in the development and use of geothermal energy as a thermal energy source, the Department of Energy Division of Geothermal Energy solicited competitive proposals for field experiments in the direct use of geothermal energy. Twenty-two proposals were selected for cost-shared funding with one additional project co-funded by the State of New Mexico. As expected, the critical parameter was developing a viable resource. So far, of the twenty resources drilled, fourteen have proved to be useful resources. These are: Boise, Idaho; Elko heating Company in Nevada; Pagosa Springs, Colorado; Philip School, Philip, South Dakota; St. Mary's Hospital, Pierre, South Dakota; Utah Roses near Salt Lake City; Utah State Prison, Utah; Warm Springs State Hospital, Montana; T-H-S Hospital, Marlin, Texas; Aquafarms International in the Cochella Valley, California; Klamath County YMCA and Klamath Falls in Oregon; Susanville, California and Monroe, utah. Monroe's 164 F and 600 gpm peak flow was inadequate for the planned project, but is expected to be used in a private development. Three wells encountered a resource insufficient for an economical project. These were Madison County at Rexburg, Idaho; Ore-Ida Foods at Ontario, Oregon and Holly Sugar at Brawley, California. Three projects have yet to confirm their resource. The Navarro College well in Corsicana, Texas is being tested; the Reno, Moana, Nevada well is being drilled and the El Centro, California well is scheduled to be drilled in January 1982. The agribusiness project at Kelly Hot Springs was terminated because a significant archeological find was encountered at the proposed site. The Diamond Ring Ranch in South Dakota, and the additional project, Carrie Tingley Hospital in Truth or Consequences, New Mexico both used existing wells. The projects that encountered viable resources have proceeded to design, construct, and in the most advanced projects, to operate geothermal systems for

  18. 32 CFR 631.16 - Navy policy.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 4 2010-07-01 2010-07-01 true Navy policy. 631.16 Section 631.16 National Defense Department of Defense (Continued) DEPARTMENT OF THE ARMY (CONTINUED) LAW ENFORCEMENT AND CRIMINAL...-Installation Operations (Military Patrols and Investigative Activities) and Policy § 631.16 Navy policy. The...

  19. NEDO Forum 2000. Geothermal technology development session (new development of geothermal energy); Chinetsu gijutsu kaihatsu session. Chinetsu energy no shintenkai

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2000-09-01

    The following themes were presented at this session: (1) geothermal development in the future, (2) the current status of geothermal development and utilization, (3) surveys on the promotion of geothermal development, and (4) verification and investigation on geothermal exploration technologies, development of hot water utilizing power generation plants, and international cooperation on geothermal development and utilization. In Item 2, report was made on the current status of geothermal power plants in Japan and their future development targets, long-term overview of geothermal development, measures and budgets to achieve the targets of geothermal development. In Item 3, it is reported that out of 48 areas completed of the survey (including the new promotion surveyed areas), the areas possible of steam power generation and confirmed of temperatures higher than 200 degrees C are 30 areas, and the areas possible of binary power generation (using down hole pumps) and small to medium scale power generation, confirmed of temperatures of 100 to 200 degrees C are 13 areas. In Item 4, reports were made on the reservoir bed variation exploring method, surveys on deep geothermal resources, a 10-MW demonstration plant, a system to detect well bottom information during excavation of geothermal wells, a technology to collect deep geothermal resources, and a hot-rock using power generation system. In Item 5, geothermal exploration in remote islands in the eastern part of Indonesia, and the IEA cooperation projects were reported. (NEDO)

  20. Advanced seismic imaging for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Louie, John [UNR; Pullammanappallil, Satish [Optim; Honjas, Bill [Optim

    2016-08-01

    J. N. Louie, Pullammanappallil, S., and Honjas, W., 2011, Advanced seismic imaging for geothermal development: Proceedings of the New Zealand Geothermal Workshop 2011, Nov. 21-23, Auckland, paper 32, 7 pp. Preprint available at http://crack.seismo.unr.edu/geothermal/Louie-NZGW11.pdf

  1. Geothermal Progress Monitor report No. 11

    Energy Technology Data Exchange (ETDEWEB)

    1989-12-01

    This issue of the Geothermal Progress Monitor (GPM) is the 11th since the inception of the publication in 1980. It continues to synthesize information on all aspects of geothermal development in this country and abroad to permit identification and quantification of trends in the use of this energy technology. In addition, the GPM is a mechanism for transferring current information on geothermal technology development to the private sector, and, over time, provides a historical record for those interested in the development pathway of the resource. In sum, the Department of Energy makes the GPM available to the many diverse interests that make up the geothermal community for the multiple uses it may serve. This issue of the GPM points up very clearly how closely knit many of those diverse interests have become. It might well be called an international issue'' since many of its pages are devoted to news of geothermal development abroad, to the efforts of the US industry to participate in overseas development, to the support given those efforts by federal and state agencies, and to the formation of the International Geothermal Association (IGA). All of these events indicate that the geothermal community has become truly international in character, an occurrence that can only enhance the future of geothermal energy as a major source of energy supply worldwide. 15 figs.

  2. World status of geothermal energy use: past and potential

    International Nuclear Information System (INIS)

    Lund, John

    2000-01-01

    The past and potential development of geothermal energy is reviewed, and the use of geothermal energy for power generation and direct heat utilisation is examined. The energy savings that geothermal energy provides in terms of fuel oil and carbon savings are discussed. Worldwide development of geothermal electric power (1940-2000) and direct heat utilisation (1960 to 2000), regional geothermal use in 2000, the national geothermal contributions of geothermal energy, and the installed geothermal electric generating capacities in 2000 are tabulated

  3. Federal Geothermal Research Program Update Fiscal Year 1999

    Energy Technology Data Exchange (ETDEWEB)

    2004-02-01

    The Department of Energy (DOE) and its predecessors have conducted research and development (R&D) in geothermal energy since 1971. To develop the technology needed to harness the Nation's vast geothermal resources, DOE's Office of Geothermal and Wind Technologies oversees a network of national laboratories, industrial contractors, universities, and their subcontractors. The following mission and goal statements guide the overall activities of the Office of Geothermal and Wind Technologies. This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 1999. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal and Wind Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  4. Geothermal development and policy in the Philippines

    International Nuclear Information System (INIS)

    Datuin, R.; Roxas, F.

    1990-01-01

    The Philippines is the second largest geothermal energy producer in the world although its geothermal energy potential has barely been utilized. Out of an estimated total reserves of 8,000 MW, only about 11 percent or 894 MW are currently on stream for power generation. The electricity production from geothermal steam registered a growth of 8.9 percent from 1988 to 1989, one of the highest among local energy sources. During that same period, geothermal energy rated the highest capacity utilization of 67 percent compared to the average system capacity utilization of 43 percent. This paper describes both the use of geothermal energy and government policies concerning geothermal energy in the Philippines

  5. Chemical logging of geothermal wells

    Science.gov (United States)

    Allen, C.A.; McAtee, R.E.

    The presence of geothermal aquifers can be detected while drilling in geothermal formations by maintaining a chemical log of the ratio of the concentrations of calcium to carbonate and bicarbonate ions in the return drilling fluid. A continuous increase in the ratio of the concentrations of calcium to carbonate and bicarbonate ions is indicative of the existence of a warm or hot geothermal aquifer at some increased depth.

  6. Geothermal Energy Development annual report 1979

    Energy Technology Data Exchange (ETDEWEB)

    1980-08-01

    This report is an exerpt from Earth Sciences Division Annual Report 1979 (LBL-10686). Progress in thirty-four research projects is reported including the following area: geothermal exploration technology, geothermal energy conversion technology, reservoir engineering, and geothermal environmental research. Separate entries were prepared for each project. (MHR)

  7. Effect of Hydrothermal Alteration on Rock Properties in Active Geothermal Setting

    Science.gov (United States)

    Mikisek, P.; Bignall, G.; Sepulveda, F.; Sass, I.

    2012-04-01

    Hydrothermal alteration records the physical-chemical changes of rock and mineral phases caused by the interaction of hot fluids and wall rock, which can impact effective permeability, porosity, thermal parameters, rock strength and other rock properties. In this project, an experimental approach has been used to investigate the effects of hydrothermal alteration on rock properties. A rock property database of contrastingly altered rock types and intensities has been established. The database details horizontal and vertical permeability, porosity, density, thermal conductivity and thermal heat capacity for ~300 drill core samples from wells THM12, THM13, THM14, THM17, THM18, THM22 and TH18 in the Wairakei-Tauhara geothermal system (New Zealand), which has been compared with observed hydrothermal alteration type, rank and intensity obtained from XRD analysis and optical microscopy. Samples were selected from clay-altered tuff and intercalated siltstones of the Huka Falls Formation, which acts as a cap rock at Wairakei-Tauhara, and tuffaceous sandstones of the Waiora Formation, which is a primary reservoir-hosting unit for lateral and vertical fluid flows in the geothermal system. The Huka Falls Formation exhibits argillic-type alteration of varying intensity, while underlying Waiora Formations exhibits argillic- and propylithic-type alteration. We plan to use a tempered triaxial test cell at hydrothermal temperatures (up to 200°C) and pressures typical of geothermal conditions, to simulate hot (thermal) fluid percolation through the rock matrix of an inferred "reservoir". Compressibility data will be obtained under a range of operating (simulation reservoir) conditions, in a series of multiple week to month-long experiments that will monitor change in permeability and rock strength accompanying advancing hydrothermal alteration intensity caused by the hot brine interacting with the rock matrix. We suggest, our work will provide new baseline information concerning

  8. The National Geothermal Energy Research Program

    Science.gov (United States)

    Green, R. J.

    1974-01-01

    The continuous demand for energy and the concern for shortages of conventional energy resources have spurred the nation to consider alternate energy resources, such as geothermal. Although significant growth in the one natural steam field located in the United States has occurred, a major effort is now needed if geothermal energy, in its several forms, is to contribute to the nation's energy supplies. From the early informal efforts of an Interagency Panel for Geothermal Energy Research, a 5-year Federal program has evolved whose objective is the rapid development of a commercial industry for the utilization of geothermal resources for electric power production and other products. The Federal program seeks to evaluate the realistic potential of geothermal energy, to support the necessary research and technology needed to demonstrate the economic and environmental feasibility of the several types of geothermal resources, and to address the legal and institutional problems concerned in the stimulation and regulation of this new industry.

  9. Determining barriers to developing geothermal power generation in Japan: Societal acceptance by stakeholders involved in hot springs

    International Nuclear Information System (INIS)

    Kubota, Hiromi; Hondo, Hiroki; Hienuki, Shunichi; Kaieda, Hideshi

    2013-01-01

    After many years of stagnant growth in geothermal power generation, development plans for new geothermal plants have recently emerged throughout Japan. Through a literature review, we investigated the relationships between the principal barriers to geothermal development and we thereby analyzed the deciding factors in the future success of such enterprises. The results show that the societal acceptance of geothermal power by local stakeholders is the fundamental barrier as it affects almost all other barriers, such as financial, technical, and political risks. Thus, we conducted semi-structured interviews with 26 stakeholders including developers, hot spring inn managers, and local government officials. Some hot spring inn managers and local government officials noted that they have always been strongly concerned about the adverse effects of geothermal power generation on hot springs; their opposition has delayed decision-making by local governments regarding drilling permits, prolonged lead times, and caused other difficulties. A key reason for opposition was identified as uncertainty about the reversibility and predictability of the adverse effects on hot springs and other underground structures by geothermal power production and reinjection of hot water from reservoirs. Therefore, we discuss and recommend options for improving the risk management of hot springs near geothermal power plants. - Highlights: • We clarify relationships between barriers to geothermal power development in Japan. • Local acceptance by hot spring managers is the most prominent barrier. • Uncertainty of reversibility and predictability induces low acceptance. • Risk transfer system and dialogue are needed to alleviate concerns

  10. NaviSE: superenhancer navigator integrating epigenomics signal algebra.

    Science.gov (United States)

    Ascensión, Alex M; Arrospide-Elgarresta, Mikel; Izeta, Ander; Araúzo-Bravo, Marcos J

    2017-06-06

    Superenhancers are crucial structural genomic elements determining cell fate, and they are also involved in the determination of several diseases, such as cancer or neurodegeneration. Although there are pipelines which use independent pieces of software to predict the presence of superenhancers from genome-wide chromatin marks or DNA-interaction protein binding sites, there is not yet an integrated software tool that processes automatically algebra combinations of raw data sequencing into a comprehensive final annotated report of predicted superenhancers. We have developed NaviSE, a user-friendly streamlined tool which performs a fully-automated parallel processing of genome-wide epigenomics data from sequencing files into a final report, built with a comprehensive set of annotated files that are navigated through a graphic user interface dynamically generated by NaviSE. NaviSE also implements an 'epigenomics signal algebra' that allows the combination of multiple activation and repression epigenomics signals. NaviSE provides an interactive chromosomal landscaping of the locations of superenhancers, which can be navigated to obtain annotated information about superenhancer signal profile, associated genes, gene ontology enrichment analysis, motifs of transcription factor binding sites enriched in superenhancers, graphs of the metrics evaluating the superenhancers quality, protein-protein interaction networks and enriched metabolic pathways among other features. We have parallelised the most time-consuming tasks achieving a reduction up to 30% for a 15 CPUs machine. We have optimized the default parameters of NaviSE to facilitate its use. NaviSE allows different entry levels of data processing, from sra-fastq files to bed files; and unifies the processing of multiple replicates. NaviSE outperforms the more time-consuming processes required in a non-integrated pipeline. Alongside its high performance, NaviSE is able to provide biological insights, predicting cell

  11. Roadmap for Navy Family Research.

    Science.gov (United States)

    1980-08-01

    09 NAVY FAMIILIES *11* I.- Study *conosical, psychological , and social " rank * duŕ military "areer " employment status . extent of of spouse family...Study ha o. thmfpeect of relocation o familis series with: I I a frequency and t iming of SBANCE *, acconpanied vs. umaccompaiad URE tours alevel of...UNDERSTANDING IMPACT OF RELOCATION ON NAVY FAMILIES AREA 1: STUDY ECONOMICAL, PSYCHOLOGICAL , AND SOCIAL IMPACT ON DIFFERENT FAMILY MEMBERS, FOR

  12. Geothermics of the Apenninic subduction

    Directory of Open Access Journals (Sweden)

    G. Zito

    1997-06-01

    Full Text Available The subduction of the Adriatic microplate is analysed from a geothermal point of view. In particular four main geodynamic units are distinguished: foreland, foredeep and slab, accretionary prism, and back-arc basin. Each of them is examined from a geothermal point of view and the related open question are discussed. The most relevant results are the determination of the undisturbed geothermal gradient in the aquifer of the foreland; the discovery of a « hot » accretionary prism; and a new model of instantaneous extension of the back-arc basins. The main conclusion is that geothermal data are consistent with a westward dipping subduction that migrated eastward producing a sequence of several episodes at the surface.

  13. Water Desalination using geothermal energy

    KAUST Repository

    Goosen, M.

    2010-08-03

    The paper provides a critical overview of water desalination using geothermal resources. Specific case studies are presented, as well as an assessment of environmental risks and market potential and barriers to growth. The availability and suitability of low and high temperature geothermal energy in comparison to other renewable energy resources for desalination is also discussed. Analysis will show, for example, that the use of geothermal energy for thermal desalination can be justified only in the presence of cheap geothermal reservoirs or in decentralized applications focusing on small-scale water supplies in coastal regions, provided that society is able and willing to pay for desalting. 2010 by the authors; licensee MDPI, Basel, Switzerland.

  14. Engineered Geothermal System Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Petty, Susan

    2014-06-19

    In June 2009, AltaRock Energy began field work on a project supported by the U.S. Department of Energy entitled “Use of Multiple Stimulations to Improve Economics of Engineered Geothermal Systems in Shallow High Temperature Intrusives.” The goal of the project was to develop an Engineered Geothermal System (EGS) in the portion of The Geysers geothermal field operated by the Northern California Power Agency (NCPA). The project encountered several problems while deepening Well E-7 which culminated in the suspension of field activities in September 2009. Some of the problems encountered are particular to The Geysers area, while others might be encountered in any geothermal field, and they might be avoided in future operations.

  15. Permeability in fractured rocks from deep geothermal boreholes in the Upper Rhine Graben

    Science.gov (United States)

    Vidal, Jeanne; Whitechurch, Hubert; Genter, Albert; Schmittbuhl, Jean; Baujard, Clément

    2015-04-01

    the ongoing project at Rittershoffen, two deep boreholes, drilled down to 2.7 km depth target a reservoir in the sandstones of Buntsandstein and in the granitic basement interface. The thermal, hydraulic and chemical stimulations of the first well lead the project to an economic profitability with a temperature of 170° C and an industrial flow rate of 70 L/s. The deep sedimentary cover and the top of the granitic basement are the main target of the geothermal project in the URG. Permeability of fractured rocks after drilling operations or stimulation operations demonstrates the viability of French industrial deep geothermal projects in the URG was also confirmed by several geothermal projects in Germany that target the similar sediments-basement interface (Landau and Insheim) or the deep Triassic sediments (Bruchsal and Brühl). In France, future geothermal projects are planned in particular in Strasbourg suburb to exploit the permeability of deep-seated fractured sediment-basement interface.

  16. Probabilistic approach of resource assessment in Kerinci geothermal field using numerical simulation coupling with monte carlo simulation

    Science.gov (United States)

    Hidayat, Iki; Sutopo; Pratama, Heru Berian

    2017-12-01

    The Kerinci geothermal field is one phase liquid reservoir system in the Kerinci District, western part of Jambi Province. In this field, there are geothermal prospects that identified by the heat source up flow inside a National Park area. Kerinci field was planned to develop 1×55 MWe by Pertamina Geothermal Energy. To define reservoir characterization, the numerical simulation of Kerinci field is developed by using TOUGH2 software with information from conceptual model. The pressure and temperature profile well data of KRC-B1 are validated with simulation data to reach natural state condition. The result of the validation is suitable matching. Based on natural state simulation, the resource assessment of Kerinci geothermal field is estimated by using Monte Carlo simulation with the result P10-P50-P90 are 49.4 MW, 64.3 MW and 82.4 MW respectively. This paper is the first study of resource assessment that has been estimated successfully in Kerinci Geothermal Field using numerical simulation coupling with Monte carlo simulation.

  17. Twentieth workshop on geothermal reservoir engineering: Proceedings

    Energy Technology Data Exchange (ETDEWEB)

    None

    1995-01-26

    PREFACE The Twentieth Workshop on Geothermal Reservoir Engineering, dedicated to the memory of Professor Hank Ramey, was held at Stanford University on January 24-26, 1995. There were ninety-five registered participants. Participants came from six foreign countries: Japan, Mexico, England, Italy, New Zealand and Iceland. The performance of many geothermal reservoirs outside the United States was described in several of the papers. Professor Roland N. Horne opened the meeting and welcomed visitors to the campus. The key note speaker was Marshall Reed, who gave a brief overview of the Department of Energy's current plan. Thirty-two papers were presented in the technical sessions of the workshop. Technical papers were organized into eleven sessions concerning: field development, modeling, well tesubore, injection, geoscience, geochemistry and field operations. Session chairmen were major contributors to the workshop, and we thank: Ben Barker, Bob Fournier, Mark Walters, John Counsil, Marcelo Lippmann, Keshav Goyal, Joel Renner and Mike Shook. In addition to the technical sessions, a panel discussion was held on ''What have we learned in 20 years?'' Panel speakers included Patrick Muffler, George Frye, Alfred Truesdell and John Pritchett. The subject was further discussed by Subir Sanyal, who gave the post-dinner speech at the banquet. The Workshop was organized by the Stanford Geothermal Program faculty, staff, and graduate students. We wish to thank our students who operated the audiovisual equipment. Shaun D. Fitzgerald Program Manager

  18. Local population impacts of geothermal energy development in the Geysers: Calistoga region

    Energy Technology Data Exchange (ETDEWEB)

    Haven, K.F.; Berg, V.; Ladson, Y.W.

    1980-09-01

    The country-level population increase implications of two long-term geothermal development scenarios for the Geysers region in California are addressed. This region is defined to include the counties of Lake, Sonoma, Mendocino and Napa, all four in northern California. The development scenarios include two components: development for electrical energy production and direct use applications. Electrical production scenarios are derived by incorporating current development patterns into previous development scenarios by both industry and research organizations. The scenarios are made county-specific, specific to the type of geothermal system constructed, and are projected through the year 2000. Separate high growth rate and low growth rate scenarios are developed, based on a set of specified assumptions. Direct use scenarios are estimated from the nature of the available resource, existing local economic and demographic patterns, and available experience with various separate direct use options. From the composite development scenarios, required numbers of direct and indirect employees and the resultant in-migration patterns are estimated. In-migration patterns are compared to current county level population and ongoing trends in the county population change for each of the four counties. From this comparison, conclusions are drawn concerning the contributions of geothermal resource development to future population levels and the significance of geothermally induced population increase from a county planning perspective.

  19. Very low energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Very low energy geothermics correspond to temperatures below 30 C and has been developed to cover heating and cooling needs of recent individual houses or tertiary industries using heat pumps and low depth aquifers (<100 m). Geothermal heat pumps industry has made great strides in European Northern countries, China, Japan and the United States of America. Geothermal heat pumps are less energy consuming than air heat pumps and require less cooling fluid and maintenance. The Aquapac procedure has been developed in France in 1983 by the AFME (French Energy Control Agency), EdF and the BRGM (Geologic and Mining Research Office) to encourage the use of geothermal heat pump for domestic and sanitary water heating and to make a survey of low-depth aquifers in the whole french territory. The decay of energy costs that started in 1986 has led to a loss of interest for the Aquapac procedure, even in the tertiary industries for which the air-conditioning demand is growing up. (J.S.). 1 tab

  20. Geothermal well log interpretation midterm report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1979-02-01

    Reservoir types are defined according to fluid phase and temperature, lithology, geologic province, pore geometry, and salinity and fluid chemistry. Improvements are needed in lithology and porosity definition, fracture detection, and thermal evaluation for more accurate interpretation. Further efforts are directed toward improving diagnostic techniques for relating rock characteristics and log response, developing petrophysical models for geothermal systems, and developing thermal evaluation techniques. The Geothermal Well Log Interpretation study and report has concentrated only on hydrothermal geothermal reservoirs. Other geothermal reservoirs (hot dry rock, geopressured, etc.) are not considered.

  1. Exploration of Geothermal Natural Resources from Menengai Caldera at Naruku, Kenya

    Science.gov (United States)

    Patlan, E.; Wamalwa, A.; Thompson, L. E.; Kaip, G.; Velasco, A. A.

    2011-12-01

    The Menengai Caldera, a large, dormant volcano, lies near the city of Naruku, Kenya (0.20°S, 36.07°E) and presents a significant natural geothermal energy resource that will benefit local communities. Kenya continues to explore and exploit its only major energy resource: geothermal energy. The Geothermal Development Company (GDC) of Kenya and University of Texas at El Paso (UTEP) have initially deployed seven seismic stations to address the volcanic hazards and associated processes that occurs through the analysis of data collection from seismic sensors that record ground motion. Seven more sensors are planned to be deployed in Aug. 2011. In general, the internal state and activity of the caldera is an important component to the understanding of porosity of the fault system, which is derived from the magma movement of the hot spot, and for the exploitation of geothermal energy. We analyze data from March to May 2011 to investigate the role of earthquakes and faults in controlling the caldera processes, and we find 15 events occurred within the caldera. We will utilize the double difference earthquake location algorithm (HypoDD) to analyze the local events in order to find active faulting of the caldera and the possible location of the magma chamber. For future work, we will combine the exiting data with the new seismic station to image the location of the caldera magma chamber.

  2. Faces of the Fleet | Navy Live

    Science.gov (United States)

    Little Creek. (U.S. Navy photo by Mass Communication Specialist 2nd Class Charles Oki/Released) Explosive Expeditionary Base Little Creek. (U.S. Navy photo by Mass Communication Specialist 2nd Class Charles Oki /spLckijogJ12 hours ago MT @CNORichardson: Congratulations to the @NavalAcademy #ClassOf2018! A lot will be

  3. Radiator Enhanced Geothermal System - A Revolutionary Method for Extracting Geothermal Energy

    Science.gov (United States)

    Karimi, S.; Marsh, B. D.; Hilpert, M.

    2017-12-01

    A new method of extracting geothermal energy, the Radiator Enhanced Geothermal System (RAD-EGS) has been developed. RAD-EGS attempts to mimic natural hydrothermal systems by 1) generating a vertical vane of artificially produced high porosity/permeability material deep in a hot sedimentary aquifer, 2) injecting water at surface temperatures to the bottom of the vane, where the rock is the hottest, 3) extracting super-heated water at the top of the vane. The novel RAD-EGS differs greatly from the currently available Enhanced Geothermal Systems in vane orientation, determined in the governing local crustal stress field by Shmax and Sl (meaning it is vertical), and in the vane location in a hot sedimentary aquifer, which naturally increases the longevity of the system. In this study, we explore several parameters regimes affecting the water temperature in the extraction well, keeping in mind that the minimum temperature of the extracted water has to be 150 °C in order for a geothermal system to be commercially viable. We used the COMSOL finite element package to simulate coupled heat and fluid transfer within the RAD-EGS model. The following geologic layers from top to bottom are accounted for in the model: i) confining upper layer, ii) hot sedimentary aquifer, and iii) underlying basement rock. The vane is placed vertically within the sedimentary aquifer. An injection well and an extraction well are also included in the simulation. We tested the model for a wide range of various parameters including background heat flux, thickness of geologic layers, geometric properties of the vane, diameter and location of the wells, fluid flow within the wells, regional hydraulic gradient, and permeability and porosity of the layers. The results show that among the aforementioned parameters, background heat flux and the depth of vane emplacement are highly significant in determining the level of commercial viability of the geothermal system. These results indicate that for the

  4. Geothermal Loan Guaranty Program and its impact on geothermal exploration and development

    Energy Technology Data Exchange (ETDEWEB)

    Nasr, L.H.

    1978-05-01

    The study showed that the Geothermal Loan Guaranty Program has had only a negligible effect on geothermal development and the response to the program was far less than expected. The streamlining of environmental regulations and leasing policies, and the granting of intangible drilling cost write-offs and depletion allowances to operators would have had a greater impact on geothermal energy development. The loan guaranty program did not promote the undertaking of any new projects that would not have been undertaken without it. The program only accelerated the pace for some development which might have commenced in the future. Included in the study are recommendations for improving the operation of the program thereby increasing its attractiveness to potential applicants.

  5. Geothermal Permeability Enhancement - Final Report

    Energy Technology Data Exchange (ETDEWEB)

    Joe Beall; Mark Walters

    2009-06-30

    The overall objective is to apply known permeability enhancement techniques to reduce the number of wells needed and demonstrate the applicability of the techniques to other undeveloped or under-developed fields. The Enhanced Geothermal System (EGS) concept presented in this project enhances energy extraction from reduced permeability zones in the super-heated, vapor-dominated Aidlin Field of the The Geysers geothermal reservoir. Numerous geothermal reservoirs worldwide, over a wide temperature range, contain zones of low permeability which limit the development potential and the efficient recovery of heat from these reservoirs. Low permeability results from poorly connected fractures or the lack of fractures. The Enhanced Geothermal System concept presented here expands these technologies by applying and evaluating them in a systematic, integrated program.

  6. Microbiological monitoring in geothermal plants

    Science.gov (United States)

    Alawi, M.; Lerm, S.; Vetter, A.; Vieth, A.; Seibt, A.; Wolfgramm, M.; Würdemann, H.

    2009-12-01

    In times of increasing relevance of alternative energy resources the utilization of geothermal energy and subsurface energy storage gains importance and arouses increasing interest of scientists. The research project “AquiScreen” investigates the operational reliability of geothermally used groundwater systems under microbial, geochemical, mineralogical and petrological aspects. Microbiological analyses based on fluid and solid phases of geothermal systems are conducted to evaluate the impact of microbial populations on these systems. The presentation focuses on first results obtained from microbiological monitoring of geothermal plants located in two different regions of Germany: the North German Basin and the Molasse Basin in the southern part characterized by different salinities and temperatures. Fluid and filter samples taken during regular plant operation were investigated using genetic fingerprinting based on PCR-amplified 16S rRNA genes to characterize the microbial biocenosis of the geothermal aquifer. Sequencing of dominant bands of the fingerprints and the subsequent comparison to 16S rRNA genes from public databases enables a correlation to metabolic classes and provides information about the biochemical processes in the deep biosphere. The genetic profiles revealed significant differences in microbiological community structures of geothermal aquifers investigated. Phylogenetic analyses indicate broad metabolical diversity adapted to the specific conditions in the aquifers. Additionally a high amount of so far uncultivated microorganisms was detected indicating very specific indigenous biocenosis. However, in all geothermal plants bacteria were detected despite of fluid temperatures from 45° to 120°C. The identified microorganisms are closely related to thermophilic and hyperthermophilic species detectable in hot wells and hot springs, like Thermus scotoductus and Thermodesulfovibrio yellowstonii, respectively. Halophilic species were detected in

  7. Prospects of geothermal energy

    International Nuclear Information System (INIS)

    Manzella, A.; Bianchi, A.

    2008-01-01

    Geothermal energy has great potential as a renewable energy with low environmental impact, the use of heat pumps is becoming established in Italy but the national contributions are still modest when compared to other nations. Mature technologies could double the installed geothermal power in Italy at 2020. [it

  8. Electric utility companies and geothermal power

    Science.gov (United States)

    Pivirotto, D. S.

    1976-01-01

    The requirements of the electric utility industry as the primary potential market for geothermal energy are analyzed, based on a series of structured interviews with utility companies and financial institution executives. The interviews were designed to determine what information and technologies would be required before utilities would make investment decisions in favor of geothermal energy, the time frame in which the information and technologies would have to be available, and the influence of the governmental politics. The paper describes the geothermal resources, electric utility industry, its structure, the forces influencing utility companies, and their relationship to geothermal energy. A strategy for federal stimulation of utility investment in geothermal energy is suggested. Possibilities are discussed for stimulating utility investment through financial incentives, amelioration of institutional barriers, and technological improvements.

  9. Marketing Plan for the Naval Postgraduate School Master of Business Administration to the Navy Unrestricted Line Community

    National Research Council Canada - National Science Library

    Trevino, R

    2004-01-01

    .... The intent of this project is to create awareness in the Navy Unrestricted Line community about the benefits of the Defense-focused MBA and to build a brand name for the Naval Postgraduate School MBA (NPS-MBA...

  10. Geothermal Frontier: Penetrate a boundary between hydrothermal convection and heat conduction zones to create 'Beyond Brittle Geothermal Reservoir'

    Science.gov (United States)

    Tsuchiya, N.; Asanuma, H.; Sakaguchi, K.; Okamoto, A.; Hirano, N.; Watanabe, N.; Kizaki, A.

    2013-12-01

    EGS has been highlightened as a most promising method of geothermal development recently because of applicability to sites which have been considered to be unsuitable for geothermal development. Meanwhile, some critical problems have been experimentally identified, such as low recovery of injected water, difficulties to establish universal design/development methodology, and occurrence of large induced seismicity. Future geothermal target is supercritical and superheated geothermal fluids in and around ductile rock bodies under high temperatures. Ductile regime which is estimated beyond brittle zone is target region for future geothermal development due to high enthalpy fluids and relatively weak water-rock interaction. It is very difficult to determine exact depth of Brittle-Ductile boundary due to strong dependence of temperature (geotherm) and strain rate, however, ductile zone is considered to be developed above 400C and below 3 km in geothermal fields in Tohoku District. Hydrothermal experiments associated with additional advanced technology will be conducting to understand ';Beyond brittle World' and to develop deeper and hotter geothermal reservoir. We propose a new concept of the engineered geothermal development where reservoirs are created in ductile basement, expecting the following advantages: (a)simpler design and control the reservoir, (b)nearly full recovery of injected water, (c)sustainable production, (d)cost reduction by development of relatively shallower ductile zone in compression tectonic zones, (e)large quantity of energy extraction from widely distributed ductile zones, (f)establishment of universal and conceptual design/development methodology, and (g) suppression of felt earthquakes from/around the reservoirs. In ductile regime, Mesh-like fracture cloud has great potential for heat extraction between injection and production wells in spite of single and simple mega-fracture. Based on field observation and high performance hydrothermal

  11. National Geothermal Data System: A Geothermal Data System for Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Patten, Kim [Executive Office of the State of Arizona (Arizona Geological Survey); Love, Diane [Executive Office of the State of Arizona (Arizona Geological Survey); Coleman, Celia [Executive Office of the State of Arizona (Arizona Geological Survey); Chen, Genhan [Executive Office of the State of Arizona (Arizona Geological Survey)

    2012-09-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network funded by the U.S. Department of Energy Geothermal Data System (GDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. A growing set of more than thirty geoscience data content models is in use or under development to define standardized interchange formats for: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, seismic event hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature description data like developed geothermal systems, geologic unit geothermal characterization, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed based on existing community datasets to encourage widespread adoption and promulgate content quality standards. Geoscience data and maps from other GDS participating institutions, or “nodes” (e.g., U.S. Geological Survey, Southern Methodist University, Oregon Institute of Technology, Stanford University, the University of Utah) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to

  12. China starts tapping rich geothermal resources

    Science.gov (United States)

    Guang, D.

    1980-09-01

    Attention is given to the electric and power installation running on geothermal energy at Yangbajain, Tibet. Other geothermal projects in Tibet, the Yunnan Province and the North China Plain are also outlined. Applications of geothermal energy are described, including the heating of homes and factories, spinning, weaving, paper-making and the making of wine.

  13. Materials selection guidelines for geothermal energy utilization systems

    Energy Technology Data Exchange (ETDEWEB)

    Ellis, P.F. II; Conover, M.F.

    1981-01-01

    This manual includes geothermal fluid chemistry, corrosion test data, and materials operating experience. Systems using geothermal energy in El Salvador, Iceland, Italy, Japan, Mexico, New Zealand, and the United States are described. The manual provides materials selection guidelines for surface equipment of future geothermal energy systems. The key chemical species that are significant in determining corrosiveness of geothermal fluids are identified. The utilization modes of geothermal energy are defined as well as the various physical fluid parameters that affect corrosiveness. Both detailed and summarized results of materials performance tests and applicable operating experiences from forty sites throughout the world are presented. The application of various non-metal materials in geothermal environments are discussed. Included in appendices are: corrosion behavior of specific alloy classes in geothermal fluids, corrosion in seawater desalination plants, worldwide geothermal power production, DOE-sponsored utilization projects, plant availability, relative costs of alloys, and composition of alloys. (MHR)

  14. Prospects of geothermal resource exploitation

    International Nuclear Information System (INIS)

    Bourrelier, P.H.; Cornet, F.; Fouillac, C.

    1994-01-01

    The use of geothermal energy to generate electricity has only occurred during the past 50 years by drilling wells in aquifers close to magmas and producing either dry steam or hot water. The world's production of electricity from geothermal energy is over 6000 MWe and is still growing. The direct use of geothermal energy for major urban communities has been developed recently by exploitation of aquifers in sedimentary basins under large towns. Scaling up the extraction of heat implies the exploitation of larger and better located fields requiring an appropriate method of extraction; the objective of present attempts in USA, Japan and Europe is to create heat exchangers by the circulation of water between several deep wells. Two field categories are considered: the extension of classical geothermal fields beyond the aquifer areas, and areas favoured by both a high geothermal gradient, fractures inducing a natural permeability at large scale, and good commercial prospects (such as in the Rhenan Graben). Hot dry rocks concept has gained a large interest. 1 fig., 5 tabs., 11 refs

  15. Environmental Assessment for Ongoing and Future Operations at U.S. Navy Dabob Bay and Hood Canal Military Operating Areas

    National Research Council Canada - National Science Library

    2002-01-01

    ...) of the Department of the Navy gives notice that an Environmental Assessment (EA) has been prepared for the proposed action of implement inc an Operations Management Plan for ongoing and future operations at the U.S...

  16. Peer effects in financial decision making: Evidence from the U.S. Navy

    Science.gov (United States)

    2017-06-01

    Department of Defense NPC Navy Personnel Command PDR Personal Discount Rate TDA Tax Deferred Account TSP Thrift Savings Plan YOS Years of Service... accounts without exceeding the IRS limit for annual contributions. The $30,000 bonus is taxed at the members federal tax rate. If applicable, state...participation among university employees in a Tax Deferred Account (TDA). Using instrumental variables they find evi- dence of peer influence affecting

  17. Geothermic Characters Of The Most Promising Geothermal Filed For Power Generation In Republic Of Yemen

    Directory of Open Access Journals (Sweden)

    Al Kubati M.

    2017-07-01

    Full Text Available This paper presents geothermal exploration and their geothermometric characteristics in the western part of Yemen. Geologically this volcanic province totals areas approximately 45000 km2. Tectonically the study area is considered one of the most active in the Arabian Plate boundaries that affected by the opening of the Red Sea and the Gulf of Aden as well as by the African rift valley. Extensive field work had been carried out to evaluate the geothermal characteristics of this area. Water and gas samples were collected from hundreds of thermal springs and shallow domestic wells and geochemically analyzed and reported. Temperatures and PH values range from 35 to 96.3 C and from 4.5 to 8.5 respectively. Deep geothermal gradient indicates that the geothermal gradients in the western part of the province Red Sea coast are relatively high up to 182 C at the depth of 3290 m. Volcanic units are affected by hydrothermal processes and became intensively altered. By applying geothermometric methods four geothermal fields have been primarily identified they are Al-Lisi and Isbil Dhamar province Al-Qafr Ibb province Damt Dhala province and the Red Sea coast geothermal fields and three water types were recognized which are Na-HCO3-Cl-S and Ca-Na-Cl and Na HCO3.Results from Al-Lisi and Isbil geothermal area are considered the most promising field. Geothermal detail studies have been achieves and location of the first geothermal exploration well is located in Al-Lisi and Isbil field.By applyig geophisical methods Iso- Resistivity contour mapsthese maps reflected high resistivity areas and low.Clearly shows the low resistivity values incentral and Western part of the study area about 11amp937mWhile up Resistivity values to the area in the eastern 600amp937m.Also through the use ofthe different current electrode spacing AB2 700 1000 1500 and 2000m.We find the low- Resistivity areas becoming more widespread and concentrated in the center of the study area and

  18. Progress and challenges associated with digitizing and serving up Hawaii's geothermal data

    Science.gov (United States)

    Thomas, D. M.; Lautze, N. C.; Abdullah, M.

    2012-12-01

    This presentation will report on the status of our effort to digitize and serve up Hawaii's geothermal information, an undertaking that commenced in 2011 and will continue through at least 2013. This work is part of national project that is funded by the Department of Energy and managed by the Arizona State Geology Survey (AZGS). The data submitted to AZGS is being entered into the National Geothermal Data System (see http://www.stategeothermaldata.org/overview). We are also planning to host the information locally. Main facets of this project are to: - digitize and generate metadata for non-published geothermal documents relevant to the State of Hawaii - digitize ~100 years of paper records relevant to well permitting and water resources development and serve up information on the ~4500 water wells in the state - digitize, organize, and serve up information on research and geothermal exploratory drilling conducted from the 1980s to the present. - work with AZGS and OneGeology to contribute a geologic map for Hawaii that integrates geologic and geothermal resource data. By December 2012, we anticipate that the majority of the digitization will be complete, the geologic map will be approved, and that over 1000 documents will be hosted online through the University of Hawaii's library system (in the "Geothermal Collection" within the "Scholar Space" repository, see http://scholarspace.manoa.hawaii.edu/handle/10125/21320). Developing a 'user-friendly' web interface for the water well and drilling data will be a main task in the coming year. Challenges we have faced and anticipate include: 1) ensuring that no personally identifiable information (e.g. SSN, private telephone numbers, bank or credit account) is contained in the geothermal documents and well files; 2) Homeland Security regulations regarding release of information on critical infrastructure related to municipal water supply systems; 3) maintenance of the well database as future well data are developed with

  19. Federal Geothermal Research Program Update - Fiscal Year 2001

    Energy Technology Data Exchange (ETDEWEB)

    Laney, P.T.

    2002-08-31

    This Federal Geothermal Program Research Update reviews the specific objectives, status, and accomplishments of DOE's Geothermal Program for Federal Fiscal Year (FY) 2001. The information contained in this Research Update illustrates how the mission and goals of the Office of Geothermal Technologies are reflected in each R&D activity. The Geothermal Program, from its guiding principles to the most detailed research activities, is focused on expanding the use of geothermal energy.

  20. Development of geothermal-well-completion systems. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Nelson, E.B.

    1979-01-01

    Results of a three year study concerning the completion of geothermal wells, specifically cementing, are reported. The research involved some specific tasks: (1) determination of properties an adequate geothermal well cement must possess; (2) thorough evaluation of current high temperature oilwell cementing technology in a geothermal context; (3) basic research concerning the chemical and physical behavior of cements in a geothermal environment; (4) recommendation of specific cement systems suitable for use in a geothermal well.

  1. Geothermal environmental impact

    International Nuclear Information System (INIS)

    Armannsson, H.; Kristmannsdottir, H.

    1992-01-01

    Geothermal utilization can cause surface disturbances, physical effects due to fluid withdrawal noise, thermal effects and emission of chemicals as well as affect the communities concerned socially and economically. The environmental impact can be minimized by multiple use of the energy source and the reinjection of spent fluids. The emission of greenhouse gases to the atmosphere can be substantially reduced by substituting geothermal energy for fossil fuels as an industrial energy source wherever possible

  2. Status on high enthalpy geothermal resources in Greece

    International Nuclear Information System (INIS)

    Koutinas, G.A.

    1990-01-01

    Greece is privileged to have many high and medium enthalpy geothermal resources. Related activities during the last 5 years were conducted mainly on the previously discovered geothermal fields of Milos, Nisyros and Lesvos islands, without any deep geothermal drilling. Most efforts were focused on the demonstration of a high enthalpy geothermal reservoir on Milos, by generating electricity from high salinity fluid, with a 2 MW pilot plant. Significant experience has been gained there, by solving technical problems, but still site specific constraints have to be overcome in order to arrive at a comprehensive feasibility study, leading to the development phase. A pre-feasibility study has been carried out in the Nisyros geothermal field. Moreover, a detailed geoscientific exploration program has been completed on Lesvos island, where very promising geothermal areas have been identified. In this paper, reference is made to the most important data concerning high enthalpy geothermal resources by emphasizing the Milos geothermal field

  3. Federal Geothermal Research Program Update, FY 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, Joel Lawrence

    2001-08-01

    The Department of Energy's Geothermal Program serves two broad purposes: 1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and 2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  4. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  5. Deep Unconventional Geothermal Resources: a major opportunity to harness new sources of sustainable energy

    Energy Technology Data Exchange (ETDEWEB)

    Fridleifsson, G.O.; Albertsson, A.; Stefansson, B.; Gunnlaugsson, E.; Adalsteinsson, H.

    2007-07-01

    The Iceland Deep Drilling Project (IDDP) is a long-term program to improve the efficiency and economics of geothermal energy by harnessing Deep Unconventional Geothermal Resources (DUGR). Its aim is to produce electricity from natural supercritical hydrous fluids from drillable depths. Producing supercritical fluids will require drilling wells and sampling fluids and rocks to depths of 3.5 to 5 km, and at temperatures of 450-600{sup o}C. The long-term plan is to drill and test a series of such deep boreholes in Iceland at the Krafla, the Hengill, and the Reykjanes high temperature geothermal systems. Beneath these three developed drill fields temperatures should exceed 550-650{sup o}C, and the occurrence of frequent seismic activity below 5 km, indicates that the rocks are brittle and therefore likely to be permeable. Modeling indicates that if the wellhead enthalpy is to exceed that of conventionally produced geothermal steam, the reservoir temperature must be higher than 450{sup o}C. A deep well producing 0.67 m3/sec steam ({approx}2400 m3/h) from a reservoir with a temperature significantly above 450{sup o}C could yield enough high-enthalpy steam to generate 40-50 MW of electric power. This exceeds by an order of magnitude the power typically obtained from conventional geothermal wells. (auth)

  6. Use of a Geothermal-Solar Hybrid Power Plant to Mitigate Declines in Geothermal Resource Productivity

    Energy Technology Data Exchange (ETDEWEB)

    Dan Wendt; Greg Mines

    2014-09-01

    Many, if not all, geothermal resources are subject to decreasing productivity manifested in the form of decreasing brine temperature, flow rate, or both during the life span of the associated power generation project. The impacts of resource productivity decline on power plant performance can be significant; a reduction in heat input to a power plant not only decreases the thermal energy available for conversion to electrical power, but also adversely impacts the power plant conversion efficiency. The reduction in power generation is directly correlated to a reduction in revenues from power sales. Further, projects with Power Purchase Agreement (PPA) contracts in place may be subject to significant economic penalties if power generation falls below the default level specified. A potential solution to restoring the performance of a power plant operating from a declining productivity geothermal resource involves the use of solar thermal energy to restore the thermal input to the geothermal power plant. There are numerous technical merits associated with a renewable geothermal-solar hybrid plant in which the two heat sources share a common power block. The geo-solar hybrid plant could provide a better match to typical electrical power demand profiles than a stand-alone geothermal plant. The hybrid plant could also eliminate the stand-alone concentrated solar power plant thermal storage requirement for operation during times of low or no solar insolation. This paper identifies hybrid plant configurations and economic conditions for which solar thermal retrofit of a geothermal power plant could improve project economics. The net present value of the concentrated solar thermal retrofit of an air-cooled binary geothermal plant is presented as functions of both solar collector array cost and electricity sales price.

  7. The Philippine Navy’s Strategic Sail Plan 2020: A Strong and Credible Force by 2020

    Science.gov (United States)

    2017-06-09

    achieved by France and other NATO allies - where PME may well take twenty per cent of an officer’s career .”125 Why should it matter? Well, Till...small navies could use. These include: “work-shop based approaches,” toolkits (design interfaces), and “go-between” organizations.164 Mulqueen and

  8. National Geothermal Data System: Interactive Assessment of Geothermal Energy Potential in the U.S.

    Energy Technology Data Exchange (ETDEWEB)

    Allison, Lee [Executive Office of the State of Arizona (Arizona Geological Survey); Richard, Stephen [Executive Office of the State of Arizona (Arizona Geological Survey); Clark, Ryan; Patten, Kim; Love, Diane; Coleman, Celia; Chen, Genhan; Matti, Jordan; Pape, Estelle; Musil, Leah

    2012-01-30

    Geothermal-relevant geosciences data from all 50 states (www.stategeothermaldata.org), federal agencies, national labs, and academic centers are being digitized and linked in a distributed online network via the U.S. Department of Energy-funded National Geothermal Data System (NGDS) to foster geothermal energy exploration and development through use of interactive online ‘mashups,’data integration, and applications. Emphasis is first to make as much information as possible accessible online, with a long range goal to make data interoperable through standardized services and interchange formats. An initial set of thirty geoscience data content models is in use or under development to define a standardized interchange format: aqueous chemistry, borehole temperature data, direct use feature, drill stem test, earthquake hypocenter, fault feature, geologic contact feature, geologic unit feature, thermal/hot spring description, metadata, quaternary fault, volcanic vent description, well header feature, borehole lithology log, crustal stress, gravity, heat flow/temperature gradient, permeability, and feature descriptions data like developed geothermal systems, geologic unit geothermal properties, permeability, production data, rock alteration description, rock chemistry, and thermal conductivity. Map services are also being developed for isopach maps, aquifer temperature maps, and several states are working on geothermal resource overview maps. Content models are developed preferentially from existing community use in order to encourage widespread adoption and promulgate minimum metadata quality standards. Geoscience data and maps from other NGDS participating institutions, or “nodes” (USGS, Southern Methodist University, Boise State University Geothermal Data Coalition) are being supplemented with extensive land management and land use resources from the Western Regional Partnership (15 federal agencies and 5 Western states) to provide access to a comprehensive

  9. Characterization of deep geothermal energy resources using Electro-Magnetic methods, Belgium

    Science.gov (United States)

    Loveless, Sian; Harcout-Menou, Virginie; De Ridder, Fjo; Claessens, Bert; Laenen, Ben

    2014-05-01

    Sedimentary basins in Northwest Europe have significant potential for low to medium enthalpy, deep geothermal energy resources. These resources are currently assessed using standard exploration techniques (seismic investigations followed by drilling of a borehole). This has enabled identification of geothermal resources but such techniques are extremely costly. The high cost of exploration remains one of the main barriers to geothermal project development due to the lack of capital in the geothermal industry. We will test the possibility of using the Electro-Magnetic (EM) methods to aid identification of geothermal resources in conjunction with more traditional exploration methods. An EM campaign could cost a third of a seismic campaign and is also often a passive technology, resulting in smaller environmental impacts than seismic surveys or drilling. EM methods image changes in the resistivity of the earth's sub-surface using natural or induced frequency dependant variations of electric and magnetic fields. Changes in resistivity can be interpreted as representing different subsurface properties including changes in rock type, chemistry, temperature and/or hydraulic transmissivity. While EM techniques have proven to be useful in geothermal exploration in high enthalpy areas in the last 2-3 years only a handful of studies assess their applicability in low enthalpy sedimentary basins. Challenges include identifying which sub-surface features cause changes in electrical resistivity as low enthalpy reservoirs are unlikely to exhibit the hydrothermally altered clay layer above the geothermal aquifer that is typical for high enthalpy reservoirs. Yet a principal challenge is likely to be the high levels of industrialisation in the areas of interest. Infrastructure such as train tracks and power cables can create a high level of background noise that can obfuscate the relevant signal. We present our plans for an EM campaign in the Flemish region of Belgium. Field

  10. Confirmation study of the effectiveness of prospect techniques for geothermal resources. Deep-seated geothermal resources survey report (Fiscal year 1994); 1994 nendo chinetsu tansa gijutsu nado kensho chosa. Shinbu chinetsu shigen chosa hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-03-01

    Drilling and survey of deep geothermal exploration wells were conducted to grasp the existing situation of deep geothermal resource and the whole image of geothermal systems in the area where geothermal resource was already developed. In the drilling work in fiscal 1994, 4000m-class rigs and the top drive system were planned to be used for drilling of 12-1/4 inch wells, but 9-5/8 inch liners were used for drilling down to depths of 2550m or deeper since the amount of lost circulation is large and the withdrawal of devices may be very difficult. And in 8-1/2 inch wells, the well was drilled down to a depth of 2950m. As to the deep resistivity exploration technology using electromagnetic method, studies were made of a multiple-frequency array induction logging (MAIL) method, a vertical electromagnetic profiling (VEMP) method, a joint analysis method, etc. Concerning the synthetic fluid inclusion logging technology, containers were lowered into the well and a comparison was made between data of the homogenization temperature analysis of the formed fluid inclusion and those of the temperature log analysis. With relation to the making of deep geothermal structural models, revision was made according to the determination of depths of Miocene formations, Pre-tertiary formations, and the Kakkonda granite. 65 refs., 268 figs., 79 tabs.

  11. The low-energy geothermics

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    Low-energy geothermal resources are characterized by temperatures ranging from 30 to 100 C. The principal worldwide applications are: towns and greenhouses heating, spa bathing, agriculture products drying, etc.. Sources depth ranges from 1500 to 2500 m in porous and permeable formations (sandstones, sands, conglomerates, limestones..) carrying aquifers. The worldwide installed power was of about 11500 MWth in 1990, with an annual production of about 36000 GWh (about 1% of worldwide energy consumption). The annual production rate is estimated to 10% and would represent a 30000 and 80000 MWth power in 2000 and 2010, respectively. In France, low-energy geothermal resources are encountered principally in Mesozoic sediments of the Parisian and Aquitanian basins. French geothermics has developed during the last 30 years and principally between 1980 and 1985 after the second petroleum crack. After 1985, the decay of fossil fuel costs and the development of corrosion problems in the geothermal wells have led to the abandonment of the less productive fields and to the study of technical solutions to solve the corrosion problems. (J.S.). 1 fig., 5 photos

  12. Geothermal energy conversion facility

    Energy Technology Data Exchange (ETDEWEB)

    Kutscher, C.F.

    1997-12-31

    With the termination of favorable electricity generation pricing policies, the geothermal industry is exploring ways to improve the efficiency of existing plants and make them more cost-competitive with natural gas. The Geothermal Energy Conversion Facility (GECF) at NREL will allow researchers to study various means for increasing the thermodynamic efficiency of binary cycle geothermal plants. This work has received considerable support from the US geothermal industry and will be done in collaboration with industry members and utilities. The GECF is being constructed on NREL property at the top of South Table Mountain in Golden, Colorado. As shown in Figure 1, it consists of an electrically heated hot water loop that provides heating to a heater/vaporizer in which the working fluid vaporizes at supercritical or subcritical pressures as high as 700 psia. Both an air-cooled and water-cooled condenser will be available for condensing the working fluid. In order to minimize construction costs, available equipment from the similar INEL Heat Cycle Research Facility is being utilized.

  13. Geothermal heat pump

    International Nuclear Information System (INIS)

    Bruno, R.; Tinti, F.

    2009-01-01

    In recent years, for several types of buildings and users, the choice of conditioning by heat pump and low enthalpy geothermal reservoir has been increasing in the Italian market. In fact, such systems are efficient in terms of energy and consumption, they can perform, even at the same time, both functions, heating and cooling and they are environmentally friendly, because they do not produce local emissions. This article will introduce the technology and will focus on critical points of a geothermal field design, from actual practice, to future perspectives for the geo exchanger improvement. Finally, the article presents a best practice case in Bologna district, with an economic analysis showing the convenience of a geothermal heat pump. Conclusions of the real benefits of these plants can be drawn: compared to a non-negligible initial cost, the investment has a pay-back period almost always acceptable, usually less than 10 years. [it

  14. DMRC studies geothermal energy options

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-03-01

    The Deep Mining Research Consortium (DMRC) is an industry-led research consortium that includes Vale Inco, Xstrata, Rio Tinto, Goldcorp, Agnico-Eagle, Barrick Gold, CANMET and the City of Sudbury. This article reported on the application of geothermal energy technologies to cool deep mine workings and use the heat from underground to produce energy to heat surface buildings. Researchers at the University of British Columbia's Centre for Environmental Research in Minerals, Metals and Materials have proposed the use of heat pumps and water-to-air heat exchangers at depth to chill mine workings. The heat pumps would act as refrigerators, taking heat from one area and moving it elsewhere. The purpose would be to extract heat from naturally occurring ground water and pass the chilled water through a heat exchanger to cool the air. The heated water would then be pumped to surface and used to heat surface facilities. The technology is well suited for using geothermal energy from decommissioned mines for district heating. The technology has been successfully used in Spring Hill, Nova Scotia, where geothermal energy from a decommissioned coal mine is used to heat an industrial park. A feasibility study is also underway for the city of Yellowknife in the Northwest Territories to produce up to 10 megawatts of heat from the Con Gold Mine, enough energy to heat half of Yellowknife. Geothermal energy can also be used to generate electricity, particularly in the Pacific Rim where underground temperatures are higher and closer to surface. In Sudbury Ontario, the enhanced geothermal systems technology would require two holes drilled to a depth of four kilometers. The ground between the two holes should be fractured to create an underground geothermal circuit. Geothermal energy does not produce any greenhouse gases or chemical wastes. 1 fig.

  15. Geothermal resource assessment in Korea

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youngmin; Kim, Hyoung Chan [Korea Institute of Geoscience and Mineral Resources (Korea); Park, Sungho; Kim, Jongchan; Koo, Min-Ho [Kongju National University (Korea)

    2010-10-15

    To estimate available geothermal energy and to construct temperature at depth maps in Korea, various geothermal data have been used. Those include 1560 thermal property data such as thermal conductivity, specific heat and density, 353 heat flow data, 54 surface temperature data, and 180 heat production data. In Korea, subsurface temperature ranges from 23.9 C to 47.9 C at a depth of 1 km, from 34.2 C to 79.7 C at 2 km, from 44.2 C to 110.9 C at 3 km, from 53.8 C to 141.5 C at 4 km, and from 63.1 C to 171.6 C at 5 km. The total available subsurface geothermal energy in Korea is 4.25 x 10{sup 21} J from surface to a depth of 1 km, 1.67 x 10{sup 22} J to 2 km, 3.72 x 10{sup 22} J to 3 km, 6.52 x 10{sup 22} J to 4 km, and 1.01 x 10{sup 23} J to 5 km. In particular, the southeastern part of Korea shows high temperatures at depths and so does high geothermal energy. If only 2% of geothermal resource from surface to a depth of 5 km is developed in Korea, energy from geothermal resources would be equivalent to about 200 times annual consumption of primary energy ({proportional_to}2.33 x 10{sup 8} TOE) in Korea in 2006. (author)

  16. Geothermal Progress Monitor. Report No. 15

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Two themes dominate this issue of the Geothermal Progress Monitor, the 15th since its inception in 1980. The first of these is the significance of the government/industry partnership role in geothermal development. This joint effort is reflected in the continued, measured growth in the use of geothermal energy, for both power generation and direct use applications, in this country and abroad, as well as in the development of new, innovative technologies to ensure a bright future for the resource. The second theme is the growing popularity of geothermal heat pumps (GHPs) among utilities, their customers, and federal agencies, all with disparate interests in the technology.

  17. Sign of Radon for locate geothermic sources

    International Nuclear Information System (INIS)

    Gonzalez Teran, D.

    1991-01-01

    Evaluation of a geothermic field is based upon geological, geophysical and geochemical studies that enable the evaluation of the deposit potential, that is to say, the amount of energy per unit mass, the volume of the trapped fluid, vapor fraction and fluid chemistry. This thesis has as its objective the evaluation of radon gas emanation in high potential geothermic zones in order to utilize the results as a low cost and easy to manage complimentary tool in geothermic source prospection. In chapter I the importance and evaluation of a geothermic deposit is discussed. In chapter II the general characteristics of radon are discussed: its radioactivity and behavior upon diffusion over the earth's surface> Chapter III establishes the approach used in the geothermic field of Los Azufres, Michoacan, to carry out samplings of radon and the laboratory techniques that were used to evaluate the concentration of radon in the subsoil. Finally in chapter IV measurements of radon in the field are compared to geological faults in the area under study. The sampling zones were: low geothermic potential zone of the northern and the southern zone having a greater geothermic potential than that in the north. The study was carried out at different sampling times using plastics detectors of from 30 to 46 days from February to July. From the results obtained we concluded that the emission of radon was greater in the zones of greatest geothermic potential than in the low geothermic potential zones it was also affected by the fault structure and the time of year in which sampling was done. (Author)

  18. Geothermal probes for the development of medium-deep geothermal heating; Erdwaermesonden zur Erschliessung der mitteltiefen Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Stuckmann, Uwe [REHAU AG + Co, Erlangen (Germany)

    2012-07-01

    Compared to the near-surface geothermal energy, in the medium-deep geothermal between between 400 and 1,000 meters higher temperature levels may opened up. Thus the efficiency of geothermal power plants can be increased. The possibly higher installation costs are significantly higher yield compared to the yields and withdrawal benefits. At higher thermal gradient of the underground it even is possible to dispense entirely on the heat pump and to heat directly.

  19. Geothermal energy for American Samoa

    Energy Technology Data Exchange (ETDEWEB)

    1980-03-01

    The geothermal commercialization potential in American Samoa was investigated. With geothermal energy harnessed in American Samoa, a myriad of possibilities would arise. Existing residential and business consumers would benefit from reduced electricity costs. The tuna canneries, demanding about 76% of the island's process heat requirements, may be able to use process heat from a geothermal source. Potential new industries include health spas, aquaculture, wood products, large domestic and transhipment refrigerated warehouses, electric cars, ocean nodule processing, and a hydrogen economy. There are no territorial statutory laws of American Samoa claiming or reserving any special rights (including mineral rights) to the territorial government, or other interests adverse to a land owner, for subsurface content of real property. Technically, an investigation has revealed that American Samoa does possess a geological environment conducive to geothermal energy development. Further studies and test holes are warranted.

  20. Brief introduction about radiation hygiene in Russian navy

    International Nuclear Information System (INIS)

    Li Yu; Min Rui; Pan Zhen

    2005-01-01

    During long-time radiation working practice, there have been established comprehensive radiation hygiene system of technique and regulation in Russian navy. Brief introduction about radiation hygiene in Russian navy are as follows. (authors)

  1. Geothermal energy for Hawaii: a prospectus

    Energy Technology Data Exchange (ETDEWEB)

    Yen, W.W.S.; Iacofano, D.S.

    1981-01-01

    An overview of geothermal development is provided for contributors and participants in the process: developers, the financial community, consultants, government officials, and the people of Hawaii. Geothermal energy is described along with the issues, programs, and initiatives examined to date. Hawaii's future options are explored. Included in appendices are: a technical glossary, legislation and regulations, a geothermal directory, and an annotated bibliography. (MHR)

  2. Overview of geothermal activities in Tunisia

    International Nuclear Information System (INIS)

    Ben Dhia, H.

    1990-01-01

    For Tunisia, the oil crisis and the decrease in local energy resources gave impetus to geothermal energy for potential assessment, exploration and utilization. Research undertaken showed a country with real potentialities either by its important deep aquifers or by the relatively high values of geothermal gradient and heat flow. This paper reports that it is expected that these efforts of geothermal investigation will continue in the future

  3. SPP retains interest in geothermal project

    International Nuclear Information System (INIS)

    Anon

    2007-01-01

    Slovensky plynarensky priemysel (SPP) officially indicated that it intended to drop its project of using geothermal energy in the Kosicka kotlina. This spring it published an advert that it was looking for a company that wished to acquire a majority stake in the company, Geoterm Kosice. The company was established to commercially develop this geothermal source. But it seems SPP does not want to drop the project completely. It has kept some important cards, such as control over the land where the boreholes are located Any company that wants to use geothermal energy needs a ruling issued by the Ministry of Environment defining the exploration area. Geothermal sources were found in the villages of Durkov, Svinica, Bidovce and Olsovany. Not so long ago the area was assigned to Geoterm but from May 9 the area can be explored by Slovgeoterm. Both companies have the same majority shareholder - SPP. It controls 96% of Geoterm shares and 50% of Slovgeoterm. So far it has only officially announced its intention to sell the Geoterm shares. But as far as the use of the geothermal resource is concerned since May Slovgeoterm has played a key role.The company focuses on the utilization of geothermal energy. In addition to the project in the Kosice region, it has also participated in a project to heat more than a thousand flats using geothermal water in Galanta and a project to heat greenhouses in Podhajske. There are also other geothermal projects running in Presov and Michalovce. Icelandic company, Enex, with the same specialisation controls 28% of the company and a further 20% is owned by the investment group, NEFCO based in Helsinki. Two percent of the company is owned by its general director and the general proxy of Geoterm, Otto Halas. And so without the agreement of this company no-one can start any activities related to the utilization of geothermal energy. (authors)

  4. Geothermal life cycle assessment - part 3

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, J. L. [Argonne National Lab. (ANL), Argonne, IL (United States); Frank, E. D. [Argonne National Lab. (ANL), Argonne, IL (United States); Han, J. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, A. [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, M. Q. [Argonne National Lab. (ANL), Argonne, IL (United States)

    2013-11-01

    A set of key issues pertaining to the environmental performance of geothermal electric power have been addressed. They include: 1) greenhouse gas emissions (GHG) from geothermal facilities, 2) the use of supercritical carbon dioxide (scCO2) as a geofluid for enhanced geothermal systems (EGS), 3) quantifying the impact of well field exploration on the life cycle of geothermal power, and finally 4) criteria pollutant emissions for geothermal and other electric power generation. A GHG emission rate (g/kWh) distribution as function of cumulative running capacity for California has been developed based on California and U. S. government data. The distribution is similar to a global distribution for compared geothermal technologies. A model has been developed to estimate life cycle energy of and CO2 emissions from a coupled pair of coal and EGS plants, the latter of which is powered by scCO2 captured from coal plant side. Depending on the CO2 capture rate on the coal side and the CO2 consumption rate on the EGS side, significant reductions in GHG emissions were computed when the combined system is compared to its conventional coal counterpart. In effect, EGS CO2 consumption acts as a sequestration mechanism for the coal plant. The effects CO2 emissions from the coupled system, prompt on the coal side and reservoir leakage on the EGS side, were considered as well as the subsequent decline of these emissions after entering the atmosphere over a time frame of 100 years. A model was also developed to provide better estimates of the impact of well field exploration on the life cycle performance of geothermal power production. The new estimates increase the overall life cycle metrics for the geothermal systems over those previously estimated. Finally, the GREET model has been updated to include the most recent criteria pollutant emissions for a range of renewable (including geothermal) and other power

  5. Utilising geothermal energy in Victoria

    International Nuclear Information System (INIS)

    Driscoll, Jim

    2006-01-01

    Geothermal energy is generated from the radioactive decay of naturally occurring isotopes and about 20% is generated from primordial heat associated with the formation of the earth. Geothermal project reduce energy and water cost and reduces greenhouse gas emissions

  6. Workshop 'Reducing the share of drilling in the total cost of geothermal power generation'; Workshop 'Senkung des bohrtechnischen Anteils an den geothermischen Stromgestehungskosten'

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    For a further development of geothermal power generation, technological adaptations of drilling technology will be required that will reduce the specific power generation cost. This workshop discussed the options for adaptation and the resulting cost improvements. Both technical and non-technical issues were tackled. The full-text documents of the workshop (overheads) can be downloaded at http://www.ie-leipzig.de. Subjects were: (1) Downhole engine technology; (2) New drilling equipment in consideration of geothermal requirements; (3) New drilling equipment in consideration of geothermal requirements; (4) Innovative drilling concepts/ Current cost allotment; (5) Higher efficiency in drilling with flushing adapted to drilling horizons; (6) MWD/LWD technologies of the KW industry; (7) Completion technology in geothermal plants; (8) Time and cost planning in drilling plans; (9) Cost-optimized drilling from a drilling contractor's view; (10) Requirements and obstacles in the licensing of new drilling equipment. (orig.)

  7. Japanese geothermics

    International Nuclear Information System (INIS)

    Laplaige, P.

    1995-01-01

    At the end of the seventies, the NEDO (New Energy and Industrial Technology Development Organisation) and the Central Research Institute of Electric Power Industry have started two independent projects of deep geothermics research in Honshu island (Japan). The two sites are 50 km apart of each other and the boreholes have been drilled up to 2300 and 1100 m of depth, respectively, in hot-dry moderately fractured volcanic rocks. These sites are characterized by high geothermal gradients with a rock temperature reaching 250 C at the bottom of the wells. Hydraulic circulation tests are still in progress to evaluate the profitability of these sites. (J.S.). 1 fig., 1 photo

  8. Strategies towards an optimized use of the shallow geothermal potential

    Science.gov (United States)

    Schelenz, S.; Firmbach, L.; Kalbacher, T.; Goerke, U.; Kolditz, O.; Dietrich, P.; Vienken, T.

    2013-12-01

    Thermal use of the shallow subsurface for heat generation, cooling and thermal energy storage is increasingly gaining importance in reconsideration of future energy supplies, e.g. in the course of German energy transition, with application shifting from isolated to intensive use. The planning and dimensioning of (geo-)thermal applications is strongly influenced by the availability of exploration data. Hence, reliable site-specific dimensioning of systems for the thermal use of the shallow subsurface will contribute to an increase in resource efficiency, cost reduction during installation and operation, as well as reduction of environmental impacts and prevention of resource over-exploitation. Despite large cumulative investments that are being made for the utilization of the shallow thermal potential, thermal energy is in many cases exploited without prior on-site exploration and investigation of the local geothermal potential, due to the lack of adequate and cost-efficient exploration techniques. We will present new strategies for an optimized utilization of urban thermal potential, showcased at a currently developed residential neighborhood with high demand for shallow geothermal applications, based on a) enhanced site characterization and b) simulation of different site specific application scenarios. For enhanced site characterization, surface geophysics and vertical high resolution direct push-profiling were combined for reliable determination of aquifer structure and aquifer parameterization. Based on the site characterization, different site specific geothermal application scenarios, including different system types and system configurations, were simulated using OpenGeoSys to guarantee an environmental and economic sustainable thermal use of the shallow subsurface.

  9. A guide to geothermal energy and the environment

    Energy Technology Data Exchange (ETDEWEB)

    Kagel, Alyssa; Bates, Diana; Gawell, Karl

    2005-04-22

    Geothermal energy, defined as heat from the Earth, is a statute-recognized renewable resource. The first U.S. geothermal power plant, opened at The Geysers in California in 1960, continues to operate successfully. The United States, as the world's largest producer of geothermal electricity, generates an average of 15 billion kilowatt hours of power per year, comparable to burning close to 25 million barrels of oil or 6 million short tons of coal per year. Geothermal has a higher capacity factor (a measure of the amount of real time during which a facility is used) than many other power sources. Unlike wind and solar resources, which are more dependent upon weather fluctuations and climate changes, geothermal resources are available 24 hours a day, 7 days a week. While the carrier medium for geothermal electricity (water) must be properly managed, the source of geothermal energy, the Earth's heat, will be available indefinitely. A geothermal resource assessment shows that nine western states together have the potential to provide over 20 percent of national electricity needs. Although geothermal power plants, concentrated in the West, provide the third largest domestic source of renewable electricity after hydropower and biomass, they currently produce less than one percent of total U.S. electricity.

  10. The USGS national geothermal resource assessment: An update

    Science.gov (United States)

    Williams, C.F.; Reed, M.J.; Galanis, S.P.; DeAngelo, J.

    2007-01-01

    The U. S. Geological Survey (USGS) is working with the Department of Energy's (DOE) Geothermal Technologies Program and other geothermal organizations on a three-year effort to produce an updated assessment of available geothermal resources. The new assessment will introduce significant changes in the models for geothermal energy recovery factors, estimates of reservoir volumes, and limits to temperatures and depths for electric power production. It will also include the potential impact of evolving Enhanced Geothermal Systems (EGS) technology. An important focus in the assessment project is on the development of geothermal resource models consistent with the production histories and observed characteristics of exploited geothermal fields. New models for the recovery of heat from heterogeneous, fractured reservoirs provide a physically realistic basis for evaluating the production potential of both natural geothermal reservoirs and reservoirs that may be created through the application of EGS technology. Project investigators have also made substantial progress studying geothermal systems and the factors responsible for their formation through studies in the Great Basin-Modoc Plateau region, Coso, Long Valley, the Imperial Valley and central Alaska, Project personnel are also entering the supporting data and resulting analyses into geospatial databases that will be produced as part of the resource assessment.

  11. Analysis of Low-Temperature Utilization of Geothermal Resources

    Energy Technology Data Exchange (ETDEWEB)

    Anderson, Brian

    2015-06-30

    Full realization of the potential of what might be considered “low-grade” geothermal resources will require that we examine many more uses for the heat than traditional electricity generation. To demonstrate that geothermal energy truly has the potential to be a national energy source we will be designing, assessing, and evaluating innovative uses for geothermal-produced water such as hybrid biomass-geothermal cogeneration of electricity and district heating and efficiency improvements to the use of cellulosic biomass in addition to utilization of geothermal in district heating for community redevelopment projects. The objectives of this project were: 1) to perform a techno-economic analysis of the integration and utilization potential of low-temperature geothermal sources. Innovative uses of low-enthalpy geothermal water were designed and examined for their ability to offset fossil fuels and decrease CO2 emissions. 2) To perform process optimizations and economic analyses of processes that can utilize low-temperature geothermal fluids. These processes included electricity generation using biomass and district heating systems. 3) To scale up and generalize the results of three case study locations to develop a regionalized model of the utilization of low-temperature geothermal resources. A national-level, GIS-based, low-temperature geothermal resource supply model was developed and used to develop a series of national supply curves. We performed an in-depth analysis of the low-temperature geothermal resources that dominate the eastern half of the United States. The final products of this study include 17 publications, an updated version of the cost estimation software GEOPHIRES, and direct-use supply curves for low-temperature utilization of geothermal resources. The supply curves for direct use geothermal include utilization from known hydrothermal, undiscovered hydrothermal, and near-hydrothermal EGS resources and presented these results at the Stanford

  12. Vegetation and geothermal development in the vicinity of the Takinogami geothermal field

    Energy Technology Data Exchange (ETDEWEB)

    Ohba, T

    1973-07-01

    After site studies for a new geothermal power plant at the Takinogami geothermal field, the Japan Natural Conservation Association recommended against locating the plant near the office and dormitory complexes at Matsukurasawa junction. An alternate site located about 1 km upstream on the Takinogami River was proposed. It was recommended that a buffer zone be established between the construction road and the local forest. This zone would be planted with Uwamizu cherry, Azuki pear, Tani deutia, Tamu brushwood, Clathracea, Rowan, Kobano ash and Yama (Japanese lacquer tree). A road embankment would be constructed of terraced masonry which would be landscaped with Tani deutia, Kuma raspberry, giant knotweed and mugwort. Previous development of geothermal wells in the area resulted in severe effects on the local flora. Consequently, further development was not recommended.

  13. The Future of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Kubik, Michelle [Massachusetts Inst. of Technology (MIT), Cambridge, MA (United States)

    2006-01-01

    A comprehensive assessment of enhanced, or engineered, geothermal systems was carried out by an 18-member panel assembled by the Massachusetts Institute of Technology (MIT) to evaluate the potential of geothermal energy becoming a major energy source for the United States.

  14. Did the Navy Get Taken

    Science.gov (United States)

    2015-10-01

    into a museum , the Navy decided in 2010 that none of the applications to turn it into a public display was up to par. In addition to its pivotal role in...it formerly cost the Navy a bundle to turn around the Constitution. But then the winner of the competition started to advertise that it had won... Museum , which could not do so, but, referred me to the U.S. Navy’s Public Affairs Officer for the USS Constitution. He was unable to verify the

  15. Renewable Energy Project Financing: Improved Guidance and Information Sharing Needed for DOD Project-Level Officials

    Science.gov (United States)

    2012-04-01

    certain energy related military construction projects. The Navy used this authority for its geothermal plant at Naval Air Weapons Station China Lake...electric energy generated from solar, wind, biomass, landfill gas, ocean (including tidal, wave, current, and thermal), geothermal , municipal solid...thermal; geothermal , including electricity and heat pumps; municipal solid waste; new hydroelectric generation capacity achieved from increased

  16. Geothermal today: 1999 Geothermal Energy Program highlights (Clean energy for the 21st century booklet)

    Energy Technology Data Exchange (ETDEWEB)

    Green, B.; Waggoner, T.

    2000-05-10

    The purpose of this publication is to educate and inform readers about research activities being carried out by the federal Geothermal Energy Program, and its achievements and future goals. This publication should help raise the visibility and awareness of geothermal energy contributions and potential, especially as part of the nation's clean energy technologies portfolio. The message of the publication is that program resources are being well spent and the results are real and tangible. A secondary message is that geothermal energy is a viable generation option with environmental, economic, and other benefits.

  17. Energy source completion for geothermal district heating systems

    International Nuclear Information System (INIS)

    Popovski, Kiril

    2000-01-01

    Geothermal district heating systems differs from the others mainly in the part of energy source completion and its connection to the heat distribution systems rather known problem. Even rather known problematic in the countries where geothermal energy is in wide application, new appearances of mistakes are always present due to the fact that necessary literature is difficult to be found. Essentials of the geothermal well completion and connection of geothermal source to the district heating distribution system are summarized in the paper and several examples of geothermal projects in flow are presented. (Author)

  18. Geothermal energy in Italy and abroad

    International Nuclear Information System (INIS)

    Caputo di Calvisi, C.

    2001-01-01

    Geothermal systems and fields are analysed giving particular evidence to the value of the geothermal source as an important natural source of energy. The paper analyses hydrothermal systems and describes the international experimental studies on the use of geothermal reservoirs in hot rocks with geopressured and magmatic systems. Experts are optimistic as far as the use of this innovative source of energy is possible in the medium-short term [it

  19. Advanced Percussive Drilling Technology for Geothermal Exploration and Development

    Energy Technology Data Exchange (ETDEWEB)

    Su, Jiann [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Raymond, David [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Prasad, Somuri [Sandia National Lab. (SNL-NM), Albuquerque, NM (United States); Wolfer, Dale [Atlas-Copco Secoroc LLC, Fagersta (Sweden)

    2017-06-12

    Percussive hammers are a promising advance in drilling technology for geothermal since they rely upon rock reduction mechanisms that are well-suited for use in the hard, brittle rock characteristic of geothermal formations. The project research approach and work plan includes a critical path to development of a high-temperature (HT) percussive hammer using a two phase approach. The work completed in Phase I of the project demonstrated the viability of percussive hammers and that solutions to technical challenges in design, material technology, and performance are likely to be resolved. Work completed in Phase II focused on testing the findings from Phase I and evaluating performance of the materials and designs at high operating temperatures. A high-operating temperature (HOT) drilling facility was designed, built, and used to test the performance of the DTH under extreme conditions. Results from the testing indicate that a high-temperature capable hammer can be developed and is a viable alternative for use in the driller’s toolbox.

  20. Geothermal energy for greenhouses

    Science.gov (United States)

    Jacky Friedman

    2009-01-01

    Geothermal energy is heat (thermal) derived from the earth (geo). The heat flows along a geothermal gradient from the center of the earth to the surface. Most of the heat arrives at the surface of the earth at temperatures too low for much use. However, plate tectonics ensure that some of the heat is concentrated at temperatures and depths favorable for its commercial...

  1. Geothermal energy technology

    Energy Technology Data Exchange (ETDEWEB)

    1977-01-01

    Geothermal energy research and development by the Sunshine Project is subdivided into five major categories: exploration and exploitation technology, hot-water power generation technology, volcanic power generation technology, environmental conservation and multi-use technology, and equipment materials research. The programs are being carried out by various National Research Institutes, universities, and private industry. During 1976 and 1977, studies were made of the extent of resources, reservoir structure, ground water movement, and neotectonics at the Onikobe and Hachimantai geothermal fields. Studies to be performed in the near future include the use of new prospecting methods, including artificial magnetotellurics, heat balance calculation, brightspot techniques, and remote sensing, as well as laboratory studies of the physical, mechanical, and chemical properties of rock. Studies are continuing in the areas of ore formation in geothermal environments, hot-dry-rock drilling and fracturing, large scale prospecting technology, high temperature-pressure drilling muds and well cements, and arsenic removal techniques.

  2. Geothermal energy, what technologies for what purposes?

    International Nuclear Information System (INIS)

    2008-01-01

    This book, fully illustrated and rich of concrete examples, takes stock of the different technologies implemented today to use the Earth's heat: geothermal heat pumps for domestic, tertiary and collective residential uses, geothermal district heating networks and geothermal power plants for power generation. This overview is completed by a description of the future perspectives offered by this renewable energy source in the World and in France in terms of energy independence and technological innovation: geo-cooling, hybrid systems, absorption heat pumps or stimulated geothermal systems. (J.S.)

  3. 32 CFR 700.323 - The Assistant Secretary of the Navy (Financial Management).

    Science.gov (United States)

    2010-07-01

    ... Assistants § 700.323 The Assistant Secretary of the Navy (Financial Management). The Assistant Secretary of the Navy (Financial Management) is the Comptroller of the Navy, and is responsible for all matters related to the financial management of the Department of the Navy, including: (a) Budgeting; (b...

  4. Sustainability analysis of the Ahuachapan geothermal field: management and modeling

    Energy Technology Data Exchange (ETDEWEB)

    Monterrosa, Manuel; Montalvo Lopez, Francisco E. [LaGeo S.A. de C.V., Reservoir Engineering, 15 Av. Sur, Colonia Utila, Santa Tecla, La Libertad (El Salvador)

    2010-12-15

    The Ahuachapan geothermal field (AGF) is located in north western El Salvador. To date, 53 wells (20 producers and 8 injectors) have been drilled in the Ahuachapan geothermal field and the adjacent Chipilapa area. Over the past 33 years, 550 Mtonnes have been extracted from the reservoir, and the reservoir pressure has declined by more than 15 bars. By 1985, the large pressure drawdown due to over-exploitation of the resource reduced the power generation capacity to only 45 MW{sub e}. Several activities were carried out in the period 1997-2005 as part of ''stabilization'' and ''optimization'' projects to increase the electric energy generation to 85 MW{sub e}, with a total mass extraction of 850 kg/s. LaGeo is assessing the sustainability of geothermal reservoir utilization. Preliminary results indicate the planned power production and mass extraction (95 MW, 900 kg/s) cannot be sustained for more than 50 years using current power plant technology. To sustain the exploitation for at least 100 years, the following changes should be implemented: (1) improve the gathering system using large-diameter steam pipelines, (2) expand the exploitation area to the southeast and southwest, and (3) reduce the inlet pressure of the turbines to less than 4 bars. (author)

  5. Geothermal technology in Australia: Investigating social acceptance

    International Nuclear Information System (INIS)

    Dowd, Anne-Maree; Boughen, Naomi; Ashworth, Peta; Carr-Cornish, Simone

    2011-01-01

    Issues of social acceptance, such as lack of awareness and negative community perceptions and reactions, can affect low emission energy technology development, despite general support observed for reducing carbon emissions and mitigating climate change. Negative community reactions and lack of understanding have affected geothermal developments, as demonstrated by the fearful community reactions and negative media experienced in response to seismic disturbances caused by 'hot rock' geothermal energy generation in Switzerland and Germany. Focusing on geothermal energy, this paper presents the results of using a participatory action research methodology to engage diverse groups within the Australian public. A key finding is that the majority of the Australian public report limited the knowledge or understanding of geothermal technology and have various concerns including water usage and seismic activity instigated by geothermal drilling. However, geothermal energy receives general support due to a common trend to champion renewable energy sources in preference to traditional forms of energy generation and controversial technologies. This paper also demonstrates the effectiveness of using an engagement process to explore public understanding of energy technologies in the context of climate change, and suggests a way forward for governments and industry to allocate resources for greatest impact when communicating about geothermal technology. - Highlights: → Majority of Australians have limited knowledge or understanding of geothermal technology. → Various concerns, including water usage and seismic activity instigated by drilling, were raised. → Geothermal energy has general support due to a common trend to champion renewable energy sources. → Methodology shows the effectiveness of an engagement process to explore public understanding. → Participants expressed intention to change behaviours, which can be a catalyst for change.

  6. Geothermal Reservoir Technology Research Program: Abstracts of selected research projects

    Energy Technology Data Exchange (ETDEWEB)

    Reed, M.J. (ed.)

    1993-03-01

    Research projects are described in the following areas: geothermal exploration, mapping reservoir properties and reservoir monitoring, and well testing, simulation, and predicting reservoir performance. The objectives, technical approach, and project status of each project are presented. The background, research results, and future plans for each project are discussed. The names, addresses, and telephone and telefax numbers are given for the DOE program manager and the principal investigators. (MHR)

  7. Geothermal energy utilization and technology

    CERN Document Server

    Dickson, Mary H; Fanelli, Mario

    2013-01-01

    Geothermal energy refers to the heat contained within the Earth that generates geological phenomena on a planetary scale. Today, this term is often associated with man's efforts to tap into this vast energy source. Geothermal Energy: utilization and technology is a detailed reference text, describing the various methods and technologies used to exploit the earth's heat. Beginning with an overview of geothermal energy and the state of the art, leading international experts in the field cover the main applications of geothermal energy, including: electricity generation space and district heating space cooling greenhouse heating aquaculture industrial applications The final third of the book focuses upon environmental impact and economic, financial and legal considerations, providing a comprehensive review of these topics. Each chapter is written by a different author, but to a set style, beginning with aims and objectives and ending with references, self-assessment questions and answers. Case studies are includ...

  8. Is the Philippine geothermal resource sustainable?

    International Nuclear Information System (INIS)

    Lalo, J.; Raymundo, E.

    2005-01-01

    This paper aims to illustrate the scenario in the Geothermal Energy Development Projects in the Philippines, to make the Filipino population aware that there is an existing cleaner technology available that is being utilized in Europe; for the Philippine geothermal energy project operators to adapt a cleaner production technology that has no harmful emission, hence, no pollution technology; to help end the conflict between stake holders and geothermal players through the introduction of cleaner production technology intervention. While it is a fact that the Philippines' Geothermal resource is second to U.S. or around the globe, the unwise utilization of geothermal energy may lead to depletion, hence, becomes non-renewable. It should be understood that the geothermal energy is a renewable resource only if the development process is sustainable. There is a need to educate the Filipino populace regarding a cleaner production technology as well as our government and political leaders. This cleaner production technology is a solution to the stake holders. It is of great importance to inform the Filipino people that there is an existing cleaner new technology from Europe and U.S. that is not pollutive in nature and is essentially sustainable development scheme since underground reservoirs are not depleted in the process. (author)

  9. Optimization of the exploitation system of a low enthalpy geothermal aquifer with zones of different transmissivities and temperatures

    International Nuclear Information System (INIS)

    Tselepidou, K.; Katsifarakis, K.L.

    2010-01-01

    Market penetration of renewable energy sources, such as geothermal energy, could be promoted even by small cost reductions, achieved through improved development design. This paper deals with optimization of the exploitation system of a low enthalpy geothermal aquifer, by means of the method of genetic algorithms, which has been successfully used in similar problems of groundwater resources management. With respect to water flow, the aquifer consists of two zones of different transmissivities, while from the thermal point of view it may bear any number of zones with different temperatures. The optimization process comprises the annual pumping cost of the required flow and the amortization cost of the pipe network, which carries the hot water from the wells to a central water tank, situated at the border of the geothermal field. Results show that application of the proposed methodology allows better planning of low enthalpy geothermal heating systems, which may be crucial in cases of marginal financial viability. (author)

  10. Technology assessment of geothermal energy resource development

    Energy Technology Data Exchange (ETDEWEB)

    1975-04-15

    Geothermal state-of-the-art is described including geothermal resources, technology, and institutional, legal, and environmental considerations. The way geothermal energy may evolve in the United States is described; a series of plausible scenarios and the factors and policies which control the rate of growth of the resource are presented. The potential primary and higher order impacts of geothermal energy are explored, including effects on the economy and society, cities and dwellings, environmental, and on institutions affected by it. Numerical and methodological detail is included in appendices. (MHR)

  11. Environmental impact in geothermal fields

    International Nuclear Information System (INIS)

    Birkle, P.; Torres R, V.; Gonzalez P, E.; Guevara G, M.

    1996-01-01

    Generally, water exploitation and deep steam of geothermal fields may be cause of a pollution potential on the surface, specially by the chemical composition of geothermal water which has a high concentration of minerals, salts and heavy metals. The utilization of stable isotopes as deuterium and oxygen 18 as radioactive tracers and water origin indicators allow to know the trajectories and sources of background waters as well as possible moistures between geothermal waters and meteoric waters. Some ions such as chlorides and fluorides present solubilities that allow their register as yet long distances of their source. (Author)

  12. Geothermal Program Review XI: proceedings. Geothermal Energy - The Environmental Responsible Energy Technology for the Nineties

    Energy Technology Data Exchange (ETDEWEB)

    1993-10-01

    These proceedings contain papers pertaining to current research and development of geothermal energy in the USA. The seven sections of the document are: Overview, The Geysers, Exploration and Reservoir Characterization, Drilling, Energy Conversion, Advanced Systems, and Potpourri. The Overview presents current DOE energy policy and industry perspectives. Reservoir studies, injection, and seismic monitoring are reported for the geysers geothermal field. Aspects of geology, geochemistry and models of geothermal exploration are described. The Drilling section contains information on lost circulation, memory logging tools, and slim-hole drilling. Topics considered in energy conversion are efforts at NREL, condensation on turbines and geothermal materials. Advanced Systems include hot dry rock studies and Fenton Hill flow testing. The Potpourri section concludes the proceedings with reports on low-temperature resources, market analysis, brines, waste treatment biotechnology, and Bonneville Power Administration activities. Selected papers have been indexed separately for inclusion in the Energy Science and Technology Database.

  13. Geothermal resources in the Republic of Macedonia

    International Nuclear Information System (INIS)

    Micevski, Eftim; Georgieva, Mirjana; Petrovski, Kiro; Lonchar, Ilija

    1995-01-01

    The Republic of Macedonia is situated in the central part of the Balcan Peninsula and covers a surface of 25. 713 km 2 Its territory is found in one of the most significant geothermal zones in this part of Balkans. The earths crust in this region suffers poli phase structural deformations, which as a result gives different structural features. The geothermal explorations in the Republic of Macedonia intensively started to conduct after 1970, after the first effects of the energy crisis. As a result of these explorations, more than 50 springs of mineral and thermo mineral waters with a total yield of more than 1.400 I./sec. And proved exploitation reservoirs of more than 1.000 I./sec. with temperatures higher than the medium year seasons hesitations for this part of the Earth in the boundaries of 20-75 o C with significant quantities of geothermal energy. This paper will shortly present the available geothermal resources and classification, according the type of geothermal energy, hydro geothermal, lithogeothermal and according the way of transport of the geothermal energy, convective and conductive systems. The next will present short descriptions of the resources, the degree of exploitation and the prognosis dimensions of the reservoirs. (Original)

  14. Sustainable Development of Geothermal Industry in China: An Overview

    Directory of Open Access Journals (Sweden)

    Xu Bang

    2016-01-01

    Full Text Available With a wide distribution, large reserves, low cost, sustainable energy use and environmental protection and other unparalleled advantages, geothermal energy resources is important for China’s energy structure adjustment, energy conservation and environment improvement. Currently, geothermal utilization in China is still in its infancy, and Sustainable Development of the geothermal industry is also having a lot of problems. In this paper, the current research on sustainable development of geothermal industry focuses on two aspects: 1. the current situation of geothermal industry development and existing problems, 2. the current situation of sustainable development of the geothermal industry. On the basis of the review, some suggestions for further study on the sustainable development of geothermal industry are put forward.

  15. Development of Genetic Occurrence Models for Geothermal Prospecting

    Science.gov (United States)

    Walker, J. D.; Sabin, A.; Unruh, J.; Monastero, F. C.; Combs, J.

    2007-12-01

    Exploration for utility-grade geothermal resources has mostly relied on identifying obvious surface manifestations of possible geothermal activity, e.g., locating and working near steaming ground or hot springs. This approach has lead to the development of over 130 resources worldwide, but geothermal exploration done in this manner is akin to locating hydrocarbon plays by searching for oil seeps. Confining exploration to areas with such features will clearly not discover a blind resource, that is, one that does not have surface expression. Blind resources, however, constitute the vast majority of hydrocarbon plays; this may be the case for geothermal resources as well. We propose a geothermal exploration strategy for finding blind systems that is based on an understanding of the geologic processes that transfer heat from the mantle to the upper crust and foster the conditions for hydrothermal circulation or enhanced geothermal exploration. The strategy employs a genetically based screening protocol to assess potential geothermal sites. The approach starts at the plate boundary scale and progressively focuses in on the scale of a producing electrical-grade field. Any active margin or hot spot is a potential location for geothermal resources. Although Quaternary igneous activity provides a clear indication of active advection of hot material into the upper crust, it is not sufficient to guarantee a potential utility-grade resource. Active faulting and/or evidence of high strain rates appear to be the critical features associated with areas of utility-grade geothermal potential. This is because deformation on its own can advect sufficient heat into the upper crust to create conditions favorable for geothermal exploitation. In addition, active deformation is required to demonstrate that open pathways for circulation of geothermal fluids are present and/or can be maintained. The last step in the screening protocol is to identify any evidence of geothermal activity

  16. Synergy potential for oil and geothermal energy exploitation

    DEFF Research Database (Denmark)

    Ziabakhsh-Ganji, Zaman; Nick, Hamidreza M.; Donselaar, Marinus E.

    2018-01-01

    A new solution for harvesting energy simultaneously from two different sources of energy by combining geothermal energy production and thermal enhanced heavy oil recovery is introduced. Numerical simulations are employed to evaluate the feasibility of generating energy from geothermal resources...... and feasibility analyses of the synergy potential of thermally-enhanced oil recovery and geothermal energy production are performed. A series of simulations are carried out to examine the effects of reservoir properties on energy consumption and oil recovery for different injection rates and injection temperature...... the geothermal energy could make the geothermal business case independent and may be a viable option to reduce the overall project cost. Furthermore, the results display that the enhance oil productions are able to reduce the required subsidy for a single doublet geothermal project up to 50%....

  17. Geothermal publications list for Geopowering the West States

    Energy Technology Data Exchange (ETDEWEB)

    None

    2004-12-01

    A list of geothermal publications is provided for each of the states under the ''GeoPowering the West'' program. They are provided to assist the various states in developing their geothermal resources for direct-use and electric power applications. Each state publication list includes the following: (1) General papers on various direct-uses and electric power generation available from the Geo-Heat Center either by mail or on-line at: http://geoheat.oit.edu. (2) General Geo-Heat Center Quarterly Bulletin articles related to various geothermal uses--also available either by mail or on-line; (3) Publications from other web sites such as: Geothermal-Biz.com; NREL, EGI, GEO and others ; and (4) Geothermal Resources Council citations, which are available from their web site: www.geothermal.org.

  18. Investment prospects for geothermal power in El Salvador's electricity market

    International Nuclear Information System (INIS)

    Abraham, Jun

    2006-01-01

    A mixed-integer optimizing programming model was created to simulate capacity expansion for the electricity market in El Salvador. Various demand scenarios were constructed, under which capacity expansion alternatives were tested. Results showed that possible geothermal projects were able to meet the growing energy needs of El Salvador, while yielding relatively low prices for the end-user. A best case projection for 2020 showed an increased proportion of geothermal generation in the energy mix by 6% compared to the present mix. Much of the current generating plants and planned capacity are distanced from the load center, San Salvador. In order to meet the country's increasing demand, it was found that generating capacity investment should be accompanied by transmission upgrades. Even when current conditions were simulated, transmission congestion appeared to be present. Results from some expansion scenarios showed that transmission congestion increased nodal prices despite the addition of further generating capacity

  19. Investment prospects for geothermal power in El Salvador's electricity market

    International Nuclear Information System (INIS)

    Abraham, Jun

    2006-01-01

    A mixed-integer optimizing programming model was created to simulate capacity expansion for the electricity market in El Salvador. Various demand scenarios were constructed, under which capacity expansion alternatives were tested. Results showed that possible geothermal projects were able to meet the growing energy needs of El Salvador, while yielding relatively low prices for the end-user. A best case projection for 2020 showed an increased proportion of geothermal generation in the energy mix by 6% compared to the present mix. Much of the current generating plants and planned capacity are distanced from the load center, San Salvador. In order to meet the country's increasing demand, it was found that generating capacity investment should be accompanied by transmission upgrades. Even when current conditions were simulated, transmission congestion appeared to be present. Results from some expansion scenarios showed that transmission congestion increased nodal prices despite the addition of further generating capacity. (Author)

  20. A complementary geothermal application

    International Nuclear Information System (INIS)

    Bedard, R.

    1998-01-01

    A geothermal project for air conditioning and heating at four health centres in Quebec was presented. The four health centres are: le centre Dominique-Tremblay, le centre Cardinal-Villeneuve, le centre Louis-Hebert, et le centre Francois-Charon. The investment made to install the geothermal heating and cooling system, the cost of operating the system, and energy savings resulting from the investment were discussed

  1. Bibliography: injection technology applicable to geothermal utilization

    Energy Technology Data Exchange (ETDEWEB)

    Darnell, A.J.; Eichelberger, R.L.

    1982-03-19

    This bibliography cites 500 documents that may be helpful in planning, analysis, research, and development of the various aspects of injection technology in geothermal applications. These documents include results from government research; development, demonstration, and commercialization programs; selected references from the literature; symposia; references from various technical societies and installations; reference books; reviews; and other selected material. The cited references are from (1) subject searching, using indexing, storage, and retrieval information data base of the Department of Energy's Technical Information Center's on-line retrieval system, RECON; (2) searches of references from the RECON data base, of work by authors known to be active in the field of geothermal energy research and development; (3) subject and author searches by the computerized data storage and retrieval system of Chemical Abstracts, American Chemical Society, Washington, DC; and (4) selected references from texts and reviews on this subject. Each citation includes title, author, author affiliation, date of publication, and source. The citations are listed in chronological order (most recent first) in each of the subject categories for which this search was made. The RECON accession number is also given.

  2. Hearing loss in the royal Norwegian Navy: a cross-sectional study.

    Science.gov (United States)

    Irgens-Hansen, Kaja; Sunde, Erlend; Bråtveit, Magne; Baste, Valborg; Oftedal, Gunnhild; Koefoed, Vilhelm; Lind, Ola; Moen, Bente Elisabeth

    2015-07-01

    Prior studies have indicated a high prevalence of noise-induced hearing loss (NIHL) among Navy personnel; however, it is not clear whether this is caused by work on board. The present study aimed to assess the prevalence of hearing loss among Navy personnel in the Royal Norwegian Navy (RNoN), and to investigate whether there is an association between work on board RNoN vessels and occurrence of hearing loss. Navy personnel currently working on board RNoN vessels were recruited to complete a questionnaire on noise exposure and health followed by pure tone audiometry. Hearing loss was defined as hearing threshold levels ≥25 dB in either ear at the frequencies 3,000, 4,000 or 6,000 Hz. Hearing thresholds were adjusted for age and gender using ISO 7029. The prevalence of hearing loss among Navy personnel was 31.4 %. The work exposure variables: years of work in the Navy, years on vessel(s) in the Navy and years of sailing in the Navy were associated with reduced hearing after adjusting for age, gender and otitis as an adult. Among the work exposure variables, years of sailing in the Navy was the strongest predictor of reduced hearing, and significantly reduced hearing was found at the frequencies 1,000, 3,000 and 4,000 Hz. Our results indicate that time spent on board vessels in the RNoN is a predictor of reduced hearing.

  3. A hybrid geothermal energy conversion technology: Auxiliary heating of geothermally preheated water or CO2 - a potential solution for low-temperature resources

    Science.gov (United States)

    Saar, Martin; Garapati, Nagasree; Adams, Benjamin; Randolph, Jimmy; Kuehn, Thomas

    2016-04-01

    Safe, sustainable, and economic development of deep geothermal resources, particularly in less favourable regions, often requires employment of unconventional geothermal energy extraction and utilization methods. Often "unconventional geothermal methods" is synonymously and solely used as meaning enhanced geothermal systems, where the permeability of hot, dry rock with naturally low permeability at greater depths (4-6 km), is enhanced. Here we present an alternative unconventional geothermal energy utilization approach that uses low-temperature regions that are shallower, thereby drastically reducing drilling costs. While not a pure geothermal energy system, this hybrid approach may enable utilization of geothermal energy in many regions worldwide that can otherwise not be used for geothermal electricity generation, thereby increasing the global geothermal resource base. Moreover, in some realizations of this hybrid approach that generate carbon dioxide (CO2), the technology may be combined with carbon dioxide capture and storage (CCS) and CO2-based geothermal energy utilization, resulting in a high-efficiency (hybrid) geothermal power plant with a negative carbon footprint. Typically, low- to moderate-temperature geothermal resources are more effectively used for direct heat energy applications. However, due to high thermal losses during transport, direct use requires that the heat resource is located near the user. Alternatively, we show here that if such a low-temperature geothermal resource is combined with an additional or secondary energy resource, the power production is increased compared to the sum from two separate (geothermal and secondary fuel) power plants (DiPippo et al. 1978) and the thermal losses are minimized because the thermal energy is utilized where it is produced. Since Adams et al. (2015) found that using CO2 as a subsurface working fluid produces more net power than brine at low- to moderate-temperature geothermal resource conditions, we

  4. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    International Nuclear Information System (INIS)

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference

  5. Vegetation component of geothermal EIS studies: Introduced plants, ecosystem stability, and geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1994-10-01

    This paper contributes new information about the impacts from introduced plant invasions on the native Hawaiian vegetation as consequences of land disturbance and geothermal development activities. In this regard, most geothermal development is expected to act as another recurring source of physical disturbance which favors the spread and maintenance of introduced organisms throughout the region. Where geothermal exploration and development activities extend beyond existing agricultural and residential development, they will become the initial or sole source of disturbance to the naturalized vegetation of the area. Kilauea has a unique ecosystem adapted to the dynamics of a volcanically active landscape. The characteristics of this ecosystem need to be realized in order to understand the major threats to the ecosystem and to evaluate the effects of and mitigation for geothermal development in Puna. The native Puna vegetation is well adapted to disturbances associated with volcanic eruption, but it is ill-adapted to compete with alien plant species in secondary disturbances produced by human activities. Introduced plant and animal species have become a major threat to the continued presence of the native biota in the Puna region of reference.

  6. Geothermal energy - availability - economy - prospects

    International Nuclear Information System (INIS)

    Kappelmeyer, O.

    1992-01-01

    The heat contained in the earth's crust represents an inexhaustible reservoir of energy on the technical scale, which is available at all times of day and at all seasons. In the volcanically active zones, the earth's heat is used industrially: Worldwide, the electrical power of geothermal powerstations is about 5000 MW; in addition, about 10,000 MW are used for direct thermal applications (heating) in regions with normal geothermal conditions. The geothermal power plants have been expanded at an annual rate of 12.2% since 1970. In many developing countries, the geothermal energy is the most important home source of energy for electricity generation. In Europe, in the Paris Basin, hot groundwater is pumped from a depth of about 2 km and is used for heating blocks of flats. In France as a whole, about 170,000 flats have been supplied with heat and hot water from underground for more than a decade. (orig./DG) [de

  7. 32 CFR 776.32 - Department of the Navy as client.

    Science.gov (United States)

    2010-07-01

    ... 32 National Defense 5 2010-07-01 2010-07-01 false Department of the Navy as client. 776.32 Section... Rules of Professional Conduct § 776.32 Department of the Navy as client. (a) Department of Navy as client: (1) Except when representing an individual client pursuant to paragraph (a)(6) of this section, a...

  8. Swiss geothermal energy update 1985 - 1990

    International Nuclear Information System (INIS)

    Rybach, L.; Hauber, L.

    1990-01-01

    Since 1985, geothermal R and D has evolved steadily in Switzerland. REgional low-enthalphy exploration and resource assessment are largely complete; emphasis is now on drilling and development. Vertical earth-heat exchangers (small-scale, decentralized, heat pump-coupled heating facilities) increase rapidly in number; the governmental system of risk coverage for geothermal drilling, established in 1987, gives rise to several drilling projects. Of these, a single well and a doublet have been successfully completed so far. Numerical modeling of coupled thermohydraulic processes in fracture-dominate Hot Dry Rock systems including rock-mechanics aspects, is in progress. In this paper some further efforts such as contributions to general geothermics, exploration and resource assessment activities in Switzerland, and financing of geothermal development abroad by Swiss banks are described

  9. Geothermal studies of seven interior salt domes

    International Nuclear Information System (INIS)

    1983-06-01

    This report defines and compares the geothermal environments of eight selected Gulf Coast salt domes. The thermal regimes in and around Gulf Coast salt domes are not well documented. The data base used for this study is an accumulation of bottom-hole temperature readings from oil and gas exploration wells and temperature logs run for the National Waste Terminal Storage (NWTS) program. The bottom-hole tempreatures were corrected in order to estimate the actual geothermal environments. Prior thermal studies and models indicate temperatures in and around salt domes are elevated above the norm by 1 0 F to 25 0 F. Using existing geothermal data and accepted theory, geothermal gradients for the selected domes and surrounding sediments were estimated. This study concludes that salt domes within a given basin have similar geothermal gradients, but that the basins differ in average geothermal gradients. This relationship is probably controlled by deep basement structural trends. No evidence of residual heat of emplacement was found associated with any of the selected domes

  10. Navy Ship Names: Background for Congress

    Science.gov (United States)

    2016-09-14

    Secretary considers these nominations , along with others he receives as well as his own thoughts in this matter. At appropriate times, he selects names...Research Service 16 “ nomination ” process is often fiercely contested as differing groups make the case that “their” ship name is the most fitting...and practices of the Navy for naming vessels of the Navy, and an explanation for such variances;  Assesses the feasibility and advisability of

  11. Navy Professional Reading Program: Results of the 2007 Survey

    National Research Council Canada - National Science Library

    Uriell, Zannette A; Johnson, J. S

    2008-01-01

    In 2007, the Navy instituted the Navy Professional Reading Program (NPRP), designed to empower Sailors to grow professionally by improving critical thinking and stimulating discussion through professional reading...

  12. Isotope study in geothermal fields in Java Island

    International Nuclear Information System (INIS)

    Wandowo, Z.A.

    1995-01-01

    Study in two geothermal fields, Dieng and Kamojang, in Java island by utilizing isotope technique has been carried out. Isotopic data of wells, springs and other geothermal manifestations providing informations on the recharge area of precipitation contributed to geothermal resources, flow paths and origin of geothermal fluids. The data of oxygen shift has also provided information on the characteristic the fields. (author). 8 refs, 5 figs, 3 tabs

  13. Environmental impacts of open loop geothermal system on groundwater

    Science.gov (United States)

    Kwon, Koo-Sang; Park, Youngyun; Yun, Sang Woong; Lee, Jin-Yong

    2013-04-01

    Application of renewable energies such as sunlight, wind, rain, tides, waves and geothermal heat has gradually increased to reduce emission of CO2 which is supplied from combustion of fossil fuel. The geothermal energy of various renewable energies has benefit to be used to cooling and heating systems and has good energy efficiency compared with other renewable energies. However, open loop system of geothermal heat pump system has possibility that various environmental problems are induced because the system directly uses groundwater to exchange heat. This study was performed to collect data from many documents such as papers and reports and to summarize environmental impacts for application of open loop system. The environmental impacts are classified into change of hydrogeological factors such as water temperature, redox condition, EC, change of microbial species, well contamination and depletion of groundwater. The change of hydrogeological factors can induce new geological processes such as dissolution and precipitation of some minerals. For examples, increase of water temperature can change pH and Eh. These variations can change saturation index of some minerals. Therefore, dissolution and precipitation of some minerals such as quartz and carbonate species and compounds including Fe and Mn can induce a collapse and a clogging of well. The well contamination and depletion of groundwater can reduce available groundwater resources. These environmental impacts will be different in each region because hydrogeological properties and scale, operation period and kind of the system. Therefore, appropriate responses will be considered for each environmental impact. Also, sufficient study will be conducted to reduce the environmental impacts and to improve geothermal energy efficiency during the period that a open loop system is operated. This work was supported by the Energy Efficiency and Resources of the Korea Institute of Energy Technology Evaluation and Planning

  14. Geothermal resources in Italy and world-wide: scientific debate and market evolution

    International Nuclear Information System (INIS)

    Frey, M.; Rizzi, F.

    2008-01-01

    to the distribution and characteristics of the geothermal resources. The specialization of Italy in GPG appears not to be adequately represented within European programmes and the Tuscany region is still considered not a leading market by the investors in geothermal heat pumps and geothermal district heating. Both according to the communitarian prescriptions and the requests from local actors, a few scenarios for the development of guidelines, certification schemes and regulations are here described. These elements are consistent with the purpose of sustainability and competitiveness of local economic activities. On the basis of these evidences, the third section describes the perspectives of development of medium and low enthalpy utilizations in Italy. According to the present financial incentives schemes and the predicted modifications in relevant regulations (i.e. city plans, building regulations, etc.), a booming growth of installations is expected. This geothermal green new deal is pulled by the increasing number of life-long learning programmes for professionals (i.e. geologists) and, even more, is expected to be pulled by the implementation of risk management tools and certification schemes. As result, the analysis sets a road map for addressing the needs of geothermal actors and removing the barriers to successful investing in this local and renewable energy resource. When we return to the initial question, it seems to be the moment for changing attitude towards energy production and to win back competitiveness and sustainability in the geothermal market. [it

  15. Navy Fuel Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research to understand the underlying chemistry that impacts the use, handling, and storage of current and future Navy mobility...

  16. Geothermal Technologies Program 2011 Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Hollett, Douglas [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States); Stillman, Greg [Energy Efficiency and Renewable Energy (EERE), Washington, DC (United States)

    2011-06-01

    On June 6-10, 2011, the U.S. Department of Energy (DOE), Office of Energy Efficiency and Renewable Energy (EERE), Geothermal Technologies Program (GTP or the Program) conducted its annual program peer review in Bethesda, Maryland. In accordance with the EERE Peer Review Guide, the review provides an independent, expert evaluation of the strategic goals and direction of the program and is a forum for feedback and recommendations on future program planning. The purpose of the review was to evaluate DOE-funded projects for their contribution to the mission and goals of the Program and to assess progress made against stated objectives.

  17. Multipurpose Use of Geothermal Energy

    Energy Technology Data Exchange (ETDEWEB)

    Lienau, Paul J.; Lund, John W. (eds.)

    1974-10-09

    The conference was organized to review the non-electric, multipurpose uses of geothermal energy in Hungary, Iceland, New Zealand, United States and the USSR. The international viewpoint was presented to provide an interchange of information from countries where non-electric use of geothermal energy has reached practical importance.

  18. Economic Valuation of a Geothermal Production Tax Credit

    Energy Technology Data Exchange (ETDEWEB)

    Owens, B.

    2002-04-01

    The United States (U.S.) geothermal industry has a 45-year history. Early developments were centered on a geothermal resource in northern California known as The Geysers. Today, most of the geothermal power currently produced in the U.S. is generated in California and Nevada. The majority of geothermal capacity came on line during the 1980s when stable market conditions created by the Public Utility Regulatory Policies Act (PURPA) in 1978 and tax incentives worked together to create a wave of geothermal development that lasted until the early 1990s. However, by the mid-1990s, the market for new geothermal power plants began to disappear because the high power prices paid under many PURPA contracts switched to a lower price based on an avoided cost calculation that reflected the low fossil fuel-prices of the early 1990s. Today, market and non-market forces appear to be aligning once again to create an environment in which geothermal energy has the potential to play an important role in meeting the nation's energy needs. One potentially attractive incentive for the geothermal industry is the Production Tax Credit (PTC). The current PTC, which was enacted as part of the Energy Policy Act of 1992 (EPAct) (P.L. 102-486), provides an inflation-adjusted 1.5 cent per kilowatt-hour (kWh) federal tax credit for electricity produced from wind and closed-loop biomass resources. Proposed expansions would make the credit available to geothermal and solar energy projects. This report focuses on the project-level financial impacts of the proposed PTC expansion to geothermal power plants.

  19. Federal Geothermal Research Program Update Fiscal Year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Renner, J.L.

    2001-08-15

    The Department of Energy's Geothermal Program serves two broad purposes: (1) to assist industry in overcoming near-term barriers by conducting cost-shared research and field verification that allows geothermal energy to compete in today's aggressive energy markets; and (2) to undertake fundamental research with potentially large economic payoffs. The four categories of work used to distinguish the research activities of the Geothermal Program during FY 2000 reflect the main components of real-world geothermal projects. These categories form the main sections of the project descriptions in this Research Update. Exploration Technology research focuses on developing instruments and techniques to discover hidden hydrothermal systems and to explore the deep portions of known systems. Research in geophysical and geochemical methods is expected to yield increased knowledge of hidden geothermal systems. Reservoir Technology research combines laboratory and analytical investigations with equipment development and field testing to establish practical tools for resource development and management for both hydrothermal reservoirs and enhanced geothermal systems. Research in various reservoir analysis techniques is generating a wide range of information that facilitates development of improved reservoir management tools. Drilling Technology focuses on developing improved, economic drilling and completion technology for geothermal wells. Ongoing research to avert lost circulation episodes in geothermal drilling is yielding positive results. Conversion Technology research focuses on reducing costs and improving binary conversion cycle efficiency, to permit greater use of the more abundant moderate-temperature geothermal resource, and on the development of materials that will improve the operating characteristics of many types of geothermal energy equipment. Increased output and improved performance of binary cycles will result from investigations in heat cycle research.

  20. Military Readiness: Progress and Challenges in Implementing the Navy’s Optimized Fleet Response Plan

    Science.gov (United States)

    2016-05-02

    command and control under the OFRP contributes to wide swings in port workload , which in turn can have a negative effect on the private - sector industrial...for 53 percent of all private - sector aircraft carrier maintenance contracts and 70 percent of cruiser and destroyer contracts from fiscal years...their impact on the Navy; (2) the Navy’s goals and progress in implementing the OFRP; and (3) challenges faced by public and private shipyards

  1. Geothermal heat; Energie aus der Tiefe. Geothermie

    Energy Technology Data Exchange (ETDEWEB)

    Urban, Karl

    2012-09-15

    The temperature in the interior of the earth increases with the depth. But for a long time, the geothermal energy only could be used at selected locations. Therefore, almost all major geothermal power plants are located at volcanic regions. The potential of the geothermal energy is not exhausted. Currently, many new power plants are developed. Although there is no volcanic activity in Germany, also some pilot plants develop the hot surface. The deep geothermal energy sometimes is difficult to be controlled. Before drilling experts rarely know how productive the subsoil is. Also, the drillings may trigger small earthquakes.

  2. Fiscal 1995 verification survey of geothermal exploration technology. Report on a deep geothermal resource survey; 1995 nendo chinetsu tansa gijutsu nado kensho chosa. Shinbu chinetsu shigen hokokusho

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-06-01

    For the purpose of reducing the risk of deep geothermal resource development, the paper investigated three factors for the formation of geothermal resource in the deep underground, that is, heat supply from heat source, supply of geothermal fluids, and the developmental status of fracture systems forming reservoir structures. The survey further clarified the status of existence of deep geothermal resource and the whole image of the geothermal system including shallow geothermal energy in order to research/study usability of deep geothermal resource. In the deep geothermal resource survey, drilling/examination were made of a deep geothermal exploration well (`WD-1,` target depth: approximately 3,000-4,000m) in the already developed area, with the aim of making rationalized promotion of the geothermal development. And the status of existence of deep geothermal resource and the whole image of the geothermal system were clarified to investigate/study usability of the geothermal system. In fiscal 1995, `WD-1` in the Kakkonda area reached a depth of 3,729m. By this, surveys were made to grasp the whole image of the shallow-deep geothermal system and to obtain basic data for researching usability of deep geothermal resource. 22 refs., 531 figs., 136 tabs.

  3. Geopressured-geothermal drilling and testing plan. General Crude Oil--Dept. of Energy Pleasant Bayou No. 1 well, Brazoria County, Texas

    Energy Technology Data Exchange (ETDEWEB)

    1978-05-01

    As a result of geopressured resource assessment studies in the Gulf Coast region, the Brazoria fairway, located in Brazoria County, Texas was determined to be an optimum area for additional studies. A plan is presented for drilling, completion, and testing of one geopressured-geothermal well and two disposal wells in Brazoria County, Texas. The objectives of the well drilling and testing program are to determine the following parameters: reservoir permeability, porosity, thickness, rock material properties, depth, temperature, and pressure; reservoir fluid content, specific gravity, resistivity, viscosity, and hydrocarbons in solution; reservoir fluid production rates, pressure, temperature, production decline, and pressure decline; geopressured well and surface equipment design requirements for high-volume production and possible sand production; specific equipment design for surface operations, hydrocarbons distribution, and effluent disposal; and possibilities of reservoir compaction and/or surface subsidence. (JGB)

  4. The economics of Plowshare geothermal power

    Energy Technology Data Exchange (ETDEWEB)

    Burnham, J B; Stewart, D H [Battelle-Northwest (United States)

    1970-05-15

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application.

  5. The economics of Plowshare geothermal power

    International Nuclear Information System (INIS)

    Burnham, J.B.; Stewart, D.H.

    1970-01-01

    Geothermal energy is not a new concept. Naturally occurring hot water has been used for centuries in Iceland for heating purposes. About 20% of Klamath Falls, Oregon is today heated by hot water from geothermal wells. The generation of electricity is a relatively new use for geothermal energy which has developed over the last half century. There are plants in operation in Italy, New Zealand and the U. S.; these have a total capacity of more than 700 MWe. Geothermal generation is being explored and developed today in Japan, USSR, Mexico, Nicaragua, El Salvador, and Guatemala. Whenever a favorable combination of recent magmatic intrusion and favorable groundwater conditions occurs to create the necessary steam conditions it is usually economic to build a generating plant. With fuel essentially free the plants are usually economically competitive even in small sizes. Naturally occurring geothermal steam sites are rather limited. Witness to this statement can be found in the small number of plants (less than a dozen) in operation or under construction. On the other hand, geothermal anomalies are prevalent in every one of the world's continents. The possible coupling of Plowshare with geothermal power tp produce electricity is based on the idea to use rock crushing power of nuclear device to produce large cavity filled with broken rock from which the sensible heat can be removed. This paper is based on preliminary analysis of the concept. It is recognized that a more in-depth feasibility study is required before firm conclusions can be drawn. Also, a demonstration experiment is required to prove the concept in practical application

  6. Navy Lodge Environmental Assessment

    National Research Council Canada - National Science Library

    1999-01-01

    ... only. The Proposed Action would include constructing and operating a 2-story, 50-unit Navy Lodge, with lobby, front desk, offices, housekeeping space, guest laundromat, vending area, utility rooms...

  7. Navy DDG-51 and DDG-1000 Destroyer Programs: Background and Issues for Congress

    Science.gov (United States)

    2015-12-17

    Capability Build 16 Combat System upgrade as well as testing of the AMDR minimum track range requirement against supersonic, sea- skimming ASCM threat...the Navy awarded a fixed price contract to Bath Iron Works for a steel deckhouse, hangar, and aft peripheral vertical launching system for the third...and that originally planned for the CG(X). The ships reflected in this program have been priced based on continuation of the existing DDG 51 re

  8. Symposium in the field of geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Ramirez, Miguel; Mock, John E.

    1989-04-01

    Mexico and the US are nations with abundant sources of geothermal energy, and both countries have progressed rapidly in developing their more accessible resources. For example, Mexico has developed over 600 MWe at Cerro Prieto, while US developers have brought in over 2000 MWe at the Geysers. These successes, however, are only a prologue to an exciting future. All forms of energy face technical and economic barriers that must be overcome if the resources are to play a significant role in satisfying national energy needs. Geothermal energy--except for the very highest grade resources--face a number of barriers, which must be surmounted through research and development. Sharing a common interest in solving the problems that impede the rapid utilization of geothermal energy, Mexico and the US agreed to exchange information and participate in joint research. An excellent example of this close and continuing collaboration is the geothermal research program conducted under the auspices of the 3-year agreement signed on April 7, 1986 by the US DOE and the Mexican Comision Federal de Electricidad (CFE). The major objectives of this bilateral agreement are: (1) to achieve a thorough understanding of the nature of geothermal reservoirs in sedimentary and fractured igneous rocks; (2) to investigate how the geothermal resources of both nations can best be explored and utilized; and (3) to exchange information on geothermal topics of mutual interest.

  9. Assessment of water management tools for the geothermal reservoir Waiwera (New Zealand)

    Science.gov (United States)

    Kühn, Michael; Altmannsberger, Charlotte

    2016-04-01

    Water management tools are essential to ensure the conservation of natural resources. The geothermal hot water reservoir below the village of Waiwera, on the Northern Island of New Zealand is used commercially since 1863. The continuous production of 50 °C hot geothermal water, to supply hotels and spas, has a negative impact on the reservoir. Until the year 1969 from all wells drilled the warm water flow was artesian. Due to overproduction the water needs to be pumped up nowadays. Further, within the years 1975 to 1976 the warm water seeps on the beach of Waiwera ran dry. In order to protect the reservoir and the historical and tourist site in the early 1980s a Water Management Plan was deployed. The "Auckland Regional Water Board" today "Auckland Regional Council" established guidelines to enable a sustainable management [1]. The management plan demands that the water level in the official and appropriate observation well of the council is 0.5 m above sea level throughout the year in average. Almost four decades of data (since 1978 until today) are now available [2]. The minimum water level was observed beginning of the 1980s with -1.25 m and the maximum recently with 1.6 m. The higher the production rates from the field, the lower the water level in the observation well. Highest abstraction rates reached almost 1,500 m3/day and lowest were just above 500 m3/day. Several models of varying complexity where used from purely data driven statistical to fully coupled process simulation models. In all cases the available data were used for calibration and the models were then applied for predictive purposes. We used the Nash-Sutcliffe efficiency index to quantify their predictive ability. The recommendation for the full implementation of the water management plan is the regular revision of an existing multivariate regression model which is based on the Theis well equation. Further, we suggest improving the underlying geological model of the process simulations to

  10. Geothermal Energy: Tapping the Potential

    Science.gov (United States)

    Johnson, Bill

    2008-01-01

    Ground source geothermal energy enables one to tap into the earth's stored renewable energy for heating and cooling facilities. Proper application of ground-source geothermal technology can have a dramatic impact on the efficiency and financial performance of building energy utilization (30%+). At the same time, using this alternative energy…

  11. Deep geothermal resources in Quebec and in Colombia: an area that may develop based on French experience on geothermal power plants

    International Nuclear Information System (INIS)

    Blessent, D.; Raymond, J.; Dezayes, C.

    2016-01-01

    Because of an increasing demand in electricity and a necessity of reducing greenhouse gas emissions, several countries envisage the development of the renewable energies. The geothermal energy is a particularly interesting alternative because it allows a production of electricity which is not influenced by weather conditions and it requires relatively restricted surface areas compared, for example, to the area required by a hydroelectric power plant. The literature review presented here summarizes the main characteristics of the geothermal potential in Quebec, in sedimentary basins, and in Colombia, in the area of the Nevado del Ruiz volcanic complex. Currently, in these two regions, the hydro-electric power dominates the electricity production, but there is a similar interest to the development of geothermal power plants. The French sites of Soultz-sous-Forets in Alsace and Boiling in Guadeloupe are respectively presented as an example of exploitation of geothermal improved systems (Enhanced Geothermal System; EGS) and geothermal resources in volcanic regions. The first site constitutes a model for the future development of the deep geothermal exploitation in Quebec, whereas the second is an example for Colombia. A description of environmental impacts related to the exploitation of deep geothermal resources is presented at the end of this paper. (authors)

  12. Department of Energy--Office of Energy Efficiency and Renewable Energy Geothermal Program: Geothermal Risk Mitigation Strategies Report

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2008-02-15

    An overview of general financial issues for renewable energy investments; geothermal energy investment barriers and risks; and recommendations for incentives and instruments to be considered to stimulate investment in geothermal energy development.

  13. Department of the Navy Correspondence Manual

    Science.gov (United States)

    2010-03-01

    if (name of institution) without doctoral degree) (local address) 00000-0000 Sincerely, Other Addressees An Unmarried Woman Ms. (or Miss) (full name...CONTRACT NUMBER 5b. GRANT NUMBER 5c. PROGRAM ELEMENT NUMBER 6. AUTHOR(S) 5d. PROJECT NUMBER 5e. TASK NUMBER 5f. WORK UNIT NUMBER 7. PERFORMING ...ORGANIZATION NAME(S) AND ADDRESS(ES) Office of the Secretary of the Navy,1000 Navy Pentagon Room 4D652,Washington,DC,20350-1000 8. PERFORMING

  14. Lithium Isotopes in Geothermal Fluids from Iceland

    Science.gov (United States)

    Millot, R.; Asmundsson, R.; Sanjuan, B.

    2008-12-01

    One of the main objectives of the HITI project (HIgh Temperature Instruments for supercritical geothermal reservoir characterization and exploitation), partially funded by the European Union, is to develop methods to characterize the reservoir and fluids of deep and very high temperature geothermal systems. The chemical composition of geothermal waters in terms of major and trace elements is related to the temperature, the degree of water/rock interaction and the mineralogical assemblage of the bedrock. Traditional geothermometers, such as silica, Na-K, Na-K-Ca or K-Mg applied to geothermal waters, make it possible to estimate the temperature at depth of the reservoir from which the waters are derived. However, the values estimated for deep temperature are not always concordant. The chemical geothermometer Na/Li which presents the singularity of associating two chemical elements, one a major element (sodium) and the other a trace element (Li), can be also used and gives an additional temperature estimation. The primary objective of this work was to better understand the behavior of this last geothermometer using the isotopic systematics of Li in order to apply it at very high temperature Icelandic geothermal systems. One particularly important aspect was to establish the nature, extent and mechanism of Li isotope fractionation between 100 and 350°C during water/rock interaction. For that purpose, we measured Li isotopes of about 25 geothermal waters from Iceland by using a Neptune MC-ICP-MS that enabled the analysis of Li isotopic ratios in geothermal waters with a level of precision of ±0.5‰ (2 standard deviations) on quantities of 10-50 ng of Li. Geothermal waters from Reykjanes, Svartsengi, Nesjavellir, Hveragerdi, Namafjall and Krafla geothermal systems were studied and particular emphasis was placed on the characterization of the behavior of Li isotopes in this volcanic context at high temperature with or without the presence of seawater during water

  15. Geothermal resource and utilization in Bulgaria

    International Nuclear Information System (INIS)

    Bojadgieva, K.; Benderev, A.

    2011-01-01

    Bulgarian territory is rich in thermal water of temperature in the range of 20 - 100 o C. The highest water temperature (98 o C) is measured in Sapareva banya geothermal reservoir. Electricity generation from geothermal water is not currently available in the country. The major direct thermal water use nowadays covers: balneology, space heating and air-conditioning, domestic hot water supply, greenhouses, swimming pools, bottling of potable water and geothermal ground source heat pumps (GSHP). The total installed capacity amounts to about 77.67 MW (excl. GSHP) and the produced energy is 1083.89 TJ/year. Two applications - balneology and geothermal ground source heat pumps show more stable development during the period of 2005 - 2010. The update information on the state-owned hydrothermal fields is based on issued permits and concessions by the state.

  16. Insight into the Geothermal Structure in Chingshui, Ilan, Taiwan

    Directory of Open Access Journals (Sweden)

    Lun-Tao Tong

    2008-01-01

    Full Text Available The Chingshui geothermal field is the largest known productive geothermal area in Taiwan. The purpose of this paper is to delineate this geothermal structure by integrating geophysical data and borehole information. The existence of a magma chamber in the shallow crust and shallow intrusive igneous rock results in a high heat flow and geothermal gradient; furthermore, the NE deep fault system within the meta-sandstones provides meteoric recharge from a higher elevation to artesianally drive the geothermal system. There is evidence that geothermal fluid deeply circulated within the fracture zone and was heated by a deeply located body of hot rock. The geothermal reservoir of the Chingshui geothermal field might be related to the fracture zone of the Chingshuihsi fault. It is bounded by the C-fault in the north and Xiaonanao fault in the south. Based on information obtained from geophysical interpretations and well logs, a 3-D geothermal conceptual model is constructed in this study. Further, the geothermal reservoir is confined to an area that is 260 m in width, N21°W, 1.5 km in length, and has an 80° dip toward the NE. Ahigh-temperature zone is found in the SE region of the reservoir, which is about 500 m in length; this zone is located near the intersection of the Chingshuihsi and Xiaonanao faults. An area on the NE side of the high-temperature zone has been recommended for the drilling of production wells for future geothermal development.

  17. State policies for geothermal development

    Energy Technology Data Exchange (ETDEWEB)

    Sacarto, D.M.

    1976-01-01

    The most prominent geothermal resources in the USA occur in fifteen Gulf and Western states including Alaska and Hawaii. In each state, authority and guidelines have been established for administration of geothermal leasing and for regulation of development. Important matters addressed by these policies include resource definition, leasing provisions, development regulations, water appropriation, and environmental standards. Some other policies that need attention include taxation, securities regulations, and utility regulations. It is concluded that conditions needed for the geothermal industry to pursue large-scale development are consumer (utility) confidence in the resource; equitable tax treatment; prompt exploration of extensive land areas; long and secure tenure for productive properties; prompt facility siting and development; and competitive access to various consumers. With these conditions, the industry should be competitive with other energy sectors and win its share of investment capital. This publication reviews for the states various technical, economic, and institutional aspects of geothermal development. The report summarizes research results from numerous specialists and outlines present state and Federal policies. The report concludes generally that if public policies are made favorable to their development, geothermal resources offer an important energy resource that could supply all new electric capacity for the fifteen states for the next two decades. This energy--100,000 MW--could be generated at prices competitive with electricity from fossil and nuclear power plants. An extensive bibliography is included. (MCW)

  18. Feasibility of using geothermal effluents for waterfowl wetlands

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-09-01

    This project was conducted to evaluate the feasibility of using geothermal effluents for developing and maintaining waterfowl wetlands. Information in the document pertains to a seven State area the West where geothermal resources have development potential. Information is included on physiochemical characteristics of geothermal effluents; known effects of constituents in the water on a wetland ecosystem and water quality criteria for maintaining a viable wetland; potential of sites for wetland development and disposal of effluent water from geothermal facilities; methods of disposal of effluents, including advantages of each method and associated costs; legal and institutional constraints which could affect geothermal wetland development; potential problems associated with depletion of geothermal resources and subsidence of wetland areas; potential interference (adverse and beneficial) of wetlands with ground water; special considerations for wetlands requirements including size, flows, and potential water usage; and final conclusions and recommendations for suitable sites for developing demonstration wetlands.

  19. Geothermal energy prospecting in El Salvador

    International Nuclear Information System (INIS)

    Balcazar, M.; Flores, J.H.; Gonzalez, E.; Ortega, M.

    1993-01-01

    Geochronological and geological studies carried out in El Salvador C. A., located a production geothermal zone to the north of the volcanic belt, in a region named Ahuachapan-Chipilapa. Hydrothermal activity and geochemical analysis indicate the existence of active geothermal faults aligned to the directions South-North and Northwest-Southeast. Radon mapping in that region covered a total of 8.7 km 2 where plastic detectors were placed 200 m apart. Results confirmed the existence of active faults and two producing geothermal wells were located. (author)

  20. Quantifying the undiscovered geothermal resources of the United States

    Science.gov (United States)

    Williams, Colin F.; Reed, Marshall J.; DeAngelo, Jacob; Galanis, S. Peter

    2009-01-01

    In 2008, the U.S. Geological Survey (USGS) released summary results of an assessment of the electric power production potential from the moderate- and high-temperature geothermal resources of the United States (Williams et al., 2008a; USGS Fact Sheet 2008-3082; http://pubs.usgs.gov/fs/2008/3082). In the assessment, the estimated mean power production potential from undiscovered geothermal resources is 30,033 Megawatts-electric (MWe), more than three times the estimated mean potential from identified geothermal systems: 9057 MWe. The presence of significant undiscovered geothermal resources has major implications for future exploration and development activities by both the government and private industry. Previous reports summarize the results of techniques applied by the USGS and others to map the spatial distribution of undiscovered resources. This paper describes the approach applied in developing estimates of the magnitude of the undiscovered geothermal resource, as well as the manner in which that resource is likely to be distributed among geothermal systems of varying volume and temperature. A number of key issues constrain the overall estimate. One is the degree to which characteristics of the undiscovered resources correspond to those observed among identified geothermal systems. Another is the evaluation of exploration history, including both the spatial distribution of geothermal exploration activities relative to the postulated spatial distribution of undiscovered resources and the probability of successful discoveries from the application of standard geothermal exploration techniques. Also significant are the physical, chemical, and geological constraints on the formation and longevity of geothermal systems. Important observations from this study include the following. (1) Some of the largest identified geothermal systems, such as The Geysers vapor-dominated system in northern California and the diverse geothermal manifestations found in Yellowstone

  1. The Role of the Royal Navy in Counter-Insurgency Campaigns since 1945

    OpenAIRE

    Guoth, Maroš

    2014-01-01

    The aim of this work is to prove that a navy can play an important role during a counter-insurgency campaign and be involved in many different tasks both at sea and from sea, particularly due to its flexibility, mobility and versatility. The main research question of the thesis is: what role can a navy play in a counter-insurgency campaign? The decision to focus on the role of the Royal Navy is based on the fact, that the Royal Navy is probably the most experienced navy in the world in the fi...

  2. Geothermal and environment

    International Nuclear Information System (INIS)

    1993-01-01

    The production of geothermal-electric energy, presents relatively few contamination problems. The two bigger problems associated to the geothermal production are the disposition of waste fluids and the discharges to the atmosphere of non-condensable gases as CO 2 , H 2 O and NH 3 . For both problems the procedures and production technologies exist, like it is the integral use of brines and gases cleaning systems. Other problems consist on the local impact to forest areas for the effect of the vapor discharge, the contamination for noise, the contamination of aquifer shallow and the contamination related with the construction and termination of wells

  3. Geothermal Progress Monitor, report No. 13

    Energy Technology Data Exchange (ETDEWEB)

    1992-02-01

    Geothermal Progress Monitor (GPM) Issue No. 13 documents that most related factors favor the growth and geographic expansion of the US geothermal industry and that the industry is being technologically prepared to meet those challenges into the next century. It is the function of GPM to identify trends in the use of this resource and to provide a historical record of its development pathway. The information assembled for this issue of GPM indicates that trends in the use of geothermal energy in this country and abroad continue to be very positive. Favorable sentiments as well as pertinent actions on the part of both government and industry are documented in almost every section. The FEDERAL BEAT points up that the National Energy Strategy (NES) developed at the highest levels of the US government recognizes the environmental and energy security advantages of renewable energy, including geothermal, and makes a commitment to substantial diversification'' of US sources of energy. With the announcement of the construction of several new plants and plant expansions, the INDUSTRY SCENE illustrates industry's continued expectation tha the use of geothermal energy will prove profitable to investors. In DEVELOPMENT STATUS, spokesmen for both an investor-owned utility and a major geothermal developer express strong support for geothermal power, particularly emphasizing its environmental advantages. DEVELOPMENT STATUS also reports that early successes have been achieved by joint DOE/industry R D at The Geysers which will have important impacts on the future management of this mature field. Also there is increasing interest in hot dry rock. Analyses conducted in support of the NES indicate that if all the postulated technology developments occur in this field, the price of energy derived from hot dry rock in the US could drop.

  4. Navy Force Structure: A Bigger Fleet Background and Issues for Congress

    Science.gov (United States)

    2016-11-09

    Littoral Combat Ships 52 n/a 52 to 82 59 56 +4 Amphibious ships 34 41f n/a 31 to 41 39 38 +4 Mine warfare ships 0 26 n/a 0 to 26 0 0 — Combat...Group (ARG), and mine warfare ships in Japan, and additional Navy ships are forward homeported elsewhere in the Pacific theater, at Bahrain in the...homeporting a carrier group in Greece , at the port of Piraeus, near Athens. Following a military coup in Greece , the United States canceled the plan to

  5. NEDO Forum 2001. Session on development of geothermal energy (Prospect of geothermal energy); NEDO Forum 2001. Chinetsu kaihatsu session (chinetsu energy no tenbo)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-09-20

    The presentations made at the above-named session of the NEDO (New Energy and Industrial Technology Development Organization) forum held in Tokyo on September 20, 2001, are collected in this report. Director Noda of Institute for Geo-Resources and Environment, National Institute of Advanced Industrial Science and Technology, delivered a lecture entitled 'Future course of geothermal technology development,' and Executive Director Iikura of Tokyo Toshi Kaihatsu, Inc., a lecture entitled 'Thinking of geothermal energy.' Described in an achievement report entitled 'Present state and future trend of geothermal development' were the present state of geothermal power generation and characteristics of geothermal energy, signification of the introduction of binary cycle power generation, and the promotion of the introduction of ground heat utilizing heat pump systems. Stated in a lecture entitled 'Geothermal development promotion survey' were the geothermal development promotion survey and its result and how to implement such surveys in the future. Reported in a lecture entitled 'Verification survey of geothermal energy probing technology and the like and the development of geothermal water utilizing power plant and the like' were reservoir fluctuation probing, deep-seated thermal resource probing and collecting, 10-MW class demonstration plant, Measurement While Drilling System, and a hot rock power generation system. (NEDO)

  6. Goechemical and Hydrogeochemical Properties of Cappadocia Geothermal Province

    Science.gov (United States)

    Furkan Sener, Mehmet; Sener, Mehmet; Uysal, Tonguc

    2016-04-01

    In order to determine the geothermal resource potential of Niǧde, Nevşehir and Aksaray provinces in Central Anatolian Volcanic Province (CAVP), geothermal fluids, surface water, and alteration rock samples from the Cappadocia volcanic zone in Turkey were investigated for their geochemical and stable isotopic characteristics in light of published geological and tectonic studies. Accordingly, the Cappadocia Geothermal Province (CGP) has two different geothermal systems located along tectonic zones including five active and two potential geothermal fields, which are located between Tuzgölü Fault Zone and Keçiboyduran-Melendiz Fault and north of Keçiboyduran-Melendiz Fault. Based on water chemistry and isotope compositions, samples from the first area are characterized by Ca-Mg-HCO3 ve Ca-HCO3 type mineral poor waters and Ca-Na-SO4 and Ca-Mg-SO4 type for the cold waters and the hot waters, respectively, whereas hot waters from the second area are Na-Cl-HCO3 and Ca-Na-HCO3 type mineral poor waters. According to δ18O and δ2H isotope studies, the geothermal waters are fed from meteoric waters. Results of silica geothermometer indicate that the reservoir temperature of Dertalan, Melendiz Mount, Keçiboyduran Mount, Hasan Mount (Keçikalesi), Ziga, Acıgöl, and Derinkuyu geothermal waters are 150-173 oC, 88-117 oC, 91-120 oC, 94-122 oC, 131-156 oC, 157-179 oC; 152-174 oC and 102-130 oC, respectively. The REE composition of geothermal fluids, surface water, and mineral precipitates indicate that temperature has a strong effect on REE fractionation of the sampled fluids. Eu- and Ce- anomalies (Eu/Eu*, Ce/Ce*) are visible in several samples, which are related to the inheritance from the host reservoir rocks and redox-controlled fractionation of these elements during water-rock interactions. REE and Yttrium geochemistry results of altered rock samples and water samples, which were taken from same locations exhibited quite similar features in each system. Hence, it was

  7. Numerical investigation of the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir: a case study of the Daming geothermal field in China.

    Science.gov (United States)

    Guo, Xuyang; Song, Hongqing; Killough, John; Du, Li; Sun, Pengguang

    2018-02-01

    The utilization of geothermal energy is clean and has great potential worldwide, and it is important to utilize geothermal energy in a sustainable manner. Mathematical modeling studies of geothermal reservoirs are important as they evaluate and quantify the complex multi-physical effects in geothermal reservoirs. However, previous modeling efforts lack the study focusing on the emission reduction efficiency and the deformation at geothermal wellbores caused by geothermal water extraction/circulation. Emission efficiency is rather relevant in geothermal projects introduced in areas characterized by elevated air pollution where the utilization of geothermal energy is as an alternative to burning fossil fuels. Deformation at geothermal wellbores is also relevant as significant deformation caused by water extraction can lead to geothermal wellbore instability and can consequently decrease the effectiveness of the heat extraction process in geothermal wells. In this study, the efficiency of emission reduction and heat extraction in a sedimentary geothermal reservoir in Daming County, China, are numerically investigated based on a coupled multi-physical model. Relationships between the efficiency of emission reduction and heat extraction, deformation at geothermal well locations, and geothermal field parameters including well spacing, heat production rate, re-injection temperature, rock stiffness, and geothermal well placement patterns are analyzed. Results show that, although large heat production rates and low re-injection temperatures can lead to decreased heat production in the last 8 years of heat extraction, they still improve the overall heat production capacity and emission reduction capacity. Also, the emission reduction capacity is positively correlated with the heat production capacity. Deformation at geothermal wellbore locations is alleviated by smaller well spacing, lower heat production rates, and smaller numbers of injectors in the well pattern, and by

  8. Computational modeling of shallow geothermal systems

    CERN Document Server

    Al-Khoury, Rafid

    2011-01-01

    A Step-by-step Guide to Developing Innovative Computational Tools for Shallow Geothermal Systems Geothermal heat is a viable source of energy and its environmental impact in terms of CO2 emissions is significantly lower than conventional fossil fuels. Shallow geothermal systems are increasingly utilized for heating and cooling of buildings and greenhouses. However, their utilization is inconsistent with the enormous amount of energy available underneath the surface of the earth. Projects of this nature are not getting the public support they deserve because of the uncertainties associated with

  9. Geothermal Energy: Evaluation of a Resource

    Science.gov (United States)

    Bockemuehl, H. W.

    1976-01-01

    This article suggests the use of geothermal energy for producing electricity, using as an example the development at Wairakei, New Zealand. Other geothermal areas are identified, and economic and environmental co sts of additional development are explored. (Author/AV)

  10. Assessment of geothermal resources of the United States, 1978

    Energy Technology Data Exchange (ETDEWEB)

    Muffler, L.J.P. (ed.)

    1979-01-01

    The geothermal resource assessment presented is a refinement and updating of USGS Circular 726. Nonproprietary information available in June 1978 is used to assess geothermal energy in the ground and, when possible, to evaluate the fraction that might be recovered at the surface. Five categories of geothermal energy are discussed: conduction-dominated regimes, igneous-related geothermal systems, high-temperature (> 150/sup 0/C) and intermediate-temperature (90 to 150/sup 0/C) hydrothermal convection systems, low-temperature (< 90/sup 0/C) geothermal waters, and geopressured-geothermal energy (both thermal energy and energy from dissolved methane). Assessment data are presented on three colored maps prepared in cooperation with the National Oceanic and Atmospheric Administration. Separate abstracts were prepared for papers on these five categories.

  11. Efficient Mechanisms to Allocate Assignment Incentives in the Navy

    National Research Council Canada - National Science Library

    Nimon, R. W; Hall, Ricky D; Zaki, Hossam

    2005-01-01

    .... All assignments, however, may not necessarily be voluntary. These assignments (jobs) have been labeled as "hard to fill" by Navy leadership, and the Navy has implemented market-based, cash stipends to attract Sailors to these jobs...

  12. Minutes of the conference 'Geothermal energy in Asia '98'. Symposium on the current status and the future of developing geothermal energy in Asia

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-10-22

    This paper summarizes the proceedings presented at the 'Geothermal energy in Asia '98' held on October 22, 1998 in the Philippines. The Philippines, Japan, Indonesia, China, Malaysia, and Vietnam presented proceedings on the current status and the future of developing geothermal energy in each country. Technical theses presented relate to the following matters: a geothermal development model in the Khoy geothermal area in Iran, the result of surveys on promotion of geothermal development in Japan, the thermal fluid sources in the geothermal fluid systems in the Hachijo volcanic island in Japan, strategies for heat reservoir management by using numerical simulation in the Hacchobari geothermal area in Japan, a geological model for the north Negros geothermal area in the center of the Philippines, application of the NEDO rock core analyzing method in the Wasabizawa geothermal development area in Japan, measurements of geomagnetism, geocurrent, and gravity in the north Negros in the center of the Philippines, geophysical studies in geothermal exploration in the Mataloko area in the Nustenggara island in the eastern Indonesia, and the background of magma/crust structure in the geothermal systems. (NEDO)

  13. Diagenetic effect on permeabilities of geothermal sandstone reservoirs

    DEFF Research Database (Denmark)

    Weibel, Rikke; Olivarius, Mette; Kristensen, Lars

    The Danish subsurface contains abundant sedimentary deposits, which can be utilized for geothermal heating. The Upper Triassic – Lower Jurassic continental-marine sandstones of the Gassum Formation has been utilised as a geothermal reservoir for the Thisted Geothermal Plant since 1984 extracting...... and permeability is caused by increased diagenetic changes of the sandstones due to increased burial depth and temperatures. Therefore, the highest water temperatures typically correspond with the lowest porosities and permeabilities. Especially the permeability is crucial for the performance of the geothermal......-line fractures. Continuous thin chlorite coatings results in less porosity- and permeability-reduction with burial than the general reduction with burial, unless carbonate cemented. Therefore, localities of sandstones characterized by these continuous chlorite coatings may represent fine geothermal reservoirs...

  14. Geothermal rice drying unit in Kotchany, Macedonia

    International Nuclear Information System (INIS)

    Popovski, K.; Dimitrov, K.; Andrejevski, B.; Popovska, S.

    1992-01-01

    A geothermal field in Kotchany (Macedonia) has very advantageous characteristics for direct application purposes. Low content of minerals, moderate temperature (78C) and substantial available geothermal water flow (up to 300 1/s) enabled the establishment of a district heating scheme comprising mainly agricultural and industrial uses. A rice drying unit of 10 t/h capacity was installed 8 years ago, using the geothermal water as the primary heat source. A temperature drop of 75/50C enables the adaptation of conventional drying technology, already proven in practice in the surrounding rice growing region. Water to air heat exchanger and all necessary equipment and materials are of local production, made of copper and carbon steel. The use of such drying units is strongly recommended for the concrete district heating scheme because it offers a very simple geothermal application and enables improvement in the annual heating load factor without high investments in geothermal water distribution lines

  15. Renewable Energy Essentials: Geothermal

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2010-07-01

    Geothermal energy is energy available as heat contained in or discharged from the earth's crust that can be used for generating electricity and providing direct heat for numerous applications such as: space and district heating; water heating; aquaculture; horticulture; and industrial processes. In addition, the use of energy extracted from the constant temperatures of the earth at shallow depth by means of ground source heat pumps (GSHP) is also generally referred to as geothermal energy.

  16. Potential for enhanced geothermal systems in Alberta, Canada

    International Nuclear Information System (INIS)

    Hofmann, Hannes; Weides, Simon; Babadagli, Tayfun; Zimmermann, Günter; Moeck, Inga; Majorowicz, Jacek; Unsworth, Martyn

    2014-01-01

    The province of Alberta has a high demand of thermal energy for both industrial and residential applications. Currently, the vast majority of the heat used in these applications is obtained by burning natural gas. Geothermal energy production from deep aquifer systems in the sedimentary basin could provide an alternative sustainable source of heat that would significantly reduce greenhouse gas emissions. To date there has been no geothermal field development in Alberta because the average geothermal gradient was considered to be too low for economic geothermal energy generation. However, with new technologies for Enhanced Geothermal Systems (EGS), it may be possible to develop geothermal resources from the sedimentary rocks in the Western Canadian Sedimentary Basin (WCSB). A numerical feasibility study based on a regional geological model and existing and newly gained data was conducted to identify scenarios for geothermal energy production in the region. In central Alberta, three Devonian carbonate formations (Cooking Lake, Nisku, Wabamun) and the Cambrian Basal Sandstone Unit were identified as the highest geothermal potential zones. Thermal-hydraulic reservoir simulations for a 5 km × 5 km site in the city of Edmonton were performed to evaluate reservoir development concepts for these four potential target formations; therefore, hydraulic fracturing treatments were also simulated. Different utilization concepts are presented for possible applications of geothermal energy generation in residential, industrial and agricultural areas. The Cooking Lake formation and the Basal Sandstone Unit are potentially the most promising reservoirs because the most heat can be extracted and the applications for the heat are widespread although the costs are higher than utilizing the shallower formations. Reservoir stimulation considerably improves the economics in all formations

  17. Effective Geothermal Utilisation close to the surface by the TT-Geothermal Radial Drilling (GRD-Method

    Directory of Open Access Journals (Sweden)

    Hans-Joachim Bayer

    2007-01-01

    Full Text Available In the late 1970-Years, Tracto-Technik developped a very effective radial-shaped percussion system for a geothermal heating, the ECOtherm-System, which was very well accepted by customers. Nowadays, a radial-shaped drilling system, operating some decameters below the surface, was developped by Tracto-Technik, which offers the chance of a very effective drilling for the use of geothermal energy. The main advantage of this development is the reduction of drilling costs by new constructions and new handling possibilities. Drilling processes like the rod connecting or the drill-hole enlargement were solved in other ways as usual, by very time-shortening and effective ways, which are presented in the paper. The new TT-Geothermal radial drilling methods need only a very small but highly effective drilling unit, which reduces the operational drilling cost in a enormous way. All operational drilling steps are reduced to less than a half time as usual. By these GRD-methods, the use of surface-close geothermal energy is simplified and less expansive.

  18. Missing a trick in geothermal exploration

    Science.gov (United States)

    Younger, Paul L.

    2014-07-01

    Expansion of geothermal energy use across the globe is restricted by out-of-date prejudices. It is time for geothermal exploration to be extended to a broader range of environments and rejuvenated with the latest insights from relevant geoscience disciplines.

  19. Study deep geothermal energy; Studie dypgeotermisk energi

    Energy Technology Data Exchange (ETDEWEB)

    Havellen, Vidar; Eri, Lars Sigurd; Andersen, Andreas; Tuttle, Kevin J.; Ruden, Dorottya Bartucz; Ruden, Fridtjof; Rigler, Balazs; Pascal, Christophe; Larsen, Bjoern Tore

    2012-07-01

    The study aims to analyze the potential energy with current technology, challenges, issues and opportunities for deep geothermal energy using quantitative analysis. It should especially be made to identify and investigate critical connections between geothermal potential, the size of the heating requirements and technical solutions. Examples of critical relationships may be acceptable cost of technology in relation to heating, local geothermal gradient / drilling depth / temperature levels and profitability. (eb)

  20. A Study on the Efficiency Improvement of Multi-Geothermal Heat Pump Systems in Korea Using Coefficient of Performance

    Directory of Open Access Journals (Sweden)

    Young-Ju Jung

    2016-05-01

    Full Text Available The Korean government is fostering a renewable energy industry as a means of handling the energy crisis. Among the renewable energy systems available, geothermal energy has been highlighted as highly efficient, safely operable and relatively unaffected by outdoors air conditions. Despite the increasing use of renewable energy, the devices using renewables may not be operating appropriately. This study examined current problems in the operation of a geothermal heat pump (GHP system. The efficiency of a geothermal heat pump system to studied to maximize the operation plan. Our study modelled the target building and analyzed the energy using TRNSYS, which is a dynamic energy simulation tool, to apply the coefficient of performance (COP and evaluate the operation method. As a result, the GHP total energy consumption from the COP control method was reduced by 46% compared to the current operation. The proposed control method was evaluated after applying the system to a building. The results showed that efficient operation of a geothermal heat pump system is possible.

  1. The impact of turn around time in Brazilian Navy inventories

    OpenAIRE

    Casagrande, Mauricio

    2000-01-01

    Approved for public release; distribution is unlimited. This thesis analyzes how the operation of helicopters produced and supported by manufacturers in various countries affect Brazilian Navy repairable inventories levels and costs. The research is based on a scenario where the Brazilian Navy operates 68 helicopters, manufactured by contractors in USA, France, England and Italy, and the Brazilian Navy relies on these manufacturers for depot-level maintenance. We develop a simulation model...

  2. Aerated drilling cutting transport analysis in geothermal well

    Science.gov (United States)

    Wakhyudin, Aris; Setiawan, Deni; Dwi Marjuan, Oscar

    2017-12-01

    Aeratad drilling widely used for geothermal drilling especially when drilled into predicted production zone. Aerated drilling give better performance on preventing lost circulation problem, improving rate of penetration, and avoiding drilling fluid invasion to productive zone. While well is drilled, cutting is produced and should be carried to surface by drilling fluid. Hole problem, especially pipe sticking will occur while the cutting is not lifted properly to surface. The problem will effect on drilling schedule; non-productive time finally result more cost to be spent. Geothermal formation has different characteristic comparing oil and gas formation. Geothermal mainly has igneous rock while oil and gas mostly sedimentary rock. In same depth, formation pressure in geothermal well commonly lower than oil and gas well while formation temperature geothermal well is higher. While aerated drilling is applied in geothermal well, Igneous rock density has higher density than sedimentary rock and aerated drilling fluid is lighter than water based mud hence minimum velocity requirement to transport cutting is larger than in oil/gas well drilling. Temperature and pressure also has impact on drilling fluid (aerated) density. High temperature in geothermal well decrease drilling fluid density hence the effect of pressure and temperature also considered. In this paper, Aerated drilling cutting transport performance on geothermal well will be analysed due to different rock and drilling fluid density. Additionally, temperature and pressure effect on drilling fluid density also presented to merge.

  3. Geothermal Energy Utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L (Geo-Heat Center, Oregon Institute of Technology, Klamath Falls, OR); Sifford, Alex (Sifford Energy Services, Neskowin, OR); Bloomquist, R. Gordon (Washington State University Energy Program, Olympia, WA)

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  4. Geothermal energy utilization in the United States - 2000

    Energy Technology Data Exchange (ETDEWEB)

    Lund, John W.; Boyd, Tonya L.; Sifford, Alex; Bloomquist, R. Gordon

    2000-01-01

    Geothermal energy is used for electric power generation and direct utilization in the United States. The present installed capacity for electric power generation is 3,064 MWe with only 2,212 MWe in operation due to reduction at The Geysers geothermal field in California; producing approximately16,000 GWh per year. Geothermal electric power plants are located in California, Nevada, Utah and Hawaii. The two largest concentrations of plants are at The Geysers in northern California and the Imperial Valley in southern California. The direct utilization of geothermal energy includes the heating of pools and spas, greenhouses and aquaculture facilities, space heating and district heating, snow melting, agricultural drying, industrial applications and ground-source heat pumps. The installed capacity is 4,000 MWt and the annual energy use is 20,600 billion Btu (21,700 TJ - 6040 GWh). The largest applications is groundsource (geothermal) heat pumps (59% of the energy use), and the largest direct-use is in aquaculture. Direct utilization is increasing at about six percent per year; whereas, electric power plant development is almost static. Geothermal energy is a relatively benign energy source, displaying fossil fuels and thus, reducing greenhouse gas emissions. A recent initiative by the U.S. Department of Energy, “Geo-Powering the West,” should stimulate future geothermal development. The proposal is especially oriented to small-scale power plants with cascaded uses of the geothermal fluid for direct applications.

  5. Geothermal energy and its application opportunities in Serbia

    Directory of Open Access Journals (Sweden)

    Andrić Nenad M.

    2015-01-01

    Full Text Available Geothermal energy is accumulated heat in the fluid and rock masses in the Earth 's crust. The natural decay of radioactive elements (uranium, thorium and potassium in rocks produces heat energy. The simplest use of geothermal energy for heating is by heat pump. Geothermal energy can be used for production of electricity. It uses hot water and steam from the earth to run the generator. Serbia has significant potential for geothermal energy. The total amount of accumulated heat in geothermal resources in a depth of 3 km is two times higher than the equivalent thermal energy that could be obtained by burning all types of coal from all their sites in Serbia! The total abundance of geothermal resources in Serbia is 4000 l/s. Abundance of wells in Vojvodina is 10-20 l/s, and the temperature is from 40 to 60°C. Exploitation of thermal waters in Mačva could cause heating of following cities: Bogatić, Šabac, Sremska Mitrovica and Loznica, with a total population of 150.000 people. The richest hydrogeothermal resources are in Mačva, Vranje and Jošanička Banja. Using heat pumps, geothermal water can be exploited on the entire territory of Serbia! Although large producer, Serbia is importing food, ie., fruits and vegetables. With the construction of greenhouses, which will be heated with geothermal energy, Serbia can become an exporting country.

  6. Geothermal well log interpretation state of the art. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Sanyal, S.K.; Wells, L.E.; Bickham, R.E.

    1980-01-01

    An in-depth study of the state of the art in Geothermal Well Log Interpretation has been made encompassing case histories, technical papers, computerized literature searches, and actual processing of geothermal wells from New Mexico, Idaho, and California. A classification scheme of geothermal reservoir types was defined which distinguishes fluid phase and temperature, lithology, geologic province, pore geometry, salinity, and fluid chemistry. Major deficiencies of Geothermal Well Log Interpretation are defined and discussed with recommendations of possible solutions or research for solutions. The Geothermal Well Log Interpretation study and report has concentrated primarily on Western US reservoirs. Geopressured geothermal reservoirs are not considered.

  7. Geothermal direct-heat utilization assistance. Quarterly report, October--December 1996

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-12-31

    This report summarizes geothermal technical assistance, R&D and technology transfer activities of the Geo-Heat Center at Oregon Institute of Technology for the first quarter of FY-97. It describes 174 contracts with parties during this period related to technical assistance with geothermal direct heat projects. Areas dealt with include geothermal heat pumps, space heating, greenhouses, aquaculture, equipment, economics and resources. Research activities are summarized on greenhouse peaking. Outreach activities include the publication of a geothermal direct use Bulletin, dissemination of information, geothermal library, technical papers and seminars, and progress monitor reports on geothermal resources and utilization.

  8. Geothermal investigations in Slovenia

    Directory of Open Access Journals (Sweden)

    Danilo Ravnik

    1991-12-01

    Full Text Available The paper presents the methodology and the results of geothermal investigations, based on seventy-two boreholes in the territory of the Republic of Slovenia.The data of fundamental geothermal quantities: formation temperature, thermal conductivity, and radiogenic heat production of rocks as well as surface heat flow density are stored in a computerized data base. Their synthesis is given in the map of formation temperatures at 1000 m depth and in the map of surface heat flow density. In both maps the thermal difference between the Pannonian basin in theeastern and the Dinarides in the western part of Slovenia is clearly expressed.However, in the boundary area between these two tectonic units, for a distance of about 100 km in SW-NE direction, elevated horizontal gradients of formation temperature as well as heat flow density are evident. A small positive thermal anomaly in the Ljubljana depression is conspicuous.The low-temperature geothermal resources in Slovenia such as thermalsprings and thermal water from boreholes, are estimated to have a flow rate of 1120 kg/s, corresponding to the ideal total heat production of 144 MWt. In the geothermally promising areas amounting to 3200 km2 the rate of accessible resource base (ARB down to the depth of 3 km has been assessed to about 8.5 x lO 20» J.

  9. Geothermal progress monitor: Report Number 19

    International Nuclear Information System (INIS)

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included

  10. Geothermal progress monitor: Report Number 19

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1997-12-01

    Short articles are presented related to activities in the federal government and the geothermal industry, international developments, state and local government activities, technology development, and technology transfer. Power plant tables and a directory of organizations involved in geothermal resource development are included.

  11. Where is Argentina going in geothermal energy

    Energy Technology Data Exchange (ETDEWEB)

    Mange, J

    1977-01-01

    A brief review is given of geothermal exploration and development in Argentina. Methodical efforts to inventory the geothermal resources of the country were begun in 1974. The Commission set itself the task of locating the geothermal anomalies and then selecting particular anomalies for intensive exploration in order to confirm or discard the possibilities of exploiting the resource. The known principal anomalies are listed and the two selected for intensive exploration are indicated. (JSR)

  12. New Geothermal Prospect in North-Eastern Morocco

    OpenAIRE

    Rimi, Abdelkrim; Correia, António; Carneiro, Júlio; Verdoya, Massimo; Zarhloule, Yassine; Lucazeau, Francis; Boughriba, Mimoun; Barkaoui, Alae Eddine

    2010-01-01

    Geothermal data has been indicating promising potentialities in the north-eastern Morocco. This paperpresents new temperature data, recently recorded in water borehole located in the Berkane and Oujda areas. Generally, the observed temperature gradients are rather high. One hole near Berkane, revealed an average geothermal gradient of more than 110 ºC/km at depths greater than 300 m. This result confirms the geothermal gradient estimated in a mining borehole located about 30 km west ...

  13. 1978 annual report, INEL geothermal environmental program

    Energy Technology Data Exchange (ETDEWEB)

    Spencer, S.G.; Sullivan, J.F.; Stanley, N.E.

    1979-04-01

    The objective of the Raft River Geothermal Environmental Program, in its fifth year, is to characterize the beneficial and detrimental impacts resulting from the development of moderate-temperature geothermal resources in the valley. This report summarizes the monitoring and research efforts conducted as part of this program in 1978. The results of these monitoring programs will be used to determine the mitigation efforts required to reduce long-term impacts resulting from geothermal development.

  14. Geothermal engineering fundamentals and applications

    CERN Document Server

    Watson, Arnold

    2013-01-01

    This book explains the engineering required to bring geothermal resources into use. The book covers specifically engineering aspects that are unique to geothermal engineering, such as measurements in wells and their interpretation, transport of near-boiling water through long pipelines, turbines driven by fluids other than steam, and project economics. The explanations are reinforced by drawing comparisons with other energy industries.

  15. 2013 Geothermal Technologies Office Peer Review Report

    Energy Technology Data Exchange (ETDEWEB)

    Geothermal Technologies Office

    2014-01-01

    Geothermal Technologies Office conducted its annual program peer review in April of 2013. The review provided an independent, expert evaluation of the technical progress and merit of GTO-funded projects. Further, the review was a forum for feedback and recommendations on future GTO strategic planning. During the course of the peer review, DOE-funded projects were evaluated for 1) their contribution to the mission and goals of the GTO and 2) their progress against stated project objectives. Principal Investigators (PIs) came together in sessions organized by topic “tracks” to disseminate information, progress, and results to a panel of independent experts as well as attendees.

  16. Future directions and cycles for electricity production from geothermal resources

    International Nuclear Information System (INIS)

    Michaelides, Efstathios E.

    2016-01-01

    Graphical abstract: 25% more power may be produced using binary-flashing geothermal cycles. - Highlights: • Power from geothermal power plants is continuously available and “dispatchable.” • The next generation of geothermal will include more binary plants. • Lower temperature geothermal resources will be utilized in the future. • Dry rock resources may produce a high fraction of electricity in several countries. - Abstract: Geothermal power production is economically competitive and capable to produce a high percentage of the electric power demand in several countries. The currently operating geothermal power plants utilize water from an aquifer at relatively higher temperatures and produce power using dry steam, flashing or binary cycles. A glance at the map of the global geothermal resources proves that there is a multitude of sites, where the aquifer temperature is lower. There are also many geothermal resources where a high geothermal gradient exists in the absence of an aquifer. It becomes apparent that the next generation of geothermal power plants will utilize more of the lower-temperature aquifer resources or the dry resources. For such power plants to be economically competitive, modified or new cycles with higher efficiencies must be used. This paper presents two methods to increase the efficiency of the currently used geothermal cycles. The first uses a binary-flashing system to reduce the overall entropy production, thus, producing more electric power from the resource. The second describes a heat extraction system to be used with dry hot-rock resources.

  17. Surface-near geothermal energy. Ground coupled heat pumps and underground thermal energy storage; Oberflaechennahe Geothermie. Erdgekoppelte Waermepumpen und unterirdische thermische Energiespeicher

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2011-07-01

    Within the eleventh International User Forum at 27th/28th September, 2011 in Regensburg (Federal Republic of Germany) the following lectures were held: (1) Ecologic evaluation of heat pumps - a question of approach (Roland Koenigsdorff); (2) An actual general comment to WHG, the preparations for the new VAUwS and possible consequences on the surface-near geothermal energy (Walker-Hertkorn); (3) Field-test experiences: Ground source heat pumps in small residential buildings (Jeannette Wapler); (4) GeoT*SOL basic - Program for the evaluation and simulation of heat pump systems (Bernhard Gatzka); (5) Monitoring and modelling of geothermal heat exchanger systems (Fabian Ochs); (6) Thermal response tests for the quality assurance of geothermal heat probes (Markus Proell); (7) Process of determining an untroubled soil temperature in comparison (Andreas Koehler); (8) Borehole resistance - Is the TRT measured value also the planning value? (Roland Koenigsdorff); (9) Consideration of the heat transport in geothermal probes (Martin Konrad); (10) Process of evaluation the sealing of geothermal probes with backfilling materials (Manfred Reuss); (11) Quality assessment of geothermal probes in real standard (Mathieu Riegger); (12) Comparison of flat collectors salt water and direct evaporation, design, impacs, consequences (Bernhard Wenzel); (13) Non-covered photovoltaic thermal collectors in heat pump systems (Erik Bertram); (14) Seasonal geothermal probe-heat storage - Heat supply concepts for objects with overbalancing heating level of more than 100 kW (Volker Liebel); (15) Application of geothermal probe fields as a cold storage (Rolf Wagner); (16) Geothermal energy and waste water warmth: State of the art and new technologies for a combined utilization (Wolfram Stodtmeister); (17) Integration of a heat pump into a solar supported local heat supply in Neckarsulm (Janet Nussbicker-Lux); (18) Regenerative heating with photovoltaics and geothermal energy (Christoph Rosinski

  18. Low enthalpy geothermal for oil sands (LEGO)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    Geothermal energy is generated by the slow decay of radioactive materials within the Earth. Geothermal energy resources include the water from hot springs used for heating; the withdrawal of high temperature steam from deep wells; and the use of stable ground or water temperatures near the Earth's surface to heat or cool buildings or in industrial processes. Heat pumps are used to transfer heat or water from the ground into buildings in winter. This paper discussed low enthalpy geothermal options for oil sands processes in order to reduce the use of natural gas and emissions from greenhouse gases (GHGs). The study was also conducted to aid in the development of a portfolio of renewable energy options for the oil and gas sector. The study estimated the costs and benefits of operating a shallow geothermal borehole cluster for meeting a portion of process heat demands for the Nexen's Albian mine. The costs and benefits of operating thermo-chillers integrated with a shallow geothermal borehole cluster for waste heat mitigation were also evaluated. The study showed that geothermal designs can be used to meet a portion of oil sands process heat and cooling demands. Mining operators may reduce carbon emissions and energy costs for process heat demands by installing closed loop borehole heat exchangers. Geothermal heat storage capacity can also be used to increase the efficiency of thermal chillers. It was concluded that pilot plant studies would contribute to a better understanding of the technology. tabs., figs.

  19. Victorian first for geothermal

    International Nuclear Information System (INIS)

    Wallace, Paula

    2014-01-01

    AGL Limited (AGL) will assist Maroondah Sports Club to save hundreds of thousands of dollars on its energy bills over the next decade by commencing work to install Victoria's first GeoAir geothermal cooling and heating system. Utilising the earth's constant temperature, the new GeoAir geothermal system provides a renewable source of energy that will save the club up to $12,000 in the first year and up to $150,000 over the next 10 years

  20. Geothermally Coupled Well-Based Compressed Air Energy Storage

    Energy Technology Data Exchange (ETDEWEB)

    Davidson, C L [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Bearden, Mark D [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Horner, Jacob A [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); Appriou, Delphine [Pacific Northwest National Lab. (PNNL), Richland, WA (United States); McGrail, B Peter [Pacific Northwest National Lab. (PNNL), Richland, WA (United States)

    2015-12-01

    Previous work by McGrail et al. (2013, 2015) has evaluated the possibility of pairing compressed air energy storage with geothermal resources in lieu of a fossil-fired power generation component, and suggests that such applications may be cost competitive where geology is favorable to siting both the geothermal and CAES components of such a system. Those studies also note that the collocation of subsurface resources that meet both sets of requirements are difficult to find in areas that also offer infrastructure and near- to mid-term market demand for energy storage. This study examines a novel application for the compressed air storage portion of the project by evaluating the potential to store compressed air in disused wells by amending well casings to serve as subsurface pressure vessels. Because the wells themselves would function in lieu of a geologic storage reservoir for the CAES element of the project, siting could focus on locations with suitable geothermal resources, as long as there was also existing wellfield infrastructure that could be repurposed for air storage. Existing wellfields abound in the United States, and with current low energy prices, many recently productive fields are now shut in. Should energy prices remain stagnant, these idle fields will be prime candidates for decommissioning unless they can be transitioned to other uses, such as redevelopment for energy storage. In addition to the nation’s ubiquitous oil and gas fields, geothermal fields, because of their phased production lifetimes, also may offer many abandoned wellbores that could be used for other purposes, often near currently productive geothermal resources. These existing fields offer an opportunity to decrease exploration and development uncertainty by leveraging data developed during prior field characterization, drilling, and production. They may also offer lower-cost deployment options for hybrid geothermal systems via redevelopment of existing well-field infrastructure