WorldWideScience

Sample records for navy fuel production

  1. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People`s Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  2. Navy Mobility Fuels Forecasting System report: Navy fuel production in the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Hadder, G.R.; Davis, R.M.

    1991-09-01

    The Refinery Yield Model of the Navy Mobility Fuels Forecasting System has been used to study the feasibility and quality of Navy JP-5 jet fuel and F-76 marine diesel fuel for two scenarios in the year 2000. Both scenarios account for environmental regulations for fuels produced in the US and assume that Eastern Europe, the USSR, and the People's Republic of China have free market economies. One scenario is based on business-as-usual market conditions for the year 2000. The second scenario is similar to first except that USSR crude oil production is 24 percent lower. During lower oil production in the USSR., there are no adverse effects on Navy fuel availability, but JP-5 is generally a poorer quality fuel relative to business-as-usual in the year 2000. In comparison with 1990, there are two potential problems areas for future Navy fuel quality. The first problem is increased aromaticity of domestically produced Navy fuels. Higher percentages of aromatics could have adverse effects on storage, handling, and combustion characteristics of both JP-5 and F-76. The second, and related, problem is that highly aromatic light cycle oils are blended into F-76 at percentages which promote fuel instability. It is recommended that the Navy continue to monitor the projected trend toward increased aromaticity in JP-5 and F-76 and high percentages of light cycle oils in F-76. These potential problems should be important considerations in research and development for future Navy engines.

  3. Recovery of Navy distillate fuel from reclaimed product. Volume II. Literature review

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). This first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 references and abstracts. This appendix, because of its volume, has been published separately as Volume 2.

  4. Recovery of Navy distillate fuel from reclaimed product. Volume I. Technical discussion

    Energy Technology Data Exchange (ETDEWEB)

    Brinkman, D.W.; Whisman, M.L.

    1984-11-01

    In an effort to assist the Navy to better utilize its waste hydrocarbons, NIPER, with support from the US Department of Energy, is conducting research designed to ultimately develop a practical technique for converting Reclaimed Product (RP) into specification Naval Distillate Fuel (F-76). The first phase of the project was focused on reviewing the literature and available information from equipment manufacturers. The literature survey has been carefully culled for methodology applicable to the conversion of RP into diesel fuel suitable for Navy use. Based upon the results of this study, a second phase has been developed and outlined in which experiments will be performed to determine the most practical recycling technologies. It is realized that the final selection of one particular technology may be site-specific due to vast differences in RP volume and available facilities. A final phase, if funded, would involve full-scale testing of one of the recommended techniques at a refueling depot. The Phase I investigations are published in two volumes. Volume 1, Technical Discussion, includes the narrative and Appendices I and II. Appendix III, a detailed Literature Review, includes both a narrative portion and an annotated bibliography containing about 800 referenvces and abstracts. This appendix, because of its volume, has been published separately as Volume 2. 18 figures, 4 tables.

  5. Navy Fuel Research Facility

    Data.gov (United States)

    Federal Laboratory Consortium — FUNCTION: Performs basic and applied research to understand the underlying chemistry that impacts the use, handling, and storage of current and future Navy mobility...

  6. Navy Fuel Specification Standardization

    Science.gov (United States)

    1992-04-01

    surfaced periodically to convert further to a single-fuel operation, i.e., one fuel for both aircraft and ship propulsion /power systems. This study...lead to the development of a single distillate fuel for ship propulsion , resulting eventually in the MIL-F-16884 Naval Distillate Fuel (NDF) used today...for both aircraft and ship propulsion /power systems. This report summarizes a study to consider this problem in light of current systems and

  7. Diesel fuel to dc power: Navy & Marine Corps Applications

    Energy Technology Data Exchange (ETDEWEB)

    Bloomfield, D.P. [Analytic Power Corp., Boston, MA (United States)

    1996-12-31

    During the past year Analytic Power has tested fuel cell stacks and diesel fuel processors for US Navy and Marine Corps applications. The units are 10 kW demonstration power plants. The USN power plant was built to demonstrate the feasibility of diesel fueled PEM fuel cell power plants for 250 kW and 2.5 MW shipboard power systems. We designed and tested a ten cell, 1 kW USMC substack and fuel processor. The complete 10 kW prototype power plant, which has application to both power and hydrogen generation, is now under construction. The USN and USMC fuel cell stacks have been tested on both actual and simulated reformate. Analytic Power has accumulated operating experience with autothermal reforming based fuel processors operating on sulfur bearing diesel fuel, jet fuel, propane and natural gas. We have also completed the design and fabrication of an advanced regenerative ATR for the USMC. One of the significant problems with small fuel processors is heat loss which limits its ability to operate with the high steam to carbon ratios required for coke free high efficiency operation. The new USMC unit specifically addresses these heat transfer issues. The advances in the mill programs have been incorporated into Analytic Power`s commercial units which are now under test.

  8. Microbial Fuel Cells for Powering Navy Devices

    Science.gov (United States)

    2014-01-20

    length × width for a planar electrode of negligible thickness) to capture a larger flux of reactant. Very large anodes, however, are difficult to...Monterey BMFC was constructed from a piece of plastic sewer pipe and included a 3-m-long carbon brush anode (6); a 4-m-long carbon brush cathode (7); two...features on the seafloor that exhibit high rates of fuel mass transport (e.g., at methane hydrate outcrops), which may constitute BMFC hotspots where

  9. The Navy Biofuel Initiative Under the Defense Production Act

    Science.gov (United States)

    2012-06-22

    the end of 2012, and “Great Green Fleet” by 2016 fueled in part with a 50/50 blend of hydrotreated renewable jet fuel (biofuel). The Navy proposes to...Osprey, and the MH-60S Seahawk to operate on HRJ-5, a 50/50 blend of hydrotreated renewable fuel (HRJ) and conventional JP-5.5 Hydrotreated refers...propellant ranged from $1.55 to $2.87 per gallon.14 In 2009, DLA awarded small contracts for hydrotreated renewable fuel (HRJ-5 jet fuel) that ranged in

  10. Impact of 50% Alcohol to Jet Blends on Aviation Turbine Fuel Coalescence - Navy Coalescence Test

    Science.gov (United States)

    2014-10-17

    Aviation Turbine Fuels5 are not feasible. The total water concentration of three samples from the influent and effluent of the filter-separator...International. ASTM D3240-11: Standard Test Method for Undissolved Water in Aviation Turbine Fuel, March 2011 6. MIL-DTL-5624V, Detail Specification...Impact of 50% Alcohol to Jet Blends on Aviation Turbine Fuel Coalescence - Navy Coalescence Test NF&LCFT REPORT 441/15-001 17 October 2014

  11. Improving the signal for U.S. Navy officer productivity

    OpenAIRE

    Ellison, Joshua C.

    2014-01-01

    Approved for public release; distribution is unlimited The U.S. Navy’s answer for many future manpower and financial policy questions rests on the ability of the individual performance appraisal system to optimally signal officer productivity. This paper utilizes the economics literature on individual performance appraisals and promotion systems as the lens through which to conduct a comparative analysis between the Navy and Marine performance appraisal systems. Rating accuracy, differenti...

  12. FUELS IN TOBACCO PRODUCTION

    OpenAIRE

    Čavlek, M.; Boić, M.; Kristina Gršić; V. Kozumplik

    2008-01-01

    Energy production from biomass can reduce „greenhouse effect” and contribute to solving energy security especially in the agricultural households which rely on energy from fossil fuels. In Croatia fuel-cured tobacco is produced on about 5000 ha. Gross income for the whole production is about 180 000 000 kn/year. Flue-cured tobacco is a high energy consuming crop. There are two parts of energy consumption, for mechanization used for the field production (11%) and, energy for bulk-curing (89%)....

  13. FUELS IN TOBACCO PRODUCTION

    Directory of Open Access Journals (Sweden)

    M. Čavlek

    2008-09-01

    Full Text Available Energy production from biomass can reduce „greenhouse effect” and contribute to solving energy security especially in the agricultural households which rely on energy from fossil fuels. In Croatia fuel-cured tobacco is produced on about 5000 ha. Gross income for the whole production is about 180 000 000 kn/year. Flue-cured tobacco is a high energy consuming crop. There are two parts of energy consumption, for mechanization used for the field production (11% and, energy for bulk-curing (89%. In each case, presently used fuels of fossil origin need to be substituted by an alternative energy source of organic origin. Hereafter attention is paid to finding a more economic and ecologically acceptable fuel for curing tobacco. Curing flue-cured tobacco is done by heated air in curing burns. Various sources of heat have been used; wood, coal, oil and gas. In each case different burning facilities of different efficiency have been used. This has had an impact on curing costs and ecology. Recently, mostly used fuel has been natural gas. However, gas is getting expensive. Consequently, an alternative fuel for curing tobacco is sought for. According to literature, agricultural crops suitable for the latter purpose could be wheat, barley, maize, sorghum, sugar beet and some other annual and perennial plant species. Wooden pellets (by-products are suitable for combustion too. Ligno-cellulose fuels have been used for heating since long time. However, not sufficient research has been done from an applied point of view (Venturi and Venturi, 2003. Fuel combustion is getting more efficient with developing technological innovations. The curing barn manufacturers are offering technology for combusting wooden pellets (by-products for curing tobacco. The pellets are available on domestic market. The same technology can be used for combustion of maize grain. Within “Hrvatski duhani” research on suitability of using wooden pellets and maize grain and whole

  14. Future fuel production

    NARCIS (Netherlands)

    Jacobs, E.

    2011-01-01

    This paper is written for the TIDO-course AR0532 Smart & Bioclimatic Design Theory. The objective of this paper is to see where the possibilities are in future fuel production in a sustainable way, and the integration of it in the built environment. Technologies are compared and evaluated, and the

  15. Alternative Fuels in Cement Production

    DEFF Research Database (Denmark)

    Larsen, Morten Boberg

    The substitution of alternative for fossil fuels in cement production has increased significantly in the last decade. Of these new alternative fuels, solid state fuels presently account for the largest part, and in particular, meat and bone meal, plastics and tyre derived fuels (TDF) accounted...... of the fuel heating value. In addition, the devolatilization time of alternative fuels cannot be neglected in kiln system process analyses, as these fuels are typically in the cm-size with devolatilization times in the order of minutes. The devolatilization characteristics of large particles of tyre rubber...... time, where increased particle size increased the devolatilization time. Model analyses demonstrated that the overall devolatilization kinetics of large particles of tyre rubber is mainly controlled by heat transfer and intrinsic pyrolysis kinetics, whereas mass transfer has negligible influence...

  16. Fuel from microalgae lipid products

    Energy Technology Data Exchange (ETDEWEB)

    Hill, A.M.; Feinberg, D.A.

    1984-04-01

    The large-scale production of microalgae is a promising method of producing a renewable feedstock for a wide variety of fuel products currently refined from crude petroleum. These microalgae-derived products include lipid extraction products (triglycerides, fatty acids, and hydrocarbons) and catalytic conversion products (paraffins and olefins). Microalgal biomass productivity and lipid composition of current experimental systems are estimated at 66.0 metric tons per hectare year and 30% lipid content. Similar yields in a large-scale facility indicate that production costs are approximately six times higher than the average domestic price for crude, well-head petroleum. Based on achievable targets for productivity and production costs, the potential for microalgae as a fuel feedstock is presented in context with selected process refining routes and is compared with conventional and alternative feedstocks (e.g., oilseeds) with which microalgae must compete. 24 references, 9 figures, 4 tables.

  17. Ignition Delay Properties of Alternative Fuels with Navy-Relevant Diesel Injectors

    Science.gov (United States)

    2014-06-01

    and palm oil, vegetable oil, and animal fats [8]. Of 5 particular interest in the field of HRD production is microalgae [9]. Algae-based fuels are...of the microalgae does not interfere, either with land or resources, with the production of food [10]. Oil from microalgae is converted to diesel...derived from microalgae . An exhaustive list of the properties of HRD can be found in Hsieh et al. [10]. b. Direct Sugar-to-Hydrocarbon Fuel As the

  18. Navy Geothermal Plan

    Energy Technology Data Exchange (ETDEWEB)

    1984-12-01

    Domestic geothermal resources with the potential for decreasing fossil fuel use and energy cost exist at a significant number of Navy facilities. The Geothermal Plan is part of the Navy Energy R and D Program that will evaluate Navy sites and provide a technical, economic, and environmental base for subsequent resource use. One purpose of the program will be to provide for the transition of R and D funded exploratory efforts into the resource development phase. Individual Navy geothermal site projects are described as well as the organizational structure and Navy decision network. 2 figs.

  19. Wood fuel production technologies in EU countries

    Energy Technology Data Exchange (ETDEWEB)

    Hakkila, P. [Finnish Forest Research Institute, Vantaa (Finland)

    1997-12-31

    The presentation reviews the major technologies used for the production of fuel chips for heating plants in Europe. Three primary options are considered: production of whole-tree chips from young trees for fuel; integrated harvesting of fiber and energy from thinning based on tree-section system; and production of fuel chips from logging residue in clear-cut areas after fully mechanized logging. The characteristics of the available biomass reserve and proven technology for its recovery are discussed. The employment effects of fuel chip production and the costs of wood fuels are also briefly discussed. (author) 3 refs., 3 figs.

  20. Logistics of nuclear fuel production for nuclear submarines; Logistica de producao de combustiveis para submarinos nucleares

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Leonam dos Santos [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil). E-mail: leosg@uol.com.br

    2000-07-01

    The future acquisition of nuclear attack submarines by Brazilian Navy along next century will imply new requirements on Naval Logistic Support System. These needs will impact all the six logistic functions. Among them, fuel supply could be considered as the one which requires the most important capacitating effort, including not only technological development of processes but also the development of a national industrial basis for effective production of nuclear fuel. This paper presents the technical aspects of the processes involved and an annual production dimensioning for an squadron composed by four units. (author)

  1. An Economic Basis for Littoral Land-Based Production of Low Carbon Fuel from Renewable Electrical Energy and Seawater for Naval Use: Diego Garcia Evaluation

    Science.gov (United States)

    2015-08-13

    Based Production of Low Carbon Fuel from Renewable Electrical Energy and Seawater for Naval Use: Diego Garcia Evaluation Heather D. Willauer, Dennis R...difficult challenges to the U.S. Navy for the future production of low carbon fuel from renewable electrical energy from photovoltaic (PV) arrays and...gallons of fuel delivered annually to Diego Garcia. Using published capital cost estimates and a range of solar and wind renewable electrical energy

  2. Aviation fuel and future oil production scenarios

    OpenAIRE

    2009-01-01

    Most aviation fuels are jet fuels originating from crude oil. Crude oil must be refined to be useful and jet fuel is only one of many products that can be derived from crude oil. Jet fuel is extracted from the middle distillates fraction and competes, for example, with the production of diesel. Crude oil is a limited natural resource subject to depletion and several reports indicate that the world's crude oil production is close to the maximum level and that it will start to decrease after re...

  3. Improving the Signal for U.S. Navy Officer Productivity

    Science.gov (United States)

    2014-12-01

    Snell , Dean, & Lepak, 1996). The ability to manage human capital and convert it into useful productivity is a critical skill for executive management...Performance measurement and control systems for implementing strategy. Upper Saddle River, NJ: Prentice-Hall, Inc. Youndt, S. A., Snell , A. S., Dean, J. W

  4. Navy Fuel Composition and Screening Tool (FCAST) v.2.5

    Science.gov (United States)

    2014-07-18

    spectra of the fuel samples to their measured ASTM fuel property values. The technique of PLS is based on singular value decomposition ( SVD ), which...RMSECV Root mean squared error of cross validation SVD Singular value decomposition TFA Target factor analysis TIC Total ion...modeling of near- infrared (NIR) spectra . While this has proven to be a viable approach for known (calibrated) fuels, spectral modeling is not practical

  5. Navy Fuel Composition and Screening Tool (FCAST) v2.8

    Science.gov (United States)

    2016-05-10

    least squares RMSECV Root mean squared error of cross validation SVD Singular value decomposition TFA Target factor analysis TIC...modeling of near- infrared (NIR) spectra . While this is has proven to be a viable approach for known (calibrated) fuels, spectral modeling is not...statistical correlations between the component spectra of the fuel samples to their measured ASTM fuel property values. The technique of PLS is based on

  6. Materials and processes for solar fuel production

    CERN Document Server

    Viswanathan, Balasubramanian; Lee, Jae Sung

    2014-01-01

    This book features different approaches to non-biochemical pathways for solar fuel production. This one-of-a-kind book addresses photovoltaics, photocatalytic water splitting for clean hydrogen production and CO2 conversion to hydrocarbon fuel through in-depth comprehensive contributions from a select blend of established and experienced authors from across the world. The commercial application of solar based systems, with particular emphasis on non-PV based devices have been discussed. This book intends to serve as a primary resource for a multidisciplinary audience including chemists, engineers and scientists providing a one-stop location for all aspects related to solar fuel production. The material is divided into three sections: Solar assisted water splitting to produce hydrogen; Solar assisted CO2 utilization to produce green fuels and Solar assisted electricity generation. The content strikes a balance between theory, material synthesis and application with the central theme being solar fuels.

  7. Composition and methods for improved fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Steele, Philip H.; Tanneru, Sathishkumar; Gajjela, Sanjeev K.

    2015-12-29

    Certain embodiments of the present invention are configured to produce boiler and transportation fuels. A first phase of the method may include oxidation and/or hyper-acidification of bio-oil to produce an intermediate product. A second phase of the method may include catalytic deoxygenation, esterification, or olefination/esterification of the intermediate product under pressurized syngas. The composition of the resulting product--e.g., a boiler fuel--produced by these methods may be used directly or further upgraded to a transportation fuel. Certain embodiments of the present invention also include catalytic compositions configured for use in the method embodiments.

  8. Production of jet fuel from alternative source

    Energy Technology Data Exchange (ETDEWEB)

    Eller, Zoltan; Papp, Anita; Hancsok, Jenoe [Pannonia Univ., Veszprem (Hungary). MOL Dept. of Hydrocarbon and Coal Processing

    2013-06-01

    Recent demands for low aromatic content jet fuels have shown significant increase in the last 20 years. This was generated by the growing of aviation. Furthermore, the quality requirements have become more aggravated for jet fuels. Nowadays reduced aromatic hydrocarbon fractions are necessary for the production of jet fuels with good burning properties, which contribute to less harmful material emission. In the recent past the properties of gasolines and diesel gas oils were continuously severed, and the properties of jet fuels will be more severe, too. Furthermore, it can become obligatory to blend alternative components into jet fuels. With the aromatic content reduction there is a possibility to produce high energy content jet fuels with the desirable properties. One of the possibilities is the blending of biocomponents from catalytic hydrogenation of triglycerides. Our aim was to study the possibilities of producing low sulphur and aromatic content jet fuels in a catalytic way. On a CoMo/Al{sub 2}O{sub 3} catalyst we studied the possibilities of quality improving of a kerosene fraction and coconut oil mixture depending on the change of the process parameters (temperature, pressure, liquid hourly space velocity, volume ratio). Based on the quality parameters of the liquid products we found that we made from the feedstock in the adequate technological conditions products which have a high smoke point (> 35 mm) and which have reduced aromatic content and high paraffin content (90%), so these are excellent jet fuels, and their stack gases damage the environment less. (orig.)

  9. Analysis of Phenolic Antioxidants in Navy Mobility Fuels by Gas Chromatography-Mass Spectrometry

    Science.gov (United States)

    2013-06-19

    methyl phenol ECD Electrochemical detector GC-MS Gas chromatography with mass selective detection HT Hydrotreated HPLC High Performance...Antioxidants are often used to meet military storage stability requirements and are required in hydrotreated and alternative fuels. It is often necessary to...constituents to be quantifiable by this method. The single column method was successfully employed to measure TTBP depletion in hydrotreated Jet A fuels

  10. Engineering organisms for industrial fuel production.

    Science.gov (United States)

    Berry, David A

    2010-01-01

    Volatile fuel costs, the need to reduce greenhouse gas emissions and fuel security concerns are driving efforts to produce sustainable renewable fuels and chemicals. Petroleum comes from sunlight, CO(2) and water converted via a biological intermediate into fuel over a several million year timescale. It stands to reason that using biology to short-circuit this time cycle offers an attractive alternative--but only with relevant products at or below market prices. The state of the art of biological engineering over the past five years has progressed to allow for market needs to drive innovation rather than trying to adapt existing approaches to the market. This report describes two innovations using synthetic biology to dis-intermediate fuel production. LS9 is developing a means to convert biological intermediates such as cellulosic hydrolysates into drop-in hydrocarbon product replacements such as diesel. Joule Unlimited is pioneering approaches to eliminate feedstock dependency by efficiently capturing sunlight, CO(2) and water to produce fuels and chemicals. The innovations behind these companies are built with the market in mind, focused on low cost biosynthesis of existing products of the petroleum industry. Through successful deployment of technologies such as those behind LS9 and Joule Unlimited, alternative sources of petroleum products will mitigate many of the issues faced with our petroleum-based economy.

  11. Opportunities for Alternative Fuels Production

    Science.gov (United States)

    2011-05-05

    fuels derived from a mixture of coal and biomass. It is highly uncertain whether appreciable amounts of hydrotreated renewable oils can be...affordably and cleanly produced within the United States or abroad. Hydrotreated renewable oils are produced by processing animal fats or vegetable oils...possible source of oil for hydrotreatment. Fifty-fifty blends of hydrotreated oils have already been successfully demonstrated in flight tests sponsored by

  12. Spent nuclear fuel project product specification

    Energy Technology Data Exchange (ETDEWEB)

    Pajunen, A.L.

    1998-01-30

    Product specifications are limits and controls established for each significant parameter that potentially affects safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for transport to dry storage. The product specifications in this document cover the spent fuel packaged in MultiCanister Overpacks (MCOs) to be transported throughout the SNF Project. The SNF includes N Reactor fuel and single-pass reactor fuel. The FRS removes the SNF from the storage canisters, cleans it, and places it into baskets. The MCO loading system places the baskets into MCO/Cask assembly packages. These packages are then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the MCO cask packages are transferred to the Canister Storage Building (CSB), where the MCOs are removed from the casks, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The key criteria necessary to achieve these goals are documented in this specification.

  13. A Navy Diving Supervisor’s Guide to the Nontechnical Skills Required for Safe and Productive Diving Operations

    Science.gov (United States)

    2005-06-01

    from other high-risk industries (e.g., aviation, nuclear power production, offshore oil production) relevant to Navy dive teams. Furthermore, real...the helmet and was almost out of air. He tried to climb up the umbilical ; however, his attempts were futile. The Diving Supervisor heard gurgling over...most effective offshore oil production supervisors use interpersonal skills more often than less effective supervisors do. When less effective

  14. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2002-02-01

    generation, industrial cogeneration, marine applications and uninterrupted power for military bases. FuelCell Energy operated a 1.8 MW plant at a utility site in 1996-97, the largest fuel cell power plant ever operated in North America. This proof-of-concept power plant demonstrated high efficiency, low emissions, reactive power control, and unattended operation capabilities. Drawing on the manufacture, field test, and post-test experience of the full-size power plant; FuelCell Energy launched the Product Design Improvement (PDI) program sponsored by government and the private-sector cost-share. The PDI efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program was initiated in December 1994. Year 2000 program accomplishments are discussed in this report.

  15. Catalog of Audiovisual Productions. Volume 2. Navy and Marine Corps Productions

    Science.gov (United States)

    1984-06-01

    LAWS AND WAYS OF BUDGET WORK-UP 25281-DN POSTGRADUATE WAY, THE LEARNING (PART 82) 4 -009-DN BUYER "EiARE 25571-DN LIBRARY ASSISTANT. THE 8201-ION...WATER CUEXICAL TREATMENT BUT WILL IT I (REVISED) % r2m (2457 N) (3542701) (IAK NIDO RELEASE- LOFT IA .3 BUYER BEWARE __BLCK OS STLE AIR INNR WATER (AWIG... COMPULSIVE GAMBLER, AND HOW HE AVAILABILITY FROM THE INVENTORY CONTROL POINT FOR EVENTUALLY FACES HIS PROBLEM.21981.DN BASIC PRINCIPLES OF POWFR THE NAVY

  16. Engineering cyanobacteria for fuels and chemicals production.

    Science.gov (United States)

    Zhou, Jie; Li, Yin

    2010-03-01

    The world's energy and global warming crises call for sustainable, renewable, carbon-neutral alternatives to replace fossil fuel resources. Currently, most biofuels are produced from agricultural crops and residues, which lead to concerns about food security and land shortage. Compared to the current biofuel production system, cyanobacteria, as autotrophic prokaryotes, do not require arable land and can grow to high densities by efficiently using solar energy, CO(2), water, and inorganic nutrients. Moreover, powerful genetic techniques of cyanobacteria have been developed. For these reasons, cyanobacteria, which carry out oxygenic photosynthesis, are attractive hosts for production of fuels and chemicals. Recently, several chemicals including ethanol, isobutanol and isoprene have been produced by engineered cyanobacteria directly using solar energy, CO(2), and water. Cyanobacterium is therefore a potential novel cell factory for fuels and chemicals production to address global energy security and climate change issues.

  17. Navy Field Evaluation of Particle Counter Technology for Aviation Fuel Contamination Detection

    Science.gov (United States)

    2014-02-06

    Stanhope- Seta AvCount - were evaluated at Naval Air Station (NAS) Patuxent River, NAS Jacksonville, and onboard the aircraft carrier USS George H.W...over the span of two weeks at each NAS and one week onboard CVN-77. The PAMAS S40, Parker Hannifin ACM20, and Stanhope- Seta AvCount particle...previously evaluated four commercial off-the-shelf (COTS) particle counters for fuel contamination detection —Parker Hannifin ACM20, Stanhope- Seta

  18. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2003-03-01

    The program efforts are focused on technology and system optimization for cost reduction, commercial design development, and prototype system field trials. The program is designed to advance the carbonate fuel cell technology from full-size field test to the commercial design. FuelCell Energy, Inc. (FCE) is in the later stage of the multiyear program for development and verification of carbonate fuel cell based power plants supported by DOE/NETL with additional funding from DOD/DARPA and the FuelCell Energy team. FCE has scaled up the technology to full-size and developed DFC{reg_sign} stack and balance-of-plant (BOP) equipment technology to meet product requirements, and acquired high rate manufacturing capabilities to reduce cost. FCE has designed submegawatt (DFC300A) and megawatt (DFC1500 and DFC3000) class fuel cell products for commercialization of its DFC{reg_sign} technology. A significant progress was made during the reporting period. The reforming unit design was optimized using a three-dimensional stack simulation model. Thermal and flow uniformities of the oxidant-In flow in the stack module were improved using computational fluid dynamics based flow simulation model. The manufacturing capacity was increased. The submegawatt stack module overall cost was reduced by {approx}30% on a per kW basis. An integrated deoxidizer-prereformer design was tested successfully at submegawatt scale using fuels simulating digester gas, coal bed methane gas and peak shave (natural) gas.

  19. Fuel Lubricity Impact on Shipboard Engine and Fuel Systems and Sensitivity of U.S. Navy Diesel Engines to Low-Sulfur Diesel Fuel

    Science.gov (United States)

    2011-06-30

    ABSTRACT This project attempted to determine the kerosene and Ultra Low Sulfur Diesel fuel lubricity requirements of Delphi DPA rotary fuel injection...pumps and Detroit Diesel unit injectors . A test stand was configured to operate a rotary fuel injection pump and a stand configured to operated four...unit injectors simultaneously, with data acquisition and control systems for logging data. Results suggest that synthetic kerosene fuel adversely

  20. Production of chemicals and fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    Woods, Elizabeth; Qiao, Ming; Myren, Paul; Cortright, Randy D.; Kania, John

    2015-12-15

    Described are methods, reactor systems, and catalysts for converting biomass to fuels and chemicals in a batch and/or continuous process. The process generally involves the conversion of water insoluble components of biomass, such as hemicellulose, cellulose and lignin, to volatile C.sub.2+O.sub.1-2 oxygenates, such as alcohols, ketones, cyclic ethers, esters, carboxylic acids, aldehydes, and mixtures thereof. In certain applications, the volatile C.sub.2+O.sub.1-2 oxygenates can be collected and used as a final chemical product, or used in downstream processes to produce liquid fuels, chemicals and other products.

  1. Sinopec Commits to Cleaner Production and Fuels

    Institute of Scientific and Technical Information of China (English)

    Li Xiaocheng

    2012-01-01

    China Petrochemical Corporation, or Sinopec, has issued a report on its efforts at environmental protection - a first for a Chinese company. The report cites strategies of China's biggest oil refiner by capacity to reduce environmental impact, as well as implementation of lower-carbon fuels and less-polluting production methods.

  2. Spent Nuclear Fuel (SNF) Project Product Specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-01-20

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  3. Spent nuclear fuel project product specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    1999-02-25

    This document establishes the limits and controls for the significant parameters that could potentially affect the safety and/or quality of the Spent Nuclear Fuel (SNF) packaged for processing, transport, and storage. The product specifications in this document cover the SNF packaged in Multi-Canister Overpacks to be transported throughout the SNF Project.

  4. Direct fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    Maru, H.C.; Farooque, M. [Energy Research Corp., Danbury, CT (United States)

    1996-12-31

    Significant milestones have been attained towards the technology development field testing and commercialization of direct fuel cell power plant since the 1994 Fuel Cell Seminar. Under a 5-year cooperative agreement with the Department of Energy signed in December 1994, Energy Research Corporation (ERC) has been developing the design for a MW-scale direct fuel cell power plant with input from previous technology efforts and the Santa Clara Demonstration Project. The effort encompasses product definition in consultation with the Fuel Cell Commercialization Group, potential customers, as well as extensive system design and packaging. Manufacturing process improvements, test facility construction, cell component scale up, performance and endurance improvements, stack engineering, and critical balance-of-plant development are also addressed. Major emphasis of this product design improvement project is on increased efficiency, compactness and cost reduction to establish a competitive place in the market. A 2.85 MW power plant with an efficiency of 58% and a footprint of 420 m{sup 2} has been designed. Component and subsystem testing is being conducted at various levels. Planning and preparation for verification of a full size prototype unit are in progress. This paper presents the results obtained since the last fuel cell seminar.

  5. MOLTEN CARBONATE FUEL CELL PRODUCT DESIGN IMPROVEMENT

    Energy Technology Data Exchange (ETDEWEB)

    H.C. Maru; M. Farooque

    2005-03-01

    The program was designed to advance the carbonate fuel cell technology from full-size proof-of-concept field test to the commercial design. DOE has been funding Direct FuelCell{reg_sign} (DFC{reg_sign}) development at FuelCell Energy, Inc. (FCE, formerly Energy Research Corporation) from an early state of development for stationary power plant applications. The current program efforts were focused on technology and system development, and cost reduction, leading to commercial design development and prototype system field trials. FCE, in Danbury, CT, is a world-recognized leader for the development and commercialization of high efficiency fuel cells that can generate clean electricity at power stations, or at distributed locations near the customers such as hospitals, schools, universities, hotels and other commercial and industrial applications. FCE has designed three different fuel cell power plant models (DFC300A, DFC1500 and DFC3000). FCE's power plants are based on its patented DFC{reg_sign} technology, where a hydrocarbon fuel is directly fed to the fuel cell and hydrogen is generated internally. These power plants offer significant advantages compared to the existing power generation technologies--higher fuel efficiency, significantly lower emissions, quieter operation, flexible siting and permitting requirements, scalability and potentially lower operating costs. Also, the exhaust heat by-product can be used for cogeneration applications such as high-pressure steam, district heating and air conditioning. Several sub-MW power plants based on the DFC design are currently operating in Europe, Japan and the US. Several one-megawatt power plant design was verified by operation on natural gas at FCE. This plant is currently installed at a customer site in King County, WA under another US government program and is currently in operation. Because hydrogen is generated directly within the fuel cell module from readily available fuels such as natural gas and

  6. Crop production without fossil fuel: production systems for tractor fuel and mineral nitrogen based on biomass

    Energy Technology Data Exchange (ETDEWEB)

    Ahlgren, Serina

    2009-12-15

    With diminishing fossil fuel reserves and concerns about global warming, the agricultural sector needs to reduce its use of fossil fuels. The objective of this thesis was to evaluate different systems for biomass-based production of tractor fuel and mineral nitrogen fertilisers, which at present are the two largest fossil energy carriers in Swedish agriculture. The land use, energy input and environmental load of the systems were calculated using life cycle assessment methodology. Two categories of renewable tractor fuel were studied: first generation fuels and second generation fuels, the latter defined as fuels not yet produced on a commercial scale. An organic farm self-sufficient in tractor fuel was modelled. Raw material from the farm was assumed to be delivered to a large fuel production facility and fuel transported back to the farm, where it was utilised. In general, the second generation renewable fuels had higher energy balance and lower environmental impact than the first generation fuels. However all systems studied reduced the use of fossil fuels to a great extent and lowered the contribution to global warming. The land needed to be set aside for tractor fuel varied between 2% and 5% of the farm's available land. Two major routes for biomass-based production of mineral nitrogen for conventional agriculture were studied, one based on anaerobic digestion and one on thermochemical gasification of biomass. The crops studied were able to produce between 1.6 and 3.9 tonnes N per hectare in the form of ammonium nitrate. The use of fossil fuel for ammonium nitrate production was 35 MJ per kg N in the fossil reference scenario, but only 1-4 MJ per kg N in the biomass systems. The contribution to global warming can be greatly reduced by the biomass systems, but there is an increased risk of eutrophication and acidification. It is clear that the agricultural sector has great potential to reduce the use of fossil fuel and to lower the emissions of greenhouse

  7. Fission-product retention in HTGR fuels

    Energy Technology Data Exchange (ETDEWEB)

    Homan, F.J.; Kania, M.J.; Tiegs, T.N.

    1982-01-01

    Retention data for gaseous and metallic fission products are presented for both Triso-coated and Biso-coated HTGR fuel particles. Performance trends are established that relate fission product retention to operating parameters, such as temperature, burnup, and neutron exposure. It is concluded that Biso-coated particles are not adequately retentive of fission gas or metallic cesium, and Triso-coated particles which retain cesium still lose silver. Design implications related to these performance trends are identified and discussed.

  8. Reducing Actinide Production Using Inert Matrix Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Deinert, Mark [Colorado School of Mines, Golden, CO (United States)

    2017-08-23

    The environmental and geopolitical problems that surround nuclear power stem largely from the longlived transuranic isotopes of Am, Cm, Np and Pu that are contained in spent nuclear fuel. New methods for transmuting these elements into more benign forms are needed. Current research efforts focus largely on the development of fast burner reactors, because it has been shown that they could dramatically reduce the accumulation of transuranics. However, despite five decades of effort, fast reactors have yet to achieve industrial viability. A critical limitation to this, and other such strategies, is that they require a type of spent fuel reprocessing that can efficiently separate all of the transuranics from the fission products with which they are mixed. Unfortunately, the technology for doing this on an industrial scale is still in development. In this project, we explore a strategy for transmutation that can be deployed using existing, current generation reactors and reprocessing systems. We show that use of an inert matrix fuel to recycle transuranics in a conventional pressurized water reactor could reduce overall production of these materials by an amount that is similar to what is achievable using proposed fast reactor cycles. Furthermore, we show that these transuranic reductions can be achieved even if the fission products are carried into the inert matrix fuel along with the transuranics, bypassing the critical separations hurdle described above. The implications of these findings are significant, because they imply that inert matrix fuel could be made directly from the material streams produced by the commercially available PUREX process. Zirconium dioxide would be an ideal choice of inert matrix in this context because it is known to form a stable solid solution with both fission products and transuranics.

  9. Impacts of fuel quality on power production

    DEFF Research Database (Denmark)

    Harding, S.; Wall, T.; Wigley, F.;

    2007-01-01

    The first ash deposition or slagging and fouling conference, as they are commonly called, was held at the Marchwood Engineering Laboratories in the UK in 1963. Since that time many excellent conferences have occurred to provide interchange, dialogue, experiences and results among those who deal...... with the many opportunities afforded by fuel quality. However, due to the changing sponsorship environment, it has been several years since the last conference which focused on fuel characteristics and their paramount importance in power production. This conference, the 17th in the series, was entitled “Impacts...... of Fuel Quality on Power Production” and was held in Snowbird, UT, from October 29 to November 3, 2006. More than 50 participants from 13 countries throughout the world participated....

  10. Navy mobility fuels forecasting system report: World petroleum trade forecasts for the year 2000

    Energy Technology Data Exchange (ETDEWEB)

    Das, S.

    1991-12-01

    The Middle East will continue to play the dominant role of a petroleum supplier in the world oil market in the year 2000, according to business-as-usual forecasts published by the US Department of Energy. However, interesting trade patterns will emerge as a result of the democratization in the Soviet Union and Eastern Europe. US petroleum imports will increase from 46% in 1989 to 49% in 2000. A significantly higher level of US petroleum imports (principally products) will be coming from Japan, the Soviet Union, and Eastern Europe. Several regions, the Far East, Japan, Latin American, and Africa will import more petroleum. Much uncertainty remains about of the level future Soviet crude oil production. USSR net petroleum exports will decrease; however, the United States and Canada will receive some of their imports from the Soviet Union due to changes in the world trade patterns. The Soviet Union can avoid becoming a net petroleum importer as long as it (1) maintains enough crude oil production to meet its own consumption and (2) maintains its existing refining capacities. Eastern Europe will import approximately 50% of its crude oil from the Middle East.

  11. An Assessment of the Navy’s Productive Unit Resourcing (PUR) System in Use at Navy Field Contracting Activities

    Science.gov (United States)

    1988-12-01

    Taylor and continuing with that of Henri Fayol , Elton Mayo and others, new management techniques designed to achieve gains in worker productivity have...constrained resource situations include Eli Whitney’s cotton gin and Henry Ford’s use of standardized parts and assembly line production in automobile...Americana, "Whitney, Eli" and "Ford, Henry ", V. 28, 11, Grolier, Inc., 1987. 2. Alpander, G. G., Human Resources Management Planning, American Man

  12. 48 CFR 908.7109 - Fuels and packaged petroleum products.

    Science.gov (United States)

    2010-10-01

    ... 48 Federal Acquisition Regulations System 5 2010-10-01 2010-10-01 false Fuels and packaged petroleum products. 908.7109 Section 908.7109 Federal Acquisition Regulations System DEPARTMENT OF ENERGY....7109 Fuels and packaged petroleum products. Acquisitions of fuel and packaged petroleum products by DOE...

  13. Fuel Pellets Production from Biodiesel Waste

    Directory of Open Access Journals (Sweden)

    Kawalin Chaiyaomporn

    2010-01-01

    Full Text Available This research palm fiber and palm shell were used as raw materials to produce pelletised fuel, and waste glycerol were used as adhesive to reduce biodiesel production waste. The aim of this research is to find optimum ratio of raw material (ratio of palm fiber and palm shell, raw material size distribution, adhesive temperature, and ratio of ingredients (ratio of raw material, waste glycerol, and water. The optimum ratio of pelletized fuel made only by palm fiber was 50:10:40; palm fiber, water, and waste glycerol respectively. In the best practice condition; particle size was smaller than 2 mm, adhesive glycerol was heated. From the explained optimum ratio and ingredient, pelletizing ratio was 62.6%, specific density was 982.2 kg/m3, heating value was 22.5 MJ/kg, moisture content was 5.9194%, volatile matter was 88.2573%, fix carbon content was 1.5894%, and ash content was 4.2339% which was higher than the standard. Mixing palm shell into palm fiber raw material reduced ash content of the pellets. The optimum raw material ratio, which minimizes ash content, was 80 to 20 palm fiber and palm shell respectively. Adding palm shell reduced ash content to be 2.5247% which was higher than pelletized fuel standard but followed cubed fuel standard. At this raw material ratio, pelletizing ratio was 70.5%, specific density was 774.8 kg/m3, heating value was 19.71 MJ/kg, moisture content was 9.8137%, volatile matter was 86.2259%, fix carbon content was 1.4356%, and compressive force was 4.83 N. Pelletized fuel cost at optimum condition was 1.14 baht/kg.

  14. Traversing the mountaintop: world fossil fuel production to 2050.

    Science.gov (United States)

    Nehring, Richard

    2009-10-27

    During the past century, fossil fuels--petroleum liquids, natural gas and coal--were the dominant source of world energy production. From 1950 to 2005, fossil fuels provided 85-93% of all energy production. All fossil fuels grew substantially during this period, their combined growth exceeding the increase in world population. This growth, however, was irregular, providing for rapidly growing per capita production from 1950 to 1980, stable per capita production from 1980 to 2000 and rising per capita production again after 2000. During the past half century, growth in fossil fuel production was essentially limited by energy demand. During the next half century, fossil fuel production will be limited primarily by the amount and characteristics of remaining fossil fuel resources. Three possible scenarios--low, medium and high--are developed for the production of each of the fossil fuels to 2050. These scenarios differ primarily by the amount of ultimate resources estimated for each fossil fuel. Total fossil fuel production will continue to grow, but only slowly for the next 15-30 years. The subsequent peak plateau will last for 10-15 years. These production peaks are robust; none of the fossil fuels, even with highly optimistic resource estimates, is projected to keep growing beyond 2050. World fossil fuel production per capita will thus begin an irreversible decline between 2020 and 2030.

  15. Production logistic for an attack nuclear submarine squadron fuel; Logistica de producao de combustivel para um esquadrao de submarinos nucleares de ataque

    Energy Technology Data Exchange (ETDEWEB)

    Guimaraes, Leonam dos Santos [Centro Tecnologico da Marinha em Sao Paulo (CTMSP), SP (Brazil)

    1999-08-01

    The future acquisition of nuclear attack submarines by Brazilian Navy along next century will imply new requirements on Naval Logistic Support System. These needs will impact all the six logistic functions. Among them, fuel supply could be considered as the one which requires the most important capacitating effort, including not only technological development of processes but also the development of a national industrial basis for effective production of nuclear fuel. This paper presents the technical aspects of the processes involved and an annual production dimensioning for an squadron composed by four units. (author)

  16. Comparison of fuel production costs for future transportation

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    The purpose of this poster is to provide an overview of fuel production costs for two types of synthetic fuels – methanol and methane, along with comparable costs for first and second generation biodiesel, two types of second generation bioethanol, and biogas. The model analysed is a 100% renewab...... scenario of Denmark for 2050, where the data for the transport sector has been changed to estimate the fuel production costs for eight different fuel pathways....

  17. Spent Nuclear Fuel (SNF) Project Product Specification

    Energy Technology Data Exchange (ETDEWEB)

    PAJUNEN, A.L.

    2000-12-07

    The process for removal of Spent Nuclear Fuel (SNF) from the K Basins has been divided into major sub-systems. The Fuel Retrieval System (FRS) removes fuel from the existing storage canisters, cleans it, and places it into baskets. The multi-canister overpack (MCO) loading system places the baskets into an MCO that has been pre-loaded in a cask. The cask, containing a loaded MCO, is then transferred to the Cold Vacuum Drying (CVD) Facility. After drying at the CVD Facility, the cask, and MCO, are transferred to the Canister Storage Building (CSB), where the MCO is removed from the cask, staged, inspected, sealed (by welding), and stored until a suitable permanent disposal option is implemented. The purpose of this document is to specify the process related characteristics of an MCO at the interface between major process systems. The characteristics are derived from the primary technical documents that form the basis for safety analysis and design calculations. This document translates the calculation assumptions into implementation requirements and describes the method of verifying that the requirement is achieved. These requirements are used to define validation test requirements and describe requirements that influence multiple sub-project safety analysis reports. This product specification establishes limits and controls for each significant process parameter at interfaces between major sub-systems that potentially affect the overall safety and/or quality of the SNF packaged for processing, transport, and interim dry storage. The product specifications in this document cover the SNF packaged in MCOs to be transported throughout the SNF Project. The description of the product specifications are organized in the document as follows: Section 2.0--Summary listing of product specifications at each major sub-system interface. Section 3.0--Summary description providing guidance as to how specifications are complied with by equipment design or processing within a major

  18. Biological production of liquid fuels from biomass

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-01-01

    A scheme for the production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper was investigated. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The construction of a pilot apparatus for solvent delignifying 150 g samples of lignocellulosic feeds was completed. Also, an analysis method for characterizing the delignified product has been selected and tested. This is a method recommended in the Forage Fiber Handbook. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis. Work is continuing on characterizing the cellulase and cellobiase enzyme systems derived from the YX strain of Thermomonospora.

  19. Ultraclean Fuels Production and Utilization for the Twenty-First Century: Advances toward Sustainable Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Fox, Elise B.; Liu, Zhong-Wen; Liu, Zhao-Tie

    2013-11-21

    Ultraclean fuels production has become increasingly important as a method to help decrease emissions and allow the introduction of alternative feed stocks for transportation fuels. Established methods, such as Fischer-Tropsch, have seen a resurgence of interest as natural gas prices drop and existing petroleum resources require more intensive clean-up and purification to meet stringent environmental standards. This review covers some of the advances in deep desulfurization, synthesis gas conversion into fuels and feed stocks that were presented at the 245th American Chemical Society Spring Annual Meeting in New Orleans, LA in the Division of Energy and Fuels symposium on "Ultraclean Fuels Production and Utilization".

  20. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    Science.gov (United States)

    Photosynthetic terpene production[ED1] represents an energy and carbon-efficient route for hydrocarbon fuel production. Diverse terpene structures also provide the potential to produce next-generation 'drop-in' hydrocarbon fuel molecules. However, it is highly challenging to achieve efficient redire...

  1. Production of distillate fuels from biomass-derived polyoxygenates

    Energy Technology Data Exchange (ETDEWEB)

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  2. Production of distillate fuels from biomass-derived polyoxygenates

    Science.gov (United States)

    Kania, John; Blommel, Paul; Woods, Elizabeth; Dally, Brice; Lyman, Warren; Cortright, Randy

    2017-03-14

    The present invention provides methods, reactor systems and catalysts for converting biomass and biomass-derived feedstocks to C.sub.8+ hydrocarbons using heterogenous catalysts. The product stream may be separated and further processed for use in chemical applications, or as a neat fuel or a blending component in jet fuel and diesel fuel, or as heavy oils for lubricant and/or fuel oil applications.

  3. (Fuel, fission product, and graphite technology)

    Energy Technology Data Exchange (ETDEWEB)

    Stansfield, O.M.

    1990-07-25

    Travel to the Forschungszentrum (KFA) -- Juelich described in this report was for the purpose of participating in the annual meeting of subprogram managers for the US/DOE Umbrella Agreement for Fuel, Fission Product, and Graphite Technology. At this meeting the highlights of the cooperative exchange were reviewed for the time period June 1989 through June 1990. The program continues to contribute technology in an effective way for both countries. Revision 15 of the Subprogram Plan will be issued as a result of the meeting. There was interest expressed by KFA management in the level of support received from the NPR program and in potential participation in the COMEDIE loop experiment being conducted at the CEA.

  4. Biomass gasification for liquid fuel production

    Science.gov (United States)

    Najser, Jan; Peer, Václav; Vantuch, Martin

    2014-08-01

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  5. Biomass gasification for liquid fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Najser, Jan, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz; Peer, Václav, E-mail: jan.najser@vsb.cz, E-mail: vaclav.peer@vsb.cz [VSB - Technical university of Ostrava, Energy Research Center, 17. listopadu 15/2172, 708 33 Ostrava-Poruba (Czech Republic); Vantuch, Martin [University of Zilina, Faculty of Mechanical Engineering, Department of Power Engineering, Univerzitna 1, 010 26 Zilina (Slovakia)

    2014-08-06

    In our old fix-bed autothermal gasifier we tested wood chips and wood pellets. We make experiments for Czech company producing agro pellets - pellets made from agricultural waste and fastrenewable natural resources. We tested pellets from wheat and rice straw and hay. These materials can be very perspective, because they dońt compete with food production, they were formed in sufficient quantity and in the place of their treatment. New installation is composed of allothermal biomass fixed bed gasifier with conditioning and using produced syngas for Fischer - Tropsch synthesis. As a gasifying agent will be used steam. Gas purification will have two parts - separation of dust particles using a hot filter and dolomite reactor for decomposition of tars. In next steps, gas will be cooled, compressed and removed of sulphur and chlorine compounds and carbon dioxide. This syngas will be used for liquid fuel synthesis.

  6. Molten carbonate fuel cell product design improvement

    Energy Technology Data Exchange (ETDEWEB)

    P. Voyentzie; T. Leo; A. Kush; L. Christner; G. Carlson; C. Yuh

    1998-12-20

    Drawing on the manufacture, field test, and post-test experience of the sixteen Santa Clara Demonstration Project (SCDP) stacks, ERC is finalizing the next generation commercial entry product design. The second generation cells are 50% larger in area, 40% lighter on equal geometric area basis, and 30% thinner than the earlier design. These improvements have resulted in doubling of the full-height stack power. A low-cost and high-strength matrix has also been developed for improving product ruggedness. The low-cost advanced cell design incorporating these improvements has been refined through six short stack tests. Power production per cell of two times the SCDP maximum power operation, over ten thermal cycles, and overall operating flexibility with respect to load and thermal changes have been demonstrated in these short stack tests. An internally insulated stack enclosure has been designed and fabricated to eliminate the need for an inert gas environment during operation. ERC has acquired the capability for testing 400kW full-height direct fuel ceil (DFC) stack and balance-of-plant equipment. With the readiness of the power plant test facility, the cell package design, and the stack module, full-height stack testing has begun. The first full- height stack incorporating the post-SCDP second generation design was completed. The stack reached a power level of 253 kW, setting a world record for the highest power production from the advanced fuel cell system. Excellent performance uniformity at this power level affirmed manufacturing reproducibility of the components at the factory. This unoptimized small size test has achieved pipeline natural gas to DC electricity conversion efficiency of 47% (based on lower heating value - LHV) including the parasitic power consumed by the BOP equipment; that should translate to more than 50% efficiency in commercial operation, before employing cogeneration. The power plant system also operated smoothly. With the success of this

  7. Chemical state of fission products in irradiated uranium carbide fuel

    Science.gov (United States)

    Arai, Yasuo; Iwai, Takashi; Ohmichi, Toshihiko

    1987-12-01

    The chemical state of fission products in irradiated uranium carbide fuel has been estimated by equilibrium calculation using the SOLGASMIX-PV program. Solid state fission products are distributed to the fuel matrix, ternary compounds, carbides of fission products and intermetallic compounds among the condensed phases appearing in the irradiated uranium carbide fuel. The chemical forms are influenced by burnup as well as stoichiometry of the fuel. The results of the present study almost agree with the experimental ones reported for burnup simulated carbides.

  8. Fuel preparation for use in the production of medical isotopes

    Science.gov (United States)

    Policke, Timothy A.; Aase, Scott B.; Stagg, William R.

    2016-10-25

    The present invention relates generally to the field of medical isotope production by fission of uranium-235 and the fuel utilized therein (e.g., the production of suitable Low Enriched Uranium (LEU is uranium having 20 weight percent or less uranium-235) fuel for medical isotope production) and, in particular to a method for producing LEU fuel and a LEU fuel product that is suitable for use in the production of medical isotopes. In one embodiment, the LEU fuel of the present invention is designed to be utilized in an Aqueous Homogeneous Reactor (AHR) for the production of various medical isotopes including, but not limited to, molybdenum-99, cesium-137, iodine-131, strontium-89, xenon-133 and yttrium-90.

  9. Readability and the Production of Instructional Text in the Royal Navy,

    Science.gov (United States)

    1980-11-01

    images became blurred. A finding of particular irrpor- tance for the Royal Navy was by Brand et al [6]. They found that the actual movemnt or rotion of a...Science, 3, 23-29 (1950). 6. BRAND , 3.3., COLQUOHOUN, W.P., GOULD, A.A., & PERRY, W.L.M., L - hyoscine and cyclizine as motion sickness remedies, British...Organisation 3. Headings 4. Typography 5. Clarity of words 6. Questions 7. Clarity of structure 8. Complex material 9. Illustrations 10. Colour 11

  10. Fuel ethanol production: process design trends and integration opportunities.

    Science.gov (United States)

    Cardona, Carlos A; Sánchez, Oscar J

    2007-09-01

    Current fuel ethanol research and development deals with process engineering trends for improving biotechnological production of ethanol. In this work, the key role that process design plays during the development of cost-effective technologies is recognized through the analysis of major trends in process synthesis, modeling, simulation and optimization related to ethanol production. Main directions in techno-economical evaluation of fuel ethanol processes are described as well as some prospecting configurations. The most promising alternatives for compensating ethanol production costs by the generation of valuable co-products are analyzed. Opportunities for integration of fuel ethanol production processes and their implications are underlined. Main ways of process intensification through reaction-reaction, reaction-separation and separation-separation processes are analyzed in the case of bioethanol production. Some examples of energy integration during ethanol production are also highlighted. Finally, some concluding considerations on current and future research tendencies in fuel ethanol production regarding process design and integration are presented.

  11. MEDIUM PRESSURE HYDROUPGRADING PROCESS (MHUG) AND PRODUCTION OF CLEAN FUELS

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The medium pressure hydroupgrading process (MHUG) unit with an 800 kt/a processing capacity of Jinzhou Petrochemical Company is used to hydroupgrade the mixture of FCC LCO fuel and straight-run diesel fuel in the presence of RN/RT series catalysts for improvement of the quality of the diesel fuel. Meanwhile, catalytic reforming feedstock is also obtained. The sulfur, nitrogen and aromatics contained in the hydroupgraded diesel fuel products can be minimized and the cetane number can be heightened. The produced clean fuels can meet the requirements of environmental protection.

  12. NODC Standard Product: US Navy Geosat altimeter T2 Geophysical Data Records for the Exact Repeat Mission (6 disc set) (NODC Accession 0053521)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a copy of the NODC CD-ROM product titled US Navy Geosat altimeter T2 GDRs for the Exact Repeat Mission for the time period of November 08,...

  13. Production of bio-jet fuel from microalgae

    Science.gov (United States)

    Elmoraghy, Marian

    The increase in petroleum-based aviation fuel consumption, the decrease in petroleum resources, the fluctuation of the crude oil price, the increase in greenhouse gas emission and the need for energy security are motivating the development of an alternate jet fuel. Bio-jet fuel has to be a drop in fuel, technically and economically feasible, environmentally friendly, greener than jet fuel, produced locally and low gallon per Btu. Bic jet fuel has been produced by blending petro-based jet fuel with microalgae biodiesel (Fatty Acid Methyl Ester, or simply FAME). Indoor microalgae growth, lipids extraction and transetrification to biodiesel are energy and fresh water intensive and time consuming. In addition, the quality of the biodiesel product and the physical properties of the bio-jet fuel blends are unknown. This work addressed these challenges. Minimizing the energy requirements and making microalgae growth process greener were accomplished by replacing fluorescent lights with light emitting diodes (LEDs). Reducing fresh water footprint in algae growth was accomplished by waste water use. Microalgae biodiesel production time was reduced using the one-step (in-situ transestrification) process. Yields up to 56.82 mg FAME/g dry algae were obtained. Predicted physical properties of in-situ FAME satisfied European and American standards confirming its quality. Lipid triggering by nitrogen deprivation was accomplished in order to increase the FAME production. Bio-jet fuel freezing points and heating values were measured for different jet fuel to biodiesel blend ratios.

  14. Enteric bacterial catalysts for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Ingram, L.O.; Aldrich, H.C.; Borges, A.C.C. [and others

    1999-10-01

    The technology is available to produce fuel ethanol from renewable lignocellulosic biomass. The current challenge is to assemble the various process options into a commercial venture and begin the task of incremental improvement. Current process designs for lignocellulose are far more complex than grain to ethanol processes. This complexity results in part from the complexity of the substrate and the biological limitations of the catalyst. Their work at the University of Florida has focused primarily on the genetic engineering of Enteric bacteria using genes encoding Zymomonas mobilis pyruvate decarboxylase and alcohol dehydrogenase. These two genes have been assembled into a portable ethanol production cassette, the PET operon, and integrated into the chromosome of Escherichia coli B for use with hemicellulose-derived syrups. The resulting strain, KO11, produces ethanol efficiently from all hexose and pentose sugars present in the polymers of hemicellulose. By using the same approach, the authors integrated the PET operon into the chromosome of Klebsiella oxytoca to produce strain P2 for use in the simultaneous saccharification and fermentation (SSF) process for cellulose. Strain P2 has the native ability to ferment cellobiose and cellotriose, eliminating the need for one class of cellulase enzymes.

  15. Production of LEU Fully Ceramic Microencapsulated Fuel for Irradiation Testing

    Energy Technology Data Exchange (ETDEWEB)

    Terrani, Kurt A [ORNL; Kiggans Jr, James O [ORNL; McMurray, Jake W [ORNL; Jolly, Brian C [ORNL; Hunt, Rodney Dale [ORNL; Trammell, Michael P [ORNL; Snead, Lance Lewis [ORNL

    2016-01-01

    Fully Ceramic Microencapsulated (FCM) fuel consists of tristructural isotropic (TRISO) fuel particles embedded inside a SiC matrix. This fuel inherently possesses multiple barriers to fission product release, namely the various coating layers in the TRISO fuel particle as well as the dense SiC matrix that hosts these particles. This coupled with the excellent oxidation resistance of the SiC matrix and the SiC coating layer in the TRISO particle designate this concept as an accident tolerant fuel (ATF). The FCM fuel takes advantage of uranium nitride kernels instead of oxide or oxide-carbide kernels used in high temperature gas reactors to enhance heavy metal loading in the highly moderated LWRs. Production of these kernels with appropriate density, coating layer development to produce UN TRISO particles, and consolidation of these particles inside a SiC matrix have been codified thanks to significant R&D supported by US DOE Fuel Cycle R&D program. Also, surrogate FCM pellets (pellets with zirconia instead of uranium-bearing kernels) have been neutron irradiated and the stability of the matrix and coating layer under LWR irradiation conditions have been established. Currently the focus is on production of LEU (7.3% U-235 enrichment) FCM pellets to be utilized for irradiation testing. The irradiation is planned at INL s Advanced Test Reactor (ATR). This is a critical step in development of this fuel concept to establish the ability of this fuel to retain fission products under prototypical irradiation conditions.

  16. Integrated coke, asphalt and jet fuel production process and apparatus

    Science.gov (United States)

    Shang, Jer Y.

    1991-01-01

    A process and apparatus for the production of coke, asphalt and jet fuel m a feed of fossil fuels containing volatile carbon compounds therein is disclosed. The process includes the steps of pyrolyzing the feed in an entrained bed pyrolyzing means, separating the volatile pyrolysis products from the solid pyrolysis products removing at least one coke from the solid pyrolysis products, fractionating the volatile pyrolysis products to produce an overhead stream and a bottom stream which is useful as asphalt for road pavement, condensing the overhead stream to produce a condensed liquid fraction and a noncondensable, gaseous fraction, and removing water from the condensed liquid fraction to produce a jet fuel-containing product. The disclosed apparatus is useful for practicing the foregoing process. the process provides a useful method of mass producing and jet fuels from materials such as coal, oil shale and tar sands.

  17. Biodiesel Fuel Production from Algae as Renewable Energy

    OpenAIRE

    Sharif Hossain, A.B.M.; Aishah Salleh; Amru Nasrulhaq Boyce; Partha chowdhury; Mohd Naqiuddin

    2008-01-01

    Biodiesel is biodegradable, less CO2 and NOx emissions. Continuous use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Algae have emerged as one of the most promising sources for biodiesel production. It can be inferred that algae grown in CO...

  18. METHANOL PRODUCTION FROM BIOMASS AND NATURAL GAS AS TRANSPORTATION FUEL

    Science.gov (United States)

    Two processes are examined for production of methanol. They are assessed against the essential requirements of a future alternative fuel for road transport: that it (i) is producible in amounts comparable to the 19 EJ of motor fuel annually consumed in the U.S., (ii) minimizes em...

  19. Hybrid fusion reactor for production of nuclear fuel with minimum radioactive contamination of the fuel cycle

    Science.gov (United States)

    Velikhov, E. P.; Kovalchuk, M. V.; Azizov, E. A.; Ignatiev, V. V.; Subbotin, S. A.; Tsibulskiy, V. F.

    2015-12-01

    The paper presents the results of the system research on the coordinated development of nuclear and fusion power engineering in the current century. Considering the increasing problems of resource procurement, including limited natural uranium resources, it seems reasonable to use fusion reactors as high-power neutron sources for production of nuclear fuel in a blanket. It is shown that the share of fusion sources in this structural configuration of the energy system can be relatively small. A fundamentally important aspect of this solution to the problem of closure of the fuel cycle is that recycling of highly active spent fuel can be abandoned. Radioactivity released during the recycling of the spent fuel from the hybrid reactor blanket is at least two orders of magnitude lower than during the production of the same number of fissile isotopes after the recycling of the spent fuel from a fast reactor.

  20. Electrocatalysis research for fuel cells and hydrogen production

    CSIR Research Space (South Africa)

    Mathe, MK

    2012-01-01

    Full Text Available The CSIR undertakes research in the Electrocatalysis of fuel cells and for hydrogen production. The Hydrogen South Africa (HySA) strategy supports research on electrocatalysts due to their importance to the national beneficiation strategy. The work...

  1. Bioethanol fuel production from rambutan fruit biomass as reducing ...

    African Journals Online (AJOL)

    Administrator

    2011-09-05

    Sep 5, 2011 ... Full Length Research Paper. Bioethanol fuel production from ... in waste disposal management and reducing global warming. The aim of the study of ... When burning gasoline, there are some emissions produced like carbon ...

  2. Solar hydrogen production: renewable hydrogen production by dry fuel reforming

    Science.gov (United States)

    Bakos, Jamie; Miyamoto, Henry K.

    2006-09-01

    SHEC LABS - Solar Hydrogen Energy Corporation constructed a pilot-plant to demonstrate a Dry Fuel Reforming (DFR) system that is heated primarily by sunlight focusing-mirrors. The pilot-plant consists of: 1) a solar mirror array and solar concentrator and shutter system; and 2) two thermo-catalytic reactors to convert Methane, Carbon Dioxide, and Water into Hydrogen. Results from the pilot study show that solar Hydrogen generation is feasible and cost-competitive with traditional Hydrogen production. More than 95% of Hydrogen commercially produced today is by the Steam Methane Reformation (SMR) of natural gas, a process that liberates Carbon Dioxide to the atmosphere. The SMR process provides a net energy loss of 30 to 35% when converting from Methane to Hydrogen. Solar Hydrogen production provides a 14% net energy gain when converting Methane into Hydrogen since the energy used to drive the process is from the sun. The environmental benefits of generating Hydrogen using renewable energy include significant greenhouse gas and criteria air contaminant reductions.

  3. Steam and partial oxidation reforming options for hydrogen production from fossil fuels for PEM fuel cells

    Directory of Open Access Journals (Sweden)

    Yousri M.A. Welaya

    2012-06-01

    Full Text Available Proton exchange membrane fuel cell (PEM generates electrical power from air and from hydrogen or hydrogen rich gas mixtures. Therefore, there is an increasing interest in converting current hydrocarbon based marine fuels such as natural gas, gasoline, and diesel into hydrogen rich gases acceptable to the PEM fuel cells on board ships. Using chemical flow sheeting software, the total system efficiency has been calculated. Natural gas appears to be the best fuel for hydrogen rich gas production due to its favorable composition of lower molecular weight compounds. This paper presents a study for a 250 kW net electrical power PEM fuel cell system utilizing a partial oxidation in one case study and steam reformers in the second. This study has shown that steam-reforming process is the most competitive fuel processing option in terms of fuel processing efficiency. Partial oxidation process has proved to posses the lowest fuel processing efficiency. Among the options studied, the highest fuel processing efficiency is achieved with natural gas steam reforming system.

  4. Whole-cell biocatalysts for biodiesel fuel production.

    Science.gov (United States)

    Fukuda, H; Hama, S; Tamalampudi, S; Noda, H

    2008-12-01

    Biodiesel fuel (BDF), which refers to fatty acid alkyl esters, has attracted considerable attention as an environmentally friendly alternative fuel for diesel engines. Alkali catalysis is widely applied for the commercial production of BDF. However, enzymatic transesterification offers considerable advantages, including reducing process operations in biodiesel fuel production and an easy separation of the glycerol byproduct. The high cost of the lipase enzyme is the main obstacle for a commercially feasible enzymatic production of biodiesel fuels. To reduce enzyme associated process costs, the immobilization of fungal mycelium within biomass support particles (BSPs) as well as expression of the lipase enzyme on the surface of yeast cells has been developed to generate whole-cell biocatalysts for industrial applications.

  5. New co-products from grain-based fuel ethanol production and their drying performance

    Science.gov (United States)

    Fuel ethanol production in the U.S. and elsewhere is an important and growing industry. In the U.S, about 40% of annual corn production is now converted into fuel ethanol. During co-product recovery, condensed distillers solubles (CDS) has to be mixed with distillers wet grains before drying due to ...

  6. EVermont Renewable Hydrogen Production and Transportation Fueling System

    Energy Technology Data Exchange (ETDEWEB)

    Garabedian, Harold T.

    2008-03-30

    A great deal of research funding is being devoted to the use of hydrogen for transportation fuel, particularly in the development of fuel cell vehicles. When this research bears fruit in the form of consumer-ready vehicles, will the fueling infrastructure be ready? Will the required fueling systems work in cold climates as well as they do in warm areas? Will we be sure that production of hydrogen as the energy carrier of choice for our transit system is the most energy efficient and environmentally friendly option? Will consumers understand this fuel and how to handle it? Those are questions addressed by the EVermont Wind to Wheels Hydrogen Project: Sustainable Transportation. The hydrogen fueling infrastructure consists of three primary subcomponents: a hydrogen generator (electrolyzer), a compression and storage system, and a dispenser. The generated fuel is then used to provide transportation as a motor fuel. EVermont Inc., started in 1993 by then governor Howard Dean, is a public-private partnership of entities interested in documenting and advancing the performance of advanced technology vehicles that are sustainable and less burdensome on the environment, especially in areas of cold climates, hilly terrain and with rural settlement patterns. EVermont has developed a demonstration wind powered hydrogen fuel producing filling system that uses electrolysis, compression to 5000 psi and a hydrogen burning vehicle that functions reliably in cold climates. And that fuel is then used to meet transportation needs in a hybrid electric vehicle whose internal combustion engine has been converted to operate on hydrogen Sponsored by the DOE EERE Hydrogen, Fuel Cells & Infrastructure Technologies (HFC&IT) Program, the purpose of the project is to test the viability of sustainably produced hydrogen for use as a transportation fuel in a cold climate with hilly terrain and rural settlement patterns. Specifically, the project addresses the challenge of building a renewable

  7. Three generation production biotechnology of biomass into bio-fuel

    Science.gov (United States)

    Zheng, Chaocheng

    2017-08-01

    The great change of climate change, depletion of natural resources, and scarcity of fossil fuel in the whole world nowadays have witnessed a sense of urgency home and abroad among scales of researchers, development practitioners, and industrialists to search for completely brand new sustainable solutions in the area of biomass transforming into bio-fuels attributing to our duty-that is, it is our responsibility to take up this challenge to secure our energy in the near future with the help of sustainable approaches and technological advancements to produce greener fuel from nature organic sources or biomass which comes generally from organic natural matters such as trees, woods, manure, sewage sludge, grass cuttings, and timber waste with a source of huge green energy called bio-fuel. Biomass includes most of the biological materials, livings or dead bodies. This energy source is ripely used industrially, or domestically for rather many years, but the recent trend is on the production of green fuel with different advance processing systems in a greener. More sustainable method. Biomass is becoming a booming industry currently on account of its cheaper cost and abundant resources all around, making it fairly more effective for the sustainable use of the bio-energy. In the past few years, the world has witnessed a remarkable development in the bio-fuel production technology, and three generations of bio-fuel have already existed in our society. The combination of membrane technology with the existing process line can play a vital role for the production of green fuel in a sustainable manner. In this paper, the science and technology for sustainable bio-fuel production will be introduced in detail for a cleaner world.

  8. Applying fuel cell experience to sustainable power products

    Science.gov (United States)

    King, Joseph M.; O'Day, Michael J.

    Fuel cell power plants have demonstrated high efficiency, environmental friendliness, excellent transient response, and superior reliability and durability in spacecraft and stationary applications. Broader application of fuel cell technology promises significant contribution to sustainable global economic growth, but requires improvement to size, cost, fuel flexibility and operating flexibility. International Fuel Cells (IFC) is applying lessons learned from delivery of more than 425 fuel cell power plants and 3 million h of operation to the development of product technology which captures that promise. Key findings at the fuel cell power plant level include: (1) ancillary components account for more than 40% of the weight and nearly all unscheduled outages of hydrocarbon-fuelled power plants; a higher level of integration and simplification is required to achieve reasonable characteristics, (2) hydrocarbon fuel cell power plant components are highly interactive; the fuel processing approach and power plant operating pressure are major determinants of overall efficiency, and (3) achieving the durability required for heavy duty vehicles and stationary applications requires simultaneous satisfaction of electrochemical, materials and mechanical considerations in the design of the cell stack and other power plant components. Practical designs must minimize application specific equipment. Related lessons for stationary fuel cell power plants include: (1) within fuel specification limits, natural gas varies widely in heating value, minor constituents such as oxygen and nitrogen content and trace compounds such as the odorant; (2) city water quality varies widely; recovery of product water for process use avoids costly, complicated and site-specific water treatment systems, but water treatment is required to eliminate impurities and (3) the embedded protection functions for reliable operation of fuel cell power conditioners meet or exceed those required for connection to

  9. PRODUCTION OF NEW BIOMASS/WASTE-CONTAINING SOLID FUELS

    Energy Technology Data Exchange (ETDEWEB)

    David J. Akers; Glenn A. Shirey; Zalman Zitron; Charles Q. Maney

    2001-04-20

    CQ Inc. and its team members (ALSTOM Power Inc., Bliss Industries, McFadden Machine Company, and industry advisors from coal-burning utilities, equipment manufacturers, and the pellet fuels industry) addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that includes both moisture reduction and pelletization or agglomeration for necessary fuel density and ease of handling. Further, this method of fuel production must be applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provide environmental benefits compared with coal. Notable accomplishments from the work performed in Phase I of this project include the development of three standard fuel formulations from mixtures of coal fines, biomass, and waste materials that can be used in

  10. Advanced laser processing in fuel cells production

    Energy Technology Data Exchange (ETDEWEB)

    Stollhof, J.; Havrilla, D.; Schaupp, R. [TRUMPF Inc., Plymouth, MI (United States); Loeffler, K. [TRUMPF Laser und Systemtechnik TLD, Ditzingen (Germany)

    2009-07-01

    This paper discussed TRUMPF methods of joining bipolar plates to create fuel cell stacks and manufacture thin foils using diode pumped solid state lasers (DPSSLs). Beam delivery systems and processing optics were discussed. CW disk lasers were used to allow spot diameters smaller than 30 {mu}m and combined with a Galvo technology-based scanning optics systems to enable welding speeds greater than 1 m/s. A TruFiber 300 diffraction limited fiber laser was used for CW laser cutting. Short and ultra-short laser pulses were used to drill thousands of holes per second without a measurable heat-affected zone. The attributes and specifications of the 3 major TRUMPF lasers developed to manufacture fuel cells were also provided.

  11. Nanoplasmonic Catalysis for Synthetic Fuel Production

    Science.gov (United States)

    2010-02-22

    in our energy infrastructure. For photocatalysis , this area is especially exciting because it presents a possible route to direct solar-to-fuel...Here, we utilize the plasmonic field enhancement to improve TiO2 photocatalysis in the visible wavelength range. (a) (b) 100 nm Figure 5. (a...this photocatalysis into the visible range by inducing charge in the TiO2 through the plasmon resonance phenomenon. In addition to CH4, the reduction

  12. Liquid fuels production from biomass. Final report

    Energy Technology Data Exchange (ETDEWEB)

    Levy, P. F.; Sanderson, J. E.; Ashare, E.; Wise, D. L.; Molyneaux, M. S.

    1980-06-30

    The current program to convert biomass into liquid hydrocarbon fuels is an extension of a previous program to ferment marine algae to acetic acid. In that study it was found that marine algae could be converted to higher aliphatic organic acids and that these acids could be readily removed from the fermentation broth by membrane or liquid-liquid extraction. It was then proposed to convert these higher organic acids via Kolbe electrolysis to aliphatic hydrocarbons, which may be used as a diesel fuel. The specific goals for the current porgram are: (1) establish conditions under which substrates other than marine algae may be converted in good yield to organic acids, here the primary task is methane suppression; (2) modify the current 300-liter fixed packed bed batch fermenter to operate in a continuous mode; (3) change from membrane extraction of organic acids to liquid-liquid extraction; (4) optimize the energy balance of the electrolytic oxidation process, the primary task is to reduce the working potential required for the electrolysis while maintaining an adequate current density; (5) scale the entire process up to match the output of the 300 liter fermenter; and (6) design pilot plant and commercial size plant (1000 tons/day) processes for converting biomass to liquid hydrocarbon fuels and perform an economic analysis for the 1000 ton/day design.

  13. Preliminary performance appraisal of Navy V/STOL transport and search-type airplanes using hydrogen fuel

    Science.gov (United States)

    Strack, W. C.

    1974-01-01

    First-cut estimates are given of the performance advantages of liquid-hydrogen-fueled, ejector wing, V/STOL aircraft designed for shipboard delivery and search-type missions. Results indicate that the use of LH2 could reduce gross weights 30 percent, empty weights 15 percent, and energy consumption 10 percent for a fixed payload and mission. If gross weight is fixed, the delivery range could be increased about 60 percent or the hover time during a search mission doubled. No analysis or discussion of the economic and operational disadvantages is presented.

  14. Target-fueled nuclear reactor for medical isotope production

    Science.gov (United States)

    Coats, Richard L.; Parma, Edward J.

    2017-06-27

    A small, low-enriched, passively safe, low-power nuclear reactor comprises a core of target and fuel pins that can be processed to produce the medical isotope .sup.99Mo and other fission product isotopes. The fuel for the reactor and the targets for the .sup.99Mo production are the same. The fuel can be low enriched uranium oxide, enriched to less than 20% .sup.235U. The reactor power level can be 1 to 2 MW. The reactor is passively safe and maintains negative reactivity coefficients. The total radionuclide inventory in the reactor core is minimized since the fuel/target pins are removed and processed after 7 to 21 days.

  15. Formate Formation and Formate Conversion in Biological Fuels Production

    Directory of Open Access Journals (Sweden)

    Bryan R. Crable

    2011-01-01

    Full Text Available Biomethanation is a mature technology for fuel production. Fourth generation biofuels research will focus on sequestering CO2 and providing carbon-neutral or carbon-negative strategies to cope with dwindling fossil fuel supplies and environmental impact. Formate is an important intermediate in the methanogenic breakdown of complex organic material and serves as an important precursor for biological fuels production in the form of methane, hydrogen, and potentially methanol. Formate is produced by either CoA-dependent cleavage of pyruvate or enzymatic reduction of CO2 in an NADH- or ferredoxin-dependent manner. Formate is consumed through oxidation to CO2 and H2 or can be further reduced via the Wood-Ljungdahl pathway for carbon fixation or industrially for the production of methanol. Here, we review the enzymes involved in the interconversion of formate and discuss potential applications for biofuels production.

  16. Thermodynamic treatment of noble metal fission products in nuclear fuel

    Science.gov (United States)

    Kaye, M. H.; Lewis, B. J.; Thompson, W. T.

    2007-06-01

    Based on a critical evaluation of the literature, a comprehensive thermodynamic model has been developed for the complete quinary system involving the noble metal fission products in nuclear fuel: Mo-Pd-Rh-Ru-Tc. This treatment was based on the foundation of ten binary systems and an interpolation scheme. The thermodynamic model has been demonstrated to fit the available experimental data for the ternary sub-systems. This work can be used with other models for potentially non-stoichiometric UO 2+ x containing fission products, as well as data for other phases, to assess the chemical form of fission products in irradiated fuel material.

  17. Hydrogen production econometric studies. [hydrogen and fossil fuels

    Science.gov (United States)

    Howell, J. R.; Bannerot, R. B.

    1975-01-01

    The current assessments of fossil fuel resources in the United States were examined, and predictions of the maximum and minimum lifetimes of recoverable resources according to these assessments are presented. In addition, current rates of production in quads/year for the fossil fuels were determined from the literature. Where possible, costs of energy, location of reserves, and remaining time before these reserves are exhausted are given. Limitations that appear to hinder complete development of each energy source are outlined.

  18. Sustainable Production of Asphalt using Biomass as Primary Process Fuel

    DEFF Research Database (Denmark)

    Bühler, Fabian; Nguyen, Tuong-Van; Elmegaard, Brian

    2016-01-01

    is the heating and drying of aggregate,where natural gas, fuel oil or LPG is burned in a direct-fired rotary dryer. Replacing this energy source with amore sustainable one presents several technical and economic challenges, as high temperatures, short startuptimes and seasonal production variations are required......The production of construction materials is very energy intensive and requires large quantities of fossil fuels.Asphalt is the major road paving material in Europe and is being produced primarily in stationary batch mixasphalt factories. The production process requiring the most energy....... This paper analyses different pathways for the useof biomass feedstock as a primary process fuel. The analysed cases consider the gasification of straw andwood chips and the direct combustion of wood pellets. The additional use of syngas from the gasifier for theproduction of heat or combined heat and power...

  19. Fission-product SiC reaction in HTGR fuel

    Energy Technology Data Exchange (ETDEWEB)

    Montgomery, F.

    1981-07-13

    The primary barrier to release of fission product from any of the fuel types into the primary circuit of the HTGR are the coatings on the fuel particles. Both pyrolytic carbon and silicon carbide coatings are very effective in retaining fission gases under normal operating conditions. One of the possible performance limitations which has been observed in irradiation tests of TRISO fuel is chemical interaction of the SiC layer with fission products. This reaction reduces the thickness of the SiC layer in TRISO particles and can lead to release of fission products from the particles if the SiC layer is completely penetrated. The experimental section of this report describes the results of work at General Atomic concerning the reaction of fission products with silicon carbide. The discussion section describes data obtained by various laboratories and includes (1) a description of the fission products which have been found to react with SiC; (2) a description of the kinetics of silicon carbide thinning caused by fission product reaction during out-of-pile thermal gradient heating and the application of these kinetics to in-pile irradiation; and (3) a comparison of silicon carbide thinning in LEU and HEU fuels.

  20. Technical and Economic Evaluation of Macroalgae Cultivation for Fuel Production (Draft)

    Energy Technology Data Exchange (ETDEWEB)

    Feinberg, D. A.; Hock, S. M.

    1985-04-01

    The potential of macroalgae as sources of renewable liquid and gaseous fuels is evaluated. A series of options for production of macroalgae feedstock is considered. Because of their high carbohydrate content, the fuel products for which macroalgae are most suitable are methane and ethanol. Fuel product costs were compared with projected fuel costs in the year 1995.

  1. Direct production of fractionated and upgraded hydrocarbon fuels from biomass

    Science.gov (United States)

    Felix, Larry G.; Linck, Martin B.; Marker, Terry L.; Roberts, Michael J.

    2014-08-26

    Multistage processing of biomass to produce at least two separate fungible fuel streams, one dominated by gasoline boiling-point range liquids and the other by diesel boiling-point range liquids. The processing involves hydrotreating the biomass to produce a hydrotreatment product including a deoxygenated hydrocarbon product of gasoline and diesel boiling materials, followed by separating each of the gasoline and diesel boiling materials from the hydrotreatment product and each other.

  2. Ignition of Metal Powders in Combustion Products of Model Fuel

    Science.gov (United States)

    1974-11-13

    y AD/A-001 172 IGNITION OF METAL POWDERS IN COMBUSTION PRODUCTS OF MODEL FUEL A. K. Klyauzov, et al Foreign Technology...S. Air Force UNCLASSIFIED »b. s»ouc » "I»0«T TITLE IGNITION OF METAL POWDERS IN COMBUSTION PRODUCTS OF MODEL FUEL f* OCJCPIPTIVK NOTKI (Typ* o...report mnd Inclumiv «**»••) Translation S »UTMö«I|I ( Firn tSSS», rnlddl* Inltlml, faar .tarna; A. K. Klyauzov, M. M. Arsh, et al 6

  3. Fuel-cycle assessment of selected bioethanol production.

    Energy Technology Data Exchange (ETDEWEB)

    Wu, M.; Wang, M.; Hong, H.; Energy Systems

    2007-01-31

    A large amount of corn stover is available in the U.S. corn belt for the potential production of cellulosic bioethanol when the production technology becomes commercially ready. In fact, because corn stover is already available, it could serve as a starting point for producing cellulosic ethanol as a transportation fuel to help reduce the nation's demand for petroleum oil. Using the data available on the collection and transportation of corn stover and on the production of cellulosic ethanol, we have added the corn stover-to-ethanol pathway in the GREET model, a fuel-cycle model developed at Argonne National Laboratory. We then analyzed the life-cycle energy use and emission impacts of corn stover-derived fuel ethanol for use as E85 in flexible fuel vehicles (FFVs). The analysis included fertilizer manufacturing, corn farming, farming machinery manufacturing, stover collection and transportation, ethanol production, ethanol transportation, and ethanol use in light-duty vehicles (LDVs). Energy consumption of petroleum oil and fossil energy, emissions of greenhouse gases (carbon dioxide [CO{sub 2}], nitrous oxide [N{sub 2}O], and methane [CH{sub 4}]), and emissions of criteria pollutants (carbon monoxide [CO], volatile organic compounds [VOCs], nitrogen oxide [NO{sub x}], sulfur oxide [SO{sub x}], and particulate matter with diameters smaller than 10 micrometers [PM{sub 10}]) during the fuel cycle were estimated. Scenarios of ethanol from corn grain, corn stover, and other cellulosic feedstocks were then compared with petroleum reformulated gasoline (RFG). Results showed that FFVs fueled with corn stover ethanol blends offer substantial energy savings (94-95%) relative to those fueled with RFG. For each Btu of corn stover ethanol produced and used, 0.09 Btu of fossil fuel is required. The cellulosic ethanol pathway avoids 86-89% of greenhouse gas emissions. Unlike the life cycle of corn grain-based ethanol, in which the ethanol plant consumes most of the fossil

  4. CO{sub 2} mitigation and fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Steinberg, M.

    1997-07-07

    Methanol as an alternative transportation fuel appears to be an effective intermediate agent, for reducing CO{sub 2} from the utility power and the transportation sectors. On the utilization side, methanol as a liquid fuel fits in well with the current infrastructure for storage and delivery to the automotive sector with better efficiency. On the production side, CO{sub 2} from fossil fuel plants together with natural gas and biomass can be used as feedstocks for methanol synthesis with reduced CO{sub 2}. Over the past several years, processes have emerged which have varying degrees of CO{sub 2} emission reduction depending on the feedstocks used for methanol synthesis process. This paper reviews the methanol processes from the point of view of production efficiency and CO{sub 2} emissions reduction. The processes include: (1) the Hydrocarb Process which primarily utilizes coal and natural gas and stores carbon, and (2) the Hynol Process which utilizes biomass (including carbonaceous wastes, municipal solid waste (MSW)) or coal and natural gas, and (3) the Carnol Process which utilizes natural gas and CO{sub 2} recovered from fossil fuel fired powered plant stacks, especially coal fired plants. The Carnol System consists of power generation, methanol production and methanol utilization as an automotive fuel. The efficiency and CO{sub 2} emissions for the entire system are compared to the conventional system of petroleum derived automotive fuel (gasoline) and coal fired power generation plants. CO{sub 2} reduction by as much as 56% and 77% can be achieved when methanol is used in internal combustion and fuel cell automotive vehicles, respectively.

  5. Metabolic engineering for the production of hydrocarbon fuels.

    Science.gov (United States)

    Lee, Sang Yup; Kim, Hye Mi; Cheon, Seungwoo

    2015-06-01

    Biofuels have been attracting increasing attention to provide a solution to the problems of climate change and our dependence on limited fossil oil. During the last decade, metabolic engineering has been performed to develop superior microorganisms for the production of so called advanced biofuels. Among the advanced biofuels, hydrocarbons possess high-energy content and superior fuel properties to other biofuels, and thus have recently been attracting much research interest. Here we review the recent advances in the microbial production of hydrocarbon fuels together with the metabolic engineering strategies employed to develop their production strains. Strategies employed for the production of long-chain and short-chain hydrocarbons derived from fatty acid metabolism along with the isoprenoid-derived hydrocarbons are reviewed. Also, the current limitations and future prospects in hydrocarbon-based biofuel production are discussed.

  6. Renewable hydrogen production for fossil fuel processing

    Energy Technology Data Exchange (ETDEWEB)

    Greenbaum, E.; Lee, J.W.; Tevault, C.V. [and others

    1995-06-01

    In the fundamental biological process of photosynthesis, atmospheric carbon dioxide is reduced to carbohydrate using water as the source of electrons with simultaneous evolution of molecular oxygen: H{sub 2}O + CO{sub 2} + light {yields} O{sub 2} + (CH{sub 2}O). It is well established that two light reactions, Photosystems I and II (PSI and PSII) working in series, are required to perform oxygenic photosynthesis. Experimental data supporting the two-light reaction model are based on the quantum requirement for complete photosynthesis, spectroscopy, and direct biochemical analysis. Some algae also have the capability to evolve molecular hydrogen in a reaction energized by the light reactions of photosynthesis. This process, now known as biophotolysis, can use water as the electron donor and lead to simultaneous evolution of molecular hydrogen and oxygen. In green algae, hydrogen evolution requires prior incubation under anaerobic conditions. Atmospheric oxygen inhibits hydrogen evolution and also represses the synthesis of hydrogenase enzyme. CO{sub 2} fixation competes with proton reduction for electrons relased from the photosystems. Interest in biophotolysis arises from both the questions that it raises concerning photosynthesis and its potential practical application as a process for converting solar energy to a non-carbon-based fuel. Prior data supported the requirement for both Photosystem I and Photosystem II in spanning the energy gap necessary for biophotolysis of water to oxygen and hydrogen. In this paper we report the at PSII alone is capable of driving sustained simultaneous photoevolution of molecular hydrogen and oxygen in an anaerobically adapted PSI-deficient strain of Chlamydomonas reinhardtii, mutant B4, and that CO{sub 2} competes as an electron acceptor.

  7. 40 CFR 80.590 - What are the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel...

    Science.gov (United States)

    2010-07-01

    ... requirements for motor vehicle diesel fuel, NRLM diesel fuel, heating oil, ECA marine fuel, and other... PROGRAMS (CONTINUED) REGULATION OF FUELS AND FUEL ADDITIVES Motor Vehicle Diesel Fuel; Nonroad, Locomotive... the product transfer document requirements for motor vehicle diesel fuel, NRLM diesel fuel,...

  8. Jet Fuel Production from TAG and FAME

    Science.gov (United States)

    2010-12-01

    hydrotreating catalyst. A picture of the HDO reactor is shown in Figure 2. The HDO reactor products were hydrocarbons, carbon dioxide, carbon monoxide...reactor operated at elevated temperature and pressure and contained a fixed bed of commercial hydrotreating catalyst. A picture of the HDO reactor is

  9. Antimicrobial peptides against contaminating bacteria in fuel ethanol production

    Science.gov (United States)

    Lactic acid bacteria (LAB) are commonly found as contaminants of fuel ethanol production, resulting in reduced ethanol yields (1). Recent reports suggest that LAB can develop resistance to antibiotics such as virginiamycin and penicillin that are commonly used to control bacterial contamination (2)...

  10. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most

  11. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most promisi

  12. Fuel ethanol production from alkaline peroxide pretreated corn stover

    Science.gov (United States)

    Corn stover (CS) has the potential to serve as an abundant low-cost feedstock for production of fuel ethanol. Due to heterogeneous complexity and recalcitrance of lignocellulosic feedstocks, pretreatment is required to break the lignin seal and/or disrupt the structure of crystalline cellulose to in...

  13. Harnessing Solar Energy for the Production of Clean Fuel

    NARCIS (Netherlands)

    Pandit, A.; Holzwarth, A.; de Groot, H.J.M.

    2008-01-01

    The European Union and its member states are being urged by leading scientists to make a major multi million Euro commitment to solar driven production of environmentally clean electricity, hydrogen and other fuels, as the only sustainable long-term solution for global energy needs. The most promisi

  14. Ethanol Production for Automotive Fuel Usage

    Energy Technology Data Exchange (ETDEWEB)

    May, S.C.; Stenzel, R.A.; Weekes, M.C.; Yu, J.

    1979-10-01

    The production of ethanol from potatoes, sugar beet, and wheat using geothermal resources at the Raft River area of idaho is being evaluated. The south central section of Idaho produces approximately 18 million bushels of wheat, 1.3 million tons of sugar beet and 24 million cwt potatoes annually. Based on these production figures, a 20 million gallon/yr ethanol facility has been selected as the largest scale plant that can be supported with the current agricultural resources. The plant will operate on all three feedstocks nominally processing potatoes for five months, sugar beet for four months and wheat for three months of the year. The process facility will use conventional alcohol technology utilizing geothermal fluid at a maximum of 280 F as an energy source. The process flow diagrams for all three feedstocks are currently being prepared. There will be basically three feedstock preparation sections, although the liquefaction and saccharification steps for potatoes and wheat will involve common equipment. The fermentation, distillation and by-product handling sections will be common to all three feedstocks. Three geothermal energy extraction systems were considered to accommodate the energy requirements of the ethanol facility (flashed steam, pressurized fluid and secondary heat transfer). Pressured geothermal fluid with direct heat transfer has been selected as the usage mode to minimize scale deposition. Tentatively, the geothermal supply wells will be laid out in square grids with 1/4 mile spacing. The number of wells required will be determined after the process heat load is calculated.

  15. Consideration of applications of olefin metathesis in synthetic fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Heveling, J.

    1984-07-01

    One of the characteristics of Fischer-Tropsch synthesis and many oligomerization processes, is insufficient selectivity. Efforts have to be made to bring the products obtained in line with the market requirements. The olefin metathesis reaction has the potential to convert less desirable olefins to more useful ones and provides new ways of producing petrochemicals. Based on existing and suggested process technologies, applications of this reaction for the production of synthetic liquid fuels are discussed.

  16. Navy Recruit’s Expectations of Productivity, Liking, and Intentions to Quit under Different Supervisors.

    Science.gov (United States)

    1983-11-01

    20360 ATTN: TIC , Bldg. 2068 Naval Training Equipment Centeraval Matrial Comand Orlando, nL 32813 Director, Productivity Management Office MAT-OOK Chief...Barnes-Farrell Dr. J. Richard Heaman Department of Psychology School of Organizacion University of Hawaii and Management 2430 Campus Road Box 1A, Yale

  17. Energy Efficiency Indicators for Public Electricity Production from Fossil Fuels

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2008-07-01

    This paper presents a set of indicators that are used to analyse the energy efficiency of electricity production from fossil fuels on a global level and for a number of key countries and regions. The analysis is based on IEA statistics and includes public electricity plants and public CHP plants. Electricity production by autoproducers is not included and represents less than 6% of global electricity production. However, the share of autoproducers is significant in certain countries, particularly in Europe. Austria, Finland, Luxembourg, the Netherlands and Spain all have a share of electricity production from autoproducers that is more than twice the global average.

  18. Bioelectricity production from various wastewaters through microbial fuel cell technology

    Directory of Open Access Journals (Sweden)

    Abhilasha S Mathuriya

    2009-12-01

    Full Text Available Microbial fuel cell technology is a new type of renewable and sustainable technology for electricity generation since it recovers energy from renewable materials that can be difficult to dispose of, such as organic wastes and wastewaters. In the present contribution we demonstrated electricity production by beer brewery wastewater, sugar industry wastewater, dairy wastewater, municipal wastewater and paper industry wastewater. Up to 14.92 mA current and 90.23% COD removal was achieved in 10 days of operation. Keywords: Bioelectricity, COD, Microbial Fuel Cells, Wastewater Received: 12 November 2009 / Received in revised form: 30 November 2009, Accepted: 30 November 2009, Published online: 10 March 2010

  19. Production of New Biomass/Waste-Containing Solid Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Glenn A. Shirey; David J. Akers

    2005-09-23

    CQ Inc. and its industry partners--PBS Coals, Inc. (Friedens, Pennsylvania), American Fiber Resources (Fairmont, West Virginia), Allegheny Energy Supply (Williamsport, Maryland), and the Heritage Research Group (Indianapolis, Indiana)--addressed the objectives of the Department of Energy and industry to produce economical, new solid fuels from coal, biomass, and waste materials that reduce emissions from coal-fired boilers. This project builds on the team's commercial experience in composite fuels for energy production. The electric utility industry is interested in the use of biomass and wastes as fuel to reduce both emissions and fuel costs. In addition to these benefits, utilities also recognize the business advantage of consuming the waste byproducts of customers both to retain customers and to improve the public image of the industry. Unfortunately, biomass and waste byproducts can be troublesome fuels because of low bulk density, high moisture content, variable composition, handling and feeding problems, and inadequate information about combustion and emissions characteristics. Current methods of co-firing biomass and wastes either use a separate fuel receiving, storage, and boiler feed system, or mass burn the biomass by simply mixing it with coal on the storage pile. For biomass or biomass-containing composite fuels to be extensively used in the U.S., especially in the steam market, a lower cost method of producing these fuels must be developed that is applicable to a variety of combinations of biomass, wastes, and coal; economically competitive with current fuels; and provides environmental benefits compared with coal. During Phase I of this project (January 1999 to July 2000), several biomass/waste materials were evaluated for potential use in a composite fuel. As a result of that work and the team's commercial experience in composite fuels for energy production, paper mill sludge and coal were selected for further evaluation and demonstration

  20. Peer Production in the U.S. Navy: Enlisting Coase’s Penguin

    Science.gov (United States)

    2009-12-01

    PMO Project Management Office PP Peer Production TCE Transaction Cost Economics TQM Total Quality Management VTC Video Tele-Conference...Linux and the Nature of the Firm". Coase refers to Robert Coase who, in 1930, postulated transaction cost economics in The Nature of the Firm and the...and making engines because (1) the management costs of doing it internally were less than the transaction cost of finding an external supplier, and (2

  1. Production of fuels by cellulose liquefaction

    Energy Technology Data Exchange (ETDEWEB)

    Datta, B.K.; McAuliffe, C.A. [Univ. of Manchester Institute of Science and Technology (United Kingdom)

    1993-12-31

    The effect of temperature on the liquefaction of cellulose was investigated in a range 200{degrees} to 350{degrees}C in aqueous medium with 5% pt/Al{sub 2}O{sub 3} catalyst, at 35 bars of hydrogen as reducing gas and a reaction time of 2 hours. Experiments were conducted in a 1 liter batch rocker autoclave reactor. The conversion increased from 46.5% at 200{degrees}C to 92.46% at 350{degrees}C, the oil yield increased from 18% at 200{degrees} to 33% at 350{degrees}C. At the high temperature, 350{degrees}C, the water soluble fraction and char formation decreased due to the conversion of the above to various gases. Moreover, ether solubles in water soluble fractions also decreased while the production of water increased from 8% at 200{degrees}C to 29% at 350{degrees}C. It suggests the possibility of removal of oxidants from the feedstocks as water. Initial dehydration reactions were obviously responsible for the high yield of water. Water yield increased gradually with the increase in temperature which was probably due to the dehydration of the intermediary products and the concurrent removal of oxygen atom as water instead of as CO or CO{sub 2}. At high temperatures, more CO{sub 2} gas was formed due to the water gas shift reaction. The formation of CO{sub 2} is favored over the formation of CO. At high temperatures more hydrocarbon gases were formed. Solvent extraction of the oils showed that the maximum percentage of carboxylic acids and phenolic compounds formed in comparison with carbonyl and neutral compounds when temperature increased.

  2. Biohydrogen production as a potential energy fuel in South Africa

    Directory of Open Access Journals (Sweden)

    P.T. Sekoai

    2015-06-01

    Full Text Available Biohydrogen production has captured increasing global attention due to it social, economic and environmental benefits. Over the past few years, energy demands have been growing significantly in South Africa due to rapid economic and population growth. The South African parastatal power supplier i.e. Electricity Supply Commission (ESKOM has been unable to meet the country’s escalating energy needs. As a result, there have been widespread and persistent power cuts throughout the country. This prompts an urgent need for exploration and implementation of clean and sustainable energy fuels like biohydrogen production in order to address this crisis. Therefore, this paper discusses the current global energy challenges in relation to South Africa’s problems. It then examines the feasibility of using biohydrogen production as a potential energy fuel in South Africa. Finally, it reviews the hydrogen-infrastructure development plans in the country.

  3. Photocatalysis for Renewable Energy Production Using PhotoFuelCells

    Directory of Open Access Journals (Sweden)

    Robert Michal

    2014-11-01

    Full Text Available The present work is a short review of our recent studies on PhotoFuelCells, that is, photoelectrochemical cells which consume a fuel to produce electricity or hydrogen, and presents some unpublished data concerning both electricity and hydrogen production. PhotoFuelCells have been constructed using nanoparticulate titania photoanodes and various cathode electrodes bearing a few different types of electrocatalyst. In the case where the cell functioned with an aerated cathode, the cathode electrode was made of carbon cloth carrying a carbon paste made of carbon black and dispersed Pt nanoparticles. When the cell was operated in the absence of oxygen, the electrocatalyst was deposited on an FTO slide using a special commercial carbon paste, which was again enriched with Pt nanoparticles. Mixing of Pt with carbon paste decreased the quantity of Pt necessary to act as electrocatalyst. PhotoFuelCells can produce electricity without bias and with relatively high open-circuit voltage when they function in the presence of fuel and with an aerated cathode. In that case, titania can be sensitized in the visible region by CdS quantum dots. In the present work, CdS was deposited by the SILAR method. Other metal chalcogenides are not functional as sensitizers because the combined photoanode in their presence does not have enough oxidative power to oxidize the fuel. Concerning hydrogen production, it was found that it is difficult to produce hydrogen in an alkaline environment even under bias, however, this is still possible if losses are minimized. One way to limit losses is to short-circuit anode and cathode electrode and put them close together. This is achieved in the “photoelectrocatalytic leaf”, which was presently demonstrated capable of producing hydrogen even in a strongly alkaline environment.

  4. Photocatalysis for renewable energy production using PhotoFuelCells.

    Science.gov (United States)

    Michal, Robert; Sfaelou, Stavroula; Lianos, Panagiotis

    2014-11-27

    The present work is a short review of our recent studies on PhotoFuelCells, that is, photoelectrochemical cells which consume a fuel to produce electricity or hydrogen, and presents some unpublished data concerning both electricity and hydrogen production. PhotoFuelCells have been constructed using nanoparticulate titania photoanodes and various cathode electrodes bearing a few different types of electrocatalyst. In the case where the cell functioned with an aerated cathode, the cathode electrode was made of carbon cloth carrying a carbon paste made of carbon black and dispersed Pt nanoparticles. When the cell was operated in the absence of oxygen, the electrocatalyst was deposited on an FTO slide using a special commercial carbon paste, which was again enriched with Pt nanoparticles. Mixing of Pt with carbon paste decreased the quantity of Pt necessary to act as electrocatalyst. PhotoFuelCells can produce electricity without bias and with relatively high open-circuit voltage when they function in the presence of fuel and with an aerated cathode. In that case, titania can be sensitized in the visible region by CdS quantum dots. In the present work, CdS was deposited by the SILAR method. Other metal chalcogenides are not functional as sensitizers because the combined photoanode in their presence does not have enough oxidative power to oxidize the fuel. Concerning hydrogen production, it was found that it is difficult to produce hydrogen in an alkaline environment even under bias, however, this is still possible if losses are minimized. One way to limit losses is to short-circuit anode and cathode electrode and put them close together. This is achieved in the "photoelectrocatalytic leaf", which was presently demonstrated capable of producing hydrogen even in a strongly alkaline environment.

  5. H2 PRODUCTION AND FUEL CELLS.

    Energy Technology Data Exchange (ETDEWEB)

    WANG, X.; RODRIGUEZ, J.A.

    2006-06-30

    Oxide nanosystems play a key role as components of catalysts used for the production of H{sub 2} via the steam reforming or the partial oxidation of hydrocarbons, and for the water-gas shift reaction. The behavior seen for Cu-ceria and Au-ceria WGS catalysts indicates that the oxide is much more than a simple support. The special chemical properties of the oxide nanoparticles (defect rich, high mobility of oxygen) favor interactions with the reactants or other catalyst components. More in-situ characterization and mechanistic studies are necessary for the optimization of these nanocatalysts. The use of oxide nanomaterials for the fabrication of PEMFCs and SOFCs can lead to devices with a high practical impact. One objective is to build electrodes with low cost conducting oxide nanoarrays. The electron and oxygen-ion conducting capabilities of many oxides improve when going from the bulk to the nanoscale. Furthermore, one can get a more homogeneous surface morphology and an increase of the effective reaction area. Much more fundamental and practical research needs to be done in this area.

  6. Characterization of Catalyst Materials for Production of Aerospace Fuels

    Science.gov (United States)

    Best, Lauren M.; De La Ree, Ana B.; Hepp, Aloysius F.

    2012-01-01

    Due to environmental, economic, and security issues, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to non-petroleum sources as a feedstock for aviation (and other transportation) fuels. Additionally, efforts are concentrated on reducing costs coupled with fuel production from non-conventional sources. One solution to this issue is Fischer-Tropsch gas-to-liquid technology. Fischer-Tropsch processing of synthesis gas (CO/H2) produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fisher-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur or aromatic compounds. This process is most commonly catalyzed by heterogeneous (in this case, silver and platinum) catalysts composed of cobalt supported on alumina or unsupported alloyed iron powders. Physisorption, chemisorptions, scanning electron microscopy (SEM), and energy dispersive spectroscopy (EDS) are described to better understand the potential performance of Fischer-Tropsch cobalt on alumina catalysts promoted with silver and platinum. The overall goal is to preferentially produce C8 to C18 paraffin compounds for use as aerospace fuels. Progress towards this goal will eventually be updated and achieved by a more thorough understanding of the characterization of catalyst materials. This work was supported by NASA s Subsonic Fixed Wing and In-situ Resource Utilization projects.

  7. Subsurface phytoplankton blooms fuel pelagic production in the North Sea

    DEFF Research Database (Denmark)

    Richardson, Kathrine; Visser, Andre; Pedersen, Flemming

    2000-01-01

    convincingly that energy fixed during the spring bloom is fueling the pelagic production occurring during summer months. We argue here that periodic phytoplankton blooms are occurring during the summer in the North Sea at depths of >25 m and that the accumulated new production [sensu (Dugdale and Goering......, Limnol. Oceanogr., 12, 196-206, 1967)] occurring in these blooms may be greater than that occurring in the spring bloom in the same regions. Thus, such blooms may explain apparent discrepancies in production yields between different temperate marine systems...

  8. Biodiesel Fuel Production from Algae as Renewable Energy

    Directory of Open Access Journals (Sweden)

    A. B.M. Sharif Hossain

    2008-01-01

    Full Text Available Biodiesel is biodegradable, less CO2 and NOx emissions. Continuous use of petroleum sourced fuels is now widely recognized as unsustainable because of depleting supplies and the contribution of these fuels to the accumulation of carbon dioxide in the environment. Renewable, carbon neutral, transport fuels are necessary for environmental and economic sustainability. Algae have emerged as one of the most promising sources for biodiesel production. It can be inferred that algae grown in CO2-enriched air can be converted to oily substances. Such an approach can contribute to solve major problems of air pollution resulting from CO2 evolution and future crisis due to a shortage of energy sources. This study was undertaken to know the proper transesterification, amount of biodiesel production (ester and physical properties of biodiesel. In this study we used common species Oedogonium and Spirogyra to compare the amount of biodiesel production. Algal oil and biodiesel (ester production was higher in Oedogonium than Spirogyra sp. However, biomass (after oil extraction was higher in Spirogyra than Oedogonium sp. Sediments (glycerine, water and pigments was higher in Spirogyra than Oedogonium sp. There was no difference of pH between Spirogyra and Oedogonium sp. These results indicate that biodiesel can be produced from both species and Oedogonium is better source than Spirogyra sp.

  9. Preliminary Economics for Hydrocarbon Fuel Production from Cellulosic Sugars

    Energy Technology Data Exchange (ETDEWEB)

    Collett, James R.; Meyer, Pimphan A.; Jones, Susanne B.

    2014-05-18

    Biorefinery process and economic models built in CHEMCAD and a preliminary, genome-scale metabolic model for the oleaginous yeast Lipomyces starkeyi were used to simulate the bioconversion of corn stover to lipids, and the upgrading of these hydrocarbon precursors to diesel and jet fuel. The metabolic model was based on the recently released genome sequence for L. starkeyi and on metabolic pathway information from the literature. The process model was based on bioconversion, lipid extraction, and lipid oil upgrading data found in literature, on new laboratory experimental data, and on yield predictions from the preliminary L. starkeyi metabolic model. The current plant gate production cost for a distillate-range hydrocarbon fuel was estimated by the process model Base Case to be $9.5/gallon ($9.0 /gallon of gasoline equivalent) with assumptions of 2011$, 10% internal return on investment, and 2205 ton/day dry feed rate. Opportunities for reducing the cost to below $5.0/gallon, such as improving bioconversion lipid yield and hydrogenation catalyst selectivity, are presented in a Target Case. The process and economic models developed for this work will be updated in 2014 with new experimental data and predictions from a refined metabolic network model for L. starkeyi. Attaining a production cost of $3.0/gallon will require finding higher value uses for lignin other than power generation, such as conversion to additional fuel or to a co-product.

  10. Utilisation of coal for energy production in fuel cells

    Directory of Open Access Journals (Sweden)

    Dudek Magdalena

    2016-01-01

    Full Text Available In this paper a brief characterization of fuel cell technology and its possible application in sustainable energy development was described. Special attention was paid to direct carbon fuel cell technology. The direct carbon fuel cell is an electrochemical device which directly converts the chemical energy of carbonaceous based fuel into electricity without ‘flame burning’. The electrical efficiency of a DCFC is indeed very high (in practice exceeding 80%, and the product of conversion consists of almost pure CO2, eliminating the most expensive step of sequestration: the separation of carbon from flue gases. In this paper the process of electrochemical oxidation of carbon particles on the surface of oxide electrolytes at 8% mol Y2O3 in ZrO2 (8YSZ as well as cermet anode Ni-8YSZ was analysed. The graphite, carbon black powders were considered as reference solid fuels for coal samples. It was found that the main factors contributing to the electrochemical reactivity of carbon particles is not only the high carbon content in samples but also structural disorder. It was found that structurally disordered carbon-based materials are the most promising solid fuels for direct carbon solid oxide fuel cells. Special impact was placed on the consideration of coal as possible solid fuels for DC-SOFC. Statistical and economic analyses show that in the coming decades, in developing countries such as China, India, and some EU countries, coal-fuelled power plants will maintain their strong position in the power sector due to their reliability and low costs as well as the large reserves of coal and lignite in the world. Coal is mined in politically stable areas, which guarantees its easy and safe purchase and transport. The impact of the physiochemical properties of raw and purified coal on the performance of the DC-SOFC was studied. An analysis of the stability of electrical parameters was performed for a DC-SOFC operating under a load over an extended

  11. Engineering microbial electrocatalysis for chemical and fuel production.

    Science.gov (United States)

    Rosenbaum, Miriam A; Henrich, Alexander W

    2014-10-01

    In many biotechnological areas, metabolic engineering and synthetic biology have become core technologies for biocatalyst development. Microbial electrocatalysis for biochemical and fuel production is still in its infancy and reactions rates and the product spectrum are currently very low. Therefore, molecular engineering strategies will be crucial for the advancement and realization of many new bioproduction routes using electroactive microorganisms. The complex and unresolved biochemistry and physiology of extracellular electron transfer and the lack of molecular tools for these new non-model hosts for genetic engineering constitute the major challenges for this effort. This review is providing an insight into the current status, challenges and promising approaches of pathway engineering for microbial electrocatalysis.

  12. Biomass Biorefinery for the production of Polymers and Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Dr. Oliver P. Peoples

    2008-05-05

    The conversion of biomass crops to fuel is receiving considerable attention as a means to reduce our dependence on foreign oil imports and to meet future energy needs. Besides their use for fuel, biomass crops are an attractive vehicle for producing value added products such as biopolymers. Metabolix, Inc. of Cambridge proposes to develop methods for producing biodegradable polymers polyhydroxyalkanoates (PHAs) in green tissue plants as well as utilizating residual plant biomass after polymer extraction for fuel generation to offset the energy required for polymer extraction. The primary plant target is switchgrass, and backup targets are alfalfa and tobacco. The combined polymer and fuel production from the transgenic biomass crops establishes a biorefinery that has the potential to reduce the nation’s dependence on foreign oil imports for both the feedstocks and energy needed for plastic production. Concerns about the widespread use of transgenic crops and the grower’s ability to prevent the contamination of the surrounding environment with foreign genes will be addressed by incorporating and expanding on some of the latest plant biotechnology developed by the project partners of this proposal. This proposal also addresses extraction of PHAs from biomass, modification of PHAs so that they have suitable properties for large volume polymer applications, processing of the PHAs using conversion processes now practiced at large scale (e.g., to film, fiber, and molded parts), conversion of PHA polymers to chemical building blocks, and demonstration of the usefulness of PHAs in large volume applications. The biodegradability of PHAs can also help to reduce solid waste in our landfills. If successful, this program will reduce U.S. dependence on imported oil, as well as contribute jobs and revenue to the agricultural economy and reduce the overall emissions of carbon to the atmosphere.

  13. A Possible Solution for the U.S. Navy’s Addiction to Petroleum: A Business Case Analysis for Transitioning the U.S. Navy From Petroleum to Synthetic Fuel Resources

    Science.gov (United States)

    2007-03-01

    temperatures , to be useful. Today’s tactical vehicles have a limited fuel volume and fuel weight capacity. Furthermore, tactical vehicles are subject to...Kuwait or Dubai and crashing it into Abqaiq or Ras Tanura, could turn the complex into an inferno. 16 This could take up to 50 percent of Saudi...are inconsistencies within the data that affect the capital and operating expenses of each cost study. For example if the feedstock is coal, there

  14. Production, quality and quality assurance of Refuse Derived Fuels (RDFs).

    Science.gov (United States)

    Sarc, R; Lorber, K E

    2013-09-01

    This contribution describes characterization, classification, production, application and quality assurance of Refuse Derived Fuels (RDFs) that are increasingly used in a wide range of co-incineration plants. It is shown in this paper, that the fuel-parameter, i.e. net calorific value [MJ/kg(OS)], particle size d(90) or d(95) [mm], impurities [w%], chlorine content [w%], sulfur content [w%], fluorine content [w%], ash content [w%], moisture [w%] and heavy metals content [mg/kg(DM)], can be preferentially used for the classification of different types of RDF applied for co-incineration and substitution of fossil-fuel in different industial sectors. Describing the external production of RDF by processing and confectioning of wastes as well as internal processing of waste at the incineration plant, a case study is reported on the application of RDF made out of different household waste fractions in a 120,000t/yr Waste to Energy (WtE) circulating fluidized bed (CFB) incinerator. For that purpose, delivered wastes, as well as incinerator feedstock material (i.e. after internal waste processing) are extensively investigated. Starting with elaboration of sampling plan in accordance with the relevant guidelines and standards, waste from different suppliers was sampled. Moreover, manual sorting analyses and chemical analyses were carried out. Finally, results of investigations are presented and discussed in the paper.

  15. Symbiotic Nuclear—Coal Systems for Production of Liquid Fuels

    Science.gov (United States)

    Taczanowski, S.

    The notion of safety is not confined to the technological or non-proliferation aspects. It covers also the elements of energy policy: irrational reactions of societies, emotions, egoistic interests of more or less powerful pressure of economical and external political factors. One should be conscious that the country's privilege of being equipped by the Nature with rich resources of oil or gas is not solely economical, but even more a political one. Simultaneously, the gradual depletion of world hydrocarbons that draws behind irrevocable price increase has to be expected within the time scale of exploitation of power plants (now amounted to ~60 years). Therefore consequences of energy policy last much longer than the perspectives the political or economical decision makers are planning and acting within and the public is expecting successes and finally evaluating them. The world oil and gas resources are geopolitically very non-uniformly distributed, in contrast to coal and uranium. Since the level of energy self-sufficiency of the EU is highest for coal, the old idea of synfuels production from coal is recalled. Yet, in view of limits to the CO2 emissions in the EU another method has to be used here than the conventional coal liquefaction just applied in China. Simultaneously, an interesting evolution of energy prices was be observed, namely an increase in that of motor fuels in contrast to that of electricity remaining well stable. This fact suggests that the use of electricity (mainly the off-peak load), generated without emissions of CO2 for production of liquid fuels can prove reasonable. Thus, the essence of the presented idea of coal-nuclear symbiosis lies in the supply of energy in the form of H2, necessary for this process, from a nuclear reactor. Particularly, in the present option H2 is obtained by electrolytic water splitting supplying also O2 as a precious by-product in well mature and commercially available already since decades, Light Water Reactors

  16. Energy Supply- Production of Fuel from Agricultural and Animal Waste

    Energy Technology Data Exchange (ETDEWEB)

    Gabriel Miller

    2009-03-25

    The Society for Energy and Environmental Research (SEER) was funded in March 2004 by the Department of Energy, under grant DE-FG-36-04GO14268, to produce a study, and oversee construction and implementation, for the thermo-chemical production of fuel from agricultural and animal waste. The grant focuses on the Changing World Technologies (CWT) of West Hempstead, NY, thermal conversion process (TCP), which converts animal residues and industrial food processing biproducts into fuels, and as an additional product, fertilizers. A commercial plant was designed and built by CWT, partially using grant funds, in Carthage, Missouri, to process animal residues from a nearby turkey processing plant. The DOE sponsored program consisted of four tasks. These were: Task 1 Optimization of the CWT Plant in Carthage - This task focused on advancing and optimizing the process plant operated by CWT that converts organic waste to fuel and energy. Task 2 Characterize and Validate Fuels Produced by CWT - This task focused on testing of bio-derived hydrocarbon fuels from the Carthage plant in power generating equipment to determine the regulatory compliance of emissions and overall performance of the fuel. Task 3 Characterize Mixed Waste Streams - This task focused on studies performed at Princeton University to better characterize mixed waste incoming streams from animal and vegetable residues. Task 4 Fundamental Research in Waste Processing Technologies - This task focused on studies performed at the Massachusetts Institute of Technology (MIT) on the chemical reformation reaction of agricultural biomass compounds in a hydrothermal medium. Many of the challenges to optimize, improve and perfect the technology, equipment and processes in order to provide an economically viable means of creating sustainable energy were identified in the DOE Stage Gate Review, whose summary report was issued on July 30, 2004. This summary report appears herein as Appendix 1, and the findings of the report

  17. Chemical Characterization and Reactivity of Fuel-Oxidizer Reaction Product

    Science.gov (United States)

    David, Dennis D.; Dee, Louis A.; Beeson, Harold D.

    1997-01-01

    Fuel-oxidizer reaction product (FORP), the product of incomplete reaction of monomethylhydrazine and nitrogen tetroxide propellants prepared under laboratory conditions and from firings of Shuttle Reaction Control System thrusters, has been characterized by chemical and thermal analysis. The composition of FORP is variable but falls within a limited range of compositions that depend on three factors: the fuel-oxidizer ratio at the time of formation; whether the composition of the post-formation atmosphere is reducing or oxidizing; and the reaction or post-reaction temperature. A typical composition contains methylhydrazinium nitrate, ammonium nitrate, methylammonium nitrate, and trace amounts of hydrazinium nitrate and 1,1-dimethylhydrazinium nitrate. Thermal decomposition reactions of the FORP compositions used in this study were unremarkable. Neither the various compositions of FORP, the pure major components of FORP, nor mixtures of FORP with propellant system corrosion products showed any unusual thermal activity when decomposed under laboratory conditions. Off-limit thruster operations were simulated by rapid mixing of liquid monomethylhydrazine and liquid nitrogen tetroxide in a confined space. These tests demonstrated that monomethylhydrazine, methylhydrazinium nitrate, ammonium nitrate, or Inconel corrosion products can induce a mixture of monomethylhydrazine and nitrogen tetroxide to produce component-damaging energies. Damaging events required FORP or metal salts to be present at the initial mixing of monomethylhydrazine and nitrogen tetroxide.

  18. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant Hawkes; James O' Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  19. Bio-Fuel Production Assisted with High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant Hawkes; James O' Brien; Michael McKellar

    2012-06-01

    Two hybrid energy processes that enable production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure are presented. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), these two hybrid energy processes have the potential to provide a significant alternative petroleum source that could reduce dependence on imported oil. The first process discusses a hydropyrolysis unit with hydrogen addition from HTSE. Non-food biomass is pyrolyzed and converted to pyrolysis oil. The pyrolysis oil is upgraded with hydrogen addition from HTSE. This addition of hydrogen deoxygenates the pyrolysis oil and increases the pH to a tolerable level for transportation. The final product is synthetic crude that could then be transported to a refinery and input into the already used transportation fuel infrastructure. The second process discusses a process named Bio-Syntrolysis. The Bio-Syntrolysis process combines hydrogen from HTSE with CO from an oxygen-blown biomass gasifier that yields syngas to be used as a feedstock for synthesis of liquid synthetic crude. Conversion of syngas to liquid synthetic crude, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model

  20. Low carbon fuel and chemical production from waste gases

    Energy Technology Data Exchange (ETDEWEB)

    Simpson, S.; Liew, F.M.; Daniell, J.; Koepke, M. [LanzaTech, Ltd., Auckland (New Zealand)

    2012-07-01

    LanzaTech has developed a gas fermentation platform for the production of alter native transport fuels and commodity chemicals from carbon monoxide, hydrogen and carbon dioxide containing gases. LanzaTech technology uses these gases in place of sugars as the carbon and energy source for fermentation thereby allowing a broad spectrum of resources to be considered as an input for product synthesis. At the core of the Lanzatech process is a proprietary microbe capable of using gases as the only carbon and energy input for product synthesis. To harness this capability for the manufacture of a diverse range of commercially valuable products, the company has developed a robust synthetic biology platform to enable a variety of novel molecules to be synthesised via gas fermentation. LanzaTech initially focused on the fermentation of industrial waste gases for fuel ethanol production. The company has been operating pilot plant that uses direct feeds of steel making off gas for ethanol production for over 24 months. This platform technology has been further successfully demonstrated using a broad range of gas inputs including gasified biomass and reformed natural gas. LanzaTech has developed the fermentation, engineering and control systems necessary to efficiently convert gases to valuable products. A precommercial demonstration scale unit processing steel mill waste gases was commissioned in China during the 2{sup nd} quarter of 2012. Subsequent scale-up of this facility is projected for the 2013 and will represent the first world scale non-food based low carbon ethanol project. More recently LanzaTech has developed proprietary microbial catalysts capable of converting carbon dioxide in the presence of hydrogen directly to value added chemicals, where-in CO{sub 2} is the sole source of carbon for product synthesis. Integrating the LanzaTech technology into a number of industrial facilities, such as steel mills, oil refineries and other industries that emit Carbon bearing

  1. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2010-08-01

    This report identifies the commercial and near-commercial (emerging) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies Program in the Office of Energy Efficiency and Renewable Energy.

  2. Investigating the potential for subsurface primary production fueled by serpentinization

    Science.gov (United States)

    Brazelton, W. J.; Nelson, B. Y.; Schrenk, M. O.

    2011-12-01

    Ultramafic rocks in the Earth's mantle represent a tremendous reservoir of carbon and reducing power. Tectonic uplift of these materials into the crust can result in serpentinization, a highly exothermic geochemical reaction that releases hydrogen gas (H2) and promotes the abiogenic synthesis of organic molecules. The extent and activity of microbial communities in serpentinite-hosted subsurface habitats is almost entirely unknown, but they clearly have great potential to host extensive sunlight-independent primary production fueled by H2 and abiotic carbon compounds. We have been testing this hypothesis at several sites of serpentinization around the globe utilizing a suite of techniques including metagenomics, 16S rRNA pyrotag sequencing, and stable isotope tracing experiments. All four of our study sites, which include deep-sea hydrothermal vents, terrestrial alkaline springs, and continental drill holes, are characteristically low in archaeal and bacterial genetic diversity. In carbonate chimneys of the Lost City hydrothermal field (Mid-Atlantic Ridge), for example, a single archaeal phylotype dominates the biofilm community. Stable isotope tracing experiments indicated that these archaeal biofilms are capable of both production and anaerobic oxidation of methane at 80C and pH 10. Both production and oxidation were stimulated by H2, suggesting a possible syntrophic relationship among cells within the biofilm. Preliminary results from similar stable isotope tracing experiments at terrestrial alkaline seeps at the Tablelands Ophiolite (Newfoundland), Ligurian springs (Italy), and McLaughlin Reserve (California) have indicated the potential for microbial activity fueled by H2 and acetate. Furthermore, recent metagenomic sequencing of fluids from the Tablelands and Ligurian springs have revealed genomic potential for chemolithotrophy powered by iron reduction with H2. In summary, these data support the potential for extensive microbial activity fueled by

  3. Fixed bed gasification for production of industrial fuel gas

    Energy Technology Data Exchange (ETDEWEB)

    1977-10-01

    This report summarizes the results of technical and economic evaluations of six commercially available, fixed-bed coal gasification processes for the production of industrial fuel gas. The study was performed for DOE and is intended to assist industrial companies in exploring the feasibility of producing gaseous fuels for both retrofit and new industrial plant situations. The report includes a technical analysis of the physical configuration, performance capabilities, and commercial experiments to-date for both air-blown and oxygen-blown fixed bed gasifiers. The product gas from these gasifiers is analyzed economically for three different degrees of cleanliness: (1) hot raw gas, (2) dust-, tar-, and oil-free gas, and (3) dust-, tar-, oil-free and desulfurized gas. The evaluations indicate that low-Btu gases produced from fixed bed gasifiers constitute one of the most logical short-term solutions for helping ease the shortage of natural gas for industrial fuel applications because the technology is well-proven and has been utilized on a commercial scale for several decades both in this country and overseas; time from initiation of design to commercial operation is about two years; the technology is not complicated to construct, operate, or maintain; and a reliable supply of product gas can be generated on-site. The advantages and disadvantages of fixed bed gasification technology are listed. The cost of the low Btu gas is estimated at $2 to $4 per MM Btu depending on gas purity, cost of coal ($20 to $50 per ton) and a number of specified assumptions with respect to financing, reliability, etc. (LTN)

  4. Novel forest fuel production technology for the large scale applications

    Energy Technology Data Exchange (ETDEWEB)

    Timperi, A. [Timberjack Energy Technology, Tampere (Finland)

    2003-07-01

    This PowerPoint presentation outlined the operations of Timberjack Energy Technology and provided illustrated examples of how the latest technologies in bioenergy have been applied to generate power in Finland. In particular, it referred to mobile chippers and loose residue bundlers used to provide feed for the CFB boiler at a kraft pulp and paper pilot project plant in Alholmens, Finland. The boiler generates 700 GWh of heat, and 1,300 GWh of electricity using 45 per cent peat, 45 per cent bark and wood waste, and 10 per cent heavy fuel oil and coal. Illustrations of the fuel handling system for the facility were presented. The Alholmens Kraft facility operates the world's first slash bundle train for bark and wood waste. It handles 4,000 bundles per day, equivalent to 65 full truck loads and 2,000 metric tons. The use of Timberjack's wood buncher and bundling machines have been tested in Austria, Finland, France, Germany, Italy, Spain, Switzerland, Sweden and the United States. It is estimated that 720,000 bundles of loose residue were made in Finland in 2003, equivalent to 19 million US oil gallons of pure renewable energy. The target for 2004 is 1,250,000 bundles, equivalent to 1.3 TWh. Wood fuel accounts for 20 per cent of primary energy production in Finland. It was noted that an added benefit to bundling of forest residue is the potential to prevent forest fires. 1 tab., 53 figs.

  5. HOMER Economic Models - US Navy

    Energy Technology Data Exchange (ETDEWEB)

    Bush, Jason William [Idaho National Lab. (INL), Idaho Falls, ID (United States); Myers, Kurt Steven [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2016-02-01

    This LETTER REPORT has been prepared by Idaho National Laboratory for US Navy NAVFAC EXWC to support in testing pre-commercial SIREN (Simulated Integration of Renewable Energy Networks) computer software models. In the logistics mode SIREN software simulates the combination of renewable power sources (solar arrays, wind turbines, and energy storage systems) in supplying an electrical demand. NAVFAC EXWC will create SIREN software logistics models of existing or planned renewable energy projects at five Navy locations (San Nicolas Island, AUTEC, New London, & China Lake), and INL will deliver additional HOMER computer models for comparative analysis. In the transient mode SIREN simulates the short time-scale variation of electrical parameters when a power outage or other destabilizing event occurs. In the HOMER model, a variety of inputs are entered such as location coordinates, Generators, PV arrays, Wind Turbines, Batteries, Converters, Grid costs/usage, Solar resources, Wind resources, Temperatures, Fuels, and Electric Loads. HOMER's optimization and sensitivity analysis algorithms then evaluate the economic and technical feasibility of these technology options and account for variations in technology costs, electric load, and energy resource availability. The Navy can then use HOMER’s optimization and sensitivity results to compare to those of the SIREN model. The U.S. Department of Energy (DOE) Idaho National Laboratory (INL) possesses unique expertise and experience in the software, hardware, and systems design for the integration of renewable energy into the electrical grid. NAVFAC EXWC will draw upon this expertise to complete mission requirements.

  6. Fischer-Tropsch Catalyst for Aviation Fuel Production

    Science.gov (United States)

    DeLaRee, Ana B.; Best, Lauren M.; Bradford, Robyn L.; Gonzalez-Arroyo, Richard; Hepp, Aloysius F.

    2012-01-01

    As the oil supply declines, there is a greater need for cleaner alternative fuels. There will undoubtedly be a shift from crude oil to nonpetroleum sources as a feedstock for aviation (and other transportation) fuels. The Fischer-Tropsch process uses a gas mixture of carbon monoxide and hydrogen which is converted into various liquid hydrocarbons; this versatile gas-to-liquid technology produces a complex product stream of paraffins, olefins, and oxygenated compounds such as alcohols and aldehydes. The Fischer-Tropsch process can produce a cleaner diesel oil fraction with a high cetane number (typically above 70) without any sulfur and aromatic compounds. It is most commonly catalyzed by cobalt supported on alumina, silica, or titania or unsupported alloyed iron powders. Cobalt is typically used more often than iron, in that cobalt is a longer-active catalyst, has lower water-gas shift activity, and lower yield of modified products. Promoters are valuable in improving Fischer-Tropsch catalyst as they can increase cobalt oxide dispersion, enhance the reduction of cobalt oxide to the active metal phase, stabilize a high metal surface area, and improve mechanical properties. Our goal is to build up the specificity of the Fischer-Tropsch catalyst while adding less-costly transition metals as promoters; the more common promoters used in Fischer-Tropsch synthesis are rhenium, platinum, and ruthenium. In this report we will describe our preliminary efforts to design and produce catalyst materials to achieve our goal of preferentially producing C8 to C18 paraffin compounds in the NASA Glenn Research Center Gas-To-Liquid processing plant. Efforts at NASA Glenn Research Center for producing green fuels using non-petroleum feedstocks support both the Sub-sonic Fixed Wing program of Fundamental Aeronautics and the In Situ Resource Utilization program of the Exploration Technology Development and Demonstration program.

  7. Molten salt extraction of transuranic and reactive fission products from used uranium oxide fuel

    Science.gov (United States)

    Herrmann, Steven Douglas

    2014-05-27

    Used uranium oxide fuel is detoxified by extracting transuranic and reactive fission products into molten salt. By contacting declad and crushed used uranium oxide fuel with a molten halide salt containing a minor fraction of the respective uranium trihalide, transuranic and reactive fission products partition from the fuel to the molten salt phase, while uranium oxide and non-reactive, or noble metal, fission products remain in an insoluble solid phase. The salt is then separated from the fuel via draining and distillation. By this method, the bulk of the decay heat, fission poisoning capacity, and radiotoxicity are removed from the used fuel. The remaining radioactivity from the noble metal fission products in the detoxified fuel is primarily limited to soft beta emitters. The extracted transuranic and reactive fission products are amenable to existing technologies for group uranium/transuranic product recovery and fission product immobilization in engineered waste forms.

  8. Characterization of Cassini GPHS Fueled-Clad Production Girth Welds

    Energy Technology Data Exchange (ETDEWEB)

    Franco-Ferreira, E.A.

    2000-03-23

    Fueled clads for radioisotope power systems are produced by encapsulating {sup 238}PuO{sub 2} in iridium alloy cups, which are joined at their equators by gas tungsten arc welding. Cracking problems at the girth weld tie-in area during production of the Galileo/Ulysses GPHS capsules led to the development of a first-generation ultrasonic test for girth weld inspection at the Savannah River Plant. A second-generation test and equipment with significantly improved sensitivity and accuracy were jointly developed by the Oak Ridge Y-12 Plant and Westinghouse Savannah River Company for use during the production of Cassini GPHS capsules by the Los Alamos National Laboratory. The test consisted of Lamb wave ultrasonic scanning of the entire girth weld from each end of the capsule combined with a time-of-flight evaluation to aid in characterizing nonrelevant indications. Tangential radiography was also used as a supplementary test for further evaluation of reflector geometry. Each of the 317 fueled GPHS capsules, which were girth welded for the Cassini Program, was subjected to a series of nondestructive tests that included visual, dimensional, helium leak rate, and ultrasonic testing. Thirty-three capsules were rejected prior to ultrasonic testing. Of the 44 capsules rejected by the standard ultrasonic test, 22 were upgraded to flight quality through supplementary testing for an overall process acceptance rate of 82.6%. No confirmed instances of weld cracking were found.

  9. Fuel gas production from animal and agricultural residues and biomass

    Energy Technology Data Exchange (ETDEWEB)

    Wise, D. L; Wentworth, R. L

    1978-05-30

    Progress was reported by all contractors. Topics presented include: solid waste to methane gas; pipeline fuel gas from an environmental cattle feed lot; heat treatment of organics for increasing anaerobic biodegradability; promoting faster anaerobic digestion; permselective membrane control of algae and wood digesters for increased production and chemicals recovery; anaerobic fermentation of agricultural residues; pilot plant demonstration of an anaerobic, fixed-film bioreactor for wastewater treatment; enhancement of methane production in the anaerobic diegestion of sewage; evaluation of agitation concepts for biogasification of sewage sludge; operation of a 50,000 gallon anaerobic digester; biological conversion of biomass to methane; dirt feedlot residue experiments; anaerobic fermentation of livestock and crop residues; current research on methanogenesis in Europe; and summary of EPA programs in digestion technology. (DC)

  10. Production of premium fuels from coal refuse pond material

    Energy Technology Data Exchange (ETDEWEB)

    Honaker, R.Q.; Patil, D.P.; Sirkeci, A.; Patwardhan, A. [University of Kentucky, Lexington, KY (United States). Dept. of Mining Engineering

    2001-11-01

    Because of increasing production of fine coal during mining over the past century and because of inefficient fine-coal recovery technologies, a vast reserve of high-quality coal now exists in refuse ponds. A novel fine-coal circuit, consisting of a hindered-bed classifier, an enhanced gravity concentrator and a flotation column, was evaluated for the recovery of fine coal from refuse ponds. The treatment of a pond derived from Pittsburgh No. 8 seam coal resulted in the production of a premium fuel containing less than 5 % ash and a calorific value of about 30,170 kJ/kg with 60% mass yield. Results from the treatment of two refuse pond materials are presented.

  11. Fuel lignocellulosic briquettes, die design and products study

    Energy Technology Data Exchange (ETDEWEB)

    Granada, E.; Miguez, J.L.; Moran, J. [Vigo Univ. (Spain). E.T.S. Ingenieros Industriales y Minas; Lopez Gonzalez, L.M. [Universidad de La Rioja (Spain). Departamento de Ingenieria Mecanica

    2002-12-01

    Briquetting of biomass can be done through various techniques. The present work describes the process of designing a taper die and its optimisation for use in a hydraulic machine. The application of an experimental design technique, and the later statistical analysis of the results is presented, applied to a laboratory hydraulic press densification process of lignocellulosic biomass. The most appropriate experiment type is determined for a first set of experiments; calculating, among other things: minimum number of tests to carry out to obtain binding conclusions, most influential factors, and search paths to improve fuel quality. Another experiment type is determined for a second set of experiments, taking account of the most influential factors (pressure, temperature and moisture content), and also the number of tests to carry out considering the improvement of density and friability. Finally, an approximation study of the best product allows conclusions to be reached on product behaviour beyond the experimental design range factors. (Author)

  12. Fleet Numerical Meteorology and Oceanography Center (FNMOC) Navy Operational Global Atmospheric Prediction System (NOGAPS)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Navy Operational Global Atmospheric Prediction System (NOGAPS) provides numerical guidance and products in support of a wide range of Navy oceanographic and...

  13. Sweet sorghum biorefinery for production of fuel ethanol and value-added co-products

    Science.gov (United States)

    An integrated process has been developed for a sweet-sorghum biorefinery in which all carbohydrate components of the feedstock were used for production of fuel ethanol and industrial chemicals. In the first step, the juice was extracted from the stalks. The resulted straw (bagasse) then was pretreat...

  14. Thermocatalytic CO2-Free Production of Hydrogen from Hydrocarbon Fuels

    Energy Technology Data Exchange (ETDEWEB)

    University of Central Florida

    2004-01-30

    The main objective of this project is the development of an economically viable thermocatalytic process for production of hydrogen and carbon from natural gas or other hydrocarbon fuels with minimal environmental impact. The three major technical goals of this project are: (1) to accomplish efficient production of hydrogen and carbon via sustainable catalytic decomposition of methane or other hydrocarbons using inexpensive and durable carbon catalysts, (2) to obviate the concurrent production of CO/CO{sub 2} byproducts and drastically reduce CO{sub 2} emissions from the process, and (3) to produce valuable carbon products in order to reduce the cost of hydrogen production The important feature of the process is that the reaction is catalyzed by carbon particulates produced in the process, so no external catalyst is required (except for the start-up operation). This results in the following advantages: (1) no CO/CO{sub 2} byproducts are generated during hydrocarbon decomposition stage, (2) no expensive catalysts are used in the process, (3) several valuable forms of carbon can be produced in the process depending on the process conditions (e.g., turbostratic carbon, pyrolytic graphite, spherical carbon particles, carbon filaments etc.), and (4) CO{sub 2} emissions could be drastically reduced (compared to conventional processes).

  15. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production

    National Research Council Canada - National Science Library

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Gujar, Amit; Rochfort, Simone; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-01-01

    ... and production of value-added products. In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored...

  16. Method for the production of nitrogen and hydrogen in a fuel cell

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The invention relates to a method for the production of nitrogen and hydrogen in a fuel cell with an anode and a cathode, comprising the steps of inducing a combustion in a fuel cell, wherein a fuel is supplied to the anode, and air is supplied to the cathode, and with oxygen in the air being reduce

  17. Methods for conversion of lignocellulosic-derived products to transportation fuel precursors

    Energy Technology Data Exchange (ETDEWEB)

    Lilga, Michael A.; Padmaperuma, Asanga B.

    2017-10-03

    Methods are disclosed for converting a biomass-derived product containing levulinic acid and/or gamma-valerolactone to a transportation fuel precursor product containing diesel like hydrocarbons. These methods are expected to produce fuel products at a reduced cost relative to conventional approaches.

  18. Use of MRF residue as alternative fuel in cement production.

    Science.gov (United States)

    Fyffe, John R; Breckel, Alex C; Townsend, Aaron K; Webber, Michael E

    2016-01-01

    Single-stream recycling has helped divert millions of metric tons of waste from landfills in the U.S., where recycling rates for municipal solid waste are currently over 30%. However, material recovery facilities (MRFs) that sort the municipal recycled streams do not recover 100% of the incoming material. Consequently, they landfill between 5% and 15% of total processed material as residue. This residue is primarily composed of high-energy-content non-recycled plastics and fiber. One possible end-of-life solution for these energy-dense materials is to process the residue into Solid Recovered Fuel (SRF) that can be used as an alternative energy resource capable of replacing or supplementing fuel resources such as coal, natural gas, petroleum coke, or biomass in many industrial and power production processes. This report addresses the energetic and environmental benefits and trade-offs of converting non-recycled post-consumer plastics and fiber derived from MRF residue streams into SRF for use in a cement kiln. An experimental test burn of 118 Mg of SRF in the precalciner portion of the cement kiln was conducted. The SRF was a blend of 60% MRF residue and 40% post-industrial waste products producing an estimated 60% plastic and 40% fibrous material mixture. The SRF was fed into the kiln at 0.9 Mg/h for 24h and then 1.8 Mg/h for the following 48 h. The emissions data recorded in the experimental test burn were used to perform the life-cycle analysis portion of this study. The analysis included the following steps: transportation, landfill, processing and fuel combustion at the cement kiln. The energy use and emissions at each step is tracked for the two cases: (1) The Reference Case, where MRF residue is disposed of in a landfill and the cement kiln uses coal as its fuel source, and (2) The SRF Case, in which MRF residue is processed into SRF and used to offset some portion of coal use at the cement kiln. The experimental test burn and accompanying analysis indicate

  19. Fundamental Studies of Irradiation-Induced Defect Formation and Fission Product Dynamics in Oxide Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Stubbins, James

    2012-12-19

    The objective of this research program is to address major nuclear fuels performance issues for the design and use of oxide-type fuels in the current and advanced nuclear reactor applications. Fuel performance is a major issue for extending fuel burn-up which has the added advantage of reducing the used fuel waste stream. It will also be a significant issue with respect to developing advanced fuel cycle processes where it may be possible to incorporate minor actinides in various fuel forms so that they can be 'burned' rather than join the used fuel waste stream. The potential to fission or transmute minor actinides and certain long-lived fission product isotopes would transform the high level waste storage strategy by removing the need to consider fuel storage on the millennium time scale.

  20. Health effects of fossil-fuel combustion products: needed research

    Energy Technology Data Exchange (ETDEWEB)

    1980-01-01

    An examination is made of the research needed to expand and clarify the understanding of the products of fossil-fuel combustion, chiefly that taking place in stationary sources of power. One of the specific objectives that guided the study on which this report is based was to identify the pollutants potentially hazardous to man that are released into the environment in the course of the combustion of fossil fuels. The hazards of principal concern are those which could cause deleterious, long-term somatic and genetic effects. Another objective was to specify the nature of the research needed to determine the health effects of these pollutants on the general population. Special attention was paid to the interaction of pollutants; the meteorologic and climatic factors that affect the transport, diffusion, and transformation of pollutants; the effects of concentrations of aerosol, particulate, and thermal loads on biologic systems; and the susceptibility of some portions of the population to the effects of pollutants on the skin and cardiovascular, pulmonary, and urinary systems. Other objectives were to evaluate the methods of the proposed research, including analytic and interpretation techniques, to identify fields in which the available scientific information is inadequate for regulatory decision-making and to recommend a research program to meet those deficiencies, and to provide a logical framework within which the necessary information can be developed (the proposed program is presented in terms of subject, methods, and priorities).

  1. Bioenergy Research Programme, Yearbook 1995. Production of wood fuels; Bioenergian tutkimusohjelma, vuosikirja 1995. Puupolttoaineen tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Alakangas, E. [ed.

    1996-12-31

    Bioenergy Research Programme is one of the energy technology research programmes of the Technology Development Center TEKES. The aim of the Bioenergy Research Programme is to increase, by using technical research and development, the economically profitable and environmentally sound utilisation of bioenergy, to improve the competitiveness of present peat and wood fuels, and to develop new competitive fuels and equipment related to bioenergy. The funding for 1995 was nearly 52 million FIM and the number of projects 66. The main goal of the wood fuels research area is to develop new production methods in order to decrease the production costs to the level of imported fuels. The total potential of the wood fuel use should be at least 1.0 million toe/a (5.5 million m{sup 3}). During the year 1995 There were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About ten projects was carried out to promote the wood fuel production from logging residues. Other topics were firewood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. The new machine gives a new logistic solution resulting in high productivity and reasonable operating costs. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 m{sup 3} of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved

  2. Solar fuels production as a sustainable alternative for substituting fossil fuels: COSOLπ project

    Science.gov (United States)

    Hernando Romero-Paredes, R.; Alvarado-Gil, Juan José; Arancibia-Bulnes, Camilo Alberto; Ramos-Sánchez, Víctor Hugo; Villafán-Vidales, Heidi Isabel; Espinosa-Paredes, Gilberto; Abanades, Stéphane

    2017-06-01

    This article presents, in summary form, the characteristics of COSOLπ development project and some of the results obtained to date. The benefits of the work of this project will include the generation of a not polluting transportable energy feedstock from a free, abundant and available primary energy source, in an efficient method with no greenhouse gas emission. This will help to ensure energy surety to a future transportation/energy infrastructure, without any fuel import. Further technological development of thermochemical production of clean fuels, together with solar reactors and also with the possibility of determining the optical and thermal properties of the materials involved a milestone in the search for new processes for industrialization. With the above in mind, important national academic institutions: UAM, UNAM, CINVESTAV, UACH, UNISON among others, have been promoting research in solar energy technologies. The Goals and objectives are to conduct research and technological development driving high-temperature thermochemical processes using concentrated solar radiation as thermal energy source for the future sustainable development of industrial processes. It focuses on the production of clean fuels such as H2, syngas, biofuels, without excluding the re-value of materials used in the industry. This project conducts theoretical and experimental studies for the identification, characterization, and optimization of the most promising thermochemical cycles, and for the thorough investigation of the reactive chemical systems. It applies material science and nano-engineering to improve chemicals properties and stability upon cycling. The characterization of materials will serve to measure the chemical composition and purity (MOX fraction-1) of each of the samples. The characterizations also focus on the solid particle morphology (shape, size, state of aggregation, homogeneity, specific surface) images obtained from SEM / TEM and BET measurements. Likewise

  3. Moving bed reactor for solar thermochemical fuel production

    Science.gov (United States)

    Ermanoski, Ivan

    2013-04-16

    Reactors and methods for solar thermochemical reactions are disclosed. Embodiments of reactors include at least two distinct reactor chambers between which there is at least a pressure differential. In embodiments, reactive particles are exchanged between chambers during a reaction cycle to thermally reduce the particles at first conditions and oxidize the particles at second conditions to produce chemical work from heat. In embodiments, chambers of a reactor are coupled to a heat exchanger to pre-heat the reactive particles prior to direct exposure to thermal energy with heat transferred from reduced reactive particles as the particles are oppositely conveyed between the thermal reduction chamber and the fuel production chamber. In an embodiment, particle conveyance is in part provided by an elevator which may further function as a heat exchanger.

  4. Production of Ethanol Fuel from Organic and Food Wastes

    Directory of Open Access Journals (Sweden)

    Uduak George AKPAN, Adamu Ali ALHAKIM, and Udeme Joshua Josiah IJAH

    2008-12-01

    Full Text Available Production of ethanol fuel from organic and food waste has been carried out with the singular aim of converting the waste to useful material. To achieve this, the conversion of organic waste (Old newspapers and food waste (maize were respectively carried out via acid and microbial hydrolysis, which yielded 42% and 63% fermentable sugar wort. This was then converted into ethanol by fermentation process using Sacchromyces ceverisiae. 95% ethanol was obtained by fractional distillation of the fermentable wort and the total volume of ethanol produced from 2,500 grams of the organic and food wastes was 0.86 liters.Fermentation Kinetic parameters were evaluated. Considering the percentage fermentable sugar yield from the biomasses in study, it is more economical to produce ethanol from food waste (maize than old organic waste (old newspaper.

  5. Production of gaseous fuel by pyrolysis of municipal solid waste

    Science.gov (United States)

    Crane, T. H.; Ringer, H. N.; Bridges, D. W.

    1975-01-01

    Pilot plant tests were conducted on a simulated solid waste which was a mixture of shredded newspaper, wood waste, polyethylene plastics, crushed glass, steel turnings, and water. Tests were conducted at 1400 F in a lead-bath pyrolyser. Cold feed was deaerated by compression and was dropped onto a moving hearth of molten lead before being transported to a sealed storage container. About 80 percent of the feed's organic content was converted to gaseous products which contain over 90 percent of the potential waste energy; 12 percent was converted to water; and 8 percent remained as partially pyrolyzed char and tars. Nearly half of the carbon in the feed is converted to benzene, toluene and medium-quality fuel gas, a potential credit of over $25 per ton of solid waste. The system was shown to require minimal preprocessing and less sorting then other methods.

  6. Formula for emulsifier for production of emulsion fuels

    Energy Technology Data Exchange (ETDEWEB)

    Simakawa, K.; Arai, T.; Oseki, O.; Tega, K.; Wakidzaka, A.

    1982-05-20

    Patent for an emulsifier for preparation of emulsion fuels type v/m (formula provided). This particular formula is utilized to derive emulsion fuels from kerosene, light and heavy oils, etc. The emulsions have water drops of even size and a high thermal stability. When these fuels are used, formation of soot and nitrogen oxides is reduced.

  7. ELECTRICITY PRODUCTION FROM WASTE WATER USING MICROBIAL FUEL CELL

    Directory of Open Access Journals (Sweden)

    Mannarreddy Prabu

    2012-09-01

    Full Text Available Microbial fuel cells (MFCs an electricity producing device using waste-water treatment, biosensor, eco-friendly and low cost management of energy production. In this study, investigation power generation from waste water compared with their pure culture, mixed culture and different medium ingredients with microorganism. Enhance the power production with different ingredients like monosaccharide’s, nitrogen source and amino acids, these sources increasing the electron shuttle in the medium. Glucose (0.98 V, beef extract (0.85 V and Leucine (0.92 V exhibited maximum power production with the anodic chamber. Different electrode was used; platinum showed that maximum electron capturing in the anodic chamber. The SEM photography clearly showed that biofilm formation of microorganism on the electrode. The output power was compared with mixed culture to pure culture and different ingredients, thus bio electric power was retained maximum 1.03 V in pure culture from Morganella morganii and 1.2 V in mixed culture.

  8. Systematic Methodology for Design of Tailor-Made Blended Products: Fuels and Other Blended Products

    DEFF Research Database (Denmark)

    Yunus, Nor Alafiza Binti

    A tailor-made blended liquid product is defined as a formulation of various chemicals in the liquid state to obtain a liquid mixture with a specific set of desired characteristics and qualities. Examples of blended liquid products are synthetic fuels and lubricants. This type of products is very ...... methodology and tools was tested through two case studies. In the first case study, two different gasoline blend problems have been solved. In the second case study, four different lubricant design problems have been solved....

  9. Diesel fuel processor for hydrogen production for 5 kW fuel cell application

    Energy Technology Data Exchange (ETDEWEB)

    Sopena, D.; Melgar, A.; Briceno, Y. [Fundacion CIDAUT. Parque Tecnologico de Boecillo, P. 209, 47151 Boecillo (Valladolid) (Spain); Navarro, R.M.; Alvarez-Galvan, M.C. [Instituto de Catalisis y Petroquimica (CSIC), C/ Marie Curie 2, Cantoblanco (Madrid) (Spain); Rosa, F. [Instituto Nacional de Tecnica Aeroespacial, Carretera San Juan del Puerto-Matalascanas, km 33, 21130 Mazagon-Moguer (Huelva) (Spain)

    2007-07-15

    The present paper describes a diesel fuel processor designed to produce hydrogen to feed a PEM fuel cell of 5 kW. The fuel processor includes three reactors in series: (1) oxidative steam reforming reactor; (2) one-step water gas shift reactor; and (3) a preferential oxidation reactor. The design of the system was accomplished by means of a one-dimensional model. A specific study of the fuel-air mixing chamber was carried out with Fluent by taking into account fuel evaporation and cool flame processes. The assembly of the installation allowed the characterisation of each component and the control of each working parameter. The first experimental results obtained in the reformer system using decaline and diesel fuels demonstrate the feasibility of the design to produce hydrogen suitable to feed a PEM fuel cell. (author)

  10. A Cost Benefit Analysis of the Navy Flight Demonstration Team and the U.S. Navy Band

    Science.gov (United States)

    2012-06-01

    AGENCY USE ONLY (Leave blank) 2. REPORT DATE June 2012 3. REPORT TYPE AND DATES COVERED MBA Professional Report 4. TITLE AND SUBTITLE A Cost...It is composed of 172 members who make up the Concert Band and six ensembles which play a variety of music from Jazz to Country to Bluegrass. The...the Navy Recruiting budget. For FY11, fuel costs were $9,319,000 (Department of the Navy, 2011). Maintenance teams for the aircraft are covered

  11. Lignin depolymerization and upgrading via fast pyrolysis and electrocatalysis for the production of liquid fuels and value-added products

    Science.gov (United States)

    Garedew, Mahlet

    The production of liquid hydrocarbon fuels from biomass is needed to replace fossil fuels, which are decreasing in supply at an unsustainable rate. Renewable fuels also address the rising levels of greenhouse gases, an issue for which the Intergovernmental Panel on Climate Change implicated humanity in 2013. In response, the Energy Independence and Security Act (EISA) mandates the production of 21 billion gallons of advanced biofuels by 2022. Biomass fast pyrolysis (BFP) uses heat (400-600 °C) without oxygen to convert biomass to liquids fuel precursors offering an alternative to fossil fuels and a means to meet the EISA mandate. The major product, bio-oil, can be further upgraded to liquid hydrocarbon fuels, while biochar can serve as a solid fuel or soil amendment. The combustible gas co-product is typically burned for process heat. Though the most valuable of the pyrolysis products, the liquid bio-oil is highly oxygenated, corrosive, low in energy content and unstable during storage. As a means of improving bio-oil properties, electrocatalytic hydrogenation (ECH) is employed to reduce and deoxygenate reactive compounds. This work specifically focuses on lignin as a feed material for BFP. As lignin comprises up to 30% of the mass and 40% of the energy stored in biomass, it offers great potential for the production of liquid fuels and value-added products by utilizing fast pyrolysis as a conversion method coupled with electrocatalysis as an upgrading method.

  12. United States Navy DL Perspective

    Science.gov (United States)

    2010-08-10

    United States Navy DL Perspective CAPT Hank Reeves Navy eLearning Project Director 10 August 2010 Report Documentation Page Form ApprovedOMB No...Marine Corps (USMC) Navy eLearning Ongoing Shared with USMC, Coast Guard 9 NeL Help Site https://ile-help.nko.navy.mil/ile/ https://s-ile

  13. Pectin-rich biomass as feedstock for fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Edwards, Meredith C.; Doran-Peterson, Joy [Georgia Univ., Athens, GA (United States). Dept. of Microbiology

    2012-08-15

    The USA has proposed that 30 % of liquid transportation fuel be produced from renewable resources by 2030 (Perlack and Stokes 2011). It will be impossible to reach this goal using corn kernel-based ethanol alone. Pectin-rich biomass, an under-utilized waste product of the sugar and juice industry, can augment US ethanol supplies by capitalizing on this already established feedstock. Currently, pectin-rich biomass is sold (at low value) as animal feed. This review focuses on the three most studied types of pectin-rich biomass: sugar beet pulp, citrus waste and apple pomace. Fermentations of these materials have been conducted with a variety of ethanologens, including yeasts and bacteria. Escherichia coli can ferment a wide range of sugars including galacturonic acid, the primary component of pectin. However, the mixed acid metabolism of E. coli can produce unwanted side products. Saccharomyces cerevisiae cannot naturally ferment galacturonic acid nor pentose sugars but has a homoethanol pathway. Erwinia chrysanthemi is capable of degrading many of the cell wall components of pectin-rich materials, including pectin. Klebsiella oxytoca can metabolize a diverse array of sugars including cellobiose, one degradation product of cellulose. However, both E. chrysanthemi and K. oxytoca produce side products during fermentation, similar to E. coli. Using pectin-rich residues from industrial processes is beneficial because the material is already collected and partially pretreated to facilitate enzymatic deconstruction of the plant cell walls. Using biomass already produced for other purposes is an attractive practice because fewer greenhouse gases (GHG) will be anticipated from land-use changes. (orig.)

  14. FRACTIONATION OF LIGNOCELLULOSIC BIOMASS FOR FUEL-GRADE ETHANOL PRODUCTION

    Energy Technology Data Exchange (ETDEWEB)

    F.D. Guffey; R.C. Wingerson

    2002-10-01

    PureVision Technology, Inc. (PureVision) of Fort Lupton, Colorado is developing a process for the conversion of lignocellulosic biomass into fuel-grade ethanol and specialty chemicals in order to enhance national energy security, rural economies, and environmental quality. Lignocellulosic-containing plants are those types of biomass that include wood, agricultural residues, and paper wastes. Lignocellulose is composed of the biopolymers cellulose, hemicellulose, and lignin. Cellulose, a polymer of glucose, is the component in lignocellulose that has potential for the production of fuel-grade ethanol by direct fermentation of the glucose. However, enzymatic hydrolysis of lignocellulose and raw cellulose into glucose is hindered by the presence of lignin. The cellulase enzyme, which hydrolyzes cellulose to glucose, becomes irreversibly bound to lignin. This requires using the enzyme in reagent quantities rather than in catalytic concentration. The extensive use of this enzyme is expensive and adversely affects the economics of ethanol production. PureVision has approached this problem by developing a biomass fractionator to pretreat the lignocellulose to yield a highly pure cellulose fraction. The biomass fractionator is based on sequentially treating the biomass with hot water, hot alkaline solutions, and polishing the cellulose fraction with a wet alkaline oxidation step. In September 2001 PureVision and Western Research Institute (WRI) initiated a jointly sponsored research project with the U.S. Department of Energy (DOE) to evaluate their pretreatment technology, develop an understanding of the chemistry, and provide the data required to design and fabricate a one- to two-ton/day pilot-scale unit. The efforts during the first year of this program completed the design, fabrication, and shakedown of a bench-scale reactor system and evaluated the fractionation of corn stover. The results from the evaluation of corn stover have shown that water hydrolysis prior to

  15. Optimum nuclear design of target fuel rod for Mo-99 production in HANARO

    Energy Technology Data Exchange (ETDEWEB)

    Kim, Myung Hyun [Kyung Hee University, Seoul (Korea)

    1998-04-01

    Nuclear target design for Mo-99 production in HANARO was performed, KAERI proposed target design was analyzed and its feasibility was shown. Three commercial target designs of Cintichem, ANL and KAERI were tested for the HANARO irradiation an d they all satisfied with design specification. A parametric study was done for target design options and Mo-99 yields ratio and surface heat flux were compared. Tested parameters were target fuel thickness, irradiation location, target axial length, packing density of powder fuel, size of target radius, target geometry, fuel enrichment, fuel composition, and cladding material. Optimized target fuel was designed for both LEU and HEU options. (author). 17 refs., 33 figs., 42 tabs.

  16. Fate of virginiamycin through the fuel ethanol production process.

    Science.gov (United States)

    Bischoff, Kenneth M; Zhang, Yanhong; Rich, Joseph O

    2016-05-01

    Antibiotics are frequently used to prevent and treat bacterial contamination of commercial fuel ethanol fermentations, but there is concern that antibiotic residues may persist in the distillers grains coproducts. A study to evaluate the fate of virginiamycin during the ethanol production process was conducted in the pilot plant facilities at the National Corn to Ethanol Research Center, Edwardsville, IL. Three 15,000-liter fermentor runs were performed: one with no antibiotic (F1), one dosed with 2 parts per million (ppm) of a commercial virginiamycin product (F2), and one dosed at 20 ppm of virginiamycin product (F3). Fermentor samples, distillers dried grains with solubles (DDGS), and process intermediates (whole stillage, thin stillage, syrup, and wet cake) were collected from each run and analyzed for virginiamycin M and virginiamycin S using a liquid chromatography-mass spectrometry method. Virginiamycin M was detected in all process intermediates of the F3 run. On a dry-weight basis, virginiamycin M concentrations decreased approximately 97 %, from 41 μg/g in the fermentor to 1.4 μg/g in the DDGS. Using a disc plate bioassay, antibiotic activity was detected in DDGS from both the F2 and F3 runs, with values of 0.69 μg virginiamycin equivalent/g sample and 8.9 μg/g, respectively. No antibiotic activity (<0.6 μg/g) was detected in any of the F1 samples or in the fermentor and process intermediate samples from the F2 run. These results demonstrate that low concentrations of biologically active antibiotic may persist in distillers grains coproducts produced from fermentations treated with virginiamycin.

  17. Production and quality assurance of bright steel products for high performance components in fuel injection systems

    Energy Technology Data Exchange (ETDEWEB)

    Janssen, P.; Bodenstein, F. [Mittal Steel Ruhrort GmbH, Duisburg (Germany); Engineer, S. [EZM Edelstahlzieherei Mark, Wetter (Germany)

    2005-07-01

    In the last years the demands on the technological properties of steels in fuel injection systems are constantly increasing. There has been for instance a significant increase in the pressure of fuel injections systems. This means even small imperfections in steels can lead to field failures. The grades 47Pb2 and 42CrMo4 for fuel injection systems have stringent requirements regarding the production and application of the components. In order to obtain the best possible quality all stages of the production system have to be monitored very carefully. The steel making process in the steel plant has to follow strict rules to avoid detrimental oxide inclusions, reduce segregation, improve lead distribution, provide a good surface quality and homogeneous structure. The process of manufacturing bright steel bars from the hot rolled wire rods also involves capable processes with intensive 100% testing of all the bars supplied to the customer. The wire rods are drawn to bars and ground to narrow tolerances. The bars undergo an eddy current test to determine surface defects and also a sophisticated ultra sonic test at a flat bottom hole of 0.7. In spite of all the process monitoring and tests carried out from the melting up to grinding the bars there is still a chance of certain imperfection or defects remaining on the bars, which are more likely detectable on processing the bars to components. Therefore is also a necessity to carry out a test during the stage of component manufacturing. (orig.)

  18. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  19. Hydrogen production by coal plasma gasification for fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Galvita, V. [Max-Planck-Institute, Dynamics of Complex Technical Systems, Sandtorstrasse 1, 39106, Magdeburg (Germany); Messerle, V.E.; Ustimenko, A.B. [Research Department of Plasmotechnics, 22 Zvereva str., 050100 Almaty (Kazakhstan)

    2007-11-15

    Coal gasification in steam and air atmosphere under arc plasma conditions has been investigated with Podmoskovnyi brown coal, Kuuchekinski bituminous coal and Canadian petrocoke. It was found that for those coals the gasification degree to synthesis gas were 92.3%, 95.8 and 78.6% correspondingly. The amount of produced syngas was 30-40% higher in steam than in air gasification of the coal. The reduction of the carbon monoxide content in the hydrogen-rich reformate gas for low-temperature fuel cell applications normally involves high- and low-temperature water gas shift reactors followed by selective oxidation of residual carbon monoxide. It is shown that the carbon monoxide content can be reduced in one single reactor, which is based on an iron redox cycle. During the reduction phase of the cycle, the raw gas mixture of H{sub 2} and CO reduces a Fe{sub 3}O{sub 4}-CeO{sub 2}-ZrO{sub 2} sample, while during the oxidation phase steam re-oxidizes the iron and simultaneously hydrogen is being produced. The integration of the redox iron process with a coal plasma gasification technology in future allows the production of CO{sub x}-free hydrogen. (author)

  20. Noncatalytic biodiesel fuel production from croton megalocarpus oil

    Energy Technology Data Exchange (ETDEWEB)

    Kafuku, G.; Mbarawa, M. [Department of Mechanical Engineering, Tshwane University of Technology, Pretoria (South Africa); Tan, K.T.; Lee, K.T. [School of Chemical Engineering, Universiti Sains Malaysia, Engineering Campus, Seri Ampangan, Nibong Tebal, Pulau Pinang (Malaysia)

    2011-11-15

    Biodiesel is currently considered as the most promising substitute for diesel fuel because of its similar properties to diesel. This study presents the use of the supercritical methanol method in the production of biodiesel from Croton megalocarpus oil. The reaction parameters such as methanol-to-oil ratio, reaction temperature and reaction time were varied to obtain the optimal reaction conditions by design of experiment, specifically, response surface methodology based on three-variable central composite design with {alpha}=2. It has been shown that it is possible to achieve methyl ester yields as high as 74.91 % with reaction conditions such as 50:1 methanol-to-oil molar ratio, 330 C reaction temperature and a reaction period of 20 min. However, Croton-based biodiesel did not sustain higher temperatures due to decomposition of polyunsaturated methyl linoleate, which is dominant in biodiesel. Lower yields were observed when higher temperatures were used during the optimization process. The supercritical methanol method showed competitive biodiesel yields when compared with catalytic methods. (Copyright copyright 2011 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  1. Sustainability of the Biorefinery Industry for Fuel Production

    Directory of Open Access Journals (Sweden)

    Paulo Cesar Barbosa

    2013-01-01

    Full Text Available Biofuels have been extensively explored and applied in the Brazilian market. In Brazil, ethanol and biodiesel are produced on an industrial scale. Ethanol is commercialized and used in engines in both the hydrated form (96% °GL and the anhydrous form, mixed with gasoline at a proportion of up to 25% by volume. In turn, biodiesel is blended with diesel in a proportion of 5% by volume. Thus, the goal of the use of biofuels is to contribute to the mitigation of greenhouse gases and other pollutants emitted into the atmosphere during burning. This article describes some recent developments in the characterization of the environmental and economic impacts of the production of these biofuels from different biomass sources. On this regard, this review presents results of life-cycle assessments (LCAs, life-cycle cost assessments (LCCAs and Structural Path Analysis (SPA, this last one depicting a sectorial perspective rather than LCA process level data approaches. The results showed that the inclusion of biofuels in transportation activities can lead to the mitigation of the environmental impacts of certain activities, such as emissions of greenhouse gases. However, greater attention must be paid to the improvement of agricultural management to decrease fuel, fertilizer and herbicide consumption.

  2. Finnish expert report on best available techniques in energy production from solid recovered fuels

    Energy Technology Data Exchange (ETDEWEB)

    Wilen, C.; Salokoski, P.; Kurkela, E.; Sipilae, K.

    2004-07-01

    This BAT report describes an integrated waste management system, emphasizing a simultaneous and efficient material and energy recovery from waste. Waste to energy technology in Finland is focused on co-firing in combined heat and power production, mainly on fluidised-bed combustion and gasification technologies. The Finnish waste management and solid recovered fuel (SRF) production is based on an efficient and extensive source separation practise. Processing industrial and commercial waste and the energy fraction of household waste to SRF produces a fairly clean fuel fraction. Fluidised bed combustion is very fuel- flexible and particularly well suited for co-combustion of waste derived fuels. High steam values and consequently high power production efficiency can be obtained when the share of SRF is kept on a level of 10-20 %. Gasification of SRF and co-firing the product gas in pulverised coal boiler is a cost-effective and environmentally attractive way of utilising locally available waste derived fuels. (orig.)

  3. Fusion-Fission Hybrid for Fissile Fuel Production without Processing

    Energy Technology Data Exchange (ETDEWEB)

    Fratoni, M; Moir, R W; Kramer, K J; Latkowski, J F; Meier, W R; Powers, J J

    2012-01-02

    Two scenarios are typically envisioned for thorium fuel cycles: 'open' cycles based on irradiation of {sup 232}Th and fission of {sup 233}U in situ without reprocessing or 'closed' cycles based on irradiation of {sup 232}Th followed by reprocessing, and recycling of {sup 233}U either in situ or in critical fission reactors. This study evaluates a third option based on the possibility of breeding fissile material in a fusion-fission hybrid reactor and burning the same fuel in a critical reactor without any reprocessing or reconditioning. This fuel cycle requires the hybrid and the critical reactor to use the same fuel form. TRISO particles embedded in carbon pebbles were selected as the preferred form of fuel and an inertial laser fusion system featuring a subcritical blanket was combined with critical pebble bed reactors, either gas-cooled or liquid-salt-cooled. The hybrid reactor was modeled based on the earlier, hybrid version of the LLNL Laser Inertial Fusion Energy (LIFE1) system, whereas the critical reactors were modeled according to the Pebble Bed Modular Reactor (PBMR) and the Pebble Bed Advanced High Temperature Reactor (PB-AHTR) design. An extensive neutronic analysis was carried out for both the hybrid and the fission reactors in order to track the fuel composition at each stage of the fuel cycle and ultimately determine the plant support ratio, which has been defined as the ratio between the thermal power generated in fission reactors and the fusion power required to breed the fissile fuel burnt in these fission reactors. It was found that the maximum attainable plant support ratio for a thorium fuel cycle that employs neither enrichment nor reprocessing is about 2. This requires tuning the neutron energy towards high energy for breeding and towards thermal energy for burning. A high fuel loading in the pebbles allows a faster spectrum in the hybrid blanket; mixing dummy carbon pebbles with fuel pebbles enables a softer spectrum in

  4. Improving productivity and reducing operating costs with fuel cell technology

    Energy Technology Data Exchange (ETDEWEB)

    Hoying, T. [Cellex Power Products Inc., Richmond, BC (Canada)

    2004-07-01

    This short corporate white paper addresses the advantages to fleet lift truck operators of converting to fuel cells from conventional electric battery technology. Conventional batteries are heavy for the energy they store. In addition, large operations require special equipment to change batteries, something that occurs at frequent intervals (4-8 hours). Some of the disadvantages of batteries include requirements such as an eye wash safety program, floor drainage for battery acid containment, and ventilation. The paper asserts that the larger the operation, the greater the problem of overall battery management. It cites the higher energy density of fuel cells as their prime advantage; fueling time is shorter than the time needed to change a battery, and times between refueling/changing is one and a half to two time greater for the fuel cell. In addition to the economic benefits of fuel cells, they do not produce harmful emissions.

  5. Production of biosolid fuels from municipal sewage sludge: Technical and economic optimisation.

    Science.gov (United States)

    Wzorek, Małgorzata; Tańczuk, Mariusz

    2015-08-01

    The article presents the technical and economic analysis of the production of fuels from municipal sewage sludge. The analysis involved the production of two types of fuel compositions: sewage sludge with sawdust (PBT fuel) and sewage sludge with meat and bone meal (PBM fuel). The technology of the production line of these sewage fuels was proposed and analysed. The main objective of the study is to find the optimal production capacity. The optimisation analysis was performed for the adopted technical and economic parameters under Polish conditions. The objective function was set as a maximum of the net present value index and the optimisation procedure was carried out for the fuel production line input capacity from 0.5 to 3 t h(-1), using the search step 0.5 t h(-1). On the basis of technical and economic assumptions, economic efficiency indexes of the investment were determined for the case of optimal line productivity. The results of the optimisation analysis show that under appropriate conditions, such as prices of components and prices of produced fuels, the production of fuels from sewage sludge can be profitable. In the case of PBT fuel, calculated economic indexes show the best profitability for the capacity of a plant over 1.5 t h(-1) output, while production of PBM fuel is beneficial for a plant with the maximum of searched capacities: 3.0 t h(-1). Sensitivity analyses carried out during the investigation show that influence of both technical and economic assessments on the location of maximum of objective function (net present value) is significant.

  6. Thermophysical properties of the products of low-grade fuels thermal recycling

    Directory of Open Access Journals (Sweden)

    Tabakaev Roman B.

    2015-01-01

    Full Text Available The relevance of the work is caused by reorientation of the modern power engineering to use of local low grade fuel resources. Some types of low grade fuels (peat, brown coal, sapropel, wood chips are considered in this work. Thermotechnical characteristics of the investigated fuels and products of their thermal recycling are determined. Thermal recycling process is accompanied by release of fuel dissociation heat (0.33-3.69 MJ/kg. The results of thermal low grade fuel recycling are solid carbonaceous product (semi-coke with a calorific value higher in 1.5-7 times than the value of natural fuels; pyrolysis resin with calorific value 29.4-36.8 MJ/kg; combustible gas with calorific value 15.16-19.06 MJ/m3.

  7. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R&D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  8. Reformers for the production of hydrogen from methanol and alternative fuels for fuel cell powered vehicles

    Energy Technology Data Exchange (ETDEWEB)

    Kumar, R.; Ahmed, S.; Krumpelt, M.; Myles, K.M.

    1992-08-01

    The objective of this study was (i) to assess the present state of technology of reformers that convert methanol (or other alternative fuels) to a hydrogen-rich gas mixture for use in a fuel cell, and (ii) to identify the R D needs for developing reformers for transportation applications. Steam reforming and partial oxidation are the two basic types of fuel reforming processes. The former is endothermic while the latter is exothermic. Reformers are therefore typically designed as heat exchange systems, and the variety of designs used includes shell-and-tube, packed bed, annular, plate, and cyclic bed types. Catalysts used include noble metals and oxides of Cu, Zn, Cr, Al, Ni, and La. For transportation applications a reformer must be compact, lightweight, and rugged. It must also be capable of rapid start-up and good dynamic performance responsive to fluctuating loads. A partial oxidation reformer is likely to be better than a steam reformer based on these considerations, although its fuel conversion efficiency is expected to be lower than that of a steam reformer. A steam reformer better lends itself to thermal integration with the fuel cell system; however, the thermal independence of the reformer from the fuel cell stack is likely to yield much better dynamic performance of the reformer and the fuel cell propulsion power system. For both steam reforming and partial oxidation reforming, research is needed to develop compact, fast start-up, and dynamically responsive reformers. For transportation applications, steam reformers are likely to prove best for fuel cell/battery hybrid power systems, and partial oxidation reformers are likely to be the choice for stand-alone fuel cell power systems.

  9. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-05-17

    This report summarizes the accomplishments toward project goals during the first six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of fuel oil indicates that the fuel is somewhere in between a No. 4 and a No. 6 fuel oil. Emission testing indicates the fuel burns similarly to these two fuels, but trace metals for the coal-based material are different than petroleum-based fuel oils. Co-coking studies using cleaned coal are highly reproducible in the pilot-scale delayed coker. Evaluation of the coke by Alcoa, Inc. indicated that while the coke produced is of very good quality, the metals content of the carbon is still high in iron and silica. Coke is being evaluated for other possible uses

  10. Catalytic co-pyrolysis of waste vegetable oil and high density polyethylene for hydrocarbon fuel production.

    Science.gov (United States)

    Wang, Yunpu; Dai, Leilei; Fan, Liangliang; Cao, Leipeng; Zhou, Yue; Zhao, Yunfeng; Liu, Yuhuan; Ruan, Roger

    2017-03-01

    In this study, a ZrO2-based polycrystalline ceramic foam catalyst was prepared and used in catalytic co-pyrolysis of waste vegetable oil and high density polyethylene (HDPE) for hydrocarbon fuel production. The effects of pyrolysis temperature, catalyst dosage, and HDPE to waste vegetable oil ratio on the product distribution and hydrocarbon fuel composition were examined. Experimental results indicate that the maximum hydrocarbon fuel yield of 63.1wt. % was obtained at 430°C, and the oxygenates were rarely detected in the hydrocarbon fuel. The hydrocarbon fuel yield increased when the catalyst was used. At the catalyst dosage of 15wt.%, the proportion of alkanes in the hydrocarbon fuel reached 97.85wt.%, which greatly simplified the fuel composition and improved the fuel quality. With the augment of HDPE to waste vegetable oil ratio, the hydrocarbon fuel yield monotonously increased. At the HDPE to waste vegetable oil ratio of 1:1, the maximum proportion (97.85wt.%) of alkanes was obtained. Moreover, the properties of hydrocarbon fuel were superior to biodiesel and 0(#) diesel due to higher calorific value, better low-temperature low fluidity, and lower density and viscosity. Copyright © 2017 Elsevier Ltd. All rights reserved.

  11. Determination of alternative fuels combustion products: Phase 3 report

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

    1997-12-01

    This report describes the laboratory efforts to characterize particulate and gaseous exhaust emissions from a passenger vehicle operating on alternative fuels. Tests were conducted at room temperature (nominally 72 F) and 20 F utilizing the chassis dynamometer portion of the FTP for light-duty vehicles. Fuels evaluated include Federal RFG, LPG meeting HD-5 specifications, a national average blend of CNG, E85, and M85. Exhaust particulate generated at room temperature was further characterized to determine polynuclear aromatic content, trace element content, and trace organic constituents. For all fuels except M85, the room temperature particulate emission rate from this vehicle was about 2 to 3 mg/mile. On M85, the particulate emission rate was more than 6 mg/mile. In addition, elemental analysis of particulate revealed an order of magnitude more sulfur and calcium from M85 than any other fuel. The sulfur and calcium indicate that these higher emissions might be due to engine lubricating oil in the exhaust. For RFG, particulate emissions at 20 F were more than six times higher than at room temperature. For alcohol fuels, particulate emissions at 20 F were two to three times higher than at room temperature. For CNG and LPG, particulate emissions were virtually the same at 72 F and 20 F. However, PAH emissions from CNG and LPG were higher than expected. Both gaseous fuels had larger amounts of pyrene, 1-nitropyrene, and benzo(g,h,i)perylene in their emissions than the other fuels.

  12. HTGR fuels and core development program. Quarterly progress report for the period ending November 30, 1976. [Graphite and fuel irradiations; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1976-12-27

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and the data are presented in tables, graphs, and photographs.

  13. HTGR Fuels and Core Development Program. Quarterly progress report for the period ending August 31, 1977. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1977-09-01

    The work reported includes studies of reactions between core materials and coolant impurities, basic fission product transport mechanisms, core graphite development and testing, the development and testing of recyclable fuel systems, and physics and fuel management studies. Materials studies include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and data are presented.

  14. Results of the production of wood derived fuels; Puupolttoaineiden tuotantotekniikka - tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Korpilahti, A. [Metsaeteho, Helsinki (Finland)

    1996-12-31

    During the year 1995 there were over 30 projects concerning the production of wood derived fuels going on. Nearly half of them focused on integrated production of pulp wood and wood fuel. About in ten projects work was carried out to promote wood fuel production from logging residues. Other topics were fire wood production, production logistics and wood fuel resources. For production of fuel chips from logging residues, a new chipper truck, MOHA-SISU, was introduced. Having ability to move on terrain, and equipped with drum chipper, hook technic for interchangeable containers and a trailer, the whole production chain can be carried out by the same machine. In Mikkeli region three years of active work promoted the usage of wood fuel in a district power plant to the level of over 110 000 cubic metres of fuel chips. The production costs tend to be a little high in average, and the production chain still needs to be improved. In the field of integrated production a great stride was taken when the first pilot plant using the MASSAHAKE-method started up. Components of the production line and knowledge to operate the process have increased resulting in good performance of the plant. And even another concept for integrated production was introduced. In order to fully control the debarking of small sized trees, a production line of chain flail equipment and debarking drum followed by a chipper and screening facilities was built up. Equipment and machines for harvesting young stands in a way that increases substantially the yield of energy component are still mostly first prototypes. The development of them into well functioning, efficient tools is the most important task in integrated production

  15. Laboratory Scale Coal And Biomass To Drop-In Fuels (CBDF) Production And Assessment

    Energy Technology Data Exchange (ETDEWEB)

    Lux, Kenneth [Altex Technologies Corporation, Sunnyvale, CA (United States); Imam, Tahmina [Altex Technologies Corporation, Sunnyvale, CA (United States); Chevanan, Nehru [Altex Technologies Corporation, Sunnyvale, CA (United States); Namazian, Mehdi [Altex Technologies Corporation, Sunnyvale, CA (United States); Wang, Xiaoxing [Pennsylvania State Univ., University Park, PA (United States); Song, Chunshan [Pennsylvania State Univ., University Park, PA (United States)

    2016-06-29

    This Final Technical Report describes the work and accomplishments of the project entitled, “Laboratory Scale Coal and Biomass to Drop-In Fuels (CBDF) Production and Assessment.” The main objective of the project was to fabricate and test a lab-scale liquid-fuel production system using coal containing different percentages of biomass such as corn stover and switchgrass at a rate of 2 liters per day. The system utilizes the patented Altex fuel-production technology, which incorporates advanced catalysts developed by Pennsylvania State University. The system was designed, fabricated, tested, and assessed for economic and environmental feasibility relative to competing technologies.

  16. Chemical thermodynamics of complex systems: fission product behavior in LWR fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Kohli, R.

    1981-03-01

    A detailed thermodynamic assessment has been made of the chemical reactions of fission products in LWR fuel rods. Using recent thermodynamic data and the in-reactor oxygen potential and temperature range of LWRs, equilibrium thermodynamic calculations were performed for the most plausible reactions of the fission products. The emphasis in this model is on the chemistry of cesium and rubidium and their reactions with the fuel, other fission products, and the zircaloy cladding. The model predictions are discussed for their implications in fuel-cladding interactions.

  17. Fuel gas production from animal residue. Dynatech report No. 1551

    Energy Technology Data Exchange (ETDEWEB)

    Ashare, E.; Wise, D.L.; Wentworth, R.L.

    1977-01-14

    A comprehensive mathematical model description of anaerobic digestion of animal residues was developed, taking into account material and energy balances, kinetics, and economics of the process. The model has the flexibility to be applicable to residues from any size or type of animal husbandry operation. A computer program was written for this model and includes a routine for optimization to minimum unit gas cost, with the optimization variables being digester temperature, retention time, and influent volatile solids concentration. The computer program was used to determine the optimum base-line process conditions and economics for fuel gas production via anaerobic digestion of residues from a 10,000 head environmental beef feedlot. This feedlot at the conditions for minimum unit gas cost will produce 300 MCF/day of methane at a cost of $5.17/MCF (CH/sub 4/), with a total capital requirement of $1,165,000, a total capital investment of $694,000, and an annual average net operating cost of $370,000. The major contributions to this unit gas cost are due to labor (37 percent), raw manure (11 percent), power for gas compression (10 percent), and digester cost (13 percent). A conceptual design of an anaerobic digestion process for the baseline conditions is presented. A sensitivity analysis of the unit gas cost to changes in the major contributions to unit gas cost was performed, and the results of this analysis indicate areas in the anaerobic digestion system design where reasonable improvements could be expected so as to produce gas at an economically feasible cost. This sensitivity analysis includes the effects on unit gas cost of feedlot size and type, digester type, digester operating conditions, and economic input data.

  18. Sorghum as Dry Land Feedstock for Fuel Ethanol Production

    Institute of Scientific and Technical Information of China (English)

    WANG Donghai; WU Xiaorong

    2010-01-01

    Dry land crops such as sorghums(grain sorghum,sweet sorghum and forage sorghum)have been identified aspromising feedstocks for fuel ethanol production.The major issue for using the sweet sorghum as feedstock is its stability at room temperature.At room temperature,the sweet sorghum juice could lose from 40%to50%of its fermentable sugars from 7to14 days.No significant sugar content and profile changes were observed in juice stored at refrigerator temperature in two weeks.Ethanolfermentation efficiencies of fresh and frozen juice were high(-93%).Concentrated juice(≥25%sugar)had significantly lower efficiencies and large amounts of fructose left in finished beer; however,winery yeast strains and novel fermentation techniques maysolve these problems.The ethanol yield from sorghum grain increased as starch content increased.No linear relationship betweenstarch content and fermentation efficiency was found.Key factors affecting the ethanol fermentation efficiency of sorghum includestarches and protein digestibility,amylose-lipid complexes,tannin content,and mash viscosity.Life cycle analysis showed a positivenet energy value(NEV)=25 500 Btu/gal ethanol.Fourier transform infrared(FTIR)spectroscopy and X-ray diffraction(XRD)were used to determine changes in the structure and chemical composition of sorghum biomasses.Dilute sulfuric acid pretreatment waseffective in removing the hemicellulose from biomasses and exposing the cellulose for enzymatic hydrolysis.Forage sorghum ligninhad a lower syringyl/guaiacyl ratio and its pretreated biomass was easier to hydrolyze.Up to 72% hexose yield and 94% pentoseyield were obtained by using a modified steam explosion with 2% sulfuric acid at 140"C for 30 min and enzymatic hydrolysis withcellulase.

  19. Catalytic Deoxygenation of Fatty Acids and Triglycerides for Production of Fuels and Chemicals

    NARCIS (Netherlands)

    Hollak, Stefan

    2014-01-01

    Fossil fuels (i.e. coal, gas, oil) currently cover over 80 % of the world’s energy demand. The use of alternative resources for the production of fuels and chemicals has been an important research area over the last decade. This was not only stimulated by the declining fossil feedstock resources and

  20. Methods for upgrading of a fuel gas and succinic acid production

    DEFF Research Database (Denmark)

    2014-01-01

    The present invention provides methods of upgrading of a CO2-containing fuel gas comprising the use of anaerobic succinic acid-producing microorganisms. Thus, the present invention provides a method for simultaneous upgrading of a CO2-containing fuel gas and biosuccinic acid production....

  1. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2015

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2016-01-08

    This FY 2015 report updates the results of an effort to identify and document the commercial and emerging (projected to be commercialized within the next 3 to 5 years) hydrogen and fuel cell technologies and products that resulted from U.S. Department of Energy support through the Fuel Cell Technologies Office in the Office of Energy Efficiency and Renewable Energy.

  2. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    Science.gov (United States)

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  3. SYSTEM AND PROCESS FOR PRODUCTION OF METHANOL FROM COMBINED WIND TURBINE AND FUEL CELL POWER

    Science.gov (United States)

    The paper examines an integrated use of ultra-clean wind turbines and high temperature fuel cells to produce methanol, especially for transportation purposes. The principal utility and application of the process is the production of transportation fuel from domestic resources to ...

  4. Catalytic Deoxygenation of Fatty Acids and Triglycerides for Production of Fuels and Chemicals

    NARCIS (Netherlands)

    Hollak, Stefan

    2014-01-01

    Fossil fuels (i.e. coal, gas, oil) currently cover over 80 % of the world’s energy demand. The use of alternative resources for the production of fuels and chemicals has been an important research area over the last decade. This was not only stimulated by the declining fossil feedstock resources and

  5. Synthetic fuel production costs by means of solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Ridjan, Iva; Mathiesen, Brian Vad; Connolly, David

    2014-01-01

    The purpose of this paper is to provide an overview of fuel production costs for two types of synthetic fuels – methanol and methane, along with comparable costs for first and second generation biodiesel, two types of second generation bioethanol, and biogas. When analysing 100% renewable systems...

  6. Electricity production from municipal solid waste using microbial fuel cells.

    Science.gov (United States)

    Chiu, H Y; Pai, T Y; Liu, M H; Chang, C A; Lo, F C; Chang, T C; Lo, H M; Chiang, C F; Chao, K P; Lo, W Y; Lo, S W; Chu, Y L

    2016-07-01

    The organic content of municipal solid waste has long been an attractive source of renewable energy, mainly as a solid fuel in waste-to-energy plants. This study focuses on the potential to use microbial fuel cells to convert municipal solid waste organics into energy using various operational conditions. The results showed that two-chamber microbial fuel cells with carbon felt and carbon felt allocation had a higher maximal power density (20.12 and 30.47 mW m(-2) for 1.5 and 4 L, respectively) than those of other electrode plate allocations. Most two-chamber microbial fuel cells (1.5 and 4 L) had a higher maximal power density than single-chamber ones with corresponding electrode plate allocations. Municipal solid waste with alkali hydrolysis pre-treatment and K3Fe(CN)6 as an electron acceptor improved the maximal power density to 1817.88 mW m(-2) (~0.49% coulomb efficiency, from 0.05-0.49%). The maximal power density from experiments using individual 1.5 and 4 L two-chamber microbial fuel cells, and serial and parallel connections of 1.5 and 4 L two-chamber microbial fuel cells, was found to be in the order of individual 4 L (30.47 mW m(-2)) > serial connection of 1.5 and 4 L (27.75) > individual 1.5 L (20.12) > parallel connection of 1.5 and 4 L (17.04) two-chamber microbial fuel cells . The power density using municipal solid waste microbial fuel cells was compared with information in the literature and discussed.

  7. Electrochemical device for syngas and liquid fuels production

    Energy Technology Data Exchange (ETDEWEB)

    Braun, Robert J.; Becker, William L.; Penev, Michael

    2017-04-25

    The invention relates to methods for creating high value liquid fuels such as gasoline, diesel, jet and alcohols using carbon dioxide and water as the starting raw materials and a system for using the same. These methods combine a novel solid oxide electrolytic cell (SOEC) for the efficient and clean conversion of carbon dioxide and water to hydrogen and carbon monoxide, uniquely integrated with a gas-to-liquid fuels producing method.

  8. Fission products, activity calculation of spent-fuel

    Energy Technology Data Exchange (ETDEWEB)

    Souka, N.; El-Hakiem, M.N.

    1981-01-01

    This work is a scrutiny of the activity of burned up fuel elements of the ET-RR-1. A knowledge of this activity as well as its decay with time is quite helpful in shielding calculations related to construction purposes of hot facilities. The present treatment is based on a knowledge of: fuel composition, percentage burnup, and fission yields of produced isotopes. Cooling periods ranging from 1 hr to 10 years were considered.

  9. Procedure for matching synfuel users with potential suppliers. Appendix B. Proposed and ongoing synthetic fuel production projects

    Energy Technology Data Exchange (ETDEWEB)

    None

    1981-08-07

    To assist the Department of Energy, Office of Fuels Conversion (OFC), in implementing the synthetic fuel exemption under the Powerplant and Industrial Fuel Use Act (FUA) of 1978, Resource Consulting Group, Inc. (RCG), has developed a procedure for matching prospective users and producers of synthetic fuel. The matching procedure, which involves a hierarchical screening process, is designed to assist OFC in: locating a supplier for a firm that wishes to obtain a synthetic fuel exemption; determining whether the fuel supplier proposed by a petitioner is technically and economically capable of meeting the petitioner's needs; and assisting the Synthetic Fuels Corporation or a synthetic fuel supplier in evaluating potential markets for synthetic fuel production. A data base is provided in this appendix on proposed and ongoing synthetic fuel production projects to be used in applying the screening procedure. The data base encompasses a total of 212 projects in the seven production technologies.

  10. Prospects of Biodiesel Production from Macadamia Oil as an Alternative Fuel for Diesel Engines

    Directory of Open Access Journals (Sweden)

    Md Mofijur Rahman

    2016-05-01

    Full Text Available This paper investigated the prospects of biodiesel production from macadamia oil as an alternative fuel for diesel engine. The biodiesel was produced using conventional transesterification process using the base catalyst (KOH. A multi-cylinder diesel engine was used to evaluate the performance and emission of 5% (B5 and 20% (B20 macadamia biodiesel fuel at different engine speeds and full load condition. It was found that the characteristics of biodiesel are within the limit of specified standards American Society for Testing and Materials (ASTM D6751 and comparable to diesel fuel. This study also found that the blending of macadamia biodiesel–diesel fuel significantly improves the fuel properties including viscosity, density (D, heating value and oxidation stability (OS. Engine performance results indicated that macadamia biodiesel fuel sample reduces brake power (BP and increases brake-specific fuel consumption (BSFC while emission results indicated that it reduces the average carbon monoxide (CO, hydrocarbons (HC and particulate matter (PM emissions except nitrogen oxides (NOx than diesel fuel. Finally, it can be concluded that macadamia oil can be a possible source for biodiesel production and up to 20% macadamia biodiesel can be used as a fuel in diesel engines without modifications.

  11. Separation of the rare-earth fission product poisons from spent nuclear fuel

    Energy Technology Data Exchange (ETDEWEB)

    Christian, Jerry D.; Sterbentz, James W.

    2016-08-30

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2 in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.

  12. Hydrogen production from E85 fuel with ceria-based catalysts

    Science.gov (United States)

    Swartz, Scott L.; Matter, Paul H.; Arkenberg, Gene B.; Holcomb, Franklin H.; Josefik, Nicholas M.

    The use of renewable (crop-derived) fuels to produce hydrogen has considerable environmental advantages with respect to reducing net emissions of carbon dioxide into the atmosphere. Ethanol is an example of a renewable fuel from which hydrogen can be derived, and E85 is a commercially available ethanol-based fuel of increasing importance. The distributed production of hydrogen from E85 fuel is one potential way of assuring availability of hydrogen as PEM fuel cells are introduced into service. NexTech Materials is collaborating with the U.S. Army Construction Engineering Laboratory (CERL) on the development of a hydrogen reformation process for E85 fuel. This paper describes the technical status of E85 fuel reforming process development work using Rh/ceria catalysts. Reforming results are compared for steam reforming and oxidative steam reforming of ethanol (the primary constituent of E85 fuel), isooctane, ethanol/iso-octane fuel mixtures (as a surrogate to E85), and commercially available E85 fuel. Stable reforming of E85 at 800 °C and a space velocity of 58,000 scm 3 g cat -1 h -1 over a 200-h period is reported.

  13. Separation of the rare-earth fission product poisons from spent nuclear fuel

    Science.gov (United States)

    Christian, Jerry D.; Sterbentz, James W.

    2016-08-30

    A method for the separation of the rare-earth fission product poisons comprising providing a spent nuclear fuel. The spent nuclear fuel comprises UO.sub.2 and rare-earth oxides, preferably Sm, Gd, Nd, Eu oxides, with other elements depending on the fuel composition. Preferably, the provided nuclear fuel is a powder, preferably formed by crushing the nuclear fuel or using one or more oxidation-reduction cycles. A compound comprising Th or Zr, preferably metal, is provided. The provided nuclear fuel is mixed with the Th or Zr, thereby creating a mixture. The mixture is then heated to a temperature sufficient to reduce the UO.sub.2 in the nuclear fuel, preferably to at least to 850.degree. C. for Th and up to 600.degree. C. for Zr. Rare-earth metals are then extracted to form the heated mixture thereby producing a treated nuclear fuel. The treated nuclear fuel comprises the provided nuclear fuel having a significant reduction in rare-earths.

  14. Hydrogen production with integrated microchannel fuel processor for portable fuel cell systems

    Science.gov (United States)

    Park, Gu-Gon; Yim, Sung-Dae; Yoon, Young-Gi; Lee, Won-Yong; Kim, Chang-Soo; Seo, Dong-Joo; Eguchi, Koichi

    An integrated microchannel methanol processor was developed by assembling unit reactors, which were fabricated by stacking and bonding microchannel patterned stainless steel plates, including fuel vaporizer, heat exchanger, catalytic combustor and steam reformer. Commercially available Cu/ZnO/Al 2O 3 catalyst was coated inside the microchannel of the unit reactor for steam reforming. Pt/Al 2O 3 pellets prepared by 'incipient wetness' were filled in the cavity reactor for catalytic combustion. Those unit reactors were integrated to develop the fuel processor and operated at different reaction conditions to optimize the reactor performance, including methanol steam reformer and methanol catalytic combustor. The optimized fuel processor has the dimensions of 60 mm × 40 mm × 30 mm, and produced 450sccm reformed gas containing 73.3% H 2, 24.5% CO 2 and 2.2% CO at 230-260 °C which can produce power output of 59 Wt.

  15. Navy Research, Development, and Acquisition Management Guide

    Science.gov (United States)

    1993-02-01

    processes, fluids , materials, and safety fire than 50 products and services from NTIS. hazards. Also includes data from ALERT’s as well including as...launchrs. amnition , guis. E-6 an G4.)launchers, ammunition. guided missiles. E-6 and G4.) mines, and torpedoes. "* Navy and Marine Corps aircraft

  16. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-04-23

    This report summarizes the accomplishments toward project goals during the first six months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  17. Potentials and limitations of bio-fuel production in Tanzania | Silayo ...

    African Journals Online (AJOL)

    security; counteract increasing fossil fuel prices, mitigate climate change ... However, there are increasing concerns from different parts of the world on the high ... the impacts of biofuel production on land security, food security, labour practices ...

  18. REFINERY INTEGRATION OF BY-PRODUCTS FROM COAL-DERIVED JET FUELS

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-05-18

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  19. Evaluation of yeast strains for production of fuel ethanol from biomass hydrolysates

    Science.gov (United States)

    Robust industrial yeast strains are needed for profitable production of fuel ethanol from mixed biomass waste. USDA, ARS, NCAUR, RPT has been evaluating ethanol-producing yeasts, including Saccharomyces cerevisiae, engineered GMAX Saccharomyces cerevisiae, irradiated Kluyveromyces marxianus, and Pi...

  20. Prospects for production of synthetic liquid fuel from low-grade coal

    Science.gov (United States)

    Shevyrev, Sergei; Bogomolov, Aleksandr; Alekssev, Maksim

    2015-01-01

    In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  1. Plasmon-enhanced Solar Fuel Production with Gold-metal Oxide Hybrid Nanomaterials

    DEFF Research Database (Denmark)

    Engelbrekt, Christian; Law, Matt; Zhang, Jingdong

    Harnessing sunlight to drive chemical reactions for energy storage is an important element in the transitiontowards green and sustainable technologies. Solar fuel production using semiconductor nanoparticles (SNPs) are widely studied but suffer from poor utilization of the solar spectrum and...

  2. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; John Andresen

    2004-09-17

    This report summarizes the accomplishments toward project goals during the first twelve months of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  3. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2008-03-31

    The final report summarizes the accomplishments toward project goals during length of the project. The goal of this project was to integrate coal into a refinery in order to produce coal-based jet fuel, with the major goal to examine the products other than jet fuel. These products are in the gasoline, diesel and fuel oil range and result from coal-based jet fuel production from an Air Force funded program. The main goal of Task 1 was the production of coal-based jet fuel and other products that would need to be utilized in other fuels or for non-fuel sources, using known refining technology. The gasoline, diesel fuel, and fuel oil were tested in other aspects of the project. Light cycle oil (LCO) and refined chemical oil (RCO) were blended, hydrotreated to removed sulfur, and hydrogenated, then fractionated in the original production of jet fuel. Two main approaches, taken during the project period, varied where the fractionation took place, in order to preserve the life of catalysts used, which includes (1) fractionation of the hydrotreated blend to remove sulfur and nitrogen, followed by a hydrogenation step of the lighter fraction, and (2) fractionation of the LCO and RCO before any hydrotreatment. Task 2 involved assessment of the impact of refinery integration of JP-900 production on gasoline and diesel fuel. Fuel properties, ignition characteristics and engine combustion of model fuels and fuel samples from pilot-scale production runs were characterized. The model fuels used to represent the coal-based fuel streams were blended into full-boiling range fuels to simulate the mixing of fuel streams within the refinery to create potential 'finished' fuels. The representative compounds of the coal-based gasoline were cyclohexane and methyl cyclohexane, and for the coal-base diesel fuel they were fluorine and phenanthrene. Both the octane number (ON) of the coal-based gasoline and the cetane number (CN) of the coal-based diesel were low, relative to

  4. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, West Virginia University, University of Utah, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. Feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification, coalbed methane, light products produced by Fischer-Tropsch (FT) synthesis, methanol, and natural gas.

  5. Ultra-clean Fischer-Tropsch (F-T) Fuels Production and Demonstration Project

    Energy Technology Data Exchange (ETDEWEB)

    Stephen P. Bergin

    2006-06-30

    The objective of the DOE-NETL Fischer-Tropsch (F-T) Production and Demonstration Program was to produce and evaluate F-T fuel derived from domestic natural gas. The project had two primary phases: (1) fuel production of ultra-clean diesel transportation fuels from domestic fossil resources; and (2) demonstration and performance testing of these fuels in engines. The project also included a well-to-wheels economic analysis and a feasibility study of small-footprint F-T plants (SFPs) for remote locations such as rural Alaska. During the fuel production phase, ICRC partnered and cost-shared with Syntroleum Corporation to complete the mechanical design, construction, and operation of a modular SFP that converts natural gas, via F-T and hydro-processing reactions, into hydrogensaturated diesel fuel. Construction of the Tulsa, Oklahoma plant started in August 2002 and culminated in the production of over 100,000 gallons of F-T diesel fuel (S-2) through 2004, specifically for this project. That fuel formed the basis of extensive demonstrations and evaluations that followed. The ultra-clean F-T fuels produced had virtually no sulfur (less than 1 ppm) and were of the highest quality in terms of ignition quality, saturation content, backend volatility, etc. Lubricity concerns were investigated to verify that commercially available lubricity additive treatment would be adequate to protect fuel injection system components. In the fuel demonstration and testing phase, two separate bus fleets were utilized. The Washington DC Metropolitan Area Transit Authority (WMATA) and Denali National Park bus fleets were used because they represented nearly opposite ends of several spectra, including: climate, topography, engine load factor, mean distance between stops, and composition of normally used conventional diesel fuel. Fuel evaluations in addition to bus fleet demonstrations included: bus fleet emission measurements; F-T fuel cold weather performance; controlled engine dynamometer

  6. A Reversible Planar Solid Oxide Fuel-Fed Electrolysis Cell and Solid Oxide Fuel Cell for Hydrogen and Electricity Production Operating on Natural Gas/Biomass Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Tao, Greg, G.

    2007-03-31

    A solid oxide fuel-assisted electrolysis technique was developed to co-generate hydrogen and electricity directly from a fuel at a reduced cost of electricity. Solid oxide fuel-assisted electrolysis cells (SOFECs), which were comprised of 8YSZ electrolytes sandwiched between thick anode supports and thin cathodes, were constructed and experimentally evaluated at various operation conditions on lab-level button cells with 2 cm2 per-cell active areas as well as on bench-scale stacks with 30 cm2 and 100 cm2 per-cell active areas. To reduce the concentration overpotentials, pore former systems were developed and engineered to optimize the microstructure and morphology of the Ni+8YSZ-based anodes. Chemically stable cathode materials, which possess good electronic and ionic conductivity and exhibit good electrocatalytic properties in both oxidizing and reducing gas atmospheres, were developed and materials properties were investigated. In order to increase the specific hydrogen production rate and thereby reduce the system volume and capital cost for commercial applications, a hybrid system that integrates the technologies of the SOFEC and the solid-oxide fuel cell (SOFC), was developed and successfully demonstrated at a 1kW scale, co-generating hydrogen and electricity directly from chemical fuels.

  7. NODC Standard Product: US Navy Geosat altimeter Crossover Differences (XDRs) for the Geodetic Mission (8 disc set) (NODC Accession 0054498)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a copy of the NODC eight CD-ROMs product set of the Geosat altimeter Crossover Differences data Records (XDRs) for altimeter data obtained...

  8. NODC Standard Product: US Navy Geosat altimeter geophysical data records (GDRs) for the Geodetic Mission (NODC Accession 0053782)

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — This accession contains a complete copy of an NODC four CD-ROM product set containing all of NOAA's geophysical data records (GDRs) for the Geosat altimeter data...

  9. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-04-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  10. US Navy superconductivity program

    Science.gov (United States)

    Gubser, Donald U.

    1991-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of the Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion) use LTS materials while space applications (millimeter wave electronics) use HTS materials. The Space Experiment to be conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity.

  11. Navy superconductivity efforts

    Science.gov (United States)

    Gubser, D. U.

    1990-01-01

    Both the new high temperature superconductors (HTS) and the low temperature superconductors (LTS) are important components of Navy's total plan to integrate superconductivity into field operational systems. Fundamental research is an important component of the total Navy program and focuses on the HTS materials. Power applications (ship propulsion, etc.) use LTS materials while space applications (MMW electronics, etc.) use HTS materials. The Space Experiment being conducted at NRL will involve space flight testing of HTS devices built by industry and will demonstrate the ability to engineer and space qualify these devices for systems use. Another important component of the Navy's effort is the development of Superconducting Quantum Interference Device (SQUID) magnetometers. This program will use LTS materials initially, but plans to implement HTS materials as soon as possible. Hybrid HTS/LTS systems are probable in many applications. A review of the status of the Navy's HTS materials research is given as well as an update on the Navy's development efforts in superconductivity, with particular emphasis on the related SDIO sponsored program on HTS applications.

  12. Fuel ethanol production from lignocellulose: a challenge for metabolic engineering and process integration

    DEFF Research Database (Denmark)

    Zaldivar, Jesus; Nielsen, Jens; Olsson, Lisbeth

    2001-01-01

    With industrial development growing rapidly, there is a need for environmentally sustainable energy sources. Bioethanol (ethanol from biomass) is an attractive, sustainable energy source to fuel transportation. Based on the premise that fuel bioethanol can contribute to a cleaner environment...... and with the implementation of environmental protection laws in many countries, demand for this fuel is increasing. Efficient ethanol production processes and cheap substrates are needed. Current ethanol production processes using crops such as sugar cane and corn are well-established; however, utilization of a cheaper...

  13. Determination of alternative fuels combustion products: Phase 1 report

    Energy Technology Data Exchange (ETDEWEB)

    Whitney, K.A. [Southwest Research Inst., San Antonio, TX (United States)

    1997-09-01

    This report describes the laboratory effort to identify and quantify organic exhaust species generated from alternative-fueled light-duty vehicles operating over the Federal Test Procedure on compressed natural gas, liquefied petroleum gas, methanol, ethanol, and reformulated gasoline. The exhaust species from these vehicles were identified and quantified for fuel/air equivalence ratios of 0.8, 1.0, and 1.2, nominally, and were analyzed with and without a vehicle catalyst in place to determine the influence of a catalytic converter on species formation.

  14. Feasibility of producing jet fuel from GPGP (Great Plains Gasification Plant) by-products

    Energy Technology Data Exchange (ETDEWEB)

    Willson, W.G.; Knudson, C.L.; Rindt, J.R.

    1987-01-01

    The Great Plains Gasification Plant (GPGP) in Beulah, North Dakota, is in close proximity to several Air Force bases along our northern tier. This plant is producing over 137 million cubic feet per day high-Btu SNG from North Dakota lignite. In addition, the plant generates three liquid streams, naphtha, crude phenol, and tar oil. The naphtha may be directly marketable because of its low boiling point and high aromatic content. The other two streams, totalling about 4300 barrels per day, are available as potential sources of aviation jet fuel for the Air Force. The overall objective of this project is to assess the technical and economic feasibility of producing aviation turbine fuel from the by-product streams of GPGP. These streams, as well as fractions thereof, will be characterized and subsequently processed over a wide range of process conditions. The resulting turbine fuel products will be analyzed to determine their chemical and physical characteristics as compared to petroleum-based fuels to meet the military specification requirements. A second objective is to assess the conversion of the by-product streams into a new, higher-density aviation fuel. Since no performance specifications currently exist for a high-density jet fuel, reaction products and intermediates will only be characterized to indicate the feasibility of producing such a fuel. This report describes results on feedstock characterization. 6 figs., 5 tabs.

  15. The challenges and opportunities for integration of solar syngas production with liquid fuel synthesis

    Science.gov (United States)

    Hinkley, James T.; McNaughton, Robbie K.; Pye, John; Saw, Woei; Stechel, Ellen B.

    2016-05-01

    Reforming of methane is practiced on a vast scale globally for the production of syngas as a precursor for the production of many commodities, including hydrogen, ammonia and synthetic liquid fuels. Solar reforming can reduce the greenhouse gas intensity of syngas production by up to about 40% by using solar thermal energy to provide the endothermic heat of reaction, traditionally supplied by combustion of some of the feed. This has the potential to enable the production of solar derived synthetic fuels as drop in replacements for conventional fuels with significantly lower CO2 intensity than conventional gas to liquids (GTL) processes. However, the intermittent nature of the solar resource - both diurnal and seasonal - poses significant challenges for such a concept, which relies on synthesis processes that typically run continuously on very stable feed compositions. We find that the integration of solar syngas production to a GTL process is a non-trivial exercise, with the ability to turn down the capacity of the GTL synthesis section, and indeed to suspend operations for short periods without significant detriment to product quality or process operability, likely to be a key driver for the commercial implementation of solar liquid fuels. Projected costs for liquid fuel synthesis suggest that solar reforming and small scale gas to liquid synthesis can potentially compete with conventional oil derived transport fuels in the short to medium term.

  16. Climate Impact and Economic Feasibility of Solar Thermochemical Jet Fuel Production.

    Science.gov (United States)

    Falter, Christoph; Batteiger, Valentin; Sizmann, Andreas

    2016-01-05

    Solar thermochemistry presents a promising option for the efficient conversion of H2O and CO2 into liquid hydrocarbon fuels using concentrated solar energy. To explore the potential of this fuel production pathway, the climate impact and economic performance are analyzed. Key drivers for the economic and ecological performance are thermochemical energy conversion efficiency, the level of solar irradiation, operation and maintenance, and the initial investment in the fuel production plant. For the baseline case of a solar tower concentrator with CO2 capture from air, jet fuel production costs of 2.23 €/L and life cycle greenhouse gas (LC GHG) emissions of 0.49 kgCO2-equiv/L are estimated. Capturing CO2 from a natural gas combined cycle power plant instead of the air reduces the production costs by 15% but leads to LC GHG emissions higher than that of conventional jet fuel. Favorable assumptions for all involved process steps (30% thermochemical energy conversion efficiency, 3000 kWh/(m(2) a) solar irradiation, low CO2 and heliostat costs) result in jet fuel production costs of 1.28 €/L at LC GHG emissions close to zero. Even lower production costs may be achieved if the commercial value of oxygen as a byproduct is considered.

  17. Bioenergy research programme. Yearbook 1996. Production of wood fuels; Bioenergian tutkimusohjelma. Vuosikirja 1996. Puupolttoaineiden tuotantotekniikka

    Energy Technology Data Exchange (ETDEWEB)

    Nikku, P. [ed.

    1997-12-01

    The aim of the programme is to increase the use of economically profitable and environmentally sound bioenergy by improving the competitiveness of present peat and wood fuels. Research and development projects will also develop new economically competitive biofuels, new equipment and methods for production, handling and utilisation of biofuels. The total funding for 1996 was 27.3 million FIM and the number of projects 63. The number of projects concerning wood fuels production was 36. The main goals of the research are to develop new production methods for wood fuels in order to decrease the production costs to the level of imported fuels (100 km distance). The second goal is to decrease the small scale production costs by 20 % as compared with the 1992 technology level. Also, new harvesting technology and new work methods will be developed for forest owners and small-entrepreneurs in the course of the programme. Results of the projects carried out in 1996 in this programme are presented in this publication. The integrated harvesting methods, which supply both raw material to wood products industry and wood fuel for energy production, have been chosen the main research areas because they seem to be most promising. Most of the projects are focused in the wood fuel production from first thinnings and from final fellings. The projects broadly covered the research area focusing from material flows, productivity studies, basic wood properties to several case studies. The follow up project of Evaluation-drum chipper was completed with good fuel quality and productivity results. Also the large Forest Energy Project of Central Finland was completed. The project was a significant technology transfer and information dissemination project. (orig.)

  18. Metabolic Engineering for Production of Biorenewable Fuels and Chemicals: Contributions of Synthetic Biology

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2010-01-01

    Full Text Available Production of fuels and chemicals through microbial fermentation of plant material is a desirable alternative to petrochemical-based production. Fermentative production of biorenewable fuels and chemicals requires the engineering of biocatalysts that can quickly and efficiently convert sugars to target products at a cost that is competitive with existing petrochemical-based processes. It is also important that biocatalysts be robust to extreme fermentation conditions, biomass-derived inhibitors, and their target products. Traditional metabolic engineering has made great advances in this area, but synthetic biology has contributed and will continue to contribute to this field, particularly with next-generation biofuels. This work reviews the use of metabolic engineering and synthetic biology in biocatalyst engineering for biorenewable fuels and chemicals production, such as ethanol, butanol, acetate, lactate, succinate, alanine, and xylitol. We also examine the existing challenges in this area and discuss strategies for improving biocatalyst tolerance to chemical inhibitors.

  19. Novel catalysts and photoelectrochemical system for solar fuel production

    Science.gov (United States)

    Zhang, Yan

    Solar fuel production from abundant raw chemicals such as CO2 and water is highly desired as a clean renewable energy solution for the future. Developing photoelectrochemical cells is viewed as a promising approach to realize this energy conversion and storage process. Efficient and robust oxygen evolution catalyst made from non-precious materials remains a major challenge for such a system. This thesis basically consists of three parts of work, including studies on enhancing the photocatalytic oxygen evolution activity of cobalt-based spinel nanoparticles by manganese3+ substitution, in situ formation of cobalt oxide nanocubanes as highly active catalyst for photocatalytic oxygen evolution reaction, and development of a photoanode-driven photoelectrochemical cell for CO2 reduction with water. The first part of this thesis work devotes efforts in the development and study on cobalt and other transition metal oxide based oxygen evolution catalyst. Photocatalytic oxygen evolution is a critical step for solar fuel production from abundant sources. It poses a significant challenge because it requires an efficient catalyst to bridge the one-electron photon capture process with the four-electron oxygen reaction. Among all the metal oxides, Co3O4 spinel exhibits a high activity as an oxygen evolution catalyst. The results of this work demonstrate that the photocatalytic oxygen evolution activity of Co3O4 spinel can be further enhanced by substituting Co with Mn in the spinel structure. Using a facile hydrothermal approach, Co3O4 spinel nanoparticles as well as Mn-substituted and Ni-substituted Co3O4 spinel nanoparticles with a typical particle size of 5-7 nm were successfully synthesized. The morphology and crystal structures of the as-synthesized nanoparticle catalysts have been carefully examined using various structural characterization techniques, including powder x-ray diffraction (PXRD), transmission electron microscope (TEM), gas adsorption, and x-ray absorption

  20. Innovative microbial fuel cell for electricity production from anaerobic reactors

    DEFF Research Database (Denmark)

    Min, Booki; Angelidaki, Irini

    2008-01-01

    A submersible microbial fuel cell (SMFC) was developed by immersing an anode electrode and a cathode chamber in an anaerobic reactor. Domestic wastewater was used as the medium and the inoculum in the experiments. The SMFC could successfully generate a stable voltage of 0.428 ± 0.003 V with a fixed...

  1. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit

    2010-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treatment of sewage sludge and simultaneous generate electricity. Stable power generation (145±5 mW/m2) was produced continuously from raw sewage sludge for 5.5 days. The corresponding total chemical oxygen demand (TCOD) removal efficiency...

  2. PBMR fuel sphere production facility project Pelindaba, South Africa

    Energy Technology Data Exchange (ETDEWEB)

    Braehler, G.; Buettner, K.; Froschauer, K.; Kress, W. [NUKEM GmbH, Alzenau (Germany)

    2006-11-15

    Due to the dramatically continuous increasing world wide demand on energy and the efforts in reducing CO{sub 2} emissions nuclear power is again being taken more and more under serious consideration. Here the HTR technology is especially considered due to its unique safety features, based on the modular design and the relatively small reactor core. The high temperature level opens the opportunity to produce hydrogen and to substitute fossil fuels for process heat generation. The development of the modular HTR technology in Germany started in the late 1970ies. Besides the modular reactor design and the small dimensioned reactor core design itself, the major safety features of the HTR technology are based on the fuel element as such. The development of the HTR fuel element in Germany has been systematically performed by NUKEM. Nowadays this technology is again being specially considered and new activities are being undertaken in the further development of this technology in numerous countries, especially in the PBMR project in South Africa. The first criticality of the South African pebble bed modular reactor is planned for 2013. In order to achieve this milestone the following time schedule for the pilot fuel plant in Pelindaba has been established. NUKEM has been involved in the PBMR PFP project form the very beginning. (orig.)

  3. Submersible microbial fuel cell for electricity production from sewage sludge

    DEFF Research Database (Denmark)

    Zhang, Yifeng; Olias, Lola Gonzalez; Kongjan, Prawit;

    2011-01-01

    A submersible microbial fuel cell (SMFC) was utilized to treat sewage sludge and simultaneously generate electricity. Stable power generation (145± 5 mW/m2, 470 Ω) was produced continuously from raw sewage sludge for 5.5 days. The maximum power density reached 190±5 mW/m2. The corresponding total...

  4. Cruiser Navy of Poland

    Directory of Open Access Journals (Sweden)

    Igor V. Yurin

    2015-12-01

    Full Text Available This article is dedicated to the description of the history of appearance in the Navy of Poland the ships of class cruiser. The brief characteristic of the Polish fleet before World War II is given. There is given the history of the acquisition in Belgium of the former French cruiser «D’Entrecasteaux», converted into the training ship «Baltyk». Is told about the appearance in the composition of Polish Navy of the former British cruisers HMS «Dragon» and HMS «Danaya», renamed in «Conrad», their technical characteristics are given, is described the history of their building and service in the British fleet, target run in the composition of Polish Navy is outlined. There is described the sinking cruiser «Conrad» by the German guided torpedo «Neger».

  5. Metabolic engineering of microorganisms for biofuels production: from bugs to synthetic biology to fuels

    Energy Technology Data Exchange (ETDEWEB)

    Kuk Lee, Sung; Chou, Howard; Ham, Timothy S.; Soon Lee, Taek; Keasling, Jay D.

    2009-12-02

    The ability to generate microorganisms that can produce biofuels similar to petroleum-based transportation fuels would allow the use of existing engines and infrastructure and would save an enormous amount of capital required for replacing the current infrastructure to accommodate biofuels that have properties significantly different from petroleum-based fuels. Several groups have demonstrated the feasibility of manipulating microbes to produce molecules similar to petroleum-derived products, albeit at relatively low productivity (e.g. maximum butanol production is around 20 g/L). For cost-effective production of biofuels, the fuel-producing hosts and pathways must be engineered and optimized. Advances in metabolic engineering and synthetic biology will provide new tools for metabolic engineers to better understand how to rewire the cell in order to create the desired phenotypes for the production of economically viable biofuels.

  6. Fission product concentration evolution in sodium pool following a fuel subassembly failure in an LMFBR

    Energy Technology Data Exchange (ETDEWEB)

    Natesan, K.; Velusamy, K.; Selvaraj, P.; Kasinathan, N.; Chellapandi, P.; Chetal, S.; Bhoje, S. [Indira Gandhi Center for Atomic Research, Kalpakkam (India)

    2003-07-01

    During a fuel element failure in a liquid metal cooled fast breeder reactor, the fission products originating from the failed pins mix into the sodium pool. Delayed Neutron Detectors (DND) are provided in the sodium pool to detect such failures by way of detection of delayed neutrons emitted by the fission products. The transient evolution of fission product concentration is governed by the sodium flow distribution in the pool. Transient hydraulic analysis has been carried out using the CFD code PHOENICS to estimate fission product concentration evolution in hot pool. k- {epsilon} turbulence model and zero laminar diffusivity for the fission product concentration have been considered in the analysis. Times at which the failures of various fuel subassemblies (SA) are detected by the DND are obtained. It has been found that in order to effectively detect the failure of every fuel SA, a minimum of 8 DND in hot pool are essential.

  7. ULTRA-CLEAN FISCHER-TROPSCH FUELS PRODUCTION AND DEMONSTRATION PROJECT

    Energy Technology Data Exchange (ETDEWEB)

    Steve Bergin

    2004-10-18

    The Report Abstract provides summaries of the past year's activities relating to each of the main project objectives. Some of the objectives will be expanded on in greater detail further down in the report. The following objectives have their own addition sections in the report: SFP Construction and Fuel Production, Impact of SFP Fuel on Engine Performance, Fleet Testing at WMATA and Denali National Park, Demonstration of Clean Diesel Fuels in Diesel Electric Generators in Alaska, and Economic Analysis. ICRC provided overall project organization and budget management for the project. ICRC held meetings with various project participants. ICRC presented at the Department of Energy's annual project review meeting. The plant began producing fuel in October 2004. The first delivery of finished fuel was made in March of 2004 after the initial start-up period.

  8. Comparative Study of Laboratory-Scale and Prototypic Production-Scale Fuel Fabrication Processes and Product Characteristics

    Energy Technology Data Exchange (ETDEWEB)

    Douglas W. Marshall

    2014-10-01

    An objective of the High Temperature Gas Reactor fuel development and qualification program for the United States Department of Energy has been to qualify fuel fabricated in prototypic production-scale equipment. The quality and characteristics of the tristructural isotropic coatings on fuel kernels are influenced by the equipment scale and processing parameters. Some characteristics affecting product quality were suppressed while others have become more significant in the larger equipment. Changes to the composition and method of producing resinated graphite matrix material has eliminated the use of hazardous, flammable liquids and enabled it to be procured as a vendor-supplied feed stock. A new method of overcoating TRISO particles with the resinated graphite matrix eliminates the use of hazardous, flammable liquids, produces highly spherical particles with a narrow size distribution, and attains product yields in excess of 99%. Compact fabrication processes have been scaled-up and automated with relatively minor changes to compact quality to manual laboratory-scale processes. The impact on statistical variability of the processes and the products as equipment was scaled are discussed. The prototypic production-scale processes produce test fuels that meet fuel quality specifications.

  9. A New Approach for Assigning Costs and Fuels to Cogeneration Products

    Directory of Open Access Journals (Sweden)

    Frank Cziesla

    2001-09-01

    Full Text Available

    Cogeneration plants generate more than one product (e.g., electricity and steam using to some extent common fuel(s and equipment items. Several approaches have been suggested in the past for assigning the costs associated with these common equipment items and fuels to the products of the plant. Some of these approaches use exergy-based or thermoeconomic methods. The results, however, may vary within a wide range.

    This paper presents a new exergy-based approach for assigning the fuel(s used in a cogeneration plant to the individual products of the plant. Combined with a thermoeconomic analysis, this approach provides the costs associated with the product streams. The new approach is more flexible, i.e. it allows engineers to actively participate in the fuel and cost assigning process. As expected, the results obtained with this approach differ from the results obtained from any of the previous approaches, including the exergetic cost theory and all previous thermoeconomic approaches. The application of the new approach is demonstrated using a combined heat and power plant.

  10. A physical description of fission product behavior fuels for advanced power reactors.

    Energy Technology Data Exchange (ETDEWEB)

    Kaganas, G.; Rest, J.; Nuclear Engineering Division; Florida International Univ.

    2007-10-18

    The Global Nuclear Energy Partnership (GNEP) is considering a list of reactors and nuclear fuels as part of its chartered initiative. Because many of the candidate materials have not been explored experimentally under the conditions of interest, and in order to economize on program costs, analytical support in the form of combined first principle and mechanistic modeling is highly desirable. The present work is a compilation of mechanistic models developed in order to describe the fission product behavior of irradiated nuclear fuel. The mechanistic nature of the model development allows for the possibility of describing a range of nuclear fuels under varying operating conditions. Key sources include the FASTGRASS code with an application to UO{sub 2} power reactor fuel and the Dispersion Analysis Research Tool (DART ) with an application to uranium-silicide and uranium-molybdenum research reactor fuel. Described behavior mechanisms are divided into subdivisions treating fundamental materials processes under normal operation as well as the effect of transient heating conditions on these processes. Model topics discussed include intra- and intergranular gas-atom and bubble diffusion, bubble nucleation and growth, gas-atom re-solution, fuel swelling and ?scion gas release. In addition, the effect of an evolving microstructure on these processes (e.g., irradiation-induced recrystallization) is considered. The uranium-alloy fuel, U-xPu-Zr, is investigated and behavior mechanisms are proposed for swelling in the {alpha}-, intermediate- and {gamma}-uranium zones of this fuel. The work reviews the FASTGRASS kinetic/mechanistic description of volatile ?scion products and, separately, the basis for the DART calculation of bubble behavior in amorphous fuels. Development areas and applications for physical nuclear fuel models are identified.

  11. Navy Mobility Fuels Forecasting System Phase 6 report: The potential impacts of a worst-case military conflict on world petroleum availability

    Energy Technology Data Exchange (ETDEWEB)

    Lee, R.; Das, S.; Leiby, P.N.

    1991-01-01

    A major Middle East and European military confrontation would cause an extremely large disruption in the supply of oil worldwide. There would be imbalances between oil supply and demand. These imbalances can only be solved by rationing and by military actions to ensure an adequate flow of crude oil and products. 25 refs., 5 tabs.

  12. Studies on production planning of IPEN fuel-element plant in order to meet RMB demand

    Energy Technology Data Exchange (ETDEWEB)

    Negro, Miguel L.M.; Saliba-Silva, Adonis M.; Durazzo, Michelangelo, E-mail: mlnegro@ipen.br, E-mail: saliba@ipen.br, E-mail: mdurazzo@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2015-07-01

    The plant of the Nuclear Fuel Center (CCN) will have to change its current laboratorial production level to an industrial level in order to meet the fuel demand of RMB and of IEA-R1. CCN's production process is based on the hydrolysis of UF6, which is not a frequent production route for nuclear fuel. The optimization of the production capacity of such a production route is a new field of studies. Two different approaches from the area of Operations Research (OR) were used in this paper. The first one was the PERT/CPM technique and the second one was the creation of a mathematical linear model for minimization of the production time. PERT/CPM's results reflect the current situation and disclose which production activities may not be critical. The results of the second approach show a new average time of 3.57 days to produce one Fuel Element and set the need of inventory. The mathematical model is dynamic, so that it issues better results if performed monthly. CCN's management team will therefore have a clearer view of the process times and production and inventory levels. That may help to shape the decisions that need to be taken for the enlargement of the plant's production capacity. (author)

  13. New technologies in the production of motor fuels from renewable materials

    Directory of Open Access Journals (Sweden)

    Adnađević Borivoj K.

    2012-01-01

    Full Text Available This work presents resources of the Autonomous Province of Vojvodina available for bioethanol and motor fuels (gasoline and diesel fuel from sustainable resources: corn-stalks, straw, sweet sorghum, pork fat. The physicochemical basis for novel processes for motor fuel production is coupling microwave pyrolysis of oil shale and catalytic cracking of purified pyrolysis oil, hydrothermal liquefaction of algae and swine manure. The effects of the degree of purification of crude pyrolysis oil and oil shale on the degree of their conversion to gasoline and diesel fuel, as well as the product distribution are investigated. The effects of the duration and temperature of hydrothermal liquefaction of microalga, Botryoccocus braunii, and swine manure on their degrees of conversion into bio-oil and its thermal properties are investigated. The development of novel strategy of biofuel in the Autonomous Province of Vojvodina is presented.

  14. HYDROGEN PRODUCTION FOR FUEL CELLS VIA REFORMING COAL-DERIVED METHANOL

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Erickson

    2006-01-01

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the ninth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2005-December 31, 2005. This quarter saw progress in four areas. These areas are: (1) reformate purification, (2) heat transfer enhancement, (3) autothermal reforming coal-derived methanol degradation test; and (4) model development for fuel cell system integration. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  15. A model for release of fission products from a breached fuel plate under wet storage

    Energy Technology Data Exchange (ETDEWEB)

    Terremoto, L.A.A.; Seerban, R.S.; Zeituni, C.A.; Silva, J.E.R. da; Silva, A.T. e; Castanheira, M.; Lucki, G.; Damy, M. de A.; Teodoro, C.A. [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)]. E-mail: laaterre@ipen.br

    2007-07-01

    MTR fuel elements burned-up inside the core of nuclear research reactors are stored worldwide mainly under the water of storage pools. When cladding breach is present in one or more fuel plates of such elements, radioactive fission products are released into the storage pool water. This work proposes a model to describe the release mechanism considering the diffusion of nuclides of a radioactive fission product either through a postulated small cylindrical breach or directly from a large circular hole in the cladding. In each case, an analytical expression is obtained for the activity released into the water as a function of the total storage time of a breached fuel plate. Regarding sipping tests already performed at the IEA-R1 research reactor on breached MTR fuel elements, the proposed model correlates successfully the specific activity of {sup 137}Cs, measured as a function of time, with the evaluated size of the cladding breach. (author)

  16. Thermochemical prediction of chemical form distributions of fission products in LWR mixed oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Moriyama, Kouki; Furuya, Hirotaka [Kyushu Univ., Fukuoka (Japan). Faculty of Engineering

    1998-06-01

    Radial distribution of chemical forms of fission products (FPs) in LWR mixed oxide (MOX) fuel pins was theoretically predicted by a thermochemical computer code SOLGASMIX-PV. The amounts of fission products generated in the fuel were calculated by ORIGEN-2 code, and the radial distributions of temperature and oxygen potential were calculated by taking the neutron depression and oxygen redistribution in the fuel into account. A fuel pellet was radially divided into 51 sections and chemical forms of FPs were calculated in each section. The effects of linear heat rating (LHR) and average O/U ratio on radial distribution of chemical form were evaluated. It was found that the radial distribution of chemical forms depends strongly on the LHR and the O/M ratio, and is not proportional to that of burnup. (author)

  17. Ceria-thoria pellet manufacturing in preparation for plutonia-thoria LWR fuel production

    Science.gov (United States)

    Drera, Saleem S.; Björk, Klara Insulander; Sobieska, Matylda

    2016-10-01

    Thorium dioxide (thoria) has potential to assist in niche roles as fuel for light water reactors (LWRs). One such application for thoria is its use as the fertile component to burn plutonium in a mixed oxide fuel (MOX). Thor Energy and an international consortium are currently irradiating plutonia-thoria (Th-MOX) fuel in an effort to produce data for its licensing basis. During fuel-manufacturing research and development (R&D), surrogate materials were utilized to highlight procedures and build experience. Cerium dioxide (ceria) provides a good surrogate platform to replicate the chemical nature of plutonium dioxide. The project's fuel manufacturing R&D focused on powder metallurgical techniques to ensure manufacturability with the current commercial MOX fuel production infrastructure. The following paper highlights basics of the ceria-thoria fuel production including powder milling, pellet pressing and pellet sintering. Green pellets and sintered pellets were manufactured with average densities of 67.0% and 95.5% that of theoretical density respectively.

  18. Navy Expeditionary Support

    Science.gov (United States)

    2010-04-27

    are issued the credit cards in their name by a central bank, currently Citibank for the Navy. By regulation, the purchase cardholder makes the...able to eliminate these disparities. The rapid development of new technologies , especially in response to changing enemy tactics, does present a valid

  19. Hydrogen Gas Production from Nuclear Power Plant in Relation to Hydrogen Fuel Cell Technologies Nowadays

    Science.gov (United States)

    Yusibani, Elin; Kamil, Insan; Suud, Zaki

    2010-06-01

    Recently, world has been confused by issues of energy resourcing, including fossil fuel use, global warming, and sustainable energy generation. Hydrogen may become the choice for future fuel of combustion engine. Hydrogen is an environmentally clean source of energy to end-users, particularly in transportation applications because without release of pollutants at the point of end use. Hydrogen may be produced from water using the process of electrolysis. One of the GEN-IV reactors nuclear projects (HTGRs, HTR, VHTR) is also can produce hydrogen from the process. In the present study, hydrogen gas production from nuclear power plant is reviewed in relation to commercialization of hydrogen fuel cell technologies nowadays.

  20. Energy balances in the production and end use of alcohols derived from biomass. A fuels-specific comparative analysis of alternate ethanol production cycles

    Energy Technology Data Exchange (ETDEWEB)

    1980-10-01

    Considerable public interest and debate have been focused on the so-called energy balance issue involved in the conversion of biomass materials into ethanol for fuel use. This report addresses questions of net gains in premium fuels that can be derived from the production and use of ethanol from biomass, and shows that for the US alcohol fuel program, energy balance need not be a concern. Three categories of fuel gain are discussed in the report: (1) Net petroleum gain; (2) Net premium fuel gain (petroleum and natural gas); and (3) Net energy gain (for all fuels). In this study the investment of energy (in the form of premium fuels) in alcohol production includes all investment from cultivating, harvesting, or gathering the feedstock and raw materials, through conversion of the feedstock to alcohol, to the delivery to the end-user. To determine the fuel gains in ethanol production, six cases, encompassing three feedstocks, five process fuels, and three process variations, have been examined. For each case, two end-uses (automotive fuel use and replacement of petrochemical feedstocks) were scrutinized. The end-uses were further divided into three variations in fuel economy and two different routes for production of ethanol from petrochemicals. Energy requirements calculated for the six process cycles accounted for fuels used directly and indirectly in all stages of alcohol production, from agriculture through distribution of product to the end-user. Energy credits were computed for byproducts according to the most appropriate current use.

  1. Fuel age impacts on gaseous fission product capture during separations

    Energy Technology Data Exchange (ETDEWEB)

    Jubin, Robert T.; Soelberg, Nicolas R.; Strachan, Denis M.; Ilas, G.

    2012-09-21

    As a result of fuel reprocessing, volatile radionuclides will be released from the facility stack if no processes are put in place to remove them. The radionuclides that are of concern in this document are 3H, 14C, 85Kr, and 129 Rosnick 2007 I. The question we attempt to answer is how efficient must this removal process be for each of these radionuclides? To answer this question, we examine the three regulations that may impact the degree to which these radionuclides must be reduced before process gases can be released from the facility. These regulations are 40 CFR 61 (EPA 2010a), 40 CFR 190(EPA 2010b), and 10 CFR 20 (NRC 2012), and they apply to the total radonuclide release and to the dose to a particular organ – the thyroid. Because these doses can be divided amongst all the radionuclides in different ways and even within the four radionuclides in question, several cases are studied. These cases consider for the four analyzed radionuclides inventories produced for three fuel types—pressurized water reactor uranium oxide (PWR UOX), pressurized water reactor mixed oxide (PWR MOX), and advanced high-temperature gascooled reactor (AHTGR)—several burnup values and time out of reactor extending to 200 y. Doses to the maximum exposed individual (MEI) are calculated with the EPA code CAP-88 ( , 1992). Two dose cases are considered. The first case, perhaps unrealistic, assumes that all of the allowable dose is assigned to the volatile radionuclides. In lieu of this, for the second case a value of 10% of the allowable dose is arbitrarily selected to be assigned to the volatile radionuclides. The required decontamination factors (DFs) are calculated for both of these cases, including the case for the thyroid dose for which 14C and 129I are the main contributors. However, for completeness, for one fuel type and burnup, additional cases are provided, allowing 25% and 50% of the allowable dose to be assigned to the volatile radionuclides. Because 3H and 85Kr have

  2. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Leslie R. Rudnick; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2005-11-17

    This report summarizes the accomplishments toward project goals during the first six months of the second year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts, acquisition and installation of a research gasoline engine, and modification of diesel engines for use in evaluating diesel produced in the project. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Evaluations to assess the quality of coal based fuel oil are reported. Coal samples have procured and are being assessed for cleaning prior to use in coking studies.

  3. Experimental study of hydrogen kinetics from agroindustrial by-product: optimal conditions for production and fuel cell feeding

    Energy Technology Data Exchange (ETDEWEB)

    Perego, P.; Fabiano, B.; Ponzano, G.P.; Palazzi, E. [Univ. Genoa, Inst. of Chemical and Process Engineering ``G.B. Bonino`` (Italy)

    1998-09-01

    One of the best and cleanest systems to produce electric energy is represented by fuel cells, whose natural fuel is hydrogen. In this paper, the production of hydrogen rich biogas is studied. This process contributes to create a system for biomass recovery, which eliminates organic pollutants and produces energy with high efficiency without atmospheric emissions. The study has been based on Escherichia coli and Enterobacter aerogenes strains. The research deals with batch reactors and verification of optimal conditions of hydrogen production. The realization of the optimal working conditions would conduce to the realization of a reactor suitable to feed a stack of the above mentioned fuel cells. In view of industrial applications, some different ways have been considered to greatly enhance the process performance, in terms of rate of hydrogen production, efficiency of hydrogen utilization and/or biosynthesis of valuable subproducts. (orig.)

  4. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Science.gov (United States)

    Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass product...

  5. Fuel From Farms: A Guide to Small-Scale Ethanol Production.

    Science.gov (United States)

    Solar Energy Research Inst., Golden, CO.

    Ethanol and blends of ethanol and gasoline (such as gasohol) offer a near-term fuel alternative to oil. The focus of this handbook is upon the small-scale production of ethanol using farm crops as the source of raw materials. Provided are chapters on ethanol production procedures, feedstocks, plant design, and financial planning. Also presented…

  6. Energy conversion and fuel production from electrochemical interfaces

    Science.gov (United States)

    Markovic, Nenad

    2012-02-01

    Design and synthesis of energy efficient and stable electrochemical interfaces (materials and double layer components) with tailor properties for accelerating and directing chemical transformations is the key to developing new alternative energy systems -- fuel cells, electrolizers and batteries. In aqueous electrolytes, depending on the nature of the reacting species, the supporting electrolyte, and the metal electrodes, two types of interactions have traditionally been considered: (i) direct -- covalent - bond formation between adsorbates and electrodes, involving chemisorption, electron transfer, and release of the ion hydration shell; and (ii) relatively weak non-covalent metal-ion forces that may affect the concentration of ions in the vicinity of the electrode but do not involve direct metal-adsorbate bonding. The range of physical phenomena associated with these two classes of bonds is unusually broad, and are of paramount importance to understand activity of both metal-electrolyte two phase interfaces and metal-Nafion-electrolyte three phase interfaces. Furthermore, in the past, researcher working in the field of fuel cells (converting hydrogen and oxygen into water) and electrolyzers (splitting water back to H2 and O2) ) seldom focused on understanding the electrochemical compliments of these reactions in battery systems, e.g., the lithium-air system. In this lecture, we address the importance of both covalent and non-covalent interactions in controlling catalytic activity at the two-phase and three-phase interfaces. Although the field is still in its infancy, a great deal has already been learned and trends are beginning to emerge that give new insight into the relationship between the nature of bonding interactions and catalytic activity/stability of electrochemical interfaces. In addition, to bridge the gap between the ``water battery'' (fuel cell electrolyzer) and the Li-air battery systems we demonstrate that this would require fundamentally new

  7. Production Costs of Alternative Transportation Fuels. Influence of Crude Oil Price and Technology Maturity

    Energy Technology Data Exchange (ETDEWEB)

    Cazzola, Pierpaolo; Morrison, Geoff; Kaneko, Hiroyuki; Cuenot, Francois; Ghandi, Abbas; Fulton, Lewis

    2013-07-01

    This study examines the production costs of a range of transport fuels and energy carriers under varying crude oil price assumptions and technology market maturation levels. An engineering ''bottom-up'' approach is used to estimate the effect of the input cost of oil and of various technological assumptions on the finished price of these fuels. In total, the production costs of 20 fuels are examined for crude oil prices between USD 60 and USD 150 per barrel. Some fuel pathways can be competitive with oil as their production, transport and storage technology matures, and as oil price increases. Rising oil prices will offer new opportunities to switch to alternative fuels for transport, to diversify the energy mix of the transport sector, and to reduce the exposure of the whole system to price volatility and potential distuption of supply. In a time of uncertainty about the leading vehicle technology to decarbonize the transport sector, looking at the fuel cost brings key information to be considered to keep mobility affordable yet sustainable.

  8. Cost Analysis of Direct Methanol Fuel Cell Stacks for Mass Production

    Directory of Open Access Journals (Sweden)

    Mauro Francesco Sgroi

    2016-11-01

    Full Text Available Fuel cells are very promising technologies for efficient electrical energy generation. The development of enhanced system components and new engineering solutions is fundamental for the large-scale deployment of these devices. Besides automotive and stationary applications, fuel cells can be widely used as auxiliary power units (APUs. The concept of a direct methanol fuel cell (DMFC is based on the direct feed of a methanol solution to the fuel cell anode, thus simplifying safety, delivery, and fuel distribution issues typical of conventional hydrogen-fed polymer electrolyte fuel cells (PEMFCs. In order to evaluate the feasibility of concrete application of DMFC devices, a cost analysis study was carried out in the present work. A 200 W-prototype developed in the framework of a European Project (DURAMET was selected as the model system. The DMFC stack had a modular structure allowing for a detailed evaluation of cost characteristics related to the specific components. A scale-down approach, focusing on the model device and projected to a mass production, was used. The data used in this analysis were obtained both from research laboratories and industry suppliers specialising in the manufacturing/production of specific stack components. This study demonstrates that mass production can give a concrete perspective for the large-scale diffusion of DMFCs as APUs. The results show that the cost derived for the DMFC stack is relatively close to that of competing technologies and that the introduction of innovative approaches can result in further cost savings.

  9. [Biodiesel-fuel: content, production, producers, contemporary biotechnology (review)].

    Science.gov (United States)

    Feofilova, E P; Sergeeva, Ia E; Ivashechkin, A A

    2010-01-01

    The necessity of expanding studies on producing renewable biofuel is reviewed. Special attention is given to biodiesel, the history of its creation, and its advantages and disadvantages in comparison with diesel-fuel. The main part of the review is devoted to an analysis of diesel biofuel on the basis of bacterial lipids, filamentous fungi, yeasts, plants, photo- and heterotrophic algae. Biodiesel on the basis of filamentous fungi is studied in detail and the possibility of creation of the most perspective biotechnology using these producers is grounded. The contemporary state of biotechnology in Russia is discussed in connection with the development of energetics based on renewable biofuels.

  10. Production and utilisation of a new pulverised fuel on bituminous coal/sewage sludge basis

    Energy Technology Data Exchange (ETDEWEB)

    Probst, H.H.; Wehland, P. [Bruno Fechner GmbH & Co. KG, Bottrop (Germany)

    1998-12-31

    Several solid fuels such as lignite, hard coal, sewage sludges and petrol coke were characterised by proximate and ultimate analyses, heavy metal content, calorific value etc. Thermogravimetric combustion profiles of five fuels were recorded to evaluate and compare the chemical reaction rates and behaviour. Combustion experiments on single fuels (coal and sewage sludge) and their blends were performed in a semi-technical high temperature drop tube furnace at DMT. The hard coal Middelburg, the Indonesian hard coal Kaltim Prima, the Colombian hard coal El Cerrejon, the sewage sludges Stadtwerke Dusseldorf and Emschergenossenschaft and their blends were tested with regard to their application in rotary kiln PF burners in the asphalt producing industry. The experiments varied reaction time and oxygen partial pressure. A fuel blend consisting of hard coals Kaltim Prima, Spitsbergen and El Cerrejon, respectively and sewage sludge Stadtwerke Dusseldorf (KPC/Dusseldorf 3:1) turned out to be suitable for industrial scale tests in an asphalt production plant competing with the standard fuel lignite fine dust Rheinbraun and pure sewage sludge Stadtwerke Dusseldorf. After a burner adaption phase to the novel fuels burner operation was stable. Heat introduction into the rotary kiln was best for the El Cerrejon/Dusseldorf (3:1) fuel blend. During operation with this blend all legal emission standards were met, whereas emission problems arose with sewage sludge Stadtwerke Dusseldorf. A fuel blend consisting of a high volatile hard coal and sewage sludge is an attractive substitute fuel for the expensive standard fuel lignite fine dust. 1 ref., 15 figs., 5 tabs.

  11. Evaluation of fission product worth margins in PWR spent nuclear fuel burnup credit calculations.

    Energy Technology Data Exchange (ETDEWEB)

    Blomquist, R.N.; Finck, P.J.; Jammes, C.; Stenberg, C.G.

    1999-02-17

    Current criticality safety calculations for the transportation of irradiated LWR fuel make the very conservative assumption that the fuel is fresh. This results in a very substantial overprediction of the actual k{sub eff} of the transportation casks; in certain cases, this decreases the amount of spent fuel which can be loaded in a cask, and increases the cost of transporting the spent fuel to the repository. Accounting for the change of reactivity due to fuel depletion is usually referred to as ''burnup credit.'' The US DOE is currently funding a program aimed at establishing an actinide only burnup credit methodology (in this case, the calculated reactivity takes into account the buildup or depletion of a limited number of actinides). This work is undergoing NRC review. While this methodology is being validated on a significant experimental basis, it implicitly relies on additional margins: in particular, the absorption of neutrons by certain actinides and by all fission products is not taken into account. This provides an important additional margin and helps guarantee that the methodology is conservative provided these neglected absorption are known with reasonable accuracy. This report establishes the accuracy of fission product absorption rate calculations: (1) the analysis of European fission product worth experiments demonstrates that fission product cross-sections available in the US provide very good predictions of fission product worth; (2) this is confirmed by a direct comparison of European and US cross section evaluations; (3) accuracy of Spent Nuclear Fuel (SNF) fission product content predictions is established in a recent ORNL report where several SNF isotopic assays are analyzed; and (4) these data are then combined to establish in a conservative manner the fraction of the predicted total fission product absorption which can be guaranteed based on available experimental data.

  12. HTGR fuels and core development program. Quarterly progress report for the period ending November 30, 1977. [Graphite and fuel irradiation; fission product release

    Energy Technology Data Exchange (ETDEWEB)

    1977-12-01

    The work reported here includes studies of basic fission product transport mechanisms, core graphite development and testing, and the development and testing of recyclable fuel systems. Materials studied include irradiation capsule tests of both fuel and graphite. Experimental procedures and results are discussed and data are presented.

  13. Saving fuel costs through better production data acquisition

    Energy Technology Data Exchange (ETDEWEB)

    Schroeder, K.J.

    1984-02-20

    The author includes in this contribution a brief explanation of the flow of information in production data acquisition, discusses a production data acquisition system for a tile production facility, and elucidates the PDA and open/closed-loop control of kilns. Subsequently, he draws the conclusion that 90%-95% of the overall product output in the ceramic industry goes for breaking even, and only the remaining 5% can provide a profit. If the quality of the last 5% is unsatisfactory, little or no profit will be made, and the producer will lose his chance to invest in promising new equipment for better quality in the future. In the author's opinion, the only way to improve the product quality with existing equipment while still reducing the energy consumption level is to introduce rapid-evaluation control systems. Among the available options: full-scale production data acquisition systems.

  14. Microbial alkane production for jet fuel industry: motivation, state of the art and perspectives.

    Science.gov (United States)

    Jiménez-Díaz, Lorena; Caballero, Antonio; Pérez-Hernández, Natalia; Segura, Ana

    2017-01-01

    Bio-jet fuel has attracted a lot of interest in recent years and has become a focus for aircraft and engine manufacturers, oil companies, governments and researchers. Given the global concern about environmental issues and the instability of oil market, bio-jet fuel has been identified as a promising way to reduce the greenhouse gas emissions from the aviation industry, while also promoting energy security. Although a number of bio-jet fuel sources have been approved for manufacture, their commercialization and entry into the market is still a far way away. In this review, we provide an overview of the drivers for intensified research into bio-jet fuel technologies, the type of chemical compounds found in bio-jet fuel preparations and the current state of related pre-commercial technologies. The biosynthesis of hydrocarbons is one of the most promising approaches for bio-jet fuel production, and thus we provide a detailed analysis of recent advances in the microbial biosynthesis of hydrocarbons (with a focus on alkanes). Finally, we explore the latest developments and their implications for the future of research into bio-jet fuel technologies.

  15. Production of solar fuels by CO2 plasmolysis

    Directory of Open Access Journals (Sweden)

    Goede Adelbert P.H.

    2014-01-01

    Full Text Available A storage scheme for Renewable Energy (RE based on the plasmolysis of CO2into CO and O2 has been experimentally investigated, demonstrating high energy efficiency (>50% combined with high energy density, rapid start-stop and no use of scarce materials. The key parameter controlling energy efficiency has been identified as the reduced electric field. Basic plasma parameters including density and temperature are derived from a simple particle and energy balance model, allowing parameter specification of an upscale 100 kW reactor. With RE powered plasmolysis as the critical element, a CO2 neutral energy system becomes feasible when complemented by effective capture of CO2 at the input and separation of CO from the output gas stream followed by downstream chemical processing into hydrocarbon fuels.

  16. Bacteria engineered for fuel ethanol production: current status

    Energy Technology Data Exchange (ETDEWEB)

    Dien, B.S.; Cotta, M.A. [National Center for Agricultural Utilization Research, Agricultural Research Service, USDA, Peoria, IL (United States); Jeffries, T.W. [Inst. for Microbial and Biochemical Technology, Forest Service, Forest Products Lab., USDA, Madison, WI (United States)

    2004-07-01

    The lack of industrially suitable microorganisms for converting biomass into fuel ethanol has traditionally been cited as a major technical roadblock to developing a bioethanol industry. In the last two decades, numerous microorganisms have been engineered to selectively produce ethanol. Lignocellulosic biomass contains complex carbohydrates that necessitate utilizing microorganisms capable of fermenting sugars not fermentable by brewers' yeast. The most significant of these is xylose. The greatest successes have been in the engineering of gram-negative bacteria: Escherichia coli, Klebsiella oxytoca, and Zymomonas mobilis. E. coli and K. oxytoca are naturally able to use a wide spectrum of sugars, and work has concentrated on engineering these strains to selectively produce ethanol. Z. mobilis produces ethanol at high yields, but ferments only glucose and fructose. Work on this organism has concentrated on introducing pathways for the fermentation of arabinose and xylose. The history of constructing these strains and current progress in refining them are detailed in this review. (orig.)

  17. Fuel ethanol production from Jerusalem artichoke stalks using different yeasts

    Energy Technology Data Exchange (ETDEWEB)

    Margaritis, A.; Bajpai, P.; Bajpai, P.K.

    1983-01-01

    The inulin-type sugars present in the stalks of Jerusalem artichoke (Helianthus tuberosus) were extracted with hot water and were used as a substrate to produce fuel EtOH. Seven different yeasts were used to obtain batch kinetic data. The medium consisted of stalk extract from Jerusalem artichoke containing 7.3% total sugars, supplemented with 0.01% oleic acid, 0.01% corn steep liquor, and 0.05% Tween 80. All batch fermentations were carried out in a 1-L bioreactor at 35 degrees and pH 4.6, and the following parameters were measured as a function of time: total sugars, EtOH and biomass concentration, maximum specific growth rate, and biomass and EtOH yields. The best EtOH producer was Kluyveromyces marxianus UCD (FST) 55-82 which gave an EtOH-to-sugar yield 97% of the theoretical maximum value, with almost 100% sugar utilization.

  18. Distribution of fission products in Peach Bottom HTGR fuel element E11-07

    Energy Technology Data Exchange (ETDEWEB)

    Wichner, R.P.; Dyer, F.F.; Martin, W.J.; Bate, L.C.

    1977-04-01

    This is the second in a projected series of six post-irradiation examinations of Peach Bottom High-Temperature Gas-Cooled Reactor driver fuel elements. Element E11-07, the subject of this report, received an equivalent of 701 full-power days of irradiation prior to scheduled withdrawal. The examination procedures emphasized the determination of fission product distributions in the graphite portions of the fuel element. Continuous axial scans indicated a /sup 137/Cs inventory of 17 Ci in the graphite sleeve and 8.3 Ci in the spine at the time of element withdrawal from the core. In addition, the nuclides /sup 134/Cs, /sup 110m/Ag, /sup 60/Co, and /sup 154/Eu were found in the graphite portions of the fuel element in significant amounts. Radial distributions of these nuclides plus the distribution of the beta emitters /sup 3/H, /sup 14/C, and /sup 90/Sr were obtained at six axial locations, four within the fueled region and one each above and below. The radial dissection was accomplished by use of a manipulator-operated lathe in a hot cell. These profiles reveal an increased degree of penetration of /sup 134/Cs, relative to /sup 137/Cs, evidently due to a longer time spent as xenon precursor. In addition to fission product distribution, the appearance of the element components was recorded photographically, fuel compact and graphite dimensions were recorded at numerous locations, and metallographic examinations of the fuel were performed.

  19. Biofuels Fuels Technology Pathway Options for Advanced Drop-in Biofuels Production

    Energy Technology Data Exchange (ETDEWEB)

    Kevin L Kenney

    2011-09-01

    Advanced drop-in hydrocarbon biofuels require biofuel alternatives for refinery products other than gasoline. Candidate biofuels must have performance characteristics equivalent to conventional petroleum-based fuels. The technology pathways for biofuel alternatives also must be plausible, sustainable (e.g., positive energy balance, environmentally benign, etc.), and demonstrate a reasonable pathway to economic viability and end-user affordability. Viable biofuels technology pathways must address feedstock production and environmental issues through to the fuel or chemical end products. Potential end products include compatible replacement fuel products (e.g., gasoline, diesel, and JP8 and JP5 jet fuel) and other petroleum products or chemicals typically produced from a barrel of crude. Considering the complexity and technology diversity of a complete biofuels supply chain, no single entity or technology provider is capable of addressing in depth all aspects of any given pathway; however, all the necessary expert entities exist. As such, we propose the assembly of a team capable of conducting an in-depth technology pathway options analysis (including sustainability indicators and complete LCA) to identify and define the domestic biofuel pathways for a Green Fleet. This team is not only capable of conducting in-depth analyses on technology pathways, but collectively they are able to trouble shoot and/or engineer solutions that would give industrial technology providers the highest potential for success. Such a team would provide the greatest possible down-side protection for high-risk advanced drop-in biofuels procurement(s).

  20. Demand for waste as fuel in the swedish district heating sector: a production function approach.

    Science.gov (United States)

    Furtenback, Orjan

    2009-01-01

    This paper evaluates inter-fuel substitution in the Swedish district heating industry by analyzing almost all the district heating plants in Sweden in the period 1989-2003, specifically those plants incinerating waste. A multi-output plant-specific production function is estimated using panel data methods. A procedure for weighting the elasticities of factor demand to produce a single matrix for the whole industry is introduced. The price of waste is assumed to increase in response to the energy and CO2 tax on waste-to-energy incineration that was introduced in Sweden on 1 July 2006. Analysis of the plants involved in waste incineration indicates that an increase in the net price of waste by 10% is likely to reduce the demand for waste by 4.2%, and increase the demand for bio-fuels, fossil fuels, other fuels and electricity by 5.5%, 6.0%, 6.0% and 6.0%, respectively.

  1. Chitin Lengthens Power Production in a Sedimentary Microbial Fuel Cell

    Science.gov (United States)

    2014-01-01

    solid amendments can include simple plant materials ( lignin /cellulose) or animal by-products (chitin, deceased organisms, or other waste products...presented at the conference. DNA extraction , PCR-DGGE (denaturant gradient gel electrophoresis) of 16 S ribosomal RNA gene, band excision and

  2. Engineering yeast metabolism for production of fuels and chemicals

    DEFF Research Database (Denmark)

    Nielsen, Jens

    2016-01-01

    of metabolic engineering designs, in particular for development of platform strains that can be used for production of a fatty acid derived products, e.g. fatty alcohols and alkanes. It will be argued that with advancement in genome-editing technologies and novel methods for rapid phenotypic screening...

  3. Potential Applicability of Just-In-Time Inventory Management Within the Navy.

    Science.gov (United States)

    1995-12-01

    Naval Postgraduate School, Monterey, CA, 1992. 7. Heizer & Render, PRODUCTION AND OPERATION MANAGEMENT (3rd ED), Massachusetts, Simon & Schuster, Inc...Navy inventory management system to the elements of a JIT resupply system. An assessment is made to determine eligibility of Navy operations for a JIT...determine eligibility of Navy operations for a JIT inventory management system. Finally, a case study of Naval Aviation Depot North Island, an

  4. Fission Product Monitoring of TRISO Coated Fuel For The Advanced Gas Reactor -1 Experiment

    Energy Technology Data Exchange (ETDEWEB)

    Dawn M. Scates; John (Jack) K Hartwell; John B. Walter

    2008-09-01

    The US Department of Energy has embarked on a series of tests of TRISO-coated particle reactor fuel intended for use in the Very High Temperature Reactor (VHTR) as part of the Advanced Gas Reactor (AGR) program. The AGR-1 TRISO fuel experiment, currently underway, is the first in a series of eight fuel tests planned for irradiation in the Advanced Test Reactor (ATR) located at the Idaho National Laboratory (INL). The AGR-1 experiment reached a peak compact averaged burn up of 9% FIMA with no known TRISO fuel particle failures in March 2008. The burnup goal for the majority of the fuel compacts is to have a compact averaged burnup greater than 18% FIMA and a minimum compact averaged burnup of 14% FIMA. At the INL the TRISO fuel in the AGR-1 experiment is closely monitored while it is being irradiated in the ATR. The effluent monitoring system used for the AGR-1 fuel is the Fission Product Monitoring System (FPMS). The FPMS is a valuable tool that provides near real-time data indicative of the AGR-1 test fuel performance and incorporates both high-purity germanium (HPGe) gamma-ray spectrometers and sodium iodide [NaI(Tl)] scintillation detector-based gross radiation monitors. To quantify the fuel performance, release-to-birth ratios (R/B’s) of radioactive fission gases are computed. The gamma-ray spectra acquired by the AGR-1 FPMS are analyzed and used to determine the released activities of specific fission gases, while a dedicated detector provides near-real time count rate information. Isotopic build up and depletion calculations provide the associated isotopic birth rates. This paper highlights the features of the FPMS, encompassing the equipment, methods and measures that enable the calculation of the release-to-birth ratios. Some preliminary results from the AGR-1 experiment are also presented.

  5. Production and Testing of Coconut Oil Biodiesel Fuel and its Blend

    Directory of Open Access Journals (Sweden)

    Oguntola J ALAMU

    2010-12-01

    Full Text Available Many researchers have successfully worked on generating energy from different alternative sources including solar and biological sources such as the conversion of trapped energy from sunlight to electricity and conversion of some renewable agricultural products to fuel. This work considers the use of coconut oil for the production of alternative renewable and environmental friendly biodiesel fuel as an alternative to conventional diesel fuel. Test quantities of coconut oil biodiesel were produced through transesterification reaction using 100g coconut oil, 20.0% ethanol (wt% coconut oil, 0.8% potassium hydroxide catalyst at 65°C reaction temperature and 120 min. reaction time. The experiment was carried out three times and average results evaluated. Low yield of the biodiesel (10.4% was obtained. The coconut oil biodiesel produced was subsequently blended with petroleum diesel and characterized as alternative diesel fuel through some ASTM standard fuel tests. The products were further evaluated by comparing specific gravity and viscosity of the biodiesel blend, the raw coconut oil and conventional petroleum diesel.

  6. Artificial photosynthesis for production of hydrogen peroxide and its fuel cells.

    Science.gov (United States)

    Fukuzumi, Shunichi

    2016-05-01

    The reducing power released from photosystem I (PSI) via ferredoxin enables the reduction of NADP(+) to NADPH, which is essential in the Calvin-Benson cycle to make sugars in photosynthesis. Alternatively, PSI can reduce O2 to produce hydrogen peroxide as a fuel. This article describes the artificial version of the photocatalytic production of hydrogen peroxide from water and O2 using solar energy. Hydrogen peroxide is used as a fuel in hydrogen peroxide fuel cells to make electricity. The combination of the photocatalytic H2O2 production from water and O2 using solar energy with one-compartment H2O2 fuel cells provides on-site production and usage of H2O2 as a more useful and promising solar fuel than hydrogen. This article is part of a Special Issue entitled Biodesign for Bioenergetics--The design and engineering of electronc transfer cofactors, proteins and protein networks, edited by Ronald L. Koder and J.L. Ross Anderson.

  7. The economic production of alcohol fuels from coal-derived synthesis gas

    Energy Technology Data Exchange (ETDEWEB)

    Kugler, E.L.; Dadyburjor, D.B.; Yang, R.Y.K. [West Virginia Univ., Morgantown, WV (United States)] [and others

    1995-12-31

    The objectives of this project are to discover, (1) study and evaluate novel heterogeneous catalytic systems for the production of oxygenated fuel enhancers from synthesis gas. Specifically, alternative methods of preparing catalysts are to be investigated, and novel catalysts, including sulfur-tolerant ones, are to be pursued. (Task 1); (2) explore, analytically and on the bench scale, novel reactor and process concepts for use in converting syngas to liquid fuel products. (Task 1); (3) simulate by computer the most energy efficient and economically efficient process for converting coal to energy, with primary focus on converting syngas to fuel alcohols. (Task 2); (4) develop on the bench scale the best holistic combination of chemistry, catalyst, reactor and total process configuration integrated with the overall coal conversion process to achieve economic optimization for the conversion of syngas to liquid products within the framework of achieving the maximum cost effective transformation of coal to energy equivalents. (Tasks 1 and 2); and (5) evaluate the combustion, emission and performance characteristics of fuel alcohols and blends of alcohols with petroleum-based fuels. (Task 2)

  8. Navy Lithium Battery Safety

    Science.gov (United States)

    2010-07-14

    lithium -sulfur dioxide (Li-SO2), lithium - thionyl chloride (Li- SOCL2), and lithium -sulfuryl chloride (Li-S02CL2...and 1980’s with active primary cells: Lithium -sulfur dioxide (Li-SO2) Lithium - thionyl chloride (Li-SOCL2) Lithium -sulfuryl chloride (Li-S0 CL ) 2 2...DISTRIBUTION A. Approved for public release; distribution unlimited. NAVY LITHIUM BATTERY SAFETY John Dow1 and Chris Batchelor2 Naval

  9. Propellant and Terrestrial Fuel Production from Atmospheric Carbon Dioxide Project

    Data.gov (United States)

    National Aeronautics and Space Administration — Build and test in a relevant environment a Mars propellant production plant of an appropriate scale for an initial demonstration on Mars. It will produce sufficient...

  10. Liquid Fuel Production from Biomass via High Temperature Steam Electrolysis

    Energy Technology Data Exchange (ETDEWEB)

    Grant L. Hawkes; Michael G. McKellar

    2009-11-01

    A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Hydrogen from electrolysis allows a high utilization of the biomass carbon for syngas production. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-fed biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power cycle for electricity generation is 50%, (as expected from GEN IV nuclear reactors), the syngas production efficiency ranges from 70% to 73% as the gasifier temperature decreases from 1900 K to 1500 K. Parametric studies of system pressure, biomass moisture content and low temperature alkaline electrolysis are also presented.

  11. The new gold rush: fueling ethanol production while protecting water quality.

    Science.gov (United States)

    Simpson, Thomas W; Sharpley, Andrew N; Howarth, Robert W; Paerl, Hans W; Mankin, Kyle R

    2008-01-01

    Renewable fuel production, particularly grain-based ethanol, is expanding rapidly in the USA. Although subsidized grain-based ethanol may provide a competitively priced transportation fuel, concerns exist about potential environmental impacts. This contribution focuses on potential water quality implications of expanded grain-based ethanol production and potential impacts of perennial-grass-based cellulosic ethanol. Expanded grain-based ethanol will increase and intensify corn production. Even with recommended fertilizer and land conservation measures, corn acreage can be a major source of N loss to water (20-40 kg ha(-1) yr(-1)). A greater acreage of corn is estimated to increase N and P loss to water by 37% (117 million kg) and 25% (9 million kg), respectively, and measures to encourage adoption of conservation practices are essential to mitigate water quality impairments. Dried distiller's grains remaining after ethanol production from corn grain are used as animal feed and can increase manure P content and may increase N content. Cellulosic fuel-stocks from perennials such as switchgrass and woody materials have the potential to produce ethanol. Although production, storage, and handling of cellulosic materials and conversion technology are limitations, accelerating development of cellulosic ethanol has the potential to reduce dependence on grain fuel-stocks and provide water quality and other environmental benefits. All alternative fuel production technologies could have environmental impacts. There is a need to understand these impacts to help guide policy and help make programmatic and scientific decisions that avoid or mitigate unintended environmental consequences of biofuel production.

  12. Solar photochemical process engineering for production of fuels and chemicals

    Science.gov (United States)

    Biddle, J. R.; Peterson, D. B.; Fujita, T.

    1985-01-01

    The engineering costs and performance of a nominal 25,000 scmd (883,000 scfd) photochemical plant to produce dihydrogen from water were studied. Two systems were considered, one based on flat-plate collector/reactors and the other on linear parabolic troughs. Engineering subsystems were specified including the collector/reactor, support hardware, field transport piping, gas compression equipment, and balance-of-plant (BOP) items. Overall plant efficiencies of 10.3 and 11.6 percent are estimated for the flat-plate and trough systems, respectively, based on assumed solar photochemical efficiencies of 12.9 and 14.6 percent. Because of the opposing effects of concentration ratio and operating temperature on efficiency, it was concluded that reactor cooling would be necessary with the trough system. Both active and passive cooling methods were considered. Capital costs and energy costs, for both concentrating and non-concentrating systems, were determined and their sensitivity to efficiency and economic parameters were analyzed. The overall plant efficiency is the single most important factor in determining the cost of the fuel.

  13. Usage of Production Functions in the Comparative Analysis of Transport Related Fuel Consumption

    Directory of Open Access Journals (Sweden)

    Torok Adam

    2014-12-01

    Full Text Available This contribution aims to examine the relationship between the transport sector and the macroeconomy, particularly in fossil energy use, capital and labour relations. The authors have investigated the transport related fossil fuel consumption 2003 -2010 in a macroeconomic context in Hungary and Germany. The Cobb-Douglas type of production function could be justified empirically, while originating from the general CES (Constant Elasticity of Substitution production function. Furthermore, as a policy implication, the results suggest that a solution for the for the reduction of anthropogenic CO2 driven by the combustion of fossil fuels presupposes technological innovation to reach emission reduction targets. Other measures, such as increasing the fossil fuel price by levying taxes, would consequently lead to an undesirable GDP decline.

  14. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The kinetic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into primary products (tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  15. Kinetics study on biomass pyrolysis for fuel gas production

    Institute of Scientific and Technical Information of China (English)

    陈冠益; 方梦祥; ANDRIES,J.; 骆仲泱; SPLIETHOFF,H.; 岑可法

    2003-01-01

    Kinetic knowledge is of great importance in achieving good control of the pyrolysis and gasification process and optimising system design. An overall kinetic pyrolysis scheme is therefore addressed here. The ki-netic modelling incorporates the following basic steps: the degradation of the virgin biomass materials into pri-mary products ( tar, gas and semi-char), the decomposition of primary tar into secondary products and the continuous interaction between primary gas and char. The last step is disregarded completely by models in the literature. Analysis and comparison of predicted results from different kinetic schemes and experimental data on our fixed bed pyrolyser yielded very positive evidence to support our kinetic scheme.

  16. Production of dimethylfuran for liquid fuels from biomass-derived carbohydrates.

    Science.gov (United States)

    Román-Leshkov, Yuriy; Barrett, Christopher J; Liu, Zhen Y; Dumesic, James A

    2007-06-21

    Diminishing fossil fuel reserves and growing concerns about global warming indicate that sustainable sources of energy are needed in the near future. For fuels to be useful in the transportation sector, they must have specific physical properties that allow for efficient distribution, storage and combustion; these properties are currently fulfilled by non-renewable petroleum-derived liquid fuels. Ethanol, the only renewable liquid fuel currently produced in large quantities, suffers from several limitations, including low energy density, high volatility, and contamination by the absorption of water from the atmosphere. Here we present a catalytic strategy for the production of 2,5-dimethylfuran from fructose (a carbohydrate obtained directly from biomass or by the isomerization of glucose) for use as a liquid transportation fuel. Compared to ethanol, 2,5-dimethylfuran has a higher energy density (by 40 per cent), a higher boiling point (by 20 K), and is not soluble in water. This catalytic strategy creates a route for transforming abundant renewable biomass resources into a liquid fuel suitable for the transportation sector, and may diminish our reliance on petroleum.

  17. Electricity production from twelve monosaccharides using microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Catal, Tunc [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States); Department of Wood Science and Engineering, Oregon State University, 102 Richardson Hall, Corvallis, OR 97331 (United States); Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey); Li, Kaichang [Department of Wood Science and Engineering, Oregon State University, 102 Richardson Hall, Corvallis, OR 97331 (United States); Bermek, Hakan [Department of Molecular Biology and Genetics, Istanbul Technical University, 34469-Maslak, Istanbul (Turkey); Liu, Hong [Department of Biological and Ecological Engineering, Oregon State University, 116 Gilmore Hall, Corvallis, OR 97331 (United States)

    2008-01-03

    Direct generation of electricity from monosaccharides of lignocellulosic biomass was examined using air cathode microbial fuel cells (MFCs). Electricity was generated from all carbon sources tested, including six hexoses (D-glucose, D-galactose, D(-)-levulose (fructose), L-fucose, L-rhamnose, and D-mannose), three pentoses (D-xylose, D(-)-arabinose, and D(-)-ribose), two uronic acids (D-galacturonic acid and D-glucuronic acid) and one aldonic acid (D-gluconic acid). The mixed bacterial culture, which was enriched using acetate as a carbon source, adapted well to all carbon sources tested, although the adaptation times varied from 1 to 70 h. The maximum power density obtained from these carbon sources ranged from 1240 {+-} 10 to 2770 {+-} 30 mW m{sup -2} at current density range of 0.76-1.18 mA cm{sup -2}. D-Mannose resulted in the lowest maximum power density, whereas D-glucuronic acid generated the highest one. Coulombic efficiency ranged from 21 to 37%. For all carbon sources tested, the relationship between the maximum voltage output and the substrate concentration appeared to follow saturation kinetics at 120 {omega} external resistance. The estimated maximum voltage output ranged between 0.26 and 0.44 V and half-saturation kinetic constants ranged from 111 to 725 mg L{sup -1}. Chemical oxygen demand (COD) removal was over 80% for all carbon sources tested. Results from this study indicated that lignocellulosic biomass-derived monosaccharides might be a suitable resource for electricity generation using MFC technology. (author)

  18. Electricity production from twelve monosaccharides using microbial fuel cells

    Science.gov (United States)

    Catal, Tunc; Li, Kaichang; Bermek, Hakan; Liu, Hong

    Direct generation of electricity from monosaccharides of lignocellulosic biomass was examined using air cathode microbial fuel cells (MFCs). Electricity was generated from all carbon sources tested, including six hexoses (D-glucose, D-galactose, D(-)-levulose (fructose), L-fucose, L-rhamnose, and D-mannose), three pentoses (D-xylose, D(-)-arabinose, and D(-)-ribose), two uronic acids (D-galacturonic acid and D-glucuronic acid) and one aldonic acid (D-gluconic acid). The mixed bacterial culture, which was enriched using acetate as a carbon source, adapted well to all carbon sources tested, although the adaptation times varied from 1 to 70 h. The maximum power density obtained from these carbon sources ranged from 1240 ± 10 to 2770 ± 30 mW m -2 at current density range of 0.76-1.18 mA cm -2. D-Mannose resulted in the lowest maximum power density, whereas D-glucuronic acid generated the highest one. Coulombic efficiency ranged from 21 to 37%. For all carbon sources tested, the relationship between the maximum voltage output and the substrate concentration appeared to follow saturation kinetics at 120 Ω external resistance. The estimated maximum voltage output ranged between 0.26 and 0.44 V and half-saturation kinetic constants ranged from 111 to 725 mg L -1. Chemical oxygen demand (COD) removal was over 80% for all carbon sources tested. Results from this study indicated that lignocellulosic biomass-derived monosaccharides might be a suitable resource for electricity generation using MFC technology.

  19. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    Science.gov (United States)

    Hepp, Aloysius F.; Kulis, Michael J.; Psarras, Peter C.; Ball, David W.; Timko, Michael T.; Wong, Hsi-Wu; Peck, Jay; Chianelli, Russell R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these nontraditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and H2) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tröpsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activities are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  20. Novel Catalysts and Processing Technologies for Production of Aerospace Fuels from Non-Petroleum Raw Materials

    Science.gov (United States)

    Hepp, A. F.; Kulis, M. J.; Psarras, P. C.; Ball, D. W.; Timko, M. T.; Wong, H.-W.; Peck, J.; Chianelli, R. R.

    2014-01-01

    Transportation fuels production (including aerospace propellants) from non-traditional sources (gases, waste materials, and biomass) has been an active area of research and development for decades. Reducing terrestrial waste streams simultaneous with energy conversion, plentiful biomass, new low-cost methane sources, and/or extra-terrestrial resource harvesting and utilization present significant technological and business opportunities being realized by a new generation of visionary entrepreneurs. We examine several new approaches to catalyst fabrication and new processing technologies to enable utilization of these non-traditional raw materials. Two basic processing architectures are considered: a single-stage pyrolysis approach that seeks to basically re-cycle hydrocarbons with minimal net chemistry or a two-step paradigm that involves production of supply or synthesis gas (mainly carbon oxides and hydrogen) followed by production of fuel(s) via Sabatier or methanation reactions and/or Fischer-Tropsch synthesis. Optimizing the fraction of product stream relevant to targeted aerospace (and other transportation) fuels via modeling, catalyst fabrication and novel reactor design are described. Energy utilization is a concern for production of fuels for either terrestrial or space operations; renewable sources based on solar energy and/or energy efficient processes may be mission enabling. Another important issue is minimizing impurities in the product stream(s), especially those potentially posing risks to personnel or operations through (catalyst) poisoning or (equipment) damage. Technologies being developed to remove (and/or recycle) heteroatom impurities are briefly discussed as well as the development of chemically robust catalysts whose activity are not diminished during operation. The potential impacts on future missions by such new approaches as well as balance of system issues are addressed.

  1. Fuel Cell Power Systems for Navy Applications

    Science.gov (United States)

    1984-05-01

    DAMES & MOORE LIBRARY LOS ANGELES. CA DRURY COLLEGE Physics Dept. Springfield. MO FLORIDA ATLANTIC UNIVERSITY Boca Raton. FL (McAllister) FOREST... Colin Ramage) Dept of Meteorology Honolulu HI: HONOLULU. HI (SCIENCE AND TECH. DIV.); Natd Energy Inst (DR Neill) Honolulu HI UNIVERSITY OF ILLINOIS (Hall

  2. Solvent degradation products in nuclear fuel processing solvents

    Energy Technology Data Exchange (ETDEWEB)

    Shook, H.E. Jr.

    1988-06-01

    The Savannah River Plant uses a modified Purex process to recover enriched uranium and separate fission products. This process uses 7.5% tri-n-butyl phosphate (TBP) dissolved in normal paraffin hydrocarbons for the solvent extraction of a nitric acid solution containing the materials to be separated. Periodic problems in product decontamination result from solvent degradation. A study to improve process efficiency has identified certain solvent degradation products and suggested mitigation measures. Undecanoic acid, lauric acid, and tridecanoic acid were tentatively identified as diluent degradation products in recycle solvent. These long-chain organic acids affect phase separation and lead to low decontamination factors. Solid phase extraction (SPE) was used to concentrate the organic acids in solvent prior to analysis by high performance liquid chromatography (HPLC). SPE and HPLC methods were optimized in this work for analysis of decanoic acid, undecanoic acid, and lauric acid in solvent. Accelerated solvent degradation studies with 7.5% TBP in normal paraffin hydrocarbons showed that long-chain organic acids and long-chain alkyl butyl phosphoric acids are formed by reactions with nitric acid. Degradation of both tributyl phosphate and hydrocarbon can be minimized with purified normal paraffin replacing the standard grade presently used. 12 refs., 1 fig., 3 tabs.

  3. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve th

  4. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2014

    Energy Technology Data Exchange (ETDEWEB)

    None, None

    2015-02-01

    This FY 2014 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  5. Prospects for production of synthetic liquid fuel from low-grade coal

    Directory of Open Access Journals (Sweden)

    Shevyrev Sergei

    2015-01-01

    Full Text Available In the paper, we compare the energy costs of steam and steam-oxygen gasification technologies for production of synthetic liquid fuel. Results of mathematic simulation and experimental studies on gasification of low-grade coal are presented.

  6. Determining the fate of virginiamycin in the fuel ethanol production process

    Science.gov (United States)

    Antibiotics are frequently used to prevent and treat bacterial contamination at commercial fuel ethanol facilities. A study to evaluate the fate of the antibiotic virginiamycin during the ethanol production process was conducted in the pilot plant facilities at the National Corn to Ethanol Research...

  7. Production of fuel by pyrolysis of the bagasse of grapes: yield and high thermal power

    Energy Technology Data Exchange (ETDEWEB)

    Foussard, J.N.; Talayrach, B.; Besombes Vailhe, J.

    1979-01-01

    A liquid fuel of high calorific value was obtained by the pyrolysis of grape bagasse, with the pyrolysis temperature being the factor determining the product composition. Grape bagasse is produced in distilleries and is thus a practical and readily available material.

  8. Bifunctional catalysts for the direct production of liquid fuels from syngas

    NARCIS (Netherlands)

    Sartipi, S.

    2014-01-01

    Design and development of catalyst formulations that maximize the direct production of liquid fuels by combining Fischer-Tropsch synthesis (FTS), hydrocarbon cracking, and isomerization into one single catalyst particle (bifunctional FTS catalyst) have been investigated in this thesis. To achieve

  9. Solid recovered fuel production from biodegradable waste in grain processing industry.

    Science.gov (United States)

    Kliopova, Irina; Staniskis, Jurgis Kazimieras; Petraskiene, Violeta

    2013-04-01

    Management of biodegradable waste is one of the most important environmental problems in the grain-processing industry since this waste cannot be dumped anymore due to legal requirements. Biodegradable waste is generated in each stage of grain processing, including the waste-water and air emissions treatment processes. Their management causes some environmental and financial problems. The majority of Lithuanian grain-processing enterprises own and operate composting sites, but in Lithuania the demand for compost is not given. This study focused on the analysis of the possibility of using biodegradable waste for the production of solid recovered fuel, as a local renewable fuel with the purpose of increasing environmental performance and decreasing the direct costs of grain processing. Experimental research with regard to a pilot grain-processing plant has proven that alternative fuel production will lead to minimizing of the volume of biodegradable waste by 75% and the volume of natural gas for heat energy production by 62%. Environmental indicators of grain processing, laboratory analysis of the chemical and physical characteristics of biodegradable waste, mass and energy balances of the solid recovered fuel production, environmental and economical benefits of the project are presented and discussed herein.

  10. The Analysis of the Available Technology of Exploiting and Applying Biohydrocarbons for Fuel Production Part I

    Directory of Open Access Journals (Sweden)

    Gielo-Klepacz Halina

    2017-08-01

    Full Text Available The article shows the current state of knowledge in the area of applying biohydrocarbons for fuel production, especially in aeronautical applications and to power compression-ignition engines. The technologies based on biochemical and thermal/chemical conversion of biomass are described. Technological potential of these technologies is evaluated. The article is based on the literature review.

  11. Target Cultivation and Financing Parameters for Sustainable Production of Fuel and Feed from Microalgae.

    Science.gov (United States)

    Gerber, Léda N; Tester, Jefferson W; Beal, Colin M; Huntley, Mark E; Sills, Deborah L

    2016-04-05

    Production of economically competitive and environmentally sustainable algal biofuel faces technical challenges that are subject to high uncertainties. Here we identify target values for algal productivity and financing conditions required to achieve a biocrude selling price of $5 per gallon and beneficial environmental impacts. A modeling framework--combining process design, techno-economic analysis, life cycle assessment, and uncertainty analysis--was applied to two conversion pathways: (1) "fuel only (HTL)", using hydrothermal liquefaction to produce biocrude, heat and power, and (2) "fuel and feed", using wet extraction to produce biocrude and lipid-extracted algae, which can substitute components of animal and aqua feeds. Our results suggest that with supporting policy incentives, the "fuel and feed" scenario will likely achieve a biocrude selling price of less than $5 per gallon at a productivity of 39 g/m(2)/day, versus 47 g/m(2)/day for the "fuel only (HTL)" scenario. Furthermore, if lipid-extracted algae are used to substitute fishmeal, the process has a 50% probability of reaching $5 per gallon with a base case productivity of 23 g/m(2)/day. Scenarios with improved economics were associated with beneficial environmental impacts for climate change, ecosystem quality, and resource depletion, but not for human health.

  12. Green electricity production with living plants and bacteria in a fuel cell

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Hamelers, H.V.M.; Snel, J.F.H.; Buisman, C.J.N.

    2008-01-01

    The world needs sustainable, efficient, and renewable energy production. We present the plant microbial fuel cell (plant-MFC), a concept that exploits a bioenergy source in situ. In the plant-MFC, plants and bacteria were present to convert solar energy into green electricity. The principal idea is

  13. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Terlouw, H.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a

  14. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC)

    NARCIS (Netherlands)

    Strik, D.P.B.T.B.; Terlouw, H.; Hamelers, H.V.M.; Buisman, C.J.N.

    2008-01-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a

  15. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Office - 2013

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2014-04-30

    This FY 2013 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Office and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  16. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program - 2012

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2012-09-01

    This FY 2012 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  17. Pathways to Commercial Success. Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    none,

    2011-09-01

    This FY 2011 report updates the results of an effort to identify and characterize commercial and near-commercial (emerging) technologies and products that benefited from the support of the Fuel Cell Technologies Program and its predecessor programs within DOE's Office of Energy Efficiency and Renewable Energy.

  18. Fission product partitioning in aerosol release from simulated spent nuclear fuel

    NARCIS (Netherlands)

    Di Lemma, F.G.; Colle, J.Y.; Rasmussen, G.; Konings, R.J.M.

    2015-01-01

    Aerosols created by the vaporization of simulated spent nuclear fuel (simfuel) were produced by laser heating techniques and characterised by a wide range of post-analyses. In particular attention has been focused on determining the fission product behaviour in the aerosols, in order to improve the

  19. Recent developments in the production of liquid fuels via catalytic conversion of microalgae: experiments and simulations

    Energy Technology Data Exchange (ETDEWEB)

    Shi, Fan; Wang, Pin; Duan, Yuhua; Link, Dirk; Morreale, Bryan

    2012-01-01

    Due to continuing high demand, depletion of non-renewable resources and increasing concerns about climate change, the use of fossil fuel-derived transportation fuels faces relentless challenges both from a world markets and an environmental perspective. The production of renewable transportation fuel from microalgae continues to attract much attention because of its potential for fast growth rates, high oil content, ability to grow in unconventional scenarios, and inherent carbon neutrality. Moreover, the use of microalgae would minimize ‘‘food versus fuel’’ concerns associated with several biomass strategies, as microalgae do not compete with food crops in the food chain. This paper reviews the progress of recent research on the production of transportation fuels via homogeneous and heterogeneous catalytic conversions of microalgae. This review also describes the development of tools that may allow for a more fundamental understanding of catalyst selection and conversion processes using computational modelling. The catalytic conversion reaction pathways that have been investigated are fully discussed based on both experimental and theoretical approaches. Finally, this work makes several projections for the potential of various thermocatalytic pathways to produce alternative transportation fuels from algae, and identifies key areas where the authors feel that computational modelling should be directed to elucidate key information to optimize the process.

  20. Preliminary assessment of Malaysian micro-algae strains for the production of bio jet fuel

    Science.gov (United States)

    Chen, J. T.; Mustafa, E. M.; Vello, V.; Lim, P.; Nik Sulaiman, N. M.; Majid, N. Abdul; Phang, S.; Tahir, P. Md.; Liew, K.

    2016-10-01

    Malaysia is the main hub in South-East Asia and has one of the highest air traffic movements in the region. Being rich in biodiversity, Malaysia has long been touted as country rich in biodiversity and therefore, attracts great interests as a place to setup bio-refineries and produce bio-fuels such as biodiesel, bio-petrol, green diesel, and bio-jet fuel Kerosene Jet A-1. Micro-algae is poised to alleviate certain disadvantages seen in first generation and second generation feedstock. In this study, the objective is to seek out potential micro-algae species in Malaysia to determine which are suitable to be used as the feedstock to enable bio-jet fuel production in Malaysia. From 79 samples collected over 30 sites throughout Malaysia, six species were isolated and compared for their biomass productivity and lipid content. Their lipid contents were then used to derived the require amount of micro-algae biomass to yield 1 kg of certifiable jet fuel via the HEFA process, and to meet a scenario where Malaysia implements a 2% alternative (bio-) jet fuel requirement.

  1. Efficiency maximization in solar-thermochemical fuel production: challenging the concept of isothermal water splitting.

    Science.gov (United States)

    Ermanoski, I; Miller, J E; Allendorf, M D

    2014-05-14

    Widespread adoption of solar-thermochemical fuel production depends on its economic viability, largely driven by the efficiency of use of the available solar resource. Herein, we analyze the efficiency of two-step cycles for thermochemical hydrogen production, with emphasis on efficiency. Owing to water thermodynamics, isothermal H2 production is shown to be impractical and inefficient, irrespective of reactor design or reactive oxide properties, but an optimal temperature difference between cycle steps, for which efficiency is the highest, can be determined for a wide range of other operating parameters. A combination of well-targeted pressure and temperature swing, rather than either individually, emerges as the most efficient mode of operation of a two-step thermochemical cycle for solar fuel production.

  2. Using mobile distributed pyrolysis facilities to deliver a forest residue resource for bio-fuel production

    Science.gov (United States)

    Brown, Duncan

    Distributed mobile conversion facilities using either fast pyrolysis or torrefaction processes can be used to convert forest residues to more energy dense substances (bio-oil, bio-slurry or torrefied wood) that can be transported as feedstock for bio-fuel facilities. All feedstock are suited for gasification, which produces syngas that can be used to synthesise petrol or diesel via Fischer-Tropsch reactions, or produce hydrogen via water gas shift reactions. Alternatively, the bio-oil product of fast pyrolysis may be upgraded to produce petrol and diesel, or can undergo steam reformation to produce hydrogen. Implementing a network of mobile facilities reduces the energy content of forest residues delivered to a bio-fuel facility as mobile facilities use a fraction of the biomass energy content to meet thermal or electrical demands. The total energy delivered by bio-oil, bio-slurry and torrefied wood is 45%, 65% and 87% of the initial forest residue energy content, respectively. However, implementing mobile facilities is economically feasible when large transport distances are required. For an annual harvest of 1.717 million m3 (equivalent to 2000 ODTPD), transport costs are reduced to less than 40% of the total levelised delivered feedstock cost when mobile facilities are implemented; transport costs account for up to 80% of feedstock costs for conventional woodchip delivery. Torrefaction provides the lowest cost pathway of delivering a forest residue resource when using mobile facilities. Cost savings occur against woodchip delivery for annual forest residue harvests above 2.25 million m3 or when transport distances greater than 250 km are required. Important parameters that influence levelised delivered costs of feedstock are transport distances (forest residue spatial density), haul cost factors, thermal and electrical demands of mobile facilities, and initial moisture content of forest residues. Relocating mobile facilities can be optimised for lowest cost

  3. Simulation of Fuel Ethanol Production from Lignocellulosic Biomass

    Institute of Scientific and Technical Information of China (English)

    张素平; Francois Maréchal; Martin Gassner; 任铮伟; 颜涌捷; Daniel Favrat

    2009-01-01

    Models for hydrolysis, fermentation and concentration process, production and utilization of biogas as well as lignin gasification are developed to calculate the heat demand of ethanol production process and the amounts of heat and power generated from residues and wastewater of the process. For the energy analysis, all relevant information about the process streams, physical properties, and mass and energy balances are considered. Energy integration is investigated for establishing a network of facilities for heat and power generation from wastewater and residues treatment aiming at the increase of energy efficiency. Feeding the lignin to an IGCC process, the electric efficiency is increased by 4.4% compared with combustion, which leads to an overall energy efficiency of 53.8%. A detailed sensitivity analysis on energy efficiency is also carried out.

  4. Photosynthetic terpene hydrocarbon production for fuels and chemicals.

    Science.gov (United States)

    Wang, Xin; Ort, Donald R; Yuan, Joshua S

    2015-02-01

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced 'drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to 'disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  5. Photosynthetic terpene hydrocarbon production for fuels and chemicals

    Energy Technology Data Exchange (ETDEWEB)

    Wang, X; Ort, DR; Yuan, JS

    2015-01-28

    Photosynthetic hydrocarbon production bypasses the traditional biomass hydrolysis process and represents the most direct conversion of sunlight energy into the next-generation biofuels. As a major class of biologically derived hydrocarbons with diverse structures, terpenes are also valuable in producing a variety of fungible bioproducts in addition to the advanced drop-in' biofuels. However, it is highly challenging to achieve the efficient redirection of photosynthetic carbon and reductant into terpene biosynthesis. In this review, we discuss four major scientific and technical barriers for photosynthetic terpene production and recent advances to address these constraints. Collectively, photosynthetic terpene production needs to be optimized in a systematic fashion, in which the photosynthesis improvement, the optimization of terpene biosynthesis pathway, the improvement of key enzymes and the enhancement of sink effect through terpene storage or secretion are all important. New advances in synthetic biology also offer a suite of potential tools to design and engineer photosynthetic terpene platforms. The systemic integration of these solutions may lead to disruptive' technologies to enable biofuels and bioproducts with high efficiency, yield and infrastructure compatibility.

  6. Steam Explosion Pretreatment of Cotton Gin Waste for Fuel Ethanol Production

    OpenAIRE

    Jeoh, Tina

    1998-01-01

    Steam Explosion Pretreatment of Cotton Gin Waste for Ethanol Production By Tina Jeoh Foster A. Agblevor, Chair Biological Systems Engineering ABSTRACT The current research investigates the utilization of cotton gin waste as a feedstock to produce a value-added product - fuel ethanol. Cotton gin waste consists of pieces of burs, stems, motes (immature seeds) and cotton fiber, and is considered to be a lignocellulosic material. The three main chemical constituents are ce...

  7. Large-Scale Production of Fuel and Feed from Marine Microalgae

    Energy Technology Data Exchange (ETDEWEB)

    Huntley, Mark [Cornell Univ., Ithaca, NY (United States)

    2015-09-30

    In summary, this Consortium has demonstrated a fully integrated process for the production of biofuels and high-value nutritional bioproducts at pre-commercial scale. We have achieved unprecedented yields of algal oil, and converted the oil to viable fuels. We have demonstrated the potential value of the residual product as a viable feed ingredient for many important animals in the global food supply.

  8. Alternative Practices to Improve Surface Fleet Fuel Efficiency

    Science.gov (United States)

    2014-09-01

    practices that, if changed, could provide significant fuel savings for fossil fuel ships. Recent and potential future budget cuts give fuel conservation...changed, could provide significant fuel savings for fossil fuel ships. Recent and potential future budget cuts give fuel conservation and efficiency...Figure 1. Navy fossil fuel expenditure for FY 2013 (after Dhoran 2014). .......................1 Figure 2. Fuel curves for a DDG showing GPH burned as

  9. Development of a Life Cycle Inventory of Water Consumption Associated with the Production of Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Lampert, David J. [Argonne National Lab. (ANL), Argonne, IL (United States); Cai, Hao [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Zhichao [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Wu, May [Argonne National Lab. (ANL), Argonne, IL (United States); Han, Jeongwoo [Argonne National Lab. (ANL), Argonne, IL (United States); Dunn, Jennifer [Argonne National Lab. (ANL), Argonne, IL (United States); Sullivan, John L. [Argonne National Lab. (ANL), Argonne, IL (United States); Elgowainy, Amgad [Argonne National Lab. (ANL), Argonne, IL (United States); Wang, Michael [Argonne National Lab. (ANL), Argonne, IL (United States); Keisman, Jennifer [American Association for the Advancemetn of Science (AAAS), Washington, DC (United States)

    2015-10-01

    The production of all forms of energy consumes water. To meet increased energy demands, it is essential to quantify the amount of water consumed in the production of different forms of energy. By analyzing the water consumed in different technologies, it is possible to identify areas for improvement in water conservation and reduce water stress in energy-producing regions. The transportation sector is a major consumer of energy in the United States. Because of the relationships between water and energy, the sustainability of transportation is tied to management of water resources. Assessment of water consumption throughout the life cycle of a fuel is necessary to understand its water resource implications. To perform a comparative life cycle assessment of transportation fuels, it is necessary first to develop an inventory of the water consumed in each process in each production supply chain. The Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation (GREET) model is an analytical tool that can used to estimate the full life-cycle environmental impacts of various transportation fuel pathways from wells to wheels. GREET is currently being expanded to include water consumption as a sustainability metric. The purpose of this report was to document data sources and methodologies to estimate water consumption factors (WCF) for the various transportation fuel pathways in GREET. WCFs reflect the quantity of freshwater directly consumed per unit production for various production processes in GREET. These factors do not include consumption of precipitation or low-quality water (e.g., seawater) and reflect only water that is consumed (i.e., not returned to the source from which it was withdrawn). The data in the report can be combined with GREET to compare the life cycle water consumption for different transportation fuels.

  10. Environmental Assessment of Integrated Food and Cooking Fuel Production for a Village in Ghana

    Directory of Open Access Journals (Sweden)

    Andreas Kamp

    2016-04-01

    Full Text Available Small-scale farming in Ghana is typically associated with synthetic fertilizer dependence and soil degradation. The farmers often rely on wood fuel for cooking imported from outside the farmland, a practice that is associated with deforestation. Integration of food and energy production may be a holistic approach to solving these issues. We study four approaches to providing food and fuel for cooking in a small-scale farming community. Present practice (PP of synthetic fertilizer based food production and provision of wood fuel from outside the farming area is compared to three modeled, integrated technology options: integrated food and household-scale biogas production (HH Biogas, integrated food and village-scale biogas production (Village Biogas, and integrated food and wood fuel production (Agroforestry. Integrated approaches are able to eliminate the import of wood fuel, reduce synthetic fertilizer use by 24%, 35% and 44% and soil loss by 15%, 20% and 87%, respectively, compared to present practice. An Emergy Assessment (EmA shows that integrated approaches are relevant substitutes to present practice considering biophysical efficiency indicated by Unit Emergy Value (in solar emjoules (sej per J of output and dependence on renewable inputs indicated by the Global Renewability Fraction (in %: 2.6–3.0 × 105 sej/J and 38%–48% (PP, 2.5–2.8 × 105 sej/J and 41%–46% (HH Biogas, 2.4–2.6 × 105 sej/J and 45%–47% (Village Biogas, 1.7–2.4 × 105 sej/J and 49%–66% (Agroforestry. Systematic recycling and use of local resources may play a pivotal role in reducing the dependence on non-renewable resources in Ghanaian farming, ensuring long-term soil fertility and stemming the current deforestation of wood reserves.

  11. Non-catalytic alcoholysis process for production of biodiesel fuel by using bubble column reactor

    Science.gov (United States)

    Hagiwara, S.; Nabetani, H.; Nakajima, M.

    2015-04-01

    Biodiesel fuel is a replacement for diesel as a fuel produced from biomass resources. It is usually defined as a fatty acid methyl ester (FAME) derived from vegetable oil or animal fat. In European countries, such as Germany and France, biodiesel fuel is commercially produced mainly from rapeseed oil, whereas in the United States and Argentina, soybean oil is more frequently used. In many other countries such as Japan and countries in Southeast Asia, lipids that cannot be used as a food source could be more suitable materials for the production of biodiesel fuel because its production from edible oils could result in an increase in the price of edible oils, thereby increasing the cost of some foodstuffs. Therefore, used edible oil, lipids contained in waste effluent from the oil milling process, byproducts from oil refining process and crude oils from industrial crops such as jatropha could be more promising materials in these countries. The materials available in Japan and Southeast Asia for the production of biodiesel fuel have common characteristics; they contain considerable amount of impurities and are high in free fatty acids (FFA). Superheated methanol vapor (SMV) reactor might be a promising method for biodiesel fuel production utilizing oil feedstock containing FFA such as waste vegetable oil and crude vegetable oil. In the conventional method using alkaline catalyst, FFA contained in waste vegetable oil is known to react with alkaline catalyst such as NaOH and KOH generating saponification products and to inactivate it. Therefore, the FFA needs to be removed from the feedstock prior to the reaction. Removal of the alkaline catalyst after the reaction is also required. In the case of the SMV reactor, the processes for removing FFA prior to the reaction and catalyst after the reaction can be omitted because it requires no catalyst. Nevertheless, detailed study on the productivity of biodiesel fuel produced from waste vegetable oils and other non

  12. Physiological tolerance and stoichiometric potential of cyanobacteria for hydrocarbon fuel production.

    Science.gov (United States)

    Kämäräinen, Jari; Knoop, Henning; Stanford, Natalie J; Guerrero, Fernando; Akhtar, M Kalim; Aro, Eva-Mari; Steuer, Ralf; Jones, Patrik R

    2012-11-30

    Cyanobacteria are capable of directly converting sunlight, carbon dioxide and water into hydrocarbon fuel or precursors thereof. Many biological and non-biological factors will influence the ability of such a production system to become economically sustainable. We evaluated two factors in engineerable cyanobacteria which could potentially limit economic sustainability: (i) tolerance of the host to the intended end-product, and (ii) stoichiometric potential for production. Alcohols, when externally added, inhibited growth the most, followed by aldehydes and acids, whilst alkanes were the least inhibitory. The growth inhibition became progressively greater with increasing chain-length for alcohols, whilst the intermediate C6 alkane caused more inhibition than both C3 and C11 alkane. Synechocystis sp. PCC 6803 was more tolerant to some of the tested chemicals than Synechococcus elongatus PCC 7942, particularly ethanol and undecane. Stoichiometric evaluation of the potential yields suggested that there is no difference in the potential productivity of harvestable energy between any of the studied fuels, with the exception of ethylene, for which maximal stoichiometric yield is considerably lower. In summary, it was concluded that alkanes would constitute the best choice metabolic end-product for fuel production using cyanobacteria if high-yielding strains can be developed. Copyright © 2012 Elsevier B.V. All rights reserved.

  13. Thermodynamic analysis of synthetic hydrocarbon fuel production in pressurized solid oxide electrolysis cells

    DEFF Research Database (Denmark)

    Sun, Xiufu; Chen, Ming; Jensen, Søren Højgaard

    2012-01-01

    improved system efficiency, potentially lowering the fuel production cost significantly. In this paper, we present a thermodynamic analysis of synthetic methane and dimethyl ether (DME) production using pressurized SOECs, in order to determine feasible operating conditions for producing the desired......, and outlet gas composition. For methane production, low temperature and high pressure operation could improve the system efficiency, but might lead to a higher capital cost. For DME production, high pressure SOEC operation necessitates higher operating temperature in order to avoid carbon formation at higher...

  14. Reasonable Ball Size of Ball Mill for Preparing Coal Water Fuel and Forecasting Productive Capacity

    Institute of Scientific and Technical Information of China (English)

    张荣曾; 刘炯天; 徐志强; 郑明

    2002-01-01

    By using the matrix theory, a 5-parameter grinding mathema tical model is established. Based on the properties of feed coal and requirement s for size distribution of final product, the model gives the required grinding probability for various particles and corresponding ball size distribution. By u sing this model, 3 different sizes of ball mill are designed and put into commer cial use for coal water fuel. The forecasted ball mill capacity, the particle si zes and particle size distribution as well as the coal water fuel quality parame ters are all in line with industrial operation results, which have proved the su itability of the model.

  15. Production of substitute fuels by thermal drying; Herstellung von Ersatzbrennstoffen mit thermischer Trocknung

    Energy Technology Data Exchange (ETDEWEB)

    Michalski, Doris; Wendt, Andreas [MPS Betriebsfuehrungsgesellschaft mbH, Berlin (Germany); Gosten, Alexander [BSR Berliner Stadtreinigungsbetriebe, Berlin (Germany)

    2012-11-01

    One part of the municipal waste materials in Berlin (Federal Republic of Germany) are treated by means of a thermal drying and subsequently supplied to an energy recovery and material recovery. According to this process the waste treatment is performed in two MPS plants in Berlin (MPS - mechanical-physical stabilization). The MPS procedure is used to transform waste materials in substitute fuels. The authors of the contribution under consideration describe this MPS procedure and report on a material balance of the output fractions, quality of the substitute fuels, operational experiences, consumption of electricity, consumption of gas, reduction of abrasion as well as the production management sysem.

  16. Techno-Economic Basis for Coproduct Manufacturing To Enable Hydrocarbon Fuel Production from Lignocellulosic Biomass

    Energy Technology Data Exchange (ETDEWEB)

    Biddy, Mary J.; Davis, Ryan; Humbird, David; Tao, Ling; Dowe, Nancy; Guarnieri, Michael T.; Linger, Jeffrey G.; Karp, Eric M.; Salvachua, Davinia; Vardon, Derek R.; Beckham, Gregg T.

    2016-06-06

    Biorefinery process development relies on techno-economic analysis (TEA) to identify primary cost drivers, prioritize research directions, and mitigate technical risk for scale-up through development of detailed process designs. Here, we conduct TEA of a model 2000 dry metric ton-per-day lignocellulosic biorefinery that employs a two-step pretreatment and enzymatic hydrolysis to produce biomass-derived sugars, followed by biological lipid production, lipid recovery, and catalytic hydrotreating to produce renewable diesel blendstock (RDB). On the basis of projected near-term technical feasibility of these steps, we predict that RDB could be produced at a minimum fuel selling price (MFSP) of USD $9.55/gasoline-gallon-equivalent (GGE), predicated on the need for improvements in the lipid productivity and yield beyond current benchmark performance. This cost is significant given the limitations in scale and high costs for aerobic cultivation of oleaginous microbes and subsequent lipid extraction/recovery. In light of this predicted cost, we developed an alternative pathway which demonstrates that RDB costs could be substantially reduced in the near term if upgradeable fractions of biomass, in this case hemicellulose-derived sugars, are diverted to coproducts of sufficient value and market size; here, we use succinic acid as an example coproduct. The coproduction model predicts an MFSP of USD $5.28/GGE when leaving conversion and yield parameters unchanged for the fuel production pathway, leading to a change in biorefinery RDB capacity from 24 to 15 MM GGE/year and 0.13 MM tons of succinic acid per year. Additional analysis demonstrates that beyond the near-term projections assumed in the models here, further reductions in the MFSP toward $2-3/GGE (which would be competitive with fossil-based hydrocarbon fuels) are possible with additional transformational improvements in the fuel and coproduct trains, especially in terms of carbon efficiency to both fuels and

  17. Fission product release phenomena during core melt accidents in metal fueled heavy water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Ellison, P G; Hyder, M L; Monson, P R; Randolph, H W [Westinghouse Savannah River Co., Aiken, SC (USA); Hagrman, D L [EG and G Idaho, Inc., Idaho Falls, ID (USA); McClure, P R; Leonard, M T [Science Applications International Corp., Albuquerque, NM (USA)

    1990-01-01

    The phenomena that determine fission product release rates from a core melting accident in a metal-fueled, heavy water reactor are described in this paper. This information is obtained from the analysis of the current metal fuel experimental data base and from the results of analytical calculations. Experimental programs in place at the Savannah River Site are described that will provide information to resolve uncertainties in the data base. The results of the experiments will be incorporated into new severe accident computer codes recently developed for this reactor design. 47 refs., 4 figs.

  18. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2004-09-01

    An innovative Diffusion Driven Desalination (DDD) process was recently described where evaporation of mineralized water is driven by diffusion within a packed bed. The energy source to drive the process is derived from low pressure condensing steam within the main condenser of a steam power generating plant. Since waste heat is used to drive the process, the main cost of fresh water production is attributed to the energy cost of pumping air and water through the packed bed. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A combined thermodynamic and dynamic analysis demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3'' Hg. Throughout the past year, the main focus of the desalination process has been on the diffusion tower and direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. An experimental DDD facility has been fabricated, and temperature and humidity data have been collected over a range of flow and thermal conditions. The analyses agree quite well with the current data and the information available in the literature. Direct contact condensers with and without packing have been investigated. It has been experimentally observed that the fresh water production rate is significantly enhanced when packing is added to the direct contact condensers.

  19. Biorefineries to integrate fuel, energy and chemical production processes

    Directory of Open Access Journals (Sweden)

    Enrica Bargiacchi

    2007-12-01

    Full Text Available The world of renewable energies is in fast evolution and arouses political and public interests, especially as an opportunity to boost environmental sustainability by mitigation of greenhouse gas emissions. This work aims at examining the possibilities related to the development of biorefineries, where biomass conversion processes to produce biofuels, electricity and biochemicals are integrated. Particular interest is given to the production processes of biodiesel, bioethanol and biogas, for which present world situation, problems, and perspectives are drawn. Potential areas for agronomic and biotech researches are also discussed. Producing biomass for biorefinery processing will eventually lead to maximize yields, in the non food agriculture.

  20. Innovative Fresh Water Production Process for Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight; Venugopal Jogi

    2005-09-01

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. A dynamic analysis of heat and mass transfer demonstrates that the DDD process can yield a fresh water production of 1.03 million gallon/day by utilizing waste heat from a 100 MW steam power plant based on a condensing steam pressure of only 3 Hg. The optimum operating condition for the DDD process with a high temperature of 50 C and sink temperature of 25 C has an air mass flux of 1.5 kg/m{sup 2}-s, air to feed water mass flow ratio of 1 in the diffusion tower, and a fresh water to air mass flow ratio of 2 in the condenser. Operating at these conditions yields a fresh water production efficiency (m{sub fW}/m{sub L}) of 0.031 and electric energy consumption rate of 0.0023 kW-hr/kg{sub fW}. Throughout the past year, the main focus of the desalination process has been on the direct contact condenser. Detailed heat and mass transfer analyses required to size and analyze these heat and mass transfer devices are described. The analyses agree quite well with the current data. Recently, it has been recognized that the fresh water production efficiency can be significantly enhanced with air heating. This type of configuration is well suited for power plants utilizing air-cooled condensers. The experimental DDD facility has been modified with an air heating section, and temperature and humidity data have been collected over a range of flow and thermal conditions. It has been experimentally observed that the fresh water production rate is enhanced when air

  1. Electrolytic hydrogen fuel production with solid polymer electrolyte technology.

    Science.gov (United States)

    Titterington, W. A.; Fickett, A. P.

    1973-01-01

    A water electrolysis technology based on a solid polymer electrolyte (SPE) concept is presented for applicability to large-scale hydrogen production in a future energy system. High cell current density operation is selected for the application, and supporting cell test performance data are presented. Demonstrated cell life data are included to support the adaptability of the SPE system to large-size hydrogen generation utility plants as needed for bulk energy storage or transmission. The inherent system advantages of the acid SPE electrolysis technology are explained. System performance predictions are made through the year 2000, along with plant capital and operating cost projections.

  2. Operation parameters of a small scale batch distillation column for hydrous ethanol fuel (HEF production

    Directory of Open Access Journals (Sweden)

    F. D. Mayer

    2015-04-01

    Full Text Available Batch distillation applied to hydrous ethanol fuel (HEF production on a small scale still requires operating conditions that ensure optimal top product quality and productivity. The aim of this study is to statistically validate a batch still through the employment of response surface methodology (RSM. Operational and productivity parameters were formulated in order to guarantee quality compliance with the legal requirements for the top product concentration, besides providing support information to control the production of HEF on a small scale. The reboiler control and dephlegmator temperatures maintained within the range of 97.5 to 99.5°C and 60 to 70°C, respectively, combined with a variable reflux ratio, was satisfactory in obtaining a top product concentration, in accordance with legal regulations, as well as high productivity. The results of this study may contribute to the assembly of a simple and low-cost batch distillation control system.

  3. Yeast selection for fuel ethanol production in Brazil.

    Science.gov (United States)

    Basso, Luiz C; de Amorim, Henrique V; de Oliveira, Antonio J; Lopes, Mario L

    2008-11-01

    Brazil is one of the largest ethanol biofuel producers and exporters in the world and its production has increased steadily during the last three decades. The increasing efficiency of Brazilian ethanol plants has been evident due to the many technological contributions. As far as yeast is concerned, few publications are available regarding the industrial fermentation processes in Brazil. The present paper reports on a yeast selection program performed during the last 12 years aimed at selecting Saccharomyces cerevisiae strains suitable for fermentation of sugar cane substrates (cane juice and molasses) with cell recycle, as it is conducted in Brazilian bioethanol plants. As a result, some evidence is presented showing the positive impact of selected yeast strains in increasing ethanol yield and reducing production costs, due to their higher fermentation performance (high ethanol yield, reduced glycerol and foam formation, maintenance of high viability during recycling and very high implantation capability into industrial fermenters). Results also suggest that the great yeast biodiversity found in distillery environments could be an important source of strains. This is because during yeast cell recycling, selective pressure (an adaptive evolution) is imposed on cells, leading to strains with higher tolerance to the stressful conditions of the industrial fermentation.

  4. ENHANCED HYDROGEN ECONOMICS VIA COPRODUCTION OF FUELS AND CARBON PRODUCTS

    Energy Technology Data Exchange (ETDEWEB)

    Kennel, Elliot B; Bhagavatula, Abhijit; Dadyburjor, Dady; Dixit, Santhoshi; Garlapalli, Ravinder; Magean, Liviu; Mukkha, Mayuri; Olajide, Olufemi A; Stiller, Alfred H; Yurchick, Christopher L

    2011-03-31

    This Department of Energy National Energy Technology Laboratory sponsored research effort to develop environmentally cleaner projects as a spin-off of the FutureGen project, which seeks to reduce or eliminate emissions from plants that utilize coal for power or hydrogen production. New clean coal conversion processes were designed and tested for coproducing clean pitches and cokes used in the metals industry as well as a heavy crude oil. These new processes were based on direct liquefaction and pyrolysis techniques that liberate volatile liquids from coal without the need for high pressure or on-site gaseous hydrogen. As a result of the research, a commercial scale plant for the production of synthetic foundry coke has broken ground near Wise, Virginia under the auspices of Carbonite Inc. This plant will produce foundry coke by pyrolyzing a blend of steam coal feedstocks. A second plant is planned by Quantex Energy Inc (in Texas) which will use solvent extraction to coproduce a coke residue as well as crude oil. A third plant is being actively considered for Kingsport, Tennessee, pending a favorable resolution of regulatory issues.

  5. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  6. INNOVATIVE FRESH WATER PRODUCTION PROCESS FOR FOSSIL FUEL PLANTS

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Mohamed Darwish; Diego Acevedo; Jessica Knight

    2003-09-01

    This report describes the annual progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system, which is powered by the waste heat from low pressure condensing steam in power plants. The desalination is driven by water vapor saturating dry air flowing through a diffusion tower. Liquid water is condensed out of the air/vapor mixture in a direct contact condenser. A thermodynamic analysis demonstrates that the DDD process can yield a fresh water production efficiency of 4.5% based on a feed water inlet temperature of only 50 C. An example is discussed in which the DDD process utilizes waste heat from a 100 MW steam power plant to produce 1.51 million gallons of fresh water per day. The main focus of the initial development of the desalination process has been on the diffusion tower. A detailed mathematical model for the diffusion tower has been described, and its numerical implementation has been used to characterize its performance and provide guidance for design. The analysis has been used to design a laboratory scale diffusion tower, which has been thoroughly instrumented to allow detailed measurements of heat and mass transfer coefficient, as well as fresh water production efficiency. The experimental facility has been described in detail.

  7. Dual application of duckweed and azolla plants for wastewater treatment and renewable fuels and petrochemicals production.

    Science.gov (United States)

    Muradov, Nazim; Taha, Mohamed; Miranda, Ana F; Kadali, Krishna; Gujar, Amit; Rochfort, Simone; Stevenson, Trevor; Ball, Andrew S; Mouradov, Aidyn

    2014-02-28

    Shortages in fresh water supplies today affects more than 1 billion people worldwide. Phytoremediation strategies, based on the abilities of aquatic plants to recycle nutrients offer an attractive solution for the bioremediation of water pollution and represents one of the most globally researched issues. The subsequent application of the biomass from the remediation for the production of fuels and petrochemicals offers an ecologically friendly and cost-effective solution for water pollution problems and production of value-added products. In this paper, the feasibility of the dual application of duckweed and azolla aquatic plants for wastewater treatment and production of renewable fuels and petrochemicals is explored. The differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by these aquatic macrophytes were used as the basis for optimization of the composition of wastewater effluents. Analysis of pyrolysis products showed that azolla and algae produce a similar range of bio-oils that contain a large spectrum of petrochemicals including straight-chain C10-C21 alkanes, which can be directly used as diesel fuel supplement, or a glycerin-free component of biodiesel. Pyrolysis of duckweed produces a different range of bio-oil components that can potentially be used for the production of "green" gasoline and diesel fuel using existing techniques, such as catalytic hydrodeoxygenation. Differences in absorption rates of the key wastewater nutrients, ammonium and phosphorus by different aquatic macrophytes can be used for optimization of composition of wastewater effluents. The generated data suggest that the composition of the petrochemicals can be modified in a targeted fashion, not only by using different species, but also by changing the source plants' metabolic profile, by exposing them to different abiotic or biotic stresses. This study presents an attractive, ecologically friendly and cost-effective solution for efficient bio

  8. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2007-03-17

    This report summarizes the accomplishments toward project goals during the no cost extension period of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts for a third round of testing, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Hydrotreating and hydrogenation of the product has been completed, and due to removal of material before processing, yield of the jet fuel fraction has decreased relative to an increase in the gasoline fraction. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for

  9. Fuel-Flexible Combustion System for Co-production Plant Applications

    Energy Technology Data Exchange (ETDEWEB)

    Joel Haynes; Justin Brumberg; Venkatraman Iyer; Jonathan Janssen; Ben Lacy; Matt Mosbacher; Craig Russell; Ertan Yilmaz; Williams York; Willy Ziminsky; Tim Lieuwen; Suresh Menon; Jerry Seitzman; Ashok Anand; Patrick May

    2008-12-31

    Future high-efficiency, low-emission generation plants that produce electric power, transportation fuels, and/or chemicals from fossil fuel feed stocks require a new class of fuel-flexible combustors. In this program, a validated combustor approach was developed which enables single-digit NO{sub x} operation for a future generation plants with low-Btu off gas and allows the flexibility of process-independent backup with natural gas. This combustion technology overcomes the limitations of current syngas gas turbine combustion systems, which are designed on a site-by-site basis, and enable improved future co-generation plant designs. In this capacity, the fuel-flexible combustor enhances the efficiency and productivity of future co-production plants. In task 2, a summary of market requested fuel gas compositions was created and the syngas fuel space was characterized. Additionally, a technology matrix and chemical kinetic models were used to evaluate various combustion technologies and to select two combustor concepts. In task 4 systems analysis of a co-production plant in conjunction with chemical kinetic analysis was performed to determine the desired combustor operating conditions for the burner concepts. Task 5 discusses the experimental evaluation of three syngas capable combustor designs. The hybrid combustor, Prototype-1 utilized a diffusion flame approach for syngas fuels with a lean premixed swirl concept for natural gas fuels for both syngas and natural gas fuels at FA+e gas turbine conditions. The hybrid nozzle was sized to accommodate syngas fuels ranging from {approx}100 to 280 btu/scf and with a diffusion tip geometry optimized for Early Entry Co-generation Plant (EECP) fuel compositions. The swozzle concept utilized existing GE DLN design methodologies to eliminate flow separation and enhance fuel-air mixing. With changing business priorities, a fully premixed natural gas & syngas nozzle, Protoytpe-1N, was also developed later in the program. It did

  10. Water consumption footprint and land requirements of large-scale alternative diesel and jet fuel production.

    Science.gov (United States)

    Staples, Mark D; Olcay, Hakan; Malina, Robert; Trivedi, Parthsarathi; Pearlson, Matthew N; Strzepek, Kenneth; Paltsev, Sergey V; Wollersheim, Christoph; Barrett, Steven R H

    2013-01-01

    Middle distillate (MD) transportation fuels, including diesel and jet fuel, make up almost 30% of liquid fuel consumption in the United States. Alternative drop-in MD and biodiesel could potentially reduce dependence on crude oil and the greenhouse gas intensity of transportation. However, the water and land resource requirements of these novel fuel production technologies must be better understood. This analysis quantifies the lifecycle green and blue water consumption footprints of producing: MD from conventional crude oil; Fischer-Tropsch MD from natural gas and coal; fermentation and advanced fermentation MD from biomass; and hydroprocessed esters and fatty acids MD and biodiesel from oilseed crops, throughout the contiguous United States. We find that FT MD and alternative MD derived from rainfed biomass have lifecycle blue water consumption footprints of 1.6 to 20.1 Lwater/LMD, comparable to conventional MD, which ranges between 4.1 and 7.4 Lwater/LMD. Alternative MD derived from irrigated biomass has a lifecycle blue water consumption footprint potentially several orders of magnitude larger, between 2.7 and 22 600 Lwater/LMD. Alternative MD derived from biomass has a lifecycle green water consumption footprint between 1.1 and 19 200 Lwater/LMD. Results are disaggregated to characterize the relationship between geo-spatial location and lifecycle water consumption footprint. We also quantify the trade-offs between blue water consumption footprint and areal MD productivity, which ranges from 490 to 4200 LMD/ha, under assumptions of rainfed and irrigated biomass cultivation. Finally, we show that if biomass cultivation for alternative MD is irrigated, the ratio of the increase in areal MD productivity to the increase in blue water consumption footprint is a function of geo-spatial location and feedstock-to-fuel production pathway.

  11. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research.

  12. Fuel cells are a commercially viable alternative for the production of "clean" energy.

    Science.gov (United States)

    Niakolas, Dimitris K; Daletou, Maria; Neophytides, Stylianos G; Vayenas, Constantinos G

    2016-01-01

    Fuel cells present a highly efficient and environmentally friendly alternative technology for decentralized energy production. The scope of the present study is to provide an overview of the technological and commercialization readiness level of fuel cells. Specifically, there is a brief description of their general advantages and weaknesses in correlation with various technological actions and political strategies, which are adopted towards their proper positioning in the global market. Some of the most important key performance indicators are also discussed, alongside with a few examples of broad commercialization. It is concluded that the increasing number of companies which utilize and invest on this technology, in combination with the supply chain improvements and the concomitant technological maturity and recognition, reinforce the fuel cell industry so as to become well-aligned for global success.

  13. Towards a methanol economy: Zeolite catalyzed production of synthetic fuels

    DEFF Research Database (Denmark)

    Mentzel, Uffe Vie

    chapter is a literature study of Mobil’s “methanol to hydrocarbons” (MTH) process, giving an overview of the history of the process, the nature of the employed catalysts, and the reaction mechanism. In the third chapter, a series of experiments concerning co conversion of ethane and methanol over......, the conversion capacities for all four alcohols are markedly lower than for H-ZSM-5, and H Beta has higher conversion capacity for methanol than the other alcohols. Furthermore, conventional and mesoporous H Ga MFI was employed in the conversion of methanol and 2 propanol. These catalysts showed a lower...... selectivity towards aromatics than H-ZSM-5 and the mesoporous H-Ga-MFI deactivated extremely slowly during the conversion of 2-propanol and only very small amounts of coke were deposited on the gallium based zeolites compared to H-ZSM-5. In the fifth chapter the direct zeolite catalyzed production...

  14. A novel coal feeder for production of low sulfur fuel

    Energy Technology Data Exchange (ETDEWEB)

    Keener, T.C.; Khang, S.J.; Yu, X.L.

    1990-01-01

    A novel coal feeding system is currently undergoing testing and evaluation at the University of Cincinnati. The system consists primarily of an auger feed tube which is used to both convey and provide desulfurization of a high sulfur coal feedstock. The coal is conveyed at temperatures ranging from 350 to 550 {degrees}C and under normal atmospheric pressure. Under these mild processing conditions, the coal partially pyrolizes and emits sulfur in the form of hydrogen sulfide while maintaining a relatively high heating value in the char product. The evolved gases are evacuated from the reactor (the feed tube) to another absorbing bed where H{sub 2}S reacts with the sorbent, usually lime or limestone. The resultant sorbent utilization is substantially higher than the values found in current dry scrubbing system and the produced low-sulfur char may then be used in a conventional steam boiler.

  15. Fission Product Removal From Spent Oxide Fuel By Head-End Processing

    Energy Technology Data Exchange (ETDEWEB)

    B. R. Westphal; K. J. Bateman; R. P. Lind; K. L. Howden; G. D. Del Cul

    2005-10-01

    The development of a head-end processing step for spent oxide fuel that applies to both aqueous and pyrometallurgical technologies is being performed by the Idaho National Laboratory, the Oak Ridge National Laboratory, and the Korean Atomic Energy Research Institute through a joint International Nuclear Energy Research Initiative. The processing step employs high temperatures and oxidative gases to promote the oxidation of UO2 to U3O8. Potential benefits of the head-end step include the removal or reduction of fission products as well as separation of the fuel from cladding. Experiments have been performed with irradiated oxide fuel to evaluate the removal of fission products. During these experiments, operating parameters such as temperature and pressure have been varied to discern their effects on the behavior of specific fission products. In general, the extent of removal increases with increasing operating temperature and decreasing pressure. Removal efficiencies as high as 98% have been achieved during testing. Given the results of testing, an explanation of the likely fission product species being removed during the test program is also provided. In addition, experiments have been performed with other oxidative gases (steam and ozone) on surrogates to determine their potential benefit for removal of fission products.

  16. Technoeconomic analysis of jet fuel production from hydrolysis, decarboxylation, and reforming of camelina oil

    KAUST Repository

    Natelson, Robert H.

    2015-04-01

    The commercial production of jet fuel from camelina oil via hydrolysis, decarboxylation, and reforming was simulated. The refinery was modeled as being close to the farms for reduced camelina transport cost. A refinery with annual nameplate capacity of 76,000 cubic meters hydrocarbons was modeled. Assuming average camelina production conditions and oil extraction modeling from the literature, the cost of oil was 0.31$kg-1. To accommodate one harvest per year, a refinery with 1 year oil storage capacity was designed, with the total refinery costing 283 million dollars in 2014 USD. Assuming co-products are sold at predicted values, the jet fuel break-even selling price was 0.80$kg-1. The model presents baseline technoeconomic data that can be used for more comprehensive financial and risk modeling of camelina jet fuel production. Decarboxylation was compared to the commercially proven hydrotreating process. The model illustrated the importance of refinery location relative to farms and hydrogen production site.

  17. Metabolic engineering of Clostridium acetobutylicum for the enhanced production of isopropanol-butanol-ethanol fuel mixture.

    Science.gov (United States)

    Jang, Yu-Sin; Malaviya, Alok; Lee, Joungmin; Im, Jung Ae; Lee, Sang Yup; Lee, Julia; Eom, Moon-Ho; Cho, Jung-Hee; Seung, Do Young

    2013-01-01

    Butanol is considered as a superior biofuel, which is conventionally produced by clostridial acetone-butanol-ethanol (ABE) fermentation. Among ABE, only butanol and ethanol can be used as fuel alternatives. Coproduction of acetone thus causes lower yield of fuel alcohols. Thus, this study aimed at developing an improved Clostridium acetobutylicum strain possessing enhanced fuel alcohol production capability. For this, we previously developed a hyper ABE producing BKM19 strain was further engineered to convert acetone into isopropanol. The BKM19 strain was transformed with the plasmid pIPA100 containing the sadh (primary/secondary alcohol dehydrogenase) and hydG (putative electron transfer protein) genes from the Clostridium beijerinckii NRRL B593 cloned under the control of the thiolase promoter. The resulting BKM19 (pIPA100) strain produced 27.9 g/l isopropanol-butanol-ethanol (IBE) as a fuel alcohols with negligible amount of acetone (0.4 g/l) from 97.8 g/l glucose in lab-scale (2 l) batch fermentation. Thus, this metabolically engineered strain was able to produce 99% of total solvent produced as fuel alcohols. The scalability and stability of BKM19 (pIPA100) were evaluated at 200 l pilot-scale fermentation, which showed that the fuel alcohol yield could be improved to 0.37 g/g as compared to 0.29 g/g obtained at lab-scale fermentation, while attaining a similar titer. To the best of our knowledge, this is the highest titer of IBE achieved and the first report on the large scale fermentation of C. acetobutylicum for IBE production. © 2013 American Institute of Chemical Engineers.

  18. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M. P. [Colorado School of Mines, Golden, CO (United States); King, J. C. [Colorado School of Mines, Golden, CO (United States); Gorman, B. P. [Colorado School of Mines, Golden, CO (United States); Marshall, Doug W. [Idaho National Lab. (INL), Idaho Falls, ID (United States)

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ~10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1- bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

  19. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    Science.gov (United States)

    Baker, M. P.; King, J. C.; Gorman, B. P.; Marshall, D. W.

    2013-01-01

    Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of ˜10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 °C and 80 °C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory fuel kernels.

  20. Efficient solar-to-fuels production from a hybrid microbial-water-splitting catalyst system.

    Science.gov (United States)

    Torella, Joseph P; Gagliardi, Christopher J; Chen, Janice S; Bediako, D Kwabena; Colón, Brendan; Way, Jeffery C; Silver, Pamela A; Nocera, Daniel G

    2015-02-24

    Photovoltaic cells have considerable potential to satisfy future renewable-energy needs, but efficient and scalable methods of storing the intermittent electricity they produce are required for the large-scale implementation of solar energy. Current solar-to-fuels storage cycles based on water splitting produce hydrogen and oxygen, which are attractive fuels in principle but confront practical limitations from the current energy infrastructure that is based on liquid fuels. In this work, we report the development of a scalable, integrated bioelectrochemical system in which the bacterium Ralstonia eutropha is used to efficiently convert CO2, along with H2 and O2 produced from water splitting, into biomass and fusel alcohols. Water-splitting catalysis was performed using catalysts that are made of earth-abundant metals and enable low overpotential water splitting. In this integrated setup, equivalent solar-to-biomass yields of up to 3.2% of the thermodynamic maximum exceed that of most terrestrial plants. Moreover, engineering of R. eutropha enabled production of the fusel alcohol isopropanol at up to 216 mg/L, the highest bioelectrochemical fuel yield yet reported by >300%. This work demonstrates that catalysts of biotic and abiotic origin can be interfaced to achieve challenging chemical energy-to-fuels transformations.

  1. Innovative Fresh Water Production Process for Fossil Fuel Plants

    Energy Technology Data Exchange (ETDEWEB)

    James F. Klausner; Renwei Mei; Yi Li; Jessica Knight

    2006-09-29

    This project concerns a diffusion driven desalination (DDD) process where warm water is evaporated into a low humidity air stream, and the vapor is condensed out to produce distilled water. Although the process has a low fresh water to feed water conversion efficiency, it has been demonstrated that this process can potentially produce low cost distilled water when driven by low grade waste heat. This report summarizes the progress made in the development and analysis of a Diffusion Driven Desalination (DDD) system. Detailed heat and mass transfer analyses required to size and analyze the diffusion tower using a heated water input are described. The analyses agree quite well with the current data and the information available in the literature. The direct contact condenser has also been thoroughly analyzed and the system performance at optimal operating conditions has been considered using a heated water/ambient air input to the diffusion tower. The diffusion tower has also been analyzed using a heated air input. The DDD laboratory facility has successfully been modified to include an air heating section. Experiments have been conducted over a range of parameters for two different cases: heated air/heated water and heated air/ambient water. A theoretical heat and mass transfer model has been examined for both of these cases and agreement between the experimental and theoretical data is good. A parametric study reveals that for every liquid mass flux there is an air mass flux value where the diffusion tower energy consumption is minimal and an air mass flux where the fresh water production flux is maximized. A study was also performed to compare the DDD process with different inlet operating conditions as well as different packing. It is shown that the heated air/heated water case is more capable of greater fresh water production with the same energy consumption than the ambient air/heated water process at high liquid mass flux. It is also shown that there can be

  2. Microbial liquefaction of peat for the production of synthetic fuels

    Energy Technology Data Exchange (ETDEWEB)

    Gunasekaran, M.

    1988-01-01

    Objectives of this study were: to evaluate the potential of using various microorganisms to hydrolyse and liquify peat; to determine the optimal conditions for peat hydrolysis and liquefaction; to study the co-metabolizable substances; to separate the compounds present in liquified peat by alumina and silica acid chromatography and capillary gas chromatography; and to identify the compounds in liquified peat by capillary GC-Mass spectrometry. Organisms used in the study include: Coprinus comatus, Coriolus hirsutus, Ganoderma lucidum, Lentinus edodes, Lenzites trabea, Phanerochaete chrysosporium, Pleurotus ostreatus, P. sapidus, Polyporus adjustus, Neurospora sitophila, Rhizophus arrhizus, Bacillus subtilis, Acinetobacter sp. and Alcaligenes sp. The fungi were maintained and cultivated in potato dextrose agar at 30 C. The bacteria were maintained in nutrient agar at 30 C. We have also initiated work on coal solubilization in addition to the studies on peat liquefaction. A relatively new substratum or semi-solid base for culture media called Pluronic F-127, or Polyol (BASF, New Jersey). Objectives of this study were: (1) to study the growth patterns of Candida ML 13 on pluronic as substratum; (2) to determine the rate of microbial coal solubilization on pluronic F-127 amended in different growth media; (3) to separate the mycelial mat of Candida ML 13 from unsolubilized coal particles and solubilized coal products from pluronic F-127; (4) to determine the effects of pH on microbial coal solubilization in pluronic F-127 media; (5) the effect of concentration of pluronic F-127 in media on coal solubilization; and, (6) to study the role of extracellular factors secreted by Candida ML 13 on coal solubilization in pluronic F-127 media. Results are discussed. 4 refs.

  3. Design, Engineering, and Construction of Photosynthetic Microbial Cell Factories for Renewable Solar Fuel Production

    Energy Technology Data Exchange (ETDEWEB)

    Lindblad, Peter; Lindberg, Pia; Stensjoe, Karin (Photochemistry and Molecular Science, Dept. of Chemistry-Aangstroem Laboratory, Uppsala Univ., Uppsala (Sweden)), E-mail: Peter.Lindblad@kemi.uu.se; Oliveira, Paulo (Instituto de Biologia Molecular e Celular, Porto (Portugal)); Heidorn, Thorsten (Bioforsk-Norwegian Inst. for Agricultural and Environmental Research, Aas Oslo, (Norway))

    2012-03-15

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H{sub 2} production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted

  4. Design, engineering, and construction of photosynthetic microbial cell factories for renewable solar fuel production.

    Science.gov (United States)

    Lindblad, Peter; Lindberg, Pia; Oliveira, Paulo; Stensjö, Karin; Heidorn, Thorsten

    2012-01-01

    There is an urgent need to develop sustainable solutions to convert solar energy into energy carriers used in the society. In addition to solar cells generating electricity, there are several options to generate solar fuels. This paper outlines and discusses the design and engineering of photosynthetic microbial systems for the generation of renewable solar fuels, with a focus on cyanobacteria. Cyanobacteria are prokaryotic microorganisms with the same type of photosynthesis as higher plants. Native and engineered cyanobacteria have been used by us and others as model systems to examine, demonstrate, and develop photobiological H(2) production. More recently, the production of carbon-containing solar fuels like ethanol, butanol, and isoprene have been demonstrated. We are using a synthetic biology approach to develop efficient photosynthetic microbial cell factories for direct generation of biofuels from solar energy. Present progress and advances in the design, engineering, and construction of such cyanobacterial cells for the generation of a portfolio of solar fuels, e.g., hydrogen, alcohols, and isoprene, are presented and discussed. Possibilities and challenges when introducing and using synthetic biology are highlighted.

  5. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    Science.gov (United States)

    Shcherbina, Natalia; Kivel, Niko; Günther-Leopold, Ines

    2013-06-01

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H2/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  6. Partitioning of selected fission products from irradiated oxide fuel induced by thermal treatment

    Energy Technology Data Exchange (ETDEWEB)

    Shcherbina, Natalia, E-mail: natalia.shcherbina@psi.ch [Department of Nuclear Energy and Safety, Paul Scherrer Institut (PSI), Villigen 5232 (Switzerland); Kivel, Niko; Günther-Leopold, Ines [Department of Nuclear Energy and Safety, Paul Scherrer Institut (PSI), Villigen 5232 (Switzerland)

    2013-06-15

    The release of fission products (FPs) from spent nuclear fuel (SNF) has been studied as a function of the temperature and redox conditions. The present paper concerns essentially the high temperature separation of Cs and Sr from irradiated pressurized (PWR) and boiling water reactor (BWR) fuel of different burn-up levels with use of an in-house designed system for inductive vaporization (InVap). Using thermodynamic calculations with the Module of Fission Product Release (MFPR) code along with annealing experiments on SNF in the InVap it was shown that the speciation of Cs and Sr, hence their release behavior at high temperature, is sensitive to the redox conditions during thermal treatment. It was demonstrated that annealing conditions in the InVap can be adjusted in the way to promote the release of selected FPs without significant loss of the fuel matrix or actinides: complete release of Cs and I was achieved during treatment of irradiated fuel at 1800 °C under reducing atmosphere (0.7% H{sub 2}/Ar mixture). The developed partitioning procedure can be used for the SNF pretreatment as an advanced head-end step in the hydrometallurgical or pyrochemical reprocessing technology.

  7. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.

    2012-09-28

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify patents related to hydrogen and fuel cells that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents’ current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs that are related to hydrogen and fuel cells.

  8. Pathways to Commercial Success: Technologies and Products Supported by the Fuel Cell Technologies Program

    Energy Technology Data Exchange (ETDEWEB)

    Weakley, Steven A.; Brown, Scott A.

    2011-09-29

    The purpose of the project described in this report is to identify and document the commercial and emerging (projected to be commercialized within the next 3 years) hydrogen and fuel cell technologies and products that resulted from Department of Energy support through the Fuel Cell Technologies (FCT) Program in the Office of Energy Efficiency and Renewable Energy (EERE). To do this, Pacific Northwest National Laboratory (PNNL) undertook two efforts simultaneously to accomplish this project. The first effort was a patent search and analysis to identify hydrogen- and fuel-cell-related patents that are associated with FCT-funded projects (or projects conducted by DOE-EERE predecessor programs) and to ascertain the patents current status, as well as any commercial products that may have used the technology documented in the patent. The second effort was a series of interviews with current and past FCT personnel, a review of relevant program annual reports, and an examination of hydrogen- and fuel-cell-related grants made under the Small Business Innovation Research and Small Business Technology Transfer Programs, and within the FCT portfolio.

  9. Selection and properties of alternative forming fluids for TRISO fuel kernel production

    Energy Technology Data Exchange (ETDEWEB)

    Baker, M.P. [Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); King, J.C., E-mail: kingjc@mines.edu [Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Gorman, B.P. [Colorado School of Mines, 1500 Illinois St., Golden, CO 80401 (United States); Marshall, D.W. [Idaho National Laboratory, 2525 N. Fremont Avenue, P.O. Box 1625, Idaho Falls, ID 83415 (United States)

    2013-01-15

    Highlights: Black-Right-Pointing-Pointer Forming fluid selection criteria developed for TRISO kernel production. Black-Right-Pointing-Pointer Ten candidates selected for further study. Black-Right-Pointing-Pointer Density, viscosity, and surface tension measured for first time. Black-Right-Pointing-Pointer Settling velocity and heat transfer rates calculated. Black-Right-Pointing-Pointer Three fluids recommended for kernel production testing. - Abstract: Current Very High Temperature Reactor (VHTR) designs incorporate TRi-structural ISOtropic (TRISO) fuel, which consists of a spherical fissile fuel kernel surrounded by layers of pyrolytic carbon and silicon carbide. An internal sol-gel process forms the fuel kernel using wet chemistry to produce uranium oxyhydroxide gel spheres by dropping a cold precursor solution into a hot column of trichloroethylene (TCE). Over time, gelation byproducts inhibit complete gelation, and the TCE must be purified or discarded. The resulting TCE waste stream contains both radioactive and hazardous materials and is thus considered a mixed hazardous waste. Changing the forming fluid to a non-hazardous alternative could greatly improve the economics of TRISO fuel kernel production. Selection criteria for a replacement forming fluid narrowed a list of {approx}10,800 chemicals to yield ten potential replacement forming fluids: 1-bromododecane, 1-bromotetradecane, 1-bromoundecane, 1-chlorooctadecane, 1-chlorotetradecane, 1-iododecane, 1-iodododecane, 1-iodohexadecane, 1-iodooctadecane, and squalane. The density, viscosity, and surface tension for each potential replacement forming fluid were measured as a function of temperature between 25 Degree-Sign C and 80 Degree-Sign C. Calculated settling velocities and heat transfer rates give an overall column height approximation. 1-bromotetradecane, 1-chlorooctadecane, and 1-iodododecane show the greatest promise as replacements, and future tests will verify their ability to form satisfactory

  10. MINING PROCESS AND PRODUCT INFORMATION FROM PRESSURE FLUCTUATIONS WITHIN A FUEL PARTICLE COATER

    Energy Technology Data Exchange (ETDEWEB)

    Douglas W. Marshall; Charles M. Barnes

    2008-09-01

    The Next Generation Nuclear Power (NGNP) Fuel Development and Qualification Program included the design, installation, and testing of a 6-inch diameter nuclear fuel particle coater to demonstrate quality TRISO fuel production on a small industrial scale. Scale-up from the laboratory-scale coater faced challenges associated with an increase in the kernel charge mass, kernel diameter, and a redesign of the gas distributor to achieve adequate fluidization throughout the deposition of the four TRISO coating layers. TRISO coatings are applied at very high temperatures in atmospheres of dense particulate clouds, corrosive gases, and hydrogen concentrations over 45% by volume. The severe environment, stringent product and process requirements, and the fragility of partially-formed coatings limit the insertion of probes or instruments into the coater vessel during operation. Pressure instrumentation were installed on the gas inlet line and exhaust line of the 6-inch coater to monitor the bed differential pressure and internal pressure fluctuations emanating from the fuel bed as a result of bed and gas “bubble” movement. These instruments are external to the particle bed and provide a glimpse into the dynamics of fuel particle bed during the coating process and data that could be used to help ascertain the adequacy of fluidization and, potentially, the dominant fluidization regimes. Pressure fluctuation and differential pressure data are not presently useful as process control instruments, but data suggest a link between the pressure signal structure and some measurable product attributes that could be exploited to get an early estimate of the attribute values.

  11. Production of wood derived fuels. Review of research projects; Puupolttoaineiden tuotantotekniikka. Tutkimusalueen katsaus

    Energy Technology Data Exchange (ETDEWEB)

    Korpilahti, A. [Metsaeteho Oy, Helsinki (Finland)

    1997-12-01

    The research and development work was very active on the area of wood derived fuels during the past year 1996. Totally some 40 projects were going on, and till the end of the year about 15 projects were completed. The projects broadly covered the research area focusing from material flows, productivity studies, basic wood properties to several case studies. When new production methods and machinery was introduced earlier by demonstration projects, now they were investigated by follow up projects. The economical and quality results of logging residue harvesting and comminution seem quite satisfactory, but integrated methods and production chains still need research and development. (orig.)

  12. Fixed-film columnar bioreactors for the production of chemicals and fuels from biomass

    Science.gov (United States)

    Scott, C. D.; Shumate, S. E. W., II; Arcuri, E. J.

    1982-12-01

    Fixed films of an active biological agent are maintained on solid surfaces within bioreactor systems to allow high productivity without agent washout during continuous operation. This, coupled with a stagewise columnar arrangement, may allow higher overall reaction rates. Fluidized bed and fixed bed bioreactors with fixed films of microorganisms are studied for the production of chemicals and fuels from biomass derived feed materials. Ethanol production at high rates has been demonstrated with glucose as the feed material; methane and other chemicals are also produced in these advanced systems.

  13. Simulation of a hydrogen production and purification system for a PEM fuel-cell using bioethanol as raw material

    Energy Technology Data Exchange (ETDEWEB)

    Giunta, Pablo; Amadeo, Norma; Laborde, Miguel [Facultad de Ingenieria, Universidad de Buenos Aires, Laboratorio de Procesos Cataliticos, Pabellon de Industrias, Ciudad Universitaria, 1428 Buenos Aires (Argentina); Mosquera, Carlos [Facultad de Ingenieria, Universidad de Buenos Aires, Departamento de Fisica, 1063 Buenos Aires (Argentina)

    2007-01-10

    A process to produce 'fuel-cell grade' hydrogen from ethanol steam reforming is analyzed from a thermodynamic point of view. The hydrogen purification process consists of WGS and COPROX reactors. Equations to evaluate the efficiency of the system, including the fuel cell, are presented. A heat exchange network is proposed in order to improve the exploitation of the available power. The effect of key variables such as the reformer temperature and the ethanol/water molar feed ratio on the fuel-cell efficiency is discussed. Results show that it is feasible to carry out the energy integration of the hydrogen catalytic production and purification-PEM fuel-cell system, using ethanol as raw material. The technology of 'fuel-cell grade' hydrogen production using ethanol as raw material is a very attractive alternative to those technologies based in fossil fuels. (author)

  14. Mass, energy and material balances of SRF production process. Part 3: solid recovered fuel produced from municipal solid waste.

    Science.gov (United States)

    Nasrullah, Muhammad; Vainikka, Pasi; Hannula, Janne; Hurme, Markku; Kärki, Janne

    2015-02-01

    This is the third and final part of the three-part article written to describe the mass, energy and material balances of the solid recovered fuel production process produced from various types of waste streams through mechanical treatment. This article focused the production of solid recovered fuel from municipal solid waste. The stream of municipal solid waste used here as an input waste material to produce solid recovered fuel is energy waste collected from households of municipality. This article presents the mass, energy and material balances of the solid recovered fuel production process. These balances are based on the proximate as well as the ultimate analysis and the composition determination of various streams of material produced in a solid recovered fuel production plant. All the process streams are sampled and treated according to CEN standard methods for solid recovered fuel. The results of the mass balance of the solid recovered fuel production process showed that 72% of the input waste material was recovered in the form of solid recovered fuel; 2.6% as ferrous metal, 0.4% as non-ferrous metal, 11% was sorted as rejects material, 12% as fine faction and 2% as heavy fraction. The energy balance of the solid recovered fuel production process showed that 86% of the total input energy content of input waste material was recovered in the form of solid recovered fuel. The remaining percentage (14%) of the input energy was split into the streams of reject material, fine fraction and heavy fraction. The material balances of this process showed that mass fraction of paper and cardboard, plastic (soft) and wood recovered in the solid recovered fuel stream was 88%, 85% and 90%, respectively, of their input mass. A high mass fraction of rubber material, plastic (PVC-plastic) and inert (stone/rock and glass particles) was found in the reject material stream. © The Author(s) 2014.

  15. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production.

    Science.gov (United States)

    Kartal, S N; Imamura, Y; Tsuchiya, F; Ohsato, K

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Fomitopsis palustris. However the filtrates from sugi wood processed at 270 degrees C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot.

  16. Preliminary evaluation of fungicidal and termiticidal activities of filtrates from biomass slurry fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Kartal, S.N. [Istanbul University (Turkey). Forestry Faculty; Imamura, Y. [Kyoto University (Japan). Wood Research Institute; Tsuchiya, F.; Ohsato, K. [JGC Corporation, Yokohama (Japan)

    2004-10-01

    Biomass slurry fuel (BSF) production has recently been developed as a natural energy for the conversion of solid biomass into fuel. In addition to using fuel, filtrates from BSF production may also serve a chemical source with several organic compounds. There is an increasing interest in the research and application of biomass-based filtrates. In this study, fungicidal and termiticidal properties of filtrates from BSF production using sugi (Cryptomeria japonica) and acacia (Acacia mangium) wood were evaluated in laboratory decay and termite resistance tests. Wood blocks treated with the filtrates showed increased resistance against brown-rot fungus, Formitopsis palustris. However the filtrates from sugi wood processed at 270{sup o}C which contained less phenolic compounds than the other filtrates were effective against white-rot fungus, Trametes versicolor. Phenolic compounds of filtrates seemed to play a role in the decay resistance tests however the filtrates did not increase the durability of the wood blocks against subterranean termites Coptotermes formosanus. Despite high acetic and lactic acid content of the filtrates, vanillin content of the filtrates may have served as an additional food source and promoted termite attack. It can be concluded that filtrates with phenolic compounds from lignin degradation during BSF production can be considered for targeted inhibition of brown-rot. (author)

  17. Refinery Integration of By-Products from Coal-Derived Jet Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Caroline E. Burgess Clifford; Andre' Boehman; Chunshan Song; Bruce Miller; Gareth Mitchell

    2006-09-17

    This report summarizes the accomplishments toward project goals during the second six months of the third year of the project to assess the properties and performance of coal based products. These products are in the gasoline, diesel and fuel oil range and result from coal based jet fuel production from an Air Force funded program. Specific areas of progress include generation of coal based material that has been fractionated into the desired refinery cuts and examination of carbon material, the use of a research gasoline engine to test coal-based gasoline, and modification of diesel engines for use in evaluating diesel produced in the project. At the pilot scale, the hydrotreating process was modified to separate the heavy components from the LCO and RCO fractions before hydrotreating in order to improve the performance of the catalysts in further processing. Characterization of the gasoline fuel indicates a dominance of single ring alkylcycloalkanes that have a low octane rating; however, blends containing these compounds do not have a negative effect upon gasoline when blended in refinery gasoline streams. Characterization of the diesel fuel indicates a dominance of 3-ring aromatics that have a low cetane value; however, these compounds do not have a negative effect upon diesel when blended in refinery diesel streams. Both gasoline and diesel continue to be tested for combustion performance. The desulfurization of sulfur containing components of coal and petroleum is being studied so that effective conversion of blended coal and petroleum streams can be efficiently converted to useful refinery products. Activated carbons have proven useful to remove the heavy sulfur components, and unsupported Ni/Mo and Ni/Co catalysts have been very effective for hydrodesulfurization. Equipment is now in place to begin fuel oil evaluations to assess the quality of coal based fuel oil. Combustion and characterization of the latest fuel oil (the high temperature fraction of RCO

  18. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, M. W.; Heath, G.; Sandor, D.; Steward, D.; Vimmerstedt, L.; Warner, E.; Webster, K. W.

    2013-04-01

    Achieving the Department of Energy target of an 80% reduction in greenhouse gas emissions by 2050 depends on transportation-related strategies combining technology innovation, market adoption, and changes in consumer behavior. This study examines expanding low-carbon transportation fuel infrastructure to achieve deep GHG emissions reductions, with an emphasis on fuel production facilities and retail components serving light-duty vehicles. Three distinct low-carbon fuel supply scenarios are examined: Portfolio: Successful deployment of a range of advanced vehicle and fuel technologies; Combustion: Market dominance by hybridized internal combustion engine vehicles fueled by advanced biofuels and natural gas; Electrification: Market dominance by electric drive vehicles in the LDV sector, including battery electric, plug-in hybrid, and fuel cell vehicles, that are fueled by low-carbon electricity and hydrogen. A range of possible low-carbon fuel demand outcomes are explored in terms of the scale and scope of infrastructure expansion requirements and evaluated based on fuel costs, energy resource utilization, fuel production infrastructure expansion, and retail infrastructure expansion for LDVs. This is one of a series of reports produced as a result of the Transportation Energy Futures (TEF) project, a Department of Energy-sponsored multi-agency project initiated to pinpoint underexplored transportation-related strategies for abating GHGs and reducing petroleum dependence.

  19. Life Cycle Analysis of the Production of FT-Fuels. 4 Different Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Blinge, M. [Chalmers University of Technology (Sweden); Rehnlund, B. [Atrax Energi AB (Sweden); Larsen, U.; Lundorf, P.; Ivarsson, A.; Schramm, J. [Technical University of Denmark (Denmark)

    2006-11-15

    This paper deals with aspects concerning the life cycle aspects regarding Fischer-Tropsch (FT) fuels. Four different scenarios are being analysed based on Life Cycle Assessment (LCA) figures. The results etc presented below emanates from a project undertaken by the International Energy Agency's (IEA) Implementing Agreement on Advanced Motor Fuels (IEA/AMF). The project has been carried out as an IEA/AMF annex, number XXXI, with financial support from the USA, Finland and Denmark. Some important results from the scenario studies based on the evaluated LCA data are: Production and use of GTL fuel has the potential of contributing about the same or slightly less greenhouse gas to the atmosphere than production and use of conventional diesel; Production and use of CTL emits more than twice as much greenhouse gases compared to traditional fuels; Production and use of BTL reduces the emissions of greenhouse gases by 60-90 %; To substitute 15 % of the EU 15 countries fuel consumption would an area of 310 000 km2 be cultivated with Salix. This corresponds to an area of the size of Poland. It would also require 122 FTplants of 1,6 GW; Theoretically, it is possible supply the worlds need for energy with biomass. However, planning the production, the localization of plants, building the infrastructure, this will take time and requires heavy long-term investments; The demand for Natural gas is increasing and there is no way for the US to meet an increased demand from supplying the vehicle fleet with F-T fuels from domestic reserves. With the political situation in the Middle East and in Venezuela, it doesn't seem likely that this solution will ease the US problems with reducing their oil dependences. The IEA/AMF project has also included emission tests on road vehicles fuelled by FT-Gasoline. These tests have been performed by The Technical University of Denmark and will be presented in another presentation at the ISAF XVI, 'Emissions from Road Vehicles Fuelled

  20. Life Cycle Analysis of the Production of FT-Fuels. 4 Different Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Blinge, M. [Chalmers University of Technology (Sweden); Rehnlund, B. [Atrax Energi AB (Sweden); Larsen, U.; Lundorf, P.; Ivarsson, A.; Schramm, J. [Technical University of Denmark (Denmark)

    2006-11-15

    This paper deals with aspects concerning the life cycle aspects regarding Fischer-Tropsch (FT) fuels. Four different scenarios are being analysed based on Life Cycle Assessment (LCA) figures. The results etc presented below emanates from a project undertaken by the International Energy Agency's (IEA) Implementing Agreement on Advanced Motor Fuels (IEA/AMF). The project has been carried out as an IEA/AMF annex, number XXXI, with financial support from the USA, Finland and Denmark. Some important results from the scenario studies based on the evaluated LCA data are: Production and use of GTL fuel has the potential of contributing about the same or slightly less greenhouse gas to the atmosphere than production and use of conventional diesel; Production and use of CTL emits more than twice as much greenhouse gases compared to traditional fuels; Production and use of BTL reduces the emissions of greenhouse gases by 60-90 %; To substitute 15 % of the EU 15 countries fuel consumption would an area of 310 000 km2 be cultivated with Salix. This corresponds to an area of the size of Poland. It would also require 122 FTplants of 1,6 GW; Theoretically, it is possible supply the worlds need for energy with biomass. However, planning the production, the localization of plants, building the infrastructure, this will take time and requires heavy long-term investments; The demand for Natural gas is increasing and there is no way for the US to meet an increased demand from supplying the vehicle fleet with F-T fuels from domestic reserves. With the political situation in the Middle East and in Venezuela, it doesn't seem likely that this solution will ease the US problems with reducing their oil dependences. The IEA/AMF project has also included emission tests on road vehicles fuelled by FT-Gasoline. These tests have been performed by The Technical University of Denmark and will be presented in another presentation at the ISAF XVI, 'Emissions from Road Vehicles Fuelled

  1. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency

    DEFF Research Database (Denmark)

    Markussen, Mads Ville; Østergård, Hanne

    2013-01-01

    Modern food production depends on limited natural resources for providing energy and fertilisers. We assess the fossil fuel dependency for the Danish food production system by means of Food Energy Returned on fossil Energy Invested (Food-EROI) and by the use of energy intensive nutrients from....... Furthermore, nutrients in commercial fertiliser and imported feed account for 84%, 90% and 90% of total supply of N, P and K, respectively. We conclude that the system is unsustainable because it is embedded in a highly fossil fuel dependent system based on a non-circular flow of nutrients. As energy and thus...... imported livestock feed and commercial fertilisers. The analysis shows that the system requires 221 PJ of fossil energy per year and that for each joule of fossil energy invested in farming, processing and transportation, 0.25 J of food energy is produced; 0.28 when crediting for produced bioenergy...

  2. GEH-4-63, 64: Proposal for irradiation of production brazed Zircaloy-2 clad fuel elements

    Energy Technology Data Exchange (ETDEWEB)

    Tverberg, J.C.

    1961-05-18

    A brazed end closure is currently being used on prototypical NPR fuel elements. The production closure will use a braze alloy composed of 5% Be + 95% Zry-2 to braze the Zircaloy-2 cap to the jacket and to the metallic uranium core. A similar MTR test, a GEH-4-57, 58, used a braze alloy of the composition 4% Be + 12% Fe + 84% Zry-2 which melts at a lower temperature. In this previous test, element GEH-4-57 failed through a cladding defect located at the base of the braze heat affected zone. Because of this failure it would be desirable to subject a fuel element, which had been subjected to more severe brazing conditions, to the same conditions as GEH-4-57, 58. For this reason the thermal conditions of this test essentially match those of GEH-4-57, 58. This irradiation test consists of two identical fuel elements. The fuel material is normal metallic uranium, Zircaloy-2 clad of the tubular geometry, NPR inner size. The fuel was coextruded at Hanford by General Electric`s Fuels Preparation Department. Each element is 10.8 inches in length with flat Zircaloy-2 end caps brazed to the jacket and uranium core with the 5 Be + 95 Zry-2 brazing alloy, then TIG welded to further insure closure integrity. The elements ar 1.254 inches OD and 0.439 inches ID. For hydraulic purposes a 0.343 inch diamater flow restrictor has been fitted into the central flow channel of both elements.

  3. EXPERIMENTAL STUDY OF THE NEW BIOCATALYST METHOD FOR BIODIESEL-FUEL BASED ON THE LIPASE PRODUCTION FUNGUS

    Science.gov (United States)

    Hata, Toshiro; Shimada, Miki; Toida, Jinichi

    This paper describes how to develop and evaluate a new biocatalyst method for biodiesel fuel based on the lipase production fungus. This method can convert waste vegetable oil into biodiesel fuel without alkaline waste fluid and byproducts (gly cerine). The main outcomes of this research were: (1) The biodiesel fuel can be manufactured from lipase production fungus (Rhizupus oryzae NBRC 9364). (2) The lipase activity can be enhanced by adding glucose and oil. (3) Phased addition of the methanol enhances the conversion rate of the biodiesel fuel (Maximum conversion rate is 85%). (4) The proposed method can improve vehicle exhaust emission and reduce byproducts (glycerine). We concluded that our proposed methods are effective for the production of biodiesel fuel from waste vegetable oil.

  4. Life-cycle analysis of greenhouse gas emissions from renewable jet fuel production.

    Science.gov (United States)

    de Jong, Sierk; Antonissen, Kay; Hoefnagels, Ric; Lonza, Laura; Wang, Michael; Faaij, André; Junginger, Martin

    2017-01-01

    The introduction of renewable jet fuel (RJF) is considered an important emission mitigation measure for the aviation industry. This study compares the well-to-wake (WtWa) greenhouse gas (GHG) emission performance of multiple RJF conversion pathways and explores the impact of different co-product allocation methods. The insights obtained in this study are of particular importance if RJF is included as an emission mitigation instrument in the global Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA). Fischer-Tropsch pathways yield the highest GHG emission reduction compared to fossil jet fuel (86-104%) of the pathways in scope, followed by Hydrothermal Liquefaction (77-80%) and sugarcane- (71-75%) and corn stover-based Alcohol-to-Jet (60-75%). Feedstock cultivation, hydrogen and conversion inputs were shown to be major contributors to the overall WtWa GHG emission performance. The choice of allocation method mainly affects pathways yielding high shares of co-products or producing co-products which effectively displace carbon intensive products (e.g., electricity). Renewable jet fuel can contribute to significant reduction of aviation-related GHG emissions, provided the right feedstock and conversion technology are used. The GHG emission performance of RJF may be further improved by using sustainable hydrogen sources or applying carbon capture and storage. Based on the character and impact of different co-product allocation methods, we recommend using energy and economic allocation (for non-energy co-products) at a global level, as it leverages the universal character of energy allocation while adequately valuing non-energy co-products.

  5. Reduced carbon emission estimates from fossil fuel combustion and cement production in China

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J.; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J.; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A.; Feng, Kuishuang; Peters, Glen P.; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-01

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = +/-7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  6. Morphology Engineering of Porous Media for Enhanced Solar Fuel and Power Production

    OpenAIRE

    Suter, Silvan; Haussener, Sophia

    2013-01-01

    The favorable and adjustable transport properties of porous media make them suitable components in reactors used for solar energy conversion and storage processes. The directed engineering of the porous media's morphology can significantly improve the performance of these reactors. We used a multiscale approach to characterize the changes in performance of exemplary solar fuel processing and solar power production reactors incorporating porous media as multifunctional components. The method a...

  7. Reduced carbon emission estimates from fossil fuel combustion and cement production in China.

    Science.gov (United States)

    Liu, Zhu; Guan, Dabo; Wei, Wei; Davis, Steven J; Ciais, Philippe; Bai, Jin; Peng, Shushi; Zhang, Qiang; Hubacek, Klaus; Marland, Gregg; Andres, Robert J; Crawford-Brown, Douglas; Lin, Jintai; Zhao, Hongyan; Hong, Chaopeng; Boden, Thomas A; Feng, Kuishuang; Peters, Glen P; Xi, Fengming; Liu, Junguo; Li, Yuan; Zhao, Yu; Zeng, Ning; He, Kebin

    2015-08-20

    Nearly three-quarters of the growth in global carbon emissions from the burning of fossil fuels and cement production between 2010 and 2012 occurred in China. Yet estimates of Chinese emissions remain subject to large uncertainty; inventories of China's total fossil fuel carbon emissions in 2008 differ by 0.3 gigatonnes of carbon, or 15 per cent. The primary sources of this uncertainty are conflicting estimates of energy consumption and emission factors, the latter being uncertain because of very few actual measurements representative of the mix of Chinese fuels. Here we re-evaluate China's carbon emissions using updated and harmonized energy consumption and clinker production data and two new and comprehensive sets of measured emission factors for Chinese coal. We find that total energy consumption in China was 10 per cent higher in 2000-2012 than the value reported by China's national statistics, that emission factors for Chinese coal are on average 40 per cent lower than the default values recommended by the Intergovernmental Panel on Climate Change, and that emissions from China's cement production are 45 per cent less than recent estimates. Altogether, our revised estimate of China's CO2 emissions from fossil fuel combustion and cement production is 2.49 gigatonnes of carbon (2 standard deviations = ±7.3 per cent) in 2013, which is 14 per cent lower than the emissions reported by other prominent inventories. Over the full period 2000 to 2013, our revised estimates are 2.9 gigatonnes of carbon less than previous estimates of China's cumulative carbon emissions. Our findings suggest that overestimation of China's emissions in 2000-2013 may be larger than China's estimated total forest sink in 1990-2007 (2.66 gigatonnes of carbon) or China's land carbon sink in 2000-2009 (2.6 gigatonnes of carbon).

  8. Report to the Chairman, Subcommittee on Military Research and Development, Committee on National Security, House of Representatives. Navy Ship Propulsion. Viability of New Engine Program in Question.

    Science.gov (United States)

    2007-11-02

    This General Accounting Office(GAO) report discusses the Department of the Navy’s development of a new ship propulsion system, the intercooled...was established in the mid-1980s to develop an improved surface ship propulsion system that would be fuel efficient. In December 1991, the Navy awarded

  9. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-09-30

    The Consortium for Fossil Fuel Science (CFFS) is a research consortium with participants from the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University. The CFFS is conducting a research program to develop C1 chemistry technology for the production of clean transportation fuel from resources such as coal and natural gas, which are more plentiful domestically than petroleum. The processes under development will convert feedstocks containing one carbon atom per molecular unit into ultra clean liquid transportation fuels (gasoline, diesel, and jet fuel) and hydrogen, which many believe will be the transportation fuel of the future. These feedstocks include synthesis gas, a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. Some highlights of the results obtained during the first year of the current research contract are summarized as: (1) Terminal alkynes are an effective chain initiator for Fischer-Tropsch (FT) reactions, producing normal paraffins with C numbers {ge} to that of the added alkyne. (2) Significant improvement in the product distribution towards heavier hydrocarbons (C{sub 5} to C{sub 19}) was achieved in supercritical fluid (SCF) FT reactions compared to that of gas-phase reactions. (3) Xerogel and aerogel silica supported cobalt catalysts were successfully employed for FT synthesis. Selectivity for diesel range products increased with increasing Co content. (4) Silicoaluminophosphate (SAPO) molecular sieve catalysts have been developed for methanol to olefin conversion, producing value-added products such as ethylene and propylene. (5) Hybrid Pt-promoted tungstated and sulfated zirconia catalysts are very effective in cracking n-C{sub 36} to jet and diesel fuel; these catalysts will be tested for cracking of FT wax. (6) Methane, ethane, and propane are readily decomposed to pure

  10. A Methodology for Assessing the Sustainability of Hydrogen Production from Solid Fuels

    Directory of Open Access Journals (Sweden)

    Nirmal V. Gnanapragasam

    2010-05-01

    Full Text Available A methodology for assessing the sustainability of hydrogen production using solid fuels is introduced, in which three sustainability dimensions (ecological, sociological and technological are considered along with ten indicators for each dimension. Values for each indicator are assigned on a 10-point scale based on a high of 1 and a low of 0, depending on the characteristic of the criteria associated with each element or process, utilizing data reported in the literature. An illustrative example is presented to compare two solid fuels for hydrogen production: coal and biomass. The results suggest that qualitative sustainability indicators can be reasonably defined based on evaluations of system feasibility, and that adequate flexibility and comprehensiveness is provided through the use of ten indicators for each of the dimensions for every process or element involved in hydrogen production using solid fuels. Also, the assessment index values suggest that biomasses have better sustainability than coals, and that it may be advantageous to use coals in combination with biomass to increase their ecological and social sustainability. The sustainability assessment methodology can be made increasingly quantitative, and is likely extendable to other energy systems, but additional research and development is needed to lead to a more fully developed approach.

  11. Mechanistic approach for nitride fuel evolution and fission product release under irradiation

    Science.gov (United States)

    Dolgodvorov, A. P.; Ozrin, V. D.

    2017-01-01

    A model for describing uranium-plutonium mixed nitride fuel pellet burning was developed. Except fission products generating, the model includes impurities of oxygen and carbon. Nitrogen behaviour in nitride fuel was analysed and the nitrogen chemical potential in solid solution with uranium-plutonium nitride was constructed. The chemical program module was tested with the help of thermodynamic equilibrium phase distribution calculation. Results were compared with analogous data in literature, quite good agreement was achieved, especially for uranium sesquinitride, metallic species and some oxides. Calculation of a process of nitride fuel burning was also conducted. Used mechanistic approaches for fission product evolution give the opportunity to find fission gas release fractions and also volumes of intergranular secondary phases. Calculations present that the most massive secondary phases are the oxide and metallic phases. Oxide phase contain approximately 1 % wt of substance over all time of burning with slightly increasing of content. Metallic phase has considerable rising of mass and by the last stage of burning it contains about 0.6 % wt of substance. Intermetallic phase has less increasing rate than metallic phase and include from 0.1 to 0.2 % wt over all time of burning. The highest element fractions of released gaseous fission products correspond to caesium and iodide.

  12. Improvement in retention of solid fission products in HTGR fuel particles by ceramic kernel additives

    Energy Technology Data Exchange (ETDEWEB)

    Foerthmann, R.; Groos, E.; Gruebmeier, H.

    1975-08-15

    Increased requirements concerning the retention of long-lived solid fission products in fuel elements for use in advanced High Temperature Gas-cooled Reactors led to the development of coated particles with improved fission product retention which represent an alternative to silicon carbide-coated fuel particles. Two irradiation experiments have shown that the release of strontium, barium, and caesium from pyrocarbon-coated particles can be reduced by orders of magnitude if the oxide kernel contains alumina-silica additives. It was detected by electron microprobe analysis that the improved retention of the mentioned fission products in the fuel kernel is caused by formation of the stable aluminosilicates SrAl2Si2O8, BaAl2Si2O8and CsAlSi2O6 in the additional alumina-silica phase of the kernel.

  13. Characterization of biomass producer gas as fuel for stationary gas engines in combined heat and power production

    DEFF Research Database (Denmark)

    Ahrenfeldt, Jesper

    2008-01-01

    The aim of this project has been the characterization of biomass producer gas as a fuel for stationary gas engines in heat and power production. More than 3200 hours of gas engine operation, with producer gas as fuel, has been conducted at the biomass gasification combined heat and power (CHP...

  14. Social externalities of fuel production in Paraná state -Brazil

    Directory of Open Access Journals (Sweden)

    Luiz Gustavo Antonio de Souza

    2014-12-01

    Full Text Available The accentuation of the climate change effects generates a positive prospect for the use of bioenergy at the expense of fossil fuels. There is an expansion of sugarcane in the state of Paraná. This growth combined with installation of new plants or expanding production capacity will benefit directly and indirectly the locational economic dynamics of cities. The aim of this paper is to understand the relevance of related economic activities to the production of ethanol compared to petroleum-based fuels amid new prospects. This article discusses the concept of productive agglomerations in the sectors in question from the perspective of social externalities. The indicator location quotient (LQ is used as a proxy for the presence of agglomeration and thus production of presence of social externalities. Formal Jobs data were used from the Annual List of Social Information (RAIS for sugarcane, ethanol, oil extraction and oil products sectors. In this case, it was found that the sugarcane and ethanol production sectors are relevant in the state, which leads to the inference of the presence of agglomeration and externalities economies. In the oil extraction industry and derivatives, however, its performance is incipient and timely. The results showed that the high capillarity from the sugarcane and ethanol sector can generate both a positive externality as a vulnerability.

  15. Biological Production of a Hydrocarbon Fuel Intermediate Polyhydroxybutyrate (Phb) from a Process Relevant Lignocellulosic Derived Sugar

    Energy Technology Data Exchange (ETDEWEB)

    Wang, Wei; Mohagheghi, Ali; Mittal, Ashutosh; Pilath, Heidi; Johnson, David K.

    2015-03-22

    PHAs are synthesized by many microorganisms to serve as intracellular carbon storage molecules. In some bacterial strains, PHB can account for up to 80% of cell mass. In addition to its application in the packaging sector, PHB also has great potential as an intermediate in the production of hydrocarbon fuels. PHB can be thermally depolymerized and decarboxylated to propene which can be upgraded to hydrocarbon fuels via commercial oligomerization technologies. In recent years a great effort has been made in bacterial production of PHB, yet the production cost of the polymer is still much higher than conventional petrochemical plastics. The high cost of PHB is because the cost of the substrates can account for as much as half of the total product cost in large scale fermentation. Thus searching for cheaper and better substrates is very necessary for PHB production. In this study, we demonstrate production of PHB by Cupriavidus necator from a process relevant lignocellulosic derived sugar stream, i.e., saccharified hydrolysate slurry from pretreated corn stover. Good cell growth was observed on slurry saccharified with advanced enzymes and 40~60% of PHB was accumulated in the cells. The mechanism of inhibition in the toxic hydrolysate generated by pretreatment and saccharification of biomass, will be discussed.

  16. Physical properties, fuel characteristics and P-fertilizer production related to animal slurry and products from separation of animal slurry

    DEFF Research Database (Denmark)

    Thygesen, Ole; Johnsen, Tina; Triolo, Jin Mi

    of cattle slurry, contained too little P to be suitable for fertilizer production, as did pig slurry, to which sulphuric acid had been added prior to separation. Low solubility of P means the ashes should be treated before being used as a fertilizer. The acid consumption in a simple fertilizer production......The purpose of this study was twofold: firstly to examine the relationship between dry matter content (DM) and specific gravity (SG) and viscosity in slurry and the liquid fraction from slurry separation, and secondly to investigate the potential of energy production from combustion of manure fibre...... from slurry separation and phosphorus (P) fertilizer production from recycling of the ash. Manure fibre has a positive calorific value and may be used as a CO2-neutral fuel for combustion. The ashes from combustion are rich in P, an essential fertilizer compound. The study is based on samples of animal...

  17. Ship Observations - VOS and Navy

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Combination of Voluntary Observing Ship (VOS) and US Navy Ship weather observations. Obs generally taken 2-4 times daily at 00, 06, 12, and 18z.

  18. UK Royal Navy WWII Logbooks

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — In 2006, the UK and NOAA's Climate Database Modernization Program (CDMP) funded the imaging of approximately 8,000 Royal Navy logbooks in the UK National Archives...

  19. Dual-fuel production from restaurant grease trap waste: bio-fuel oil extraction and anaerobic methane production from the post-extracted residue.

    Science.gov (United States)

    Kobayashi, Takuro; Kuramochi, Hidetoshi; Maeda, Kouji; Tsuji, Tomoya; Xu, Kaiqin

    2014-10-01

    An effective way for restaurant grease trap waste (GTW) treatment to generate fuel oil and methane by the combination of physiological and biological processes was investigated. The heat-driven extraction could provide a high purity oil equivalent to an A-grade fuel oil of Japanese industrial standard with 81-93 wt% of extraction efficiency. A post-extracted residue was treated as an anaerobic digestion feedstock, and however, an inhibitory effect of long chain fatty acid (LCFA) was still a barrier for high-rate digestion. From the semi-continuous experiment fed with the residual sludge as a single substrate, it can be concluded that the continuous addition of calcium into the reactor contributed to reducing LCFA inhibition, resulting in the long-term stable operation over one year. Furthermore, the anaerobic reactor performed well with 70-80% of COD reduction and methane productivity under an organic loading rate up to 5.3g-COD/L/d. Copyright © 2014 Elsevier Ltd. All rights reserved.

  20. Life cycle analysis of fuel production from fast pyrolysis of biomass.

    Science.gov (United States)

    Han, Jeongwoo; Elgowainy, Amgad; Dunn, Jennifer B; Wang, Michael Q

    2013-04-01

    A well-to-wheels (WTW) analysis of pyrolysis-based gasoline was conducted and compared with petroleum gasoline. To address the variation and uncertainty in the pyrolysis pathways, probability distributions for key parameters were developed with data from literature. The impacts of two different hydrogen sources for pyrolysis oil upgrading and of two bio-char co-product applications were investigated. Reforming fuel gas/natural gas for H2 reduces WTW GHG emissions by 60% (range of 55-64%) compared to the mean of petroleum fuels. Reforming pyrolysis oil for H2 increases the WTW GHG emissions reduction up to 112% (range of 97-126%), but reduces petroleum savings per unit of biomass used due to the dramatic decline in the liquid fuel yield. Thus, the hydrogen source causes a trade-off between GHG reduction per unit fuel output and petroleum displacement per unit biomass used. Soil application of biochar could provide significant carbon sequestration with large uncertainty. Copyright © 2013 Elsevier Ltd. All rights reserved.

  1. Biomass hydrogen production to be used in phosphoric acid fuel cell

    Energy Technology Data Exchange (ETDEWEB)

    Ponzano, G.P.; Perego, P.; Palazzi, E.; Ferraiolo, G. [Genoa Univ. (Italy). Inst. of Chem. Engineering Science and Technology

    1995-12-31

    Fuel cells, today, are one of the best and cleanest systems to produce electric energy. Hydrogen is their natural fuel. In this work a bioreactor is adjusted to produce a hydrogen rich biogas from a biomass formed by hydrolysed starch at various concentrations. The study has been based on the use of two types of bacterial cultivation: the first with Escherichia coli, the second one with Enterobacter aerogenes. To produce hydrogen with bacterial cultivation two pathways are possible: photosinthetic or fermentative. In this study the fermentative pathway is utilized because with this method a higher biogas production and an organic waste biodegradation can be obtained. The first scope of the search was concerning the verification of optimal conditions to produce a hydrogen rich biogas in a laboratory batch reactor; the second one was concerning the use of this result for the construction of a packed bed continuous reactor suitable to feed a 5 kW Phosphoric acid fuel cells (PAFC). In the present exposition only the second type is treated because the obtained results have been of the same type but more interesting than those obtained with the first type. This work presents the obtained experimental results and a model of a 5 kW complete plant (reactor-fuel cells) with a technical proposal to realise it. This integrated plant could be utilized to eliminate waste with high BOD generated in big farms and in several industries (food, paper, wood etc.)

  2. Techno-economic comparison of biojet fuel production from lignocellulose, vegetable oil and sugar cane juice.

    Science.gov (United States)

    Diederichs, Gabriel Wilhelm; Ali Mandegari, Mohsen; Farzad, Somayeh; Görgens, Johann F

    2016-09-01

    In this study, a techno-economic comparison was performed considering three processes (thermochemical, biochemical and hybrid) for production of jet fuel from lignocellulosic biomass (2G) versus two processes from first generation (1G) feedstocks, including vegetable oil and sugar cane juice. Mass and energy balances were constructed for energy self-sufficient versions of these processes, not utilising any fossil energy sources, using ASPEN Plus® simulations. All of the investigated processes obtained base minimum jet selling prices (MJSP) that is substantially higher than the market jet fuel price (2-4 fold). The 1G process which converts vegetable oil, obtained the lowest MJSPs of $2.22/kg jet fuel while the two most promising 2G processes- the thermochemical (gasification and Fischer-Tropsch synthesis) and hybrid (gasification and biochemical upgrading) processes- reached MJSPs of $2.44/kg and $2.50/kg jet fuel, respectively. According to the economic sensitivity analysis, the feedstock cost and fixed capital investment have the most influence on the MJSP.

  3. Navy Advertising: Targeting Generation Z

    Science.gov (United States)

    2015-12-01

    study recommends improvements for Navy advertising efficiency by examining characteristics of recruits defined as Generation Z . Data gathered from five...improvements for Navy advertising efficiency by examining characteristics of recruits defined as Generation Z . Data gathered from five waves of the New...ranging in age from 17 to 21, it is time to move past the 2 millennial generation and start to focus on the characteristics of Generation Z . While

  4. 2005 Navy MWR Customer Survey

    Science.gov (United States)

    2007-07-01

    Asian (e.g., Asian Indian, Chinese, Filipino, Japanese, Korean, Vietnamese) gfedc Black or African-American gfedc Native Hawaiian or other Pacific...nmlkj nmlkj Catering (e.g., meetings, Navy Balls, Wedding Receptions, Retirements) nmlkj nmlkj nmlkj nmlkj nmlkj Child development programs (e.g...facilities nmlkj nmlkj nmlkj Catering (e.g., meetings, Navy Balls, Wedding Receptions, Retirements) nmlkj nmlkj nmlkj Child development programs

  5. Production of liquid fuels with a high-temperature gas-cooled reactor

    Science.gov (United States)

    Quade, R. N.; Vrable, D. L.; Green, L., Jr.

    An exploration is made of the technical, economic and environmental impact feasibility of integrating coal liquefaction methods directly and indirectly with a nuclear reactor source of process heat, with stress on the production of synthetic jet fuel. Production figures and operating costs are compared for indirect conventional and nuclear processes using Lurgi-Fischer-Tropsch technology with direct conventional and nuclear techniques employing the advanced SRC-II technology, and it is concluded that significant advantages in coal savings and environmental impact can be expected from nuclear reactor integration.

  6. Study on Production of Hydrogen from Methane for Proton Exchange Membrane Fuel Cell

    Institute of Scientific and Technical Information of China (English)

    宋正昶; 李传统

    2001-01-01

    The hydrogen production from methane for proton exchange membrane fuel cell (PEMFC) was studied experimentally. The conversion rate of methane under different steam-carbon ratios, the effect of the different excess air ratios on the constituents of the gas produced, the permeability of hydrogen under different pressure differences, and the effect of different system pressure on the reaction enthalpy of hydrogen were obtained. The results lay the basis for the production of hydrogen applicable to PEMFC, moreover, provide a new way for the comprehensive utilization of the coal bed methane.

  7. Chemical forms of solid fission products in the irradiated uranium—plutonium mixed nitride fuel

    Science.gov (United States)

    Arai, Yasuo; Maeda, Atsushi; Shiozawa, Ken-ichi; Ohmichi, Toshihiko

    1994-06-01

    Chemical forms of solid fission products in the irradiated (U, Pu)N fuel were estimated by both thermodynamic equilibrium calculation and electron microprobe analysis on burnup simulated samples prepared by carbothermic reduction. Besides the MX type matrix phase dissolving zirconium, niobium, yttrium and rare earth elements, the existence of two kinds of inclusion was recognized. One is URu 3 type intermetallic compound constituted by uranium and platinum group elements. The other is an alloy containing molybdenum as a principal constituent. Furthermore, the swelling rate due to solid fission products precipitation was evaluated to be about 0.5% per %FIMA.

  8. THE COMPLEX USE OF LOCAL TYPES OF FUEL IN THE POROUS CONSTRUCTION MATERIALS PRODUCTION

    Directory of Open Access Journals (Sweden)

    N. P. Voronova

    2014-01-01

    Full Text Available The article presents a comprehensive low-waste technology is the use of local fuels, which can be used in the technology of some porous building materials. Also provides new methods of preparation of porous building materials based on aggloporite using local fuels and waste energy on the basis of milled peat, fuel briquettes and wood chips allow to replace expensive imported components that comprise the raw mixtures (coal, anthracite.On the basis of mathematical modeling of cooling in reheat furnaces pusher drive developed a method of engineering calculation mode batch hardening in agglomeration. Submitted constructive solution for the development of the cooling charge with thermophysical rational justification cooling modes. A study of the temperature distribution within the charge depending on the different speeds of the belt sintering machine, and hence on the cooling time.The characteristics of the raw material deposits "Fanipol" and the optimal composition of the charge which includes loam, coal, milled peat. In industrial research obtained aggloporite this formulation has shown positive results in strength and density. Established that by decreasing the particle size of the fuel increases the redox potential of the combustion products, which reduces the height of the oxidizing zone and the speed of the sintering raw mix. These processes increase the productivity of sinter machine.Technology is implemented on the "Minsk factory of building materials". The tests analyzed production technology porous construction materials using milled peat with the addition of sawdust. The study results recommend further use of sapropel, which cost significantly lower raw material mixture of submissions and in their physical and mechanical properties much closer to the properties of milled peat.

  9. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Hawkes; J. E. O' Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  10. LIQUID BIO-FUEL PRODUCTION FROM NON-FOOD BIOMASS VIA HIGH TEMPERATURE STEAM ELECTROLYSIS

    Energy Technology Data Exchange (ETDEWEB)

    G. L. Hawkes; J. E. O' Brien; M. G. McKellar

    2011-11-01

    Bio-Syntrolysis is a hybrid energy process that enables production of synthetic liquid fuels that are compatible with the existing conventional liquid transportation fuels infrastructure. Using biomass as a renewable carbon source, and supplemental hydrogen from high-temperature steam electrolysis (HTSE), bio-syntrolysis has the potential to provide a significant alternative petroleum source that could reduce US dependence on imported oil. Combining hydrogen from HTSE with CO from an oxygen-blown biomass gasifier yields syngas to be used as a feedstock for synthesis of liquid transportation fuels via a Fischer-Tropsch process. Conversion of syngas to liquid hydrocarbon fuels, using a biomass-based carbon source, expands the application of renewable energy beyond the grid to include transportation fuels. It can also contribute to grid stability associated with non-dispatchable power generation. The use of supplemental hydrogen from HTSE enables greater than 90% utilization of the biomass carbon content which is about 2.5 times higher than carbon utilization associated with traditional cellulosic ethanol production. If the electrical power source needed for HTSE is based on nuclear or renewable energy, the process is carbon neutral. INL has demonstrated improved biomass processing prior to gasification. Recyclable biomass in the form of crop residue or energy crops would serve as the feedstock for this process. A process model of syngas production using high temperature electrolysis and biomass gasification is presented. Process heat from the biomass gasifier is used to heat steam for the hydrogen production via the high temperature steam electrolysis process. Oxygen produced form the electrolysis process is used to control the oxidation rate in the oxygen-blown biomass gasifier. Based on the gasifier temperature, 94% to 95% of the carbon in the biomass becomes carbon monoxide in the syngas (carbon monoxide and hydrogen). Assuming the thermal efficiency of the power

  11. Electricity production by a microbial fuel cell fueled by brewery wastewater and the factors in its membrane deterioration

    Institute of Scientific and Technical Information of China (English)

    Afşin Y. Çetinkaya; Emre Oğuz Köroğlu; Neslihan Manav Demir; Derya Yılmaz Baysoy; Bestamin Özkaya; Mehmet Çakmakçı

    2015-01-01

    Electricity production from brewery wastewater using dual-chamber microbial fuel cells (MFCs) with a tin-coated copper mesh in the anode was investigated by changing the hydraulic retention time (HRT). The MFCs were fed with wastewater samples from the inlet (inflow, MFC-1) and outlet (outflow, MFC-2) of an anaerobic digester of a brewery wastewater treatment plant. Both chemical oxygen demand removal and current density were improved by decreasing HRT. The best MFC performance was with an HRT of 0.5 d. The maximum power densities of 8.001 and 1.843 µW/cm2 were obtained from reactors MFC-1 and MFC-2, respectively. Microbial diversity at different condi-tions was studied using PCR-DGGE profiling of 16S rRNA fragments of the microorganisms from the biofilm on the anode electrode. The MFC reactor had mainlyGeobacter,Shewanella, andClostridium species, and some bacteria were easily washed out at lower HRTs. The fouling characteristics of the MFC Nafion membrane and the resulting degradation of MFC performance were examined. The ion exchange capacity, conductivity, and diffusivity of the membrane decreased significantly after foul-ing. The morphology of the Nafion membrane and MFC degradation were studied using scanning electron microscopy and attenuated total reflection-Fourier transform infrared spectroscopy.

  12. Transportation Energy Futures Series: Alternative Fuel Infrastructure Expansion: Costs, Resources, Production Capacity, and Retail Availability for Low-Carbon Scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Melaina, W. [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Sandor, Debra [National Renewable Energy Lab. (NREL), Golden, CO (United States); Steward, Darlene [National Renewable Energy Lab. (NREL), Golden, CO (United States); Vimmerstedt, Laura [National Renewable Energy Lab. (NREL), Golden, CO (United States); Warner, Ethan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Webster, Karen W. [National Renewable Energy Lab. (NREL), Golden, CO (United States)

    2013-04-01

    The petroleum-based transportation fuel system is complex and highly developed, in contrast to the nascent low-petroleum, low-carbon alternative fuel system. This report examines how expansion of the low-carbon transportation fuel infrastructure could contribute to deep reductions in petroleum use and greenhouse gas (GHG) emissions across the U.S. transportation sector. Three low-carbon scenarios, each using a different combination of low-carbon fuels, were developed to explore infrastructure expansion trends consistent with a study goal of reducing transportation sector GHG emissions to 80% less than 2005 levels by 2050.These scenarios were compared to a business-as-usual (BAU) scenario and were evaluated with respect to four criteria: fuel cost estimates, resource availability, fuel production capacity expansion, and retail infrastructure expansion.

  13. BIOMASS AND NATURAL GAS AS CO-FEEDSTOCKS FOR PRODUCTION OF FUEL FOR FUEL-CELL VEHICLES

    Science.gov (United States)

    The article gives results of an examination of prospects for utilizing renewable energy crops as a source of liquid fuel to mitigate greenhouse gas emissions from mobile sources and reduce dependence on imported petroleum. Fuel cells would provide an optimum vehicle technology fo...

  14. Process Design and Economics for the Conversion of Algal Biomass to Biofuels: Algal Biomass Fractionation to Lipid-and Carbohydrate-Derived Fuel Products

    Energy Technology Data Exchange (ETDEWEB)

    None

    2014-09-11

    The U.S. Department of Energy (DOE) promotes the production of a range of liquid fuels and fuel blendstocks from biomass feedstocks by funding fundamental and applied research that advances the state of technology in biomass production, conversion, and sustainability. As part of its involvement in this program, the National Renewable Energy Laboratory (NREL) investigates the conceptual production economics of these fuels. This includes fuel pathways from lignocellulosic (terrestrial) biomass, as well as from algal (aquatic) biomass systems.

  15. Catalytic production of liquid fuels from organic residues of rendering plants

    Energy Technology Data Exchange (ETDEWEB)

    Fiedler, A.; Frank, A.; Stadlbauer, E.A. [Fachhochschule Giessen-Friedberg, Labor fuer Entsorgungstechnik (MNI), Giessen (Germany); Schilling, G. [Universitaet Heidelberg, Heidelberg (Germany); Bojanowski, S.

    2007-12-15

    Anaerobic low temperature conversion (LTC) converts organic residues such as animal meal or meat and bone meal (MBM) to bio-crude, a solid product, containing carbon and phosphorus, reaction water and non-condensable gases. The yield of bio-crude increases with the content of volatile solids. The efficiency of the conversion as well as the calorific value of the liquid fuel produced are favorably affected by the partial recycling of inorganic constituents, high amounts of volatile solids and a low percentage of heteroatoms present in the feeding material. Heating values are 32.3 MJ/kg for bio-crude from animal meal and 19.5 MJ/kg for bio-crude from MBM. Both bio-crude and animal fat produced were effectively converted in a vertical reactor construction with a fixed bed of aluminosilicates of the zeolite family or acidic clays, respectively. Products are bio-fuels of varying chemical qualities. Depending on the reaction temperature and the catalyst type, aliphatic hydrocarbons (T = 400 C, {proportional_to}97 %) or alkylbenzenes (T = 550 C) are the main products. The calorific values of these bio-fuels are in a range from 40.1 to 41.9 MJ/kg and the kinematic viscosities are between 0.9 and 2.29 mm{sup 2}/s. The solid products of LTC from different biomass (sludge, animal meal, MBM) contain a significant amount of phosphorus. In the case of the solid product from MBM it was as high as 242 mg P{sub 2}O{sub 5}/g. Solubility in citric acid showed that in the case of MBM, 98.8 % of total phosphorus is potentially available to plants. Pot experiments demonstrated a similar plant growth as with other organic fertilizers. (Abstract Copyright [2007], Wiley Periodicals, Inc.)

  16. Molted carbonate fuel cell product design and improvement - 4th quarter, 1995. Quarterly report, October 1, 1995--December 31, 1995

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1998-04-01

    The primary objective of this project is to establish the commercial readiness of MW-class IMHEX Molten Carbonate Fuel Cell power plants. Progress is described on marketing, systems design and analysis, product options and manufacturing.

  17. Advanced turbine systems program conceptual design and product development Task 8.3 - autothermal fuel reformer (ATR). Topical report

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    1996-11-01

    Autothermal fuel reforming (ATR) consists of reacting a hydrocarbon fuel such as natural gas or diesel with steam to produce a hydrogen-rich {open_quotes}reformed{close_quotes} fuel. This work has been designed to investigate the fuel reformation and the product gas combustion under gas turbine conditions. The hydrogen-rich gas has a high flammability with a wide range of combustion stability. Being lighter and more reactive than methane, the hydrogen-rich gas mixes readily with air and can be burned at low fuel/air ratios producing inherently low emissions. The reformed fuel also has a low ignition temperature which makes low temperature catalytic combustion possible. ATR can be designed for use with a variety of alternative fuels including heavy crudes, biomass and coal-derived fuels. When the steam required for fuel reforming is raised by using energy from the gas turbine exhaust, cycle efficiency is improved because of the steam and fuel chemically recuperating. Reformation of natural gas or diesel fuels to a homogeneous hydrogen-rich fuel has been demonstrated. Performance tests on screening various reforming catalysts and operating conditions were conducted on a batch-tube reactor. Producing over 70 percent of hydrogen (on a dry basis) in the product stream was obtained using natural gas as a feedstock. Hydrogen concentration is seen to increase with temperature but less rapidly above 1300{degrees}F. The percent reforming increases as the steam to carbon ratio is increased. Two basic groups of reforming catalysts, nickel - and platinum-basis, have been tested for the reforming activity.

  18. Production of a pellet fuel from Illinois coal fines. Technical report, September 1--November 30, 1994

    Energy Technology Data Exchange (ETDEWEB)

    Rapp, D.; Lytle, J.; Berger, R.

    1994-12-31

    The primary goal of this research is to produce a pellet fuel from low-sulfur Illinois coal fines which could burn with emissions of less than 1.8 lbs SO{sub 2}/10{sup 6} Btu in stoker-fired boilers. The significance of 1.8 lbs SO{sub 2}/10{sup 6} Btu is that in the Chicago (9 counties) and St. Louis (2 counties) metropolitan areas, industrial users of coal currently must comply with this level of emissions. Stokers are an attractive market for pellets because pellets are well-suited for this application and because western coal is not a competitor in the stoker market. Compliance stoker fuels come from locations such as Kentucky and West Virginia and the price for fuels from these locations is high relative to the current price of Illinois coal. This market offers the most attractive near-term economic environment for commercialization of pelletization technology. For this effort, the authors will be investigating the use of fines from two Illinois mines which currently mine relatively low-sulfur reserves and that discard their fines fraction (minus 100 mesh). The research will involve investigation of multiple unit operations including column flotation, filtration and pellet production. The end result of the effort will allow for an evaluation of the commercial viability of the approach. This quarter pellet production work commenced and planning for collection and processing of a preparation plant fines fraction is underway.

  19. Hydrogen Production for Fuel Cells Via Reforming Coal-Derived Methanol

    Energy Technology Data Exchange (ETDEWEB)

    Paul A. Erickson

    2005-09-30

    Hydrogen can be produced from many feedstocks including coal. The objectives of this project are to establish and prove a hydrogen production pathway from coal-derived methanol for fuel cell applications. This progress report is the eighth report submitted to the DOE reporting on the status and progress made during the course of the project. This report covers the time period of October 1, 2004-September 30, 2005 and includes an entire review of the progress for year 2 of the project. This year saw progress in eight areas. These areas are: (1) steam reformer transient response, (2) steam reformer catalyst degradation, (3) steam reformer degradation tests using bluff bodies, (4) optimization of bluff bodies for steam reformation, (5) heat transfer enhancement, (6) autothermal reforming of coal derived methanol, (7) autothermal catalyst degradation, and (8) autothermal reformation with bluff bodies. The project is on schedule and is now shifting towards the design of an integrated PEM fuel cell system capable of using the coal-derived product. This system includes a membrane clean up unit and a commercially available PEM fuel cell.

  20. Production and Optimization of Direct Coal Liquefaction derived Low Carbon-Footprint Transportation Fuels

    Energy Technology Data Exchange (ETDEWEB)

    Steven Markovich

    2010-06-30

    This report summarizes works conducted under DOE Contract No. DE-FC26-05NT42448. The work scope was divided into two categories - (a) experimental program to pretreat and refine a coal derived syncrude sample to meet transportation fuels requirements; (b) system analysis of a commercial scale direct coal liquefaction facility. The coal syncrude was derived from a bituminous coal by Headwaters CTL, while the refining study was carried out under a subcontract to Axens North America. The system analysis included H{sub 2} production cost via six different options, conceptual process design, utilities requirements, CO{sub 2} emission and overall plant economy. As part of the system analysis, impact of various H{sub 2} production options was evaluated. For consistence the comparison was carried out using the DOE H2A model. However, assumptions in the model were updated using Headwaters database. Results of Tier 2 jet fuel specifications evaluation by the Fuels & Energy Branch, US Air Force Research Laboratory (AFRL/RZPF) located at Wright Patterson Air Force Base (Ohio) are also discussed in this report.

  1. Molten carbonate fuel cell product development test. Annual report, October 1992--September 1993

    Energy Technology Data Exchange (ETDEWEB)

    1993-12-01

    Advanced fuel cell active components have been developed and scaled up from laboratory scale to commercial scale. Full width components of both the stabilized nickel cathodes and the low chrome anodes have been successfully cast on M-C Power`s production tape caster. An improved design for a fuel cell separator plate has been developed. The improved design meets the goals of lower cost and manufacturing simplicity, and addresses performance issues of the current commercial area plate. The engineering that the Bechtel Corporation has completed for the MCFC power plant includes a site design, a preliminary site layout, a Process Flow Diagram, and specification for the procurement of some of the major equipment items. Raw materials for anode and cathode components were ordered and received during the first half of 1993. Tape casting of anodes was started in late summer and continued through August. In addition to the technical progress mentioned above, an environment assessment was prepared in compliance with the National Environmental Policy Act of 1969 (NEPA). As a result, the PDT has received a categorical exclusion from the Air Pollution Control District permit requirements. The PDT is configured to demonstrate the viability of natural gas-fueled MCFC for the production of electricity and thermal energy in an environmentally benign manner for use in commercial and industrial applications.

  2. Production of Biodiesel Fuel from Waste Soya bean Cooking Oil by Alkali Trans-esterification Process

    Directory of Open Access Journals (Sweden)

    Ajinkya Dipak Deshpande*,

    2016-04-01

    Full Text Available Biodiesel is biodegradable, clean-burning, non-toxic, renewable, high-quality, and cheap diesel fuel made primarily from waste vegetable oil which can be used without any alterations in engine design. The paper is concerned with the extraction and quality evaluation of the biodiesel fuels synthesized from waste soya bean cooking oil. Waste soya bean cooking oil had high amount of free fatty acid. Thus, single step transesterification process with the aid of homogeneous catalyst as 1% potassium hydroxide were implemented in this experiment. Methanol was chosen as alcohol solvent. In the transesterification process, the triglycerides in waste cooking oil was reacted with a methanol to form esters and glycerol as by product.The biodiesel were extracted for different oil to methanol ratio as 1:2, 1:3 and 1:4. The highest biodiesel yield of 76% was obtained at 1:3 volumetric ratio for 60 ºC reaction temperature and 1250 rpm stirring speed. Results show that the optimal methyl ester yield of 90% occurred at methanol: oil volume ratio of 3:1. The product met the ASTM fuel standards for relative density, acid value, relative density, calorific value, flash point and kinematic viscosity.

  3. MICRO/NANO-STRUCTURAL EXAMINATION AND FISSION PRODUCT IDENTIFICATION IN NEUTRON IRRADIATED AGR-1 TRISO FUEL

    Energy Technology Data Exchange (ETDEWEB)

    van Rooyen, I. J.; Lillo, T. M.; Wen, H. M.; Hill, C. M.; Holesinger, T. G.; Wu, Y. Q.; Aguiara, J. A.

    2016-11-01

    Advanced microscopic and microanalysis techniques were developed and applied to study irradiation effects and fission product behavior in selected low-enriched uranium oxide/uranium carbide TRISO-coated particles from fuel compacts in six capsules irradiated to burnups of 11.2 to 19.6% FIMA. Although no TRISO coating failures were detected during the irradiation, the fraction of Ag-110m retained in individual particles often varied considerably within a single compact and at the capsule level. At the capsule level Ag-110m release fractions ranged from 1.2 to 38% and within a single compact, silver release from individual particles often spanned a range that extended from 100% retention to nearly 100% release. In this paper, selected irradiated particles from Baseline, Variant 1 and Variant 3 type fueled TRISO coated particles were examined using Scanning Electron Microscopy, Atom Probe Tomography; Electron Energy Loss Spectroscopy; Precession Electron Diffraction, Transmission Electron Microscopy, Scanning Transmission Electron Microscopy (STEM), High Resolution Electron Microscopy (HRTEM) examinations and Electron Probe Micro-Analyzer. Particle selection in this study allowed for comparison of the fission product distribution with Ag retention, fuel type and irradiation level. Nano sized Ag-containing features were predominantly identified in SiC grain boundaries and/or triple points in contrast with only two sitings of Ag inside a SiC grain in two different compacts (Baseline and Variant 3 fueled compacts). STEM and HRTEM analysis showed evidence of Ag and Pd co-existence in some cases and it was found that fission product precipitates can consist of multiple or single phases. STEM analysis also showed differences in precipitate compositions between Baseline and Variant 3 fuels. A higher density of fission product precipitate clusters were identified in the SiC layer in particles from the Variant 3 compact compared with the Variant 1 compact. Trend analysis shows

  4. Recent advances in microbial production of fuels and chemicals using tools and strategies of systems metabolic engineering

    DEFF Research Database (Denmark)

    Cho, Changhee; Choi, So Young; Luo, Zi Wei;

    2015-01-01

    The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals and prod......The advent of various systems metabolic engineering tools and strategies has enabled more sophisticated engineering of microorganisms for the production of industrially useful fuels and chemicals. Advances in systems metabolic engineering have been made in overproducing natural chemicals...

  5. An alternative feedstock of corn meal for industrial fuel ethanol production: delignified corncob residue.

    Science.gov (United States)

    Lei, Cheng; Zhang, Jian; Xiao, Lin; Bao, Jie

    2014-09-01

    Delignified corncob residue is an industrial solid waste from xylose production using corncob as feedstock. In this study, delignified corncob residue was used as the feedstock of ethanol production by simultaneous saccharification and fermentation (SSF) and the optimal fermentation performance was investigated under various operation conditions. The ethanol titer and yield reached 75.07 g/L and 89.38%, respectively, using a regular industrial yeast strain at moderate cellulase dosage and high solids loading. A uniform SSF temperature of 37°C at both prehydrolysis and SSF stages was tested. The fermentation performance and cost of delignified corncob residue and corn meal was compared as feedstock of ethanol fermentation. The result shows that the delignified corncob residue is competitive to corn meal as ethanol production feedstock. The study gives a typical case to demonstrate the potential of intensively processed lignocellulose as the alternative feedstock of corn meal for industrial fuel ethanol production.

  6. Electrobiocommodities: powering microbial production of fuels and commodity chemicals from carbon dioxide with electricity

    Energy Technology Data Exchange (ETDEWEB)

    Lovley, DR; Nevin, KP

    2013-06-01

    Electricity can be an energy source for microbially catalyzed production of fuels and other organic commodities from carbon dioxide. These electrobiocommodities (E-BCs) can be produced directly via electrode-to-microbe electron transfer or indirectly with electrochemically generated electron donors such as H-2 or formate. Producing E-BCs may be a more efficient and environmentally sustainable strategy for converting solar energy to biocommodities than approaches that rely on biological photosynthesis. A diversity of microbial physiologies could potentially be adapted for E-BC production, but to date acetogenic microorganisms are the only organisms shown to covert electrically generated low potential electrons and carbon dioxide into multi-carbon organic products with high recovery of electrons in product. Substantial research and development will be required for E-BC commercialization.

  7. Thermal Decomposition of Methyl Esters in Biodiesel Fuel: Kinetics, Mechanisms and Products

    Science.gov (United States)

    Chai, Ming

    Biodiesel continues to enjoy increasing popularity. However, recent studies on carbonyl compounds emissions from biodiesel fuel are inconclusive. Emissions of carbonyl compounds from petroleum diesel fuels were compared to emissions from pure biodiesel fuels and petroleum-biodiesel blends used in a non-road diesel generator. The concentration of total carbonyl compounds was the highest when the engine was idling. The carbonyl emissions, as well as ozone formation potential, from biodiesel fuel blends were higher than those emitted from petroleum diesel fuel. The sulfur content of diesel fuel and the source of biodiesel fuel were not found to have a significant impact on emissions of carbonyl compounds. Mechanism parameters of the thermal decomposition of biodiesel-range methyl esters were obtained from the results of thermal gravimetric analysis (TGA). The overall reaction orders are between 0.49 and 0.71 and the energies of activation are between 59.9 and 101.3 kJ/mole. Methyl esters in air have lower activation energies than those in nitrogen. Methyl linoleate has the lowest activation energy, followed by methyl oleate, and methyl stearate. The pyrolysis and oxidation of the three methyl esters were investigated using a semi-isothermal tubular flow reactor. The profiles of major products versus reaction temperature are presented. In the pyrolysis of methyl stearate, the primary reaction pathway is the decarboxylic reaction at the methyl ester functional group. Methyl oleate's products indicate more reactions on its carbon-carbon double bond. Methyl linoleate shows highest reactivity among the three methyl esters, and 87 products were detected. The oxidation of three methyl esters resulted in more products in all compound classes, and 55, 114, and 127 products were detected, respectively. The oxidation of methyl esters includes decarboxylation on ester group. The methyl ester's carbon chain could be oxidized as a hydrocarbon compound and form oxidized esters and

  8. New Catalytic Materials for Meeting the Challenge of Clean Gasoline & Diesel Fuel Production

    Institute of Scientific and Technical Information of China (English)

    Zong Baoning; Min Enze; He Mingyuan; Li Dadong

    2000-01-01

    New catalytic materials, which may bring important improvement or technical breakthrough to the petroleum refining technology for producing reformulated gasoline and low sulfur and aromatics diesel fuel, are discussed. For the purpose of producing high octane number gasoline and light olefins for etherification and alkylation processes, major improvements are achieved by the use of high reactivity-stability MFI type ZRP and low cost beta zeolites. A solid P-W heteropolyacid supported on SiO2 for replacing currently used HF and H2SO4 in alkylation process of isobutane with butenes, is under the pilot trial. For the production of low sulfur and aromatics diesel fuel, high surface area supported metallic nitrides are under extensive studies.

  9. Self-ignition of an advanced fuel field-reversed configuration reactor by fusion product heating

    Energy Technology Data Exchange (ETDEWEB)

    Ohnishi, M.; Ohi, S.; Okamoto, M.; Momota, H.; Wakabayashi, J.

    1987-09-01

    A self-ignition of a deuterium-deuterium (D-D)-/sup 3/He fuel field-reversed configuration (FRC) plasma by fusion product heating is studied by using the point plasma model, where an FRC plasma equilibrium is taken into account. It is numerically demonstrated that the D-D-/sup 3/He plasma can be evolved from a deuterium-tritium burning plasma in a controlled manner by means of a compression-decompression control as well as a fueling control. It is also indicated that the increase of a trapped flux is effective for suppressing the excessive elongation of a plasma during the transition. The proposed method may provide a solution to the problem on plasma heating to attain a D-D-/sup 3/He self-ignition.

  10. Mechanochemical production of lignin-containing powder fuels from biotechnical industry waste: A review

    Directory of Open Access Journals (Sweden)

    Lomovsky Oleg

    2015-01-01

    Full Text Available In biotechnological processing of plant raw materials, carbohydrates that are soluble and accessible for microorganisms are the only usable components. The lignin-rich part of the plant raw materials usually ends up in the waste. Lignin transferred into water suspensions cannot be used efficiently as a fuel. In this review, a new processing scheme of plant raw materials is presented, which includes mechanochemical treatment of the plant raw materials and separation of the powder product into particles of lignified and non-lignified tissues rich in lignin and cellulose, respectively. The cellulose-rich powders can then be used in biotechnological processes. Lignin-rich powder aerodynamically separated using cyclone-type apparatus can be used as a powder fuel to satisfy the needs of the main biotechnological plant in heat and steam.

  11. Determination of membrane degradation products in the product water of polymer electrolyte membrane fuel cells using liquid chromatography mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Zedda, Marco

    2011-05-12

    The predominant long term failure of polymer electrolyte membranes (PEM) is caused by hydroxyl radicals generated during fuel cell operation. These radicals attack the polymer, leading to chain scission, unzipping and consequently to membrane decomposition products. The present work has investigated decomposition products of novel sulfonated aromatic hydrocarbon membranes on the basis of a product water analysis. Degradation products from the investigated membrane type and the possibility to detect these compounds in the product water for diagnostic purposes have not been discovered yet. This thesis demonstrates the potential of solid phase extraction and liquid chromatography tandem mass spectrometry (SPE-LC-MS/MS) for the extraction, separation, characterization, identification and quantification of membrane degradation products in the product water of fuel cells. For this purpose, several polar aromatic hydrocarbons with different functional groups were selected as model compounds for the development of reliable extraction, separation and detection methods. The results of this thesis have shown that mixed mode sorbent materials with both weak anion exchange and reversed phase retention properties are well suited for reproducible extraction of both molecules and ions from the product water. The chromatographic separation of various polar aromatic hydrocarbons was achieved by means of phase optimized liquid chromatography using a solvent gradient and on a C18 stationary phase. Sensitive and selective detection of model compounds could be successfully demonstrated by the analysis of the product water using tandem mass spectrometry. The application of a hybrid mass spectrometer (Q Trap) for the characterization of unknown polar aromatic hydrocarbons has led to the identification and confirmation of 4-hydroxybenzoic acid in the product water. In addition, 4-HBA could be verified as a degradation product resulting from PEM decomposition by hydroxyl radicals using an

  12. Combined energy production and waste management in manned spacecraft utilizing on-demand hydrogen production and fuel cells

    Science.gov (United States)

    Elitzur, Shani; Rosenband, Valery; Gany, Alon

    2016-11-01

    Energy supply and waste management are among the most significant challenges in human spacecraft. Great efforts are invested in managing solid waste, recycling grey water and urine, cleaning the atmosphere, removing CO2, generating and saving energy, and making further use of components and products. This paper describes and investigates a concept for managing waste water and urine to simultaneously produce electric and heat energies as well as fresh water. It utilizes an original technique for aluminum activation to react spontaneously with water at room temperature to produce hydrogen on-site and on-demand. This reaction has further been proven to be effective also when using waste water and urine. Applying the hydrogen produced in a fuel cell, one obtains electric energy as well as fresh (drinking) water. The method was compared to the traditional energy production technology of the Space Shuttle, which is based on storing the fuel cell reactants, hydrogen and oxygen, in cryogenic tanks. It is shown that the alternative concept presented here may provide improved safety, compactness (reduction of more than one half of the volume of the hydrogen storage system), and management of waste liquids for energy generation and drinking water production. Nevertheless, it adds mass compared to the cryogenic hydrogen technology. It is concluded that the proposed method may be used as an emergency and backup power system as well as an additional hydrogen source for extended missions in human spacecraft.

  13. Possibilities of production of smokeless fuel via carbonization of Czech coals

    Energy Technology Data Exchange (ETDEWEB)

    Buchtele, J.; Straka, P. [Inst. of Rock Structure and Mechanics, Prague (Czechoslovakia)

    1995-12-01

    It was consumed 48 -51 % of hard coal (total output 28 - 30 Mt/year) in a long period for the production of coke. It appears to be anomaly in comparison with other coke producers in Europe and in the world, it was predeterminated by {open_quotes}steel conception{close_quotes} of state`s economics. The production of coke reached 10-11 Mt/year in former Czechoslovakia in the period 1970-1990. A considerable quantity 1.2 - 1.7 Mt/year of produced coke was utilized for heating. In comparison, 7-5.4 Mt coke/year was it in Poland for the heating. Al coke production is realized on the basis of Czech hard coals mined in the southern part of Upper Silesian Coal District. The coke production is operated in multi-chamber system with full recovery of chemical products (gas, raw tar, raw benzene, amonium etc.). The future trend of smokeless fuel production in Czech Republic makes for to the non-recovery coke oven, it means to two-product processes (coke + reduction gas, coke + electricity and so on). Jewell--Thompson coke oven (hard coal) and Salem oven (ignites) represent nonrecovery nowadays. The possibility of it`s application in Czech Republic are discussed. Jumbo coking reactor system (European project No. 500 to the Eureka programme) produces primarily metallurgical coke. The strong Clean Air Act suspends the production of smokeless fuel in multi-chamber system also in Czech Republic for the future period 2010-2020.

  14. Chemical modification of a bitumen and its non-fuel uses. [Reactions of tar sand asphaltenes in synthesis of non-fuel products

    Energy Technology Data Exchange (ETDEWEB)

    Moschopedis, S.E.; Speight, J.G.

    1974-01-01

    Simple reactions are described whereby tar sand bitumen can be converted to a whole range of materials. Examples are given to illustrate the non-fuel uses of the products. The following reactions of Athabasca asphaltenes are considered: oxidation, halogenation, sulfonation and sulfomethylation, phosphorylation, hydrogenation, reactions with S and O, reactions with metal salts, and miscellaneous chemical conversions. (JGB)

  15. Life cycle assessment of rapeseed oil, rape methyl ester and ethanol as fuels - a comparison between large- and smallscale production

    Energy Technology Data Exchange (ETDEWEB)

    Bernesson, Sven [Swedish Univ. of Agriculture Sciences, Uppsala (Sweden). Dep. of Biometry and Engineering

    2004-05-01

    Production of rapeseed oil, rape methyl ester (RME) and ethanol fuel for heavy diesel engines can be carried out with different systems solutions, in which the choice of system is usually related to the scale of the production. The main purpose of this study was to analyse whether the use of a small-scale rapeseed oil, RME and ethanol fuel production system reduced the environmental load in comparison to a medium- and a large-scale system. To fulfil this purpose, a limited LCA, including air-emissions and energy requirements, was carried out for the three fuels and the three plant sizes. Four different methods to allocate the environmental burden between different products were compared: physical allocation according to the lower heat value in the products [MJ/kg], economic allocation according to the product prices [SEK/kg], no allocation and allocation with a system expansion so that rapemeal and distiller's waste could replace soymeal mixed with soyoil and glycerine could replace glycerine produced from fossil raw material. The functional unit, to which the total environmental load was related, was 1.0 MJ of energy delivered on the engine shaft to the final consumer. Production of raw materials, cultivation, transport, fuel production and use of the fuels produced were included in the systems studied. It was shown in the study that the differences in environmental impact and energy requirement between small-, medium- and large-scale systems were small or even negligible in most cases for all three fuels, except for the photochemical ozone creation potential (POCP) during ethanol fuel production. The longer transport distances to a certain degree outweighed the higher oil extraction efficiency, the higher energy efficiency and the more efficient use of machinery and buildings in the large-scale system. The dominating production step was the cultivation, in which production of fertilisers, followed by soil emissions and tractive power, made major

  16. Gas-Cooled Reactor Programs annual progress report for period ending December 31, 1973. [HTGR fuel reprocessing, fuel fabrication, fuel irradiation, core materials, and fission product distribution; GCFR fuel irradiation and steam generator modeling

    Energy Technology Data Exchange (ETDEWEB)

    Kasten, P.R.; Coobs, J.H.; Lotts, A.L.

    1976-04-01

    Progress is summarized in studies relating to HTGR fuel reprocessing, refabrication, and recycle; HTGR fuel materials development and performance testing; HTGR PCRV development; HTGR materials investigations; HTGR fuel chemistry; HTGR safety studies; and GCFR irradiation experiments and steam generator modeling.

  17. Sorghum as a renewable feedstock for production of fuels and industrial chemicals

    Directory of Open Access Journals (Sweden)

    Nhuan P. Nghiem

    2016-01-01

    Full Text Available Considerable efforts have been made in the USA and other countries to develop renewable feedstocks for production of fuels and chemicals. Among these, sorghum has attracted strong interest because of its many good characteristics such as rapid growth and high sugar accumulation, high biomass production potential, excellent nitrogen usage efficiency, wide adaptability, drought resistance, and water lodging tolerance and salinity resistance. The ability to withstand severe drought conditions and its high water usage efficiency make sorghum a good renewable feedstock suitable for cultivation in arid regions, such as the southern US and many areas in Africa and Asia. Sorghum varieties include grain sorghum, sweet sorghum, and biomass sorghum. Grain sorghum, having starch content equivalent to corn, has been considered as a feedstock for ethanol production. Its tannin content, however, may cause problems during enzyme hydrolysis. Sweet sorghum juice contains sucrose, glucose and fructose, which are readily fermentable by Saccharomyces cerevisiae and hence is a good substrate for ethanol fermentation. The enzyme invertase, however, needs to be added to convert sucrose to glucose and fructose if the juice is used for production of industrial chemicals in fermentation processes that employ microorganisms incapable of metabolizing sucrose. Biomass sorghum requires pretreatment prior to enzymatic hydrolysis to generate fermentable sugars to be used in the subsequent fermentation process. This report reviews the current knowledge on bioconversion of sorghum to fuels and chemicals and identifies areas that deserve further studies.

  18. Trends and challenges in the microbial production of lignocellulosic bioalcohol fuels

    Energy Technology Data Exchange (ETDEWEB)

    Weber, Christian; Farwick, Alexander; Benisch, Feline; Brat, Dawid; Dietz, Heiko; Subtil, Thorsten; Boles, Eckhard [Frankfurt Univ., Frankfurt am Main (Germany). Inst. of Molecular Biosciences

    2010-07-15

    Bioalcohols produced by microorganisms from renewable materials are promising substitutes for traditional fuels derived from fossil sources. For several years already ethanol is produced in large amounts from feedstocks such as cereals or sugar cane and used as a blend for gasoline or even as a pure biofuel. However, alcohols with longer carbon chains like butanol have even more suitable properties and would better fit with the current fuel distribution infrastructure. Moreover, ethical concerns contradict the use of food and feed products as a biofuel source. Lignocellulosic biomass, especially when considered as a waste material offers an attractive alternative. However, the recalcitrance of these materials and the inability of microorganisms to efficiently ferment lignocellulosic hydrolysates still prevent the production of bioalcohols from these plentiful sources. Obviously, no known organism exist which combines all the properties necessary to be a sustainable bioalcohol producer. Therefore, breeding technologies, genetic engineering and the search for undiscovered species are promising means to provide a microorganism exhibiting high alcohol productivities and yields, converting all lignocellulosic sugars or are even able to use carbon dioxide or monoxide, and thereby being highly resistant to inhibitors and fermentation products, and easy to cultivate in huge bioreactors. In this review, we compare the properties of various microorganisms, bacteria and yeasts, as well as current research efforts to develop a reliable lignocellulosic bioalcohol producing organism. (orig.)

  19. Optimization of enzyme parameters for fermentative production of biorenewable fuels and chemicals

    Directory of Open Access Journals (Sweden)

    Ping Liu

    2012-10-01

    Full Text Available Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of where knowledge of these parameters have been used to select, evolve or engineer enzymes for the desired performance and enabled increased production of biorenewable fuels and chemicals. Examples include production of ethanol, isobutanol, 1-butanol and tyrosine and furfural tolerance. The Michaelis-Menten parameters can also be used to judge the cofactor dependence of enzymes and quantify their preference for NADH or NADPH. Similarly, enzymes can be selected, evolved or engineered for the preferred cofactor preference. Examples of exporter engineering and selection are also discussed in the context of production of malate, valine and limonene.

  20. Optimization of double chamber microbial fuel cell for domestic wastewater treatment and electricity production

    Institute of Scientific and Technical Information of China (English)

    Amr El-Hag Ali; Ola M Gomaa; Reham Fathey; Hussein Abd El Kareem; Mohamed Abou Zaid

    2015-01-01

    Microbial fuel cells ( MFCs) represent a new approach for treating waste water along with electricity production. The present study addressed electricity production from domestic wastewater using a mediator-less double chamber MFC. The electricity production was monitored under different operational conditions for both summer and winter samples. Optimization of the anodic and cathodic chambers resulted in a maximal current of 0. 784 and 0. 645 mA with the maximal power intensity of 209 and 117 mW/m2 in power duration of 24 h for the summer and winter samples, respectively. Scanning electron microscopy showed that the bacterial biofilm formation on the anode was denser for the summer sample than that when the winter sample was used, so was the total bacterial count. Therefore, samples taken during summer were considered better in electricity production and waste water treatment than those taken during winter basically because of the high microbial load during the hot season. In parallel, there was a decrease in both biological oxygen demand ( BOD5 ) and chemical oxygen demand ( COD) values which reached 71. 8% and 72. 85%, respectively at the end of the operation process for the summer sample, while there was no evident decrease for the winter sample. Optimizing the operating conditions not only increased the potential of using domestic waste water in microbial fuel cells to produce electricity, but also improved the quality of the domestic waste water.

  1. A theoretical study of volatile fission products release from oxide fuels

    Energy Technology Data Exchange (ETDEWEB)

    Paraschiv, M.C.; Paraschiv, A. [Inst. for Nucl. Res., Pitesti (Romania); Grecu, V.V. [University of Bucharest, Faculty of Physics, P.O. Box MG-11, Bucharest (Romania)

    1999-11-01

    Treating the average volume grains as thermodynamically closed subsystems, a method to evaluate the volatile fission products migration at the grain boundary and their release in the void volume of the fuel elements is proposed. The method considers the phenomena of the intergranular bubble growth and interlinkage, grain growth and grain boundary resolution. Analytical solutions of the diffusion problem associated with the volatile fission products behaviour taking into account their direct yield from fission and from precursors simultaneously with the diffusion and decay, irradiation induced resolution and fuel grain growth, during a time-step varying irradiation history have also been derived. The results are very accurate and point out the strong effect of the boundary condition changes on the volatile fission products behaviour when the simultaneous effects of the intergranular bubble coalescence, the precursors, the irradiation induced resolution and grain growth are considered. Comparative analyses versus other similar models of the diffusion of only stable gas species of fission products are also presented. (orig.)

  2. OPTIMIZATION OF ENZYME PARAMETERS FOR FERMENTATIVE PRODUCTION OF BIORENEWABLE FUELS AND CHEMICALS

    Directory of Open Access Journals (Sweden)

    Laura R. Jarboe

    2012-10-01

    Full Text Available Microbial biocatalysts such as Escherichia coli and Saccharomyces cerevisiae have been extensively subjected to Metabolic Engineering for the fermentative production of biorenewable fuels and chemicals. This often entails the introduction of new enzymes, deletion of unwanted enzymes and efforts to fine-tune enzyme abundance in order to attain the desired strain performance. Enzyme performance can be quantitatively described in terms of the Michaelis-Menten type parameters Km, turnover number kcat and Ki, which roughly describe the affinity of an enzyme for its substrate, the speed of a reaction and the enzyme sensitivity to inhibition by regulatory molecules. Here we describe examples of where knowledge of these parameters have been used to select, evolve or engineer enzymes for the desired performance and enabled increased production of biorenewable fuels and chemicals. Examples include production of ethanol, isobutanol, 1-butanol and tyrosine and furfural tolerance. The Michaelis-Menten parameters can also be used to judge the cofactor dependence of enzymes and quantify their preference for NADH or NADPH. Similarly, enzymes can be selected, evolved or engineered for the preferred cofactor preference. Examples of exporter engineering and selection are also discussed in the context of production of malate, valine and limonene.

  3. Renewable sustainable biocatalyzed electricity production in a photosynthetic algal microbial fuel cell (PAMFC).

    Science.gov (United States)

    Strik, David P B T B; Terlouw, Hilde; Hamelers, Hubertus V M; Buisman, Cees J N

    2008-12-01

    Electricity production via solar energy capturing by living higher plants and microalgae in combination with microbial fuel cells are attractive because these systems promise to generate useful energy in a renewable, sustainable, and efficient manner. This study describes the proof of principle of a photosynthetic algal microbial fuel cell (PAMFC) based on naturally selected algae and electrochemically active microorganisms in an open system and without addition of instable or toxic mediators. The developed solar-powered PAMFC produced continuously over 100 days renewable biocatalyzed electricity. The sustainable performance of the PAMFC resulted in a maximum current density of 539 mA/m2 projected anode surface area and a maximum power production of 110 mW/m2 surface area photobioreactor. The energy recovery of the PAMFC can be increased by optimization of the photobioreactor, by reducing the competition from non-electrochemically active microorganisms, by increasing the electrode surface and establishment of a further-enriched biofilm. Since the objective is to produce net renewable energy with algae, future research should also focus on the development of low energy input PAMFCs. This is because current algae production systems have energy inputs similar to the energy present in the outcoming valuable products.

  4. Low-Carbon Fuel and Chemical Production by Anaerobic Gas Fermentation.

    Science.gov (United States)

    Daniell, James; Nagaraju, Shilpa; Burton, Freya; Köpke, Michael; Simpson, Séan Dennis

    World energy demand is expected to increase by up to 40% by 2035. Over this period, the global population is also expected to increase by a billion people. A challenge facing the global community is not only to increase the supply of fuel, but also to minimize fossil carbon emissions to safeguard the environment, at the same time as ensuring that food production and supply is not detrimentally impacted. Gas fermentation is a rapidly maturing technology which allows low carbon fuel and commodity chemical synthesis. Unlike traditional biofuel technologies, gas fermentation avoids the use of sugars, relying instead on gas streams rich in carbon monoxide and/or hydrogen and carbon dioxide as sources of carbon and energy for product synthesis by specialized bacteria collectively known as acetogens. Thus, gas fermentation enables access to a diverse array of novel, large volume, and globally available feedstocks including industrial waste gases and syngas produced, for example, via the gasification of municipal waste and biomass. Through the efforts of academic labs and early stage ventures, process scale-up challenges have been surmounted through the development of specialized bioreactors. Furthermore, tools for the genetic improvement of the acetogenic bacteria have been reported, paving the way for the production of a spectrum of ever-more valuable products via this process. As a result of these developments, interest in gas fermentation among both researchers and legislators has grown significantly in the past 5 years to the point that this approach is now considered amongst the mainstream of emerging technology solutions for near-term low-carbon fuel and chemical synthesis.

  5. Biomass based energy combines with motor fuel production; Biobraenslebaserade energikombinat med tillverkning av drivmedel

    Energy Technology Data Exchange (ETDEWEB)

    Goldschmidt, Barbara

    2005-01-01

    In the report the state of development of production processes for various motor fuels, such as FT diesel, methanol , DME and ethanol, from biomass is reviewed. Biomass and black liquor gasification processes as well as processes for ethanol production from lignocellulosic biomass are discussed. The processes are complicated and still not very well tried in their whole context. The gas cleaning steps, which are necessary to reach acceptable catalyst lifetimes in the motor fuel production processes based on gasification, have been tested in the oil industry and to some extent in coal gasification plants, but not with syngas from biomass or black liquor gasification. For black liquor gasification particularly, also material selection and material lifetime issues remain to be solved. For ethanol production from lignocellulosic biomass process development is needed, to increase the yield in the pre-treatment, hydrolysis and fermentation steps. The energy yields of the processes are dependent on the degree of complexity of the processes, as well as on the integration and balancing of energy demanding steps and steps with energy surplus. This is especially valid for the processes based on gasification, due to high temperatures in the gasifier and some of the catalytic steps, but also for the ethanol process, which benefit from optimal steam integration in the evaporation and distillation steps. Also steam integration with cogeneration plants, or for black liquor gasification with pulp mills, improves the overall energy balance. In addition, the energy yield when motor fuels are produced by gasification is dependent on the usage of the off-gas. The efficiency is improved when the off-gas is burned in a boiler or gas turbine, than when it is flared. In the report examples are given of processes with and without integration.

  6. Coal-water slurry fuel production: Its evolution and current status in the United States

    Energy Technology Data Exchange (ETDEWEB)

    Morrison, J.L.; Miller, B.G.; Scaroni, A.W. [Pennsylvania State Univ., University Park, PA (United States)

    1997-12-31

    Interest in the US in utilizing bituminous coal in a slurry form has evolved substantially over the last two decades. In the mid-1970`s, technologies to utilize coal-oil mixtures (COMs) as potential fuel oil replacements for utility and industrial boilers were developed as a consequence of escalating world oil prices. To further reduce dependency on imported oil, interest shifted away from COMs to coal-water slurry fuels (CWSFs) because higher solids loadings were obtainable while eliminating the use of oil. Research which focused on the use of CWSF as a potential fuel oil replacement peaked in the mid to late-1980`s as a result of a decline in world oil prices. During the late 1980`s and early 1990`s, coal suppliers and coal-fired utilities began to evaluate the production of CWSF using bituminous coal fines from fine coal cleaning circuits in an effort to reduce dewatering/drying costs. This marked a philosophical change in the driving force behind the utilization of CWSF in the US. In an effort to broaden the supply of coal fines, The Pennsylvania State University (Penn State) and the Pennsylvania Electric Company (Penelec) surveyed a series of fine coal impoundments in western Pennsylvania to determine the quality, cleanability, and slurryability of the coal fines contained therein. The development and commercialization of recovery technologies, cleaning techniques, and CWSF reentrainment circuits, coupled with an interest by utilities to utilize low-cost fuels, has fostered the recovery of impounded coal fines. In addition to the fine coal impoundments, fine coal cleaning circuits which actively dispose of process water having suspended coal fines (e.g. centrifuge effluent) are being examined to determine if the fines can be recovered and thickened into a low solids CWSF. The paper describes required physical and chemical properties of a CWSF for boiler applications. There is a growing awareness that CWSF is a fuel form that can be cofired with coal. The

  7. Production of Solid Fuel by Torrefaction Using Coconut Leaves As Renewable Biomass

    Directory of Open Access Journals (Sweden)

    Lola Domnina Bote Pestaño

    2016-11-01

    Full Text Available The reserves of non-renewable energy sources such as coal, crude oil and natural gas are not limitless, they gradually get exhausted and their price continually increases. In the last four decades, researchers have been focusing on alternate fuel resources to meet the ever increasing energy demand and to avoid dependence on crude oil. Amongst different sources of renewable energy, biomass residues hold special promise due to their inherent capability to store solar energy and amenability to subsequent conversion to convenient solid, liquid and gaseous fuels. At present, among the coconut farm wastes such as husks, shell, coir dust and coconut leaves, the latter is considered the most grossly under-utilized by in situ burning in the coconut farm as means of disposal. In order to utilize dried coconut leaves and to improve its biomass properties, this research attempts to produce solid fuel by torrefaction using dried coconut leaves for use as alternative source of energy. Torrefaction is a thermal method for the conversion of biomass operating in the low temperature range of 200oC-300oC under atmospheric conditions in absence of oxygen. Dried coconut leaves were torrefied at different feedstock conditions. The key torrefaction products were collected and analyzed. Physical and combustion characteristics of both torrefied and untorrefied biomass were investigated. Torrefaction of dried coconut leaves significantly improved the heating value compared to that of the untreated biomass.  Proximate compositions of the torrefied biomass also improved and were comparable to coal. The distribution of the products of torrefaction depends highly on the process conditions such as torrefaction temperature and residence time. Physical and combustion characteristics of torrefied biomass were superior making it more suitable for fuel applications. Article History: Received June 24th 2016; Received in revised form August 16th 2016; Accepted 27th 2016; Available

  8. Life cycle assessment of the production of hydrogen and transportation fuels from corn stover via fast pyrolysis

    Science.gov (United States)

    Zhang, Yanan; Hu, Guiping; Brown, Robert C.

    2013-06-01

    This life cycle assessment evaluates and quantifies the environmental impacts of the production of hydrogen and transportation fuels from the fast pyrolysis and upgrading of corn stover. Input data for this analysis come from Aspen Plus modeling, a GREET (Greenhouse Gases, Regulated Emissions, and Energy Use in Transportation) model database and a US Life Cycle Inventory Database. SimaPro 7.3 software is employed to estimate the environmental impacts. The results indicate that the net fossil energy input is 0.25 MJ and 0.23 MJ per km traveled for a light-duty vehicle fueled by gasoline and diesel fuel, respectively. Bio-oil production requires the largest fossil energy input. The net global warming potential (GWP) is 0.037 kg CO2eq and 0.015 kg CO2eq per km traveled for a vehicle fueled by gasoline and diesel fuel, respectively. Vehicle operations contribute up to 33% of the total positive GWP, which is the largest greenhouse gas footprint of all the unit processes. The net GWPs in this study are 88% and 94% lower than for petroleum-based gasoline and diesel fuel (2005 baseline), respectively. Biomass transportation has the largest impact on ozone depletion among all of the unit processes. Sensitivity analysis shows that fuel economy, transportation fuel yield, bio-oil yield, and electricity consumption are the key factors that influence greenhouse gas emissions.

  9. Effects of Fuel Aromatic Content on Nonvolatile Particulate Emissions of an In-Production Aircraft Gas Turbine.

    Science.gov (United States)

    Brem, Benjamin T; Durdina, Lukas; Siegerist, Frithjof; Beyerle, Peter; Bruderer, Kevin; Rindlisbacher, Theo; Rocci-Denis, Sara; Andac, M Gurhan; Zelina, Joseph; Penanhoat, Olivier; Wang, Jing

    2015-11-17

    Aircraft engines emit particulate matter (PM) that affects the air quality in the vicinity of airports and contributes to climate change. Nonvolatile PM (nvPM) emissions from aircraft turbine engines depend on fuel aromatic content, which varies globally by several percent. It is uncertain how this variability will affect future nvPM emission regulations and emission inventories. Here, we present black carbon (BC) mass and nvPM number emission indices (EIs) as a function of fuel aromatic content and thrust for an in-production aircraft gas turbine engine. The aromatics content was varied from 17.8% (v/v) in the neat fuel (Jet A-1) to up to 23.6% (v/v) by injecting two aromatic solvents into the engine fuel supply line. Fuel normalized BC mass and nvPM number EIs increased by up to 60% with increasing fuel aromatics content and decreasing engine thrust. The EIs also increased when fuel naphthalenes were changed from 0.78% (v/v) to 1.18% (v/v) while keeping the total aromatics constant. The EIs correlated best with fuel hydrogen mass content, leading to a simple model that could be used for correcting fuel effects in emission inventories and in future aircraft engine nvPM emission standards.

  10. A novel biochemical route for fuels and chemicals production from cellulosic biomass.

    Directory of Open Access Journals (Sweden)

    Zhiliang Fan

    Full Text Available The conventional biochemical platform featuring enzymatic hydrolysis involves five key steps: pretreatment, cellulase production, enzymatic hydrolysis, fermentation, and product recovery. Sugars are produced as reactive intermediates for subsequent fermentation to fuels and chemicals. Herein, an alternative biochemical route is proposed. Pretreatment, enzymatic hydrolysis and cellulase production is consolidated into one single step, referred to as consolidated aerobic processing, and sugar aldonates are produced as the reactive intermediates for biofuels production by fermentation. In this study, we demonstrate the viability of consolidation of the enzymatic hydrolysis and cellulase production steps in the new route using Neurospora crassa as the model microorganism and the conversion of cellulose to ethanol as the model system. We intended to prove the two hypotheses: 1 cellulose can be directed to produce cellobionate by reducing β-glucosidase production and by enhancing cellobiose dehydrogenase production; and 2 both of the two hydrolysis products of cellobionate--glucose and gluconate--can be used as carbon sources for ethanol and other chemical production. Our results showed that knocking out multiple copies of β-glucosidase genes led to cellobionate production from cellulose, without jeopardizing the cellulose hydrolysis rate. Simulating cellobiose dehydrogenase over-expression by addition of exogenous cellobiose dehydrogenase led to more cellobionate production. Both of the two hydrolysis products of cellobionate: glucose and gluconate can be used by Escherichia coli KO 11 for efficient ethanol production. They were utilized simultaneously in glucose and gluconate co-fermentation. Gluconate was used even faster than glucose. The results support the viability of the two hypotheses that lay the foundation for the proposed new route.

  11. Carbon-13 and proton nuclear magnetic resonance analysis of shale-derived refinery products and jet fuels and of experimental referee broadened-specification jet fuels

    Science.gov (United States)

    Dalling, D. K.; Bailey, B. K.; Pugmire, R. J.

    1984-01-01

    A proton and carbon-13 nuclear magnetic resonance (NMR) study was conducted of Ashland shale oil refinery products, experimental referee broadened-specification jet fuels, and of related isoprenoid model compounds. Supercritical fluid chromatography techniques using carbon dioxide were developed on a preparative scale, so that samples could be quantitatively separated into saturates and aromatic fractions for study by NMR. An optimized average parameter treatment was developed, and the NMR results were analyzed in terms of the resulting average parameters; formulation of model mixtures was demonstrated. Application of novel spectroscopic techniques to fuel samples was investigated.

  12. Biological production of liquid fuels from biomass. Annual report, September 1, 1978-August 31, 1979

    Energy Technology Data Exchange (ETDEWEB)

    Pye, E.K.; Humphrey, A.E.

    1979-01-01

    The production of liquid fuels from renewable resources such as poplar wood and lignocellulosic wastes from a refuse hydropulper were studied. The particular scheme being studied involves the conversion of a cellulosic residue, resulting from a solvent delignified lignocellulosic feed, into either high concentration sugar syrups or into ethyl and/or butyl alcohol. The process is aimed at achieving total raw material utilization and maximization of high value by-product recovery. Specific goals of the investigation are the demonstration of the process technical feasibility and economic practicality and its optimization for maximum economic yield and efficiency. The construction of a pilot apparatus for solvent delignifying 150g samples of lignocellulosic feeds has been completed. Also, an analysis method for characterizing the delignified product has been selected and tested. Delignified samples are now being prepared and tested for their extent of delignification and susceptibility to enzyme hydrolysis.

  13. Return of investment and profitability analysis of bio-fuels production using a modeling approach

    Directory of Open Access Journals (Sweden)

    Yangyang Deng

    2016-06-01

    Full Text Available The objectives of this study were to evaluate the return of investment and profitability of a bio-gasification facility using a modeling method. Based on preliminary market analysis, the results determined that the power facilities driven by biomass gasifiers could be profitable if they consider the most sensitive cost factors such as labor, project investment, and feedstock supply. The result showed that economic feasibility of bio-gasification facility can significantly affect by its production capacity and operating modes (one shift, two shifts, or three shifts. The cost analysis modeling approach developed in this study could be a good approach for economic analysis of bio-syngas and bio-fuel products. In addition, this study demonstrated a unique modeling approach to analyze return of investment and profitability of biofuels production.

  14. Carbon neutral electricity production by Synechocystis sp. PCC6803 in a microbial fuel cell.

    Science.gov (United States)

    Madiraju, Kartik S; Lyew, Darwin; Kok, Robert; Raghavan, Vijaya

    2012-04-01

    The aim of this work was to illustrate the use of photosynthetic microbes in a microbial fuel cell to produce electricity without the requirement of an external carbon source. This research here describes the use of a cyanobacterium Synechocystis PCC6803, to produce electricity without any net CO(2) production in a two-chambered MFC. Conditions for optimum electricity production were determined through standardizing operating parameters. A maximum power density of 6.7mWm(-3)(anode chamber volume) was achieved under high intensity lighting (10,000lux). Light intensity and wavelength directly affected electricity production, indicating the pivotal role played by photosynthesis. The maximum removal of CO(2) was 625mmolm(-3) over 20h under high intensity light. The results presented here will contribute to the understanding of how cyanobacteria can be exploited for the direct conversion of CO(2) to electric current. Copyright © 2012 Elsevier Ltd. All rights reserved.

  15. Benefits analysis for the production of fuels and chemicals using solar thermal energy. Final report

    Energy Technology Data Exchange (ETDEWEB)

    None

    1982-05-01

    Numerous possibilities exist for using high temperature solar thermal energy in the production of various chemicals and fuels (Sun Fuels). Research and development activities have focused on the use of feedstocks such as coal and biomass to provide synthesis gas, hydrogen, and a variety of other end-products. A Decision Analysis technique geared to the analysis of Sun Fuels options was developed. Conventional scoring methods were combined with multi-attribute utility analysis in a new approach called the Multi-Attribute Preference Scoring (MAPS) system. MAPS calls for the designation of major categories of attributes which describe critical elements of concern for the processes being examined. The six major categories include: Process Demonstration; Full-Scale Process, Feedstock; End-Product Market; National/Social Considerations; and Economics. MAPS calls for each attribute to be weighted on a simple scale for all of the candidate processes. Next, a weight is assigned to each attribute, thus creating a multiplier to be used with each individual value to derive a comparative weighting. Last, each of the categories of attributes themselves are weighted, thus creating another multiplier, for use in developing an overall score. With sufficient information and industry input, each process can be ultimately compared using a single figure of merit. After careful examination of available information, it was decided that only six of the 20 candidate processes were adequately described to allow a complete MAPS analysis which would allow direct comparisons for illustrative purposes. These six processes include three synthesis gas processes, two hydrogen and one ammonia. The remaining fourteen processes were subjected to only a partial MAPS assessment.

  16. Geometrical α- and β-dose distributions and production rates of radiolysis products in water in contact with spent nuclear fuel

    Science.gov (United States)

    Nielsen, Fredrik; Jonsson, Mats

    2006-12-01

    A mathematical model for the dose distribution and production rates of radiolysis products in water surrounding spent nuclear fuel has been developed, based on the geometrical and energetic properties of radiation. The nuclear fuel particle is divided into layers, from which the radiation emits. The water is likewise divided into layers, where the doses are distributed. The doses are stored in vectors which are added to determine the total dose rate. A complete inventory with over 200 radionuclides has been used as input data for the model. The purpose of the model is to describe the geometrical dose distribution as a function of fuel age and burn-up, to be used as input data for kinetic modeling of the fuel dissolution. The results show that the β-dose contribution close to the spent fuel surface is negligible. Also, the variation in the relative α/β dose contribution between different ages and burn-ups is insignificant. The α- and β-dose rates vary between different burn-ups of the same age; the younger the fuel is, the larger is the difference. Exponential functions have been fitted to the relations between fuel age and average dose rate, giving useful expressions for determining average dose rates for fuel ages other than those covered in this work.

  17. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2003-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of transportation fuel from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, Energy International, the Department of Defense, and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the first six months of the subject contract (DE-FC26-02NT-4159), from October 1, 2002 through March 31, 2003.

  18. Gas and liquid phase fuels desulphurization for hydrogen production via reforming processes

    Energy Technology Data Exchange (ETDEWEB)

    Hoguet, Jean-Christophe; Karagiannakis, George P.; Valla, Julia A.; Agrafiotis, Christos C. [Aerosol and Particle Technology Laboratory, CERTH/CPERI, P.O. Box 361, 57001 Thermi, Thessaloniki (Greece); Konstandopoulos, Athanasios G. [Aerosol and Particle Technology Laboratory, CERTH/CPERI, P.O. Box 361, 57001 Thermi, Thessaloniki (Greece); Department of Chemical Engineering, Aristotle University, P.O. Box 1517, 54006 Thessaloniki (Greece)

    2009-06-15

    The present work focuses on the development of efficient desulphurization processes for multi-fuel reformers for hydrogen production. Two processes were studied: liquid hydrocarbon desulphurization and H{sub 2}S removal from reformate gases. For each process, materials with various chemical compositions and microporous structures were synthesized and characterized with respect to their physicochemical properties and desulphurization ability. In the case of liquid phase desulphurization, the adsorption of sulphur compounds contained in diesel fuel under ambient conditions was studied employing as sorbents, zeolite-based materials, i.e. NaY, HY and metal ion-exchanged NaY and HY, as well as a high-surface area activated carbon (AC), for three different diesel fuels with sulphur content varying between 5 and 180 ppmw. Among all sorbents studied, AC showed the best desulphurization performance followed by cerium ion-exchanged HY. The gas phase desulphurization experiments involved the evaluation of zinc-based mixed oxides, synthesized by non-conventional (combustion synthesis) techniques on high steam content reformate gas mixtures. (author)

  19. C1 Chemistry for the Production of Ultra-Clean Liquid Transportation Fuels and Hydrogen

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2005-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  20. C1 CHEMISTRY FOR THE PRODUCTION OF ULTRA-CLEAN LIQUID TRANSPORTATION FUELS AND HYDROGEN

    Energy Technology Data Exchange (ETDEWEB)

    Gerald P. Huffman

    2004-03-31

    Faculty and students from five universities--the University of Kentucky, University of Pittsburgh, University of Utah, West Virginia University, and Auburn University--are collaborating in a research program to develop C1 chemistry processes to produce ultra-clean liquid transportation fuels and hydrogen, the zero-emissions transportation fuel of the future. The feedstocks contain one carbon atom per molecular unit. They include synthesis gas (syngas), a mixture of carbon monoxide and hydrogen produced by coal gasification or reforming of natural gas, methane, methanol, carbon dioxide, and carbon monoxide. An important objective is to develop C1 technology for the production of liquid transportation fuel and hydrogen from domestically plentiful resources such as coal, coalbed methane, and natural gas. An Industrial Advisory Board with representatives from Chevron-Texaco, Eastman Chemical, Conoco-Phillips, the Air Force Research Laboratory, the U.S. Army National Automotive Center (Tank & Automotive Command--TACOM), and Tier Associates provides guidance on the practicality of the research. The current report presents results obtained in this research program during the six months of the subject contract from October 1, 2002 through March 31, 2003. The results are presented in thirteen detailed reports on research projects headed by various faculty members at each of the five CFFS Universities. Additionally, an Executive Summary has been prepared that summarizes the principal results of all of these projects during the six-month reporting period.

  1. Solid Waste from Swine Wastewater as a Fuel Source for Heat Production

    Directory of Open Access Journals (Sweden)

    Myung-Ho Park

    2012-11-01

    Full Text Available This study was to evaluate the feasibility of recycling the solids separated from swine wastewater treatment process as a fuel source for heat production and to provide a data set on the gas emissions and combustion properties. Also, in this study, the heavy metals in ash content were analyzed for its possible use as a fertilizer. Proximate analysis of the solid recovered from the swine wastewater after flocculation with organic polymer showed high calorific (5,330.50 kcal/kg and low moisture (15.38% content, indicating that the solid separated from swine wastewater can be used as an alternative fuel source. CO and NOx emissions were found to increase with increasing temperature. Combustion efficiency of the solids was found to be stable (95 to 98% with varied temperatures. Thermogravimetry (TG and differential thermal analysis (DTA showed five thermal effects (four exothermic and one endothermic, and these effects were distinguished in three stages, water evaporation, heterogeneous combustion of hydrocarbons and decomposition reaction. Based on the calorific value and combustion stability results, solid separated from swine manure can be used as an alternative source of fuel, however further research is still warranted regarding regulation of CO and NOx emissions. Furthermore, the heavy metal content in ash was below the legal limits required for its usage as fertilizer.

  2. Gasification for fuel production in large and small scale polygeneration plants; Foergasning foer braensleproduktion i stor- och smaaskaliga energikombinat

    Energy Technology Data Exchange (ETDEWEB)

    Rodin, Jennie; Wennberg, Olle

    2010-09-15

    This report investigates the possibility of integrating biofuel production through gasification with an existing energy production system. Previous work within Vaermeforsk (report 904, 1012) has concluded that gasification for motor fuel production as a part of a polygeneration plant seems promising when looking at the energy efficiency. However, comparable data between different types of integration, energy plants and fuels was found to be needed in order to get a better understanding of how a gasifier would affect an energy system. The systems studied are the heat- and power production of a bigger city (Goeteborg) and a medium sized city (Eskilstuna), and a pulp mill (Soedra Cell Vaeroe). The latter already runs a commercial gasifier for burner gas production, where the gas is used in the lime kiln. The different types of polygeneration plants have been studied by setting up and evaluating mass- and energy balances for each system. The fuel products that are looked upon in this project are DME, methane, methanol and burner gas. The burner gas is used on site. The case studies have been evaluated based on energy efficiency for fuel production, electricity and district heating. The efficiency is foremost calculated for the higher heating value. In the case of the boiler integrated gasifier in Eskilstuna, the efficiencies have been calculated on the marginal fuel. We have also let the district heating remain unchanged

  3. Plasma assisted fuel reforming for on-board hydrogen rich gas production

    OpenAIRE

    Darmon, Adeline; Rollier, Jean-Damien; Duval, Emmanuelle; Gonzalez-Aguilar, Jose; Metkemeijer, Rudolf; Fulcheri, Laurent

    2006-01-01

    Texte disponible en suivant le lien ci-dessous : http://www.cder.dz/A2H2/Medias/Download/Proc%20PDF/PARALLEL%20SESSIONS/%5BS06%5D%20Production%20-%20Hydrocarbons/14-06-06/162.pdf; International audience; Plasma assisted fuel reforming technology appears particularly attractive for automotive applications, especially regarding compactness, response time and absence of catalyst element. In 2003, Renault and CEP have initiated a research programme on this subject. A test bench allowing reformer ...

  4. Environmental Assessment of Integrated Food and Cooking Fuel Production for a Village in Ghana

    DEFF Research Database (Denmark)

    Kamp, Andreas; Østergård, Hanne; Bolwig, Simon

    2016-01-01

    Small-scale farming in Ghana is typically associated with synthetic fertilizer dependence and soil degradation. The farmers often rely on wood fuel for cooking imported from outside the farmland, a practice that is associated with deforestation. Integration of food and energy production may be a ......). Systematic recycling and use of local resources may play a pivotal role in reducing the dependence on non-renewable resources in Ghanaian farming,ensuring long-term soil fertility and stemming the current deforestation of wood reserves....

  5. Formation of Liquid Products at the Filtration Combustion of Solid Fuels

    Directory of Open Access Journals (Sweden)

    E. A. Salgansky

    2016-01-01

    Full Text Available Yields of liquid and gaseous products of the filtration combustion of cellulose, wood, peat, coal, and rubber have been investigated. Experiments have shown that the gasification of solid fuels in the regime with superadiabatic heating yields liquid hydrocarbons with quantity and quality, which are close to those produced using other methods, for example, by pyrolysis. But in this case no additional energy supply is needed to carry out the gasification process. The low calorific combustible gas, which forms in this process, contains a substantial quantity of carbon monoxide and hydrogen, which are components of syngas.

  6. Study on the production of alternative fuels by carbon dioxide hydrogenation

    Energy Technology Data Exchange (ETDEWEB)

    Sim, Kyu Sung; Han, Sang Do; Kim, Jong Won; Kim, Youn Soon; Seo, Ji Mi [Korea Inst. of Energy Research, Taejon (Korea, Republic of)

    1995-12-01

    The technologies of the fuel production from carbon dioxide by catalytic hydrogenation were surveyed. For the catalytic hydrogenation we made the lab-scale reaction apparatus and carried out some experiments with various catalysts like CuO/ZnO/Al{sub 2}O{sub 3}, Raney nickel and other commercial catalysts. In this year, the third year of the project, the experiments to find optimum catalysts and obtain the good conditions of carbon dioxide were performed followed by second year. And also the processes of the methanol synthesis was investigated simultaneously. (author). 58 refs., 58 figs., 28 tabs.

  7. SOEC pathways for the production of synthetic fuels: The transport case

    Energy Technology Data Exchange (ETDEWEB)

    Ridjan, I.; Vad Mathiesen, B.; Connolly, D. [Aalborg Univ., Aalborg (Denmark)

    2013-08-15

    The focus of this report is analysis of Solid Oxide Electrolyser Cells (SOECs) in the future energy systems. The technical and socio-economic effects of various SOEC application scenarios on the future renewable energy systems are analysed, feasible or ideal locations are identified and recommended, and the competitive strengths and possible weaknesses of the SOEC technology in comparison with other competing technologies are evaluated. This resulted in a detailed overview of technologies involved in the production cycle of synthetic fuels, description of the proposed pathways and the architecture of the system. (Author)

  8. World Biofuels Production Potential Understanding the Challenges to Meeting the U.S. Renewable Fuel Standard

    Energy Technology Data Exchange (ETDEWEB)

    Sastri, B.; Lee, A.

    2008-09-15

    This study by the U.S. Department of Energy (DOE) estimates the worldwide potential to produce biofuels including biofuels for export. It was undertaken to improve our understanding of the potential for imported biofuels to satisfy the requirements of Title II of the 2007 Energy Independence and Security Act (EISA) in the coming decades. Many other countries biofuels production and policies are expanding as rapidly as ours. Therefore, we modeled a detailed and up-to-date representation of the amount of biofuel feedstocks that are being and can be grown, current and future biofuels production capacity, and other factors relevant to the economic competitiveness of worldwide biofuels production, use, and trade. The Oak Ridge National Laboratory (ORNL) identified and prepared feedstock data for countries that were likely to be significant exporters of biofuels to the U.S. The National Renewable Energy Laboratory (NREL) calculated conversion costs by conducting material flow analyses and technology assessments on biofuels technologies. Brookhaven National Laboratory (BNL) integrated the country specific feedstock estimates and conversion costs into the global Energy Technology Perspectives (ETP) MARKAL (MARKet ALlocation) model. The model uses least-cost optimization to project the future state of the global energy system in five year increments. World biofuels production was assessed over the 2010 to 2030 timeframe using scenarios covering a range U.S. policies (tax credits, tariffs, and regulations), as well as oil prices, feedstock availability, and a global CO{sub 2} price. All scenarios include the full implementation of existing U.S. and selected other countries biofuels policies (Table 4). For the U.S., the most important policy is the EISA Title II Renewable Fuel Standard (RFS). It progressively increases the required volumes of renewable fuel used in motor vehicles (Appendix B). The RFS requires 36 billion (B) gallons (gal) per year of renewable fuels by 2022

  9. Comparison of Marine Microalgae Culture Systems for Fuels Production and Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, Joseph C; Polle, Juergen

    2006-05-30

    The dual problems of global fossil fuels supplies and global warming focus attention on the need to develop technologies that can provide large amounts of renewable fuels without contributing to global warming. The capture of power plant flue gas CO2 using microalgae cultures is one potential technology that could meet this objective. The central R&D issues are the design and operation of low-cost algal mass culture systems and the development of algal strains and cultivation techniques that can achieve very high biomass productivities. The major objective of this project was to develop mass culture techniques that could result in greatly increased biomass productivities, well above the about 50 metric tons per hectare per year (mt/ha/y) currently achievable. In this project, two marine microalgae species, the diatom Cyclotella sp.. and the green alga Tetraselmis sp., were cultivated on seawater in both open ponds and closed photo bioreactors, under a variety of different cultivation conditions. Simultaneous operation of the closed photo bioreactors and open ponds demonstrated similar productivities, under the same operating conditions. Thus the very expensive closed systems do not provide any major or inherent advantages in microalgae production over open ponds. Mutants of Cyclotella sp. were developed that exhibited reduced pigment content, which theoretically would result in greatly increased productivities when grown under full sunlight. However, in open ponds, these mutant strains exhibited similar productivities as the parental strains. The mutant strains all grew relatively slowly, suggesting that additional mutations masked whatever inherent potential for increased productivities may have resulted from the reduced pigment content. Research is still required to develop improved low pigment strains. When open pond cultures were exposed to intermittent sunlight, by partially covering the ponds with slats, solar conversion efficiencies increased dramatically

  10. Comparison of Marine Microalgae Culture Systems for Fuels Production and Carbon Sequestration

    Energy Technology Data Exchange (ETDEWEB)

    Weissman, Joseph C. [SeaAg, Inc., Vero Beach, FL (United States); Polle, Juergen [SeaAg, Inc., Vero Beach, FL (United States)

    2006-05-30

    The dual problems of global fossil fuels supplies and global warming focus attention on the need to develop technologies that can provide large amounts of renewable fuels without contributing to global warming. The capture of power plant flue gas CO2 using microalgae cultures is one potential technology that could meet this objective. The central R&D issues are the design and operation of low-cost algal mass culture systems and the development of algal strains and cultivation techniques that can achieve very high biomass productivities. The major objective of this project was to develop mass culture techniques that could result in greatly increased biomass productivities, well above the about 50 metric tons per hectare per year (mt/ha/y) currently achievable. In this project, two marine microalgae species, the diatom Cyclotella sp.. and the green alga Tetraselmis sp., were cultivated on seawater in both open ponds and closed photo bioreactors, under a variety of different cultivation conditions. Simultaneous operation of the closed photo bioreactors and open ponds demonstrated similar productivities, under the same operating conditions. Thus the very expensive closed systems do not provide any major or inherent advantages in microalgae production over open ponds. Mutants of Cyclotella sp. were developed that exhibited reduced pigment content, which theoretically would result in greatly increased productivities when grown under full sunlight. However, in open ponds, these mutant strains exhibited similar productivities as the parental strains. The mutant strains all grew relatively slowly, suggesting that additional mutations masked whatever inherent potential for increased productivities may have resulted from the reduced pigment content. Research is still required to develop improved low pigment strains. When open pond cultures were exposed to intermittent sunlight, by partially covering the ponds with slats, solar conversion efficiencies increased

  11. The Royal Navy’s New-Generation Type 45 Destroyer. Acquisition Options and Implications

    Science.gov (United States)

    2002-01-01

    Future Offshore Patrol Vessel FPSO Floating Production, Storage and Offloading vessel xxiii xxiv The Royal Navy’s New-Generation Type 45 Destroyer FSC...the conversion of a Floating Production, Storage and Offloading ( FPSO ) vessel, and a naval order for two Alternative Landing Ships Logistics (ALSL...Frigates, various Marine (OPVs) for Royal Brunei design work Navy Offshore SupplyVessel, ALSL, Landing Craft Utility, miscellaneous module and Auxiliary

  12. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  13. Fossil Fuels.

    Science.gov (United States)

    Crank, Ron

    This instructional unit is one of 10 developed by students on various energy-related areas that deals specifically with fossil fuels. Some topics covered are historic facts, development of fuels, history of oil production, current and future trends of the oil industry, refining fossil fuels, and environmental problems. Material in each unit may…

  14. Investigation of the Feasibility of Utilizing Gamma Emission Computed Tomography in Evaluating Fission Product Migration in Irradiated TRISO Fuel Experiments

    Energy Technology Data Exchange (ETDEWEB)

    Jason M. Harp; Paul A. Demkowicz

    2014-10-01

    In the High Temperature Gas-Cooled Reactor (HTGR) the TRISO particle fuel serves as the primary fission product containment. However the large number of TRISO particles present in proposed HTGRs dictates that there will be a small fraction (~10-4 to 10-5) of as manufactured and in-pile particle failures that will lead to some fission product release. The matrix material surrounding the TRISO particles in fuel compacts and the structural graphite holding the TRISO particles in place can also serve as sinks for containing any released fission products. However data on the migration of solid fission products through these materials is lacking. One of the primary goals of the AGR-3/4 experiment is to study fission product migration from failed TRISO particles in prototypic HTGR components such as structural graphite and compact matrix material. In this work, the potential for a Gamma Emission Computed Tomography (GECT) technique to non-destructively examine the fission product distribution in AGR-3/4 components and other irradiation experiments is explored. Specifically, the feasibility of using the Idaho National Laboratory (INL) Hot Fuels Examination Facility (HFEF) Precision Gamma Scanner (PGS) system for this GECT application is considered. To test the feasibility, the response of the PGS system to idealized fission product distributions has been simulated using Monte Carlo radiation transport simulations. Previous work that applied similar techniques during the AGR-1 experiment will also be discussed as well as planned uses for the GECT technique during the post irradiation examination of the AGR-2 experiment. The GECT technique has also been applied to other irradiated nuclear fuel systems that were currently available in the HFEF hot cell including oxide fuel pins, metallic fuel pins, and monolithic plate fuel.

  15. Pyrolytic conversion of lipid feeds for bio-chemical and bio-fuel production

    Energy Technology Data Exchange (ETDEWEB)

    Maher, K.D.; Kirkwood, K.M.; Bressler, D.C. [Alberta Univ., Edmonton, AB (Canada). Dept. of Agricultural, Food and Nutritional Sciences

    2009-07-01

    The production of renewable fuels and chemicals through pyrolysis of lipid feedstock was investigated with particular focus on the effect of unsaturation on thermal cracking behaviour and product distribution. The feasibility of producing deoxygenated liquid hydrocarbons for renewable fuel and chemical applications was studied using oleic acid and linoleic acid as unsaturated model free fatty acids. These were pyrolyzed in 15 mL batch micro-reactors under a nitrogen atmosphere. The analyzed products were compared to previous work investigating pyrolysis of a fully saturated free fatty acid, stearic acids, as well as fatty acids hydrolyzed from animal fats and vegetable oils. The primary reaction in oleic acid pyrolysis was decarboxylation to heptadecene and carbon dioxide, which is consistent with stearic acid pyrolysis. Some hydrogen addition was indicated by the presence of n-heptacecane. Cracking at the double bond was found to be a dominant reaction because only the C9 and lower alkane/alkenes were present in notable concentrations. In addition, the C10-C20 alkanes/alkenes were not easily distinguishable from other compounds that were found to be alkane isomers. The product mixture was highly influenced by reaction temperatures (350-500 degrees C) and time (0.5-8 hours). Lower temperatures and shorter reaction times resulted in low acid conversion. Although higher temperatures and longer reaction times increased conversion, they eventually caused degeneration into aromatic compounds. Pyrolysis of fatty acids from hydrolyzed beef tallow, poultry tallow and canola oil yielded a similar series of alkanes and alkenes where the product distribution was consistent with an additive effect of the constituent saturated and unsaturated fatty acids.

  16. Electrocatalytic processing of renewable biomass-derived compounds for production of chemicals, fuels and electricity

    Science.gov (United States)

    Xin, Le

    The dual problems of sustaining the fast growth of human society and preserving the environment for future generations urge us to shift our focus from exploiting fossil oils to researching and developing more affordable, reliable and clean energy sources. Human beings had a long history that depended on meeting our energy demands with plant biomass, and the modern biorefinery technologies realize the effective conversion of biomass to production of transportation fuels, bulk and fine chemicals so to alleviate our reliance on fossil fuel resources of declining supply. With the aim of replacing as much non-renewable carbon from fossil oils with renewable carbon from biomass as possible, innovative R&D activities must strive to enhance the current biorefinery process and secure our energy future. Much of my Ph.D. research effort is centered on the study of electrocatalytic conversion of biomass-derived compounds to produce value-added chemicals, biofuels and electrical energy on model electrocatalysts in AEM/PEM-based continuous flow electrolysis cell and fuel cell reactors. High electricity generation performance was obtained when glycerol or crude glycerol was employed as fuels in AEMFCs. The study on selective electrocatalytic oxidation of glycerol shows an electrode potential-regulated product distribution where tartronate and mesoxalate can be selectively produced with electrode potential switch. This finding then led to the development of AEMFCs with selective production of valuable tartronate or mesoxalate with high selectivity and yield and cogeneration of electricity. Reaction mechanisms of electrocatalytic oxidation of ethylene glycol and 1,2-propanediol were further elucidated by means of an on-line sample collection technique and DFT modeling. Besides electro-oxidation of biorenewable alcohols to chemicals and electricity, electrocatalytic reduction of keto acids (e.g. levulinic acid) was also studied for upgrading biomass-based feedstock to biofuels while

  17. Co-production of acetone and ethanol with molar ratio control enables production of improved gasoline or jet fuel blends.

    Science.gov (United States)

    Baer, Zachary C; Bormann, Sebastian; Sreekumar, Sanil; Grippo, Adam; Toste, F Dean; Blanch, Harvey W; Clark, Douglas S

    2016-10-01

    The fermentation of simple sugars to ethanol has been the most successful biofuel process to displace fossil fuel consumption worldwide thus far. However, the physical properties of ethanol and automotive components limit its application in most cases to 10-15 vol% blends with conventional gasoline. Fermentative co-production of ethanol and acetone coupled with a catalytic alkylation reaction could enable the production of gasoline blendstocks enriched in higher-chain oxygenates. Here we demonstrate a synthetic pathway for the production of acetone through the mevalonate precursor hydroxymethylglutaryl-CoA. Expression of this pathway in various strains of Escherichia coli resulted in the co-production of acetone and ethanol. Metabolic engineering and control of the environmental conditions for microbial growth resulted in controllable acetone and ethanol production with ethanol:acetone molar ratios ranging from 0.7:1 to 10.0:1. Specifically, use of gluconic acid as a substrate increased production of acetone and balanced the redox state of the system, predictively reducing the molar ethanol:acetone ratio. Increases in ethanol production and the molar ethanol:acetone ratio were achieved by co-expression of the aldehyde/alcohol dehydrogenase (AdhE) from E. coli MG1655 and by co-expression of pyruvate decarboxylase (Pdc) and alcohol dehydrogenase (AdhB) from Z. mobilis. Controlling the fermentation aeration rate and pH in a bioreactor raised the acetone titer to 5.1 g L(-1) , similar to that obtained with wild-type Clostridium acetobutylicum. Optimizing the metabolic pathway, the selection of host strain, and the physiological conditions employed for host growth together improved acetone titers over 35-fold (0.14-5.1 g/L). Finally, chemical catalysis was used to upgrade the co-produced ethanol and acetone at both low and high molar ratios to higher-chain oxygenates for gasoline and jet fuel applications. Biotechnol. Bioeng. 2016;113: 2079-2087. © 2016 Wiley

  18. Production of jet fuel using heavy crude oil; Producao de combustiveis de aviacao a partir de petroleos pesados

    Energy Technology Data Exchange (ETDEWEB)

    Om, Neyda [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Escola de Quimica; Cavado, Alberto; Reyes, Yordanka [Centro de Pesquisas do Petroleo, Cidade de Havana (Cuba); Dominguez, Zulema [Universidade Federal do Rio de Janeiro (UFRJ), RJ (Brazil). Coordenacao dos Programas de Pos-graduacao de Engenharia (COPPE)

    2004-07-01

    The production of heavy crude oils increased in the last years in the world. Crude oils with high density, viscosity, acidity and sulfur, nitrogen, metals and asphaltenes contents, by the others hand, low stability and low product quality. The challenger of many refiners is find solutions to refine the heavy crude oils, and produce fuels with certify quality, such as Jet Fuel. The principal aviation technique on the world work with gas turbines engines feted for jet fuel (JET A1). The quality specifications of this fuel are establish by International Norms: ASTM-1655, DEF STAN 91-91-3 (DERD 2494) and joint Fuelling System Check List. The world technologies to obtain jet fuel from mixtures of heavy crude oil with middle crude oils are: Atmospheric distillation, with a posterior hydrogenation and finally the additivation. Studies carried out have demonstrates that the Cubans heavy crude oils is characterized for having API less than 10, raised viscosity, high sulfur content (>6%) and asphaltenes content (more than 15%). These properties provide to its derivatives of low quality. This paper define the characteristic of Cuban heavy crude oil, the technology and operational conditions to produce jet fuel (Jet A1) and the quality of fuel produced. (author)

  19. Fuel from Tobacco and Arundo Donax: Synthetic Crop for Direct Drop-in Biofuel Production through Re-routing the Photorespiration Intermediates and Engineering Terpenoid Pathways

    Energy Technology Data Exchange (ETDEWEB)

    None

    2012-02-15

    PETRO Project: Biofuels offer renewable alternatives to petroleum-based fuels that reduce net greenhouse gas emissions to nearly zero. However, traditional biofuels production is limited not only by the small amount of solar energy that plants convert through photosynthesis into biological materials, but also by inefficient processes for converting these biological materials into fuels. Farm-ready, non-food crops are needed that produce fuels or fuel-like precursors at significantly lower costs with significantly higher productivity. To make biofuels cost-competitive with petroleum-based fuels, biofuels production costs must be cut in half.

  20. Final Report: Mass Production Cost Estimation of Direct H2 PEM Fuel Cell Systems for Transportation Applications (2012-2016)

    Energy Technology Data Exchange (ETDEWEB)

    James, Brian David [Strategic Analysis Inc., Arlington, VA (United States); Huya-Kouadio, Jennie Moton [Strategic Analysis Inc., Arlington, VA (United States); Houchins, Cassidy [Strategic Analysis Inc., Arlington, VA (United States); DeSantis, Daniel Allen [Strategic Analysis Inc., Arlington, VA (United States)

    2016-09-01

    This report summarizes project activities for Strategic Analysis, Inc. (SA) Contract Number DE-EE0005236 to the U.S. Department of Energy titled “Transportation Fuel Cell System Cost Assessment”. The project defined and projected the mass production costs of direct hydrogen Proton Exchange Membrane fuel cell power systems for light-duty vehicles (automobiles) and 40-foot transit buses. In each year of the five-year contract, the fuel cell power system designs and cost projections were updated to reflect technology advances. System schematics, design assumptions, manufacturing assumptions, and cost results are presented.

  1. Energy Analysis of the Danish Food Production System: Food-EROI and Fossil Fuel Dependency

    Directory of Open Access Journals (Sweden)

    Hanne Østergård

    2013-08-01

    Full Text Available Modern food production depends on limited natural resources for providing energy and fertilisers. We assess the fossil fuel dependency for the Danish food production system by means of Food Energy Returned on fossil Energy Invested (Food-EROI and by the use of energy intensive nutrients from imported livestock feed and commercial fertilisers. The analysis shows that the system requires 221 PJ of fossil energy per year and that for each joule of fossil energy invested in farming, processing and transportation, 0.25 J of food energy is produced; 0.28 when crediting for produced bioenergy. Furthermore, nutrients in commercial fertiliser and imported feed account for 84%, 90% and 90% of total supply of N, P and K, respectively. We conclude that the system is unsustainable because it is embedded in a highly fossil fuel dependent system based on a non-circular flow of nutrients. As energy and thus nutrient constraints may develop in the coming decades, the current system may need to adapt by reducing use of fossil energy at the farm and for transportation of food and feed. An operational strategy may be to relocalise the supply of energy, nutrients, feed and food.

  2. The effect of alternative fuel combustion in the cement kiln main burner on production capacity and improvement with oxygen enrichment.

    OpenAIRE

    Ariyaratne, W.K.Hiromi; Melaaen, Morten Christian; Tokheim, Lars-André

    2013-01-01

    A mathematical model based on a mass and energy balance for the combustion in a cement rotary kiln was developed. The model was used to investigate the impact of replacing about 45 % of the primary coal energy by different alternative fuels. Refuse derived fuel, waste wood, solid hazardous waste and liquid hazardous waste were used in the modeling. The results showed that in order to keep the kiln temperature unchanged, and thereby maintain the required clinker quality, the production capa...

  3. Continuous process of powder production for MOX fuel fabrication according to ''granat'' technology

    Energy Technology Data Exchange (ETDEWEB)

    Morkovnikov, V.E.; Raginskiy, L.S.; Pavlinov, A.P.; Chernov, V.A.; Revyakin, V.V.; Varykhanov, V.S.; Revnov, V.N. [SSC RF, A.A. Bochvar All-Russia, Research Institute of Inorganic Materials, VNIINM (Russian Federation)

    2000-07-01

    During last years the problem of commercial MOX fuel fabrication for nuclear reactors in Russia was solved in a number of directions. The paper deals with the solution of the problem of creating a continuous pilot plant for the production of MOX fuel powders on the basis of the home technology 'Granat', that was tested before on a small-scale pilot-commercial batch-operated plant of the same name and confirmed good results. (authors)

  4. Establishment and assessment of a novel cleaner production process of corn grain fuel ethanol.

    Science.gov (United States)

    Wang, Ke; Zhang, Jianhua; Tang, Lei; Zhang, Hongjian; Zhang, Guiying; Yang, Xizhao; Liu, Pei; Mao, Zhonggui

    2013-11-01

    An integrated corn ethanol-methane fermentation system was proposed to solve the problem of stillage handling, where thin stillage was treated by anaerobic digestion and then reused to make mash for the following ethanol fermentation. This system was evaluated at laboratory and pilot scale. Anaerobic digestion of thin stillage ran steadily with total chemical oxygen demand removal efficiency of 98% at laboratory scale and 97% at pilot scale. Ethanol production was not influenced by recycling anaerobic digestion effluent at laboratory and pilot scale. Compared with dried distillers' grains with solubles produced in conventional process, dried distillers' grains in the proposed system exhibited higher quality because of increased protein concentration and decreased salts concentration. Energetic assessment indicated that application of this novel process enhanced the net energy balance ratio from 1.26 (conventional process) to 1.76. In conclusion, the proposed system possessed technical advantage over the conventional process for corn fuel ethanol production.

  5. Comparative study of thermochemical processes for hydrogen production from biomass fuels.

    Science.gov (United States)

    Biagini, Enrico; Masoni, Lorenzo; Tognotti, Leonardo

    2010-08-01

    Different thermochemical configurations (gasification, combustion, electrolysis and syngas separation) are studied for producing hydrogen from biomass fuels. The aim is to provide data for the production unit and the following optimization of the "hydrogen chain" (from energy source selection to hydrogen utilization) in the frame of the Italian project "Filiera Idrogeno". The project focuses on a regional scale (Tuscany, Italy), renewable energies and automotive hydrogen. Decentred and small production plants are required to solve the logistic problems of biomass supply and meet the limited hydrogen infrastructures. Different options (gasification with air, oxygen or steam/oxygen mixtures, combustion, electrolysis) and conditions (varying the ratios of biomass and gas input) are studied by developing process models with uniform hypothesis to compare the results. Results obtained in this work concern the operating parameters, process efficiencies, material and energetic needs and are fundamental to optimize the entire hydrogen chain.

  6. Demonstrating hydrogen production from ammonia using lithium imide - Powering a small proton exchange membrane fuel cell

    Science.gov (United States)

    Hunter, Hazel M. A.; Makepeace, Joshua W.; Wood, Thomas J.; Mylius, O. Simon; Kibble, Mark G.; Nutter, Jamie B.; Jones, Martin O.; David, William I. F.

    2016-10-01

    Accessing the intrinsic hydrogen content within ammonia, NH3, has the potential to play a very significant role in the future of a CO2-free sustainable energy supply. Inexpensive light metal imides and amides are effective at decomposing ammonia to hydrogen and nitrogen (2NH3 → 3H2 + N2), at modest temperatures, and thus represent a low-cost approach to on-demand hydrogen production. Building upon this discovery, this paper describes the integration of an ammonia cracking unit with a post-reactor gas purification system and a small-scale PEM fuel cell to create a first bench-top demonstrator for the production of hydrogen using light metal imides.

  7. Ultrafast dynamics of colloidal semiconductor nanocrystals relevant to solar fuels production

    Science.gov (United States)

    Cogan, Nicole M. B.; Liu, Cunming; Qiu, Fen; Burke, Rebeckah; Krauss, Todd D.

    2017-05-01

    Artificial conversion of sunlight to chemical fuels has attracted attention for several decades as a potential source of clean, renewable energy. We recently found that CdSe quantum dots (QDs) and simple aqueous Ni2+ salts in the presence of a sacrificial electron donor form a highly efficient, active, and robust system for photochemical reduction of protons to molecular hydrogen. Ultrafast transient absorption spectroscopy studies of electron transfer (ET) processes from the QDs to the Ni catalysts reveal extremely fast ET, and provide a fundamental explanation for the exceptional photocatalytic H2 activity. Additionally, by studying H2 production of the Ni catalyst with CdSe/CdS nanoparticles of various structures, it was determined that surface charge density plays an important role in charge transfer and ultimately H2 production activity.

  8. Nanotechnology Role for the Production of Clean Fuel E-85 and Petrochemical Raw Materials

    Directory of Open Access Journals (Sweden)

    Iskander K. Basily

    2012-01-01

    Full Text Available There have been a number of substantive technical changes that can be described as revolutionary process and evolutionary process. One of these approaches is the use of nanotechnology in the two-stage pyrolysis of petroleum residues of the heavy distillates separated from the Arabian crude oil. Two-stage catalytic pyrolysis technique proved to be an excellent method for the production of unsaturated hydrocarbons (which easily can be converted to alcohol, by addition of H2O, for the production of E-85, i.e., clean fuel regardless the type of feed stocks used. Basically, the catalysts are arranged into three large groups; amorphous and crystalline alumino-silicates, alkaline or alkaline earth alumino compounds, and different metal oxides on different catalyst carriers such as Zeolites. The high yield of ethylene (30–40% brought by different catalysts at temperatures of 700–750°C appear to justify the intensive research work in this field.

  9. Economic analysis of fuel ethanol production from corn starch using fluidized-bed bioreactors

    Energy Technology Data Exchange (ETDEWEB)

    Krishnan, M.S.; Davison, B.H.; Nghiem, N.P. [Oak Ridge National Laboratory (United States). Chemical Technology Division; Taylor, F. [USDA, Wyndmoor, PA (United States). Eastern Regional Research

    2000-11-01

    The economics of fuel ethanol production from dry-milled corn starch were studied in fluidized-bed bioreactors (FBRs) using immobilized biocatalysts. Glucoamylase immobilized on porous diatomaceous earth was used for hydrolysis of the starch to glucose in a packed-bed reactor. The fermentation of glucose to ethanol was carried out in FBRs using Zymomonas mobilis immobilized in {kappa}-carrageenan beads. Volumetric ethanol productivities of up to 24 g/l h were achieved in non-optimized laboratory-scale systems. For a 15 million gal/yr ethanol plant, an economic analysis of this process was performed with Aspen Plus (Aspen Technology, Cambridge, MA) process simulation software. The analysis shows that an operating cost savings in the range of 1.1-3.1 cents/gal can be realized by using the FBR technology. (author)

  10. Catalytic pyrolysis-gc/ms of spirulina: evaluation of a highly proteinaceous biomass source for production of fuels and chemicals

    Science.gov (United States)

    Pyrolysis of microalgae offers a pathway towards the production of compounds derived from the thermal decomposition of triglycerides, proteins as well as lignocelluloses and their combinations thereof. When catalytically induced, this could lead to the production of fuels and chemicals including aro...

  11. System and method for integration of renewable energy and fuel cell for the production of electricity and hydrogen

    NARCIS (Netherlands)

    Hemmes, K.

    2007-01-01

    The invention relates to a system and method for integrating renewable energy and a fuel cell for the production of electricity and hydrogen, wherein this comprises the use of renewable energy as fluctuating energy source for the production of electricity and also comprises the use of at least one f

  12. Feasibility of converting a sugar beet plant to fuel ethanol production

    Energy Technology Data Exchange (ETDEWEB)

    Hammaker, G S; Pfost, H B; David, M L; Marino, M L

    1981-04-01

    This study was performed to assess the feasibility of producing fuel ethanol from sugar beets. Sugar beets are a major agricultural crop in the area and the beet sugar industry is a major employer. There have been some indications that increasing competition from imported sugar and fructose sugar produced from corn may lead to lower average sugar prices than have prevailed in the past. Fuel ethanol might provide an attractive alternative market for beets and ethanol production would continue to provide an industrial base for labor. Ethanol production from beets would utilize much of the same field and plant equipment as is now used for sugar. It is logical to examine the modification of an existing sugar plant from producing sugar to ethanol. The decision was made to use Great Western Sugar Company's plant at Mitchell as the example plant. This plant was selected primarily on the basis of its independence from other plants and the availability of relatively nearby beet acreage. The potential feedstocks assessed included sugar beets, corn, hybrid beets, and potatoes. Markets were assessed for ethanol and fermentation by-products saleability. Investment and operating costs were determined for each prospective plant. Plants were evaluated using a discounted cash flow technique to obtain data on full production costs. Environmental, health, safety, and socio-economic aspects of potential facilities were examined. Three consulting engineering firms and 3 engineering-construction firms are considered capable of providing the desired turn-key engineering design and construction services. It was concluded that the project is technically feasible. (DMC)

  13. Chemical thermodynamics of Cs and Te fission product interactions in irradiated LMFBR mixed-oxide fuel pins

    Science.gov (United States)

    Adamson, M. G.; Aitken, E. A.; Lindemer, T. B.

    1985-02-01

    A combination of fuel chemistry modelling and equilibrium thermodynamic calculations has been used to predict the atom ratios of Cs and Te fission products (Cs:Te) that find their way into the fuel-cladding interface region of irradiated stainless steel-clad mixed-oxide fast breeder reactor fuel pins. It has been concluded that the ratio of condensed, chemically-associated Cs and Te in the interface region,Čs:Te, which in turn determines the Te activity, is controlled by an equilibrium reaction between Cs 2Te and the oxide fuel, and that the value of Čs:Te is, depending on fuel 0:M, either equal to or slightly less than 2:1. Since Cs and Te fission products are both implicated as causative agents in FCCI (fission product-assisted inner surface attack of stainless steel cladding) and in FPLME (fission product-assisted liquid metal embrittlement of AISI-Type 316), the observed out-of-pile Cs:Te thresholds for FCCI (4˜:1) and FPLME (2˜:1) have been rationalized in terms of Cs:Te thermochemistry and phase equilibria. Also described in the paper is an updated chemical evolution model for reactive/volatile fission product behavior in irradiated oxide pins.

  14. Chemical thermodynamics of Cs and Te fission product interactions in irradiated LMFBR mixed-oxide fuel pins

    Energy Technology Data Exchange (ETDEWEB)

    Adamson, M.G.; Aitken, E.A. (General Electric Co., Sunnyvale, CA (USA). Advanced Nuclear Technology Operation)

    1985-02-01

    A combination of fuel chemistry modelling and equilibrium thermodynamic calculations has been used to predict the atom ratios of Cs and Te fission products (Cs:Te) that find their way into the fuel-cladding interface region of irradiated stainless steel-clad mixed-oxide fast breeder reactor fuel pins. It has been concluded that the ratio of condensed, chemically-associated Cs and Te in the interface region, fuel, and that the value of fuel O:M, either equal to or slightly less than 2:1. Since Cs and Te fission products are both implicated as causative agents in FCCI (fission product-assisted inner surface attack of stainless steel cladding) and in FPLME (fission product-assisted liquid metal embrittlement of AISI-Type 316), the observed out-of-pile Cs:Te thresholds for FCCI (proportional4:1) and FPLME (proportional2:1) have been rationalized in terms of Cs:Te thermochemistry and phase equilibria. Also described in the paper is an updated chemical evolution model for reactive/volatile fission product behavior in irradiated oxide pins.

  15. Biogenic metallic nanoparticles as catalyst for bioelectricity production: A novel approach in microbial fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Saravanakumar, Kandasamy, E-mail: saravana732@gmail.com [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China); MubarakAli, Davoodbasha [Microbial Genetic Engineering Laboratory, Division of Bioengineering, College of Life Science and Bioengineering, Incheon National University, Songdo 406772, Incheon (Korea, Republic of); Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Kathiresan, Kandasamy [Centre of Advanced Study in Marine Biology, Faculty of Marine Sciences, Annamalai University, Parangipettai 608 502, Tamil Nadu (India); Thajuddin, Nooruddin [Department of Microbiology, School of Lifesciences, Bharathidasan University, Tiruchirappalli 620024 (India); Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Alharbi, Naiyf S. [Department of Botany and Microbiology, College of Science, King Saud University, Riyadh 11451 (Saudi Arabia); Chen, Jie, E-mail: jiechen59@sjtu.edu.cn [School of Agriculture and Biology, Shanghai Jiao Tong University, Shanghai (China); State Key Laboratory of Microbial Metabolism, Shanghai Jiao Tong University, Shanghai (China); Key Laboratory of Urban Agriculture (South), Ministry of Agriculture, Shanghai (China)

    2016-01-15

    Highlights: • Trichoderma sp., showed an abilities to synthesis of AgNPs and AuNPs with an excellent stability. • AuNPs significantly enhanced the bioelectricity production by MFC of anaerobic fermentation as catalyst. • Maximum bioelectricity production was optimized and obtained the voltage of 432.80 mA using RSM. - Abstract: The present work aimed to use the biogenic metallic nanoparticles as catalyst for bioelectricity production in microbial fuel cell (MFC) approach under anaerobic condition. Silver and gold nanoparticles (AuNPs) were synthesized using Trichoderma sp. Particle size and cystallinity were measured by X-ray diffraction revealed the crystalline structure with average size of 36.17 nm. Electron microscopic studies showed spherical shaped silver nanoparticles (AgNPs) and cubical shaped AuNPs with size ranges from 50 to 150 nm. The concentration of biogenic metallic nanoparticles as catalyst for enhanced bioelectricity generations and estimated by response surface methodology (RSM) and found at the greatest of 342.80 mA under optimized conditions are time interval, temperature, nanoparticles used as 63 h, 28 ± 2.0 °C, 22.54 mg l{sup −1} (AgNPs) and 25.62 mg l{sup −1} (AuNPs) in a batch reactor. AuNPs acted as an excellent catalyst to enhance the bioelectricity production. This novel technique could be used for eco-friendly, economically feasible and facile electricity production.

  16. Evaluation of electricity production from alkaline pretreated sludge using two-chamber microbial fuel cell.

    Science.gov (United States)

    Xiao, Benyi; Yang, Fang; Liu, Junxin

    2013-06-15

    Electricity production from alkaline pretreated sludge was evaluated using a two-chamber microbial fuel cell (MFC). The electricity production was found to be stable over a long period of time (approximately 17 d) with voltage outputs and power densities of 0.47-0.52 V and 46.80-55.88 mW/m(2), respectively. The anode resistance was the main internal resistance (73.2%) of MFC in the stable stage. Most soluble organic matters (proteins and carbohydrates) in the anode chamber were first degraded and converted into volatile fatty acids (0-15 d), which were then degraded and converted into electricity and methane (15-29 d). The insoluble organics were solubilized thereby decreasing the sludge concentration and reducing the sludge mass. Methane was produced in the anode chamber owing to the growth of methanogens, which did not obviously affect the electricity production. The change in humic-like substances displayed a positive correlation with the electricity production of the MFC. Microbial analysis showed that methanogens and electricity-producing bacteria co-existed mostly on the surface as well as inside the anode. Decreasing the anode resistance and increasing the anode utilization could enhance the electricity production. Crown Copyright © 2013. Published by Elsevier B.V. All rights reserved.

  17. Black Liquor Gasification with Motor Fuel Production - BLGMF II - A techno-economic feasibility study on catalytic Fischer-Tropsch synthesis for synthetic diesel production in comparison with methanol and DME as transport fuels

    Energy Technology Data Exchange (ETDEWEB)

    Ekbom, Tomas; Berglin, Niklas; Loegdberg, Sara [Nykomb Synergetics AB, Stockholm (Sweden)

    2005-06-15

    The present project presents additional results to the former BLGMF project, which investigate Black Liquor Gasification with Motor Fuels (BLGMF) production. The objectives were to investigate, based on the KAM 2 program Ecocyclic Pulp Mill (2,000 ADt/day of pulp) the feasibility of synthetic fuels production. Specifically the route to Fischer-Tropsch diesel fuels is investigated as comparison to earlier work on methanol/DME. As modern kraft pulp mills have a surplus of energy, they could become key suppliers of renewable fuels. It is thus of great interest to convert the spent cooking product 'black liquor' to an energy carrier of high value. The resulting biomass-to-fuel energy efficiency when only biomass is used as an external energy source was 43% for FTD or 65% for FT products compared with 66% for methanol and 67% for DME. The FTD calculation is considerably more complicated and based on assumptions, therefore the uncertainty is higher. Would the diesel be taken out with a T95% of 320 deg C the FTD efficiency would be 45%. FT synthesis also opens up a possibility to produce e.g. lube oils from waxes produced. The total net FT-products output equals 4115 barrels/day. The FTD production cost is calculated as the energy share of the total production cost and assumes an offset of naphtha covering its own costs, where it is essential that it finds a market. Assuming same petrol (methanol) and diesel (DME, FTD) costs for the consumer the payback time were 2.6, 2.9 and 3.4 years with an IRR of 40%, 45% and 30%, respectively. In conclusion, there are necessary resources and potential for large-scale methanol (or DME, FTD) production and substantial economic incentive for making plant investments and achieving competitive product revenues.

  18. Impact on food productivity by fossil fuel independence - A case study of a Swedish small-scale integrated organic farm

    Energy Technology Data Exchange (ETDEWEB)

    Johansson, Sheshti [Dept. of Energy and Technology, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Belfrage, Kristina [Centre for Sustainable Agriculture, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden); Olsson, Mats [Dept. of Soil and Environment, Swedish Univ. of Agricultural Sciences, Uppsala (Sweden)

    2013-02-15

    The large-scale industrial agriculture that provides the majority of food at present is dependent upon fossil fuels in the form of tractor fuel, mineral fertilizers, pesticides, and irrigation. Yet, the age of cheap and abundant fossil fuels will likely come to an end within the coming decades. In this case study, the productivity of a small-scale farm (8 ha arable land, 5.5 ha meadow, 3.5 ha pasture and 18 ha forest) independent on fossil fuels by using organic methods and draught horse power was investigated. The aim was to quantify its productivity when the animal composition and possible alternatives to tractive power were varied. After an analysis of possible solutions, three scenarios for tractive power were selected: draught horse power, diesel tractor, and combination of draught horse power and rapeseed oil fueled tractor. A model that calculates the amount of food available at the farm in terms of meat, milk egg, and crops, converts it into energy units and calculates how many people can be supplied from the farm was developed. The most reasonable of the scenarios studied was when draught horse power was combined with tractor (and combine harvester) driven on locally produced rapeseed oil. Then the farm will have access to all advantages with the tractor and harvester, e.g., timeliness in harvest and lifting heavy loads, and the renewability and efficiency of draught horse power on smaller fields, and lighter operations. This system was able to support between 66 and 82 persons depending on crop yields, milk yields, meat production, fuel demand for the tractor, and availability of forest grazing. Most likely the production capacity lands on ability to support approximately 68 - 70 persons, and the farm may require fossil fuels to support more than 80 persons. If all farmland globally was to be operated with the same productivity, this would be enough for supplying the global population with food at present.

  19. Compositional changes during grain-based fuel ethanol production and method modifications to recover co-products for human or pet food utilization

    Science.gov (United States)

    The surge in global supply of distillers dried grains with solubles (DDGS) in recent years has stimulated many new investigations into this important co-product of grain-based fuel ethanol production. Compositional changes during the entire dry grind process has been one of them, since DDGS is char...

  20. Presence and biological activity of antibiotics used in fuel ethanol and corn co-product production.

    Science.gov (United States)

    Compart, D M Paulus; Carlson, A M; Crawford, G I; Fink, R C; Diez-Gonzalez, F; Dicostanzo, A; Shurson, G C

    2013-05-01

    Antibiotics are used in ethanol production to control bacteria from competing with yeast for nutrients during starch fermentation. However, there is no published scientific information on whether antibiotic residues are present in distillers grains (DG), co-products from ethanol production, or whether they retain their biological activity. Therefore, the objectives of this study were to quantify concentrations of various antibiotic residues in DG and determine whether residues were biologically active. Twenty distillers wet grains and 20 distillers dried grains samples were collected quarterly from 9 states and 43 ethanol plants in the United States. Samples were analyzed for DM, CP, NDF, crude fat, S, P, and pH to describe the nutritional characteristics of the samples evaluated. Samples were also analyzed for the presence of erythromycin, penicillin G, tetracycline, tylosin, and virginiamycin M1, using liquid chromatography and mass spectrometry. Additionally, virginiamycin residues were determined, using a U.S. Food and Drug Administration-approved bioassay method. Samples were extracted and further analyzed for biological activity by exposing the sample extracts to 10(4) to 10(7) CFU/mL concentrations of sentinel bacterial strains Escherichia coli ATCC 8739 and Listeria monocytogenes ATCC 19115. Extracts that inhibited bacterial growth were considered to have biological activity. Physiochemical characteristics varied among samples but were consistent with previous findings. Thirteen percent of all samples contained low (≤1.12 mg/kg) antibiotic concentrations. Only 1 sample extract inhibited growth of Escherichia coli at 10(4) CFU/mL, but this sample contained no detectable concentrations of antibiotic residues. No extracts inhibited Listeria monocytogenes growth. These data indicate that the likelihood of detectable concentrations of antibiotic residues in DG is low; and if detected, they are found in very low concentrations. The inhibition in only 1 DG