WorldWideScience

Sample records for natural waters razrabotka

  1. Natural radioactivity in water supplies

    International Nuclear Information System (INIS)

    Horner, J.K.

    1985-01-01

    This book outlines the scientific aspects of the control of natural radioactivity in water supplies, as well as the labyrinthine uncertainties in water quality regulation concerning natural radiocontamination of water. The author provides an introduction to the theory of natural radioactivity; addresses risk assessment, sources of natural radiocontamination of water, radiobiology of natural radioactivity in water, and federal water law concerning natural radiocontamination. It presents an account of how one city dealt with the perplexes that mark the rapidly evolving area of water quality regulation. The contents include: radioactivity and risk; an introduction to the atomic theory; an introduction to natural radioactivity; risk assessment; uranium and radium contamination of water; radiobiology of uranium and radium in water. Determination of risk from exposure to uranium and radium in water; the legal milieu; one city's experience; and summary: the determinants of evolving regulation

  2. Microbiological quality of natural waters.

    Science.gov (United States)

    Borrego, J J; Figueras, M J

    1997-12-01

    Several aspects of the microbiological quality of natural waters, especially recreational waters, have been reviewed. The importance of the water as a vehicle and/or a reservoir of human pathogenic microorganisms is also discussed. In addition, the concepts, types and techniques of microbial indicator and index microorganisms are established. The most important differences between faecal streptococci and enterococci have been discussed, defining the concept and species included. In addition, we have revised the main alternative indicators used to measure the water quality.

  3. Razrabotka novyh transgranichnyh vodnyh marshrutov v Jugo-Vostochnoj Baltike: metodika i praktika

    Directory of Open Access Journals (Sweden)

    Kropinova E.

    2014-08-01

    Full Text Available This article offers an integrative approach to the development of trans-border water routes. Route development is analysed in the context of system approach as integration of geographical, climatic, meaning-related, infrastructural, and marketing components. The authors analyse the Russian and European approaches to route development. The article focuses on the institutional environment and tourist and recreational resources necessary for water route development. Special attention is paid to the activity aspect of tourist resources. At the same time, the development of all routes included an analysis of physical geographical, technological, infrastructural, economic, political, and social aspects. The case of water routes developed in the framework of the Crossroads 2.0 international project is used to describe the practical implementation of the theoretical assumptions. The work also tests the methodology of point rating for objects that can be potentially included in the route. The creation of trans-border water routes is presented as an innovative technology of identifying a territory’s potential and its further development. The authors stress the trans-border nature of water routes is their essential characteristic based on the natural properties of water routes.

  4. Waste water discharges into natural waters

    International Nuclear Information System (INIS)

    Marri, P.; Barsanti, P.; Mione, A.; Posarelli, M.

    1996-12-01

    The aqueous discharges into natural waters is a very technical solution expecially for surface buoyant discharges. It is not only convenient to limit the concentration levels of the discharges, but also to improve the turbolent processes that diluite the discharge. Mostly these processes depend by some geometric parameters of the discharge and by some physical parameters of the effluent and of the receiving water body. An appropriate choice of some parameters, using also suitable mathematical models, allows to design discharges with a very high dilution; so the decreasing of the pollutant levels is improved and the environmental impact can be reduced versus a not diluted effluent. The simulations of a mathematical model, here described, prove that in some circumstances, expecially in case of discharges of fresh water into saline water bodies with a low velocity of the current, the dilution is poor; the effluent can be trapped in a narrow water surface layer where the pollutant concentrations remain high. also far away from the discharge point

  5. Natural radionuclides in drinking water in Argentina

    International Nuclear Information System (INIS)

    Bomben, A.M.; Palacios, M.A.

    2000-01-01

    As part of the national survey to evaluate natural radioactivity in the environment, concentration levels of natural uranium and 226 Ra have been analyzed in over 300 drinking water samples taken from different locations in Argentina. 226 Ra was determined by 222 Rn emanation and liquid scintillation counting, and natural uranium by a fluorimetric procedure. Values ranging from 0.03 to 24 μg.l -1 of natural uranium and from 0.06 to 50 μg.l -1 , were measured on drinking water samples taken from tap water systems and private wells, respectively. Concentrations up to 15 mBq.l -1 and to 22 mBq.l -1 of 226 Ra were found in drinking water samples taken from tap water systems and private wells, respectively. These values are compared with the reference values accepted for drinking water. Based on the water intake rate, the age distribution and the measured concentrations, an annual collective effective dose of 1.9 man Sv and an individual committed effective dose of 0.49 μSv.y -1 were calculated for the city of Buenos Aires adult inhabitants, for the ingestion of both natural radionuclides analyzed in drinking water. (author)

  6. Natural radio-nuclides in drinking water

    International Nuclear Information System (INIS)

    Deflorin, O.

    2003-01-01

    This article discusses the presence of radio-nuclides in Switzerland's drinking water. The article describes research done into the natural radioactivity to be found in various drinking water samples taken from the public water supply in the Canton of Grisons in eastern Switzerland. The various natural nuclides to be expected are listed and the methods used to take the samples are described. The results of the analysis are presented in the form of sketches showing the geographical distribution of the nuclide samples. Diagrams of the cumulative frequency of the quantities of nuclides found are presented, as are such diagrams for the yearly radioactive doses that the population is exposed to. The results and their consequences for the water supply are discussed in detail and further investigations to be made in the region are proposed

  7. Thermonuclear 36Cl pulse in natural water

    International Nuclear Information System (INIS)

    Bentley, H.W.; Davis, S.N.; Gifford, S.; Phillips, E.M.; Elmore, D.; Tubbs, L.E.; Gove, H.E.

    1982-01-01

    The enhanced concentration of 3 6Cl, produced by neutron activation of seawater and released into the environment during atmospheric thermonuclear tests in the 1950s, has been used as a tracer in natural water systems. The results of numerical modelling and analyses of water samples are presented which indicate that in the mid-latitudes the fallout peak was 3 orders of magnitude above the natural background, and that the period of enhanced 36 Cl fallout was 1953 to about 1964. The advantages of 36Cl as an environmental tracer are discussed. (U.K.)

  8. Solar Hot Water Heating by Natural Convection.

    Science.gov (United States)

    Noble, Richard D.

    1983-01-01

    Presents an undergraduate laboratory experiment in which a solar collector is used to heat water for domestic use. The working fluid is moved by natural convection so no pumps are required. Experimental apparatus is simple in design and operation so that data can be collected quickly and easily. (Author/JN)

  9. Chemical speciation of Pu in natural waters

    International Nuclear Information System (INIS)

    Nelson, D.M.; Larsen, R.P.; Penrose, W.R.

    1983-01-01

    The behavior of plutonium in natural waters is determined to a major degree by the chemical forms which are present. We have characterized the ambient Pu in a number of surface waters with regard to its oxidation state and association with natural colloidal organic carbon compounds using a combination of field measurements and laboratory experiments. Both of these factors are shown to have a profound effect on the adsorption of Pu to natural sediments, since both complexation with organic matter and oxidation compete with adsorption. The concentration of organic carbon in the water is the key variable influencing both oxidation state and organic binding. The adsorption process conforms to the laws applicable to a reversible equilibrium with values of the distribution coefficient, K/sub D/, measured in laboratory experiments being similar to those observed for ambient Pu. Experiments using natural waters and sediments in which the Pu concentration was varied show the forms present at typical ambient concentrations (10 -17 - 10 -14 M) are the same as those found at concentrations up to 10 -7 M. Moreover, the affinity for sediments did not change with concentration indicating the binding sites for Pu had not become saturated. Thus, the behavior observed for Pu at ultratrace concentrations should remain unchanged throughout this concentration range. The studies in this report all deal with Pu in exchangeable (and hence source independent) forms and should therefore reflect the behavior toward which the plutonium from any source will tend with time. 13 references, 7 figures, 10 tables

  10. Absorption coefficient instrument for turbid natural waters

    Science.gov (United States)

    Friedman, E.; Cherdak, A.; Poole, L.; Houghton, W.

    1980-01-01

    The paper presents an instrument that directly measures multispectral absorption coefficient of turbid natural water. Attention is given to the design, which is shown to incorporate methods for the compensation of variation in the internal light source intensity, correction of the spectrally dependent nature of the optical elements, and correction for variation in the background light level. In addition, when used in conjunction with a spectrally matched total attenuation instrument, the spectrally dependent scattering coefficient can also be derived. Finally, it is reported that systematic errors associated with multiple scattering have been estimated using Monte Carlo techniques.

  11. Potentiometric assay for hydrogenocarbonate in natural waters

    OpenAIRE

    Milla González, Miguel

    2008-01-01

    Potentiometry is often used for the determination of hydrogenocarbonate in natural water samples. In this exercise, a volume V of the titrant HCl is required for the potentiometric analysis of the mentioned species in 50 mL of water sample. The titrant concentration is M molar. The user should calculate the concentration of hydrogenocarbonate and express it either in mg/L or in g/L of calcium carbonate by building up the corresponding stoichiometric expressions. All results entered in the sys...

  12. The light water natural uranium reactor

    International Nuclear Information System (INIS)

    Radkowsky, A.

    A new type of light water seed blanket with the seed having 20% enrichment and the blanket a special combination of elements of natural uranium and thorium, relatively close packed, but sufficient spacing for heat transfer purpose is described. The blanket would deliver approximately half the total energy for about 10,000 MWDIT, so this type of core would be just as economical or better in uranium ore consumation as present cores. (author)

  13. Thermodynamics of natural and industrial waters

    Energy Technology Data Exchange (ETDEWEB)

    Pitzer, K.S.

    1991-08-01

    The most effective general formulations of thermodynamic equations for multicomponent aqueous solutions are discussed with respect to various ranges of temperature, pressure and composition with emphasis on solutes important in natural or industrial waters. A familiar equation in molality and in excess Gibbs energy is very successful up to 300{degree}C and ionic strength 6 mol{center dot}kg{sup {minus}1}, and can often be extended to 350{degree}C or above at high pressure and in favorable cases to ionic strength 12 or even 20. Alternate methods valid to higher solute compositions, even to pure fused salts, are described. A more difficult situation arises near the critical point of water where the compressibility becomes infinite and a Helmholtz energy basis must be adopted. Existing equations for this range and still higher temperatures and pressures are considered and possible improvements discussed. 85 refs., 13 figs., 3 tabs.

  14. Fluorometric analysis for uranium in natural waters

    International Nuclear Information System (INIS)

    Waterbury, G.R.

    1977-01-01

    A fluorometric method is used for the routine determination of uranium at 0.2 to parts-per-billion (ppB) concentrations in natural surface waters. Duplicate 200-μl aliquots of the water samples are pipetted onto 0.4-g pellets of 98 percent NaF-2 percent LiF flux contained in platinum dishes. The pellets are dried under heat lamps and fused over special propane burners. The fused pellets are subjected to ultraviolet radiation and the fluorescence is measured in a fluorometer. The lower limit of detection is 0.2 ppB of uranium, and the precision is about 15 relative percent in the 0.2 to 10 ppB uranium concentration range. Two analysts determine uranium in 750 to 900 samples per week using this method. Samples containing solids or more than 19 ppB of uranium are analyzed by a delayed neutron counting method

  15. Natural radionuclides in Austrian bottled mineral waters

    International Nuclear Information System (INIS)

    Gabriele Wallner; Tania Jabbar

    2010-01-01

    All commercially available mineral waters of Austrian origin were investigated with regard to the natural radionuclides 228 Ra, 226 Ra, 210 Pb, 210 Po, 238 U and 234 U. From 1 to 1.5 L of sample the nuclides were extracted and measured sequentially: the radium isotopes as well as 210 Pb were measured by liquid scintillation counting after separation on a membrane loaded with element-selective particles (Empore Radium Disks), 210 Po was determined by α-particle spectroscopy after spontaneous deposition onto a copper planchette and uranium was determined also by α-particle spectroscopy after anion separation and microprecipitation with NdF 3 . The calculated committed effective doses for adults, teens and babies were compared to the total indicative dose of 0.1 mSv/year given in the EC Drinking Water Directive. The dominant portion of the committed effective dose was due to 228 Ra. Highly mineralised waters showed also higher 226 Ra and 228 Ra levels. (author)

  16. Organic acids in naturally colored surface waters

    Science.gov (United States)

    Lamar, William L.; Goerlitz, D.F.

    1966-01-01

    Most of the organic matter in naturally colored surface waters consists of a mixture of carboxylic acids or salts of these acids. Many of the acids color the water yellow to brown; however, not all of the acids are colored. These acids range from simple to complex, but predominantly they are nonvolatile polymeric carboxylic acids. The organic acids were recovered from the water by two techniques: continuous liquid-liquid extraction with n-butanol and vacuum evaporation at 50?C (centigrade). The isolated acids were studied by techniques of gas, paper, and column chromatography and infrared spectroscopy. About 10 percent of the acids recovered were volatile or could be made volatile for gas chromatographic analysis. Approximately 30 of these carboxylic acids were isolated, and 13 of them were individually identified. The predominant part of the total acids could not be made volatile for gas chromatographic analysis. Infrared examination of many column chromatographic fractions indicated that these nonvolatile substances are primarily polymeric hydroxy carboxylic acids having aromatic and olefinic unsaturation. The evidence suggests that some of these acids result from polymerization in aqueous solution. Elemental analysis of the sodium fusion products disclosed the absence of nitrogen, sulfur, and halogens.

  17. [Mineral waters from several Brazilian natural sources].

    Science.gov (United States)

    Rebelo, M A; Araujo, N C

    1999-01-01

    To divulge information on the chemical composition and physical-chemical features of some mineral waters from Brazilian natural sources that will be of useful protocol investigation and patient advice. The survey was based on bottle labels of non-gaseous mineral waters commercially available in the city of Rio de Janeiro. The íon concentration of each mineral was calculated from the salt content. 36 springs were enralled from different states of the country. The pH (25 degrees C), 4.1 to 9.3, varied on dependence of the source and it was linearey correlated with the cations calcium, magnesium and sodium and the anion bicarbonate. It was atributed to high alkalinity (about 70% of bicarbonate in the molecula-gram) of these salts. The calcium (0.3 to 42 mg/l), magnesium (0.0 to 18 mg/l) and bicarbonate (4 to 228 mg/l) contents are relatively low. The mineral content of the Brazilian springs enrolled in this survey is low; about 70% of the sources having calcium and magnesium less than 10 mg/l and 1.0 mg/l, respectively, similar to local tap water.

  18. Technetium sorption by stibnite from natural water

    International Nuclear Information System (INIS)

    Peretroukhine, V.; Sergeant, C.; Deves, G.; Poulain, S.; Vesvres, M.H.; Thomas, B.; Simonoff, M.

    2006-01-01

    The sorption of technetium by powdered and polished mineral stibnite Sb 2 S 3 has been investigated in simulated and natural underground waters from the Meuse/Haute-Marne region (France). The sorption by powdered stibnite has been found to be complete under both aerobic and anaerobic conditions in batch experiments. The sorption rate is higher in the absence of oxygen than under aerobic condition. Increasing the temperature from 30 C to 60 C results in a rise of the sorption rate by 9.1 and 27 times under anaerobic and aerobic conditions, respectively. The observed differences in sorption kinetics in the presence and in absence of oxygen are explained by the interaction of oxygen with sulfide ion in aerobic conditions and by the reduction of technetium(VII) by iron(II) and by other impurities present in natural water and in the mineral, and by the subsequent sorption of Tc(IV) on stibnite under anaerobic conditions. The sorption on a polished mineral surface resulted in the formation of a technetium film, probably Tc 2 S 7 , with a thickness of 1-3 μg Tc/cm 2 pH 3-6 and 4-12 μg Tc/cm 2 at 9-12. The simultaneous formation of stibnite colloids with adsorbed technetium occurs at pH 9-12. The study of the technetium film on the mineral by proton induced X-ray emission analysis showed it to be at least one order of magnitude thinner on the SiO 2 impurities than on the main Sb 2 S 3 component and the iron impurities. (orig.)

  19. Molecular concepts of water splitting. Nature's approach

    International Nuclear Information System (INIS)

    Cox, Nicholas; Lubitz, Wolfgang

    2013-01-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  20. Natural uranium lattice in heavy water

    International Nuclear Information System (INIS)

    Girard, Y.; Koechlin, J.C.; Moreau, J.; Naudet, R.

    1959-01-01

    all solid bars are considered and n an d the effective integrals are adjusted then a system of transposition of these results to more complex bars is sought. In the second step, one is compelled to improve the system in studying in greater detail each factor of the calculation of the lattice. A satisfactory interpretation of the results leads definitively to methods of calculation applicable to the most varied types of natural uranium-heavy water lattices. Attention has been given to results obtained in other countries, particularly in Canada. (author) [fr

  1. Natural mineral waters: chemical characteristics and health effects

    Science.gov (United States)

    Quattrini, Sara; Pampaloni, Barbara; Brandi, Maria Luisa

    2016-01-01

    Summary Water contributes significantly to health and a daily intake of 1.5 to 2 liters of water should be guaranteed, because a good hydration is essential to maintain the body water equilibrium, although needs may vary among people. However, worldwide population is far from the Recommended Allowance for water intake. Among the waters for human uses, there are ‘waters (treated or not), intended for drinking, used for the food and beverages preparation or for other domestic purposes’ and natural mineral waters, that are ‘originated from an aquifer or underground reservoir, spring from one or more natural or bore sources and have specific hygienic features and, eventually, healthy properties’. According to the European Legislation (2009/54/EC Directive), physical and chemical characterization is used to make a classification of the different mineral waters, basing on the analysis of main parameters. Mineral composition enables to classify natural mineral waters as bicarbonate mineral waters, sulphate mineral waters, chloride mineral waters, calcic mineral waters, magnesiac mineral waters, fluorurate mineral waters, ferrous mineral waters and sodium-rich mineral waters. Although the concerns about bottled mineral waters (due to plasticizers and endocrine disruptors), many are the health effects of natural mineral waters and several studies explored their properties and their role in different physiological and pathological conditions. PMID:28228777

  2. Remote methods of indicating oil products in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Shlyakhova, L A

    1981-01-01

    A survey is made of domestic and foreign publications covering remote methods of monitoring film petroleum products and oil in natural waters. The given methods are realized in practice with the use of different sections of the electromagnetic spectrum. Remote quality control of the natural waters at the modern level may be an indicator of water pollution with film petroleum products.

  3. Preconcentration of plutonium radionuclides from natural waters

    International Nuclear Information System (INIS)

    Wong, K.M.; Nioshkin, V.E.; Jokela, T.A.

    1978-02-01

    A large volume water sampler using manganese dioxide impregnated cartridges for the in situ separation of plutonium in sea water and ground water was studied. Plutonium concentrations obtained by this technique are compared with a radiochemical coprecipitation method. Consistent results were obtained between the two methods for water samples from the Pacific Ocean and Enewetak lagoon. Different results were noted from samples collected in the Enewetak reef and ground water stations. Using this preconcentration technique and the coprecipitation method it was shown that the physical-chemical characteristics of Pu in Enewetak reef and ground water are different from the lagoon and open ocean

  4. The fluid nature of water grabbing

    NARCIS (Netherlands)

    Bont, de Chris; Veldwisch, Gert Jan; Komakech, Hans Charles; Vos, Jeroen

    2016-01-01

    This article contributes to the contemporary debate on land and water grabbing through a detailed, qualitative case study of horticultural agribusinesses which have settled in Tanzania, disrupting patterns of land and water use. In this paper we analyse how capitalist settler farms and their

  5. Natural radionuclides in some romanian medicinal mineral water

    Energy Technology Data Exchange (ETDEWEB)

    Botezatu, E.; Iacob, O. [Institute of Public Health, Iasi (Romania)

    2006-07-01

    Radioactive minerals occur irregularly in the bedrock, similar to other minerals and they dissolve easily in water. Bedrock contains naturally occurring radioactivity including uranium, thorium, radium and potassium. The natural radioactivity results from water passing through deposits of naturally occurring radioactive materials.Many mineral water springs are traditionally used as drinking mineral water sources in the area.During the period from 1997 to 2000, we accomplished a study that had as basic objectives the radioacty control of the drinking mineral waters according to existing standards and evaluation of doses to population by ingestion of mineral water (bottled waters commercially available for human intake and some spring waters).For this reason, we were interested in finding out the extent to which these waters can be a natural radiation source. This survey aimed at assessing the radioactive content of these waters and their contribution to the population exposure.The presented data contribute to a national database concerning the natural radioactive content of Romanian mineral waters. A hypothetical person that undergoes a cure of mineral water by ingestion, inhalation and immersion is receiving an average supplementary dose of 3 {mu}Sv over background radiation of 2,512 {mu}Sv.y{sup -1} due to all natural radiation sources in Romania. The contribution of mineral water used in therapeutic purposes to the natural irradiation of population is very slight, almost insignificant. This supports the conclusion that these spring mineral waters can be used without any restrictions for drinking or bathing / washing for medical therapy of ailing persons even other sources of exposure are also taken into account. (N.C.)

  6. Safety distance between underground natural gas and water pipeline facilities

    International Nuclear Information System (INIS)

    Mohsin, R.; Majid, Z.A.; Yusof, M.Z.

    2014-01-01

    A leaking water pipe bursting high pressure water jet in the soil will create slurry erosion which will eventually erode the adjacent natural gas pipe, thus causing its failure. The standard 300 mm safety distance used to place natural gas pipe away from water pipeline facilities needs to be reviewed to consider accidental damage and provide safety cushion to the natural gas pipe. This paper presents a study on underground natural gas pipeline safety distance via experimental and numerical approaches. The pressure–distance characteristic curve obtained from this experimental study showed that the pressure was inversely proportional to the square of the separation distance. Experimental testing using water-to-water pipeline system environment was used to represent the worst case environment, and could be used as a guide to estimate appropriate safety distance. Dynamic pressures obtained from the experimental measurement and simulation prediction mutually agreed along the high-pressure water jetting path. From the experimental and simulation exercises, zero effect distance for water-to-water medium was obtained at an estimated horizontal distance at a minimum of 1500 mm, while for the water-to-sand medium, the distance was estimated at a minimum of 1200 mm. - Highlights: • Safe separation distance of underground natural gas pipes was determined. • Pressure curve is inversely proportional to separation distance. • Water-to-water system represents the worst case environment. • Measured dynamic pressures mutually agreed with simulation results. • Safe separation distance of more than 1200 mm should be applied

  7. Comparison of electrical conductivity calculation methods for natural waters

    Science.gov (United States)

    McCleskey, R. Blaine; Nordstrom, D. Kirk; Ryan, Joseph N.

    2012-01-01

    The capability of eleven methods to calculate the electrical conductivity of a wide range of natural waters from their chemical composition was investigated. A brief summary of each method is presented including equations to calculate the conductivities of individual ions, the ions incorporated, and the method's limitations. The ability of each method to reliably predict the conductivity depends on the ions included, effective accounting of ion pairing, and the accuracy of the equation used to estimate the ionic conductivities. The performances of the methods were evaluated by calculating the conductivity of 33 environmentally important electrolyte solutions, 41 U.S. Geological Survey standard reference water samples, and 1593 natural water samples. The natural waters tested include acid mine waters, geothermal waters, seawater, dilute mountain waters, and river water impacted by municipal waste water. The three most recent conductivity methods predict the conductivity of natural waters better than other methods. Two of the recent methods can be used to reliably calculate the conductivity for samples with pH values greater than about 3 and temperatures between 0 and 40°C. One method is applicable to a variety of natural water types with a range of pH from 1 to 10, temperature from 0 to 95°C, and ionic strength up to 1 m.

  8. Natural organic matter (NOM) in South African waters: NOM ...

    African Journals Online (AJOL)

    In order to remove natural organic matter (NOM) from water in a water treatment train, the composition of the NOM in the source water must be taken into account, especially as it may not necessarily be uniform since the composition is dependent on the local environment. The main thrust of this study was to ascertain ...

  9. Water wizards : reshaping wet nature and society

    NARCIS (Netherlands)

    Vleuten, van der E.B.A.; Disco, C.

    2004-01-01

    The article investigates how humans ‘networked’ wet nature and how this affected the shaping of Dutch society. First, it takes a grand view of Dutch history and describes how wet network building intertwined with the shaping of the Dutch landscape, its economy and its polity. Second, it investigates

  10. Natural circulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Bastos, J.L.F.; Loureiro, L.V.; Rocha, R.T.V. da; Umbehaun, P.E.

    1992-01-01

    Several analytical modelling have been done for steady-state and slow transients conditions, besides more sophisticated studies considering two and three dimensional effects in a very simple geometry. Under severe accident conditions for PWR a code to analyse natural circulation has been developed by Westinghouse. This paper discusses the problem of natural circulation in a complex geometry similar to that of nuclear power plants. A first experiment has been done at the integral test facility of 'Co-ordination of Special Projects-Ministry of Naval Affairs' (Coordenadoria para Projetos Especiais -Ministerio da Marinha, COPESP) for several flux conditions. The results obtained were compared with numerical simulations for the steady-state regime. 09 refs, 05 figs, 01 tab. (B.C.A.)

  11. Chlorination of organophosphorus pesticides in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Acero, Juan L. [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)], E-mail: jlacero@unex.es; Benitez, F. Javier; Real, Francisco J.; Gonzalez, Manuel [Departamento de Ingenieria Quimica y Energetica, Universidad de Extremadura, 06071 Badajoz (Spain)

    2008-05-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 {sup o}C and pH 7 were determined to be 110.9, 0.004 and 191.6 M{sup -1} s{sup -1} for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L{sup -1} was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety.

  12. Chlorination of organophosphorus pesticides in natural waters

    International Nuclear Information System (INIS)

    Acero, Juan L.; Benitez, F. Javier; Real, Francisco J.; Gonzalez, Manuel

    2008-01-01

    Unknown second-order rate constants for the reactions of three organophosphorus pesticides (chlorpyrifos, chlorfenvinfos and diazinon) with chlorine were determined in the present study, and the influence of pH and temperature was established. It was found that an increase in the pH provides a negative effect on the pesticides degradation rates. Apparent second-order rate constants at 20 o C and pH 7 were determined to be 110.9, 0.004 and 191.6 M -1 s -1 for chlorpyrifos, chlorfenvinfos and diazinon, respectively. A higher reactivity of chlorine with the phosphorothioate group (chlorpyrifos and diazinon) than with the phosphate moiety (chlorfenvinfos) could explain these results. Intrinsic rate constant for the elementary reactions of chlorine species with chlorpyrifos and diazinon were also calculated, leading to the conclusion that the reaction between hypochlorous acid and the pesticide is predominant at neutral pH. The elimination of these pesticides in surface waters was also investigated. A chlorine dose of 2.5 mg L -1 was enough to oxidize chlorpyrifos and diazinon almost completely, with a formation of trihalomethanes below the EU standard for drinking water. However, the removal of chlorfenvinfos was not appreciable. Therefore, chlorination is a feasible option for the removal of organophosphorus pesticides with phosphorothioate group during oxidation and disinfection processes, but not for the elimination of pesticides with phosphate moiety

  13. Chromium fractionation and speciation in natural waters.

    Science.gov (United States)

    Pereira, Catarinie Diniz; Techy, João Gabriel; Ganzarolli, Edgard Moreira; Quináia, Sueli Pércio

    2012-05-01

    It is common for leather industries to dump chromium-contaminated effluent into rivers and other bodies of water. Thus, it is crucial to know the impacts caused by this practice to the environment. A study on chromium partitioning and speciation, with determination at trace levels, was carried out in a potentially contaminated creek. Chromium fractionation and speciation was performed using a flow-injection preconcentration system and detection by flame atomic absorption spectrometry. High levels of this element were found in the particulate material (449-9320 mg kg(-1)), which indicates its compatibility with this fraction. The concentration of Cr(iii) in the water samples collected ranged from 5.2-105.2 μg L(-1). Cr(vi) was always below of the DL (0.3 μg L(-1)). Chromium accumulation observed in the sediment (873-1691 mg kg(-1)) may confirm contamination due to the long term release of contaminated effluents in the creek.

  14. Natural and Artificial Radioactivity in Drinking Water in Malaga, Spain

    International Nuclear Information System (INIS)

    Duenas, C.; Fernandez, M.C.; Gordo, E.; Canete, S.; Perez, M.

    2011-01-01

    Water has a vast importance for numerous human activities, so that securing supplies of drinking water of a standard quality is becoming more and more difficult. The measurement of radioactivity in drinking water permits us to determine the exposure of the population to radiation from the habitual consumption of water. The occurrence of radionuclides in drinking water gives rise to internal exposure of humans, directly on the decay of radionuclides taken into the body through ingestion and inhalation and indirectly when they are incorporated as part of the food-chain The measurement of radioactivity in drinking water permits us to determine the exposure of population to radiation from the habitual consumption of water. An intensive study of the water supply in the city of Malaga during 2002-2010 has been carried out in order to determine the gross alpha activities, gross beta activities and natural and artificial radionuclides present in drinking water. A data base on natural and artificial radioactivity in water was produced. The results indicated that a high percentage of the water sample contains a total gross alpha and beta less than 0.10 Bq/l and 1 Bq/l respectively. The main objectives were: 1) to analyses gross alpha and gross beta activities and to know the statistical distributions. 2) to study the levels of natural and artificial radionuclides 3) to determine a possible mathematical correlation between the radionuclides and several factors.

  15. Fluorometric determination of uranium in natural waters

    International Nuclear Information System (INIS)

    Hues, A.D.; Henicksman, A.L.; Ashley, W.H.; Romero, D.

    1977-03-01

    Duplicate 200-μl aliquots of the water samples, as received, are transferred by means of Eppendorf pipettors onto 0.4-g pellets of 2 percent LiF-98 percent NaF flux, contained in platinum dishes. The pellets are dried under heat lamps; then fused over special propane burners. The fused pellets are transferred to a Galvanek-Morrison fluorometer, where they are excited with ultraviolet radiation and the fluorescence is measured. The uranium is calculated by comparing the measured fluorescence with that of other pellets, carried through the same procedure, which contain aliquots of standard uranium solutions. The sensitivity of the method is about 0.2 ppB of uranium, and the precision is approximately 15 relative percent in the 0.2- to 10-ppB uranium concentration range

  16. Factors effecting carbonate equilibria in natural waters

    International Nuclear Information System (INIS)

    Snellman, M.

    1987-12-01

    This study is related to preliminary stie evaluations to be carried out in 1987-1992 for spent nuclear fuel disposal in Finland. Near surface and shallow groundwaters are characterized by high concentration of calcium and bicarbonate due to dissolution of calcite. The input of carbon dioxide in the upper zone of the bedrock has a strong influence on the pH giving a pH around neutral. In deep groundwaters when the system is no longer open to the input of carbon dioxide the pH rises as the carbonate system is displaced towards the bicarbonate-carbonate site. In still deeper parts of the rock weathering of other minerals such as feldspars affects the chemistry raising the pH and resulting in saturation and precipitation of calcite. The more advanced these reactions become the higher is the pH and the lower is the carbonate content. The equilibrium concentrations of carbonate species are affected both by temperature and ionic strength of the waters, at high ionic strength especially the distribution between bicarbonate and carbonate ions is affected. The total concentration of carbonates in groundwaters is determined through complex interaction between calcite and carbonates in the water. In deep groundwaters which are closed for input of CO 2 the concentration is stated to be regulated by dissolution of calcium carbonate. In deep granitic groundwaters pH is stated to be buffered to 6.5 to 10, where a high pH would correspond to a low total carbonate concentration and often also a low calcium concentration and a low pH would correspond to high carbonae and calcium concentrations

  17. Effluent dispersion in natural water receivers (tracer examination)

    International Nuclear Information System (INIS)

    Szpilowski, S.; Owczarczyk, A.; Chmielewski, A.G.

    1993-01-01

    Tracer methods constitute very convenient means for observation and examination of effluent dispersion and dilution processes in natural water receivers. In the report there are presented methods developed and used by the Institute of Nuclear Chemistry and Technology (INCT) to measure mixing parameters in natural streams to determine distances of complete transverse mixing as well as to assess and predict dispersion of sewage in large water reservoirs. There are also presented the methods of predicting initial stage of dispersion of sewage discharged into large water reservoirs through underwater out falls and the method for determining the decomposition rates of effluent entering a natural water receiver. The methods presented can be used in analysis of pollution in a given water region, in selection of optimal sewage out fall locations as well as in prediction of effluent dilution intensity at different hydro- and meteorological conditions. (author). 27 refs, 15 figs, 2 tabs

  18. Biomimetic water-collecting materials inspired by nature.

    Science.gov (United States)

    Zhu, Hai; Guo, Zhiguang; Liu, Weimin

    2016-03-11

    Nowadays, water shortage is a severe issue all over the world, especially in some arid and undeveloped areas. Interestingly, a variety of natural creatures can collect water from fog, which can provide a source of inspiration to develop novel and functional water-collecting materials. Recently, as an increasingly hot research topic, bioinspired materials with the water collection ability have captured vast scientific attention in both practical applications and fundamental research studies. In this review, we summarize the mechanisms of water collection in various natural creatures and present the fabrications, functions, applications, and new developments of bioinspired materials in recent years. The theoretical basis related to the phenomenon of water collection containing wetting behaviors and water droplet transportations is described in the beginning, i.e., the Young's equation, Wenzel model, Cassie model, surface energy gradient model and Laplace pressure equation. Then, the water collection mechanisms of three typical and widely researched natural animals and plants are discussed and their corresponding bioinspired materials are simultaneously detailed, which are cactus, spider, and desert beetles, respectively. This is followed by introducing another eight animals and plants (butterfly, shore birds, wheat awns, green bristlegrass, the Cotula fallax plant, Namib grass, green tree frogs and Australian desert lizards) that are rarely reported, exhibiting water collection properties or similar water droplet transportation. Finally, conclusions and outlook concerning the future development of bioinspired fog-collecting materials are presented.

  19. Fluoride removal studies in water using natural materials : technical ...

    African Journals Online (AJOL)

    Excess fluoride in water causes health hazards to the natural environment. The removal of fluoride was attempted using natural materials such as red soil, charcoal, brick, fly-ash and serpentine. Each material was set up in a column for a known volume and the defluoridation capacities of these materials were studied with ...

  20. Field technique for the measurement of uranium in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Robbins, J C [Scintrex Ltd., Concord, Ontario

    1978-05-01

    An analytical method suitable for field determination of trace levels of uranium in natural waters is described. Laser UV radiation causes persistent fluorescence of a uranyl complex. Electronic gating substantially rejects detection of short-lived natural organic matter fluorescence. Further work is required on effects of interferences in samples with complex matrices and interpretative aids such as concurrent conductivity and organic content measurements.

  1. Reduction of Turbidity of Water Using Locally Available Natural Coagulants

    Science.gov (United States)

    Asrafuzzaman, Md.; Fakhruddin, A. N. M.; Hossain, Md. Alamgir

    2011-01-01

    Turbidity imparts a great problem in water treatment. Moringa oleifera, Cicer arietinum, and Dolichos lablab were used as locally available natural coagulants in this study to reduce turbidity of synthetic water. The tests were carried out, using artificial turbid water with conventional jar test apparatus. Optimum mixing intensity and duration were determined. After dosing water-soluble extracts of Moringa oleifera, Cicer arietinum, and Dolichos lablab reduced turbidity to 5.9, 3.9, and 11.1 nephelometric turbidity unit (NTU), respectively, from 100 NTU and 5, 3.3, and 9.5, NTU, respectively, after dosing and filtration. Natural coagulants worked better with high, turbid, water compare to medium, or low, turbid, water. Highest turbidity reduction efficiency (95.89%) was found with Cicer arietinum. About 89 to 96% total coliform reduction were also found with natural coagulant treatment of turbid water. Using locally available natural coagulants, suitable, easier, and environment friendly options for water treatment were observed. PMID:23724307

  2. A system for tritium analysis in natural water

    International Nuclear Information System (INIS)

    Mozeto, A.A.

    1977-01-01

    A method for the analysis, by scintillation counting, of tritium in natural water enriched electrolytically, is presented. The characteristics of the proposed system are indicated by experimental parameters, and by the performance obtained in the analysis of rain and under ground waters. An evaluation of the precison and reproducibility of the measurements is also made [pt

  3. Determination of water content in natural zeolites by reflection method

    International Nuclear Information System (INIS)

    Sarria, Lopez P.; Desdin Garcia, V.; Freixas Lemus, V.; Dominguez Ley, O.; Csikai, G.

    1989-01-01

    Water content in natural zeolites collected from different site places in Cuba has been determined by neutron reflection method. Results show that it is possible to separate the minerals abundant in zeolite from the surrounding barren rocks. Water content of about 10% can be determined with 2-3% relative accuracy for different matrices, using 10 m measuring time

  4. Overcoming water challenges through nature-based solutions

    NARCIS (Netherlands)

    Boelee, Eline; Janse, Jan; Gal, Le Antoine; Kok, Marcel; Alkemade, Rob; Ligtvoet, Willem

    2017-01-01

    Freshwater is a key resource and medium for various economic sectors and domestic purposes but its use is often at the expense of natural ecosystems. Water management must change to deal with urgent issues and protect aquatic ecosystems and their services, while addressing the demand for water from

  5. Pasteurization of naturally contaminated water with solar energy.

    OpenAIRE

    Ciochetti, D A; Metcalf, R H

    1984-01-01

    A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60 degrees C or greater. Heating water in an SBC to at least 65 degrees C ensures that the water will be above the milk pasteurization temperature of 6...

  6. Neutron-activation analysis of natural water applied to hydrogeology

    Energy Technology Data Exchange (ETDEWEB)

    Landstroem, O [AB Atomenergi, Stockholm (Sweden); Wenner, C G [Stockholm Univ. (Sweden). Dept. of Quaternary Research

    1965-12-15

    The natural content of elements in water has been utilized to characterize different groundwater supplies and reveal the presence of groundwater streams. A neutron-activation method including chemical group separation techniques has been used for the determination of trace elements. Analyzed water samples from three different places in northern Sweden illustrate the application to common and important hydrogeological problems, such as the quality and capacity of water supplies, the origin and existence of groundwater streams and groundwater exchange with rivers.

  7. Neutron-activation analysis of natural water applied to hydrogeology

    International Nuclear Information System (INIS)

    Landstroem, O.; Wenner, C.G.

    1965-12-01

    The natural content of elements in water has been utilized to characterize different groundwater supplies and reveal the presence of groundwater streams. A neutron-activation method including chemical group separation techniques has been used for the determination of trace elements. Analyzed water samples from three different places in northern Sweden illustrate the application to common and important hydrogeological problems, such as the quality and capacity of water supplies, the origin and existence of groundwater streams and groundwater exchange with rivers

  8. Natural Circulation Phenomena and Modelling for Advanced Water Cooled Reactors

    International Nuclear Information System (INIS)

    2012-03-01

    The role of natural circulation in advanced water cooled reactor design has been extended with the adoption of passive safety systems. Some designs utilize natural circulation to remove core heat during normal operation. Most passive safety systems used in evolutionary and innovative water cooled reactor designs are driven by natural circulation. The use of passive systems based on natural circulation can eliminate the costs associated with the installation, maintenance and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. Several IAEA Member States with advanced reactor development programmes are actively conducting investigations of natural circulation to support the development of advanced water cooled reactor designs with passive safety systems. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, in 2004 the IAEA initiated a coordinated research project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation. Three reports were published within the framework of this CRP. The first report (IAEA-TECDOC-1474) contains the material developed for the first IAEA training course on natural circulation in water cooled nuclear power plants. The second report (IAEA-TECDOC-1624) describes passive safety systems in a wide range of advanced water cooled nuclear power plant designs, with the goal of gaining insights into system design, operation and reliability. This third, and last, report summarizes the research studies completed by participating institutes during the CRP period.

  9. Water hammer reduces fouling during natural water ultrafiltration.

    Science.gov (United States)

    Broens, F; Menne, D; Pothof, I; Blankert, B; Roesink, H D W; Futselaar, H; Lammertink, R G H; Wessling, M

    2012-03-15

    Today's ultrafiltration processes use permeate flow reversal to remove fouling deposits on the feed side of ultrafiltration membranes. We report an as effective method: the opening and rapid closing of a valve on the permeate side of an ultrafiltration module. The sudden valve closure generates pressure fluctuations due to fluid inertia and is commonly known as "water hammer". Surface water was filtrated in hollow fiber ultrafiltration membranes with a small (5%) crossflow. Filtration experiments above sustainable flux levels (>125 l (m2h)(-1)) show that a periodic closure of a valve on the permeate side improves filtration performance as a consequence of reduced fouling. It was shown that this effect depends on flux and actuation frequency of the valve. The time period that the valve was closed proved to have no effect on filtration performance. The pressure fluctuations generated by the sudden stop in fluid motion due to the valve closure are responsible for the effect of fouling reduction. High frequency recording of the dynamic pressure evolution shows water hammer related pressure fluctuations to occur in the order of 0.1 bar. The pressure fluctuations were higher at higher fluxes (higher velocities) which is in agreement with the theory. They were also more effective at higher fluxes with respect to fouling mitigation. Copyright © 2011 Elsevier Ltd. All rights reserved.

  10. Natural radionuclides in ground water in western Spain

    International Nuclear Information System (INIS)

    Fernandez, F.; Lozano, J.C.; Gomez, J.M.G.

    1992-01-01

    A survey of natural radioactivity in drinking water was carried out in a granitic area in western Spain covering the so-called greywacke-schist complex. This region is known to be rich in uranium ores, such that natural radionuclides should be expected in the groundwater. During 1988, 345 water samples were collected from the water supplies of 115 different villages. These samples were analysed for gross alpha U, Th and Ra. The average concentrations of radionuclides were found to be 5-30 times higher in groundwater from bedrock than in groundwater from soil. The results indicate that Ra makes the highest contribution to the effective dose equivalent. (author)

  11. Natural radionuclides in ground water in western Spain

    Energy Technology Data Exchange (ETDEWEB)

    Fernandez, F.; Lozano, J.C.; Gomez, J.M.G. (Salamanca Univ. (Spain). Lab. de Radioactividad Ambiental)

    1992-01-01

    A survey of natural radioactivity in drinking water was carried out in a granitic area in western Spain covering the so-called greywacke-schist complex. This region is known to be rich in uranium ores, such that natural radionuclides should be expected in the groundwater. During 1988, 345 water samples were collected from the water supplies of 115 different villages. These samples were analysed for gross alpha U, Th and Ra. The average concentrations of radionuclides were found to be 5-30 times higher in groundwater from bedrock than in groundwater from soil. The results indicate that Ra makes the highest contribution to the effective dose equivalent. (author).

  12. Biodegradation of poly(ε-caprolactone in natural water environments

    Directory of Open Access Journals (Sweden)

    Heimowska Aleksandra

    2017-03-01

    Full Text Available The environmental degradation of poly(ε-caprolactone[PCL] in natural fresh water (pond and in The Baltic Sea is presented in this paper. The characteristic parameters of both environments were measured during experiment and their influence on the biodegradation of the samples was discussed. The loss of weight and changes of surface morphology of polymer samples were tested during the period of incubation. The poly(ε-caprolactone was more biodegradable in natural sea water than in pond. PCL samples were completely assimilated over the period of six weeks incubation in The Baltic Sea water, but after forty two weeks incubation in natural fresh water the polymer weight loss was about 39%. The results have confirmed that the investigated polymers are susceptible to an enzymatic attack of microorganisms, but their activity depends on environments.

  13. Sorption-scintillation determination of 90Sr in natural water

    International Nuclear Information System (INIS)

    Andryushchenko, A.Yu.; Blank, A.B.; Budakovsky, S.V.; Tarasenko, O.A.; Shevtsov, N.I.

    2003-01-01

    A porous composite material is described for determination of radionuclides in aquatic objects of the environment. Possibilities have been studied for the use of this material in monitoring of 90 Sr content in natural waters. The composite is a scintillator with through pores, the surface of which is impregnated by a sorbent that is selective with respect to strontium. The structure of the material allows combination of two processes--concentrating the radionuclide and measuring its activity. Studies were carried out using both model systems based on reference radioactive solutions and samples of natural water contaminated with radionuclides. It is shown that the use of the proposed method for analysis of natural water allows determination in water of 4x10 -2 Bq l -1 of 90 Sr, which is by two orders of magnitude lower than its maximum acceptable concentration

  14. TAILORING ACTIVATED CARBONS FOR ENHANCED REMOVAL OF NATURAL ORGANIC MATTER FROM NATURAL WATERS. (R828157)

    Science.gov (United States)

    Several pathways have been employed to systematically modify two granular activated carbons (GACs), F400 (coal-based) and Macro (wood-based), for examining adsorption of dissolved natural organic matter (DOM) from natural waters. A total of 24 activated carbons with different ...

  15. Pasteurization of naturally contaminated water with solar energy.

    Science.gov (United States)

    Ciochetti, D A; Metcalf, R H

    1984-02-01

    A solar box cooker (SBC) was constructed with a cooking area deep enough to hold several 3.7-liter jugs of water, and this was used to investigate the potential of using solar energy to pasteurize naturally contaminated water. When river water was heated either in the SBC or on a hot plate, coliform bacteria were inactivated at temperatures of 60 degrees C or greater. Heating water in an SBC to at least 65 degrees C ensures that the water will be above the milk pasteurization temperature of 62.8 degrees C for at least an hour, which appears sufficient to pasteurize contaminated water. On clear or partly cloudy days, with the SBC facing magnetic south in Sacramento, bottom water temperatures of at least 65 degrees C could be obtained in 11.1 liters of water during the 6 weeks on either side of the summer solstice, in 7.4 liters of water from mid-March through mid-September, and in 3.7 liters of water an additional 2 to 3 weeks at the beginning and end of the solar season. Periodic repositioning of the SBC towards the sun, adjusting the back reflective lid, and preheating water in a simple reflective device increased final water temperatures. Simultaneous cooking and heating water to pasteurizing temperatures was possible. Additional uses of the SBC to pasteurize soil and to decontaminate hospital materials before disposal in remote areas are suggested.

  16. Supercritical water natural circulation flow stability experiment research

    Energy Technology Data Exchange (ETDEWEB)

    Ma, Dongliang; Zhou, Tao; Li, Bing [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; North China Electric Power Univ., Beijing (China). Inst. of Nuclear Thermalhydraulic Safety and Standardization; North China Electric Power Univ., Beijing (China). Beijing Key Lab. of Passive Safety Technology for Nuclear Energy; Huang, Yanping [Nuclear Power Institute of China, Chengdu (China). Science and Technology on Reactor System Design Technology Lab.

    2017-12-15

    The Thermal hydraulic characteristics of supercritical water natural circulation plays an important role in the safety of the Generation-IV supercritical water-cooled reactors. Hence it is crucial to conduct the natural circulation heat transfer experiment of supercritical water. The heat transfer characteristics have been studied under different system pressures in the natural circulation systems. Results show that the fluctuations in the subcritical flow rate (for natural circulation) is relatively small, as compared to the supercritical flow rate. By increasing the heating power, it is observed that the amplitude (and time period) of the fluctuation tends to become larger for the natural circulation of supercritical water. This tends to show the presence of flow instability in the supercritical water. It is possible to observe the flow instability phenomenon when the system pressure is suddenly reduced from the supercritical pressure state to the subcritical state. At the test outlet section, the temperature is prone to increase suddenly, whereas the blocking effect may be observed in the inlet section of the experiment.

  17. THE WATER FROM NATURE AND THE EROSION PROCESS

    Directory of Open Access Journals (Sweden)

    G. PANDI

    2015-03-01

    Full Text Available The water from nature and the erosion process. Studying earth's surface erosion process is necessary for practical reasons. The theoretical approach requires knowledge of the alluvial system’s structure and operation as the cascade sequence of fluvial system’s mass and energy. Geosystem research methodology requires that the water energy and the role of adjacent surface must be expressed. The expression of water power can be grouped according to the shape of movement and action in the basin. A particular, important case is the energy variation in a basin-slope. An important role in energy expressions is considering the existence in nature of biphasic fluid - water as dispersion phase and solid particles as dispersed phase. The role of the adjacent surface is taken into account by using the erosion resistance indicator, which is calculated using the indicator of geological resistance and the indicator of plant protection. The evolution of natural systems, therefore of river basins too, leads to energy diminishing, thus affecting their dynamic balance. This can be expressed using the concept of entropy. Although erosion processes are usual natural phenomena for the evolution of river basins, they induce significant risks in certain circumstances. Depending on the circulated water energies, water basins can be ranked in terms of potential risks.

  18. Natural radioactivity in hot and mineral waters in Syria

    International Nuclear Information System (INIS)

    Othman, I.; Abbass, M.; Kattan, Z.

    1994-08-01

    A study of water chemistry and radioactivity of hot and mineral ground waters was conducted in Syria in order to determine the natural radioactivity levels as well as the mobility process of major radionuclides in the studied systems. The water samples were collected generally from carbonate and basaltic aquifer systems. The chemistry of groundwaters was a reflection of the rock type, while no relationship was found between the radionuclide activities and water temperatures. The increase of 222 Rn concentration in hot and mineral waters was accompanied by a similar increase of the concentration of its patent radionuclides (U t ot and 226 Ra). In parallel, the relative increase of 222 Rn concentration was correlated significantly with the presence of the large faults systems prevailing in the studied areas (Palmyrides and Great African Faults Systems). In all the cases, the radionuclide activity levels were below the maximum contaminant levels given for drinking water and health effects. (author). 11 refs., 7 figs., 8 tabs

  19. [The fate of nuclides in natural water systems

    International Nuclear Information System (INIS)

    Turekian, K.K.

    1989-01-01

    Our research at Yale on the fate of nuclides in natural water systems has three components to it: the study of the atmospheric precipitation of radionuclides and other chemical species; the study of the behavior of natural radionuclides in groundwater and hydrothermal systems; and understanding the controls on the distribution of radionuclides and stable nuclides in the marine realm. In this section a review of our progress in each of these areas is presented

  20. Removal of arsenic from drinking water by natural adsorbents

    OpenAIRE

    MD SHAHNOOR ALAM KHAN

    2017-01-01

    The presence of arsenic in groundwater has been reported in many countries across the world and it is a serious threat to public health. The aim of this study was to identify prospective natural materials with high arsenic adsorption capacity and durable hydraulic property to produce adequate flow of water. The comparative study identified Skye sand as the best natural adsorbent. The prototype household filter with Skye sand achieved complete removal of arsenic and iron. Arsenic removal by du...

  1. Distinguishing natural hydrocarbons from anthropogenic contamination in ground water

    International Nuclear Information System (INIS)

    Lesage, S.; Xu, H.; Novakowski, K.S.

    1997-01-01

    Differentiation between natural and anthropogenic sources of ground-water contamination by petroleum hydrocarbons is necessary in areas where natural hydrocarbons may be present in the subsurface. Because of the similarity in composition between natural and refined petroleum, the use of statistical techniques to discern trends is required. In this study, both multivariate plotting techniques and principal component analysis were used to investigate the origin of hydrocarbons from a variety of study sites. Ground-water and gas samples were collected from the Niagara Falls area and from three gasoline stations where leaking underground storage tanks had been found. Although soil gas surveys are used to indicate the presence of hydrocarbons, they were not useful in differentiating between natural and anthropogenic sources of contamination in ground water. Propane and pentene were found to be the most useful chemical parameters in discriminating between the natural and anthropogenic sources. These chemicals are not usually measured in investigations of ground-water contamination, yet analysis can be conducted by most environmental laboratories using conventional methods

  2. Sustainable Water Management in Urban, Agricultural, and Natural Systems

    Directory of Open Access Journals (Sweden)

    Tess Russo

    2014-12-01

    Full Text Available Sustainable water management (SWM requires allocating between competing water sector demands, and balancing the financial and social resources required to support necessary water systems. The objective of this review is to assess SWM in three sectors: urban, agricultural, and natural systems. This review explores the following questions: (1 How is SWM defined and evaluated? (2 What are the challenges associated with sustainable development in each sector? (3 What are the areas of greatest potential improvement in urban and agricultural water management systems? And (4 What role does country development status have in SWM practices? The methods for evaluating water management practices range from relatively simple indicator methods to integration of multiple models, depending on the complexity of the problem and resources of the investigators. The two key findings and recommendations for meeting SWM objectives are: (1 all forms of water must be considered usable, and reusable, water resources; and (2 increasing agricultural crop water production represents the largest opportunity for reducing total water consumption, and will be required to meet global food security needs. The level of regional development should not dictate sustainability objectives, however local infrastructure conditions and financial capabilities should inform the details of water system design and evaluation.

  3. Natural Circulation Characteristics of an Integral Pressurized Water Reactor

    International Nuclear Information System (INIS)

    Junli Gou; Suizheng Qiu; Guanghui Su; Dounan Jia

    2006-01-01

    Natural circulation potential is of great importance to the inherent safety of a nuclear reactor. This paper presents a theoretical investigation on the natural circulation characteristics of an integrated pressurized water reactor. Through numerically solved the one-dimensional model, the steady-state single phase conservative equations for the primary circuit and the steady-state two-phase drift-flux conservative equations for the secondary side of the once-through steam generator, the natural circulation characteristics are studied. Based on the preliminary calculation analysis, it is found that natural circulation mass flow rate is proportional to the exponential function of the power, and the value of the exponent is related to working conditions of the steam generator secondary side. The higher height difference between the core center and the steam generator center is favorable to the heat removal capacity of the natural circulation. (authors)

  4. Determination of naturally occurring radionuclides in El-Sin Water

    International Nuclear Information System (INIS)

    Al-Masri, M.S.; Al-Rayyes, A.H.

    2000-01-01

    Naturally occurring radionuclides levels have been determined in El-Sin water for the period of 1995 and 1996. water samples were collected from four sites, which are the main drinking water sources of the area. Radon concentration was found to vary between 0.88 Bq/1 in Lattakia main water supply site and 8.4 Bq/1 in El-Sin springs.The highest values found for other radionuclides were 51.6 mBq/1, 18.6 mB/1 and 24.8 mBq/1 for sup 2 sup 2 sup 6 Ra, sup 2 sup 1 sup 0 Po and total uranium (sup 2 sup 3 sup 4 U and sup 2 sup 3 sup 8 U) respectively. These levels are much lower than the maximum permissible levels in drinking water set by international organization.(author)

  5. Protecting Consumers from Contaminated Drinking Water during Natural Disasters

    Science.gov (United States)

    Natural disasters can cause damage and destruction to local water supplies affecting millions of people. Communities should plan for and designate an authorized team to manage and prioritize emergency response in devastated areas. Sections 2.0 and 3.0 describe the Environmental...

  6. Radiological assessment of dam water and sediments for natural ...

    African Journals Online (AJOL)

    Radiological assessment of dam water and sediments for natural radioactivity and its overall health detriments. ... No artificial gamma emitting radionuclide was detected in the samples. The projected ... However, the chances of radiological hazard to the health of human from radioactivity in the soil were generally low.

  7. The Determination of Anionic Surfactants in Natural and Waste Waters.

    Science.gov (United States)

    Crisp, P. T.; And Others

    1983-01-01

    Background information, procedures, and results of an experiment suitable for measuring subpart per million concentrations of anionic surfactants in natural waters and waste effluents are provided. The experiment required only a spectrophotometer or filter photometer and has been successfully performed by students in an undergraduate environmental…

  8. Proton cycling, buffering, and reaction stoichiometry in natural waters

    NARCIS (Netherlands)

    Hofmann, A.F.; Middelburg, J.J.; Soetaert, K.; Wolf-Gladrow, D.A.; Meysman, F.J.R.

    2010-01-01

    Ongoing acidification of the global ocean necessitates a solid understanding of how biogeochemical processes are driving proton cycling and observed pH changes in natural waters. The standard way of calculating the pH evolution of an aquatic system is to specify first how biogeochemical processes

  9. Isolation of plutonium physical--chemical states from natural waters

    International Nuclear Information System (INIS)

    Weimer, W.C.

    1978-08-01

    The purpose of this research program was to evaluate the feasibility, on a bench scale, of methods for preconcentrating selectively individual plutonium forms from very dilute natural water samples, and to apply these results to use with the Battelle large volume water sampler. From the results of the current investigations, several alternative water sampling strategies have been recommended. The preferred water sampling technique has been field tested at several groundwater wells in the 200 East and 200 West areas of the U.S. Department of Energy Hanford Reservation. These laboratory investigations, in combination with field testing of the proposed water sampling techniques, have yielded the following conclusions: (1) The use of polypropylene microporous filters (0.04μ pore size) in conjunction with glass fiber filters (3.0μ pore size) enables the characterization of two size fractions of particulate plutonium forms in groundwater samples. Those species which pass the microporous polypropylene filters are considered to be in solution. (2) The sorption and ion exchange media evaluated do not show the selectivity necessary to allow preconcentration of individual plutonium forms from natural water samples by any of these media beds under the conditions evaluated. (3) Al 2 O 3 is the most effective sorption media that was examined for removing any plutonium species from natural water samples at neutral pH values. On the basis of these investigations, a standard field testing methodology has been proposed for sampling ground waters near nuclear waste management areas. Additional laboratory evaluations of plutonium species interactions with sorption and ion exchange media have also been recommended

  10. Natural radioactivity in bottled mineral water available in Australia

    International Nuclear Information System (INIS)

    Cooper, M.B.; Ralph, B.J.; Wilks, M.J.

    1981-08-01

    The levels of naturally-occurring radioactive elements in bottled mineral water, commercially available in Australia, have been assessed. The survey concentrated upon 226 Ra, 228 Ra and 210 Pb, radionuclides which have a high toxicity in drinking water. Detectable levels of 226 Ra were found to range from 0.02Bq/1 to 0.32Bq/1 in locally-bottled water and from 0.02Bq/1 to 0.44Bq/1 in imported brands. 210 Pb levels were found to be generally very low ( 228 Ra content of bottled water will have a similar distribution to that of 226 Ra. Concentrations of 228 Ra in excess of 0.7Bq/1 were measured in a number of samples. The radiological health implications of the consumption of bottled mineral water are discussed with reference to existing drinking water standards and also in terms of radiation exposure and the increased risk to health. It was concluded that, although some brands of water contain radioactivity in excess of the drinking-water limits recommended by Australian and overseas authorities, the annual radiation dose to an individual will be below the dose-equivalent limits recommended by the International Commission on Radiological Protection for life-long exposure. The increased risk of radiation-induced fatal disease due to the consumption of bottled mineral water is estimated to be less than 10 -5 and is therefore negligible

  11. Thermodynamic Modeling of Natural Gas Systems Containing Water

    DEFF Research Database (Denmark)

    Karakatsani, Eirini K.; Kontogeorgis, Georgios M.

    2013-01-01

    As the need for dew point specifications remains very urgent in the natural gas industry, the development of accurate thermodynamic models, which will match experimental data and will allow reliable extrapolations, is needed. Accurate predictions of the gas phase water content in equilibrium...... with a heavy phase were previously obtained using cubic plus association (CPA) coupled with a solid phase model in the case of hydrates, for the binary systems of water–methane and water–nitrogen and a few natural gas mixtures. In this work, CPA is being validated against new experimental data, both water...... content and phase equilibrium data, and solid model parameters are being estimated for four natural gas main components (methane, ethane, propane, and carbon dioxide). Different tests for the solid model parameters are reported, including vapor-hydrate-equilibria (VHE) and liquid-hydrate-equilibria (LHE...

  12. The Bare Critical Assembly of Natural Uranium and Heavy Water

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D [Boris Kidric Institute of Nuclear Sciences, Vinca, Belgrade (Yugoslavia)

    1958-07-01

    The first reactor built in Yugoslavia was the bare zero energy heavy water and natural uranium assembly at the Boris Kidric Institute of Nuclear Sciences, Belgrade. The reactor went critical on April 29, 1958. The possession of four tons of natural uranium metal and the temporary availability of seven tons of heavy water encouraged the staff of the Institute to build a critical assembly. A critical assembly was chosen, rather than high flux reactor, because the heavy water was available only temporarily. Besides, a 10 MW, enriched uranium, research reactor is being built at the same Institute and should be ready for operation late this year. It was supposed that the zero energy reactor would provide experience in carrying out critical experiments, operational experience with nuclear reactors, and the possibility for an extensive program in reactor physics. (author)

  13. Natural Radioactivity Pattern of Surabaya Water Environmental Samples

    International Nuclear Information System (INIS)

    Rosidi; Agus Taftazani

    2007-01-01

    The gross β radioactivity and natural radionuclide of Surabaya environmental samples pattern have been evaluated. The environmental samples were chosen randomly at 12 locations. The environment samples were water (fresh, estuary and coastal), sediment, eichhornia crassipes (Mart) Solms, Mangrove (Rhizophora stylosa), (Moolgarda delicatus) fish and (Johnius (Johnieops) borneensis) (Sharpnose hammer croaker) fish. The water sample was evaporated; the sediment sample was dried and ground; the biotic samples was burnt at the temperature 500 °C ; The gross β measurement using GM detector and the radionuclides has been identified by γ spectrometer. From the investigation results could be concluded that the natural radioactivity of environmental samples was very low. gross-β of water samples were lower than the threshold value of local government regulation of Surabaya no: 2 year 2004 (1 Bq/L). The distribution of gross-β activity of eichhornia crassipes (Mart) Solms was higher than the other biotic, water and sediment samples as well as the accumulation of radionuclides in the water organism was taken place. The result of identification using γ spectrometer has detected 7 of radionuclides, i.e 210 Pb, 212 Pb, 214 Pb, 208 Tl, 214 Bi, 228 Ac, and 40 K in all sample. The distribution factor of sediment F D was less than bioaccumulation factor of biotic F B and it indicates that there the radionuclide accumulation migration follows the pattern of water - sediment - biotic sample. (author)

  14. Correlation Water Velocity and TSS with Natural Radionuclides Activity

    International Nuclear Information System (INIS)

    Tri Harningsih; Muzakky; Agus Taftazani

    2007-01-01

    Correlation water velocity and TSS with natural radionuclides activity has been studied. For that purpose, the study is to correlation water velocity and TSS with radionuclides on water and sediment samples in alongside river Code Yogyakarta. This research selected radionuclides, for examples Ra-226, Pb-212, Ac- 228, and K-40. Election of this radionuclides to spread over gamma gross composition alongside river of Code. Gamma gross influenced by water velocity and TSS, so that require to correct between water velocity and TSS to radionuclides. Sampling water and sediment conducted when dry season of August, 2006 at 11 locations, start from Boyong Bridge until Pacar Bridge. Result of analysis showed that water velocity range from 8-1070 L/dt and TSS range from 2.81 E-06 - 8.02 E-04 mg/L. The accumulation of radionuclides in water samples non correction water velocity for Ra-226: 0.302-2.861 Bq/L, Pb-212: 0.400-3.390 Bq/L, Ac- 228: 0.0029-0.0047 Bq/L and K-40: 0.780-9.178 Bq/L. The accumulation of radionuclide in water samples correction water velocity for Ra-226: 1.112-70.454 Bq/L, Pb-212: 0.850-77.113 Bq/L, Ac-228: 0.7187- 60.859 Bq/L and K-40: 2.420-208.8 Bq/L. While distribution of radionuclide in sediment for the Ra-226: 0.0012-0.0211 Bq/kg, Pb-212: 0.0017-0.0371 Bq/kg, Ac-228: 0.0021-0.0073 Bq/kg and K-40: 0.0006-0.0084 Bq/kg. (author)

  15. Compared studies of natural and artificial deuterium depleted water

    International Nuclear Information System (INIS)

    Butnaru, Gallia; Mihacea, Sorina; Sirbovan, Alina; Butnariu, H.; Titescu, Gh.

    2001-01-01

    The biological influence of the deuterium on animals was studied insensitively in the last years. When animal cell cultures were analyzed it turned out an inhibition of the development, due to the reduced deuterium concentration. In the in vivo experiments a decreasing of the number of tumoral cells was pointed out when performing the depleted water treatment. It is obvious that the presence of deuterium in water is necessary for the development, especially for the tumoral cell proliferation. The aim of this work was to establish influence of the natural and artificial deuterium depleted water on the vegetal organisms development. For this purpose, the developmental stages of Lactuca sativa L. growth were followed. The experimental data were compared with the data obtained with distilled water. The birch, wine sap and some fruit juices are considered 'natural depleted' water sources because their deuterium content is smaller in comparison to natural water (D 2 =150 ppm). The effect of artificial deuterium depleted water (29 ppm D 2 ) was analyzed in comparison to three types of wine saps, which also have a reduced deuterium concentration (125-130 ppm D 2 ). If the deuterium depleted water was used, the germination percent and the root and shoot length were higher compared to control in the first stages. In wine sap it had a negative effect on germination and development. After three days the plants were transferred to soil and their development was followed. The foliage area was larger for all of the experimental variants compared to control. The differences were without significance when deuterium depleted water was tested but they were high and very significant in case of wine sap. The experiment pointed out a stimulative effect of the artificial deuterium depleted water. In case of wine sap the effect was negative when the contact was direct, but the growth was stimulated after the stress cessation. The first ontogenetic stages were represented by direct action

  16. Contact heating of water products of combustion of natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Aronov, I Z

    1978-01-01

    The USSR's NIIST examined the processes and equipment for heating water by submerged combustion using natural gas. Written for engineers involved with the design and application of thermal engineering equipment operating with natural gas, the book emphasizes equipment, test results, and methods of calculating heat transfer for contact gas economizers developed by Scientific Research Institute of Sanitary Engineering and other Soviet organizations. The economic effectiveness of submerged-combustion heating depends on several factors, including equipment design. Recommendations cover cost-effective designs and applications of contact economizers and boilers.

  17. Express-analysis of Radiocaesium Traces in Natural Water

    International Nuclear Information System (INIS)

    Remez, V.P.; Belyakova, E.G.

    1999-01-01

    To determine traces of radiocaesium in water solution, the sorbent on the base of ferric potassium hexacyanoferrate on cellulose carrier ANFEZH was worked out. The sorbent is capable to extract effectively the isotopes of caesium from various natural solutions (fresh and sea water, milk, juices and so on). The usage of sorbent allows practically completely concentrate the isotopes of caesium from water samples with the volume of tens and hundreds litres. The sorbent in quantity of 50-500 grams allows to extract 98±1% of caesium from natural water samples with the volume up to 1000 litres during 1-5 hours. The usage of this sorbent allowed to conduct the express analysis of multiple bore holes within the area of 30 km of Chernobyl Skaya NPP , drinking water and milk in the regions of Belorussia, Ukraine and Russia, hit by Chernobyl disaster and around NPP in Russia and America. The use of this express analysis reduced the time and required labour as compared with to precipitation methods

  18. Measurement of natural and anthropogenic radiation in surface waters

    International Nuclear Information System (INIS)

    Turcotte, Jacques

    1981-01-01

    The use of alumina gel in municipal water treatment plants is proving very promising for the measurement of radioactivity in watercourses. The amazing fixation power of aluminum hydroxide and the large volume of water treated daily in one plant permits alumina gel to concentrate traces of natural and artificial radioisotopes to a level at which it becomes possible to observe very small amounts of radioactive fallout from nuclear tests, or even to follow over hundreds of kilometers the wastes of nuclear stations, no matter how weak the radioactivity may be [fr

  19. Practical isolation of methyl mercury in natural waters

    International Nuclear Information System (INIS)

    Schintu, M.; Kauri, T.; Contu, A.; Kudo, A.

    1987-01-01

    A simple method to isolate both organic and inorganic mercury in natural waters is described. The mercuric compounds were quantitatively extracted with dithizone from six different kinds of water spiked at nanogram levels with radioactive mercuric chloride and methylmercuric chloride. After the separation from the inorganic mercury with sodium nitrite, methyl mercury was transferred to aqueous medium with sodium thiosulfate. The method provides a high recovery of organic as well as inorganic mercury to an aqueous medium, prior to their determination by gold-trap cold vapor atomic absorption spectrophotometry. This method is easy, rapid, and inexpensive. Furthermore, the limited number of analytical steps should reduce loss and contamination

  20. Natural attenuation of antimony in mine drainage water

    International Nuclear Information System (INIS)

    Manaka, Mitsuo; Yanase, Nobuyuki; Sato, Tsutomu; Fukushi, Keisuke

    2007-01-01

    In this study, we investigated the natural attenuation of antimony (Sb) in the drainage water of an abandoned mine. Drainage water, waste rocks, and ocherous precipitates collected from the mine were investigated in terms of their mineralogy and chemistry. The chemistry of the drainage water was analyzed by measuring pH, oxidation-reduction potential (ORP), and electric conductivity on site as well as by inductively coupled plasma mass spectrometry and ion chromatography. As the drainage flowed downstream, the pH decreased rapidly from 7.05 to 3.26 and then increased slowly to 3.50. In a section where the pH increased, ocherous precipitates occur on a drainage water channel. We determined Sb levels in the drainage water, and the distribution of Sb in the mineral phases of waste rocks and precipitates was estimated by means of a sequential extraction procedure. The results of these investigations indicated that Sb, which is generated by the dissolution of stibnite (Sb 2 S 3 ) and secondary formed Sb minerals in waste rocks, was attenuated by iron-bearing ocherous precipitates, especially schwertmannite, that form over time in the drainage water. The Sb concentrations in the ocherous precipitates were up to 370 mg/kg, whereas the Sb concentrations in the drainage water downstream were below background levels (0.6 μg/L). Bulk distribution coefficients (K d ) for this Sb adsorption to the precipitates ranges up to at least 10 5 L/kg. (author)

  1. Colloids removal from water resources using natural coagulant: Acacia auriculiformis

    Science.gov (United States)

    Abdullah, M.; Roslan, A.; Kamarulzaman, M. F. H.; Erat, M. M.

    2017-09-01

    All waters, especially surface waters contain dissolved, suspended particles and/or inorganic matter, as well as several biological organisms, such as bacteria, algae or viruses. This material must be removed because it can affect the water quality that can cause turbidity and colour. The objective of this study is to develop water treatment process from Seri Alam (Johor, Malaysia) lake water resources by using natural coagulant Acacia auriculiformis pods through a jar test experiment. Jar test is designed to show the effectiveness of the water treatment. This process is a laboratory procedure that will simulate coagulation/flocculation with several parameters selected namely contact time, coagulant dosage and agitation speed. The most optimum percentage of colloids removal for each parameter is determined at 0.2 g, 90 min and 80 rpm. FESEM (Field-emission Scanning Electron Microscope) observed the small structures of final floc particles for optimum parameter in this study to show that the colloids coagulated the coagulant. All result showed that the Acacia auriculiformis pods can be a very efficient coagulant in removing colloids from water.

  2. Behaviour of steels in natural environments: focus on stainless steels in natural sea water

    International Nuclear Information System (INIS)

    Feron, D.

    2005-01-01

    Corrosion behaviour of steels and alloys in natural environments is not only dependent to material parameters and environmental chemistry, but also to micro-organisms which may be there. The global approach used to investigate the behaviour of alloys in natural environments is illustrated by the work done on stainless steels in seawater. In aerated seawater, studies led to the proposal of an 'enzymatic model' based on the enzymatic catalyze of the cathodic reaction and which allows reproducing the electrochemical behaviour of stainless steels in natural seawater and the crevice corrosion phenomena observed in natural sea waters. Coupling areas under aerobic and anaerobic conditions leads to the worst situation for stainless steel behaviour: the catalysis of the cathodic reaction on aerobic exposed surfaces and the decrease of the corrosion resistance of anaerobic surfaces due to sulphides. These results lead to the concept of electro-active bio-films. (author)

  3. 226Ra and natural uranium in egyptian bottled mineral waters

    International Nuclear Information System (INIS)

    Higgy, R.H.

    2000-01-01

    Concentration levels of 226 Ra and natural uranium have been analysed bottled mineral water commercially available in egypt. 226 Ra was determined by applying a chemical procedure in which Ra was coprecipitated with Ba as sulphate. The precipitate was then dissolved with EDTA and then measured by liquid scintillation system, after mixing with a scintillation cocktail. Natural uranium was determined by applying a chemical procedure for uranium extraction using MIBK and then measured using laser fluorimeter system. The concentration values obtained were compared with concentrations reported by other countries and with reference values accepted for drinking water. Based on the consumption rate and the measured concentrations, the collective committed effective doses were calculated. In addition, Ca, Mg and Na were measured using Icp system and compared with some worldwide values

  4. Measurement of Antioxidant Activity Towards Superoxide in Natural Waters.

    Directory of Open Access Journals (Sweden)

    D. Whitney King

    2016-11-01

    Full Text Available Antioxidants are a class of molecules that provide a protective function against reactive oxygen species (ROS in biological systems by out competing physiologically important molecules for ROS oxidation. In natural waters, the reactivity of antioxidants gives an estimate of oxidative stress and may determine the reactivity and distribution of reactive oxidants. We present an analytical method to measure antioxidant activity in natural waters through the competition between ascorbic acid, an antioxidant, and MCLA, a chemiluminescent probe for superoxide. A numerical kinetic model of the analytical method has been developed to optimize analytical performance. Measurements of antioxidant concentrations in pure and seawater are possible with detection limits below 0.1 nM. Surface seawater samples collected at solar noon contained over 0.4 nM of antioxidants and exhibited first-order decay with a half-life of 3-7 minutes, consistent with a reactive species capable of scavenging photochemically produced superoxide.

  5. Water for wood products versus nature, food or feed

    Science.gov (United States)

    Schyns, Joep; Booij, Martijn; Hoekstra, Arjen

    2017-04-01

    more water available for the generation of other ecosystem services. Our findings contribute to a more complete picture of the human appropriation of water and the understanding of the interlinkages between the SDGs, thus feeding the debate on water for wood products versus nature, food or feed.

  6. Isolation and characterization of humics from natural waters

    International Nuclear Information System (INIS)

    Allard, B.; Arsenie, I.; Boren, H.; Ephraim, J.; Pettersson, C.; Gaardhammar, G.

    1990-05-01

    A method has been developed for quantitative recovery of humic substances from aqueous systems based on ion exchange on DEAE-cellulose. A scheme is suggested for the characterization of dissolved humic substances (UV-, IR- and 1 H NMR-spectroscopy, elemental analysis, molecular weight determination, 14 C-age, functionality, carbohydrate content and acid-base properties) as a routine in the chemical analysis of natural waters. (orig.)

  7. Natural uranium fueled light water moderated breeding hybrid power reactors

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    The feasibility of fission-fusion hybrid reactors based on breeding light water thermal fission systems is investigated. The emphasis is on fuel-self-sufficient (FSS) hybrid power reactors that are fueled with natural uranium. Other LWHRs considered include FSS-LWHRs that are fueled with spent fuel from LWRs, and LWHRs which are to supplement LWRs to provide a tandem LWR-LWHR power economy that is fuel-self-sufficient

  8. Laboratory simulation studies of uranium mobility in natural waters

    International Nuclear Information System (INIS)

    Giblin, A.M.; Swaine, D.J.; Batts, B.D.

    1981-01-01

    The effects of imposed variations of pH and Eh on aqueous uranium mobility at 25 0 C have been studied in three simulations of natural water systems. Constituents tested for their effect on uranium mobility were: (a) hydrous ferric oxide, to represent adsorptive solids which precipitate or dissolve in response to variations in pH and Eh; (b) kaolinite, representing minerals which, although modified by pH and Eh changes, are present as solids over the pH-Eh range of natural waters; and (c) carbonate, to represent a strong uranium-complexing species. Uranium mobility measurements from each simulation were regressed against pH and Eh within a range appropriate to natural waters. Hydrous ferric oxide and kaolinite each affected uranium mobility, but in separate pH-Eh domains. Aqueous carbonate increased mobility of uranium, and adsorption of UO 2 (CO 3 ) 3 4- caused colloidal dispersion of hydrous ferric oxide, possibly explaining the presence of 'hydrothermal hematite' in some uranium deposits. Enhanced uranium mobility observed in the pH-Eh domains of thermodynamically insoluble uranium oxides could be explained if the oxides were present as colloids. Uranium persisting as a mobile species, even after reduction, has implications for the near surface genesis of uranium ores. (author)

  9. Innovative Treatment Technologies for Natural Waters and Wastewaters

    Energy Technology Data Exchange (ETDEWEB)

    Childress, Amy E.

    2011-07-01

    The research described in this report focused on the development of novel membrane contactor processes (in particular, forward osmosis (FO), pressure retarded osmosis (PRO), and membrane distillation (MD)) in low energy desalination and wastewater treatment applications and in renewable energy generation. FO and MD are recently gaining national and international attention as viable, economic alternatives for removal of both established and emerging contaminants from natural and process waters; PRO is gaining worldwide attention as a viable source of renewable energy. The interrelationship of energy and water are at the core of this study. Energy and water are inextricably bound; energy usage and production must be considered when evaluating any water treatment process for practical application. Both FO and MD offer the potential for substantial energy and resource savings over conventional treatment processes and PRO offers the potential for renewable energy or energy offsets in desalination. Combination of these novel technologies with each other, with existing technologies (e.g., reverse osmosis (RO)), and with existing renewable energy sources (e.g., salinity gradient solar ponds) may enable much less expensive water production and also potable water production in remote or distributed locations. Two inter-related projects were carried out in this investigation. One focused on membrane bioreactors for wastewater treatment and PRO for renewable energy generation; the other focused on MD driven by a salinity gradient solar pond.

  10. Tritium volume activity in natural waters of NPP Temelin region

    Energy Technology Data Exchange (ETDEWEB)

    Tomasek, M; Wilhelmova, L [Academy of Sciences of the Czech Rep., Prague (Czech Republic). Nuclear Physics Inst., Dept. of Radiation Dosimetry

    1996-12-31

    This paper presents the results of tritium measurement in selected rivers of NPP Temelin before its operation obtained during the period 1991-1994. Particular attention is paid to Vltava river into which liquid effluents will be discharged and which is also utilized as a drinking water supply for the capital Prague. Samples from the Vltava river were collected near the mouth of NPP waste canal (point Hladna)and in front of the intake into Prague water works (point Podoli). Tritium content was analysed also in surface waters of Paleckuv, Temelinsky and Strouha streams which can be affected by gaseous effluents due to atmospheric removal processes. Tritium activity was measured with Tric-Carb 1050 TR/LL liquid scintillation counter. The mean annual tritium activities of investigated river waters varied within 1.9-3.0 Bq/l during the period 1991-1994 and that their trend has been slowly decreasing. This fact, as well as seasonal variability, suggests, that tritium level in the surface waters of studied region is largely governed by this radionuclide global atmospheric fallout. The results of this work indicate the trend of background tritium in examined natural waters and make possible the evaluation of their potential future contamination. (J.K.) 1 tab., 2 figs., 4 refs.

  11. Annual effective dose due to natural radioactivity in drinking water

    International Nuclear Information System (INIS)

    Padma Savithri, P.; Srivastava, S.K.; Balbudhe, A.Y.; Vishwa Prasad, K.; Ravi, P.M.; Tripathi, R.M.

    2014-01-01

    Natural radioactivity concentration in drinking water supply in and round Hyderabad, Secunderabad was determined. The observed gross alpha activity found in water samples vary from 0.027±0.014 Bq/L to 0.042±0.015 Bq/L with average 0.035 Bq/L while beta activity in all the samples are less than 0.076 Bq/l. Contributions of the drinking water samples to total annual effective dose equivalent from 238 U, 234 U, 230 Th, 26 Ra, 210 Po, 232 Th, 228 Th 210 Pb and 228 Ra are 1.14, 1.24, 5.30, 7.07, 30.3, 5.81, 1.82, 38.3 and 38.3 μSvy -1 for adults. The results indicate that the annual effective doses are below the WHO recommended reference level for α and β in food and drinking samples. (author)

  12. Natural radioactivity in Brazilian bottled mineral waters and consequent doses

    International Nuclear Information System (INIS)

    Oliveira, J. de; Paci Mazzilli, B.; Costa, P. da; Akiko Tanigava, P.

    2001-01-01

    The natural activity concentration levels of 226 Ra, 228 Ra and 210 Pb were analyzed in 17 brands of bottled mineral waters commercially available in the Southeast region of Brazil. Concentrations up to 647 mBq x l -1 and 741 mBq x l -1 were observed for 226 Ra and 228 Ra, whereas 210 Pb concentrations reached 85 mBq x l -1 . Average committed effective doses of 1.3 x 10 -2 mSv x y -1 for 226 Ra, 3.4 x 10 -2 mSv x y -1 for 228 Ra and 9.4 x 10 -3 mSv x y -1 for 210 Pb were estimated for the ingestion of these waters. A collective dose of 90 manSv was evaluated, considering the annual production of the bottled mineral waters analyzed in this study. (author)

  13. Evaluation method for regional water cycle health based on nature-society water cycle theory

    Science.gov (United States)

    Zhang, Shanghong; Fan, Weiwei; Yi, Yujun; Zhao, Yong; Liu, Jiahong

    2017-08-01

    Regional water cycles increasingly reflect the dual influences of natural and social processes, and are affected by global climate change and expanding human activities. Understanding how to maintain a healthy state of the water cycle has become an important proposition for sustainable development of human society. In this paper, natural-social attributes of the water cycle are synthesized and 19 evaluation indices are selected from four dimensions, i.e., water-based ecosystem integrity, water quality, water resource abundance and water resource use. A hierarchical water-cycle health evaluation system is established. An analytic hierarchy process is used to set the weight of the criteria layer and index layer, and the health threshold for each index is defined. Finally, a water-cycle health composite-index assessment model and fuzzy recognition model are constructed based on the comprehensive index method and fuzzy mathematics theory. The model is used to evaluate the state of health of the water cycle in Beijing during 2010-2014 and in the planning year (late 2014), considering the transfer of 1 billion m3 of water by the South-to-North Water Diversion Project (SNWDP). The results show health scores for Beijing of 2.87, 3.10, 3.38, 3.11 and 3.02 during 2010-2014. The results of fuzzy recognition show that the sub-healthy grade accounted for 54%, 49%, 61% and 49% of the total score, and all years had a sub-healthy state. Results of the criteria layer analysis show that water ecosystem function, water quality and water use were all at the sub-healthy level and that water abundance was at the lowest, or sick, level. With the water transfer from the SNWDP, the health score of the water cycle in Beijing reached 4.04. The healthy grade accounted for 60% of the total score, and the water cycle system was generally in a healthy state. Beijing's water cycle health level is expected to further improve with increasing water diversion from the SNWDP and industrial

  14. Emergency Response Planning to Reduce the Impact of Contaminated Drinking Water during Natural Disasters

    Science.gov (United States)

    Natural disasters can be devastating to local water supplies affecting millions of people. Disaster recovery plans and water industry collaboration during emergencies protect consumers from contaminated drinking water supplies and help facilitate the repair of public water system...

  15. Study and interpretation of the chemical characteristics of natural water

    Science.gov (United States)

    Hem, John David

    1985-01-01

    The chemical composition of natural water is derived from many different sources of solutes, including gases and aerosols from the atmosphere, weathering and erosion of rocks and soil, solution or precipitation reactions occurring below the land surface, and cultural effects resulting from human activities. Broad interrelationships among these processes and their effects can be discerned by application of principles of chemical thermodynamics. Some of the processes of solution or precipitation of minerals can be closely evaluated by means of principles of chemical equilibrium, including the law of mass action and the Nernst equation. Other processes are irreversible and require consideration of reaction mechanisms and rates. The chemical composition of the crustal rocks of the Earth and the composition of the ocean and the atmosphere are significant in evaluating sources of solutes in natural freshwater.

  16. Natural radioactivity in drinking water in private wells in Finland

    International Nuclear Information System (INIS)

    Vesterbacka, P.; Maekaeinen, I.; Arvela, H.

    2005-01-01

    Natural radioactivity in drinking water was determined in population-based random study of 472 private wells. The mean concentrations of 222 Rn, 226 Ra, 234 U, 238 U, 210 Pb and 210 Po in drilled wells were 460, 0.05, 0.35, 0.26, 0.04 and 0.05 Bq l -1 , and in wells dug in the soil were 50, 0.016, 0.02, 0.015, 0.013 and 0.007 Bq l -1 , respectively. Approximately 10% of the drilled wells exceeded a radon concentration of 1000 Bq l -1 and 18% a uranium concentration of 15 μg l -1 . The mean annual effective dose from natural radionuclides for a drilled well user was 0.4 mSv and 0.05 mSv for a user of a well dug in the soil. The effective dose arising from 222 Rn was 75% of the total of all natural radionuclides for drilled well users. As regards long-lived radionuclides, 210 Po and 210 Pb caused the largest portion of the effective dose. The dose arising from 238 U, 234 U and 226 Ra was only 8% of the total of all natural radionuclides. (authors)

  17. The quality of Albanian natural waters and the human impact.

    Science.gov (United States)

    Cullaj, Alqiviadh; Hasko, Agim; Miho, Aleko; Schanz, Ferdinand; Brandl, Helmut; Bachofen, Reinhard

    2005-01-01

    Albania possesses a wealth of aquatic ecosystems, many of enormous natural and biological value, such as the Lakes Ohrid, Prespa and Shkodra, glacial lakes, river valleys, and coastal lagoons. Although many habitats are highly polluted by inorganic and organic wastes, detailed knowledge on the water quality is still lacking. For the first time, an environmental assessment of the water quality is presented and the main polluting sources identified. As a consequence, a systematic control and the establishment of routine monitoring of surface and groundwater is proposed, which elucidates the present environmental state and helps to develop new strategies of waste and wastewater management. It would help allow Albania to reach an international standard in environmental protection, as a part of UNECE Convention, the Mediterranean Action Plan, the MAP/UNEP Medpol Program and the Basel Convention.

  18. Uranium concentrations in natural waters, South Park, Colorado

    International Nuclear Information System (INIS)

    Sharp, R.R. Jr.; Aamodt, P.L.

    1976-08-01

    During the summer of 1975, 464 water samples from 149 locations in South Park, Colorado, were taken for the Los Alamos Scientific Laboratory in order to test the field sampling and analytical methodologies proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in the Rocky Mountain states and Alaska. The study showed, in the South Park area, that the analytical results do not vary significantly between samples which were untreated, filtered and acidified, filtered only, or acidified only. Furthermore, the analytical methods of fluorometry and delayed-neutron counting, as developed at the LASL for the reconnaissance work, provide fast, adequately precise, and complementary procedures for analyzing a broad range of uranium in natural waters. The data generated using this methodology does appear to identify uraniferous areas, and when applied using sound geochemical, geological, and hydrological principles, should prove a valuable tool in reconnaissance surveying to delineate new districts or areas of interest for uranium exploration

  19. Water: Challenges at the Intersection of Human and Natural Systems

    Energy Technology Data Exchange (ETDEWEB)

    Futrell, J.H.; Gephart, R. E.; Kabat-Lensch, E.; McKnight, D. M.; Pyrtle, A.; Schimel, J. P.; Smyth, R. L.; Skole, D. L. Wilson, J. L.; Gephart, J. M.

    2005-09-01

    There is a growing recognition about the critical role water plays in sustaining people and society. This workshop established dialog between disciplinary scientists and program managers from diverse backgrounds in order to share perspectives and broaden community understanding of ongoing fundamental and applied research on water as a complex environmental problem. Three major scientific themes emerged: (1) coupling of cycles and process, with emphasis on the role of interfaces; (2) coupling of human and natural systems across spatial and temporal scales; and (3) prediction in the face of uncertainty. In addition, the need for observation systems, sensors, and infrastructure; and the need for data management and synthesis were addressed. Current barriers to progress were noted as educational and institutional barriers and the integration of science and policy.

  20. Determination of inorganic ions in natural water by ion chromatography

    International Nuclear Information System (INIS)

    Nazaratul Ashifa Abdullah Salim; Mohd Suhaimi Hamzah; Eewiat Edin Put; Abdul Khalik Wood; Shamsiah Abdul Rahman; Md Suhaimi Elia

    2010-01-01

    Ion chromatography (IC) is a well established methodology for analysis of ionic species. The concentration of ionic species was determined using suppressed IC with conductivity detection. Anion species were determined in a single 15-min run with Na 2 CO 3 and NaHCO 3 eluent. Cation species were analysed by direct injection of 1 ml and isocratic elution with a methanesulfonic acid (MSA) eluent. Natural water were collected from various sources such as rainwater, lake, river and groundwater. Analysis performance of IC system was validated by evaluating the linear regression of calibration curve, recovery of spike sample and quality control sample. (author)

  1. Natural product antifoulants from the octocorals of Indian waters

    Digital Repository Service at National Institute of Oceanography (India)

    Raveendran, T.V.; LimnaMol, V.P.; Parameswaran, P.S.

    stream_size 22497 stream_content_type text/plain stream_name Int_Biodeterior_Biodegrad_65_265a.pdf.txt stream_source_info Int_Biodeterior_Biodegrad_65_265a.pdf.txt Content-Encoding UTF-8 Content-Type text/plain; charset=UTF-8... 1 Author version: International Biodeterioration & Biodegradation, vol.65(1); 2011; 265-268 Natural Product Antifoulants from the Octocorals of Indian waters T.V. Raveendran * , V.P. Limna Mol, P.S. Parameswaran National Institute...

  2. The size distribution of dissolved uranium in natural waters

    International Nuclear Information System (INIS)

    Mann, D.K.; Wong, G.T.F.

    1987-01-01

    The size distribution of dissolved uranium in natural waters is poorly known. Some fraction of dissolved uranium is known to associate with organic matter which had a wide range of molecular weights. The presence of inorganic colloidal uranium has not been reported. Ultrafiltration has been used to quantify the size distribution of a number of elements, such as dissolved organic carbon, selenium, and some trace metals, in both the organic and/or the inorganic forms. The authors have applied this technique to dissolved uranium and the data are reported here

  3. Natural radioactivity in private water supplies in Devon

    International Nuclear Information System (INIS)

    Talbot, D.; Davis, J.; Rainey, M.

    2000-01-01

    This report details a study of the occurrence of natural radioactivity in private water Supplies in West Devon. Supplies sourced from wells, springs boreholes and a small number surface supplies were sampled. The findings of a laboratory simulation of the radon content in drinks such as tea, coffee and squash are also presented. Of supplies sampled in phase one of the work approximately 8% of tap water and 9% of samples directly from the supply contained radon at concentrations exceeding the draft European Union Commission Recommendation action level of 1000 Bq/I for individual and public water supplies. In a small number of supplies 238 U is present at levels exceeding 2 μg/I, the World Health Organisation (WHO) provisional guideline value for uranium in drinking water. The final aspect of the study looked at seasonal variation in the radon content of selected supplies. This showed considerable variability in radon concentration over the course of a week and between studies carried out several months apart. (author)

  4. Thermodynamic stability and kinetic dissolution of perovskite in natural waters

    International Nuclear Information System (INIS)

    Nesbitt, H.W.; Bancroft, G.M.; Fyfe, W.S.; Karkhanis, S.; Melling, P.; Nishijima, A.

    1981-01-01

    Ringwood and coworkers have recently proposed using titanates and zirconates as hosts for nuclear waste in the Synroc B process. Three minerals are used as hosts: perovskite (CaTiO 3 ), Ba-hollandite (BaAl 2 Ti 6 O 16 ), and zirconolite (CaZrTi 2 O 7 ). The Synroc philosophy relies heavily on geological and geochemical observations in selecting stable host minerals. Although it has been recognized that the Synroc minerals are not thermodynamically compatible with siliceous rocks, the minerals are considered to be thermodynamically stable in the presence of water, and it has been reported that these minerals are kinetically stable under high-temperature (up to 900 0 C) hydrothermal conditions. Detailed thermodynamic calculations and leach tests have been performed which demonstrate: first, that perovskite is thermodynamically unstable in all known natural waters; and second, that pervoskite leaches at a significant rate even at 100 0 C. Hydrothermal leach tests have been made on natural and synthetic perovskite and perovskite analogues between 100 0 C and 300 0 C. Weight losses and solution concentrations were monitored. The results reported previously in the literature also show that perovskite is kinetically unstable in the presence of common silicates. Our results show that perovskite may be no more stable than siliceous glasses, such as rhyolite, which have been studied previously. Geologic evidence from common alkaline rocks also indicates that hollandite and zirconolite probably will not survive in common rock matrices

  5. Natural radioactivity levels in different mineral waters from Bulgaria

    Energy Technology Data Exchange (ETDEWEB)

    Kamenova-Totzeva, R.; Kotova, R.; Tenev, J.; Ivanova, G.; Badulin, V. [Public Exposure Monitoring Laboratory, National Centre of Radiobiology and Radiation Protection, Sofia (Bulgaria)

    2013-07-01

    The total radioactivity content of 76 mineral waters from different districts in Bulgaria was determined. Natural radioactivity levels resulting from uranium, radium-226, gross alpha and gross beta activity were measured. The results show that the specific activity range from < 0.02 Bq/l to 1.34 (12) Bq/l and from 0.068 (23) Bq/l to 2.60 (50) Bq/l for gross alpha and gross beta activity respectively. For natural Uranium the results vary between 0.020 (5) μg/l and 180(50) μg/l. Radium-226 content is between < 0.03 Bq/l to 0.296 (75) Bq/l. Due to differences in the geological structure of the aquifer, a large difference in values of the radioactive content was mSv/year. Excluding one value, TID do not exceed the permissible limit of 0.10 mSv/year. The correlations between investigated isotopes and Total Dissolved observed. The estimated Total Indicative Dose (TID) ranged from 0.0113 (57) mSv/year to 0.1713 (481) Solvents (TDS) in water were carried out. The results do not show a strong correlation between TDS values and dissolved radionuclides. (author)

  6. The water-food nexus of natural rubber production

    Science.gov (United States)

    Chiarelli, D. D.; Rosa, L.; Rulli, M. C.; D'Odorico, P.

    2017-12-01

    The increasing global demand for natural rubber (100% increase in the last 15 years) is for most part met by Malaysia and Indonesia, and - to a lesser extent - other countries in south-east Asia and Africa. The consequent expansion of rubber plantation has often occurred at the expenses of agricultural land for staple food, particularly in southeast Asia, where most of the land suitable for agriculture is already harvested for food crops or other uses. Here we investigate the extent to which the ongoing increase in rubber production is competing with the food system and affecting the livelihoods of rural communities in the areas of production and their appropriation of natural resources, such as water. We also investigate to what extent the expansion of rubber plantations is taking place through large scale land acquisitions (LSLAs) and evaluate the impacts on rural communities. Our results show how rubber production has strong environmental, social and economic impacts. Despite their ability to bring employment and increase the average income of economically disadvantaged areas, rubber plantations may threaten the local water and food security and induce a loss of rural livelihoods, particularly when the new plantations result from LSLAs that displace semi-subsistence forms of production thereby forcing the local populations to depend on global markets.

  7. Determination of trace metals in natural fresh waters

    International Nuclear Information System (INIS)

    Holm, K.; Borg, H.; Korhonen, M.

    1989-06-01

    The determination method still most widely used is atomic absorption spectrometry with graphite furnace. The natural levels of several elements are however too low to be accurately determined without any preconcentration. Besides, in sea water, the high salt content causes matric effects, which require time consuming separation steps as solvent extraction or ion exchange. The report describes two procedures for preconcentration of fresh water samples, freeze-drying and replicate injections in the furnace, respectively. The procedures are designed to be used on a routine basis. All water samples are collected in polypropylene bottles which are soaked before use in HCl 1+1, rinsed and allowed to stand until use filled with 0.1 M HNO 3 . The samples are preserved by addition of conc. HNO 3 (2 ml/l, sub boiling distilled). In the freeze-drying procedure, the samples are weighed and frozen in the pre-weighed polypropylene sampling bottles and evaporated to about one tenth of the original volume in the vaccum chamber of a freeze dryer. The samples are then weighed again for determination of the concentration factor and alayzed by graphite furnace AAS. When using the other procedure, the water samples are directly injected into the frunace for several times (2-8) before atomization and measurement of the absorption signal. The drying and ashing step is allowed to proceed after every injection. Comparisons of the two procedures have shown good agreement. The advantage of the replicate injection technique is primarily that the concentration factor is more esily controlled and repeated than by the freeze drying procedure. Further, the latter procedure sometimes suffers from precipitates being formed during the evaporation,especially in humic waters rich in iron. (12 figs., 7 tabs., 14 refs.)

  8. 76 FR 6491 - San Diego County Water Authority Subregional Natural Community Conservation Program/Habitat...

    Science.gov (United States)

    2011-02-04

    ...] San Diego County Water Authority Subregional Natural Community Conservation Program/Habitat Conservation Plan, San Diego and Riverside Counties, CA; Final Environmental Impact Statement and Habitat... also announce the availability of the Water Authority's Subregional Natural Community Conservation...

  9. In situ measurement of inelastic light scattering in natural waters

    Science.gov (United States)

    Hu, Chuanmin

    Variation in the shape of solar absorption (Fraunhofer) lines are used to study the inelastic scattering in natural waters. In addition, oxygen absorption lines near 689nm are used to study the solar stimulated chlorophyll fluorescence. The prototype Oceanic Fraunhofer Line Discriminator (OFLD) has been further developed and improved by using a well protected fiber optic - wire conductor cable and underwater electronic housing. A Monte-Carlo code and a simple code have been modified to simulate the Raman scattering, DOM fluorescence and chlorophyll fluorescence. A series of in situ measurements have been conducted in clear ocean waters in the Florida Straits, in the turbid waters of Florida Bay, and in the vicinity of a coral reef in the Dry Tortugas. By comparing the reduced data with the model simulation results, the Raman scattering coefficient, b r with an excitation wavelength at 488nm, has been verified to be 2.6 × 10-4m-1 (Marshall and Smith, 1990), as opposed to 14.4 × 10- 4m-1 (Slusher and Derr, 1975). The wavelength dependence of b r cannot be accurately determined from the data set as the reported values (λ m-4 to λ m- 5) have an insignificant effect in the natural underwater light field. Generally, in clear water, the percentage of inelastic scattered light in the total light field at /lambda 510nm. At low concentrations (a y(/lambda = 380nm) less than 0.1m-1), DOM fluorescence plays a small role in the inelastic light field. However, chlorophyll fluorescence is much stronger than Raman scattering at 685nm. In shallow waters where a sea bottom affects the ambient light field, inelastic light is negligible for the whole visible band. Since Raman scattering is now well characterized, the new OFLD can be used to measure the solar stimulated in situ fluorescence. As a result, the fluorescence signals of various bottom surfaces, from coral to macrophytes, have been measured and have been found to vary with time possibly due to nonphotochemical quenching

  10. The role of solar ultraviolet radiation in 'natural' water purification

    International Nuclear Information System (INIS)

    Calkins, J.; Buckles, J.D.; Moeller, J.R.

    1976-01-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated. (author)

  11. Role of solar ultraviolet radiation in 'natural' water purification

    Energy Technology Data Exchange (ETDEWEB)

    Calkins, J; Buckles, J D; Moeller, J R [Kentucky Univ., Lexington (USA)

    1976-07-01

    The concentration of Eschericia coli in the input and output of a tertiary wastewater system (4 lagoons) has been monitored over an 11 month period. The integrated flux of biologically active solar ultraviolet (UV) radiation was measured during this period. By also determining (1) the effective temperature in the system, (2) the growth rate of E.coli at the effective temperature, (3) the penetration of the solar UV into the lagoons, (4) the dose-response relation for killing of E.coli by UV and (5) the retention time of water in the system, it is possible to compare the 'die off' expected from solar UV exposure to the actual 'die off' observed for different batches of water. The observed killing of E.coli was quite close to the values calculated, considering the numerous factors involved. Solar UV light would thus seem to be a very important factor in the natural purification of water. Because each successful species must possess characteristics (physiological or behavioral) which provide adequate resistance to solar UV, the ecological role of solar UV radiation has not been widely appreciated.

  12. Water quality of hydrologic bench marks; an indicator of water quality in the natural environment

    Science.gov (United States)

    Biesecker, James E.; Leifeste, Donald K.

    1974-01-01

    Water-quality data, collected at 57 hydrologic bench-mark stations in 37 States, allow the definition of water quality in the 'natural' environment and the comparison of 'natural' water quality with water quality of major streams draining similar water-resources regions. Results indicate that water quality in the 'natural' environment is generally very good. Streams draining hydrologic bench-mark basins generally contain low concentrations of dissolved constituents. Water collected at the hydrologic bench-mark stations was analyzed for the following minor metals: arsenic, barium, cadmium, hexavalent chromium, cobalt, copper, lead, mercury, selenium, silver, and zinc. Of 642 analyses, about 65 percent of the observed concentrations were zero. Only three samples contained metals in excess of U.S. Public Health Service recommended drinking-water standards--two selenium concentrations and one cadmium concentration. A total of 213 samples were analyzed for 11 pesticidal compounds. Widespread but very low-level occurrence of pesticide residues in the 'natural' environment was found--about 30 percent of all samples contained low-level concentrations of pesticidal compounds. The DDT family of pesticides occurred most commonly, accounting for 75 percent of the detected occurrences. The highest observed concentration of DDT was 0.06 microgram per litre, well below the recommended maximum permissible in drinking water. Nitrate concentrations in the 'natural' environment generally varied from 0.2 to 0.5 milligram per litre. The average concentration of nitrate in many major streams is as much as 10 times greater. The relationship between dissolved-solids concentration and discharge per unit area in the 'natural' environment for the various physical divisions in the United States has been shown to be an applicable tool for approximating 'natural' water quality. The relationship between dissolved-solids concentration and discharge per unit area is applicable in all the physical

  13. Water Reserves Program. An adaptation strategy to prevent imbalance of water in nature

    Science.gov (United States)

    Salinas-Rodriguez, S. A.; López Pérez, M.; Barrios Ordóñez, J.; Wickel, B.; Villón Bracamonte, R. A.

    2013-12-01

    Freshwater ecosystems occupy approximately 1% of the earth's surface yet possess about 12% of all known animal species. By virtue of their position in the landscape they connect terrestrial and coastal marine biomes and provide and sustain ecosystem services vital to the health and persistence of human communities. These services include the supply of water for food production, urban and industrial consumption, among others. Over the past century many freshwater ecosystems around the world have been heavily modified or lost due to the alteration of flow regimes (e.g. damming, canalization, diversion, over-abstraction). The synergistic impacts of land use change, changes in flows, chemical deterioration, and climate change have left many systems and their species very little room to adjust to change, while future projections indicate a steady increase imbalance in water demand for food and energy production and water supply to suit the needs of a growing world population. In Mexico, the focus has been to secure water for human development and maximize economic growth, which has resulted in allocation of water beyond available amounts, and that in many river basins has led imbalance of water in nature. As a consequence episodic water scarcity severely constrains freshwater ecosystems and the services they provide. Climatic change and variability are presenting serious challenges to a country that already is experiencing serious strain on its water resources. However, freshwater ecosystems are recognized by law as legitimate user of water, and mandate a flow allocation for the environment ('water reserve' or 'environmental flows'). Based on this legal provision the Mexican government through the National Water Commission (Conagua), with support of the Alliance WWF - Fundación Gonzalo Río Arronte, and the Interamerican Development Bank, has launched a national program to identify and implement 'water reserves': basins where environmental flows will be secured and

  14. Natural radioactivity in ground water near the Savannah River Site

    International Nuclear Information System (INIS)

    Price, V. Jr.; Michel, J.

    1990-08-01

    A study of natural radioactivity in groundwater on and adjacent to the Savannah River Site (SRS) in Aiken (SC) was conducted to determine the spatial and temporal variations in the concentration of specific radionuclides. All available measurements for gross alpha particle activity, gross beta activity, uranium, Ra-226, Ra-228, and radon were collated. Relatively few radionuclide-specific results were found. Twenty samples from drinking water supplies in the area were collected in October 1987 and analyzed for U-238, U-234, Ra-226, Ra-228, and Rn-222. The aquifer type for each public water supply system was determined, and statistical analyses were conducted to detect differences among aquifer types and geographic areas defined at the country level. For samples from the public water wells and distribution systems on and adjacent to the site, most of the gross alpha particle activity could be attributed to Ra-226. Aquifer type was an important factor in determining the level of radioactivity in groundwater. The distribution and geochemical factors affecting the distribution of each radionuclide for the different aquifer types are discussed in detail. Statistical analyses were also run to test for aerial differences, among counties and the site. For all types of measurements, there were no differences in the distribution of radioactivity among the ten counties in the vicinity of the site or the site itself. The mean value for the plant was the lowest of all geographic areas for gross alpha particle activity and radon, intermediate for gross beta activity, and in the upper ranks for Ra-226 and Ra-228. It is concluded that the drinking water quality onsite is comparable with that in the vicinity. 19 refs., 5 figs., 5 tabs

  15. Role of natural dissolved organic compounds in determining the concentrations of americium in natural waters

    International Nuclear Information System (INIS)

    Nelson, D.M.; Orlandini, K.A.

    1985-01-01

    Concentrations of 241 Am, both in solution and bound to suspended particulate matter, have been measured in several North American lakes. Dissolved concentrations vary from 0.4 μBq/L to 85 μBq/L. The 241 Am in these lakes originated solely from global fallout and hence entered all lakes in the same physiocochemical form. The observed differences in solubility behavior must, therefore, be attributable to chemical and/or hydrological differences among the lakes. Concentrations of dissolved 241 Am are highly correlated with the corresponding concentrations of /sup 239, 240/Pu(III,IV), suggesting that a common factor is responsible for maintaining both in solution. The K/sub D/ values for 241 Am and /sup 239, 240/Pu(III,IV) are highly correlated with the concentrations of dissolved organic carbon (DOC) in the waters, suggesting that the common factor is the formation of soluble complexes with natural DOC for both elements. This hypothesis was tested in a series of laboratory experiments in which the DOC from several of the lakes was isolated by ultrafiltration. Plots of K/sub D/, as a function of DOC concentration, show K/sub D/ to be very high (approx.10 6 ) at low DOC concentrations. Above critical concentrations (a few mg/L DOC) the K/sub D/ values begin a progressive decrease with increasing DOC. We conclude that in most surface waters, the dissolved 241 Am concentration is regulated by an adsorption/desorption equilibrium with the sediments (and suspended solids) and the value of K/sub D/ that characterizes this equilibrium is largely determined by the concentration of natural DOC in the water. 11 refs., 3 figs., 2 tabs

  16. Regulation No. 100/2006 Coll. of the Ministry of Health of the Slovak Republic dated as of February 6, 2006 laying down the requirements for natural healing water and natural mineral water, Balneology details of the report, distribution, extent of monitoring and content analysis of natural healing waters and natural mineral waters and their products and requirements for entry to the list of accredited laboratories maintained by the State Commission bathroom

    International Nuclear Information System (INIS)

    2006-01-01

    This Regulation provides: (a) requirements for natural healing water and natural mineral water; (b) requirements for the recognition of natural mineral water; (c) details of balneology report; (d) distribution of natural healing waters and natural mineral water; (e) the extent of tracking of natural healing waters and natural mineral waters and their products; (f) content analysis of natural healing waters and natural mineral waters and their products; (g) registration requirements for accredited laboratories in the list maintained by the State Commission bathroom. This Regulation came into force on March 1, 2006.

  17. Molecular concepts of water splitting. Nature's approach

    Energy Technology Data Exchange (ETDEWEB)

    Cox, Nicholas; Lubitz, Wolfgang [Max-Planck-Institut fuer Chemische Energiekonversion, Muelheim an der Ruhr (Germany)

    2013-07-01

    Based on studies of natural systems, much has also been learned concerning the design principles required for biomimetic catalysis of water splitting and hydrogen evolution. In summary, these include use of abundant and inexpensive metals, the effective protection of the active sites in functional environments, repair/replacement of active components in case of damage, and the optimization of reaction rates. Biomimetic chemistry aims to mimic all these features; many labs are working toward this goal by developing new approaches in the design and synthesis of such systems, encompassing not only the catalytic center, but also smart matrices and assembly via self-organization. More stable catalysts that do not require self-repair may be obtained from fully artificial (inorganic) catalytic systems that are totally different from the biological ones and only apply some basic principles learned from nature. Metals other than Mn/Ca, Fe, and Ni could be used (e.g. Co) in new ligand spheres and other matrices. For light harvesting, charge separation/stabilization, and the effective coupling of the oxidizing/reducing equivalents to the redox catalysts, different methods have been proposed - for example, covalently linked molecular donor-acceptor systems, photo-voltaic devices, semiconductor-based systems, and photoactive metal complexes. The aim of all these approaches is to develop catalytic systems that split water with sunlight into hydrogen and oxygen while displaying high efficiency and long-term stability. Such a system - either biological, biomimetic, or bioinspired - has the potential to be used on a large scale to produce 'solar fuels' (e.g. hydrogen or secondary products thereof). (orig.)

  18. Stability analysis on natural circulation boiling water reactors

    Energy Technology Data Exchange (ETDEWEB)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au) 26 tabs., 88 ills.

  19. Stability analysis on natural circulation boiling water reactors

    International Nuclear Information System (INIS)

    Metz, Peter

    1999-05-01

    The purpose of the study is a stability analysis of the simplified boiling water reactor concept. A fluid dynamics code, DYNOS, was developed and successfully validated against FRIGG and DESIRE data and a stability benchmark on the Ringhals 1 forced circulation BWR. Three simplified desings were considered in the analysis: The SWRIOOO by Siemens and the SBWR and ESBWR from the General Electric Co. For all three design operational characteristics, i.e. power versus flow rate maps, were calculated. The effects which different geometric and operational parameters, such as the riser height, inlet subcooling etc., have on the characteristics have been investigated. Dynamic simulations on the three simplified design revealed the geysering and the natural circulation oscillations modes only. They were, however, only encountered at pressure below 0.6 MPa. Stability maps for all tree simplified BWRs were calculated and plotted. The study concluded that a fast pressurisation of the reactor vessel is necessary to eliminate the possibility of geysering or natural circulation oscillations mode instability. (au)

  20. Separation and determination of dimethylarsenate in natural waters

    Directory of Open Access Journals (Sweden)

    Ben Issa Nureddin

    2012-01-01

    Full Text Available A simple and efficient method for separation and determination of dimethylarsenate DMAs(V was developed in this work. Two resins, a strong base anion exchange (SBAE resin and iron-oxide coated hybrid (HY resin were tested. By simple adjusting pH value of water at 7.00, DMAs(V passed through the HY column without any changes, while all other arsenic species [inorganic arsenic and monomethylarsonate, MMAs(V] were quantitatively bonded on HY resin. The resin capacity was calculated according to the breakthrough points in a fixed bed flow system. At pH 7.00 the HY resins bonded more than 4150 μg g-1 of As(III, 3500 μg g-1 of As(V and 1500 μg g1 of MMAs(V. Arsenic adsorption behavior in the presence of impurities showed tolerance with the respect to potential interference of anions commonly found in natural water. DMAs(V was determined in the effluent by ICP-MS. The detection limit was 0.03 μg L?1 and relative standard deviation (RSD was between 1.1?7.5 %. Proposed method was established performing standard procedures: with external standard, certified reference material and the standard addition method.

  1. RESEARCH METHODOLOGY ON NATURAL NUTRITION OF FRESH-WATER FISH

    Directory of Open Access Journals (Sweden)

    Marina Piria

    2001-03-01

    Full Text Available This paper offers the entire review on the research methodology in natural nutrition of fresh-water fish. The data on fresh-water fish nutrition, particularly on fish of lower economic value, is inadequate. Reviewing the literature on assesment of nutritional parameters, the authors obviously use differenet approaches and methods. This paper is about most frequently used parameteres in qualitative and quantitative analysis. The qualitative analysis of food structure is the overall list of determinable taxa (mostlyu species and genera. The quantitative analysis comprises the assessment of particular nutritional categories by nutritional indices and coefficients. Bio-identification and numeric data processing can have numerous drawbacsk such as effect of regurgitation or the degree of digestion of the prey. The analyses of those effects proceed through statistical data processing in order to include spatial distribution of certain prey categories as well. The importance of this data is to determine the nutritional needs of potential species for culture as well as to come up with new insights on a particular aquatic ecosystem.

  2. Water Reserves Program. An adaptation strategy to balance water in nature

    Science.gov (United States)

    Lopez Perez, M.; Barrios, E.; Salinas-Rodriguez, S.; Wickel, B.; Villon, R. A.

    2013-05-01

    -allocation takes place. The strategy is to identify and protect basins with an availability of water that is close to their natural flow regime and that also have a high conservation value (based on prior national conservation priority definitions such as protected areas, and biodiversity conservation gap analyses) in order to implement legal restrictions on water resource development. With such protection, these systems will be best positioned to adjust and respond to water shortages, and regime shifts. To date, 189 basins around the country were identified as potential water reserves. The next step will be the nomination of these water reserves to be integrated in the National Water Reserves Program. This program forms the core of the official Mexican government adaptation strategy towards climate prepared water management, which recognizes that water reserves are the buffer society needs to face uncertainty, and reduce water scarcity risk. The development of activities that alter the natural flow regime such as dams and levees are closely examined, and would potentially be restricted.

  3. Water absorption and mechanical properties of water-swellable natural rubber

    Directory of Open Access Journals (Sweden)

    Diew Saijun

    2009-11-01

    Full Text Available Water-swellable rubber (WSR was prepared by blending superabsorbent polymer (SAP of crosslinked poly(acrylamide-co-sodium acrylate with natural rubber in latex condition. The crosslinked poly(acrylamide-co-sodium acrylate was first prepared by inverse suspension polymerization from acrylamide and sodium acrylate monomers with potassiumpersulfate initiator and N,N-methylenebisacrylamide crosslinker. The reaction was carried out at 60oC for 40 mins. Water absorption properties, such as the degree of water absorption, water absorption rate, degree of weight loss, and mechanicalproperties of WSR were then investigated. It was found that the degree of water absorption, water absorption rate, and thedegree of weight loss increased, while tensile strength and elongation at break decreased with increasing quantity of SAP inthe blends. However, the degree of water absorption, degree of weight loss, and elongation at break decreased, but tensilestrength increased with increasing quantity of the N-tert-butyl-2-benzothiazyl sulphenamide (TBBS accelerator used in thecompounds formulation.

  4. Dispersion of C(60) in natural water and removal by conventional drinking water treatment processes.

    Science.gov (United States)

    Hyung, Hoon; Kim, Jae-Hong

    2009-05-01

    The first objective of this study is to examine the fate of C(60) under two disposal scenarios through which pristine C(60) is introduced to water containing natural organic matter (NOM). A method based on liquid-liquid extraction and HPLC to quantify nC(60) in water containing NOM was also developed. When pristine C(60) was added to water either in the form of dry C(60) or in organic solvent, it formed water stable aggregates with characteristics similar to nC(60) prepared by other methods reported in the literature. The second objective of this study is to examine the fate of the nC(60) in water treatment processes, which are the first line of defense against ingestion from potable water -- a potential route for direct human consumption. Results obtained from jar tests suggested that these colloidal aggregates of C(60) were efficiently removed by a series of alum coagulation, flocculation, sedimentation and filtration processes, while the efficiency of removal dependent on various parameters such as pH, alkalinity, NOM contents and coagulant dosage. Colloidal aggregates of functionalized C(60) could be well removed by the conventional water treatment processes but with lesser efficiency compared to those made of pristine C(60).

  5. PILOT PLANT STUDY ON NATURAL WATER COAGULANTS AS COAGULAN AIDS FOR WATER SUPPLY

    Directory of Open Access Journals (Sweden)

    B BINA

    2001-06-01

    Full Text Available Introduction: Natural plant coagulants have an important role to play in provision of portable water to rural communities in the developing world. The plant material that their coagulation properties have been confirmed in previous lab scale studies and can be found widely in Iran was selected as coagulant aids. Pilot plant study was done to evaluate the efficiency of natural material such as Starch/Gum Tragacanth, Fenugreek and Yeast as coagulant aids in conjunction with comercial alum. Methods: The pilot was placed in Isfahan Water Treatment Plant (IWTP and efficiency of these materials in removal of turbidity from raw water enters the IWTP was evaluated. The results indicated while these materials were used as coagulant aids in concentration of 1-5 mg/l conjunction with alum are able to reduced the turbidity and final residuals turbidity meets the standards limits. Results: The coagulation efficiency of these material were found to be effected by certain physico-chemical factors, namely, concentration of suspended solids, divalent cation metal and time of agitation. The relative importance of these variable was evaluated. The results of COD test proved that the natural coagulant aids in the optimum doses produce no any significant organic residual. Discussion: Economical considerations showed that using of these material as coagulant aids can cause reduction in alum consumption and in some cases are more econmical than synthetic polyelectrolyte.

  6. The Imbalance of Water in Nature as System

    Science.gov (United States)

    Kontar, V. A.; Imbalance of Water in Nature

    2011-12-01

    will not be obtained any reliable results. For example, the real water arrival occurs in the modes of imbalances such as increasing or decreasing. Water departure also is some set of the several imbalance increase and decrease types. The processes with various orientations interact between each other and reinforce or depress the conjoint effect. This creates some unstable situation, which are not visible by the balanced approach. Therefore some natural disasters actually are coming as unexpected. But in really there are some consequences of the methodological blindness. The Nature is unstable. The imbalance is the main state of the Nature. But mankind does not yet have adequate tools to describing imbalance as it is. In generally now is used more or less successful extrapolation and interpolation of the balance logic. But this is not enough now. So we tried to sharpen here the importance of the works with the imbalance directly.

  7. Toxicity of aluminium in natural waters controlled by type rather than quantity of natural organic matter

    International Nuclear Information System (INIS)

    Papathanasiou, Grigorios; White, Keith N.; Walton, Rachel; Boult, Stephen

    2011-01-01

    Extension of the conditions under which Al toxicity is tested is required. Environmentally representative preparation of waters is used in investigating roles of alginate (AA) and humic acids (HA) in partitioning of Al (0.5 mg L -1 ), subsequent uptake and accumulation by and toxicity to Lymnaea stagnalis. HA and AA did not alter precipitation of Al(OH) 3 , but altered subsequent behaviour of Al. High (40 mg L -1 ) HA concentrations, and to a lesser extent AA, prevented settling and availability for benthic grazing but made deposited Al more likely to be ingested. HA detoxified but AA increased toxicity relative to Al alone. Low concentration (4 mg L -1 ) AA and HA do not change partitioning but increase uptake; they both detoxify, but AA less than HA. The study shows OC:Al ratio is critical in predicting Al behaviour in natural waters, also uptake is mediated by snail behaviour, not solely a function of concentration and form of Al. Therefore, predicting Al behaviour will be subject to errors in determining relevant water composition and response of biota to the new speciation. However, with respect to toxicity, rather than other aspects of Al behaviour, different ratios of HA and Al are insignificant compared to whether AA is present rather than HA. - Highlights: → Toxicity assessment in which environmental relevance is of primary concern. → Mass balance of Al monitored throughout the exposure period. → Al behaviour influenced by concentration of organic matter. → Strong dependence of toxicity on type rather than concentration of organic matter. → Toxicity is a function of Al behaviour but also animal behaviour.

  8. Chemical speciation and adsorption behavior of plutonium in natural waters

    International Nuclear Information System (INIS)

    Sanchez, A.L.

    1983-01-01

    Dissolved Pu profiles in two partially anoxic basins--Saanich Inlet, an intermittently anoxic marine fiord in Vancouver Island, British Columbia, and Soap Lake, a saline, alkaline lake in eastern Washington state, revealed minimum concentrations at the O 2 /H 2 S interface. The Pu concentrations in the anoxic waters of Saanich Inlet were less than the surface concentrations; however, in Soap Lake, a 15- to 50-fold increase in Pu concentration in the anoxic monimolimnion correlated with large increases in the major ions, total alkalinity, and dissolved organic carbon. Laboratory experiments were designed to investigate the effects of pH, ionic strength, dissolved organic carbon, and carbonate ions on the adsorption of tracer amounts of Pu IV and Pu V. The Pu-goethite adsorption system provided the data base for developing a thermodynamic model of Pu interaction with an oxide surface and with dissolved ligands, using the MINEQL computer program. Pu IV and Pu V interacted very differently with goethite, which is consistent with their different hydrolytic character. A reduction of Pu V to Pu IV occurred on the goethite surface and also on montmorillonite and silica gel, suggesting that redox transformations are an important aspect of Pu adsorption. Increases in ionic strength (up to 3 M NaCl or NaNO 3 ) did not affect Pu IV or V adsorption. In the presence of dissolved organic carbon (DOC), Pu V reduction to Pu IV occurred in solution. Pu IV adsorption on goethite decreased only 30% in the presence of 240 ppm of natural DOC from Soap Lake; however, carbonate anions inhibited Pu IV adsorption on goethite at the alkalinity levels (1500 meq/L total alkalinity, 0.57 M CO 3 =) measured for Soap Lake monimolimnion waters

  9. Evaluation of Chitin as Natural Coagulant in Water Treatment

    Directory of Open Access Journals (Sweden)

    V. Saritha

    2012-04-01

    Full Text Available The use of synthetic coagulants is not regarded as suitable due to health and economic considerations. The present study was aimed to investigate the effects of alum as coagulant in conjunction with chitin as coagulant aid on the removal of turbidity, hardness and Escherichia coli from water. A conventional jar test apparatus was employed for the tests. The experiment was conducted at three different pH conditions of 6, 7 and 8. The dosages chosen were 0.5, 1, 1.5 and 2mg/l. The results showed that turbidity decrease provided also a primary Escherichia coli reduction. Hardness removal efficiency was observed to be 93% at pH 7 with 1mg/l concentration by alum whereas chitin was stable at all the pH ranges showing highest removal at 1 and 1.5mg/l with pH 7. At low concentration chitin showed marginally better performance on hardness. In conclusion, using natural coagulants results in considerable savings in chemicals and sludge handling cost may be achieved.

  10. Effects of acid deposition on microbial processes in natural waters

    International Nuclear Information System (INIS)

    Gilmour, C.C.

    1992-01-01

    Biogeochemical processes mediated by microorganisms are not adversely affected by the acidification of natural waters to the same extent as are the life cycles of higher organisms. Basic processes, e.g., primary production and organic matter decomposition, are not slowed in moderately acidified systems and do not generally decline above a pH of 5. More specifically, the individual components of the carbon, nitrogen, and sulfur cycles are, with few exceptions, also acid resistant. The influence of acid deposition on microbial processes is more often stimulation of nitrogen and sulfur cycling, often leading to alkalinity production, which mitigates the effect of strong acid deposition. Bacterial sulfate reduction and denitrification in sediments are two of the major processes that can be stimulated by sulfate and nitrate deposition, respectively, and result in ANC (acid-neutralizing capacity) generation. One of the negative effects of acid deposition is increased mobilization and bioaccumulation of some metals. Bacteria appear to play an important role, especially in mercury cycling, with acidification leading to increased bacterial methylation of mercury and subsequent bioaccumulation in higher organisms

  11. 75 FR 11194 - San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation...

    Science.gov (United States)

    2010-03-10

    ... Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation Plan, San... meetings for the San Diego County Water Authority's (Water Authority/Applicant) draft Natural Communities Conservation Plan (NCCP)/Habitat Conservation Plan (HCP) prepared in application to us for an incidental take...

  12. Return of naturally sourced Pb to Atlantic surface waters

    NARCIS (Netherlands)

    Bridgestock, L.; van de Flierdt, T.; Rehkämper, M.; Paul, P.; Middag, R.; Milne, A.; Lohan, M.C.; Baker, A.; Chance, R.; Khondoker, R.; Strekopytov, S.; Humphreys-Williams, E.; Achterberg, E.P.; Rijkenberg, M.J.A.; Gerringa, L.J.A.; De Baar, H.J.W.

    2016-01-01

    Anthropogenic emissions completely overwhelmed natural marine lead (Pb) sources duringthe past century, predominantly due to leaded petrol usage. Here, based on Pb isotopemeasurements, we reassess the importance of natural and anthropogenic Pb sources to thetropical North Atlantic following the

  13. Release of natural radionuclides in the Czech Republic - from water treatment plants where water from underground water sources is treated

    International Nuclear Information System (INIS)

    Sinaglova, R.

    2014-01-01

    In this abstract author deals with the treatment of drinking water in the Czech Republic with removing of natural radionuclides as well as with treatment of filter cartridges. The advantage of these technologies is that flushing is not required so no wastewater occurs. Used ion exchangers with higher content of uranium are processed in the chemical treatment of uranium ores, managed by DIAMO, state enterprise. (authors)

  14. Emergency field water supply system using natural filtration elements

    Science.gov (United States)

    Vikneswaran, M.; Yahya, Muhamad Azani; Yusof, Mohammed Alias; Ismail, Siti Nor Kamariah

    2018-02-01

    Water is the most important resource in times of emergency and during military missions. In addition, if there is a war in a country, sources of clean water are essential for life. But, the safety and cleanliness of the river water for the campers and hikers still uncertain. Usually, polluted and contaminated river water is not safe to be directly consumed by human. However, this problem can be partly resolved by using water filter where the river water can be consumed directly after the filtration process. In respect of that, this study was conducted to design the filter media for personal water purification system. Hence, the objective of this work also is to develop a personal, portable dual purpose handy water filter to provide an easier way to get safe, clean and healthy drinking water for human wherever they go. The water quality of samples collected before and after filtration were analyzed. Water samples were taken from a waterfall near Lestari Block and Lake beside Marine Centre UPNM Campus. The experimental results were analyzed based on the assessment of water quality parameters. Overall, the analysis of the results showed that the water filter was designed with basic mix tabs aqua filter water purification tablets is showing a better result where it achieve the class I of water quality index (WQI). In details, the water sample taken from waterfall near Lestari Block shown the WQI around 93 which is higher than WQI of water sample from Lake near Marine Centre UPNM which is 86, class II A which can be used for external purpose only.

  15. Evaluation of pressure transducers under turbid natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    , the use of rho sub(eff) in contrast to the bulk density, significantly improves the measurement accuracy. For celar waters, precision density measurements made on discrete water samples agreed with rho sub(eff) values derived from pressure measurements...

  16. Study of water nature in tungstoboric acid by thermochemical method

    International Nuclear Information System (INIS)

    Kosmodem'yanskaya, G.V.; Sadykova, M.M.; Spitsyn, V.I.

    1976-01-01

    The kinetics of the dehydration of the crystalline higher hydrates of tungstoboric acid (TBA) were studied. The dehydration of TBA shows first order behaviour. An appreciable proportion of the water in TBA is zeolitic water

  17. Concentration of natural radionuclides in private drinking water wells

    International Nuclear Information System (INIS)

    Cerny, R.; Otahal, P.; Merta, J.; Burian, I.

    2017-01-01

    Water is one of the most important resources for a human being; therefore, its quality should be properly tested. According to Council Directive No. 2013/51/Euroatom, there shall be established requirements for the general public health protection with regard to radioactive substances in water intended for human consumption. This article summarises measurement results of selected water samples at 444 private drinking water wells, which are not subject to regular inspection in terms of the Czech legislation. (authors)

  18. Characterizing natural organic matter in drinking water treatment processes and trains

    NARCIS (Netherlands)

    Baghoth, S.A.

    2012-01-01

    Natural organic matter (NOM) generally influences water treatment processes such as coagulation, oxidation, adsorption, and membrane filtration. NOM contributes colour, taste and odour in drinking water, fouls membranes, serves as a precursor for disinfection by-products, increases the exhaustion

  19. 75 FR 9921 - San Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation...

    Science.gov (United States)

    2010-03-04

    ... Diego County Water Authority Natural Communities Conservation Program/Habitat Conservation Plan, San... the NCCP/HCP's conservation strategy. Covered Activities would include developing new water... permit application, and notice of public meetings. SUMMARY: The San Diego County Water Authority (Water...

  20. Surprisingly low natural gas consumption for hot water in the Netherlands in 1996

    International Nuclear Information System (INIS)

    Geerse, C.

    1997-01-01

    The Dutch use hot water more efficient than previously expected. This conclusion is drawn from a recent study of hot water consumption in Dutch households and the corresponding natural gas consumption. Based on that (once-only) hot water use survey the hot water use models, as applied in the annual Basic Survey of Natural Gas Consumption of Small-scale Consumers in the Netherlands (BAK), will be modified. 6 tabs

  1. Integrated treatment process using a natural Wyoming clinoptilolite for remediating produced waters from coalbed natural gas operations

    Science.gov (United States)

    Zhao, H.; Vance, G.F.; Urynowicz, M.A.; Gregory, R.W.

    2009-01-01

    Coalbed natural gas (CBNG) development in western U.S. states has resulted in an increase in an essential energy resource, but has also resulted in environmental impacts and additional regulatory needs. A concern associated with CBNG development relates to the production of the copious quantities of potentially saline-sodic groundwater required to recover the natural gas, hereafter referred to as CBNG water. Management of CBNG water is a major environmental challenge because of its quantity and quality. In this study, a locally available Na-rich natural zeolite (clinoptilolite) from Wyoming (WY) was examined for its potential to treat CBNG water to remove Na+ and lower the sodium adsorption ratio (SAR, mmol1/2 L- 1/2). The zeolite material was Ca-modified before being used in column experiments. Column breakthrough studies indicated that a metric tonne (1000??kg) of Ca-WY-zeolite could be used to treat 60,000??L of CBNG water in order to lower SAR of the CBNG water from 30 to an acceptable level of 10??mmol1/2 L- 1/2. An integrated treatment process using Na-WY-zeolite for alternately treating hard water and CBNG water was also examined for its potential to treat problematic waters in the region. Based on the results of this study, use of WY-zeolite appears to be a cost-effective water treatment technology for maximizing the beneficial use of poor-quality CBNG water. Ongoing studies are evaluating water treatment techniques involving infiltration ponds lined with zeolite. ?? 2008 Elsevier B.V. All rights reserved.

  2. Uranium and radium geochemistry. Radioactive disequilibrium in natural waters

    International Nuclear Information System (INIS)

    Beaucaire, C.

    1987-09-01

    Rock-water interactions play a primary part in uranium-series disequilibrium either by different chemical behavior or by recoiling alpha emitting nuclei in solution. Three series of thermal water containing CO 2 (Vichy, Vals and Cezallier) and one from Lodeve uranium deposit are studied to define parameters (pH, Eh, pCO 2 , T,...) controlling studied nuclei. For U complexation by carbonates is in competition with redox conditions. Ra is coprecipitated by barium. For thermal waters keeping their deep characteristics there is a low disequilibriums 234 U- 238 U between 1 and 2. On the contrary important disequilibrium (up to 12) in Vichy Saint Yorre water are due to secondary remobilization. In the same way for these waters 234 U and 226 Ra are correlated. Then leaching is essential for the radioactive disequilibrium but alpha recoil of 234 Th is of secondary importance in this case [fr

  3. Marginal value of natural water in agriculture: a study in the suburbs of Mekelle City, Ethiopia

    NARCIS (Netherlands)

    Gezahegn, T.W.; Xueqin Zhu, Xueqin

    2015-01-01

    In areas where markets for natural water are lacking, information on its marginal value can be an important tool for proper pricing to achieve efficient allocation of the resource. This article investigates the marginal value of natural water (rainwater used as a proxy) in agricultural crop

  4. Investigation of natural radioactivity level of the waters in the tibet autonomous region

    International Nuclear Information System (INIS)

    Zhang Tianhua; Li Yankun; Yao Ke; Pan Chengchang

    1995-01-01

    The investigation results of natural radioactivity level in river, lake, spring, well and tap water in the Tibet Autonomous Region is reported. There were totally 46 samples collected from 53 measuring points. The results show that the radioactivity level of water bodies of the Tibet Autonomous region was within normal natural background

  5. Investigation of natural radioactivity level of the waters in Inner Mongolia

    International Nuclear Information System (INIS)

    Du Xuelin; Li Wenyuan; Fu Su

    1993-01-01

    The authors reports the investigation results of natural radioactivity level in rivers, lakes, reservoirs, springs, wells and tap water in Inner Mongolia Autonomous Region. There were totally 326 samples collected from 178 measuring points. The results show that the radioactivity level of varied water bodies of the region was within normal natural background

  6. Investigation of natural radioactivity level of the waters in Guangxi Zhuangzu Autonomous Region

    International Nuclear Information System (INIS)

    Yang Mingshen; Ming Chuanbao; Dai Guozhi; Liang Runping; Chen Xiuyu; Yang Gang; Jin Mei

    1993-01-01

    This paper reports the investigation results of natural radioactivity level in river, lake reservoir, spring, well and tap water in Guangxi Zhuangzu Autonomous Region. There were totally 194 samples collected from 143 measuring points. The results show that the radioactivity level of varied water bodies of the region was within normal natural background

  7. Investigation of natural radioactivity level of the waters in the Ningxia Hui Autonomous Region

    International Nuclear Information System (INIS)

    Jing Yupei; Wang Li; Tian Yi; Ai Xianyuan; Liang Ningbu

    1995-01-01

    This paper reports the investigation results of natural radioactivity level in river, lake, reservoir, spring, well and tap water in the Ningxia Hui Autonomous Region. There were totally 117 samples collected from 84 measuring points. The results show that the radioactivity level of varied water bodies of the region was within normal natural background

  8. Natural circulation cooling in US pressurized water reactors

    International Nuclear Information System (INIS)

    Berta, V.T.; Wilson, G.E.; Boyack, B.E.

    1989-01-01

    The research into the modes of, and heat removed by, natural circulation in PWR systems is reviewed for the purpose of determining the status of this method for off-nominal recovery procedures. The referenced information comes from all facets of the nuclear industry, both domestic and international. The information focuses on recent research (1986--1988); however, pre-1986 research is summarized and referenced. Particular attention is paid to the role of scaling in the experimental facilities and analytical tools. Three modes of natural-circulation cooling are covered: condensation. The conclusion of the review is that the new research reconfirms the pre-1986 conclusion that natural circulation is a viable means of decay heat removal. In addition, the new research sufficiently completes the acquisition of an appropriate experimental data base and the development of system codes to permit the design of valid plant recovery procedures incorporating all three modes of natural circulation. 48 refs., 1 fig., 3 tabs

  9. Plutonium - its behavior in natural-water systems and assimilation by man

    International Nuclear Information System (INIS)

    Larsen, R.P.; Nelson, D.M.; Bhattacharyya, M.H.; Oldham, R.D.

    1981-01-01

    There are a number of factors which must be considered in establishing whether or not the inadvertent intrusion of a sizable amount of plutonium-bearing material into a natural-water system may have a significant impact on the health of those individuals who use that system as a drinking-water resource. These factors include the chemical form(s) and solubility of plutonium in natural waters, its behavior in relation to natural processes (geochemical and biological), its fate in water-treatment systems, and its uptake by man from drinking water. From the results obtained of the behavior in natural-water systems, it appears that (1) the chemical forms of plutonium dissolved in natural waters are Pu(IV) and Pu(V), (2) the soluble plutonium in many waters is bound to the organic constituents which probably enhance plutonium solubility, (3) the natural process responsible for the removal of plutonium from water is adsorption onto sediments, and (4) in water-treatment systems, soluble plutonium is oxidized to the VI state and this form is not removed. From investigations of gastrointestinal absorption, it appears that the value for f 1 , the fraction transferred from the gut to blood, is greater than 1 x 10 - 3 and may be as high as 2 x 10 - 1

  10. Remaking "Nature". the Ecological Turn in Dutch Water Management

    NARCIS (Netherlands)

    Disco, Nil/Cornelis

    2002-01-01

    The ecological turn in water management has usually been interpreted as a political andcultural rather than technical and professional accomplishment. The dynamics of theuptake of ecological expertise into hydraulic engineering bureaucracies have not beenwell described. Focusing on the controversy

  11. Natural radionuclides in waters of the New York bight

    Energy Technology Data Exchange (ETDEWEB)

    Li, Y H; Santschi, P H; Feely, H W [Columbia Univ., Palisades, NY (USA). Lamont-Doherty Geological Observatory; Kaufman, A; Benninger, L K [Yale Univ., New Haven, CT (USA). Dept. of Geology and Geophysics

    1981-10-01

    The half removal time of /sup 228/Th from the surface waters by settling particles, tsub(c), does not change much with season, except in the winter when regenerated /sup 228/Th as well as /sup 210/Pb and /sup 210/Po were transported back to the surface water from the bottom water and/or near-shore sediments. The removal of /sup 228/Th and /sup 210/Pb from the surface waters of New York Bight by phytoplankton-zooplankton-fecal pellet route is not important in the shelf but is important in the slope areas. The removal of /sup 210/Po is almost entirely associated with the phytoplankton-zooplankton-fecal pellet pathway throughout the New York Bight.

  12. Mine water pollution in Scotland. Nature, extent and preventative strategies

    Energy Technology Data Exchange (ETDEWEB)

    Younger, P.L. [Water Resource Systems Research Laboratory, Department of Civil Engineering, University of Newcastle, NE1 7RU Newcastle Upon Tyne (United Kingdom)

    2001-01-29

    Scotland was one of the world's first industrialised countries, and has therefore also been one of the first countries to experience wholesale post-industrial dereliction. Water pollution arising from abandoned mines, particularly abandoned coal mines, is second only to sewage as a source of freshwater pollution nation-wide, and in many coalfield catchments it is the pre-eminent source. Most of the pollution is due to net-alkaline ferruginous waters emerging from deep mines. Scrutiny of records from 80 deep mine discharges reveals that iron concentrations in these waters are only likely to exceed 20 mg/l, and the pH to be below 6.5, where the discharge emerges within 0.5 km of the outcrop of the shallowest mined seam. The bulk of mature near-outcrop mine water discharges in Scotland have<50 mg/l total Fe, and concentrations>100 mg/l are only likely where a marine bed lies within 25 m of the worked seam. Where the nearest marine bed is more than 80 m above or below the seam, then the total iron will be less than 4 mg/l, and in most cases less than 1 mg/l. Net-acidic mine waters are far more rare than net-alkaline waters in Scotland, and are most commonly associated with unreclaimed spoil heaps (bings). Both net-alkaline and net-acidic discharges have detrimental effects on the hydrochemistry and biological integrity of receiving waters. Scotland has recently pioneered the use of pre-emptive pump-and-treat solutions to prevent mine water pollution, and has also experienced the successful introduction of passive treatment technology for both abandoned and active workings.

  13. [Investigation of the distribution of water clusters in vegetables, fruits, and natural waters by flicker noise spectroscopy].

    Science.gov (United States)

    Zubov, A V; Zubov, K V; Zubov, V A

    2007-01-01

    The distribution of water clusters in fresh rain water and in rain water that was aged for 30 days (North Germany, 53 degrees 33' N, 12 degrees 47' E, 293 K, rain on 25.06.06) as well as in fresh vegetables and fruits was studied by flicker noise spectroscopy. In addition, the development of water clusters in apples and potatoes during ripening in 2006 was investigated. A different distribution of water clusters in irrigation water (river and rain) and in the biomatrix of vegetables (potatoes, onions, tomatoes, red beets) and fruits (apples, bananas) was observed. It was concluded that the cluster structure of irrigation water differs from that of water of the biomatrix of vegetables and fruits and depends on drought and the biomatrix nature. Water clusters in plants are more stable and reproducible than water clusters in natural water. The main characteristics of cluster formation in materials studied were given. The oscillation frequencies of water clusters in plants (biofield) are given at which they interact with water clusters of the Earth hydrosphere. A model of series of clusters 16(H2O)100 4(H2O)402 2(H2O)903 (H2O)1889 in the biomatrix of vegetables and fruits was discussed.

  14. Data and prediction of water content of high pressure nitrogen, methane and natural gas

    DEFF Research Database (Denmark)

    Folas, Georgios; Froyna, E.W.; Lovland, J.

    2007-01-01

    New data for the equilibrium water content of nitrogen, methane and one natural gas mixture are presented. The new binary data and existing binary sets were compared to calculated values of dew point temperature using both the CPA (Cubic-Plus-Association) EoS and the GERG-water EoS. CPA is purely...... predictive (i.e. all binary interaction parameters are set equal to 0), while GERG-water uses a temperature dependent interaction parameter fitted to published data. The GERG-water model is proposed as an ISO standard for determining the water content of natural gas. The data sets for nitrogen cover...... conclusion is that GERG-water must be used with caution outside its specified working range. For some selected natural gas mixtures the two models also perform very much alike. The water content of the mixtures decreases with increasing amount of heavier components, and it seems that both models slightly...

  15. Processes Driving Natural Acidification of Western Pacific Coral Reef Waters

    Science.gov (United States)

    Shamberger, K. E.; Cohen, A. L.; Golbuu, Y.; McCorkle, D. C.; Lentz, S. J.; Barkley, H. C.

    2013-12-01

    Rising levels of atmospheric carbon dioxide (CO2) are acidifying the oceans, reducing seawater pH, aragonite saturation state (Ωar) and the availability of carbonate ions (CO32-) that calcifying organisms use to build coral reefs. Today's most extensive reef ecosystems are located where open ocean CO32- concentration ([CO32-]) and Ωar exceed 200 μmol kg-1 and 3.3, respectively. However, high rates of biogeochemical cycling and long residence times of water can result in carbonate chemistry conditions within coral reef systems that differ greatly from those of nearby open ocean waters. In the Palauan archipelago, water moving across the reef platform is altered by both biological and hydrographic processes that combine to produce seawater pH, Ωar, [CO32-] significantly lower than that of open ocean source water. Just inshore of the barrier reefs, average Ωar values are 0.2 to 0.3 and pH values are 0.02 to 0.03 lower than they are offshore, declining further as water moves across the back reef, lagoon and into the meandering bays and inlets that characterize the Rock Islands. In the Rock Island bays, coral communities inhabit seawater with average Ωar values of 2.7 or less, and as low as 1.9. Levels of Ωar as low as these are not predicted to occur in the western tropical Pacific open ocean until near the end of the century. Calcification by coral reef organisms is the principal biological process responsible for lowering Ωar and pH, accounting for 68 - 99 % of the difference in Ωar between offshore source water and reef water at our sites. However, in the Rock Island bays where Ωar is lowest, CO2 production by net respiration contributes between 17 - 30 % of the difference in Ωar between offshore source water and reef water. Furthermore, the residence time of seawater in the Rock Island bays is much longer than at the well flushed exposed sites, enabling calcification and respiration to drive Ωar to very low levels despite lower net ecosystem

  16. Toward a formal definition of water scarcity in natural human systems

    Science.gov (United States)

    W.K. Jaeger; A.J. Plantinga; H. Chang; K. Dello; G. Grant; D. Hulse; J.J. McDonnell; S. Lancaster; H. Moradkhani; A.T. Morzillo; P. Mote; A. Nolin; M. Santlemann; J. Wu

    2013-01-01

    Water scarcity may appear to be a simple concept, but it can be difficult to apply to complex natural-human systems. While aggregate scarcity indices are straightforward to compute, they do not adequately represent the spatial and temporal variations in water scarcity that arise from complex systems interactions. The uncertain effects of future climate change on water...

  17. Natural and fire-induced soil water repellency in a Portugese Shrubland

    NARCIS (Netherlands)

    Stoof, C.R.; Moore, D.; Ritsema, C.J.; Dekker, L.W.

    2011-01-01

    Post-fire land degradation is often attributed to fire-induced soil water repellency, despite the fact that soil water repellency is a natural phenomenon in many soils and is therefore not necessarily caused by fire. To improve our understanding of the role of soil water repellency in causing

  18. Training of panellists for the sensory control of bottled natural mineral water in connection with water chemical properties.

    Science.gov (United States)

    Rey-Salgueiro, Ledicia; Gosálbez-García, Aitana; Pérez-Lamela, Concepción; Simal-Gándara, Jesús; Falqué-López, Elena

    2013-11-01

    As bottled mineral water market is increasing in the world (especially in emergent and developed countries), the development of a simple protocol to train a panel to evaluate sensory properties would be a useful tool for natural drinking water industry. A sensory protocol was developed to evaluate bottled natural mineral water (17 still and 10 carbonated trademarks). The tasting questionnaire included 13 attributes for still water plus overall impression and they were sorted by: colour hues, transparency and brightness, odour/aroma and taste/flavour/texture and 2 more for carbonated waters (bubbles and effervescence). The training lasted two months with, at least, 10 sessions, was adequate to evaluate bottled natural mineral water. To confirm the efficiency of the sensory training procedure two sensory groups formed the whole panel. One trained panel (6 persons) and one professional panel (6 sommeliers) and both participated simultaneously in the water tasting evaluation of 3 sample lots. Similar average scores obtained from trained and professional judges, with the same water trademarks, confirmed the usefulness of the training protocol. The differences obtained for trained panel in the first lot confirm the necessity to train always before a sensory procedure. A sensory water wheel is proposed to guide the training in bottled mineral water used for drinking, in connection with their chemical mineral content. Copyright © 2013 Elsevier Ltd. All rights reserved.

  19. Using natural biomass microorganisms for drinking water denitrification.

    Science.gov (United States)

    Costa, Darleila Damasceno; Gomes, Anderson Albino; Fernandes, Mylena; Lopes da Costa Bortoluzzi, Roseli; Magalhães, Maria de Lourdes Borba; Skoronski, Everton

    2018-07-01

    Among the methods that are studied to eliminate nitrate from drinking water, biological denitrification is an attractive strategy. Although several studies report the use of denitrifying bacteria for nitrate removal, they usually involve the use of sewage sludge as biomass to obtain the microbiota. In the present study, denitrifying bacteria was isolated from bamboo, and variable parameters were controlled focusing on optimal bacterial performance followed by physicochemical analysis of water adequacy. In this way, bamboo was used as a source of denitrifying microorganisms, using either Immobilized Microorganisms (IM) or Suspended Microorganisms (SM) for nitrate removal. Denitrification parameters optimization was carried out by analysis of denitrification at different pH values, temperature, nitrate concentrations, carbon sources as well as different C/N ratios. In addition, operational stability and denitrification kinetics were evaluated. Microorganisms present in the biomass responsible for denitrification were identified as Proteus mirabilis. The denitrified water was submitted to physicochemical treatment such as coagulation and flocculation to adjust to the parameters of color and turbidity to drinking water standards. Denitrification using IM occurred with 73% efficiency in the absence of an external carbon source. The use of SM provided superior denitrification efficiency using ethanol (96.46%), glucose (98.58%) or glycerol (98.5%) as carbon source. The evaluation of the operational stability allowed 12 cycles of biomass reuse using the IM and 9 cycles using the SM. After physical-chemical treatment, only SM denitrified water remained within drinking water standards parameters of color and turbidity. Copyright © 2018 Elsevier Ltd. All rights reserved.

  20. Natural radioactivity of geothermal water in Beijing, China

    International Nuclear Information System (INIS)

    Shufang Wang; Chao Ye; Jiurong Liu; Pei Lin; Kai Liu; Pei Dong; Ying Sun; Yuanzhang Liu; Liya Wang; Guifang Wang

    2017-01-01

    In this work, we collected 101 geothermal water samples to investigate comprehensively the radioactivity of geothermal water in Beijing. The concentrations of gross beta, 226 Ra and 222 Rn were measured and the obtained values were in the range of 0.032-7.060, 0.023-0.363 and 0.470-29.700 Bq/L, respectively. The samples with higher concentration of 222 Rn were found to be located near large faults. The effective dose of 222 Rn in the air for three cases were calculated to be greater than radiation dose limit of 1 mSv/a. (author)

  1. Natural radiation level in drinking water in Homs city

    International Nuclear Information System (INIS)

    Shweikani, R.; Raja, Gh.

    2008-11-01

    In this study, radon concentrations were measured at the sources of drinking water and in some tap water in houses in Homs County. All measurements showed that concentrations are within the international allowed limits and there is no big difference in concentration between the sources and the houses. Also total alpha/beta and radium-226 content were measured in the samples of the sources and the houses using liquid scintillation counter. All measurements showed that concentrations are within the international allowed limits. (authors)

  2. Iron speciation in natural hyperacid water investigated by Mossbauer spectroscopy

    DEFF Research Database (Denmark)

    Koch, C. Bender; Rasmussen, Helge Kildahl; Mørup, Steen

    2009-01-01

    We have demonstrated the usefulness of the archetypical solid state-technique of Mössbauer spectroscopy to non-invasive studies of the redox and coordination chemistry of iron in a natural hyperacid solution from Iron Mountain, CA. Suitable fast cooling conditions were used to prepare a glass from...

  3. TBA IN GROUND WATER FROM THE NATURAL BIODEGRADATION OF MTBE

    Science.gov (United States)

    At many UST spills, the concentrations of TBA in ground water are much higher than would be expected from the presence of TBA in the gasoline originally spilled. The ratio of concentrations of TBA to concentrations of MTBE in monitoring wells at gasoline spill sites was compared ...

  4. Reduction in density of suspended - sediment - laden natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    Joseph, A.; Desa, E.; Desa, E.; Smith, D.; Peshwe, V.B.; VijayKumar, K.; Desa, J.A.E.

    to 0.4% - 4.5%) that of the density of the same water without suspended sediment. Teh values of peff in a given site differed from one tidal cycle to another (approx equal to 1.9%). These values varied slightly (less than 0.8%) from mid-tide to slack...

  5. Effects of Soil Management Practices on Water Erosion under Natural Rainfall Conditions on a Humic Dystrudept

    Directory of Open Access Journals (Sweden)

    Vinicius Ferreira Chaves de Souza

    Full Text Available ABSTRACT Water erosion is the main cause of soil degradation and is influenced by rainfall, soil, topography, land use, soil cover and management, and conservation practices. The objective of this study was to quantify water erosion in a Humic Dystrudept in two experiments. In experiment I, treatments consisted of different rates of fertilizer applied to the soil surface under no-tillage conditions. In experiment II, treatments consisted of a no-tillage in natural rangeland, burned natural rangeland and natural rangeland. Forage turnip, black beans, common vetch, and corn were used in rotation in the treatments with crops in the no-tillage during study period. The treatments with crops and the burned rangeland and natural rangeland were compared to a bare soil control, without cultivation and without fertilization. Increasing fertilization rates increased organic carbon content, soil resistance to disintegration, and the macropore volume of the soil, due to the increase in the dry mass of the crops, resulting in an important reduction in water erosion. The exponential model of the ŷ = ae-bx type satisfactorily described the reduction in water and soil losses in accordance with the increase in fertilization rate and also described the decrease in soil losses in accordance with the increase in dry mass of the crops. Water erosion occurred in the following increasing intensity: in natural rangeland, in cultivated natural rangeland, and in burned natural rangeland. Water erosion had less effect on water losses than on soil losses, regardless of the soil management practices.

  6. Express Detection of Pentachlorophenol as Dioxins Precursor in Natural Water

    Directory of Open Access Journals (Sweden)

    Vitalia S. Krikounova

    2002-01-01

    Full Text Available A rapid detection method for the pesticide pentachlorophenol (PCP — polarization fluoroimmunoassay (PFIA — in the dynamic range of 10–9,000 ppb was developed. PCP may form polychlorinated dibenzo-p-dioxins, making environmental monitoring of this compound an issue of great importance. In order to optimize the PFIA procedure, a number of fluorescein-labeled PCP derivatives and similar compounds (tracers were synthesized, and the influence of their structure on PFIA characteristics was studied. Also, two antisera were tested in developing PFIA for PCP. The developed method is highly specific for PCP and can be used for its determination in water samples at a level down to 10 ppb. Total time of the assay for 10 samples is about 7 min. The assay provides a useful and a highly practical screening tool for the processing of large numbers of samples and for the preliminary estimation of potential dioxins contamination in water resources.

  7. REVIEW ON NATURAL METHODS FOR WASTE WATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Ashwani Kumar Dubey

    2014-01-01

    Full Text Available In Ethiopia, the most common method of disposal of waste water is by land spreading. This treatment method has numerous problems, namely high labor requirements and the potential for eutrophication of surface an d ground waters. Constructed wetlands are commonl y used for treatment of seconda ry municipal wastewaters and they have been gaining popularity for treatment of agricultural wastewaters in Ethiopia. Intermittent sand filtration may offer an alternative to traditional treatment methods. As well as providing comparable treatment performance, they also have a smaller footprint, due to the substantially higher organic loading rates that may be applied to their surfaces. Th is paper discusses the performance and design criteria of constructed wetlands for the treatment of domestic and agricultural wastewater, and sand filters for the treatment of domestic wastewater. It also proposes sand filtration as an alt ernative treatment mechanism for agricultural wa stewater and suggests design guide lines.

  8. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters

    OpenAIRE

    Bacosa, Hernando P.; Liu, Zhanfei; Erdner, Deana L.

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH ...

  9. Removing NDMA (N,N-dimethylnitrosamine) from natural waters

    International Nuclear Information System (INIS)

    Mezyk, S.P.; Cooper, W.J.; Bartels, D.M.

    2003-01-01

    Nitrosoamines are ubiquitous in water environments, and are of concern as they are potent carcinogens. In particular, N,N-dimethylnitrosamine (NDMA, (CH 3 ) 2 NNO) is volatile, and therefore has been detected around factories producing secondary amines or rocket fuel, in areas near industrial plants that use dimethylamine in organic synthesis, and even in foods and beverages that contain nitrite or which have been exposed to nitrous oxides. Various technologies have been suggested for removing trace levels of NDMA contamination from aqueous systems. However, Advanced Oxidation Technologies (AOTs), such as ozone, UV/ozone, and UV/H 2 O 2 , which use oxidation via the hydroxyl radical ( . OH), or heterogeneous catalysis by TiO 2 , sonolysis, or the electron beam process, which produce a mixture of oxidizing . OH radicals with reducing hydrated electrons (e - aq ) and hydrogen atoms ( . H), may also produce unwanted stable products in the treatment. Some of these stable products, such as secondary amines, allow regeneration of NDMA to occur. To ensure that any process applied to NDMA contaminated water occurs efficiently and quantitatively a complete understanding of the chemistry involved under the conditions of use is necessary. This requires mathematical modeling of the process, which in turn needs reaction rate constants and mechanisms. In this study, absolute rate constants at room temperature for the reaction of the hydroxyl radical, hydrated electron, and hydrogen atom with NDMA in water have been determined using electron pulse radiolysis and absorption spectroscopy, (e - aq and . OH) and EPR free induction decay attenuation ( . H) measurements. The specific values of (4.30± 0.12) x 10 8 , (1.41 ± 0.02) x 10 10 , and (2.01 ± 0.03) x 10 8 M -1 s -1 , respectively, demonstrate that the reductive destruction of this nitrosoamine would be the dominant removal pathway in any remediation process. Based on these data we have begun modeling the large-scale electron

  10. A new method for dosing rhodamine B in natural water

    International Nuclear Information System (INIS)

    Marichal, M.; Benoit, R.

    1961-01-01

    A simple and sensitive method well adapted to hydrological research. The dye is first extracted from the water sample by isoamyl alcohol and then the fluorescence of the alcoholic solution, after excitation by ultraviolet radiation, is measured spectrophotometrically. The sensitivity of the method is about 10 -12 , that is, a millionth of a milligram of dye per litre. Reprint of a paper published in 'Chimie Analytique', N. 2, Feb 1962, p. 70-72 [fr

  11. Natural groundwater recharge and water balance at the Hanford Site

    International Nuclear Information System (INIS)

    Rockhold, M.L.; Fayer, M.J.; Gee, G.W.; Kanyid, M.J.

    1990-01-01

    The purpose of this report is to present water-balance data collected in 1988 and 1989 from the 300 Area Buried Waste Test Facility and Grass Site, and the 200 East Area closed-bottom lysimeter. This report is an annual update of previous recharge status reports by Gee, Rockhold, and Downs, and Gee. Data from several other lysimeter sites are included for comparison. 43 refs., 28 figs., 7 tabs

  12. Finding water scarcity amid abundance using human-natural system models.

    Science.gov (United States)

    Jaeger, William K; Amos, Adell; Bigelow, Daniel P; Chang, Heejun; Conklin, David R; Haggerty, Roy; Langpap, Christian; Moore, Kathleen; Mote, Philip W; Nolin, Anne W; Plantinga, Andrew J; Schwartz, Cynthia L; Tullos, Desiree; Turner, David P

    2017-11-07

    Water scarcity afflicts societies worldwide. Anticipating water shortages is vital because of water's indispensable role in social-ecological systems. But the challenge is daunting due to heterogeneity, feedbacks, and water's spatial-temporal sequencing throughout such systems. Regional system models with sufficient detail can help address this challenge. In our study, a detailed coupled human-natural system model of one such region identifies how climate change and socioeconomic growth will alter the availability and use of water in coming decades. Results demonstrate how water scarcity varies greatly across small distances and brief time periods, even in basins where water may be relatively abundant overall. Some of these results were unexpected and may appear counterintuitive to some observers. Key determinants of water scarcity are found to be the cost of transporting and storing water, society's institutions that circumscribe human choices, and the opportunity cost of water when alternative uses compete. Published under the PNAS license.

  13. A Bibliography of References in Natural Water Photochemistry

    Science.gov (United States)

    1984-12-01

    Impacto ambiental do la derrama, del Pozo IXTOC-I sobre 91 zooplancton. I.P.N. Falk-Peterson, I.-B., Saethre, L. J. and LUnning, S., 1982. Toxic effects of...larvas, postlarvas, jueveniles y adultos do camaron y adultos do osti6n y pulpo por medio de biosensayos. Cientffica y Ticnica. Universidad de Sonora...spill: Flaking of surface mousse in the Gulf of Mexico . Nature 290: 235-238. Payne, J., 1984.t Physical/chemical weathering of petroleum in the marine

  14. Factors affecting fluoride and natural organic matter (NOM) removal from natural waters in Tanzania by nanofiltration/reverse osmosis.

    Science.gov (United States)

    Shen, Junjie; Schäfer, Andrea I

    2015-09-15

    This study examined the feasibility of nanofiltration (NF) and reverse osmosis (RO) in treating challenging natural tropical waters containing high fluoride and natural organic matter (NOM). A total of 166 water samples were collected from 120 sources within northern Tanzania over a period of 16 months. Chemical analysis showed that 81% of the samples have fluoride levels exceeding the WHO drinking guideline of 1.5mg/L. The highest fluoride levels were detected in waters characterized by high ionic strength, high inorganic carbon and on some occasions high total organic carbon (TOC) concentrations. Bench-scale experiments with 22 representative waters (selected based on fluoride concentration, salinity, origin and in some instances organic matter) and 6 NF/RO membranes revealed that ionic strength and recovery affected fluoride retention and permeate flux. This is predominantly due to osmotic pressure and hence the variation of diffusion/convection contributes to fluoride transport. Different membranes had distinct fluoride removal capacities, showing different raw water concentration treatability limits regarding the WHO guideline compliance. BW30, BW30-LE and NF90 membranes had a feed concentration limit of 30-40 mg/L at 50% recovery. NOM retention was independent of water matrices but is governed predominantly by size exclusion. NOM was observed to have a positive impact on fluoride removal. Several mechanisms could contribute but further studies are required before a conclusion could be drawn. In summary, NF/RO membranes were proved to remove both fluoride and NOM reliably even from the most challenging Tanzanian waters, increasing the available drinking water sources. Copyright © 2015 Elsevier B.V. All rights reserved.

  15. Research of Distribution of Elements in Natural Waters of the Selenga River Pool

    CERN Document Server

    Ganbold, G; Gerbish, S; Dalhsuren, B; Bayarmaa, Z; Maslov, O D; Sevastiyanov, D V

    2001-01-01

    The distribution of heavy metals in natural waters of the Selenga river pool was investigated. The contents of elements were determined using X-ray analysis with complete external reflection (XRACER). The zones with excess of the average contents of elements in comparison with reference samples were found out, that specifies their pollution by metals. It is offered in these zones to organize the regular water quality monitoring for supervision over the condition of the water ecosystems and to carry out actions on decrease of anthropogenous load and pollution of natural waters.

  16. Mercury determination in natural waters using neutron activation analysis

    International Nuclear Information System (INIS)

    Cagnone, M.; Marques, R.O.

    1994-01-01

    Available as short communication only. An analytical method for quantitative determination of Mercury traces in river and sea water is proposed. The neutron activation method and radiochemical separation of Mercury by developing of C L 4 Hg -2 complex, and their chromatographic separation using anionic exchange resin Dowex 1 X 8 of 400 mesh is used. The quantitative determination is done by gamma spectrometric analysis. The selection limits reached with this method showed that this is an amenable procedure in routine mercury determination in the ppb level, specially useful in the environmental contamination analysis. (author). 3 refs, 2 figs, 1 tab

  17. Removing NDMA (N,N-dimethylnitrosamine) from natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Mezyk, S P [California State University Long Beach, (United States); Cooper, W J [University of North Carolina at Wilmington, (United States); Bartels, D M [Argonne National Laboratory, (United States)

    2003-07-01

    Nitrosoamines are ubiquitous in water environments, and are of concern as they are potent carcinogens. In particular, N,N-dimethylnitrosamine (NDMA, (CH{sub 3}){sub 2} NNO) is volatile, and therefore has been detected around factories producing secondary amines or rocket fuel, in areas near industrial plants that use dimethylamine in organic synthesis, and even in foods and beverages that contain nitrite or which have been exposed to nitrous oxides. Various technologies have been suggested for removing trace levels of NDMA contamination from aqueous systems. However, Advanced Oxidation Technologies (AOTs), such as ozone, UV/ozone, and UV/H{sub 2}O{sub 2} , which use oxidation via the hydroxyl radical ({sup .}OH), or heterogeneous catalysis by TiO{sub 2} , sonolysis, or the electron beam process, which produce a mixture of oxidizing {sup .}OH radicals with reducing hydrated electrons (e{sup -}{sub aq} ) and hydrogen atoms ({sup .} H), may also produce unwanted stable products in the treatment. Some of these stable products, such as secondary amines, allow regeneration of NDMA to occur. To ensure that any process applied to NDMA contaminated water occurs efficiently and quantitatively a complete understanding of the chemistry involved under the conditions of use is necessary. This requires mathematical modeling of the process, which in turn needs reaction rate constants and mechanisms. In this study, absolute rate constants at room temperature for the reaction of the hydroxyl radical, hydrated electron, and hydrogen atom with NDMA in water have been determined using electron pulse radiolysis and absorption spectroscopy, (e{sup -}{sub aq} and {sup .}OH) and EPR free induction decay attenuation ({sup .}H) measurements. The specific values of (4.30{+-} 0.12) x 10 8 , (1.41 {+-} 0.02) x 10 10 , and (2.01 {+-} 0.03) x 10{sup 8} M{sup -1} s{sup -1} , respectively, demonstrate that the reductive destruction of this nitrosoamine would be the dominant removal pathway in any

  18. The nature of water: Greek thought from Homer to Acusilaos.

    Science.gov (United States)

    De Santo, Rosa Maria; Bisaccia, Carmela; Cirillo, Massimo; Pollastro, Rosa Maria; Raiola, Ilaria; De Santo, Luca Salvatore

    2009-01-01

    Greek philosophy finds its roots in the myth of Homer's and Hesiod's poems and especially in Orphism which introduced the concept of a soul separated from the body with an independent principle, psiche (soul), to be rewarded or punished after death. Orphism was an important step in Greek culture. It introduced the divine into man, the soul which does not die with the body and reincarnates. From Orphism started the need of rituals capable of separating the spirit from the body. From Homer to Acusilaos, water was a very important element which connected humans and gods, long before Thales of Miletus defined it the arche.

  19. IMPACT OF HYDRAULIC FRACTURING ON THE QUALITY OF NATURAL WATERS

    Directory of Open Access Journals (Sweden)

    Wojciech Cel

    2017-03-01

    Full Text Available Poland, due to the estimated shale gas deposits amounting to 346-768 billion m3 has become one of the most attractive regions for shale gas exploration in Europe. Throughout the period 2010-2015, 72 exploratory drillings have been made (as of 4.01.2016 while hydraulic fracturing was carried out 25 times. Employing new drilling and shale gas prospecting technologies raises a question pertaining to their impact on the environment. The number of chemical compounds used (approximately 2000 for the production of new technological fluids may potentially pollute the environment. The fact that the composition of these fluids remains undisclosed hinders the assessment of their impact on the environment and devising optimal methods for managing this type of waste. The presented work indicates the chemical compounds which may infiltrate to groundwater, identified on the basis of technological fluids characteristics, as well as the review of studies pertaining to their impact on potable water carried out in the United States. The study focused on marking heavy metals, calcium, sodium, magnesium, potassium, chlorides and sulphates in the surface waters collected in proximity of Lewino well.

  20. An evaluation of water quality in private drinking water wells near natural gas extraction sites in the Barnett Shale formation.

    Science.gov (United States)

    Fontenot, Brian E; Hunt, Laura R; Hildenbrand, Zacariah L; Carlton, Doug D; Oka, Hyppolite; Walton, Jayme L; Hopkins, Dan; Osorio, Alexandra; Bjorndal, Bryan; Hu, Qinhong H; Schug, Kevin A

    2013-09-03

    Natural gas has become a leading source of alternative energy with the advent of techniques to economically extract gas reserves from deep shale formations. Here, we present an assessment of private well water quality in aquifers overlying the Barnett Shale formation of North Texas. We evaluated samples from 100 private drinking water wells using analytical chemistry techniques. Analyses revealed that arsenic, selenium, strontium and total dissolved solids (TDS) exceeded the Environmental Protection Agency's Drinking Water Maximum Contaminant Limit (MCL) in some samples from private water wells located within 3 km of active natural gas wells. Lower levels of arsenic, selenium, strontium, and barium were detected at reference sites outside the Barnett Shale region as well as sites within the Barnett Shale region located more than 3 km from active natural gas wells. Methanol and ethanol were also detected in 29% of samples. Samples exceeding MCL levels were randomly distributed within areas of active natural gas extraction, and the spatial patterns in our data suggest that elevated constituent levels could be due to a variety of factors including mobilization of natural constituents, hydrogeochemical changes from lowering of the water table, or industrial accidents such as faulty gas well casings.

  1. Fate of nuclides in natural water systems. Annual progress report, April 1, 1983-March 31, 1984

    International Nuclear Information System (INIS)

    Turekian, K.K.

    1983-01-01

    This study of the behavior of nuclides in natural water systems is divided into studies of atmospheric aerosols, soils, groundwater, rivers, estuaries and coastal zones, the carbon cycle and the growth rates of marine organisms

  2. Extraction and characterisation of aqueous organic acids from natural waters

    International Nuclear Information System (INIS)

    Smith, B.; Moody, P.M.; Higgo, J.J.W.

    1993-01-01

    Humic and fulvic acids were extracted from large volumes of groundwater associated with the Broubster and Needle's Eye natural analogue sites, and the BGS research site at Drigg in Cumbria. Extractions were performed by both batchwise extraction and radial flow chromatography using DEAE-cellulose. Retained humic substances were eluted using NaOH and separated into humic and fulvic components by acidification to pH 1. After separation the humic component was purified by repetitive precipitation and dissolution whilst the fulvic component was purified by absorption chromatography. The resulting humic substances were shown to be of high purity with respect to metallic elements, with less than 1% of available sites being occupied. During elution the association of trace elements with humic substances was monitored and a high degree of association between humic substances, U and the Rare Earth Elements was noted. (author)

  3. Use of natural user interfaces in water simulations

    Science.gov (United States)

    Donchyts, G.; Baart, F.; van Dam, A.; Jagers, B.

    2013-12-01

    Conventional graphical user interfaces, used to edit input and present results of earth science models, have seen little innovation for the past two decades. In most cases model data is presented and edited using 2D projections even when working with 3D data. The emergence of 3D motion sensing technologies, such as Microsoft Kinect and LEAP Motion, opens new possibilities for user interaction by adding more degrees of freedom compared to a classical way using mouse and keyboard. Here we investigate how interaction with hydrodynamic numerical models can be improved using these new technologies. Our research hypothesis (H1) states that properly designed 3D graphical user interface paired with the 3D motion sensor can significantly reduce the time required to setup and use numerical models. In this work we have used a LEAP motion controller combined with a shallow water flow model engine D-Flow Flexible Mesh. Interacting with numerical model using hands

  4. Natural Radioactivity in Public Water supplies in Spain

    International Nuclear Information System (INIS)

    Sostoa Grodo-Pacheco, A.

    1989-01-01

    This paper present the values of the Ra-226 concentration in public water supplies from different provinces of Spain and the values of anual intake. The Ra-226 concentration is in the range of (22.31 ± 3.44) 10 5 Bq/I - (8.55 ± 0.44) 10''2 Bq/l. The annual intake is in the range of (17.80±2.75) 10''2 Bq/l- (68 ± 3.5) Bq/I. As a conclusion no health risk due to intake is expected. Also is discussed in the paper a method for determination of Ra-226 concentration. (Author) 11 ref

  5. Determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization

    International Nuclear Information System (INIS)

    Usenko, S.I.; Prorok, M.M.

    1992-01-01

    A method of direct determination of boron in natural waters using atomic-absorption spectrometry with electrothermal atomization was developed. Concomitant elements Si, K, Mg, Na, present in natural waters in the concentration of 0.05-100 mg/cv 3 , do not produce effect on the value of boron atomic absorption. Boron determination limit constituted 0.02 mg/cm 3 for 25 ml of solution introduced

  6. Standardization of sequential separation of naturally occurring radionuclides in drinking water

    International Nuclear Information System (INIS)

    Nair, Madhu G.; Rao, D.D.; Sathyapriya, R.S.; Sarkar, P.K.

    2012-01-01

    Human are constantly exposed to radiation originating from natural or manmade sources. The main contribution for internal dose is due to radionuclides from uranium and thorium series in drinking water. The distribution of these elements varies depending on the geological and physiological characteristics of the aquifer. With increased concern for radiological safety of public, it is necessary to evaluate the naturally occurring radionuclides in the drinking water

  7. The man-made creators of the imbalance of water in Nature

    Science.gov (United States)

    Shlafman, L. M.; Kontar, V. A.

    2013-12-01

    At 2011 we have described the imbalance of water in Nature as the system [1]. At 2012 we have described water and carbon and the glaciers [2], [3] as creators of the imbalance of Nature. Now we are describing some man-made creators of the imbalance of Nature. The photosynthesis is a powerful creator of the imbalance of Nature. The photosynthesis significantly increases the complexity of the structures and reduces the entropy. Earth's hydrosphere contains water less than it was flowed via photosynthesis. This is an example of the imbalance of involving when the return of water has delayed because water is involved into the processes of life and other processes. People widely use photosynthesis and create not only an additional man-made imbalance of water in Nature, but also the man-made changing the albedo, and a lot of other important parameters of the planet of Earth. All of these processes are significantly imbalanced. The fossil hydrocarbons have accumulated during millions of years, but now are burned. This is an example of the imbalance delay by time. The man-made burning of the hydrocarbons is creating the imbalances of impact or explosive type, because of the burning processes is in millions of times faster than the accumulation processes. Please pay attention to the imbalance of redeployment by places. For example, oil and gas are extracted in one places, and burned in others. During combustion is standing out not only water, but energy, and other components. The temperature in the centers of big cities is always higher and there is dominating the rising air. It pollutes the environment, changes circulations, create greenhouse effect, etc. Other examples of the imbalance of relocation are shown in the production and consumption of food. The irrigation systems transfer water from one place to another. This transfer of water creates a lot of imbalances in change climate, ecosystems, etc in places where water was took and where the water was brought. Usually

  8. Microwave-enhanced pyrolysis of natural algae from water blooms.

    Science.gov (United States)

    Zhang, Rui; Li, Linling; Tong, Dongmei; Hu, Changwei

    2016-07-01

    Microwave-enhanced pyrolysis (MEP) of natural algae under different reaction conditions was carried out. The optimal conditions for bio-oil production were the following: algae particle size of 20-5 mesh, microwave power of 600W, and 10% of activated carbon as microwave absorber and catalyst. The maximum liquid yield obtained under N2, 10% H2/Ar, and CO2 atmosphere was 49.1%, 51.7%, and 54.3% respectively. The energy yield of bio-products was 216.7%, 236.9% and 208.7% respectively. More long chain fatty acids were converted into hydrocarbons by hydrodeoxygenation under 10% H2/Ar atmosphere assisted by microwave over activated carbon containing small amounts of metals. Under CO2 atmosphere, carboxylic acids (66.6%) were the main products in bio-oil because the existence of CO2 vastly inhibited the decarboxylation. The MEP of algae was quick and efficient for bio-oil production, which provided a way to not only ameliorate the environment but also obtain fuel or chemicals at the same time. Copyright © 2016 Elsevier Ltd. All rights reserved.

  9. Simulation of Two-Phase Natural Circulation Loop for Core Cather Cooling Using Air Water

    International Nuclear Information System (INIS)

    Revankar, S. T.; Huang, S. F.; Song, K. W.; Rhee, B. W.; Park, R. J.; Song, J. H.

    2012-01-01

    A closed loop natural circulation system employs thermally induced density gradients in single phase or two-phase liquid form to induce circulation of the working fluid thereby obviating the need for any mechanical moving parts such as pumps and pump controls. This increases the reliability and safety of the cooling system and reduces installation, operation and maintenance costs. That is the reason natural circulation cooling has been considered in advanced reactor core cooling and in engineered safety systems. Natural circulation cooling has been proposed to remove reactor decay heat by external vessel cooling for in-vessel core retention during sever accident scenario. Recently in APR1400 reactor core catcher design natural circulation cooling is proposed to stabilize and cool the corium ejected from the reactor vessel following core melt and breach of reactor vessel. The natural circulation flow is similar to external vessel cooling where water flows through an inclined narrow gap below hot surface and is heated to produce boiling. The two-phase natural circulation enables cooling of the corium pool collected on core catcher. Due to importance of this problem this paper focuses simulation of the two-phase natural circulation through inclined gap using air-water system. Scaling criteria for air-water loop are derived that enable simulation of the flow regimes and natural circulation flow rates in such systems using air-water system

  10. Participation of the Halogens in Photochemical Reactions in Natural and Treated Waters

    Directory of Open Access Journals (Sweden)

    Yi Yang

    2017-10-01

    Full Text Available Halide ions are ubiquitous in natural waters and wastewaters. Halogens play an important and complex role in environmental photochemical processes and in reactions taking place during photochemical water treatment. While inert to solar wavelengths, halides can be converted into radical and non-radical reactive halogen species (RHS by sensitized photolysis and by reactions with secondary reactive oxygen species (ROS produced through sunlight-initiated reactions in water and atmospheric aerosols, such as hydroxyl radical, ozone, and nitrate radical. In photochemical advanced oxidation processes for water treatment, RHS can be generated by UV photolysis and by reactions of halides with hydroxyl radicals, sulfate radicals, ozone, and other ROS. RHS are reactive toward organic compounds, and some reactions lead to incorporation of halogen into byproducts. Recent studies indicate that halides, or the RHS derived from them, affect the concentrations of photogenerated reactive oxygen species (ROS and other reactive species; influence the photobleaching of dissolved natural organic matter (DOM; alter the rates and products of pollutant transformations; lead to covalent incorporation of halogen into small natural molecules, DOM, and pollutants; and give rise to certain halogen oxides of concern as water contaminants. The complex and colorful chemistry of halogen in waters will be summarized in detail and the implications of this chemistry for global biogeochemical cycling of halogen, contaminant fate in natural waters, and water purification technologies will be discussed.

  11. Alpha low activity determination from limitter isotopes of uranium, thorium ands radium in natural waters

    International Nuclear Information System (INIS)

    Gascon, J.L.; Crespo, M.T.; Acena, M.L.

    1989-01-01

    A method to concentrate uranium, thorium and radium in natural waters has been developed. The method, based on the adsorbing propert-ies of manganes dioxide, has been applied to determine the alpha emitter isotopes of these elements in drinking water of Madrid. In this work we present the description of the method, the analytical procedu-res and the obtained results. (Author)

  12. Investigation of Natural Radioactivity in the Tap and Spring Water in Yaounde Town, Cameroon

    International Nuclear Information System (INIS)

    Lydie, R.M.; Hakam, O.K.; Choukri, A.; Lydie, R.M.; Hakam, O.K.; Choukri, A.

    2013-01-01

    The natural radionuclide concentrations in the tap and springs water in Yaounde town, capital of Cameroon with a population of 3.5 million inhabitants were estimated by gamma spectrometry, using both well calibrated Canberra NaI(Tl) and HPGe detector systems. Tap water samples were collected during the dry and the rainy seasons, respectively in December 2002 and July 2003 and spring water samples were collected in August 2010. The radionuclides observed with regularity belonged to the series decay naturally occurring radionuclides headed by 238 U and 232 Th as well as the non-series nuclide 40 K. Assuming an individual daily consumption of 1 litre of water, the average annual intake for these populations is 3821 Bq/y for tap water and 1161 Bq/y for spring water.

  13. Development of a water purifier for radioactive cesium removal from contaminated natural water by radiation-induced graft polymerization

    Science.gov (United States)

    Seko, Noriaki; Hoshina, Hiroyuki; Kasai, Noboru; Shibata, Takuya; Saiki, Seiichi; Ueki, Yuji

    2018-02-01

    Six years after the Fukushima-nuclear accident, the dissolved radioactive cesium (Cs) is now hardly detected in environmental natural waters. These natural waters are directly used as source of drinking and domestic waters in disaster-stricken areas in Fukushima. However, the possibility that some radioactive Cs adsorbed on soil or leaves will contaminate these natural waters during heavy rains or typhoon is always present. In order for the returning residents to live with peace of mind, it is important to demonstrate the safety of the domestic waters that they will use for their daily life. For this purpose, we have synthesized a material for selective removal of radioactive Cs by introducing ammonium 12-molybdophosphate (AMP) onto polyethylene nonwoven fabric through radiation-induced emulsion graft polymerization technique. Water purifiers filled with the grafted Cs adsorbent were installed in selected houses in Fukushima. The capability of the grafted adsorbent to remove Cs from domestic waters was evaluated for a whole year. The results showed that the tap water filtered through the developed water purifier contained no radioactive Cs, signifying the very effective adsorption performance of the developed grafted adsorbent. From several demonstrations, we have commercialized the water purifier named "KranCsair®". Furthermore, we have also developed a method for the mass production of the grafted nonwoven fabric. Using a 30 L grafting reactor, it was possible to produce the grafted nonwoven fabric with a suitable range of degree of grafting. When an irradiated roll of nonwoven trunk fabric with a length of 10 m and a width of 30 cm was set in the reactor filled with glycidyl methacrylate (GMA), AMP, Tween 80 monomer emulsion solution at 40 °C for 1 h, the difference of Dgs in the length and the width on roll of fabrics was negligible.

  14. RADIOACTIVITY OF ROCKS, SOILS AND NATURAL WATERS OF DAGESTAN AND DUE TO THEIR EFFECTIVE DOSE

    Directory of Open Access Journals (Sweden)

    A. S. Abdulaeva

    2012-01-01

    Full Text Available The results of long-term radioecological studies in the mountainous areas of Dagestan. The data of the study of territorial exposure dose, determination of natural radioactive nuclides in rocks, soils and natural waters of Dagestan. The parameters of the correlation between alpha-and beta-activity of rocks, soil, and radon in water and indoor air. This paper discusses issues related to the formation of radiation dose from natural sources of ionizing radiation in the biosphere and as a result of this review - doses to man.

  15. Effect of natural and man-made factors on mineral composition of Ardon river water

    International Nuclear Information System (INIS)

    Tyutikov, S.F.; Ermakov, V.V.; Degtyarev, A.P.; Krechetova, E.V.; Petrunina, N.S.

    2008-01-01

    The data on change of landscapes and biota (plants, algae, amphibious) are submitted as a result of natural catastrophes (mud-stream) and man-made factors (construction of a gas main and hydroelectric power station). It is shown, that the specified factors in some cases change not only structure of landscapes and a chemical compound of natural and industrial waters, but also a character of invasion of organisms. The certain influence of size of suspended matter of Ardon river waters on their general mineralization was discovered. Contents of heavy metals in waters of Ardon river is not critical and is in acceptable hygienic parameters.

  16. The protective role of ceramic filters against natural radioactivity of water

    International Nuclear Information System (INIS)

    Domanski, T.; Bakir, Y.Y.Y.; El-Zenki, S.; Bem, H.

    1992-01-01

    The paper presents results of measurements of the natural radioactivity of tap water where samples were taken in front of, and behind the ceramic filter commonly used in houses for the purification of tap water. Altogether, 289 samples were taken, processed and measured during 1985-1986 in Kuwait. Results reveal the fact that ceramic filters reduce substantially the natural radioactivity in water (the 'gross' alpha activity reduced by the factor 2.18 ± 18%; the 'gross' beta by 1.53 ± 1.6%. (author)

  17. Pu(V) as the stable form of oxidized plutonium in natural waters

    International Nuclear Information System (INIS)

    Orlandini, K.A.; Penrose, W.R.; Nelson, D.M.

    1986-01-01

    This work presents analytical evidence supporting the proposition that Pu(V) is the sole or predominant form of oxidized plutonium in natural waters. Two independent methods, the selective adsorption of Pu(VI) by silica gel, and the somewhat less selective coprecipitation of Pu(V) with calcium carbonate, were developed to separate Pu(V) from Pu(VI). Measurements of ambient plutonium in several natural waters by these methods found only Pu(V). In laboratory tracer studies, Pu(VI) was shown to be highly unstable in dilute bicarbonate solution and in Lake Michigan water, reducing in first-order fashion to Pu(V). (orig.)

  18. Pharmaceuticals in the Built and Natural Water Environment of the United States

    Directory of Open Access Journals (Sweden)

    Randhir P. Deo

    2013-09-01

    Full Text Available The known occurrence of pharmaceuticals in the built and natural water environment, including in drinking water supplies, continues to raise concerns over inadvertent exposures and associated potential health risks in humans and aquatic organisms. At the same time, the number and concentrations of new and existing pharmaceuticals in the water environment are destined to increase further in the future as a result of increased consumption of pharmaceuticals by a growing and aging population and ongoing measures to decrease per-capita water consumption. This review examines the occurrence and movement of pharmaceuticals in the built and natural water environment, with special emphasis on contamination of the drinking water supply, and opportunities for sustainable pollution control. We surveyed peer-reviewed publications dealing with quantitative measurements of pharmaceuticals in U.S. drinking water, surface water, groundwater, raw and treated wastewater as well as municipal biosolids. Pharmaceuticals have been observed to reenter the built water environment contained in raw drinking water, and they remain detectable in finished drinking water at concentrations in the ng/L to μg/L range. The greatest promises for minimizing pharmaceutical contamination include source control (for example, inputs from intentional flushing of medications for safe disposal, and sewer overflows, and improving efficiency of treatment facilities.

  19. Assessment of 226Ra, 228Ra and 40K contents in the Egyptian bottled natural water

    International Nuclear Information System (INIS)

    El-Afifi, E.M.; Hilal, M.A.; Khalifa, S.M.; Aly, H.F.

    2004-01-01

    The activity concentrations of 2 26Ra, 2 28Ra and 4 0 and k in different brands of the bottled egyptian natural water of different origins obtained from four regions, have been analyzed nondestructively by gamma- ray spectrometry. The study covers nine brands of natural water commonly used mainly for drinking in egypt. The results showed, concentrations up to 184, 156 and 1700 mBq I - 1 for 2 26Ra, 2 28Ra and 4 0K, respectively, in one brand of the natural water from water from Siwa oasis. Whereas, lower activity concentrations of 2 26Ra and 2 28Ra were found in one brand of these natural waters from El sadat region. The activity concentration of 4 0K was found to be in the background range in the brands from El sadat, kafr El arbein and beilbeis regions. The committed effective doses reached 1.9 x 10 - 2 m Sy Y - 1 for ingestion of 2 26Ra and 2 28Ra for one liter per day, respectively, which are lower than the standard permissible limit by the WHO and IAEA. However, it is recommended to moderate drinking of bottled natural water to avoid the accumulation effect of radioactive nuclides especially radium

  20. Life cycle water consumption for shale gas and conventional natural gas.

    Science.gov (United States)

    Clark, Corrie E; Horner, Robert M; Harto, Christopher B

    2013-10-15

    Shale gas production represents a large potential source of natural gas for the nation. The scale and rapid growth in shale gas development underscore the need to better understand its environmental implications, including water consumption. This study estimates the water consumed over the life cycle of conventional and shale gas production, accounting for the different stages of production and for flowback water reuse (in the case of shale gas). This study finds that shale gas consumes more water over its life cycle (13-37 L/GJ) than conventional natural gas consumes (9.3-9.6 L/GJ). However, when used as a transportation fuel, shale gas consumes significantly less water than other transportation fuels. When used for electricity generation, the combustion of shale gas adds incrementally to the overall water consumption compared to conventional natural gas. The impact of fuel production, however, is small relative to that of power plant operations. The type of power plant where the natural gas is utilized is far more important than the source of the natural gas.

  1. Startup transient simulation for natural circulation boiling water reactors in PUMA facility

    International Nuclear Information System (INIS)

    Kuran, S.; Xu, Y.; Sun, X.; Cheng, L.; Yoon, H.J.; Revankar, S.T.; Ishii, M.; Wang, W.

    2006-01-01

    In view of the importance of instabilities that may occur at low-pressure and -flow conditions during the startup of natural circulation boiling water reactors, startup simulation experiments were performed in the Purdue University Multi-Dimensional Integral Test Assembly (PUMA) facility. The simulations used pressure scaling and followed the startup procedure of a typical natural circulation boiling water reactor. Two simulation experiments were performed for the reactor dome pressures ranging from 55 kPa to 1 MPa, where the instabilities may occur. The experimental results show the signature of condensation-induced oscillations during the single-phase-to-two-phase natural circulation transition. The results also suggest that a rational startup procedure is needed to overcome the startup instabilities in natural circulation boiling water reactor designs

  2. Application of carbon isotopes to detect seepage out of coalbed natural gas produced water impoundments

    International Nuclear Information System (INIS)

    Sharma, Shikha; Baggett, Joshua K.

    2011-01-01

    Highlights: → Coalbed natural gas extraction results in large amount of produced water. → Risk of deterioration of ambient water quality. → Carbon isotope natural tracer for detecting seepage from produced water impoundments. - Abstract: Coalbed natural gas (CBNG) production from coal bed aquifers requires large volumes of produced water to be pumped from the subsurface. The produced water ranges from high quality that meets state and federal drinking water standards to low quality due to increased salinity and/or sodicity. The Powder River Basin of northeastern Wyoming is a major coalbed natural gas producing region, where water quality generally decreases moving from the southeastern portion of the basin towards the center. Most produced water in Wyoming is disposed into impoundments and other surface drainages, where it may infiltrate into shallow groundwater. Groundwater degradation caused by infiltration of CBNG produced water holding impoundments into arid, soluble salt-rich soils is an issue of immense importance because groundwater is a major source for stock water, irrigation, and drinking water for many small communities in these areas. This study examines the potential of using stable C isotope signatures of dissolved inorganic C (δ 13 C DIC ) to track the fate of CBNG produced water after it is discharged into the impoundments. Other geochemical proxies like the major cations and major anions were used in conjunction with field water quality measurements to understand the geochemical differences between CBNG produced waters and ambient waters in the study area. Samples were collected from the CBNG discharge outfalls, produced water holding impoundments, and monitoring wells from different parts of the Powder River Basin and analyzed for δ 13 C DIC . The CBNG produced waters from outfalls and impoundments have positive δ 13 C DIC values that fall within the range of +12 per mille to +22 per mille, distinct from the ambient regional surface and

  3. Colloid Detection in Natural Ground Water from Ruprechtov by Laser-Induced Breakdown Detection

    Energy Technology Data Exchange (ETDEWEB)

    Hauser, W.; Geckeis, H.; Goetz, R. [FZK - Inst. fuer Nukleare Entsorgung, Ka rlsruhe (Germany)]. e-mail: hauser@ine.fzk.de; Noseck, U. [Gesellschaft fuer Anlagen- und Reaktorsicherheit, D-38122 Braunschweig (Germany); Laciok, A. [Nuclear Research Inst. Rez plc, Waste and Environmental Management Dept., Husinec-Rez, PSC 250 68 (Czech Republic)

    2007-06-15

    A borehole ground water sampling system and a mobile laser-induced breakdown detection (LIBD) equipment for colloid detection combined with a geomonitoring unit have been applied to characterize the natural background colloid concentration in ground waters of the Ruprechtov natural analogue site (Czech Republic). Ground water has been sampled using steel cylinders. To minimize artifacts during ground water sampling the contact to atmospheric oxygen has been excluded. The ground water samples collected in this way are transported to the laboratory where they have been connected to a series of flow-through detection cells. Argon gas is used to press the ground water through these detection cells for colloid analysis (LIBD), pH, Eh, electrical conductivity and oxygen content. After the above mentioned analysis additional samples are taken for chemical analysis by ICP-AES, ICP-MS, IC- and DOC-detection. Our data obtained by in-situ- and laboratory- measurements point out that the natural colloid concentration found at the Ruprechtov site is a strong function of the ground water ionic strength. The LIBD determined natural background colloid concentrations found at Ruprechtov are compared with data of studies performed in Aespoe (Sweden) and Grimsel (Switzerland)

  4. Optimization of the Determination Method for Dissolved Cyanobacterial Toxin BMAA in Natural Water.

    Science.gov (United States)

    Yan, Boyin; Liu, Zhiquan; Huang, Rui; Xu, Yongpeng; Liu, Dongmei; Lin, Tsair-Fuh; Cui, Fuyi

    2017-10-17

    There is a serious dispute on the existence of β-N-methylamino-l-alanine (BMAA) in water, which is a neurotoxin that may cause amyotrophic lateral sclerosis/Parkinson's disease (ALS/PDC) and Alzheimer' disease. It is believed that a reliable and sensitive analytical method for the determination of BMAA is urgently required to resolve this dispute. In the present study, the solid phase extraction (SPE) procedure and the analytical method for dissolved BMAA in water were investigated and optimized. The results showed both derivatized and underivatized methods were qualified for the measurement of BMAA and its isomer in natural water, and the limit of detection and the precision of the two methods were comparable. Cartridge characteristics and SPE conditions could greatly affect the SPE performance, and the competition of natural organic matter is the primary factor causing the low recovery of BMAA, which was reduced from approximately 90% in pure water to 38.11% in natural water. The optimized SPE method for BMAA was a combination of rinsed SPE cartridges, controlled loading/elution rates and elution solution, evaporation at 55 °C, reconstitution of a solution mixture, and filtration by polyvinylidene fluoride membrane. This optimized method achieved > 88% recovery of BMAA in both algal solution and river water. The developed method can provide an efficient way to evaluate the actual concentration levels of BMAA in actual water environments and drinking water systems.

  5. Lithium in the Natural Waters of the South East of Ireland.

    Science.gov (United States)

    Kavanagh, Laurence; Keohane, Jerome; Cleary, John; Garcia Cabellos, Guiomar; Lloyd, Andrew

    2017-05-26

    The South East of Ireland (County Carlow) contains a deposit of the valuable lithium-bearing mineral spodumene (LiAl(SiO₃)₂). This resource has recently attracted interest and abstractive mining in the area is a possibility for the future. The open cast mining of this resource could represent a potential hazard in the form of metalliferous pollution to local water. The population of County Carlow is just under 60,000. The local authority reports that approximately 75.7% of the population's publicly supplied drinking water is abstracted from surface water and 11.6% from groundwater. In total, 12.7% of the population abstract their water from private groundwater wells. Any potential entry of extraneous metals into the area's natural waters will have implications for people in county Carlow. It is the goal of this paper to establish background concentrations of lithium and other metals in the natural waters prior to any mining activity. Our sampling protocol totaled 115 sites along five sampling transects, sampled through 2015. From this dataset, we report a background concentration of dissolved lithium in the natural waters of County Carlow, surface water at x ¯ = 0.02, SD = 0.02 ranging from 0 to 0.091 mg/L and groundwater at x ¯ = 0.023, SD = 0.02 mg/L ranging from 0 to 0.097 mg/L.

  6. Salinity and cationic nature of irrigation water on castor bean cultivation

    Directory of Open Access Journals (Sweden)

    Geovani S. de Lima

    Full Text Available ABSTRACT This study aimed to evaluate the water relations, cell damage percentage and growth of the castor bean cv. ‘BRS Energia’ as a function of salinity and cationic nature of the water used in irrigation. The experiment was conducted in drainage lysimeters under greenhouse conditions in eutrophic Grey Argisol of sandy loam texture. Six combinations of water salinity and cations were studied (S1 - Control; S2 - Na+, S3 - Ca2+, S4 - Na+ + Ca2+; S5 - K+ and S6 - Na+ + Ca2+ + Mg2+, in a randomized block design with four replicates. In the control (S1, plants were irrigated with 0.6 dS m-1 water, whereas the other treatments received 4.5 dS m-1 water, obtained by adding different salts, all in the chloride form. Higher relative water content in the leaf blade of plants irrigated with K+-salinized water associated with leaf succulence are indicative of tolerance of the castor bean cv. ‘BRS Energia’ to salinity. Saline stress negatively affected castor bean growth, regardless of cationic nature of water. Among the ions studied, ‘BRS Energia’ castor bean was more sensitive to the presence of sodium in the irrigation water, in terms of both water relations and leaf succulence.

  7. Thermal characteristics and performance of Ag-water nanofluid: Application to natural circulation loops

    International Nuclear Information System (INIS)

    Koca, Halil Dogacan; Doganay, Serkan; Turgut, Alpaslan

    2017-01-01

    Highlights: • Thermal conductivity and viscosity of Ag-water nanofluid were measured. • Thermal performance of Ag-water nanofluid was compared with water. • Effectiveness enhanced up to 11% with 1 wt% Ag-water nanofluid. • Effectiveness of Ag-water nanofluid samples increased with inclination angle. • Ag-water nanofluid has potential to be used in flat-plate solar collectors. - Abstract: The goal of this study is to investigate the thermal conductivity, viscosity and thermal performance in a single-phase natural circulation mini loop of Ag-water nanofluid which can be a potential working fluid for natural convective flat-plate solar collectors. The silver-water nanofluid with 5 wt% concentration, which contains also polyvinylpyrrolidone (PVP) with 1.25 wt%, was purchased. Then, the sample was diluted with de-ionized water to four different concentrations of 0.25, 0.5, 0.75 and 1 wt%. Thermal conductivity and viscosity were measured by 3ω method and Brookfield rheometer, respectively. An effectiveness factor was used to define the thermal performance of Ag-water nanofluids for different inclination angles and heating powers. The results showed that nanofluid samples are thermally less conductive than the literature, at ambient temperature (23 °C). The viscosity of nanofluid decreases significantly with increasing temperature and increases with increasing concentration. Our measurements appear to be more compatible with PVP solution results available in the literature. Effectiveness is enhanced up to 11% with 1 wt% concentrated nanofluid compared to de-ionized water and the effectiveness of the mini loop indicates an enhancement with increase in inclination angle and particle concentration at whole applied power. According to obtained results, it is concluded that Ag-water nanofluid has a promising potential to be used in natural convective flat-plate solar collector.

  8. Classifying Natural Waters with the Forel-Ule Colour Index System: Results, Applications, Correlations and Crowdsourcing

    Directory of Open Access Journals (Sweden)

    Shungudzemwoyo P. Garaba

    2015-12-01

    Full Text Available Societal awareness of changes in the environment and climate has grown rapidly, and there is a need to engage citizens in gathering relevant scientific information to monitor environmental changes due to recognition that citizens are a potential source of critical information. The apparent colour of natural waters is one aspect of our aquatic environment that is easy to detect and an essential complementary optical water quality indicator. Here we present the results and explore the utility of the Forel-Ule colour index (FUI scale as a proxy for different properties of natural waters. A FUI scale is used to distinguish the apparent colours of different natural surface water masses. Correlation analysis was completed in an effort to determine the constituents of natural waters related to FUI. Strong correlations with turbidity, Secchi-disk depth, and coloured dissolved organic material suggest the FUI is a good indicator of changes related to other constituents of water. The increase in the number of tools capable of determining the FUI colours, (i ocean colour remote sensing products; (ii a handheld scale; and (iii a mobile device app, make it a versatile relative measure of water quality. It has the potential to provide higher spatial and temporal resolution of data for a modernized classification of optical water quality. This FUI colour system has been favoured by several scientists in the last century because it is affordable and easy to use and provides indicative information about the colour of water and the water constituents producing that colour. It is therefore within the scope of a growing interest in the application and usefulness of basic measurement methodologies with the potential to provide timely benchmark information about the environment to the public, scientists and policymakers.

  9. Classifying Natural Waters with the Forel-Ule Colour Index System: Results, Applications, Correlations and Crowdsourcing.

    Science.gov (United States)

    Garaba, Shungudzemwoyo P; Friedrichs, Anna; Voß, Daniela; Zielinski, Oliver

    2015-12-18

    Societal awareness of changes in the environment and climate has grown rapidly, and there is a need to engage citizens in gathering relevant scientific information to monitor environmental changes due to recognition that citizens are a potential source of critical information. The apparent colour of natural waters is one aspect of our aquatic environment that is easy to detect and an essential complementary optical water quality indicator. Here we present the results and explore the utility of the Forel-Ule colour index (FUI) scale as a proxy for different properties of natural waters. A FUI scale is used to distinguish the apparent colours of different natural surface water masses. Correlation analysis was completed in an effort to determine the constituents of natural waters related to FUI. Strong correlations with turbidity, Secchi-disk depth, and coloured dissolved organic material suggest the FUI is a good indicator of changes related to other constituents of water. The increase in the number of tools capable of determining the FUI colours, (i) ocean colour remote sensing products; (ii) a handheld scale; and (iii) a mobile device app, make it a versatile relative measure of water quality. It has the potential to provide higher spatial and temporal resolution of data for a modernized classification of optical water quality. This FUI colour system has been favoured by several scientists in the last century because it is affordable and easy to use and provides indicative information about the colour of water and the water constituents producing that colour. It is therefore within the scope of a growing interest in the application and usefulness of basic measurement methodologies with the potential to provide timely benchmark information about the environment to the public, scientists and policymakers.

  10. Removal of natural radionuclides from drinking water from private wells in Finland

    International Nuclear Information System (INIS)

    Huikuri, Pia; Salonen, Laina; Turtiainen, Tuukka

    1999-01-01

    Removal of natural radionuclides is often necessary in Finland when household water is taken from a drilled well. Removal of radionuclides by various methods from Finnish groundwaters were studied in a EU-research project, TENAWA. The results indicated that radon can be removed very efficiently (up to 99%) by applying aeration or granular activated carbon (GAC) filtration. Uranium and radium were also removed (over 94%) by using strong base anion (SBA) and strong acid cation (SAC) resins. The capability of reverse osmosis (RO) equipment to remove radionuclides was over 90% for uranium, radium and polonium. The water quality analyses indicated that water quality remained mostly good during the water treatment. (au)

  11. Analysis of Water Conflicts across Natural and Societal Boundaries: Integration of Quantitative Modeling and Qualitative Reasoning

    Science.gov (United States)

    Gao, Y.; Balaram, P.; Islam, S.

    2009-12-01

    Water issues and problems have bewildered humankind for a long time yet a systematic approach for understanding such issues remain elusive. This is partly because many water-related problems are framed from a contested terrain in which many actors (individuals, communities, businesses, NGOs, states, and countries) compete to protect their own and often conflicting interests. We argue that origin of many water problems may be understood as a dynamic consequence of competition, interconnections, and feedback among variables in the Natural and Societal Systems (NSSs). Within the natural system, we recognize that triple constraints on water- water quantity (Q), water quality (P), and ecosystem (E)- and their interdependencies and feedback may lead to conflicts. Such inherent and multifaceted constraints of the natural water system are exacerbated often at the societal boundaries. Within the societal system, interdependencies and feedback among values and norms (V), economy (C), and governance (G) interact in various ways to create intractable contextual differences. The observation that natural and societal systems are linked is not novel. Our argument here, however, is that rigid disciplinary boundaries between these two domains will not produce solutions to the water problems we are facing today. The knowledge needed to address water problems need to go beyond scientific assessment in which societal variables (C, G, and V) are treated as exogenous or largely ignored, and policy research that does not consider the impact of natural variables (E, P, and Q) and that coupling among them. Consequently, traditional quantitative methods alone are not appropriate to address the dynamics of water conflicts, because we cannot quantify the societal variables and the exact mathematical relationships among the variables are not fully known. On the other hand, conventional qualitative study in societal domain has mainly been in the form of individual case studies and therefore

  12. Natural uranium and 226Ra in bottled potable waters of Argentina

    International Nuclear Information System (INIS)

    Bomben, Ana M.; Palacios, Miguel A.

    2001-01-01

    This paper presents the results obtained of the measurement of the natural uranium and 226 Ra concentrations carried out on 345 drinking water samples coming from different provinces of Argentina. The samples were collected from tap water systems and private wells. Six bottled mineral waters samples, selected from those most extensively consumed, were also analyzed. The natural uranium concentration was determined by a fluorimetric procedure and 226 Ra by the 222 Rn emanation technique and liquid scintillation counting. Values ranging from 0,03 to 50 μg L -1 of natural uranium and concentrations up to 22 mBq L -1 were found in the drinking water samples analyzed. Natural uranium concentrations from 0,04 to 3,8 μg L -1 and 226 Ra concentrations up to 2,4 mBq L -1 were measured in the bottled mineral waters samples. Based on the water intake rate and the measured concentrations of both radionuclides analyzed, an annual collective effective dose of 1,5 man Sv and an average committed effective dose of 0,5 μSv a -1 , were calculated for the City of Buenos Aires inhabitants. (author)

  13. Interlaboratory quality assurance studies: Their use in certifying natural waters for major constituents and trace elements

    International Nuclear Information System (INIS)

    Alkema, H.; Simser, J.; Hjelm, L.

    1998-01-01

    Environmental programs throughout North America have demonstrated a strong awareness of the usefulness of interlaboratory studies for disclosing the quality of analytical results. The Ecosystem Interlaboratory Quality Assurance Program offered by the National Water Research Institute has a wide participation base of laboratories. Many of these laboratories are accredited and employ a number of recognized analytical methods. The interlaboratory study data archives contain a wealth of data for natural surface and rain waters from across the continent. These archives have proven to be a reliable means of characterizing a variety of constituents. Data assessments from these studies accurately identify the variability of data and the presence of any outliers. Repeated use of selected samples in a regular QA program confirms their stability. Time charts and statistical techniques are used to illustrate this stability and yield the precision of pooled analyses. The availability of archived data from interlaboratory studies has enabled the Institute to develop and certify natural water and trace element standards. The natural water CRM, ION-911, has been available for several years. Its historical aspects are discussed as well as the processes leading to the certification of TMRain-95, a soft water standard certifying 22 trace elements. This paper focuses on the use of select laboratories in round-robin evaluations to provide accurate values for constituent concentrations. Natural water and fortified trace element CRMs meet a recognized need in the generation of accurate data for environmental programs. (orig.)

  14. Natural isotope technique for the exploration and exploitation of ground water

    International Nuclear Information System (INIS)

    Zainal Abidin; Hudi Hastowo; Aang Hanafiah

    2007-01-01

    In line with the condition of climate and hydrology, Indonesia has a fast amount of aquifers which are sources of ground water. In several areas large number of springs occurred with small to large debits which is a sign of ground water potential. Ground water is a potential reservoir to be use at maximum for several purposes such as drinking water, industry and tourism. Large cities such as Jakarta, Bandung and others depend on ground water for their industries and hotels. The exploitation of ground water use has to be controlled and monitoring of a management system have to be done. Research carried out only on the exploitation of geophysics and hydrology showed that the amount of ground water reservoirs is not enough to be used when it comes to justification to explore it. Other parameters are still be needed which are the origins and dating of the ground water, these last two factors mentioned have to be taken into consideration in the system of conversion and balance of water. An alternative technology to determine the two factors mentioned in a short time is the natural isotope technique of 18 O, 2 H and 14 C. This technique is used to determine the origin of water, and isotope 14 C is carried out to determine the age of ground water. Isotopes 18 H and 2 H are stable isotopes in the form of water and is integrated in the hydrological cycle. Their specific concentrations in rain water at several elevations are used as fingerprints to locate the area of ground water supplement and its origin. Isotope 14 C is a natural radioactive isotope with a half-life of 5.730 years and is found in the hydrology cycle and enters the ground water system through CO 2 gas which is dissolved in water. 14 C isotope could determine the age of ground water and is also able to indicate the potential/amount of ground water. Studies of exploration and exploration monitoring of ground water should be an integrated study by geohydrology, geophysics and isotope and could be a solution of

  15. Investigation Of The Origin Of Various Water Sources In The Vicinity Of Ngancar Dam, Wonogiri Using Natural Isotopes

    International Nuclear Information System (INIS)

    Sidauruk, Paston; Indrojoyo; Wibagoyo; Pratikno, Bungkus; Evarista Ristin, P.I.

    2000-01-01

    The investigation of the origin of various water sources in the vicinity of Ngancar Dam, Wonogiri, using natural isotopes technique has been conducted. The study includes collecting and analyzing water samples from various sources in the vicinity of the dam such as reservoir water, water discharges, springs, local water well, rain water, water from piezometer and observation wells. For this investigation, natural isotopes composition and hydro chemical ions of the samples have been analyzed and interpreted. From the data interpretation, it is concluded that most of the water in various sources originated from water reservoir

  16. Assessment of integrated watershed health based on the natural environment, hydrology, water quality, and aquatic ecology

    Directory of Open Access Journals (Sweden)

    S. R. Ahn

    2017-11-01

    Full Text Available Watershed health, including the natural environment, hydrology, water quality, and aquatic ecology, is assessed for the Han River basin (34 148 km2 in South Korea by using the Soil and Water Assessment Tool (SWAT. The evaluation procedures follow those of the Healthy Watersheds Assessment by the U.S. Environmental Protection Agency (EPA. Six components of the watershed landscape are examined to evaluate the watershed health (basin natural capacity: stream geomorphology, hydrology, water quality, aquatic habitat condition, and biological condition. In particular, the SWAT is applied to the study basin for the hydrology and water-quality components, including 237 sub-watersheds (within a standard watershed on the Korea Hydrologic Unit Map along with three multipurpose dams, one hydroelectric dam, and three multifunction weirs. The SWAT is calibrated (2005–2009 and validated (2010–2014 by using each dam and weir operation, the flux-tower evapotranspiration, the time-domain reflectometry (TDR soil moisture, and groundwater-level data for the hydrology assessment, and by using sediment, total phosphorus, and total nitrogen data for the water-quality assessment. The water balance, which considers the surface–groundwater interactions and variations in the stream-water quality, is quantified according to the sub-watershed-scale relationship between the watershed hydrologic cycle and stream-water quality. We assess the integrated watershed health according to the U.S. EPA evaluation process based on the vulnerability levels of the natural environment, water resources, water quality, and ecosystem components. The results indicate that the watershed's health declined during the most recent 10-year period of 2005–2014, as indicated by the worse results for the surface process metric and soil water dynamics compared to those of the 1995–2004 period. The integrated watershed health tended to decrease farther downstream within the watershed.

  17. A numerical study on the conjugate natural convection in a circular pipe containing water

    Energy Technology Data Exchange (ETDEWEB)

    Choi, Myoung-Young; Choi, Hyoung-Gwon [Seoul National University of Science & Technology, Seoul (Korea, Republic of)

    2017-07-15

    In this paper, the effect of material property of pipe on the conjugate natural convection in a circular pipe containing water was investigated by solving the unsteady incompressible Navier-Stokes equations coupled with energy equations of the water and pipe. Natural convection and conduction of water inside the pipe was coupled with the conduction of the pipe whose bottom was subject to uniform heat source. From the present grid resolution and time-step independent solutions, it has been confirmed that the water temperature inside a PVC pipe was higher than that inside a steel pipe due to the smaller heat capacity of PVC and that the streamline patterns of the two cases were found to be opposite because the thermal diffusivity of steel (PVC) is larger (smaller) than that of water such that steel (PVC) pipe is heated faster (slower) than water. Furthermore, a quantitative comparison of heat flux to water was performed by examining the distributions of the heat flux along the inside walls of steel/PVC. The average temperature of water inside steel was found to be higher than that inside PVC at the initial stage of heating. On the other hand, PVC provided a larger heat flux to water when it reached a steady value.

  18. Estimating Natural Recharge in a Desert Environment Facing Increasing Ground-Water Demands

    Science.gov (United States)

    Nishikawa, T.; Izbicki, J. A.; Hevesi, J. A.; Martin, P.

    2004-12-01

    Ground water historically has been the sole source of water supply for the community of Joshua Tree in the Joshua Tree ground-water subbasin of the Morongo ground-water basin in the southern Mojave Desert. Joshua Basin Water District (JBWD) supplies water to the community from the underlying Joshua Tree ground-water subbasin, and ground-water withdrawals averaging about 960 acre-ft/yr have resulted in as much as 35 ft of drawdown. As growth continues in the desert, ground-water resources may need to be supplemented using imported water. To help meet future demands, JBWD plans to construct production wells in the adjacent Copper Mountain ground-water subbasin. To manage the ground-water resources and to identify future mitigating measures, a thorough understanding of the ground-water system is needed. To this end, field and numerical techniques were applied to determine the distribution and quantity of natural recharge. Field techniques included the installation of instrumented boreholes in selected washes and at a nearby control site. Numerical techniques included the use of a distributed-parameter watershed model and a ground-water flow model. The results from the field techniques indicated that as much as 70 acre-ft/yr of water infiltrated downward through the two principal washes during the study period (2001-3). The results from the watershed model indicated that the average annual recharge in the ground-water subbasins is about 160 acre-ft/yr. The results from the calibrated ground-water flow model indicated that the average annual recharge for the same area is about 125 acre-ft/yr. Although the field and numerical techniques were applied to different scales (local vs. large), all indicate that natural recharge in the Joshua Tree area is very limited; therefore, careful management of the limited ground-water resources is needed. Moreover, the calibrated model can now be used to estimate the effects of different water-management strategies on the ground-water

  19. Elimination of natural uranium and 226Ra from contaminated waters by rhizofiltration using Helianthus annuus L

    International Nuclear Information System (INIS)

    Vera Tome, F.; Blanco Rodriguez, P.; Lozano, J.C.

    2008-01-01

    The elimination of natural uranium and 226 Ra from contaminated waters by rhizofiltration was tested using Helianthus annuus L. (sunflower) seedlings growing in a hydroponic medium. Different experiments were designed to determine the optimum age of the seedlings for the remediation process, and also to study the principal way in which the radionuclides are removed from the solution by the sunflower roots. In every trial a precipitate appeared which contained a major fraction of the natural uranium and 226 Ra. The results indicated that the seedlings themselves induced the formation of this precipitate. When four-week-old seedlings were exposed to contaminated water, a period of only 2 days was sufficient to remove the natural uranium and 226 Ra from the solution: about 50% of the natural uranium and 70% of the 226 Ra were fixed in the roots, and essentially the rest was found in the precipitate, with only very small percentages fixed in the shoots and left in solution

  20. Contribution to the study of evaporation of natural water using stable isotope

    International Nuclear Information System (INIS)

    Takaki, T.

    1979-01-01

    Procedures for measurements of isotopic ratios in natural waters have been developed, in order to study evaporation mechanism in reservoirs, in laboratory scale. Rayleigh's model of evaporation is discussed, considering evaporation in the presence of atmospheric water vapor. The results obtained for the variation of the concentration of O 18 and D, in function of remaining water fraction for four evaporation reservoirs agree with the model presented and allow an estimation of the local average relative humidity. The straight-line equation that relates the results for the concentrations of O 18 and D in our samples is proper to water reservoirs subjected to a significant reduction in its volume by evaporation. The content of O 18 and D, in water prior the evaporation directly obtained from the intersection, of the meteoric with our line agree with the values measured for the water used to fill the reservoirs [pt

  1. Do natural spring waters in Australia and New Zealand affect health? A systematic review.

    Science.gov (United States)

    Stanhope, Jessica; Weinstein, Philip; Cook, Angus

    2018-02-01

    Therapeutic use of spring waters has a recorded history dating back to at least 1550 BC and includes both bathing in and drinking such waters for their healing properties. In Australia and New Zealand the use of therapeutic spring waters is a much more recent phenomenon, becoming a source of health tourism from the late 1800s. We conducted a systematic review aimed at determining the potential health outcomes relating to exposure to Australian or New Zealand natural spring water. We found only low-level evidence of adverse health outcomes relating to this spring water exposure, including fatalities from hydrogen sulphide poisoning, drowning and primary amoebic meningoencephalitis. We found no studies that investigated the therapeutic use of these waters, compared with similar treatment with other types of water. From the broader literature, recommendations have been made, including fencing potentially harmful spring water, and having signage and media messages to highlight the potential harms from spring water exposure and how to mitigate the risks (e.g. not putting your head under water from geothermal springs). Sound research into the potential health benefits of Australian and New Zealand spring waters could provide an evidence base for the growing wellness tourism industry.

  2. Natural radioactivity in mineral and spa water: the current regulatory approach in Italy

    International Nuclear Information System (INIS)

    Nuccetelli, C.; Bochicchio, F.; Ruocco, G.

    2004-01-01

    Mineral and thermal waters can contain radioactivity of natural origin which, in some cases, can lead to radiation-protection problems for both workers and consumers. In Italy, as in many other countries, the consumption of bottled mineral water is rather high and the practice of spending short stays in spas is also popular. Consumer protection against natural radioactivity in mineral water is not regulated at all and exposure from thermal waters is not treated in detail, in either the European Union or Italy. For this reason, the Italian Ministry of Health - which has the duty to authorize spa activities and the sale of mineral water on the basis of water characteristics - asked the Istituto Superiore di Sanita (the Italian National Institute of Health) to provide ad-hoc reports containing both dosimetric calculations and analysis of the radiation-protection regulations to be applied in these situations. On the basis of these reports, the Ministry of Health decided, in two statements for spa and mineral waters respectively, to indicate upper levels for natural radioactivity content. Since 2002, spa water parameters have been in force for authorization of their use and sale, and are to be promulgated by specific and more comprehensive regulations. For mineral waters used for infant feeding and drinking, levels lower than those for general public uses have been proposed, in order to take into account the higher ingestion dose coefficients for infants. At the moment, mineral water levels are not enforced as law. This paper presents the dosimetric calculation results and the Ministry of Health statements. (Author) 17 refs

  3. Adsorption of 241Am and 226Ra from natural water by wood charcoal

    International Nuclear Information System (INIS)

    Miro, C.; Baeza, A.; Salas, A.; Pastor-Valle, J.F.; Pastor-Villegas, J.

    2008-01-01

    The adsorption of 241 Am and 226 Ra from natural water by a granulated wood charcoal was investigated as a function of the solution pH, in the range 4-10, and of the water flow, in the range 3.5-42 cm 3 /min. The percentage adsorption of 241 Am (fairly constant at >80% for all pHs) was greater than that of 226 Ra (which increased with increasing pH from ∼40% up to >80%). The results are explained by considering the different species of each radionuclide present at the pH values of the solution at the end of the adsorbent column, and the pH of the point of zero charge of the adsorbent. At pH 6, the elimination of 241 Am from natural water was independent of the water flow, while the elimination of 226 Ra declined linearly as the flow rate was increased

  4. Natural polymers: Best carriers for improving bioavailability of poorly water soluble drugs in solid dispersions

    OpenAIRE

    Sandip Sapkal; Mahesh Narkhede; Mukesh Babhulkar; Gautam Mehetre; Ashish Rathi

    2013-01-01

    ABSTRACTNatural polymers and its modified forms can be used as best alternative for improving bioavailabilityof poorly water soluble drugs in solid dispersion. Most of the natural polymersare hydrophilic and having high swelling capacity. Recent trend towards the use of naturalpolymer demands the replacement of synthetic additives with natural ones. Many plant derivednatural polymers are studied for use in solid dispersion systems, out of which naturalgums, cyclodextrin and carbohydrate are m...

  5. On Stability of Natural-circulation-cooled Boiling Water Reactors during Start-up (Experimental Results)

    International Nuclear Information System (INIS)

    Manera, A.; Van der Hagen, T.H.J.J.

    2002-01-01

    The characteristics of flashing-induced instabilities, which are of importance during the start-up phase of natural-circulation Boiling Water Reactors (BWRs), are studied. Experiments at typical start-up conditions (low power and low pressure) are carried out on a steam/water natural circulation loop. The mechanism of flashing-induced instability is analyzed in detail and it is found that non-equilibrium between phases and enthalpy transport plays an important role in the instability process. Pressure and steam volume in the steam dome are found to have a stabilizing effect. The main characteristics of the instabilities have been analyzed. (authors)

  6. A potential of boiling water power reactors with a natural circulation of a coolant

    International Nuclear Information System (INIS)

    Osmachkin, V.S.; Sokolov, I.N.

    1998-01-01

    The use of the natural circulation of coolant in the boiling water reactors simplifies a reactor control and facilities the service of the equipment components. The moderated core power loads allows the long fuel burnup, good control ability and large water stock set up the enhancement of safety level. That is considered to be very important for isolated regions or small countries. In the paper a high safety level and effectiveness of BWRs with natural circulation are reviewed. The limitations of flow stability and protection measures are being discussed. Some recent efforts in designing of such reactors are described.(author)

  7. Natural circulation in water cooled nuclear power plants: Phenomena, models, and methodology for system reliability assessments

    International Nuclear Information System (INIS)

    2005-11-01

    In recent years it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially to improved economics of new nuclear power plant designs. Further, the IAEA Conference on The Safety of Nuclear Power: Strategy for the Future which was convened in 1991 noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to assure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are an ongoing activity in several IAEA Member States. Some new designs also utilize natural circulation as a means to remove core power during normal operation. In response to the motivating factors discussed above, and to foster international collaboration on the enabling technology of passive systems that utilize natural circulation, an IAEA Coordinated Research Project (CRP) on Natural Circulation Phenomena, Modelling and Reliability of Passive Systems that Utilize Natural Circulation was started in early 2004. Building on the shared expertise within the CRP, this publication presents extensive information on natural circulation phenomena, models, predictive tools and experiments that currently support design and analyses of natural circulation systems and highlights areas where additional research is needed. Therefore, this publication serves both to provide a description of the present state of knowledge on natural circulation in water cooled nuclear power plants and to guide the planning and conduct of the CRP in

  8. Improved automated analysis of radon (222Rn) and thoron (220Rn) in natural waters.

    Science.gov (United States)

    Dimova, Natasha; Burnett, William C; Lane-Smith, Derek

    2009-11-15

    Natural radon ((222)Rn) and thoron ((220)Rn) can be used as tracers of various chemical and physical processes in the environment. We present here results from an extended series of laboratory experiments intended to improve the automated analysis of (222)Rn and (220)Rn in water using a modified RAD AQUA (Durridge Inc.) system. Previous experience with similar equipment showed that it takes about 30-40 min for the system to equilibrate to radon-in-water concentration increases and even longer for the response to return to baseline after a sharp spike. While the original water/gas exchanger setup was built only for radon-in-water measurement, our goal here is to provide an automated system capable of high resolution and good sensitivity for both radon- and thoron-in-water detections. We found that faster water flow rates substantially improved the response for both isotopes while thoron is detected most efficiently at airflow rates of 3 L/min. Our results show that the optimum conditions for fastest response and sensitivity for both isotopes are at water flow rates up to 17 L/min and an airflow rate of 3 L/min through the detector. Applications for such measurements include prospecting for naturally occurring radioactive material (NORM) in pipelines and locating points of groundwater/surface water interaction.

  9. The occurrence and geochemistry of fluoride in some natural waters of Kenya

    Science.gov (United States)

    Gaciri, S. J.; Davies, T. C.

    1993-03-01

    In recent years the acquisition of considerable additional data on the hydrogeochemical behaviour of fluoride in natural waters of Kenya has been made possible by extensive surface-water and groundwater sampling campaigns as well as by improvements in analytical techniques. Ultimately, the principal source of fluoride relates to emissions from volcanic activity associated with the East African Rift System. Through various intermediate steps, but also directly, fluoride passes into the natural water system and components of the food chain. Ingestion by man is mainly through drinking water and other beverages. River waters in Kenya generally have a fluoride concentration lower than the recommended level (1.3 ppm) for potable water, thus promoting susceptibility to dental caries. Groundwaters and lake waters show considerably higher fluoride contents, resulting in the widespread incidence of fluorosis in areas where groundwater is the major source of drinking water, and lake fish is a regular component of the diet. This paper presents a synthesis of the data so far obtained on the sources and distribution of fluoride in the hydrological system of Kenya, examines the extent of fluorine toxicity and puts forward recommendations to combat or minimise the problem.

  10. Natural radioactivity in various water samples and radiation dose estimations in Bolu province, Turkey.

    Science.gov (United States)

    Gorur, F Korkmaz; Camgoz, H

    2014-10-01

    The level of natural radioactivity for Bolu province of north-western Turkey was assessed in this study. There is no information about radioactivity measurement reported in water samples in the Bolu province so far. For this reason, gross α and β activities of 55 different water samples collected from tap, spring, mineral, river and lake waters in Bolu were determined. The mean activity concentrations were 68.11 mBq L(-1), 169.44 mBq L(-1) for gross α and β in tap water. For all samples the gross β activity is always higher than the gross α activity. All value of the gross α were lower than the limit value of 500 mBq L(-1) while two spring and one mineral water samples were found to have gross β activity concentrations of greater than 1000 mBq L(-1). The associated age-dependent dose from all water ingestion in Bolu was estimated. The total dose for adults had an average value exceeds the WHO recommended limit value. The risk levels from the direct ingestion of the natural radionuclides in tap and mineral water in Bolu were determinated. The mean (210)Po and (228)Ra risk the value of tap and mineral waters slightly exceeds what some consider on acceptable risk of 10(-4) or less. Copyright © 2014 Elsevier Ltd. All rights reserved.

  11. Cascades for natural water enrichment in deuterium and oxygen-18 using membrane permeation

    International Nuclear Information System (INIS)

    Chmielewski, A.G.; Matuszak, A.; Zakrzewska-Trznadel, G.; Van Hook, A.

    1991-01-01

    The enrichment of water in heavy isotopes by permeation through a hydrophobic membrane is described. Simple counter - current cascades are of no practical interest because of their high energy demand. A better solution is to employ a double counter - current cascade re-utilizing part of the heat of condensation. Currently employed methods of natural water enrichment in heavy isotopes are compared to the proposed membrane process. (author). 18 refs, 14 tabs, 21 figs

  12. Conflict management in natural resources : a study of land, water and forest conflicts in Nepal

    OpenAIRE

    Upreti, B.R.

    2001-01-01

    This book is based on the research into natural resource (NR)-conflict carried out between 1997 and 2000 in the Dolakha district of central Nepal, and in several reference sites around the country. The study focussed especially on land, water and forest/pasture conflicts and their resolution/management practices. Five inter-connected conflict cases related to irrigation, Guthi -land, spring water source and forest-pasture land were examined and compared with elev...

  13. A system for the analysis of tritium content in natural waters, through benzene

    International Nuclear Information System (INIS)

    Bocchi, N.

    1980-01-01

    A system is described for the analysis of tritium ( 3 H) in natural waters. The system consists of an electrolytic enrichment equipment and a vacuum line for benzene synthesis. The benzene is mixed with a scintillating solution and so used in tritium activity measurements by liquid scintillation spectrometry. The characteristcs of the system, as well as its performance, are pointed out through analysis of ground and rain waters. The precision and reproducibility of the measurements are discussed. (Author) [pt

  14. The nature of water within bacterial spores: protecting life in extreme environments

    Science.gov (United States)

    Rice, Charles V.; Friedline, Anthony; Johnson, Karen; Zachariah, Malcolm M.; Thomas, Kieth J., III

    2011-10-01

    The bacterial spore is a formidable container of life, protecting the vital contents from chemical attack, antimicrobial agents, heat damage, UV light degradation, and water dehydration. The exact role of the spore components remains in dispute. Nevertheless, water molecules are important in each of these processes. The physical state of water within the bacterial spore has been investigated since the early 1930's. The water is found two states, free or bound, in two different areas, core and non-core. It is established that free water is accessible to diffuse and exchange with deuterated water and that the diffusible water can access all areas of the spore. The presence of bound water has come under recent scrutiny and has been suggested the water within the core is mobile, rather than bound, based on the analysis of deuterium relaxation rates. Using an alternate method, deuterium quadrupole-echo spectroscopy, we are able to distinguish between mobile and immobile water molecules. In the absence of rapid motion, the deuterium spectrum of D2O is dominated by a broad line, whose line shape is used as a characteristic descriptor of molecular motion. The deuterium spectrum of bacterial spores reveals three distinct features: the broad peak of immobilized water, a narrow line of water in rapid motion, and a signal of intermediate width. This third signal is assigned this peak from partially deuterated proteins with the spore in which N-H groups have undergone exchange with water deuterons to form N-D species. As a result of these observations, the nature of water within the spore requires additional explanation to understand how the spore and its water preserve life.

  15. Bacterial composition of natural water sources and consumer treated water in Guambía, Cauca

    Directory of Open Access Journals (Sweden)

    María del Mar Meza

    2012-09-01

    Full Text Available In the world, 80% of the infectious and gastrointestinal parasi­te diseases are caused by the use and consume of non-drinka­ble water. The lack of hygiene and the miss functional sanitary techniques are some of the reasons why the diarrheic disease is still an important health problem in developing countries. The water and the contaminated food are considered as the principal vehicles involved in the transmission of bacterium, viruses and parasites; thus, the importance of knowing the mi­crobiological quality of the water of Guambia, indian territory of Cauca, Colombia, and sustain the risk of this insalubrious behavior. Methods: we collected samples of water from Caci­que River (one of the rivers of Guambian territory in different leves of its route; samples from Mamá Dominga Hospital and Las Delicias school treated water and they were analyzed in Angel laboratory S.A in Cali. Results: we found an elevated amount of aerobic mesofilous in all the samples, with >10.000 CFU (colony formed units/ 100ml, (reference parameter

  16. Change in corrosion potential of SUS304 in natural river water

    International Nuclear Information System (INIS)

    Yamamoto, Masahiro; Satoh, Tomonori; Tsukada, Takashi; Katayama, Hideki

    2014-01-01

    In the Fukushima Dai-ichi nuclear power plant, seawater and natural river water were poured into the spent nuclear fuel pools (SFP) for emergency cooling. At the early stage of the accident, corrosion of SFP's materials was worried because of high chloride ion concentration from seawater. The chloride ion concentration of the present time was decreased by dechlorination operation of feeding water of SFPs. However, the water was not treated in the viewpoint of microbial breeding and SFPs were in contact with open atmosphere, so that many microbes could be alive in the cooling water. Some researchers have reported microbially induced corrosion (MIC) occurred in the natural seawater or river water. So, we attempted to examine the ability of MIC occurrence by using of corrosion potential analysis. Corrosion potential measurements were performed in test solutions using SUS304 simple plate, creviced and welded samples. Natural river water in Ibaraki prefecture was used as standard test solution, and some amounts of NaCl and nutrient broth (NB) were added to the other solutions. Temperatures of these solutions were kept in 303 K. Growth of microbes in the test solution was confirmed using test kit. Corrosion potentials of all samples rose to about 300 mV nobler than the initial values in the NB added solution. The potentials of the welded samples more easily rose than the simple plate. These potential changes are attributed to the biofilms formed on the sample surface. (author)

  17. Linking otolith microchemistry and surface water contamination from natural gas mining.

    Science.gov (United States)

    Keller, David H; Zelanko, Paula M; Gagnon, Joel E; Horwitz, Richard J; Galbraith, Heather S; Velinsky, David J

    2018-09-01

    Unconventional natural gas drilling and the use of hydraulic fracturing technology have expanded rapidly in North America. This expansion has raised concerns of surface water contamination by way of spills and leaks, which may be sporadic, small, and therefore difficult to detect. Here we explore the use of otolith microchemistry as a tool for monitoring surface water contamination from generated waters (GW) of unconventional natural gas drilling. We exposed Brook Trout in the laboratory to three volumetric concentrations of surrogate generated water (SGW) representing GW on day five of drilling. Transects across otolith cross-sections were analyzed for a suite of elements by LA-ICP-MS. Brook Trout exposed to a 0.01-1.0% concentration of SGW for 2, 15, and 30 days showed a significant (p waters and provide support for the use of this technique in natural habitats. To our knowledge, this is the first demonstration of how trace elements in fish otoliths may be used to monitor for surface water contamination from GW. Copyright © 2018 Elsevier Ltd. All rights reserved.

  18. The Value of Water in Extraction of Natural Gas from the Marcellus Shale

    Science.gov (United States)

    Rimsaite, R.; Abdalla, C.; Collins, A.

    2013-12-01

    Hydraulic fracturing of shale has increased the demand for the essential input of water in natural gas production. Increased utilization of water by the shale gas industry, and the development of water transport and storage related infrastructure suggest that the value of water is increasing where hydraulic fracturing is occurring. Few studies on the value of water in industrial uses exist and, to our knowledge, no studies of water's value in extracting natural gas from shale have been published. Our research aims to fill this knowledge gap by exploring several key dimensions of the value of water used in shale gas development. Our primary focus was to document the costs associated with water acquisition for shale gas extraction in West Virginia and Pennsylvania, two states located in the gas-rich Marcellus shale formation with active drilling and extraction underway. This research involved a) gathering data on the sources of and costs associated with water acquisition for shale gas extraction b) comparing unit costs with prices and costs paid by the gas industry users of water; c) determining factors that potentially impact total and per unit costs of water acquisition for the shale gas industry; and d) identifying lessons learned for water managers and policy-makers. The population of interest was all private and public entities selling water to the shale gas industry in Pennsylvania and West Virginia. Primary data were collected from phone interviews with water sellers and secondary data were gathered from state regulatory agencies. Contact information was obtained for 40 water sellers in the two states. Considering both states, the average response rate was 49%. Relatively small amounts of water, approximately 11% in West Virginia and 29% in Pennsylvania, were purchased from public water suppliers by the shale gas industry. The price of water reveals information about the value of water. The average price charged to gas companies was 6.00/1000 gallons and 7

  19. Bacterial composition of natural water sources and consumer treated water in Guambía, Cauca

    OpenAIRE

    María del Mar Meza; Iván Fernando Ruiz; Giovanny Velásquez

    2012-01-01

    In the world, 80% of the infectious and gastrointestinal parasi­te diseases are caused by the use and consume of non-drinka­ble water. The lack of hygiene and the miss functional sanitary techniques are some of the reasons why the diarrheic disease is still an important health problem in developing countries. The water and the contaminated food are considered as the principal vehicles involved in the transmission of bacterium, viruses and parasites; thus, the importance of knowing the mi­crob...

  20. Removal of natural organic matter in drinking water treatment by coagulation: A comprehensive review.

    Science.gov (United States)

    Sillanpää, Mika; Ncibi, Mohamed Chaker; Matilainen, Anu; Vepsäläinen, Mikko

    2018-01-01

    Natural organic matter (NOM) is a complex matrix of organic substances produced in (or channeled to) aquatic ecosystems via various biological, geological and hydrological cycles. Such variability is posing a serious challenge to most water treatment technologies, especially the ones designed to treat drinking water supplies. Lately, in addition to the fluctuating composition of NOM, a substantial increase of its concentration in fresh waters, and also municipal wastewater effluents, has been reported worldwide, which justifies the urgent need to develop highly efficient and versatile water treatment processes. Coagulation is among the most applied processes for water and wastewater treatment. The application of coagulation to remove NOM from drinking water supplies has received a great deal of attention from researchers around the world because it was efficient and helped avoiding the formation of disinfection by products (DBPs). Nonetheless, with the increased fluctuation of NOM in water (concentration and composition), the efficiency of conventional coagulation was substantially reduced, hence the need to develop enhanced coagulation processes by optimizing the operating conditions (mainly the amount coagulants and pH), developing more efficient inorganic or organic coagulants, as well as coupling coagulation with other water treatment technologies. In the present review, recent research studies dealing with the application of coagulation for NOM removal from drinking water supplies are presented and compared. In addition, integration schemes combining coagulation and other water treatment processes are presented, including membrane filtration, oxidation, adsorption and others processes. Copyright © 2017 Elsevier Ltd. All rights reserved.

  1. Survey of natural-circulation cooling in U.S. pressurized water reactors

    International Nuclear Information System (INIS)

    Boyack, B.E.

    1985-01-01

    Literature describing natural circulation analyses, experiments, and plant operation have been obtained from the Nuclear Regulatory Commission, reactor vendors, utility-sponsored research groups, utilities, national laboratories, and foreign sources. These have been reviewed and significant results and conclusions identified. Three modes of natural-circulation cooling are covered: single phase, two-phase, and reflux condensation. Single-phase natural circulation is amply verified by plant operational data, test data from scaled experimental facilities, and analysis with assessed computer codes. Ample evidence also exists that two-phase natural circulation can successfully cool pressurized water reactors. This mode occurs during certain events such as small-break loss-of-coolant accidents. The data base for reflux condensation is primarily from tests in scaled experimental facilities. There are no plant operational data and only limited assessment of thermal-hydraulic systems codes has been performed. Further work is needed before this mode of natural circulation can be confidently used

  2. Preliminary concentration and determination of Sr-90 in natural and waste water of Kursk region

    International Nuclear Information System (INIS)

    Basargin, N.N.; Rozovskij, Yu.G.; Grebennikova, R.V.; Salikhov, V.D.

    2001-01-01

    Synthesis and study of cheating sorbents containing functional analytical ortho-oxy-aza-ortho'-sulfonyl group are presented. Physicochemical properties of sorbents and chemisorption of Sr and Sr 90 are studied. A rapid method of preliminary concentration with subsequent atomic absorption and radiometric determination of Sr in natural and waste water is proposed. Samples of aqua-objects of Kursk region were analyzed using developed method. The results of radiometric investigations into control of strontium-90 content in cooling systems of Kursk NPP, waste waters, waters of Sejm river testifies higher values of concentration in the april - september period [ru

  3. Effect of Environmental Factors on Cyanobacterial Abundance and Cyanotoxins Production in Natural and Drinking Water, Bangladesh.

    Science.gov (United States)

    Affan, Abu; Khomavis, Hisham S; Al-Harbi, Salim Marzoog; Haque, Mahfuzul; Khan, Saleha

    2015-02-01

    Cyanobacterial blooms commonly appear during the summer months in ponds, lakes and reservoirs in Bangladesh. In these areas, fish mortality, odorous water and fish and human skin irritation and eye inflammation have been reported. The influence of physicochemical factors on the occurrence of cyanobacteria and its toxin levels were evaluated in natural and drinking water in Bangladesh. A highly sensitive immunosorbent assay was used to detect microcystins (MCs). Cyanobacteria were found in 22 of 23 samples and the dominant species were Microcystis aeruginosa, followed by Microcystisflosaquae, Anabeana crassa and Aphanizomenon flosaquae. Cyanobacterial abundance varied from 39 to 1315 x 10(3) cells mL(-1) in natural water and 31 to 49 x 10(3) cells mL(-1) in tap water. MC concentrations were 25-82300 pg mL(-1) with the highest value measured in the fish research pond, followed by Ishakha Lake. In tap water, MC concentrations ranged from 30-32 pg mL(-1). The correlation between nitrate-nitrogen (NO3-N) concentration and cyanobacterial cell abundance was R2 = 0.62 while that between cyanobacterial abundance and MC concentration was R2 = 0.98. The increased NO3-N from fish feed, organic manure, poultry and dairy farm waste and fertilizer from agricultural land eutrophicated the water bodies and triggered cyanobacterial bloom formation. The increased amount of cyanobacteria produced MCs, subsequently reducing the water quality.

  4. Simplifying and upscaling water resources systems models that combine natural and engineered components

    Science.gov (United States)

    McIntyre, N.; Keir, G.

    2014-12-01

    Water supply systems typically encompass components of both natural systems (e.g. catchment runoff, aquifer interception) and engineered systems (e.g. process equipment, water storages and transfers). Many physical processes of varying spatial and temporal scales are contained within these hybrid systems models. The need to aggregate and simplify system components has been recognised for reasons of parsimony and comprehensibility; and the use of probabilistic methods for modelling water-related risks also prompts the need to seek computationally efficient up-scaled conceptualisations. How to manage the up-scaling errors in such hybrid systems models has not been well-explored, compared to research in the hydrological process domain. Particular challenges include the non-linearity introduced by decision thresholds and non-linear relations between water use, water quality, and discharge strategies. Using a case study of a mining region, we explore the nature of up-scaling errors in water use, water quality and discharge, and we illustrate an approach to identification of a scale-adjusted model including an error model. Ways forward for efficient modelling of such complex, hybrid systems are discussed, including interactions with human, energy and carbon systems models.

  5. Numerical study of natural convection in a horizontal cylinder filled with water-based alumina nanofluid.

    Science.gov (United States)

    Meng, Xiangyin; Li, Yan

    2015-01-01

    Natural heat convection of water-based alumina (Al2O3/water) nanofluids (with volume fraction 1% and 4%) in a horizontal cylinder is numerically investigated. The whole three-dimensional computational fluid dynamics (CFD) procedure is performed in a completely open-source way. Blender, enGrid, OpenFOAM and ParaView are employed for geometry creation, mesh generation, case simulation and post process, respectively. Original solver 'buoyantBoussinesqSimpleFoam' is selected for the present study, and a temperature-dependent solver 'buoyantBoussinesqSimpleTDFoam' is developed to ensure the simulation is more realistic. The two solvers are used for same cases and compared to corresponding experimental results. The flow regime in these cases is laminar (Reynolds number is 150) and the Rayleigh number range is 0.7 × 10(7) ~ 5 × 10(7). By comparison, the average natural Nusselt numbers of water and Al2O3/water nanofluids are found to increase with the Rayleigh number. At the same Rayleigh number, the Nusselt number is found to decrease with nanofluid volume fraction. The temperature-dependent solver is found better for water and 1% Al2O3/water nanofluid cases, while the original solver is better for 4% Al2O3/water nanofluid cases. Furthermore, due to strong three-dimensional flow features in the horizontal cylinder, three-dimensional CFD simulation is recommended instead of two-dimensional simplifications.

  6. REMOVAL OF NATURAL ORGANIC MATTER USING ELECTROCOAGULATION AS A FIRST STEP FOR DESALINATION OF BRACKISH WATER

    Directory of Open Access Journals (Sweden)

    Wasinton Simanjuntak

    2011-07-01

    Full Text Available In the present study, electrocoagulation method was employed to remove natural organic matter from brackish water. This study explores the potential of brackish water as a source of potable water. Two electrochemical variables, potential and contact time, were tested to determine their effect on the treatment efficiency defined in terms of the reduction of the absorbance at the wavelength of 254 nm (A254. Both potential and contact time were found to influence the removal efficiency of the method, and the best result was obtained from the experiment using the potential of 8 V and contact time of 60 min, resulting in 69.5% reduction of the absorbance. Very clean treated water was produced with much lower conductivity (12.06 mS/cm as compared to that obtained for the sea water sample from a location near to the sampling site (133.9 mS/cm.

  7. Impact of the Vancouver Island natural gas pipeline construction on water quality: Project report

    Energy Technology Data Exchange (ETDEWEB)

    Li, G

    1993-01-01

    Prior to the construction of the Vancouver Island natural gas pipeline, concern was expressed for the potential defilement of community domestic water supplies when the construction work occurred in community watersheds. When drinking water becomes turbid from rainfall runoff passing through construction sites, the community disinfection process is rendered inefficacious. At a specified turbidity level, the water becomes too risky to drink without alternative disinfection such as boiling. This situation creates significant administrative problems for local health officials, intolerable social problems for residents and processing problems for industries which require clean water. This document is a review of the weekly environmental surveillance reports submitted by D. Tripp Biological Consultants to the B.C. Utilities Commission. The material is organized to relate construction practices with weather patterns thereby showing the resultant effects on water quality (turbidity).

  8. A Neutron Radiology Application to Natural Absorption (Imbibition) of Water into Porous Rocks

    International Nuclear Information System (INIS)

    Middleton, M.F.; de Beer, Frikkie

    2005-01-01

    Full text: Dynamic neutron radiology provides a method of evaluating the concentration of water in porous media. A study of water imbibition (absorption of a wetting liquid into a porous medium with a non-wetting fluid, air), which is imaged by dynamic neutron radiology , provides an excellent method of determining the fluid diffusivity parameter, D. This parameter enables one to model water-air regimes in surface hydrological systems and aquifers; analogies can also be made for deeper petroleum systems. A methodology of pixel-by-pixel analysis for the estimation of water concentration, as a function of time under natural absorption conditions, is proposed which provides a good mapping of D within a rock sample. The proposed method entails the discrete mapping of the differential equation for horizontal flow of a partial water concentration, c, in an air-filled rock/soil. (authors)

  9. Studies of deep water formation and circulation in the Weddell Sea using natural and anthropogenic tracers

    International Nuclear Information System (INIS)

    Schlosser, Peter; Bayer, Reinhold

    1991-01-01

    The application of natural and anthropogenic trace substances in oceanographic studies of the Weddell Sea is reviewed. The potential of some steady-state and transient tracers (tritium, CFC-11 and CFC-12, 18 O, and helium isotopes) for studies of deep water formation and circulation is discussed on the basis of data sets collected mainly on cruises of R/V 'Polastern' to the Weddell Sea during the 1980s. CFC/ tritium ratio dating of young water masses is applied to estimate mean age and transit times of water involved in Weddell Sea Bottom Water formation. The history of the CFC-11/tritium ratio through time is derived for Weddell Sea shelf waters. (author). 36 refs.; 18 figs

  10. Minimal climate change impacts on natural organic matter forecasted for a potable water supply in Ireland.

    Science.gov (United States)

    O'Driscoll, Connie; Ledesma, José L J; Coll, John; Murnane, John G; Nolan, Paul; Mockler, Eva M; Futter, Martyn N; Xiao, Liwen W

    2018-07-15

    Natural organic matter poses an increasing challenge to water managers because of its potential adverse impacts on water treatment and distribution, and subsequently human health. Projections were made of impacts of climate change on dissolved organic carbon (DOC) in the primarily agricultural Boyne catchment which is used as a potable water supply in Ireland. The results indicated that excluding a potential rise in extreme precipitation, future projected loads are not dissimilar to those observed under current conditions. This is because projected increases in DOC concentrations are offset by corresponding decreases in precipitation and hence river flow. However, the results presented assume no changes in land use and highlight the predicted increase in DOC loads from abstracted waters at water treatment plants. Copyright © 2018. Published by Elsevier B.V.

  11. Estimating water consumption of potential natural vegetation on global dry lands: building an LCA framework for green water flows.

    Science.gov (United States)

    Núñez, Montserrat; Pfister, Stephan; Roux, Philippe; Antón, Assumpció

    2013-01-01

    This study aimed to provide a framework for assessing direct soil-water consumption, also termed green water in the literature, in life cycle assessment (LCA). This was an issue that LCA had not tackled before. The approach, which is applied during the life cycle inventory phase (LCI), consists of quantifying the net change in the evapo(transpi)ration of the production system compared to the natural reference situation. Potential natural vegetation (PNV) is used as the natural reference situation. In order to apply the method, we estimated PNV evapotranspiration adapted to local biogeographic conditions, on global dry lands, where soil-water consumption impacts can be critical. Values are reported at different spatial aggregation levels: 10-arcmin global grid, ecoregions (501 units), biomes (14 units), countries (124 units), continents, and a global average, to facilitate the assessment for different spatial information detail levels available in the LCI. The method is intended to be used in rain-fed agriculture and rainwater harvesting contexts, which includes direct soil moisture uptake by plants and rainwater harvested and then reused in production systems. The paper provides the necessary LCI method and data for further development of impact assessment models and characterization factors to evaluate the environmental effects of the net change in evapo(transpi)ration.

  12. Determination of natural uranium, thorium and radium isotopes in water and soil samples by alpha spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Hao, Le Cong; Tao, Chau Van; Thong, Luong Van; Linh, Duong Mong [University of Science Ho Chi Minh City (Viet Nam). Faculty of Physics and Engineering Physics; Dong, Nguyen Van [University of Science Ho Chi Minh City (Viet Nam). Faculty of Chemistry

    2011-08-15

    In this study, a simple procedure for the determination of natural uranium, thorium and radium isotopes in water and soil samples by alpha spectroscopy is described. This procedure allows a sequential extraction polonium, uranium, thorium and radium radionuclides from the same sample in two to three days. It was tested and validated with the analysis of certified reference materials from the IAEA. (orig.)

  13. Lyophilization and Reconstitution of Reverse-Osmosis Concentrated Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Disinfection by-product (DBP) research can be complicated by difficulties in shipping large water quantities and changing natural organic matter (NOM) characteristics over time. To overcome these issues, it is advantageous to have a reliable method for concentrating NOM with min...

  14. Conflict management in natural resources : a study of land, water and forest conflicts in Nepal

    NARCIS (Netherlands)

    Upreti, B.R.

    2001-01-01

    This book is based on the research into natural resource (NR)-conflict carried out between 1997 and 2000 in the Dolakha district of central Nepal, and in several reference sites around the country. The study focussed especially on land, water and forest/pasture conflicts and their

  15. Preventing Pollution to Local Waters, Bay; Preserving Historic Natural Bridge in Virginia

    Science.gov (United States)

    In helping to preserve one of the oldest tourist destinations in the country – a spectacular natural land bridge in Virginia – EPA funding is protecting the surrounding land from development that would have impacted local waters and the Chesapeake Bay.

  16. Adaption of the suspension behavior of suspended matter in natural water

    International Nuclear Information System (INIS)

    Hattenbach, K.; Schreier, H.H.; Zimmermann, H.U.

    1980-01-01

    The particle size distribution of an artificial tracer is adapted to that of suspended matter in natural water. Therefore the material of a tracer was divided into fractions and afterwards mixed according to computed proportions. The determination of particle size distribution was carried out using a sedimentation balance. For calculation of the distribution curve a special mathematical function was assumed. (orig.) [de

  17. UV radiation and natural fluorescence linked primary production in Antarctic waters

    Digital Repository Service at National Institute of Oceanography (India)

    LokaBharathi, P.A.; KrishnaKumari, L.; Bhattathiri, P.M.A.; Chandramohan, D.

    Primary productivity and chlorophyll values have been measured using an underwater profiling radiometer for the first time in the waters around Indian Antarctic Station (70°46'S & 11°44'E) in the summer of 1994. The profiles include natural...

  18. Sensitivity to Disgust and Perceptions of Natural Bodies of Water and Watercraft Activities

    Science.gov (United States)

    Robert D. Bixler; Gwynn Powell

    2003-01-01

    A written 7-item self-report scale on sensitivity to disgust and participation in watercraft activities was administered to 450 seasonal park employees. Correlations indicate that nonparticipation in seven different watercraft sports was weakly related with reactions of disgust to contact with natural bodies of water (rpbis...

  19. Calculations on heavy-water moderated and cooled natural uranium fuelled power reactors

    International Nuclear Information System (INIS)

    Pinedo V, J.L.

    1979-01-01

    One of the codes that the Instituto Nacional de Investigaciones Nucleares (Mexico) has for the nuclear reactors design calculations is the LEOPARD code. This work studies the reliability of this code in reactors design calculations which component materials are the same of the heavy water moderated and cooled, natural uranium fuelled power reactors. (author)

  20. DEVELOPMENT OF RAPID TECHNIQUE FOR DETERMINATION OF THE TOTAL MINERALIZATION OF NATURAL WATERS

    Directory of Open Access Journals (Sweden)

    T. A. Kuchmenko

    2015-01-01

    Full Text Available A new approach has been proposed for rapid and easy evaluation of a indicator of quality and properties of natural water - soluble salt content (mineralization. The method of quartz crystal microbalance is employed at load of the mass-sensitive resonator electrode (BAW-type with investigated water. The degree of correlation between the various indicators related to the contents of salts and insoluble compounds and the level of mineralization obtained by the standard method (gravimetry has been studied. A procedure for salt weighing by single sensor at unilateral load with small sample of natural water has been developed. The optimal conditions for measurement is established using the design of experiment by model 23 . The possibilities of quartz crystal microbalance for determination of non-volatile compounds in the water are described. The calibration of piezosensor is produced by standard solution NaCl (c = 1.000 g / dm3 at optimal conditions of experiment. The adequacy and accuracy of proposed technique is assessed by the correlation between the results of quartz crystal microbalance and conductometry. The correlation between indicators of mineralization established by quartz crystal microbalance and gravimetry is found. It has been obtained an equation that can be used to calculate the standard indicator of the mineralization by the results of a quartz crystal microbalance using single sensor. The approaches to enhance the analytical capabilities of the developed technique for water with low and high mineralization are proposed. The metrological characteristics of quartz crystal microbalance of insoluble compounds in natural water are estimated. A new technique of determination of the mass concentration of the dry residue in water with a conductivity of 0.2 mS or above has been developed, which can be used for rapid analysis of the water at nonlaboratory conditions and in the laboratory for rapid obtaining the information about a sample.

  1. Standard for baseline water-well testing for coalbed methane/natural gas in coal operations

    International Nuclear Information System (INIS)

    2006-04-01

    Interest in developing coalbed methane (CBM) is increasing with the decline of conventional natural gas reserves. In Alberta, where CBM is in the early stages of development, the drilling, production and operational rules for CBM are the same as those that apply to natural gas. The government of Alberta is presently examining the rules and regulations that apply to CBM to determine if they are appropriate for responsible development and balanced with environmental protection. CBM development has the potential to affect water aquifers and water supply. As such, a new standard has been developed by Alberta Environment in collaboration with the Alberta Energy and Utilities Board which requires that companies involved in the development of shallow CBM must offer to test rural Albertan's water wells prior to drilling. The companies will submit baseline groundwater data to both Alberta Environment and the landowner. The broader application of groundwater testing will also support Alberta Environment's objective of mapping all groundwater resources in the province. This new standard will help achieve continued protection of provincial groundwater resources and Albertan's groundwater supplies. It will also facilitate responsible CBM development and the government's Water for Life strategy. This document explained the protocols for testing, sampling and analyzing groundwater. The standard provides scientific information to support achievement of the outcomes as well as a regulatory basis for water well testing and baseline data collection prior to CBM development. If a landowner registers a complaint regarding a perceived change in well water quantity and quality after CBM development, then the developers must retest the water well to address the landowner's concerns. The tests evaluate water well capacity, water quality, routine potability and analysis for water quality parameters, including major ionic constituents, bacteriological analysis and presence or absence of gas

  2. Development of bacteria-based bioassays for arsenic detection in natural waters.

    Science.gov (United States)

    Diesel, Elizabeth; Schreiber, Madeline; van der Meer, Jan Roelof

    2009-06-01

    Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams.

  3. Parametric studies to establish natural circulation in advanced heavy water reactor

    Energy Technology Data Exchange (ETDEWEB)

    Bhatia, S K; Dhawan, M L [Reactor Engineering Division, Bhabha Atomic Research Centre, Mumbai (India)

    1994-06-01

    Design of Advanced Heavy Water Reactor (AHWR) is in progress. It consists of vertical pressure tubes with boiling light water coolant flowing through the tubes and heavy water moderator in the calandria. In PHWRs, core heat removal is through forced circulation of the coolant by PHT pumps. In AHWR, no PHT pumps are used and core heat is carried away by natural circulation of the coolant due to density difference between steam/water mixture inside the core and the water region outside the core. This passive means of core heat removal results in a number of benefits viz. (a) extra length of piping, valves, instruments, power supply and control systems for functioning of instruments are eliminated, (b) plant layout is simplified, (c) maintenance of valves and instruments is reduced. Natural circulation in AHWR is achieved by keeping the steam drum at a sufficient height above the core to get the required driving force. The loop height depends on many factors i.e. channel power, V{sub c}/V{sub f} ratio (ratio of coolant volume to fuel volume) and core height. The effect of these parameters on the loop height to establish natural circulation have been studied and presented. (author). 1 ref., 1 fig., 1 tab.

  4. Development of bacteria-based bioassays for arsenic detection in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Diesel, Elizabeth; Schreiber, Madeline [Virginia Tech, Department of Geosciences, Blacksburg, VA (United States); Meer, Jan Roelof van der [University of Lausanne, Department of Fundamental Microbiology, Lausanne (Switzerland)

    2009-06-15

    Arsenic contamination of natural waters is a worldwide concern, as the drinking water supplies for large populations can have high concentrations of arsenic. Traditional techniques to detect arsenic in natural water samples can be costly and time-consuming; therefore, robust and inexpensive methods to detect arsenic in water are highly desirable. Additionally, methods for detecting arsenic in the field have been greatly sought after. This article focuses on the use of bacteria-based assays as an emerging method that is both robust and inexpensive for the detection of arsenic in groundwater both in the field and in the laboratory. The arsenic detection elements in bacteria-based bioassays are biosensor-reporter strains; genetically modified strains of, e.g., Escherichia coli, Bacillus subtilis, Staphylococcus aureus, and Rhodopseudomonas palustris. In response to the presence of arsenic, such bacteria produce a reporter protein, the amount or activity of which is measured in the bioassay. Some of these bacterial biosensor-reporters have been successfully utilized for comparative in-field analyses through the use of simple solution-based assays, but future methods may concentrate on miniaturization using fiberoptics or microfluidics platforms. Additionally, there are other potential emerging bioassays for the detection of arsenic in natural waters including nematodes and clams. (orig.)

  5. Volatile organic compounds in natural biofilm in polyethylene pipes supplied with lake water and treated water from the distribution network.

    Science.gov (United States)

    Skjevrak, Ingun; Lund, Vidar; Ormerod, Kari; Herikstad, Hallgeir

    2005-10-01

    The objective of this work was investigation of volatile organic compounds (VOC) in natural biofilm inside polyethylene (HDPE) pipelines at continuously flowing water. VOC in biofilm may contribute to off-flavour episodes in drinking water. The pipelines were supplied with raw lake water and treated water from the distribution network. Biofilm was established at test sites located at two different drinking water distribution networks and their raw water sources. A whole range of volatile compounds were identified in the biofilm, including compounds frequently associated with cyanobacteria and algae, such as ectocarpene, dictyopterene A and C', geosmin, beta-ionone and 6-methyl-5-hepten-2-one. In addition, volatile amines, dimethyldisulphide and 2-nonanone, presumably originating from microorganisms growing in the biofilm, were identified. C8-compounds such as 1-octen-3-one and 3-octanone were believed to be products from microfungi in the biofilm. Degradation products from antioxidants such as Irgafos 168, Irganox 1010 and Irganox 1076 used in HDPE pipes, corresponding to 2,4-di-tert-butylphenol and 2,6-di-tert-butylbenzoquinone, were present in the biofilm.

  6. CIRCUS and DESIRE: Experimental facilities for research on natural-circulation-cooled boiling water reactors

    International Nuclear Information System (INIS)

    Kruijf, W.J.M. de; Haden, T.H.J.J. van der; Zboray, R.; Manera, A.; Mudde, R.F.

    2002-01-01

    At the Delft University of Technology two thermohydraulic test facilities are being used to study the characteristics of Boiling Water Reactors (BWRs) with natural circulation core cooling. The focus of the research is on the stability characteristics of the system. DESIRE is a test facility with freon-12 as scaling fluid in which one fuel bundle of a natural-circulation BWR is simulated. The neutronic feedback can be simulated artificially. DESIRE is used to study the stability of the system at nominal and beyond nominal conditions. CIRCUS is a full-height facility with water, consisting of four parallel fuel channels and four parallel bypass channels with a common riser or with parallel riser sections. It is used to study the start-up characteristics of a natural-circulation BWR at low pressures and low power. In this paper a description of both facilities is given and the research items are presented. (author)

  7. Level of natural radiation nuclides in food and water in Hubei Province

    International Nuclear Information System (INIS)

    Chen Keling; Sun Bangyin; Zhang Xiaozhen; Li Guangming

    1990-01-01

    This paper reports the level of natural radiation nuclides in Hubei Province, China. 10 spots were selected in Wuhan, Jiangling etc., 171 samples in 14 kinds of food such as rice, cabbage and tap water, water in Yangtze River and other rivers were analysed.The results show that the values of U, Th, 226 Ra were n x 10 -2 Bq.kg -1 and that of 40 K was n x 10 Bq.kg -1 in food. The values of U, Th, 226 Ra, 40 K were n x 10 -2 Bq.L -1 , and that of 3 H was nBq.L -1 in drinking water. The data investigated indicates that Hubei Province belongs to the region of normal natural radiation. It is found that 226 Ra value in food is higher in general in the county of Tongcheng, and this problem needs further study

  8. Sustainable Management of Flowback Water during Hydraulic Fracturing of Marcellus Shale for Natural Gas Production

    Energy Technology Data Exchange (ETDEWEB)

    Vidic, Radisav [Univ. of Pittsburgh, PA (United States)

    2015-01-24

    This study evaluated the feasibility of using abandoned mine drainage (AMD) as make- up water for the reuse of produced water for hydraulic fracturing. There is an abundance of AMD sources near permitted gas wells as documented in this study that can not only serve as makeup water and reduce the demand on high quality water resources but can also as a source of chemicals to treat produced water prior to reuse. The assessment of AMD availability for this purpose based on proximity and relevant regulations was accompanied by bench- and pilot-scale studies to determine optimal treatment to achieve desired water quality for use in hydraulic fracturing. Sulfate ions that are often present in AMD at elevated levels will react with Ba²⁺ and Sr²⁺ in produced water to form insoluble sulfate compounds. Both membrane microfiltration and gravity separation were evaluated for the removal of solids formed as a result of mixing these two impaired waters. Laboratory studies revealed that neither AMD nor barite formed in solution had significant impact on membrane filtration but that some produced waters contained submicron particles that can cause severe fouling of microfiltration membrane. Coagulation/flocculation was found to be an effective process for the removal of suspended solids and both bench- and pilot-scale studies revealed that optimal process conditions can consistently achieve the turbidity of the finished water below 5 NTU. Adjusting the blending ratio of AMD and produced water can achieve the desired effluent sulfate concentration that can be accurately predicted by chemical thermodynamics. Co-treatment of produced water and AMD will result in elevated levels of naturally occurring radioactive materials (NORM) in the solid waste generated in this process due to radium co-precipitation with barium sulfate. Laboratory studies revealed that the mobility of barite that may form in the subsurface due to the presence of sulfate in the fracturing fluid can be

  9. Alteration of natural (37)Ar activity concentration in the subsurface by gas transport and water infiltration.

    Science.gov (United States)

    Guillon, Sophie; Sun, Yunwei; Purtschert, Roland; Raghoo, Lauren; Pili, Eric; Carrigan, Charles R

    2016-05-01

    High (37)Ar activity concentration in soil gas is proposed as a key evidence for the detection of underground nuclear explosion by the Comprehensive Nuclear Test-Ban Treaty. However, such a detection is challenged by the natural background of (37)Ar in the subsurface, mainly due to Ca activation by cosmic rays. A better understanding and improved capability to predict (37)Ar activity concentration in the subsurface and its spatial and temporal variability is thus required. A numerical model integrating (37)Ar production and transport in the subsurface is developed, including variable soil water content and water infiltration at the surface. A parameterized equation for (37)Ar production in the first 15 m below the surface is studied, taking into account the major production reactions and the moderation effect of soil water content. Using sensitivity analysis and uncertainty quantification, a realistic and comprehensive probability distribution of natural (37)Ar activity concentrations in soil gas is proposed, including the effects of water infiltration. Site location and soil composition are identified as the parameters allowing for a most effective reduction of the possible range of (37)Ar activity concentrations. The influence of soil water content on (37)Ar production is shown to be negligible to first order, while (37)Ar activity concentration in soil gas and its temporal variability appear to be strongly influenced by transient water infiltration events. These results will be used as a basis for practical CTBTO concepts of operation during an OSI. Copyright © 2016 Elsevier Ltd. All rights reserved.

  10. Simultaneous effects of water spray and crosswind on performance of natural draft dry cooling tower

    Directory of Open Access Journals (Sweden)

    Ahmadikia Hossein

    2013-01-01

    Full Text Available To investigate the effect of water spray and crosswind on the effectiveness of the natural draft dry cooling tower (NDDCT, a three-dimensional model has been developed. Efficiency of NDDCT is improved by water spray system at the cooling tower entrance for high ambient temperature condition with and without crosswind. The natural and forced heat convection flow inside and around the NDDCT is simulated numerically by solving the full Navier-Stokes equations in both air and water droplet phases. Comparison of the numerical results with one-dimensional analytical model and the experimental data illustrates a well-predicted heat transfer rate in the cooling tower. Applying water spray system on the cooling tower radiators enhances the cooling tower efficiency at both no wind and windy conditions. For all values of water spraying rate, NDDCTs operate most effectively at the crosswind velocity of 3m/s and as the wind speed continues to rise to more than 3 m/s up to 12 m/s, the tower efficiency will decrease by approximately 18%, based on no-wind condition. The heat transfer rate of radiator at wind velocity 10 m/s is 11.5% lower than that of the no wind condition. This value is 7.5% for water spray rate of 50kg/s.

  11. Natural radionuclides in waste water discharged from coal-fired power plants in Serbia.

    Science.gov (United States)

    Janković, Marija M; Todorović, Dragana J; Sarap, Nataša B; Krneta Nikolić, Jelena D; Rajačić, Milica M; Pantelić, Gordana K

    2016-12-01

    Investigation of the natural radioactivity levels in water around power plants, as well as in plants, coal, ash, slag and soil, and to assess the associated radiation hazard is becoming an emerging and interesting topic. This paper is focused on the results of the radioactivity analysis in waste water samples from five coal-fired power plants in Serbia (Nikola Tesla A, Nikola Tesla B, Kolubara, Morava and Kostolac), which were analyzed in the period 2003-2015. River water samples taken upstream and downstream from the power plants, drain water and overflow water were analyzed. In the water samples gamma spectrometry analysis was performed as well as determination of gross alpha and beta activity. Natural radionuclide 40 K was detected by gamma spectrometry, while the concentrations of other radionuclides, 226 Ra, 235 U and 238 U, usually were below the minimum detection activity (MDA). 232 Th and artificial radionuclide 137 Cs were not detected in these samples. Gross alpha and beta activities were determined by the α/β low level proportional counter Thermo Eberline FHT 770 T. In the analyzed samples, gross alpha activity ranged from MDA to 0.47 Bq L - 1 , while the gross beta activity ranged from MDA to 1.55 Bq L - 1 .

  12. Natural radioactivity levels of geothermal waters and their influence on soil and agricultural activities.

    Science.gov (United States)

    Murat Saç, Müslim; Aydemir, Sercan; Içhedef, Mutlu; Kumru, Mehmet N; Bolca, Mustafa; Ozen, Fulsen

    2014-01-01

    All over the world geothermal sources are used for different purposes. The contents of these waters are important to understand positive/negative effects on human life. In this study, natural radioactivity concentrations of geothermal waters were investigated to evaluate the effect on soils and agricultural activities. Geothermal water samples were collected from the Seferihisar Geothermal Region, and the radon and radium concentrations of these waters were analysed using a collector chamber method. Also soil samples, which are irrigated with geothermal waters, were collected from the surroundings of geothermal areas, and natural radioactivity concentrations of collected samples (U, Th and K) were determined using an NaI(Tl) detector system. The activity concentrations of radon and radium were found to be 0.6-6.0 and 0.1-1.0 Bq l(-1), respectively. Generally, the obtained results are not higher compared with the geothermal waters of the world. The activity concentrations in soils were found to be in the range of 3.3-120.3 Bq kg(-1) for (226)Ra (eU), 0.3-108.5 Bq kg(-1) for (232)Th (eTh), 116.0-850.0 Bq kg(-1) for (40)K (% K).

  13. Emergy Evaluation of the Natural Value of Water Resources in Chinese Rivers

    Science.gov (United States)

    Chen, Dan; Chen, Jing; Luo, Zhaohui; Lv, Zhuwu

    2009-08-01

    Emergy theory and method were used to evaluate the economy of China and the contributions of water resources in Chinese rivers to the real wealth of the Chinese economy. The water cycle and energy conversion were reviewed, and an emergy method for evaluating the natural value of water resources in a river watershed was developed. The indices for China calculated from the emergy evaluation were close to those of developing countries. Despite a small surplus in its balance of payments, China had a net emergy loss from its trade in 2002. The efficiency of Chinese natural resource use was still not high and did not match its economic growth rate. Furthermore, the Chinese economy placed a stress on its ecological environment and natural resources. Several indices of Chinese rivers from the emergy evaluation were close to those of average global river water. The main average indices of Chinese rivers were transformity (4.17 × 104 sej/J), emergy per volume (2.05 × 1011 sej/m3), and emdollar per volume (0.06 /m3). The total value of all the rivers’ water made up 13.0% of the GDP of China in 2002, and that of water consumption accounted for 2.1%. The value of the water resources in the Haihe-luanhe River (11.39 × 104 sej/J) was the highest, followed by the Yellow River (10.27 × 104 sej/J), while the rivers in Southwest China had the lowest values (2.92 × 104 sej/J).

  14. The impact of the Vancouver Island natural gas pipeline construction on water quality

    International Nuclear Information System (INIS)

    Li Gaoshe.

    1993-04-01

    A study was initiated to evaluate the impact of construction of the Vancouver Island natural gas pipeline on water quality, where the pipeline passed along or through lakes and streams. The main concern was for the potential defilement of community water supplies when construction occurred in community watersheds. When water becomes turbid from rainfall runoff passing through construction areas, disinfection processes are rendered inefficacious and at specified turbidity levels, the water becomes too risky to drink without alternative disinfection such as boiling. The weekly environmental surveillance reports generated during construction are reviewed. The material is organized to relate construction practices with weather patterns, thereby showing the resultant effects on water quality (turbidity). The effectiveness of construction measures in reducing the risk of contamination and water turbidity at intakes is assessed. Generally, water turbidity during project construction was acceptable although it sometimes reached very high levels. These high levels resulted from incidents or mistakes that were usually related to rainy days. Among the 12 types of work activity, bridge construction, drilling, and grading caused relatively slight increases in water turbidity levels, while backfilling and ditching caused the greatest increase in turbidity. Improvements in inspection and monitoring programs are recommended. A key recommendation is that construction work be stopped on rainy days. 6 refs., 4 figs., 20 tabs

  15. In situ and laboratory toxicity of coalbed natural gas produced waters with elevated sodium bicarbonate

    Science.gov (United States)

    Farag, Aïda M.; Harper, David D.; Skaar, Don

    2014-01-01

    Some tributaries in the Powder River Structural Basin, USA, were historically ephemeral, but now contain water year round as a result of discharge of coalbed natural gas (CBNG)-produced waters. This presented the opportunity to study field sites with 100% effluent water with elevated concentrations of sodium bicarbonate. In situ experiments, static renewal experiments performed simultaneously with in situ experiments, and static renewal experiments performed with site water in the laboratory demonstrated that CBNG-produced water reduces survival of fathead minnow (Pimephales promelas) and pallid sturgeon (Scaphirhynchus albus). Age affected survival of fathead minnow, where fish 2 d posthatch (dph) were more sensitive than 6 dph fish, but pallid sturgeon survival was adversely affected at both 4 and 6 dph. This may have implications for acute assays that allow for the use of fish up to 14 dph. The survival of early lifestage fish is reduced significantly in the field when concentrations of NaHCO3 rise to more than 1500 mg/L (also expressed as >1245 mg HCO3 (-) /L). Treatment with the Higgin's Loop technology and dilution of untreated water increased survival in the laboratory. The mixing zones of the 3 outfalls studied ranged from approximately 800 m to 1200 m below the confluence. These experiments addressed the acute toxicity of effluent waters but did not address issues related to the volumes of water that may be added to the watershed.

  16. Natural attenuation: A feasible approach to remediation of ground water pollution at landfills?

    Energy Technology Data Exchange (ETDEWEB)

    Christensen, T.H.; Bjerg, P.L.; Kjeldsen, P.

    2000-12-31

    Remediation of ground water pollution at old landfills with no engineered leachate collection system is a demanding and costly operation. It requires control of the landfill body, since the majority of the pollutants are still present in the landfilled waste for decades after the site has been closed. However, natural attenuation of the plume without removing the source is an attractive approach to managing leachate plumes. Natural attenuation has been implemented for petroleum hydrocarbon plumes and for chlorinated solvent plumes, primarily in the US. Natural attenuation has not yet gained a foothold with respect to leachate plumes, however. Based on the experiences gained from 10 years of research on two Danish landfills, it is suggested that natural attenuation is a feasible approach but is more complicated and demanding than in the case of petroleum hydrocarbons and chlorinated solvent.

  17. True colour classification of natural waters with medium-spectral resolution satellites: SeaWiFS, MODIS, MERIS and OLCI.

    NARCIS (Netherlands)

    van der Woerd, H.J.; Wernand, M.R.

    2015-01-01

    The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne “ocean colour” instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving

  18. True Colour Classification of Natural Waters with Medium-Spectral Resolution Satellites: SeaWiFS, MODIS, MERIS and OLCI

    NARCIS (Netherlands)

    van der Woerd, H.J.; Wernand, M.

    2015-01-01

    The colours from natural waters differ markedly over the globe, depending on the water composition and illumination conditions. The space-borne “ocean colour” instruments are operational instruments designed to retrieve important water-quality indicators, based on the measurement of water leaving

  19. The Air-Carbon-Water Synergies and Trade-Offs in China's Natural Gas Industry

    Science.gov (United States)

    Qin, Yue

    China's coal-dominated energy structure is partly responsible for its domestic air pollution, local water stress, and the global climate change. Primarily to tackle the haze issue, China has been actively promoting a nationwide coal to natural gas end-use switch. My dissertation focuses on evaluating the air quality, carbon, and water impacts and their interactions in China's natural gas industry. Chapter 2 assesses the lifecycle climate performance of China's shale gas in comparison to coal based on stage-level energy consumption and methane leakage rates. I find the mean lifecycle carbon footprint of shale gas is about 30-50% lower than that of coal under both 20 year and 100 year global warming potentials (GWP20 and GWP100). However, primarily due to large uncertainties in methane leakage, the lifecycle carbon footprint of shale gas in China could be 15-60% higher than that of coal across sectors under GWP20. Chapter 3 evaluates the air quality, human health, and the climate impacts of China's coal-based synthetic natural gas (SNG) development. Based on earlier 2020 SNG production targets, I conduct an integrated assessment to identify production technologies and end-use applications that will bring as large air quality and health benefits as possible while keeping carbon penalties as small as possible. I find that, due to inefficient and uncontrolled coal combustion in households, allocating currently available SNG to the residential sector proves to be the best SNG allocation option. Chapter 4 compares the air quality, carbon, and water impacts of China's six major gas sources under three end-use substitution scenarios, which are focused on maximizing air pollutant emission reductions, CO 2 emission reductions, and water stress index (WSI)-weighted water consumption reductions, respectively. I find striking national air-carbon/water trade-offs due to SNG, which also significantly increases water demands and carbon emissions in regions already suffering from

  20. Waste water discharges into natural waters; Problematiche sulla dispersione di effluenti liquidi da canali o condotte a pelo liquido

    Energy Technology Data Exchange (ETDEWEB)

    Marri, P [ENEA, Centro Ricerche Santa Teresa, La Spezia (Italy). Dip. Ambiente; Barsanti, P; Mione, A; Posarelli, M [ENEA, Centro Ricerche Casaccia, Rome (Italy). Dip. Ambiente

    1996-12-01

    The acqueous discharges into natural waters is a very technical solution expecially for surface buoyant discharges. It is not only convenient to limit the concentration levels of the discharges, but also to improve the turbolent processes that diluite the discharge. Mostly these processes depend by some geometric parameters of the discharge and by some physical parameters of the effluent and of the receiving water body. An appropriate choice of some parameters, using also suitable mathematical models, allows to design discharges with a very high dilution; so the decreasing of the pollutant levels is improved and the environmental impact can be reduced versus a not diluted effluent. The simulations of a mathematical model, here described, prove that in some circumstances, expecially in case of discharges of fresh water into saline water bodies with a low velocity of the current, the dilution is poor; the effluent can be trapped in a narrow water surface layer where the pollutant concentrations remain high. also far away from the discharge point.

  1. Investigations on complexing cation exchangers and their use for trace analysis in natural waters

    International Nuclear Information System (INIS)

    Lang, H.

    1991-12-01

    The practicability of cation preconcentrations from natural waters by use of EDTrA- and 5-s-oxine- celluloses has been studied. For that purpose the protonation constants as well as the complexation capacities were determined by use of acid/base titrations. In additional titration experiments the complex stability constants for Cu 2+ , Mn 2+ , Co 2+ , Ni 2+ and Ca 2+ were determined examplarely. The interpretation of the experiments was performed using an optimised fit between calculated and experimentally determined pH-titration curves. Calculations have been done by the computer code 'MINEQL'. The determined stability constants are in the same order of magnitude as those given in literature for the water soluble complexes of EDTA, NTA or 5-s-oxine. The preconcentration of cations from natural water samples occurs in accordance with the theoretical predictions. Not ignorable disturbances appear for cations forming hydroxides or oxides in neutral or weakly acidic solutions. By use of radioactive isotopes for Sn 2+ , Zn 4+ and Nb 5+ it can be shown that those ions may form particles or colloids in natural waters. These particles will be filtered in the columns packed with the celluloses and can hardly be removed from there. (author)

  2. Adapting ecological risk valuation for natural resource damage assessment in water pollution.

    Science.gov (United States)

    Chen, Shuzhen; Wu, Desheng

    2018-07-01

    Ecological risk assessment can address requirements of natural resource damage assessment by quantifying the magnitude of possible damages to the ecosystem. This paper investigates an approach to assess water damages from pollution incident on the basis of concentrations of contaminants. The baseline of water pollution is determined with not-to-exceed concentration of contaminants required by water quality standards. The values of damage cost to water quality are estimated through sewage treatment cost. To get a reliable estimate of treatment cost, DEA is employed to classify samples of sewage plants based on their efficiency of sewage treatment. And exponential fitting is adopted to determine the relation between treatment cost and the decrease of COCs. The range of damage costs is determined through the fitting curves respectively based on efficient and inefficient samples. Copyright © 2018 Elsevier Inc. All rights reserved.

  3. State of radionuclides in seawater. Comparison of natural stable and artificial radioactive isotope s of mercury and zinc in natural waters of the arid zone of the USSR

    International Nuclear Information System (INIS)

    Rakhmatov, U; Khikmatov, K; Kist, A.A.; Kulmatov, R.A.; Teshabaev, S.T.; Volkov, A.A.

    1986-01-01

    This paper studies the state of stable and artificial radioactive isotopes of merury and zinc in natural waters of the arid zone of the USSR by radioactivity and radiochemical methods. Convergent results have been obtained for the dissolved forms of mercury and zinc in natural waters of the arid zone in a comparison of the results of radioactivation analysis and laboratory simulation using the radionuclides mercury-203 and zinc-65

  4. Naturally occurring radioactive elements, arsenic and other metals in drinking water from private wells

    International Nuclear Information System (INIS)

    Ek, Britt-Marie; Thunholm, Bo; Oestergren, Inger; Falk, Rolf; Mjoenes, Lars

    2008-04-01

    Approximately 50 % of all drinking water is extracted from groundwater. For private supply of drinking water almost 100 % emanates from groundwater. For approximately 1.2 of the 9 million Swedish citizens, private wells are the primary water source where 700 000 get their water from wells drilled in the bedrock. Radioactive elements and metals that occur naturally in the bedrock can be found in the well water. The radioactive elements include radon-222 ( 222 Rn), uranium (U), radium-226 ( 226 Ra) as well as polonium-210 ( 210 Po) and lead-210 ( 210 Pb), which are long-lived progeny of radon. In 2001 SGU and SSI initiated a collaboration to investigate the occurrence of radioactive elements and metals in water from private wells. Data sampling and analysis was completed in 2006. The aim of the project was to map the occurrence of radioactive elements in drinking water from private wells and to estimate their respective dose contribution. Another aim was to map metals and other elements in the water, to study temporal variations and possible co-variations between analysed elements. Sampling was conducted in a random fashion throughout the country. However, in regions where bedrock and soils are known to show enhanced concentrations of radioactive elements and arsenic the sampling density was increased. The analyses comprises: total beta activity, total alpha activity, radium-226, radon-222, uranium, aluminium, chloride, calcium, vanadium, chromium, iron, manganese, cobalt, nickel, copper, zink, arsenic, strontium, molybdenum, cadmium, barium, lead, thorium, boron, sodium, manganese, potassium, silica, alkalinity, sulfate, fluoride, phosphate, nitrate, pH and electric conductivity. In a few cases chemistry analyses of polonium-210 and lead-210 have been done. It was observed that the south-western part of Sweden, with exception for granite areas in the county of Bohuslaen, has relatively low concentrations of natural radioactive elements in the drinking water. The

  5. Patterns of ice nuclei from natural water sources in the mountains of Tirol, Austria

    Science.gov (United States)

    Baloh, Philipp; Hanlon, Regina; Pietsch, Renee; Anderson, Christopher; Schmale, David G., III; Grothe, Hinrich

    2017-04-01

    Heterogeneous ice nucleation—the process by which particles can nucleate ice between 0 and -35°C—is important for generating artificial snow. Though abiotic and biotic ice nuclei are present in many different natural and managed ecosystems, little is known about their nature, sources, and ecological roles. We collected samples of water and snow from the mountains of Tyrol, Austria in June, July, and November, 2016. The collected water was mostly from sources with minimal anthropogenic pollution, since most of the water from the sampled streams came from glacial melt. The samples were filtered through a 0.22μm filter, and microorganisms were cultured on different types of media. Resulting colonies were tested for their ice nucleation ability using a droplet freezing assay and identified to the level of the species. The unfiltered water and the filtered water will be subjected to additional assays using cryo microscopy and vibrational microscopy (IR and Raman- spectroscopy). Preliminary analyses suggested that the percentage of ice-nucleating microbes varied with season; greater percentages of ice nucleating microbes were present during colder months. The glacial melt also varies strongly over the year with the fraction of mineral dust suspended in it which serves as an inorganic ice nucleation agent. Further investigation of these samples may help to show the combined ice nuleation abilities of biological and non biological particles present in the mountains of Tirol, Austria. Future work may shed light on how the nucleation properties of the natural water changes with the time of the year and what may be responsible for these changes.

  6. Concentration of arsenic in water, sediments and fish species from naturally contaminated rivers.

    Science.gov (United States)

    Rosso, Juan José; Schenone, Nahuel F; Pérez Carrera, Alejo; Fernández Cirelli, Alicia

    2013-04-01

    Arsenic (As) may occur in surface freshwater ecosystems as a consequence of both natural contamination and anthropogenic activities. In this paper, As concentrations in muscle samples of 10 fish species, sediments and surface water from three naturally contaminated rivers in a central region of Argentina are reported. The study area is one of the largest regions in the world with high As concentrations in groundwater. However, information of As in freshwater ecosystems and associated biota is scarce. An extensive spatial variability of As concentrations in water and sediments of sampled ecosystems was observed. Geochemical indices indicated that sediments ranged from mostly unpolluted to strongly polluted. The concentration of As in sediments averaged 6.58 μg/g ranging from 0.23 to 59.53 μg/g. Arsenic in sediments barely followed (r = 0.361; p = 0.118) the level of contamination of water. All rivers showed high concentrations of As in surface waters, ranging from 55 to 195 μg/L. The average concentration of As in fish was 1.76 μg/g. The level of contamination with As differed significantly between species. Moreover, the level of bioaccumulation of As in fish species related to the concentration of As in water and sediments also differed between species. Whilst some fish species seemed to be able to regulate the uptake of this metalloid, the concentration of As in the large catfish Rhamdia quelen mostly followed the concentration of As in abiotic compartments. The erratic pattern of As concentrations in fish and sediments regardless of the invariable high levels in surface waters suggests the existence of complex biogeochemical processes behind the distribution patterns of As in these naturally contaminated ecosystems.

  7. Changes in Isotopic Composition of Bottled Natural Waters Due to Different Storage Conditions

    Energy Technology Data Exchange (ETDEWEB)

    Ferjan, T. [Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Brencic, M. [Faculty of Natural Sciences and Engineering, Department of Geology, and Geological Survey of Slovenia, Department of Hydrogeology, Ljubljana (Slovenia); Vreca, P. [Jozef Stefan Institute, Department of Environmental Sciences, Ljubljana (Slovenia)

    2013-07-15

    To establish the influence of environmental conditions on processes affecting the stable isotopic composition of bottled water during storage, various brands of bottled water were exposed for 2 years in different conditions. Selected low mineralized natural mineral water of one particular brand stored in polyethylene terephthalate (PET) bottles was placed at three different locations with different physical conditions (temperature, relative humidity, air pressure, exposure to sunlight). For comparison, bottles of three other low mineralized natural mineral water brands, each from a different aquifer source, were placed in parallel at one of the locations. Each location was characterized by temperature, relative humidity and air pressure measurements. pH, conductivity and stable isotopic composition of oxygen, hydrogen and carbon in dissolved inorganic carbon ({delta}{sup 18}O, {delta}{sup 2}H, {delta}{sup 13}C{sub DIC}) were measured in regular intervals for nearly two years. Preliminary results from each location show noticeable changes in isotopic composition as well as the physical parameters of water with time of storage.

  8. Determination of iron in natural and mineral waters by flame atomic absorption spectrometry

    Directory of Open Access Journals (Sweden)

    ROLANDAS KAZLAUSKAS

    2004-05-01

    Full Text Available Simple methods for the determination of Fe in natural and mineral waters by flame atomic absorption spectrometry (AAS are suggested. The results of the investigation of selectivity of the proposed AAS method proved that this procedure is not affected by high concentrations of other metals. The calibration graph for iron was linear at levels near the detection limit up to at least 0.10 mg ml-1. For the determination of microamounts of iron in mineral waters, an extraction AAS technique was developed. Iron was retained as Fe-8-oxyquinoline complex and extracted into chloroform. The optimal conditions for the extraction of the iron complex were determined. The AAS method was applied to the determination of Fe in mineral waters and natural waters from different areas of Lithuania. The accuracy of the developed method was sufficient and evaluated in comparison with a photometric method. The obtained results demonstrated that the procedure could be successfully applied for the analysis of water samples with satisfactory accuracy.

  9. Prediction of water formation temperature in natural gas dehydrators using radial basis function (RBF neural networks

    Directory of Open Access Journals (Sweden)

    Tatar Afshin

    2016-03-01

    Full Text Available Raw natural gases usually contain water. It is very important to remove the water from these gases through dehydration processes due to economic reasons and safety considerations. One of the most important methods for water removal from these gases is using dehydration units which use Triethylene glycol (TEG. The TEG concentration at which all water is removed and dew point characteristics of mixture are two important parameters, which should be taken into account in TEG dehydration system. Hence, developing a reliable and accurate model to predict the performance of such a system seems to be very important in gas engineering operations. This study highlights the use of intelligent modeling techniques such as Multilayer perceptron (MLP and Radial Basis Function Neural Network (RBF-ANN to predict the equilibrium water dew point in a stream of natural gas based on the TEG concentration of stream and contractor temperature. Literature data set used in this study covers temperatures from 10 °C to 80 °C and TEG concentrations from 90.000% to 99.999%. Results showed that both models are accurate in prediction of experimental data and the MLP model gives more accurate predictions compared to RBF model.

  10. Treatment techniques for removing natural radionuclides from drinking water. Final report of the TENAWA project

    International Nuclear Information System (INIS)

    Annanmaeki, M.; Turtiainen, T.

    2000-01-01

    TENAWA project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water) was carried out on a cost-shared basic with the European Commission (CEC) under the supervision of Directorate-General XII, Radiation Protection Unit. TENAWA project was started because in several European countries ground water supplies may contain high amounts of natural radionuclides. During the project both laboratory and field research was performed in order to test the applicability of different equipment and techniques for removing natural radionuclides from drinking water. The measurable objectives of the project were: to give recommendations on the most suitable methods for removing radon ( 222 Rn), uranium ( 238,234 U), radium ( 226 , 228 Ra), lead ( 210 Pb) and polonium ( 210 Po) from drinking water of different qualities (i.e. soft, hard, iron-, manganese- and humus-rich, acidic) to test commercially available equipment for its ability to remove radionuclides; to find new materials, absorbents and membranes effective in the removal of radionuclides and to issue guidelines for the treatment and disposal of radioactive wastes produced in water treatment. Radon could be removed efficiently (>95%) from domestic water supplies by both aeration and granular activated carbon (GAC) filtration. Defects in technical reliability or radon removal efficiency were observed in some aerators. The significant drawback of GAC filtration was the elevated gamma dose rates (up to 120 μSv/h) near the filter and the radioactivity of spent GAC. Aeration was found to be a suitable method for removing radon at waterworks, too. The removal efficiencies at waterworks where the aeration process was designed to remove radon or carbon dioxide were 67-99%. If the aeration process was properly designed, removal efficiencies higher than 95% could be attained. Uranium could best be removed (>95%) with strong basic anion exchange resins and radium by applying strong acidic cation exchange resins

  11. Treatment techniques for removing natural radionuclides from drinking water. Final report of the TENAWA project

    Energy Technology Data Exchange (ETDEWEB)

    Annanmaeki, M.; Turtiainen, T. [eds.

    2000-01-01

    TENAWA project (Treatment Techniques for Removing Natural Radionuclides from Drinking Water) was carried out on a cost-shared basic with the European Commission (CEC) under the supervision of Directorate-General XII, Radiation Protection Unit. TENAWA project was started because in several European countries ground water supplies may contain high amounts of natural radionuclides. During the project both laboratory and field research was performed in order to test the applicability of different equipment and techniques for removing natural radionuclides from drinking water. The measurable objectives of the project were: to give recommendations on the most suitable methods for removing radon ({sup 222}Rn), uranium ({sup 238,234}U), radium ({sup 226}, {sup 228}Ra), lead ({sup 210}Pb) and polonium ({sup 210}Po) from drinking water of different qualities (i.e. soft, hard, iron-, manganese- and humus-rich, acidic) to test commercially available equipment for its ability to remove radionuclides; to find new materials, absorbents and membranes effective in the removal of radionuclides and to issue guidelines for the treatment and disposal of radioactive wastes produced in water treatment. Radon could be removed efficiently (>95%) from domestic water supplies by both aeration and granular activated carbon (GAC) filtration. Defects in technical reliability or radon removal efficiency were observed in some aerators. The significant drawback of GAC filtration was the elevated gamma dose rates (up to 120 {mu}Sv/h) near the filter and the radioactivity of spent GAC. Aeration was found to be a suitable method for removing radon at waterworks, too. The removal efficiencies at waterworks where the aeration process was designed to remove radon or carbon dioxide were 67-99%. If the aeration process was properly designed, removal efficiencies higher than 95% could be attained. Uranium could best be removed (>95%) with strong basic anion exchange resins and radium by applying strong

  12. Optimum water depth ranges of dominant submersed macrophytes in a natural freshwater lake.

    Science.gov (United States)

    Ye, Bibi; Chu, Zhaosheng; Wu, Aiping; Hou, Zeying; Wang, Shengrui

    2018-01-01

    Macrophytes show a zonal distribution along the lake littoral zone because of their specific preferred water depths while the optimum growth water depths of dominant submersed macrophytes in natural lakes are not well known. We studied the seasonal biomass and frequency patterns of dominant and companion submersed macrophytes along the water depth gradient in Lake Erhai in 2013. The results showed that the species richness and community biomass showed hump-back shaped patterns along the water depth gradient both in polydominant and monodominant communities. Biomass percentage of Potamogenton maackianus showed a hump-back pattern while biomass percentages of Ceratophyllum demersum and Vallisneria natans appeared U-shaped patterns across the water depth gradient in polydominant communities whereas biomass percentage of V. natans increased with the water depth in monodominant communities. Dominant species demonstrated a broader distribution range of water depth than companion species. Frequency and biomass of companion species declined drastically with the water depth whereas those of dominant species showed non-linear patterns across the water depth gradient. Namely, along the water depth gradient, biomass of P. maackianus and V. natans showed hump-back patterns and biomasses of C. demersum displayed a U-shaped pattern in the polydominant communities but biomass of V. natans demonstrated a hump-back pattern in the monodominant communities; frequency of P. maackianus showed a hump-back pattern and C. demersum and V. natans maintained high frequencies in the two types of communities. We can speculate that in Lake Erhai the optimum growth water depths of P. maackianus and C. demersum in the polydominant communities are 2.5-4.5 m and 1-2 m or 5-6 m, respectively and that of V. natans is 3-5 m in the polydominant communities and 2.5-5 m in the monodominant communities. This is the first report that the optimum water depth ranges in the horizontal direction of three

  13. Development of a differential infrared absorption method to measure the deuterium content of natural water

    International Nuclear Information System (INIS)

    D'Alessio, Enrique; Bonadeo, Hernan; Karaianev de Del Carril, Stiliana.

    1975-07-01

    A system to measure the deuterium content of natural water using differential infrared spectroscopy is described. Parameters conducing to an optimized design are analyzed, and the construction of the system is described. A Perkin Elmer 225 infrared spectrometer, to which a scale expansion system has been added, is used. Sample and reference waters are alternatively introduced by a pneumatical-mechanical system into a unique F Ca thermostatized infrared cell. Results and calibration curves shown prove that the system is capable of measuring deuterium content with a precision of 1 part per million. (author)

  14. Solid-phase extraction-spectrophotometric determination of uranium(VI) in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Sadeghi, Susan; Mohammadzadeh, Darush [Department of Chemistry, University of Birjand, Birjand (Iran); Yamini, Yadollah [Department of Chemistry, Tarbiat Moddars University, Tehran (Iran)

    2003-03-01

    A method for the extraction and determination of uranyl ion in natural waters using octadecyl bonded silica membrane disks modified with piroxicam and spectrophotometry with arsenazo(III) is proposed. The perconcentration step was studied with regard to experimental parameters such as amount of extractant, type and amount of eluent, pH, flow rates and tolerance limit of diverse ions on the recovery of uranyl ion. The limit of detection of the proposed method is 0.4 {mu}g L{sup -1} of uranyl. The method was applied to the recovery of uranyl from different water samples. (orig.)

  15. Solid-phase extraction-spectrophotometric determination of uranium(VI) in natural waters

    International Nuclear Information System (INIS)

    Sadeghi, Susan; Mohammadzadeh, Darush; Yamini, Yadollah

    2003-01-01

    A method for the extraction and determination of uranyl ion in natural waters using octadecyl bonded silica membrane disks modified with piroxicam and spectrophotometry with arsenazo(III) is proposed. The perconcentration step was studied with regard to experimental parameters such as amount of extractant, type and amount of eluent, pH, flow rates and tolerance limit of diverse ions on the recovery of uranyl ion. The limit of detection of the proposed method is 0.4 μg L -1 of uranyl. The method was applied to the recovery of uranyl from different water samples. (orig.)

  16. Ionometric determination of boron in natural, waste waters and biological materials

    International Nuclear Information System (INIS)

    Yakimov, V.P.; Markova, O.L.

    1992-01-01

    Method have been developed for the determination of boron in natural, waste waters and biological materials using direct potentiometry with a BF 4 - selective electrode. In order to estimate the matrix effects in plotting the calibration graphs, it is recommended to and the test water or solution of biomaterial mineralizates, containing boron in electrode-inactive form, to the calibration solutions before e.m.f. measurements version of boron into tetrafluoroborate in solid phase on heating the mineralized samples with ammonium bifluoride at 150-180 deg C

  17. Experimental study of natural convection adjacent to an isothermal vertical ice cylinder in cold pure water

    International Nuclear Information System (INIS)

    Riu, Kap Jong; Yea, Yong Taeg; Park, Sang Hee

    1991-01-01

    A natural convection adjacent to an isothermal vertical ice cylinder is studied experimentally in cold pure water. The experiments are carried out as changing the temperature of the ambient water and then the flow and heat transfer characteristics is visualized and observed. It is shown that flow patterns are steady state upflow, unsteady state flow, steady state dual flow, and steady state downflow. There is also obtained a heat transfer coefficient and mean Nusselt number at various ambient temperature. These results are in good agreement with the theoretical ones. (Author)

  18. Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water

    International Nuclear Information System (INIS)

    El-Tahawy, M.S.; Farouk, M.A.; Ibrahiem, N.M.; El-Mongey, S.A.M.

    1994-01-01

    Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238 U series, 232 Th series and 40 K did not exceed 16.0, 15.5 and 500.0 Bq kg -1 dry weight for sediments. The activity concentration of 238 U series and 40 K did not exceed 0.6 and 18.0 Bq l -1 for stream water. (author)

  19. Natural and artificial radionuclides in the Suez Canal bottom sediments and stream water

    Science.gov (United States)

    El-Tahawy, M. S.; Farouk, M. A.; Ibrahiem, N. M.; El-Mongey, S. A. M.

    1994-07-01

    Concentration of natural and artificial radionuclides in Suez Canal bottom sediments and stream water have been measured using γ spectrometers based on a hyper-pure Ge detector. The activity concentrations of 238U series, 232Th series and 40K did not exceed 16.0, 15.5 and 500.0 Bq kg-1 dry weight for sediments. The activity concentration of 238U series and 40K did not exceed 0.6 and 18.0 Bq 1-1 for stream water.

  20. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-01

    High-performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  1. Simple Retrofit High-Efficiency Natural Gas Water Heater Field Test

    Energy Technology Data Exchange (ETDEWEB)

    Schoenbauer, Ben [NorthernSTAR, St. Paul, MN (United States)

    2017-03-28

    High performance water heaters are typically more time consuming and costly to install in retrofit applications, making high performance water heaters difficult to justify economically. However, recent advancements in high performance water heaters have targeted the retrofit market, simplifying installations and reducing costs. Four high efficiency natural gas water heaters designed specifically for retrofit applications were installed in single-family homes along with detailed monitoring systems to characterize their savings potential, their installed efficiencies, and their ability to meet household demands. The water heaters tested for this project were designed to improve the cost-effectiveness and increase market penetration of high efficiency water heaters in the residential retrofit market. The retrofit high efficiency water heaters achieved their goal of reducing costs, maintaining savings potential and installed efficiency of other high efficiency water heaters, and meeting the necessary capacity in order to improve cost-effectiveness. However, the improvements were not sufficient to achieve simple paybacks of less than ten years for the incremental cost compared to a minimum efficiency heater. Significant changes would be necessary to reduce the simple payback to six years or less. Annual energy savings in the range of $200 would also reduce paybacks to less than six years. These energy savings would require either significantly higher fuel costs (greater than $1.50 per therm) or very high usage (around 120 gallons per day). For current incremental costs, the water heater efficiency would need to be similar to that of a heat pump water heater to deliver a six year payback.

  2. Estimation of natural historical flows for the Manitowish River near Manitowish Waters, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Reneau, Paul C.; Robertson, Dale M.

    2012-01-01

    The Wisconsin Department of Natural Resources is charged with oversight of dam operations throughout Wisconsin and is considering modifications to the operating orders for the Rest Lake Dam in Vilas County, Wisconsin. State law requires that the operation orders be tied to natural low flows at the dam. Because the presence of the dam confounds measurement of natural flows, the U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, installed streamflow-gaging stations and developed two statistical methods to improve estimates of natural flows at the Rest Lake Dam. Two independent methods were used to estimate daily natural flow for the Manitowish River approximately 1 mile downstream of the Rest Lake Dam. The first method was an adjusted drainage-area ratio method, which used a regression analysis that related measured water yield (flow divided by watershed area) from short-term (2009–11) gaging stations upstream of the Manitowish Chain of Lakes to the water yield from two nearby long-term gaging stations in order to extend the flow record (1991–2011). In this approach, the computed flows into the Chain of Lakes at the upstream gaging stations were multiplied by a coefficient to account for the monthly hydrologic contributions (precipitation, evaporation, groundwater, and runoff) associated with the additional watershed area between the upstream gaging stations and the dam at the outlet of the Chain of Lakes (Rest Lake Dam). The second method used to estimate daily natural flow at the Rest Lake Dam was a water-budget approach, which used lake stage and dam outflow data provided by the dam operator. A water-budget model was constructed and then calibrated with an automated parameter-estimation program by matching simulated flow-duration statistics with measured flow-duration statistics at the upstream gaging stations. After calibration of the water-budget model, the model was used to compute natural flow at the dam from 1973 to

  3. Improvement in understanding of natural circulation phenomena in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    Choi, Jong-Ho; Cleveland, John; Aksan, Nusret

    2011-01-01

    Highlights: ► Phenomena influencing natural circulation in passive systems. ► Behaviour in large pools of liquid. ► Effect of non-condensable gas on condensation heat transfer. ► Behaviour of containment emergency systems. ► Natural circulation flow and pressure drop in various geometries. - Abstract: The IAEA has organized a coordinated research project (CRP) on “Natural Circulation Phenomena, Modelling, and Reliability of Passive Systems That Utilize Natural Circulation.” Specific objectives of CRP were to (i) establish the status of knowledge: reactor start-up and operation, passive system initiation and operation, flow stability, 3-D effects, and scaling laws, (ii) investigate phenomena influencing reliability of passive natural circulation systems, (iii) review experimental databases for the phenomena, (iv) examine the ability of computer codes to predict natural circulation and related phenomena, and (v) apply methodologies for examining the reliability of passive systems. Sixteen institutes from 13 IAEA Member States have participated in this CRP. Twenty reference advanced water cooled reactor designs including evolutionary and innovative designs were selected to examine the use of natural circulation and passive systems in their designs. Twelve phenomena influencing natural circulation were identified and characterized: (1) behaviour in large pools of liquid, (2) effect of non-condensable gases on condensation heat transfer, (3) condensation on the containment structures, (4) behaviour of containment emergency systems, (5) thermo-fluid dynamics and pressure drops in various geometrical configurations, (6) natural circulation in closed loop, (7) steam liquid interaction, (8) gravity driven cooling and accumulator behaviour, (9) liquid temperature stratification, (10) behaviour of emergency heat exchangers and isolation condensers, (11) stratification and mixing of boron, and (12) core make-up tank behaviour. This paper summarizes the

  4. Conditions of competition between the production of water by desalination and natural resources

    International Nuclear Information System (INIS)

    Gaussens, J.

    1969-01-01

    A close examination of the local supply and demand for fresh water is involved when considering a sea water desalination plant in a given region. This examination makes it possible in most cases to undertake a thorough study of the natural resources, resulting in the use of desalination being rejected. After confirming this fact by precise examples, the authors consider that the preliminary study should be extended, taking into account the complementary character of natural resources and desalination systems: contribution to peak demand, contribution to base demand. This analysis results in a classification of the main user regions according to certain economic criteria defining their suitability for the use of desalination processes. (author) [fr

  5. Measurements of natural uranium concentration in Caspian Sea and Persian Gulf water by laser fluorimetric method

    International Nuclear Information System (INIS)

    Garshasbi, H.; Karimi Diba, J.; Jahanbakhshian, M. H.; Asghari, S. K.; Heravi, G. H.

    2005-01-01

    Natural uranium exists in earth crust and seawater. The concentration of uranium might increase by human manipulation or geological changes. The aim of this study was to verify susceptibility of laser fluorimetry method to determine the uranium concentration in Caspian Sea and Persian Gulf water. Materials and Methods: Laser fluorimetric method was used to determine the uranium concentration in several samples prepared from Caspian Sea and Persian Gulf water. Biological and chemical substances were eliminated in samples for better evaluation of the method. Results: As the concentration of natural uranium in samples increases, the response of instrument (uranium analyzer) increases accordingly. The standard deviation also increased slightly and gradually. Conclusion: Results indicate that the laser fluorimetry method show a reliable and accurate response with uranium concentration up to 100 μg/L in samples after removal of biological and organic substances

  6. The role and value of water in natural capital restoration on the Agulhas Plain

    Directory of Open Access Journals (Sweden)

    Helanya Fourie

    2013-02-01

    Full Text Available The Agulhas Plain is a low-lying coastal area within the Cape Floristic Region. It is heavily invaded by alien vegetation that infringes upon the sustainable supply of ecosystem goods and services provided by the native fynbos vegetation. Alien clearing and natural capital restoration is expected to recover these ecosystem goods and services and in particular to increase water availability. The study conducts cost-benefit analyses to assess whether alien clearing and natural capital restoration would add value to the Agulhas Plain through sufficiently increasing the supply of marketable ecosystem goods and services. The results indicate that the costs of alien clearing and restoration cannot be justified in the absence of water as a valued commodity. Other ecosystem goods and services included have a negligible impact on justifying costs.

  7. Direct quantification of rare earth element concentrations in natural waters by ICP-MS

    International Nuclear Information System (INIS)

    Lawrence, Michael G.; Greig, Alan; Collerson, Kenneth D.; Kamber, Balz S.

    2006-01-01

    A direct quadrupole ICP-MS technique has been developed for the analysis of the rare earth elements and yttrium in natural waters. The method has been validated by comparison of the results obtained for the river water reference material SLRS-4 with literature values. The detection limit of the technique was investigated by analysis of serial dilutions of SLRS-4 and revealed that single elements can be quantified at single-digit fg/g concentrations. A coherent normalised rare earth pattern was retained at concentrations two orders of magnitude below natural concentrations for SLRS-4, demonstrating the excellent inter-element accuracy and precision of the method. The technique was applied to the analysis of a diluted mid-salinity estuarine sample, which also displayed a coherent normalised rare earth element pattern, yielding the expected distinctive marine characteristics

  8. The nexus between integrated natural resources management and integrated water resources management in southern Africa

    Science.gov (United States)

    Twomlow, Stephen; Love, David; Walker, Sue

    The low productivity of smallholder farming systems and enterprises in the drier areas of the developing world can be attributed mainly to the limited resources of farming households and the application of inappropriate skills and practices that can lead to the degradation of the natural resource base. This lack of development, particularly in southern Africa, is of growing concern from both an agricultural and environmental perspective. To address this lack of progress, two development paradigms that improve land and water productivity have evolved, somewhat independently, from different scientific constituencies. One championed by the International Agricultural Research constituency is Integrated Natural Resource Management (INRM), whilst the second championed predominantly by Environmental and Civil Engineering constituencies is Integrated Water Resources Management (IWRM). As a result of similar objectives of working towards the millennium development goals of improved food security and environmental sustainability, there exists a nexus between the constituencies of the two paradigms, particularly in terms of appreciating the lessons learned. In this paper lessons are drawn from past INRM research that may have particular relevance to IWRM scientists as they re-direct their focus from blue water issues to green water issues, and vice-versa. Case studies are drawn from the management of water quality for irrigation, green water productivity and a convergence of INRM and IWRM in the management of gold panning in southern Zimbabwe. One point that is abundantly clear from both constituencies is that ‘one-size-fits-all’ or silver bullet solutions that are generally applicable for the enhancement of blue water management/formal irrigation simply do not exist for the smallholder rainfed systems.

  9. Natural sunlight shapes crude oil-degradingbacterial communities in northern Gulf of Mexico surface waters

    Directory of Open Access Journals (Sweden)

    Hernando P Bacosa

    2015-12-01

    Full Text Available Following the Deepwater Horizon (DWH spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 d under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  10. Natural Sunlight Shapes Crude Oil-Degrading Bacterial Communities in Northern Gulf of Mexico Surface Waters.

    Science.gov (United States)

    Bacosa, Hernando P; Liu, Zhanfei; Erdner, Deana L

    2015-01-01

    Following the Deepwater Horizon (DWH) spill in 2010, an enormous amount of oil was observed in the deep and surface waters of the northern Gulf of Mexico. Surface waters are characterized by intense sunlight and high temperature during summer. While the oil-degrading bacterial communities in the deep-sea plume have been widely investigated, the effect of natural sunlight on those in oil polluted surface waters remains unexplored to date. In this study, we incubated surface water from the DWH site with amendments of crude oil, Corexit dispersant, or both for 36 days under natural sunlight in the northern Gulf of Mexico. The bacterial community was analyzed over time for total abundance, density of alkane and polycyclic aromatic hydrocarbon degraders, and community composition via pyrosequencing. Our results showed that, for treatments with oil and/or Corexit, sunlight significantly reduced bacterial diversity and evenness and was a key driver of shifts in bacterial community structure. In samples containing oil or dispersant, sunlight greatly reduced abundance of the Cyanobacterium Synechococcus but increased the relative abundances of Alteromonas, Marinobacter, Labrenzia, Sandarakinotalea, Bartonella, and Halomonas. Dark samples with oil were represented by members of Thalassobius, Winogradskyella, Alcanivorax, Formosa, Pseudomonas, Eubacterium, Erythrobacter, Natronocella, and Coxiella. Both oil and Corexit inhibited the Candidatus Pelagibacter with or without sunlight exposure. For the first time, we demonstrated the effects of light in structuring microbial communities in water with oil and/or Corexit. Overall, our findings improve understanding of oil pollution in surface water, and provide unequivocal evidence that sunlight is a key factor in determining bacterial community composition and dynamics in oil polluted marine waters.

  11. Study of Chironomidae Natural Populations of the Former Semipalatinsk Test Site Water Bodies

    International Nuclear Information System (INIS)

    Aimanova, K.G.; Blinov, A.G.; Kiknadze, I.I.; Bakhtin, M.M.; Seisebaev, A.T.; Rakhimbaeva, K.T.

    1998-01-01

    The open water bodies as a component of the biosphere serve as the accumulators of artificial radionuclides generated during the nuclear explosions; therefore their radioactive contamination needs to be registered. The assessment of the environmental radioactive contamination consequences for the natural populations of organisms living in water bodies is of particular importance. Chironomini (Diptera, Chironomidae) play an important role as they are a significant component of water and air biocenoses and provide the self-cleaning of water bodies and food chains of industrial fish and bird. Chironomini have been chosen to be a model for the UNESCO International Program titled 'Man and Biosphere' and are used as the biologic indicator for ecological studies of anthropogenic influence on water bodies. The study of Chironomini natural mutagenic process and its alteration due to the radioactive contamination of water bodies is of extreme scientific interest and can serve as the indicator of the scale of genetic damage of water organisms. This work presents the data on natural populations of Chironomini of former STS water bodies: Shagan Lake, Balapan Lake, the artificial water body on the Karazhyra Coal Field, the backwater near the Shagan River, Balykty col Lake, etc. The analysis of morphology and caryotype of Camptochironomus sp. S (S - larvae have been sampled from the Semipalatinsk Test Site) showed that this is a new species as compared to studied species (C. tentans, C. pallidivittatus) of Camptochironomus subfamily. The caryotype Camptochironomus sp. S differs sharply from the caryotypes of other Camptochironomus species due to its strong hetero chromatization of centromeric discs. The immediate molecular analysis of genome DNA of Camptochironomus sp. S larvae sampled from Shagan Lake was performed: the total DNA of larvae of this species was obtained, nucleonic sequences of genes of cytochrome B (Cyt B) and cytochrome I (COI) were determined using methods of

  12. Towards tributyltin quantification in natural water at the Environmental Quality Standard level required by the Water Framework Directive.

    Science.gov (United States)

    Alasonati, Enrica; Fettig, Ina; Richter, Janine; Philipp, Rosemarie; Milačič, Radmila; Sčančar, Janez; Zuliani, Tea; Tunç, Murat; Bilsel, Mine; Gören, Ahmet Ceyhan; Fisicaro, Paola

    2016-11-01

    The European Union (EU) has included tributyltin (TBT) and its compounds in the list of priority water pollutants. Quality standards demanded by the EU Water Framework Directive (WFD) require determination of TBT at so low concentration level that chemical analysis is still difficult and further research is needed to improve the sensitivity, the accuracy and the precision of existing methodologies. Within the frame of a joint research project "Traceable measurements for monitoring critical pollutants under the European Water Framework Directive" in the European Metrology Research Programme (EMRP), four metrological and designated institutes have developed a primary method to quantify TBT in natural water using liquid-liquid extraction (LLE) and species-specific isotope dilution mass spectrometry (SSIDMS). The procedure has been validated at the Environmental Quality Standard (EQS) level (0.2ngL(-1) as cation) and at the WFD-required limit of quantification (LOQ) (0.06ngL(-1) as cation). The LOQ of the methodology was 0.06ngL(-1) and the average measurement uncertainty at the LOQ was 36%, which agreed with WFD requirements. The analytical difficulties of the method, namely the presence of TBT in blanks and the sources of measurement uncertainties, as well as the interlaboratory comparison results are discussed in detail. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. Undulative induction electron accelerator for the waste and natural water purification systems

    CERN Document Server

    Kulish, Victor V; Gubanov, I V

    2001-01-01

    The project analysis of Undulative Induction Accelerator (EH - accelerator) for the waste and natural water purification systems is accomplished. It is shown that the use of the four-channel design of induction block and the standard set of auxiliary equipment (developed earlier for the Linear Induction Accelerators - LINACs) allow to construct commercially promising purification systems. A quality analysis of the accelerator is done and the optimal parameters are chosen taking into account the specific sphere of its usage.

  14. The influence of calcium magnesium, and sodium on the spectrographic analysis of natural waters

    International Nuclear Information System (INIS)

    Diaz Guerra, J. P.; Capdevilla, C.

    1969-01-01

    The influences of 1000 μg/ml of calcium and sodium and 300 μg/ml of magnesium, on the spectrographic determination of Al, Ba, Cr, Fe, Li , Mn, Ni, Pb, Sr and Ti, minor constituents in natural waters, have been studied, In order to eliminate them, the elements Ga, In, La, Ti and Zn, as well as a mixture containing 30 % Tl-70 % In, have been tested as spectrochemical buffers. (Author) 7 refs

  15. Integrated Microanalytical System for Simultaneous Voltammetric Measurements of Free Metal Ion Concentrations in Natural Waters

    OpenAIRE

    Noël, Stéphane; Tercier-Waeber, Mary-Lou; Lin, Lin; Buffle, Jacques; Guenat, Olivier; Koudelka-Hep, Milena

    2007-01-01

    A complexing gel integrated microelectrode (CGIME) for direct measurements of free metal ion concentrations in natural waters has been developed. It is prepared by the successive deposition of microlayers of a chelating resin, an antifouling agarose gel and Hg on a 100-interconnected Ir-based microelectrode array. The trace metals of interest are in a first step accumulated on the chelating resin in proportion to their free ion concentration in solution, then released in acidic solution and d...

  16. The experimental determination of the buckling in the bare heavy water natural uranium critical assembly 'RB'

    Energy Technology Data Exchange (ETDEWEB)

    Raisic, N M; Popovic, D D; Takac, S M; Djordjevic, M M [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1960-03-15

    The buckling in the bare heavy water natural uranium critical assembly was determined by measuring the thermal neutron flux distribution. The obtained value for the critical buckling at the temperature of 20 deg C is: B{sup 2} = (8.516 {+-} 0.02) m{sup -2}. The above error is a statistical one, obtained from several series of measurements. The possible systematic error was estimated as 0.1 m{sup -2}. (author)

  17. Natural Arsenic Pollution and Hydrochemistry of Drinking Water of an Urban Part of Iran

    OpenAIRE

    Mohammad Mosaferi; Mohammad Shakerkhatibi; Saeid Dastgiri; Mohammad Asghari Jafar-abadi; Alireza Khataee; Samira Sheykholeslami

    2014-01-01

    Natural contamination of surface and groundwater resources with arsenic is a worldwide problem. The present study aimed to investigate and report on the quality of drinking water resources with special focus on arsenic presence in an urban part of Iran. Arsenic concentrations were measured by graphite furnace atomic absorption spectroscopy (GFAAS). In both surface and groundwater samples, arsenic concentrations ranged from 6 - 61 µg/L with an average value of 39 ± 20 µg/L. Concentration of ar...

  18. Man-nature ecosystemic relationship of Helicobacter pylori contamination on water sources

    Directory of Open Access Journals (Sweden)

    Claudia Patricia Acosta

    2011-09-01

    Full Text Available The link between man and nature has been acknowledged since ancient times. However, the comprehension of this re­lationship from health perspective suggests a more holistic interpretation from a historical framework. This article ex­plores: a the links about the use and management of water using an ecosystemic approach, including its relationship with human health. b systemic approach between man-na­ture relationship and Helicobacter pylori contamination.

  19. The experimental determination of the buckling in the bare heavy water natural uranium critical assembly 'RB'

    International Nuclear Information System (INIS)

    Raisic, N.M.; Popovic, D.D.; Takac, S.M.; Djordjevic, M.M.

    1960-01-01

    The buckling in the bare heavy water natural uranium critical assembly was determined by measuring the thermal neutron flux distribution. The obtained value for the critical buckling at the temperature of 20 deg C is: B 2 = (8.516 ± 0.02) m -2 . The above error is a statistical one, obtained from several series of measurements. The possible systematic error was estimated as 0.1 m -2 . (author)

  20. Analysis of Economic Efficiency of Production of Low-Concentrated Sodium Hypochlorite by Direct Electrolysis of Natural Waters

    Science.gov (United States)

    Fesenko, L. N.; Pchelnikov, I. V.; Fedotov, R. V.

    2017-11-01

    The study presents the economic efficiency of direct electrolysis of natural waters in comparison with the waters artificially prepared by electrolysis of the 3% sodium salt solution. The study used sea water (Black sea water); mineral water (underground water of the Melikhovskaya station, “Ognennaya” hole); brackish water (underground water from the Grushevskaya station of the Aksai district); 3% solution of sodium salt. As a result, the dependences characterizing the direct electrolysis of natural waters with different mineralization, economic, and energy parties are shown. The rational area of the electrolysis for each of the investigated solution is determined. The cost of a kilogram of active chlorine obtained by the direct water electrolysis: Black sea from 17.2 to 18.3 RUB/kg; the Melikhovskaya station “Ognennaya” hole - 14.3 to 15.0 Rubles/kg; 3% solution of NaCl - 30 Rubles./kg; Grushevskogo St. - 63,0-73,0 Rubles/kg.

  1. Determination of molybdenum in natural waters by laser thermal-lens spectrometry

    International Nuclear Information System (INIS)

    Proskurnin, M.A.; Abroskin, A.G.; Artemova, S.I.; Belyaeva, T.V.; Ivanova, E.K.

    1992-01-01

    As before, the determination of nanogram quantities of heavy metals from small sample volumes of natural water represents an acute problem. This task has been solved more or less successfully by the use of different and sufficiently developed physicochemical methods. In most cases the determination requires a 100-fold preconcentration of the component determined (for instance, when using atomic absorption spectrometry). This significant disadvantage can be avoided by the use of thermal-lens laser spectrometry (TLS); some alternatives of the method have already found applications in analytical practice. The objective of the present study has been to investigate the optimum conditions for the determination of molybdenum in natural waters from small sample volumes by TLS. The resulting method based on the reaction with thiocyanate ions in the presence of ascorbic acid, has a detection limit of 19 pg/ml. Masking of iron(III) with a 1000-fold excess of tartrate ions has been proposed and it has been shown that a 10-fold excess of iron does not interfere in the determination of molybdenum. The procedure has been applied to the determination of molybdenum in drinking and natural waters

  2. Determination of natural occurring radionuclide and heavy metals in drinking water in Malaysia

    International Nuclear Information System (INIS)

    Nur Suraya Ahmad

    2012-01-01

    The objective of this study is to ascertain the activity concentration of naturally occurring radionuclide and selected heavy metals selected mineral and drinking waters sample in Malaysia. The activity concentration of natural radionuclide (mBq/ L) was determined by Gamma Spectroscopy Systems while the concentration of heavy metal (mg/ L) was determined by the Induces Couple Plasma Mass Spectrometry (ICP-MS). The mineral and drinking water samples used in this study were Segar UKM, Giant, Ice Mountain (600 ml), Ice Mountain (1600 ml), Spritzer, Reverse Osmosis, and fresh tap water. The results of the study found 3 natural occurring radioactive materials (NORM) found for example - U-238, Ra-226 and Ra-228. The activity concentration determined was 0.00 mBq/ L to 1.71 mBq/ L for U-238, 0.00 - 32.46 mBq/ L for Ra-226 and 0.00 - 12.01 mBq/ L for Ra-228 respectively. The concentration of heavy metals Zn, Fe, As, Cl, Mn, Cu and Pb determined in this study were in the range of 0.000 - 0.003 mg/ L, 0.002-0.018 mg/ L, 0.000 - 0.007 mg/ L, 6.152 - 57.724 mg/ L, 0.000 - 0.016 μg/ L, 0.058 - 0.766 μg/ L and 0.000 - 0.380 μg/ L respectively. In general, the result of this study indicate that the activity concentration NORM and selected heavy metals in the studied mineral and drinking water samples were low and not exceed the limit set by World Organization (WHO) and Malaysian Food Regulations 1985. Thus, all the studied water samples complying the Malaysian drinking standard and safe to be consumed. (author)

  3. The origin and fate of arsenic in coalbed natural gas-produced water ponds.

    Science.gov (United States)

    Sowder, J T; Kelleners, T J; Reddy, K J

    2010-01-01

    Coalbed natural gas (CBNG)-produced water contains small amounts of trace metals that can accumulate over time in produced water retention ponds. Within the Powder River Basin (PRB) of Wyoming, high concentrations of trace metals in pond water and their effect on shallow groundwater are potential concerns. A pond with a maximum As concentration of 146 microg L(-1) was studied in detail to determine the potential for groundwater pollution and to explain the cause for the high concentration of As. Infiltration characteristics, subsurface hydrology, our fall and pond water quality, isotope signatures, and trace metal balances were examined to assess the hydrology and geochemistry of the pond. The results indicated minimum or no infiltration of pond water and no measurable contamination of the shallow groundwater. The high As concentrations in the pond were determined to be the result of semi-continuous inputs of CBNG-produced water with low As concentrations (0.20-0.48 microg L(-1)), exasperated by low pond volumes during drought conditions. Because of reduced infiltration and high evaporation rates, As became concentrated over time. Reduced infiltration was most likely caused by the high sodium concentration and high sodium adsorption ratio of the CBNG-produced water, which disrupt soil structure. The findings for the pond and the techniques used may serve as a template for future impact assessments of other CBNG-produced water ponds and are relevant for the approximately 4000 ponds currently permitted in the PRB and for future ponds. Further studies are recommended in the use of playa landforms to store marginal-quality produced water.

  4. Two-phase natural circulation experiments in a pressurized water loop with CANDU geometry

    International Nuclear Information System (INIS)

    Ardron, K.H.; Krishnan, V.S.; McGee, G.R.; Anderson, J.W.D.; Hawley, E.H.

    1984-07-01

    To provide information on two-phase natural circulation in a CANDU-type coolant circuit a series of tests has been performed in the RD-12 loop at the Whiteshell Nuclear Research Establishment. RD-12 is a 10-MPa pressurized-water loop containing two active boilers, two pumps, and two, or four, heated horizontal channels arranged in a symmetrical figure-of-eight configuration characteristic of the CANDU reactor primary heat-transport system. In the tests, single-phase natural circulation was established in the loop and void was introduced by controlled draining, with the surge tank (pressurizer) valved out of the system. The paper reviews the experimental results obtained and describes the evolution of natural circulation flow in particular cases as voidage is progressively increased. The stability behaviour is discussed briefly with reference to a simple stability model

  5. A natural coagulant protein from Moringa oleifera: isolation, characterization, and potential use for water treatment

    Science.gov (United States)

    Choudhary, Manisha; Neogi, Sudarsan

    2017-10-01

    In developing countries pond water is still widely used for drinking and household purposes, which develops higher turbidity during rainy seasons and requires a large amount of chemical coagulants, and this leads to high cost of treatment. To mitigate this, it is important to find an economical and natural coagulant to treat turbid water. The present study is focused on using a plant based component as a natural coagulant that is sustainable and environment-friendly. This work focuses on the extraction, isolation and purification of a natural coagulant from seed kernels of Moringa oleifera to enhance its turbidity removal efficiency. The determination of themolecular weight of the purified proteins was done using sodium dodecyl sulfate polyacrylamide gel electrophoresis. The active coagulant proteins were isolated using 30-60% and 60-80% saturation of ammonium sulfate. It was observed that proteins with molecular weight less than 36 kDa have superior coagulation activity. Turbidity removal efficiency of these active coagulant proteins was compared with alum. The possibility of using Moringa oleifera seeds as a natural antimicrobial agent was also investigated.

  6. Application of water quality index for the assessment of suitability of natural sources of water for drinking in rural areas of east Sikkim, India

    OpenAIRE

    Shubra Poonia; T Shantikumar Singh; Dechen C Tsering

    2015-01-01

    In Sikkim, especially in the rural areas where there is no supply of treated water for drinking and other domestic uses, natural surface water is the only source. The objective was to assess the water quality of natural sources of water in the rural areas of East Sikkim using a water quality index (WQI) for different seasons. A total of 225 samples, that is, 75 in winter, 75 in summer, and 75 in monsoon were collected from different sources for physicochemical analysis, and a WQI was calculat...

  7. Geochemical and strontium isotope characterization of produced waters from Marcellus Shale natural gas extraction.

    Science.gov (United States)

    Chapman, Elizabeth C; Capo, Rosemary C; Stewart, Brian W; Kirby, Carl S; Hammack, Richard W; Schroeder, Karl T; Edenborn, Harry M

    2012-03-20

    Extraction of natural gas by hydraulic fracturing of the Middle Devonian Marcellus Shale, a major gas-bearing unit in the Appalachian Basin, results in significant quantities of produced water containing high total dissolved solids (TDS). We carried out a strontium (Sr) isotope investigation to determine the utility of Sr isotopes in identifying and quantifying the interaction of Marcellus Formation produced waters with other waters in the Appalachian Basin in the event of an accidental release, and to provide information about the source of the dissolved solids. Strontium isotopic ratios of Marcellus produced waters collected over a geographic range of ~375 km from southwestern to northeastern Pennsylvania define a relatively narrow set of values (ε(Sr)(SW) = +13.8 to +41.6, where ε(Sr) (SW) is the deviation of the (87)Sr/(86)Sr ratio from that of seawater in parts per 10(4)); this isotopic range falls above that of Middle Devonian seawater, and is distinct from most western Pennsylvania acid mine drainage and Upper Devonian Venango Group oil and gas brines. The uniformity of the isotope ratios suggests a basin-wide source of dissolved solids with a component that is more radiogenic than seawater. Mixing models indicate that Sr isotope ratios can be used to sensitively differentiate between Marcellus Formation produced water and other potential sources of TDS into ground or surface waters.

  8. Nationwide occurrence of radon and other natural radioactivity in public water supplies

    Energy Technology Data Exchange (ETDEWEB)

    Horton, T. R.

    1985-10-01

    The nationwide study, which began in November of 1980, was designed to systematically sample water supplies in all 48 contiguous states. The results of the study will be used, in cooperation with EPA's Office of Drinking Water, to estimate population exposures nationwide and to support possible future standards for radon, uranium, and other natural radioactivity in public water supplies. Samples from more than 2500 public water supplies representing 35 states were collected. Although we sampled only about five percent of the total number of groundwater supplies in the 48 contiguous states of the US, those samples represent nearly 45 percent of the water consumed by US groundwater users in the 48 contiguous states. Sample results are summarized by arithmetic mean, geometric mean, and population weighted arithmetic mean for each state and the entire US. Results include radon, gross alpha, gross beta, Ra-226, Ra-228, total Ra, U-234, U-238, total U, and U-234/U-238 ratios. Individual public water supply results are found in the appendices. 24 refs., 91 figs., 51 tabs.

  9. Water-rock interaction in a high-FeO olivine rock in nature

    International Nuclear Information System (INIS)

    Hellmuth, K.H.; Lindberg, A.; Tullborg, E.L.

    1992-12-01

    The long-term behaviour in nature of high-FeO olivine rock in contact with surface water has been studied at the Lovasjaervi instrusion, SE-Finland. The rock has been proposed as a high-capasity, higly reactive redox-buffer backfill in a repository for spent fuel. Favourable groundwater chemistry is a major parameter relevant to safety of such a repository. Reducing conditions favour the retardation of long-lived, redox-sensitive radionuclides. Weathering influences have been studied at the natural outcrop of the rock mass. The interaction of oxidizing surface waters with rock at greater depths has been studied by using fissure filling minerals. Investigation of weathered rock from the outcrop indicates that the olivine rock is highly reactive on a geological time scale and its redox capasity is available although the instrusion as a whole is surprisingly well preserved. The fissure fillings studied allow the conclusion that oxygen seems to be efficiently removed from intruding surface water. Oxidation seem to have caused visible effects only along very conducting fractures and near the contact zones of the surrounding granitic rock. Stable isotope data of fissure filling calcites indicate that the influence of surface waters can be traced clearly down to a depth of about 50 m, but also at greater depths re-equilibration has occurred. Groundwater data from the site were not available. (orig.)

  10. Steady state and linear stability analysis of a supercritical water natural circulation loop

    International Nuclear Information System (INIS)

    Sharma, Manish; Pilkhwal, D.S.; Vijayan, P.K.; Saha, D.; Sinha, R.K.

    2010-01-01

    Supercritical water (SCW) has excellent heat transfer characteristics as a coolant for nuclear reactors. Besides it results in high thermal efficiency of the plant. However, the flow can experience instabilities in supercritical water reactors, as the density change is very large for the supercritical fluids. A computer code SUCLIN using supercritical water properties has been developed to carry out the steady state and linear stability analysis of a SCW natural circulation loop. The conservation equations of mass, momentum and energy have been linearized by imposing small perturbation in flow rate, enthalpy, pressure and specific volume. The equations have been solved analytically to generate the characteristic equation. The roots of the equation determine the stability of the system. The code has been qualitatively assessed with published results and has been extensively used for studying the effect of diameter, height, heater inlet temperature, pressure and local loss coefficients on steady state and stability behavior of a Supercritical Water Natural Circulation Loop (SCWNCL). The present paper describes the linear stability analysis model and the results obtained in detail.

  11. Soil Erosion and Surface Water Quality Impacts of Natural Gas Development in East Texas, USA

    Directory of Open Access Journals (Sweden)

    Matthew McBroom

    2012-11-01

    Full Text Available Due to greater demands for hydrocarbons and improvements in drilling technology, development of oil and natural gas in some regions of the United States has increased dramatically. A 1.4 ha natural gas well pad was constructed in an intermittent stream channel at the Alto Experimental Watersheds in East Texas, USA (F1, while another 1.1 ha well pad was offset about 15 m from a nearby intermittent stream (F2. V-notch weirs were constructed downstream of these well pads and stream sedimentation and water quality was measured. For the 2009 water year, about 11.76 cm, or almost 222% more runoff resulted from F1 than F2. Sediment yield was significantly greater at F1, with 13,972 kg ha−1 yr−1 versus 714 kg ha−1yr−1 at F2 on a per unit area disturbance basis for the 2009 water year. These losses were greater than was observed following forest clearcutting with best management practices (111–224 kg ha−1. Significantly greater nitrogen and phosphorus losses were measured at F1 than F2. While oil and gas development can degrade surface water quality, appropriate conservation practices like retaining streamside buffers can mitigate these impacts.

  12. Evaluation of dissolved oxygen and organic substances concentrations in water of the nature reserve Alluvium Zitavy

    International Nuclear Information System (INIS)

    Palaticka, A.; Noskovic, J.; Babosova, M.

    2007-01-01

    In 2006 concentrations of dissolved oxygen and organic substances were evaluated in water in the Nature Reserve Alluvium Zitavy (indirect method based on their oxidation by K 2 Cr 2 0 7 was used). The results are represented in mg of O 2 · dm -3 . Taking of samples took place in 6 sampling sites in regular month intervals. Based on obtained data and according to the standard STN 75 7221 (Water quality -The classification of the water surface quality) water in individual sampling sites was ranked into the classes of the .water surface quality. From the data it is clear that the concentrations of dissolved oxygen and organic substances in the Nature Reserve Alluvium Zitavy changed in dependence on sampling sites and time. The highest mean concentrations of dissolved oxygen in dependence on sampling time were found out in spring months and the lowest concentrations in summer months. They ranged from 1.6 mg 0 2 · dm -3 (July) to 9.0 mg O 2 · dm -3 (March). Falling dissolved oxygen values can be related to successive increase of water temperature, thus good conditions were created for decomposition of organic matter by microorganisms in water and sediments in which they use dissolved oxygen. In dependence on sampling place the highest mean concentration of dissolved oxygen was in sampling site No. 4 (6.0 mg 0 2 · dm -3 ) which is situated in the narrowest place in the NR. The lowest value was in sampling site No. 2 (3.6 mg 0 2 · dm -3 ) which is a typical wetland ecosystem. High mean values of COD Cr in dependence on sampling time were determined in summer months and low values during winter moths. Dependence of COD Cr values on sampling site was also manifested. The lowest mean value was obtained in sampling site No. 4 (59.5 mg · dm -3 ) and the highest value in sampling site No. 5 (97.1 mg · dm -3 ) which is also a typical wetland. Based on the results and according to the STN 75 7221 we ranked water in all sampling sites into the 5 th class of the water

  13. Verification of mid-ocean ballast water exchange using naturally occurring coastal tracers

    International Nuclear Information System (INIS)

    Murphy, Kathleen; Boehme, Jennifer; Coble, Paula; Cullen, Jay; Field, Paul; Moore, Willard; Perry, Elgin; Sherrell, Robert; Ruiz, Gregory

    2004-01-01

    We examined methods for verifying whether or not ships have performed mid-ocean ballast water exchange (BWE) on four commercial vessels operating in the Pacific and Atlantic Oceans. During BWE, a ship replaces the coastal water in its ballast tanks with water drawn from the open ocean, which is considered to harbor fewer organisms capable of establishing in coastal environments. We measured concentrations of several naturally occurring chemical tracers (salinity, six trace elements, colored dissolved organic matter fluorescence and radium isotopes) along ocean transects and in ballast tanks subjected to varying degrees of BWE (0-99%). Many coastal tracers showed significant concentration changes due to BWE, and our ability to detect differences between exchanged and unexchanged ballast tanks was greatest under multivariate analysis. An expanded dataset, which includes additional geographic regions, is now needed to test the generality of our results

  14. Assessment and the levels of radioactivity of natural radionuclides in drinking waters in China

    International Nuclear Information System (INIS)

    Liu Yulan

    1989-03-01

    In order to assess the levels of radioactivity of natural radionuclides in drinking waters and to estimate the internal doses of the population of China from ingestion, 1650 samples of waters were collected from normal radiation background areas of 28 provinces or autonomous regions of China. Radioactivity levels of U, Th, 226 Ra and 40 K in drinking waters were determined. The levels and the characteristics of distribution of 4 radionuclides are given. The results show that radioactivity levels in the southeast China are lower than in the north and northwest China. The average radioactivity levles of the 4 radionuclides in China close to the average levels given in UNSCEAR 1986 report. The result of estimation of internal doses from ingestion in the population of China is below the corresponding results given in UNSCEAR 1986 report, but near the result given by ICRP

  15. Verification of mid-ocean ballast water exchange using naturally occurring coastal tracers

    Energy Technology Data Exchange (ETDEWEB)

    Murphy, Kathleen; Boehme, Jennifer; Coble, Paula; Cullen, Jay; Field, Paul; Moore, Willard; Perry, Elgin; Sherrell, Robert; Ruiz, Gregory

    2004-04-01

    We examined methods for verifying whether or not ships have performed mid-ocean ballast water exchange (BWE) on four commercial vessels operating in the Pacific and Atlantic Oceans. During BWE, a ship replaces the coastal water in its ballast tanks with water drawn from the open ocean, which is considered to harbor fewer organisms capable of establishing in coastal environments. We measured concentrations of several naturally occurring chemical tracers (salinity, six trace elements, colored dissolved organic matter fluorescence and radium isotopes) along ocean transects and in ballast tanks subjected to varying degrees of BWE (0-99%). Many coastal tracers showed significant concentration changes due to BWE, and our ability to detect differences between exchanged and unexchanged ballast tanks was greatest under multivariate analysis. An expanded dataset, which includes additional geographic regions, is now needed to test the generality of our results.

  16. Experimental Investigation of a Natural Circulation Solar Domestic Water Heater Performance under Standard Consumption Rate

    DEFF Research Database (Denmark)

    Kolaei, Alireza Rezania; Taherian, H.; Ganji, D. D.

    2012-01-01

    This paper reports experimental studies on the performance of a natural circulation solar water heater considering the weather condition of a city in north of Iran. The tests are done on clear and partly cloudy days. The variations of storage tank temperature due to consumption from the tank, daily...... consumption influence on the solar water heater efficiency, and on the input temperature of the collector are studied and the delivered daily useful energy has been obtained. The results show that by withdrawing from storage tank, the system as well as its collector efficiency will increase. Considering...... the value of the coefficient FRUL and τα, which are obtained experimentally as 6.03 and 0.83 respectively, average. monthly total load that is covered by this solar water heating system is estimated....

  17. Determination of the four natural Ra isotopes in thermal waters by gamma-ray spectrometry

    International Nuclear Information System (INIS)

    Condomines, M.; Rihs, S.; Lloret, E.; Seidel, J.L.

    2010-01-01

    Our method for the simultaneous determination of the four natural Ra isotopes ( 226 Ra, 228 Ra, 224 Ra and 223 Ra) in thermal waters involves a separation of Ra on a selective filter (3 M EMPORE TM Radium Rad disk), and a single counting using a broad-energy HPGe detector (BE Ge manufactured by CANBERRA TM ). The calculation of 223 Ra and 228 Ra activities requires interference and cascade summing corrections. The 226 Ra activities in CO 2 -rich thermal waters of the Lodeve Basin (South of France) range from 530 to 2240 mBq/l. The low ( 228 Ra/ 226 Ra) activity ratios (0.19-0.29) suggest that Ra is mostly derived from the aquifer carbonates. The short-lived 224 Ra and 223 Ra are probably added to the water through recoil or desorption processes from Th-enriched coatings on the fracture walls.

  18. Assessment of natural radioactivity and heavy metals in water and soil around seismically active area

    International Nuclear Information System (INIS)

    Oktay Baykara; Mahmut Dogru; Firat University, Elazig

    2010-01-01

    The natural radioactivity concentration and some heavy metals in various water and soil samples collected from seismically active area have been determined. Gross-alpha and beta concentrations of different 33 water samples and some heavy metal (Fe, Pb, Cu, K, Mn, Cr and Zn) concentration in 72 soil samples collected from two major fault systems (North and East Anatolian Active Fault Systems) in Turkey have been studied. This survey regarding gross-alpha and beta radioactivity and some heavy metals concentrations was carried out by means of Krieger method using a gross-alpha and beta-counting system and atomic absorption spectrometry (AAS), respectively. Also, gross annual effective dose from the average gross-alpha activity in waters were calculated. (author)

  19. Quantum nature of protons in water probed by scanning tunneling microscopy and spectroscopy

    Science.gov (United States)

    Guo, Jing; Lü, Jing-Tao; Feng, Yexin; Chen, Ji; Peng, Jinbo; Lin, Zeren; Meng, Xiangzhi; Wang, Zhichang; Li, Xin-Zheng; Wang, En-Ge; Jiang, Ying; Jing-Tao Lü Team; Xin-Zheng Li Team

    The complexity of hydrogen-bonding interaction largely arises from the quantum nature of light hydrogen nuclei, which has remained elusive for decades. Here we report the direct assessment of nuclear quantum effects on the strength of a single hydrogen bond formed at a water-salt interface, using tip-enhanced inelastic electron tunneling spectroscopy (IETS) based on a low-temperature scanning tunneling microscope (STM). The IETS signals are resonantly enhanced by gating the frontier orbitals of water via a chlorine-terminated STM tip, such that the hydrogen-bonding strength can be determined with unprecedentedly high accuracy from the redshift in the O-H stretching frequency of water. Isotopic substitution experiments combined with quantum simulations reveal that the anharmonic quantum fluctuations of hydrogen nuclei weaken the weak hydrogen bonds and strengthen the relatively strong ones. However, this trend can be completely reversed when the hydrogen bond is strongly coupled to the polar atomic sites of the surface.

  20. Chemical and isotopic composition of natural waters in the Jizuki-yama landslide area, Nagano Prefecture

    Energy Technology Data Exchange (ETDEWEB)

    Yoshioka, Ryuma; Mashima, Kiyotaka; Koizumi, Naoji

    1988-10-01

    A large-scale landslide took place at a southeastern slope of Mt. Jizuki, Nagano Prefecture, on July 26, 1985. It has been said that landslide is closely related to the hydrological and hydrogeochemical nature of groundwater involved. To investigate the weathering mechanism and the origin of groundwater, we collected and analyzed water samples from the large-scale landslide area. The following facts can be pointed out: (1) weather-rock interaction is remarkably active in the landslide area, (2) most of the waters from the landslide area are in equilibrium with Na-montmorillonite (3) immediately after the landslide occurred bicarbonate and sodium ions are dominant, but sulfate and sodium ions become dominant with time, and (4) groundwater passing through horizontally drilled holes dose not effectively drain off to stabilize a slope in the landslide area. And our hypothesis on the mechanism for the formation of sodium sulfate type water is also presented.

  1. Removal of arsenic species from drinking water by Iranian natural and synthetic zeolites

    International Nuclear Information System (INIS)

    Menhaje-Bena, R.; Kazemian, H.; Shahtaheri, S.J.; Ghazi-Khansari, M.

    2003-01-01

    The main objective of this study was to find a relatively inexpensive method for removal of arsenic species from drinking water. The uptake capability of Iron (II) modified natural clinoptilolites and relevant synthetic zeolites A and P was investigated toward inorganic arsenic species from drinking water. Results obtained from sorption experiments, using a batch (static) technique showed that, among the investigated zeolites, modified synthetic zeolite A was the most selective sorbent for removal of arsenate and arsenite from drinking water. Through this study the influencing of factories including temperature, concentration, pH, particle size and interferences was evaluated on removal of arsenic species. The synthetic zeolites and their modified forms were also characterized, using XRD, XRF and thermal analysis techniques. (authors)

  2. How Natural Water Retention Measures (NWRM) can help rural and urban environments improve their resilience?

    Science.gov (United States)

    Siauve, Sonia

    2016-04-01

    The challenges related to water resources management are exacerbated by climate change which implies additional complexity and uncertainty. The impacts of climate change have thus to be taken into account, from today on the next decades, to ensure a sustainable integrated water resources management. One of the main environmental objective of the Water Framework Directive (2000/30/CE) was to achieve and maintain a good status for all water bodies by the target date of 2015. Unfortunately, Member States didn't manage to reach this goal and in this context, the European Commission (EC), since many years, have started many initiatives and reforms to improve the global situation. In 2012 the DG Environment (DGENV) of the EC published a "Blueprint to safeguard Europe's water resources" that states the need for further implementation of water resource management measures and in particular Natural Water Retention Measures (NWRMs). NWRM are measures that aim to safeguard and enhance the water storage potential of landscape, soils and aquifers, by restoring ecosystems, natural features and characteristics of water courses, and by using natural processes. They are Nature-Based Solutions supporting adaptation and reducing vulnerability of water resources. Their interest lies with the multiple benefits they can deliver, and their capacity to contribute simultaneously to the achievement of the objectives of different European policies (WFD, FD, Biodiversity strategy …). However the knowledge on NWRM is scattered and addressed differently in the countries, whereas the NWRM potential for improving the state of the environment and resilience (drought, flood, biodiversity…) in a changing environment is high. In 2013, all EU countries started the elaboration of the second River Basin Management Plan and associated Programme of Measures. To support MS authorities and local implementers of these measures DGENV launched a 14 month project for collaboratively building knowledge and

  3. LED vs laser fluorimetry: a comparative study for the determination of uranium in natural waters

    International Nuclear Information System (INIS)

    Shenoy, N.; Parab, H.; Sounderajan, S.; Kiran Kumar; Kumar, S.D.; Reddy, A.V.R.

    2015-01-01

    Measurement of uranium in water samples has acquired considerable importance ever since its occurrence in drinking water sources was reported. Among the various methods available for uranium quantification at ultra trace levels, laser fluorimetry (LF) method is the method of choice due to its simplicity, speed and high sensitivity compared to other analytical techniques. This technique is based on the measurement of fluorescence of uranium complexes in aqueous solution. Recently, laser source has been replaced by light emitting diode (LEDs) in the fluorimeter systems. In comparison to laser source, LED source is, cost effective, generates less heat and has extended lifetime. Herein, authors have presented a comparison of LED based fluorimeter (Quantalase, Indore, India) and laser fluorimeter (CAT, Indore, India) for the determination of uranium in natural waters

  4. Natural radioactivity in some drinking water sources of coastal, northern, eastern and AlJazera regions in Syria

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Byrakdar, E.; Amin, Y.; Abu Baker, S.

    2003-01-01

    Naturally occurring radionuclides in drinking water sources of coastal, northern, eastern and AlJazera regions in Syria have been determined. Samples were collected during the year of 2000 at two periods from the main water sources, from which water being transported for drinking or from houses. Results have shown that most concentrations of the measured naturally occurring radionuclides ( 222 Rn, 222 Ra, 210 Po, 234 U, 238 U) were within the natural levels and below the higher permissible limits of International Organizations. In addition, variations in concentrations from region to another have been observed; these variations may be due to differences in geological formations and water sources (well, spring, surface water). Moreover, the obtained data in this study and other published data for other regions can be used for establishing the radiation map for natural radioactivity in drinking water in Syria. (author)

  5. Natural and anthropogenic decadal pH decrease in the North Atlantic and Mediterranean Sea waters

    Science.gov (United States)

    Huertas, E.; Flecha, S.; Murata, A.; Garcia Lafuente, J.; Pérez, F. F.

    2017-12-01

    Seawater pH is undergoing a decreasing trend due to atmospheric CO2 absorption, a phenomenon known as Ocean Acidification (OA) that has been documented in different ocean regions. Certain marine basins are more vulnerable to OA, such as the Mediterranean Sea (MS), which is attributed to particular water circulation processes and biogeochemical features. Considering previous studies on OA in Mediterranean and Atlantic water masses, the main aim of this work was to identify for the first time the natural and anthropogenic contribution to decadal pH variations. Therefore, an archetypal analysis was applied to pH measurements and other biogeochemical variables collected in the Strait of Gibraltar during 10 years. Our results reveal that the biological component of the pH change in the Western Mediterranean Deep Water (WMDW) (ΔpHWMDW) represents around 56% of the total decadal pH decrease observed, highlighting the relevance of the remineralization occurring in the Alboran basin, where the WMDW resides before leaving the MS. On the other hand, neither natural nor anthropogenic forcing on the pH change in the Levantine Intermediate Water (ΔpHLIW) was detected, as pH variation was negligible. As for the North Atlantic Central Water (NACW), atmospheric CO2 uptake was responsible of 58% of the ΔpHNACW, likely related to permanent contact with the atmosphere. Additionally, estimations of the approximated ages of the NACW, LIW and WMDW in the SG of about 8, 34 and 32 years respectively have been obtained. Our results show that Mediterranean waters undergo changes in their biogeochemical characteristics during transit through the SG and gives insights on the main mechanisms affecting pH variations occurring from their formation sites to the SG.

  6. The therapeutic effect of carbogaseous natural mineral waters in the metabolic syndrome

    Directory of Open Access Journals (Sweden)

    Cinteza Delia

    2013-02-01

    Full Text Available Metabolic syndrome (syndrome X or insulin resistance syndrome is a complex of metabolic disturbances that increase the risk of developing cardiovascular disease. Entity includes: dyslipidemia (altered lipid profile, with increasing levels of serum triglycerides and low serum levels of HDL-cholesterol, which promotes the development of atherosclerosis, high blood sugar (diabetes type II or increased insulin resistance, hypertension, abdominal obesity syndrome, proinflammatory, prothrombotic syndrome. In the last 20 years, there was a continuous increase in individuals suffering from this syndrome, the cause remains unknown, but several studies also claim that it is a complex interaction between genetic, metabolic and environmental factors. Of environmental factors, diet low in micronutrients such as calcium, magnesium and potassium seems to be an essential contributor element (Feldsein et al, 2007, Cidalia Pereira et al, 2011. Decreased intake of sodium and increased intake of calcium, magnesium and potassium, proposed by Dietary Approaches to Stop Hypertension - DASH diet (Van Leer et al 1995, Meigl et al 2008 leads to optimized blood pressure. Even in the absence of increased sodium intake, low levels of magnesium in the blood and cells can induce in some conditions, hypertension, diabetes, insulin resistance or completely metabolic syndrom.Among the methods proposed to correct dietary intake of micronutrients, natural mineral water, often very complex in terms of chemical composition and versatile in terms of the intended effect is one handy, safe and simple.Although used in order to preserve the health from ancient times, scientific studies proving natural mineral water effects on the human body takes place only since the twentieth century. Carbonated mineral waters are the result of deep water filtering through volcanic soils, which contain CO2, carbon dioxide, thus obtained, will help dissolve other elements contained in the soil layers

  7. Effects of water treatment processes used at waterworks on natural radionuclide concentrations

    International Nuclear Information System (INIS)

    Haemaelaeinen, K.; Vesterbacka, P.; Maekelaeinen, I.; Arvela, H.

    2004-08-01

    The occurrence of uranium and other natural radionuclides in waters of waterworks and the effects of the conventional water treatment processes on radionuclide concentrations were investigated. Water samples were collected from 17 waterworks. Radionuclide concentrations of the collected samples were compared to the currently valid concentrations according to the Finnish regulation, ST guide 12.3. Similarly the measured concentrations were compared to the values presented in the 98/83/EC directive and in the Commission recommendation, 2001/928/Euratom. The guidelines based on chemical toxicity of uranium were also considered. This report presents a summary of the radionuclide concentrations in waters distributed by waterworks. Short-term and logn-term temporal variation of radionuclide levels in raw water were also investigated. Waterworks selected to this study used different kinds of raw water sources and a variety of water treatment processes. Water samples were collected from 46 water catchments which used groundwater in soil, artificial groundwater or groundwater in bedrock as a source of raw water. The most common water treatment used in these catchments was alkalization. Other treatment processes used were various types of filtrations (sand, anthracite, slow sand and membrane filtration) and aeration. Four of the catchments distributed water without treatment. Sampling was carried out in co-operation with local health inspectors and waterworks staff in spring 2002. Later that autumn, monitoring samples were collected from eight catchments. The maximum value for radon, presented in ST guide 12.3, was exceeded in three water catchments that used groundwater in bedrock as a source of raw water. No exceedings were found in those water catchments that use groundwater in soil or artificial groundwater. The limits of uranium and radium calculated from the total indicative dose (98/83/EC) were not exceeded but the guidelines for lead and polonium, given in the

  8. Water Awareness Strategy for Sinaloa State, Mexico, as a Tool to Mitigate the Imbalance of Nature

    Science.gov (United States)

    Torrecillas Nunez, C.; Miguel-Rodriguez, A.

    2013-05-01

    Agriculture is extremely important to Sinaloa contributing 32.31% of the value of all national agricultural production, while the state occupies only 2.9% of the Mexico's area. However it has caused an imbalance in nature due to the low efficiency of irrigation being 49% and using 93% of the surface waters of the region, hence the importance of promoting water awareness. The Water Awareness Strategy for Sinaloa (PLECASIN) 2013- 2015 is a product of the workshop held with water advisers representing 14 utilities, and sponsored by CEAPAS and CONAGUA to address water resources issues in the state, low dam levels and the high level of non-payment, through involving society in the management of water resources. The workshop established strategies to achieve the objective of the National Water Awareness Program (PCA): "Contribute to strengthening the participation of users, organized society and citizens in water management and promote the culture of its good use, through consultation and promotion of cultural and educational activities in coordination with the states, to promote the importance of water resources in social welfare, economic development and the preservation of the ecological wealth, to achieve development sustainable of the nation". PLECASIN was developed using the methodology of strategic planning, beginning with a diagnosis of PCA and the development of strategies pertinent to the current environment in Sinaloa. Activities in the workshop included: defining the vision, mission and objectives, stakeholder analysis, SWOT Matrix, and finally the development of the Logical Framework Analysis Matrix. In addition, the workshop applied the PEEAES tools, using primarily the book of the 5 Waters and application of innovative technologies. The Universidad Autónoma de Sinaloa designed and implemented an Environmental Education Strategy (PEEAES) to foster an environmental awareness through non-formal educational process and includes: a mobile environmental

  9. Selective Aptamers for Detection of Estradiol and Ethynylestradiol in Natural Waters

    KAUST Repository

    Akki, Spurti U.; Werth, Charles J.; Silverman, Scott K.

    2015-01-01

    © 2015 American Chemical Society. We used in vitro selection to identify new DNA aptamers for two endocrine-disrupting compounds often found in treated and natural waters, 17β-estradiol (E2) and 17α-ethynylestradiol (EE). We used equilibrium filtration to determine aptamer sensitivity/selectivity and dimethyl sulfate (DMS) probing to explore aptamer binding sites. The new E2 aptamers are at least 74-fold more sensitive for E2 than is a previously reported DNA aptamer, with dissociation constants (Kd values) of 0.6 μM. Similarly, the EE aptamers are highly sensitive for EE, with Kd of 0.5-1.0 μM. Selectivity values indicate that the E2 aptamers bind E2 and a structural analogue, estrone (E1), equally well and are up to 74-fold selective over EE. One EE aptamer is 53-fold more selective for EE over E2 or E1, but the other binds EE, E2, and E1 with similar affinity. The new aptamers do not lose sensitivity or selectivity in natural water from a local lake, despite the presence of natural organic matter (∼4 mg/L TOC). DMS probing suggests that E2 binding occurs in relatively flexible single-stranded DNA regions, an important finding for rational redesign of aptamers and their incorporation into sensing platforms. This is the first report of aptamers with strong selectivity for E2 and E1 over EE, or with strong selectivity for EE over E2 and E1. Such selectivity is important for achieving the goal of creating practically useful DNA-based sensors that can distinguish structurally similar estrogenic compounds in natural waters.

  10. Natural radioactivity in waters and sediments from a Spanish mining river

    International Nuclear Information System (INIS)

    Gonzalez-Labajo, J.; Bolivar, J.P.; Garcia-Tenorio, R.

    2000-01-01

    The distribution of several radionuclides from the U-series (U-isotopes, 230 Th, 226 Ra and 210 Po) and Th-series- ( 232T h and 228 Th) have been analyzed in the different phases (sediments, filtered waters and suspended matter) and at different sites of a mining river (Guadiamar river) located at SW of Spain. The variations observed between and within the different sites for the activity concentrations of several natural radionuclides (reflected also in the variations observed for several activity ratios) and their correlation with the heavy metal contamination in the sediments and with different physical- chemical parameters, have provided a very rich information about their behaviour in this aquatic system. Detectable enrichments in the U-isotopes concentrations in comparison with the concentrations of other natural radionuclides have been observed in sediments from a determined zone of the river (downstream the mines). This U in excess it is incorporated to the sediments by coprecipitation with the high amounts of heavy metals coming from the mines. This precipitation is produced due to the progressive neutralization of the waters (previously acidified due to the mining activities) in its running along the river. The results obtained in the analysis of the wastes produced in the mining activities induce us to reject the hypothesis that the origin of these U enrichments is related with their leaching from the minerals treated in the mines. The U in dissolution that is deposited in the commented zone of the riverbed has a natural origin. In this sense, it is well known the high solubility of this element, being their concentrations, even in not contaminated river waters, clearly higher than the concentrations of other natural radionuclides like Th- isotopes and 210 Po. The radiometric techniques used in this work were alpha-particle spectrometry for determination of U-isotopes, Th-isotopes and 210 Po, and gamma-ray spectrometry for 226 Ra measurements in

  11. Selective Aptamers for Detection of Estradiol and Ethynylestradiol in Natural Waters

    KAUST Repository

    Akki, Spurti U.

    2015-08-18

    © 2015 American Chemical Society. We used in vitro selection to identify new DNA aptamers for two endocrine-disrupting compounds often found in treated and natural waters, 17β-estradiol (E2) and 17α-ethynylestradiol (EE). We used equilibrium filtration to determine aptamer sensitivity/selectivity and dimethyl sulfate (DMS) probing to explore aptamer binding sites. The new E2 aptamers are at least 74-fold more sensitive for E2 than is a previously reported DNA aptamer, with dissociation constants (Kd values) of 0.6 μM. Similarly, the EE aptamers are highly sensitive for EE, with Kd of 0.5-1.0 μM. Selectivity values indicate that the E2 aptamers bind E2 and a structural analogue, estrone (E1), equally well and are up to 74-fold selective over EE. One EE aptamer is 53-fold more selective for EE over E2 or E1, but the other binds EE, E2, and E1 with similar affinity. The new aptamers do not lose sensitivity or selectivity in natural water from a local lake, despite the presence of natural organic matter (∼4 mg/L TOC). DMS probing suggests that E2 binding occurs in relatively flexible single-stranded DNA regions, an important finding for rational redesign of aptamers and their incorporation into sensing platforms. This is the first report of aptamers with strong selectivity for E2 and E1 over EE, or with strong selectivity for EE over E2 and E1. Such selectivity is important for achieving the goal of creating practically useful DNA-based sensors that can distinguish structurally similar estrogenic compounds in natural waters.

  12. Determination of barium in natural waters by ICP-OES technique. Part II: Assessment of human exposure to barium in bottled mineral and spring waters produced in Poland.

    Science.gov (United States)

    Garboś, Sławomir; Swiecicka, Dorota

    2013-01-01

    A method of the classification of natural mineral and spring waters and maximum admissible concentration (MAC) levels of metals present in such types of waters are regulated by Commission Directive 2003/40/EC, Directive 2009/54/EC of the European Parliament and of the Council and Ordinance of Minister of Health of 30 March 2011 on the natural mineral waters, spring waters and potable waters. MAC of barium in natural mineral and spring waters was set at 1.0 mg/l, while World Health Organization determined the Ba guideline value in water intended for human consumption at the level of 0.7 mg/l. The aims of the study were: the determination of barium in natural mineral and spring waters (carbonated, non-carbonated and medium-carbonated waters) produced and bottled on the area of Poland, and assessment of human exposure to this metal presents in the above-mentioned types of waters. The study concerning barium determinations in 23 types of bottled natural mineral waters and 15 types of bottled spring waters (bought in Polish retail outlets) was conducted in 2010. The analyses were performed by validated method of determination of barium in water based on inductively coupled plasma optical emission spectrometry, using modern internal quality control scheme. Concentrations of barium determined in natural mineral and spring waters were in the ranges from 0.0136 mg/l to 1.12 mg/l and from 0.0044 mg/l to 0.43 mg/l, respectively. Only in the single case of natural mineral water the concentration of barium (1.12 mg/l), exceeded above-mentioned MAC for this metal, which is obligatory in Poland and the European Union - 1.0 mg/l. The long-term monitoring of barium concentration in another natural mineral water (2006 - 2010), in which incidental exceeding MAC was observed in 2006, was conducted. All measured barium concentrations in this water were lower than 1.0 mg/l and therefore, it is possible to state that the proper method of mixing waters taken from six independent

  13. Distinction of water-soluble constituents between natural and cultured Cordyceps by capillary electrophoresis.

    Science.gov (United States)

    Li, S P; Song, Z H; Dong, T T X; Ji, Z N; Lo, C K; Zhu, S Q; Tsim, K W K

    2004-11-01

    Cordyceps is an expensive traditional Chinese medicine, which has anti-tumor activity and significant effects on the immune system. In Southeast Asia, Cordyceps is commonly sold in capsule form as a health food product. Most of these products are derived from cultured Cordyceps mycelia. Because of the price difference, some manufacturers claim their products are from natural Cordyceps. In order to distinguish among various types of Cordyceps in the market, the profiles of water-soluble constituents derived from different sources of Cordyceps were determined by capillary electrophoresis (CE). Both natural and cultured Cordyceps showed three peak clusters migrated at 5-7, 9-11 and 12-13 min, and the height and resolution of these peak clusters were rather distinct. Peak cluster at 9-11 min was identified as adenosine, guanosine and uridine, and shared a similarity between natural and cultured products. In contrast, the peak cluster at 5-7 min was characteristic of natural Cordyceps, regardless of hosts and sources. By using the peak characteristics of CE profiles of different Cordyceps samples, hierarchical clustering analysis was performed. The result shows that those samples of natural Cordyceps were grouped together distinct from the cultured and commercial products. Thus, the CE profiles could serve as fingerprints for the quality control of Cordyceps.

  14. Stable isotopes of water as a natural tracer for infiltration into urban sewer systems

    Science.gov (United States)

    Kracht, O.; Gresch, M.; de Bénédittis, J.; Prigiobbe, V.; Gujer, W.

    2003-04-01

    An adequate understanding of the hydraulic interaction between leaky sewers and groundwater is essential for the sustainable management of both sewer systems and aquifers in urbanized areas. Undesirable infiltration of groundwater into sewers can contribute over 50% of the total discharge and is detrimental to treatment plant efficiency. On the other hand, in many European cities groundwater surface levels seem to be particularly controlled by the drainage effect of permeable sewer systems. However, nowadays methods for the quantification of these exchange processes are still subject to considerable uncertainties due to their underlying assumptions. The frequently used assumption that the night time minimum in the diurnal wastewater hydrograph is equal to the "parasitic discharge" has to be reconsidered to today's patterns of human life as well as to the long residence time of wastewater in the sewer networks of modern cities. The suitability of stable water isotopes as a natural tracer to differentiate the origin of water in the sewer ("real" wastewater or infiltrating groundwater) is currently investigated in three different catchment areas. The studies are carried out within the framework of the European research project APUSS (Assessing Infiltration and Exfiltration on the Performance of Urban Sewer Systems): 1) The village of Rümlang (Zürich, Switzerland) is predominantly served with drinking water from the Lake Zürich. A large fraction of the lakes water is derived from precipitation in the Alps. This drinking water represents the intrinsic provenience of the wastewater with an δ18O value around -11,5 per mill and δ^2H value around -82 per mill vs. SMOW. In contrast, the local groundwater is originating from precipitation in a moderate altitude of about 450 m above sea level and shows comparatively enriched mean δ18O values of -9,7 per mill and δ^2H values of -70 per mill with only small natural variations. The isotopic separation between these

  15. Removal of selenium species from waters using various surface-modified natural particles and waste materials

    Energy Technology Data Exchange (ETDEWEB)

    Yigit, Nevzat O.; Tozum, Seda [Department of Environmental Engineering, Suleyman Demirel University, Isparta (Turkey)

    2012-07-15

    Waste red mud and natural pumice/volcanic slag particles were surface modified and their selenium adsorption from waters was investigated. Acid activation/heat treatment of original red mud (ORM) particles significantly increased their micropore and external surface area and cumulative volume of pores. Iron oxide coating of pumice/slags and acid activation of ORM decreased their pH{sub pzc} values and increased surface acidity. Selenite/selenate adsorption on iron oxide surfaces and acid activated red mud (AARM) was very fast with approximately first-order adsorption kinetics. Iron oxide coating of pumice/slag and acid activation of ORM particles significantly enhanced their selenite and selenate uptakes. Maximum Se adsorption capacities as high as 6.3 (mg Se/g adsorbent) were obtained by AARM. The extent of selenate uptakes by the surface modified particles was generally lower than those of selenite. Due to competition among Se species and other background water matrix for iron oxide adsorption sites, reduced selenite/selenate uptakes were found in natural water compared to single solute tests. Higher Se uptakes by iron oxide surfaces were found at pH 7.5 compared to pH 8.9, due to increased electrostatic repulsion among iron oxides and Se species at higher pH. The most effective adsorbents among the tested 17 different particles for Se uptake were AARM and iron oxide coated pumice. Se concentrations less than drinking water standards (5-10 {mu}g/L) can be achieved by these particles. These low-cost, natural, or recyclable waste particles appear to be promising adsorbents for Se removal after their surface modification. (Copyright copyright 2012 WILEY-VCH Verlag GmbH and Co. KGaA, Weinheim)

  16. Perceived risks of produced water management and naturally occurring radioactive material content in North Dakota.

    Science.gov (United States)

    Torres, Luisa; Yadav, Om Prakash; Khan, Eakalak

    2017-07-01

    Unconventional oil and gas development using hydraulic fracturing has caused conflict and controversy across the globe including the U.S. where some States banned the practice. Nevertheless, North Dakota (ND) has supported the practice because the State perceives the risks to be acceptable and because it has brought growth and opportunities to small communities. However, social acceptance of new technology is based on a number of factors and not contingent on economic benefits. To date, no research has been conducted to understand public risk perception of hazards associated with produced water from hydraulic fracturing in ND. This study focuses on understanding the risk perception of select ND stakeholder groups regarding produced water management and naturally occurring radioactive material. The software Qualtrics was used to create an online survey, collect data, and perform statistical analysis. The most important variables that seem to influence risk perception are the images and thoughts associated with produced water, level of knowledge about produced water handling and content, and knowing how to proceed in case of a spill of produced water. Overall, social risk perception could be in alignment with actual technical risk if availability of objective information is improved. Copyright © 2017 Elsevier Ltd. All rights reserved.

  17. Long term consumption of mineral spring water containing natural radium-226

    International Nuclear Information System (INIS)

    Aulenbach, D.B.; Davis, R.E.

    1976-01-01

    The presence of naturally occurring 226 radium in several of the spring waters of Saratoga Springs, New York has been known for some time. However, recently the recommended maximum acceptable limit for consumption of water containing radium has been lowered to the point that the limits are now lower than the concentration of radium observed in several of the wells. A survey was made of 27 individuals who have consumed water from the Hathorn No. 1 Spring for periods varying from 5-65 years. A calculation was made of the 226 radium body burden from equations provided in the literature. The calcium concentration of the springs was determined in consideration of the still unknown comparative selectivity of the body between radium and calcium. Waters from two of the springs were analzyed for 226 radium using the radon emanation method. No adverse effects of consuming the mineral water were observed in the individuals interviewed nor were there any increased incidences of broken or brittle bones among these individuals

  18. Natural organic matter removal by ion exchange at different positions in the drinking water treatment lane

    Directory of Open Access Journals (Sweden)

    A. Grefte

    2013-01-01

    Full Text Available To guarantee a good water quality at the customers tap, natural organic matter (NOM should be (partly removed during drinking water treatment. The objective of this research was to improve the biological stability of the produced water by incorporating anion exchange (IEX for NOM removal. Different placement positions of IEX in the treatment lane (IEX positioned before coagulation, before ozonation or after slow sand filtration and two IEX configurations (MIEX® and fluidized IEX (FIX were compared on water quality as well as costs. For this purpose the pre-treatment plant at Loenderveen and production plant Weesperkarspel of Waternet were used as a case study. Both, MIEX® and FIX were able to remove NOM (mainly the HS fraction to a high extent. NOM removal can be done efficiently before ozonation and after slow sand filtration. The biological stability, in terms of assimilable organic carbon, biofilm formation rate and dissolved organic carbon, was improved by incorporating IEX for NOM removal. The operational costs were assumed to be directly dependent of the NOM removal rate and determined the difference between the IEX positions. The total costs for IEX for the three positions were approximately equal (0.0631 € m−3, however the savings on following treatment processes caused a cost reduction for the IEX positions before coagulation and before ozonation compared to IEX positioned after slow sand filtration. IEX positioned before ozonation was most cost effective and improved the biological stability of the treated water.

  19. Reconnaissance of surface-water quality in the North Platte Natural Resources District, western Nebraska, 1993

    Science.gov (United States)

    Steele, G.V.; Cannia, J.C.

    1997-01-01

    In 1993, the U.S. Geological Survey and the North Platte Natural Resources District began a 3-year study to determine the geohydrology and water quality of the North Platte River alluvial aquifer near Oshkosh, Garden County, Nebraska. The objectives of the study were to determine the geohydrologic properties of the North Platte River alluvial aquifer, to establish a well network for long- term monitoring of concentrations of agricultural chemicals including nitrate and herbicides, and to establish baseline concentrations of major ions in the ground water. To meet these objectives, monitor wells were installed at 11 sites near Oshkosh. The geohydrologic properties of the aquifer were estimated from water-level measurements at selected irrigation wells located in the study area and short- term constant-discharge aquifer tests at two monitor wells. Water samples were collected bimonthly and analyzed for specific conductance, pH, water temperature, dissolved oxygen, and nutrients including dissolved nitrate. Samples were collected semiannually for analysis of major ions, and annually for triazine and acetamide herbicides. Evaluation of the aquifer-test data indicates the hydraulic conductivities of the North Platte River alluvial aquifer range between 169 and 184 feet per day and transmissivities ranged from 12,700 to 26,700 feet-squared per day. The average specific yield for the alluvial aquifer, based on the two aquifer tests, was 0.2. Additional hydrologic data for the alluvial aquifer include a horizontal gradient of about 0.002 foot per foot and estimated ground- water flow velocities of about 0.1 to 1.8 feet per day. Evaluation of the water-quality data indicates that nitrate concentrations exceed the U.S. Environmental Protection Agency's (USEPA) Maximum Contamination Level of 10 milligrams per liter for drinking water in areas to the east and west of Oshkosh. In these areas, nitrate concentrations generally are continuing to rise. West of Oshkosh the highest

  20. Toxic diatoms and domoic acid in natural and iron enriched waters of the oceanic Pacific.

    Science.gov (United States)

    Silver, Mary W; Bargu, Sibel; Coale, Susan L; Benitez-Nelson, Claudia R; Garcia, Ana C; Roberts, Kathryn J; Sekula-Wood, Emily; Bruland, Kenneth W; Coale, Kenneth H

    2010-11-30

    Near-surface waters ranging from the Pacific subarctic (58°N) to the Southern Ocean (66°S) contain the neurotoxin domoic acid (DA), associated with the diatom Pseudo-nitzschia. Of the 35 stations sampled, including ones from historic iron fertilization experiments (SOFeX, IronEx II), we found Pseudo-nitzschia at 34 stations and DA measurable at 14 of the 26 stations analyzed for DA. Toxin ranged from 0.3 fg·cell(-1) to 2 pg·cell(-1), comparable with levels found in similar-sized cells from coastal waters. In the western subarctic, descent of intact Pseudo-nitzschia likely delivered significant amounts of toxin (up to 4 μg of DA·m(-2)·d(-1)) to underlying mesopelagic waters (150-500 m). By reexamining phytoplankton samples from SOFeX and IronEx II, we found substantial amounts of DA associated with Pseudo-nitzschia. Indeed, at SOFeX in the Antarctic Pacific, DA reached 220 ng·L(-1), levels at which animal mortalities have occurred on continental shelves. Iron ocean fertilization also occurs naturally and may have promoted blooms of these ubiquitous algae over previous glacial cycles during deposition of iron-rich aerosols. Thus, the neurotoxin DA occurs both in coastal and oceanic waters, and its concentration, associated with changes in Pseudo-nitzschia abundance, likely varies naturally with climate cycles, as well as with artificial iron fertilization. Given that iron fertilization in iron-depleted regions of the sea has been proposed to enhance phytoplankton growth and, thereby, both reduce atmospheric CO(2) and moderate ocean acidification in surface waters, consideration of the potentially serious ecosystem impacts associated with DA is prudent.

  1. Limnological aspects and trace element analysis of some selected Kenyan natural inland waters

    International Nuclear Information System (INIS)

    Ochieng, E.O.

    1987-01-01

    This thesis reports the study of trace elements, Ag, Cd, Co, Cr, Cu, Mn, Ni, Pb, Sn, and Zn, and some limnological factors in surface water and sediments in some selected natural inland waters in Kenya. The observed levels are compared with those that are reported in literature to cause interference in biological processes in aquatic environments and human beings. There are little previous data and none that are coherent. These allow for a preliminary assessment of the significance of each element and limnological parameters in the long term stability of the environments in which they occur. XRFA and AAs have been used in the trace elements analysis and the former proved superior in the sediment (solid) samples analysis due to better accuracy and precision of less than 10%. Trace metals concentration (ppb) in the surface inland waters (rivers and lakes ) ranged as follows: Ag (1-75), Cd (2-8), Co (6-23.2), Cr (25-50), Cu (5-57.6), Mn (50-3276±450), Ni (13-34.1), Pb (7-93.6), Sn (300-500) and Zn (25-124.8). Lake sediments had the following concentration (ppm) ranges: Ag (o.098-20.58), Cd (0.188-1.345), Co (0.166-1.632), Cr (1.462-57.310), Cu (1.949-44.350), Mn (667.670-4713), Ni (11.694-56.710), Pb (10.920-192), Sn 17.210-234) and Zn (76.210-229.60). Results show that, a part from the Rift Valley saline lakes, Kenya inland water meet the WHO (1971) drinking water standards related to aquatic living environments. Concentration of some trace metals: Ag, Cd, Cu, Mn and Zn change upon raw water treatments. Preconcentration techniques have been attempted in which preconcentration by evaporation followed by lyophilization of the liquid (water) samples was found more suitable. Bioavailable (total exchangeable) metal concentrations compared very well with the concentrations in the fish muscles. Comparison with the analysis made by earlier investigators indicated a remarkable constancy over time in the chemistry of Lake Victoria and its affluent rivers. Kenyan natural

  2. THE STUDY OF CADMIUM UPTAKE BY WATER HYACINTH (EICHHORNIA CRASSIPES USING A NATURAL MODELLING APPROACH

    Directory of Open Access Journals (Sweden)

    Tamara E. Romanova

    2012-06-01

    Full Text Available The results of the investigation on the accumulation of cadmium by water hyacinth, depending on the conditions of pollutant exposure and the presence of various additives are discussed. The main specialty of this study is that all the experiments were carried out in natural conditions using the approach based on the application of the capacities called minicosms. It allowed estimating hit consequences of pollutant on ecosystem most really having made experiment in the conditions as much as possible close to the natural. In this article a very important problem of an accuracy and reliability of the results of trace elements determination in plants is also debated. As a result of carried investigations it was shown that the degree of cadmium extraction by hyacinth from contaminated natural water while maintaining the viability of the plants depends on the way of pollutant introducing into the reservoir and the maximum (about 79% value is observed in the case of it’s gradual entry.

  3. Laboratory studies on natural restoration of ground water after in-situ leach uranium mining

    International Nuclear Information System (INIS)

    Bell, N.E.; Deutsch, W.J.; Serne, R.J.

    1983-05-01

    When uranium is mined using in-situ leach techniques, the chemical quality of the ground water in the ore-zone aquifer is affected. This could lead to long-term degradation of the ground water if restoration techniques are not applied after the leaching is completed. Pacific Northwest Laboratory (PNL), is conducting an NRC-sponsored research project on natural restoration and induced-restoration techniques. Laboratory studies were designed to evaluate the ability of the natural system (ore-zone sediments and groundwater) to mitigate the effects of mining on aquifer chemistry. Using batch and flow-through column experiments [performed with lixiviant (leaching solution) and sediments from the reduced zone of an ore-zone aquifer], we found that the natural system can lower uranium and bicarbonate concentrations in solutions and reduce the lixiviant redox potential (Eh). The change in redox potential could cause some of the contaminants that were dissolved during the uranium leaching operation to precipitate, thereby lowering their solution concentration. The concentrations of other species such as calcium, potassium, and sulfate increased, possibly as a result of mineral dissolution and ion exchange. In this paper, we describe the experimentally determined mobility of contaminants after in-situ leach mining, and discuss the possible chemical process affecting mobility

  4. Laboratory studies on natural restoration of ground water after in-situ leach uranium mining

    Energy Technology Data Exchange (ETDEWEB)

    Bell, N.E.; Deutsch, W.J.; Serne, R.J.

    1983-05-01

    When uranium is mined using in-situ leach techniques, the chemical quality of the ground water in the ore-zone aquifer is affected. This could lead to long-term degradation of the ground water if restoration techniques are not applied after the leaching is completed. Pacific Northwest Laboratory (PNL), is conducting an NRC-sponsored research project on natural restoration and induced-restoration techniques. Laboratory studies were designed to evaluate the ability of the natural system (ore-zone sediments and groundwater) to mitigate the effects of mining on aquifer chemistry. Using batch and flow-through column experiments (performed with lixiviant (leaching solution) and sediments from the reduced zone of an ore-zone aquifer), we found that the natural system can lower uranium and bicarbonate concentrations in solutions and reduce the lixiviant redox potential (Eh). The change in redox potential could cause some of the contaminants that were dissolved during the uranium leaching operation to precipitate, thereby lowering their solution concentration. The concentrations of other species such as calcium, potassium, and sulfate increased, possibly as a result of mineral dissolution and ion exchange. In this paper, we describe the experimentally determined mobility of contaminants after in-situ leach mining, and discuss the possible chemical process affecting mobility.

  5. Strategies to diagnose and control microbial souring in natural gas storage reservoirs and produced water systems

    Energy Technology Data Exchange (ETDEWEB)

    Morris, E.A.; Derr, R.M.; Pope, D.H.

    1995-12-31

    Hydrogen sulfide production (souring) in natural gas storage reservoirs and produced water systems is a safety and environmental problem that can lead to operational shutdown when local hydrogen sulfide standards are exceeded. Systems affected by microbial souring have historically been treated using biocides that target the general microbial community. However, requirements for more environmentally friendly solutions have led to treatment strategies in which sulfide production can be controlled with minimal impact to the system and environment. Some of these strategies are based on microbial and/or nutritional augmentation of the sour environment. Through research sponsored by the Gas Research Institute (GRI) in Chicago, Illinois, methods have been developed for early detection of microbial souring in natural gas storage reservoirs, and a variety of mitigation strategies have been evaluated. The effectiveness of traditional biocide treatment in gas storage reservoirs was shown to depend heavily on the methods by which the chemical is applied. An innovative strategy using nitrate was tested and proved ideal for produced water and wastewater systems. Another strategy using elemental iodine was effective for sulfide control in evaporation ponds and is currently being tested in microbially sour natural gas storage wells.

  6. Improved Management of Water and Natural Resources Requires Open, Cognizant, Adaptive Science and Policy

    Science.gov (United States)

    Glynn, P. D.; Voinov, A. A.; Shapiro, C. D.; Jenni, K. E.

    2017-12-01

    Water issues impact the availability and use of other natural resources as well as environmental conditions. In an increasingly populated hyper-connected world, water issues are increasingly "wicked problems": complex problems with high uncertainties and no independent observers. Water is essential to life, and life affects water quality and availability. Scientists, managers, decision-makers, and the greater public all have a stake in improving the management of water resources. In turn, they are part of the systems that they are studying, deciding on, affecting, or trying to improve. Governance of water issues requires greater accessibility, traceability, and accountability (ATA) in science and policy. Water-related studies and decision-making need transdisciplinary science, inclusive participatory processes, and consideration and acceptance of multiple perspectives. Biases, Beliefs, Heuristics, and Values (BBHV) shape much of our perceptions and knowledge, and inevitably, affect both science and policy. Understanding the role of BBHV is critical to (1) understanding individual and group judgments and choices, (2) recognizing potential differences between societal "wants" and societal "needs", and (3) identifying "winners" and "losers" of policy decisions. Societal acceptance of proposed policies and actions can be fostered by enhancing participatory processes and by providing greater ATA in science, in policy, and in development of the laws, rules, and traditions that constrain decision-making. An adaptive science-infused governance framework is proposed that seeks greater cognizance of the role of BBHV in shaping science and policy choices and decisions, and that also seeks "Open Traceable Accountable Policy" to complement "Open Science". We discuss the limitations of the governance that we suggest, as well as tools and approaches to help implementation.

  7. Natural Arsenic Pollution and Hydrochemistry of Drinking Water of an Urban Part of Iran

    Directory of Open Access Journals (Sweden)

    Mohammad Mosaferi

    2014-12-01

    Full Text Available Natural contamination of surface and groundwater resources with arsenic is a worldwide problem. The present study aimed to investigate and report on the quality of drinking water resources with special focus on arsenic presence in an urban part of Iran. Arsenic concentrations were measured by graphite furnace atomic absorption spectroscopy (GFAAS. In both surface and groundwater samples, arsenic concentrations ranged from 6 - 61 µg/L with an average value of 39 ± 20 µg/L. Concentration of arsenic, which was up to six times greater than guideline values (10 µg/L indicates the presence of arsenic bearing materials in the geological structure of the region. It was found that the quality of treated surface water produced by the water treatment facility was good in respect to arsenic (9 µg/L and solid content (EC = µs/cm. However, in drinking water samples of wells, total solids (mean EC = 1580 ± 150 µs/cm, total hardness (mean = 479 + 94 mg/L as CaCO3 and arsenic (mean = 42 + 16 µg/L were significantly higher. Correspondingly, there was a significant correlation between arsenic concentration and EC, Na+, K+ and Cl- values. The type of water in most of groundwater samples (70% was determined as HCO3-Na+. Considering the population of the city and probable health effects due to exposure to arsenic through drinking water, comprehensive measures as well as application of arsenic removal processes in water treatment facilities and replacement of contaminated wells with safe wells are required.

  8. Plant Water Stress Affects Interactions Between an Invasive and a Naturalized Aphid Species on Cereal Crops.

    Science.gov (United States)

    Foote, N E; Davis, T S; Crowder, D W; Bosque-Pérez, N A; Eigenbrode, S D

    2017-06-01

    In cereal cropping systems of the Pacific Northwestern United States (PNW), climate change is projected to increase the frequency of drought during summer months, which could increase water stress for crop plants. Yet, it remains uncertain how interactions between herbivore species are affected by drought stress. Here, interactions between two cereal aphids present in PNW cereal systems, Metopolophium festucae (Theobald) subsp. cerealium (a newly invasive species) and Rhopalosiphum padi L. (a naturalized species), were tested relative to wheat water stress. When aphids were confined in leaf cages on wheat, asymmetrical facilitation occurred; per capita fecundity of R. padi was increased by 46% when M. festucae cerealium was also present, compared to when only R. padi was present. Imposed water stress did not influence this interaction. When aphids were confined on whole wheat plants, asymmetrical competition occurred; cocolonization inhibited M. festucae cerealium population growth but did not affect R. padi population growth. Under conditions of plant water stress, however, the inhibitory effect of R. padi on M. festucae cerealium was not observed. We conclude that beneficial effects of cocolonization on R. padi are due to a localized plant response to M. festucae cerealium feeding, and that cocolonization of plants is likely to suppress M. festucae cerealium populations under ample water conditions, but not when plants are water stressed. This suggests that plant responses to water stress alter the outcome of competition between herbivore species, with implications for the structure of pest communities on wheat during periods of drought. © The Authors 2017. Published by Oxford University Press on behalf of Entomological Society of America.

  9. Design of an additional heat sink based on natural circulation in pressurized water reactors

    International Nuclear Information System (INIS)

    Frischengruber, Kurt; Solanilla, Roberto; Fernandez, Ricardo; Blumenkrantz, Arnaldo; Castano, Jorge

    1989-01-01

    Residual heat removal through the steam generators in Nuclear Power Plant with pressurized water reactors (PWR) or pressurized heavy water reactors (PHWR in pressured vessel or pressured tube types) requires the maintenance of the steam generator inventory and the availability of and appropriate heat sink, which are based on the operability of the steam generators feedwater system. This paper describes the conceptual design of an assured heat removal system which includes only passive elements and is based on natural circulation. The system can supplement the original systems of the plant. The new system includes a condenser/boiler heat exchanger to condense the steam produced in the steam generator, transferring the heat to the water of an open pool at atmospheric pressure. The condensed steam flows back to the steam generators by natural circulation effects. The performance of an Atucha type PHWR nuclear power station with and without the proposed system is calculated in an emergency power case for the first 5000 seconds after the incident. The analysis shows that the proposed system offers the possibility to cool-down the plant to a low energy state during several hours and avoids the repeated actuation of the primary and secondary system safety valves. (Author) [es

  10. Adsorption of natural surfactants present in sea waters at surfaces of minerals: contact angle measurements

    Directory of Open Access Journals (Sweden)

    Katarzyna Boniewicz-Szmyt

    2009-09-01

    Full Text Available The wetting properties of solid mineral samples (by contact angles in original surfactant-containing sea water (Gulf of Gdańsk, Baltic were characterised under laboratory conditions on a large set (31 samples of well-classified stones of diverse hydrophobicity using the sessile drop (ADSA-P approach, captive bubble and inclined plate methods. An experimental relation between the static contact angle θeq and stone density ρ was obtained in the form θeq = Bρ + C, where B = 12.23 ± 0.92, C = - (19.17 ± 0.77, and r2 = 0.92. The histogram of θeq distribution for polished stone plates exhibited a multimodal feature indicating that the most abundant solid materials (hydrophilic in nature have contact angles θeq = 7.2, 10.7, 15.7 and 19.2º, which appear to be applicable to unspecified field stones as well. The contact angle, a pH-dependent quantity, appears to be a sensitive measure of stone grain size, e.g. granite. The captive bubble method gives reproducible results in studies of porous and highly hydrophilic surfaces such as stones and wood. The authors consider the adsorption of natural sea water surfactants on stone surfaces to be the process responsible for contact angle hysteresis. In the model, an equation was derived for determining the solid surface free energy from the liquid's surface tension γLV it also enabled the advancing θA and receding θR contact angles of this liquid to be calculated. Measurements of contact angle hysteresis Δθ (=θA - θR with surfactant-containing sea water and distilled water (reference on the same stone surfaces allowed the film pressure ΔΠ (1.22 to 8.80 mJ m-2, solid surface free energy ΔγS (-17.03 to -23.61 mJ m-2 and work done by spreading ΔWS (-1.23 to -11.52 mJ m-2 to be determined. The variability in these parameters is attributed to autophobing, an effect operative on a solid surface covered with an adsorptive layer of surfactants. The wetting behaviour of solid particles is of great

  11. Dispersion of Louisiana crude oil in salt water environment by Corexit 9500A in the presence of natural coastal materials

    Science.gov (United States)

    Tansel, Berrin; Lee, Mengshan; Berbakov, Jillian; Tansel, Derya Z.; Koklonis, Urpiana

    2014-04-01

    Effectiveness of Corexit 9500A for dispersing Louisiana crude oil was evaluated in salt water solutions containing natural materials in relation to salinity and dispersant-to-oil ratio (DOR). Experimental results showed that both salinity and DOR had significant effects on dispersion of Louisiana crude oil in the presence of different natural materials. The natural materials added to the salt water solutions included sea sand (South Beach, Miami, Florida), red mangrove leaves (Rhizophora mangle), seaweed (Sargassum natans), and sea grass (Halodule wrightii). Dispersant effectiveness (amount of oil dispersed into the water) was reduced significantly with increasing salinity with the minimum effectiveness observed in the salinity range between 30 and 50 ppt in all aqueous samples containing natural materials. When significant amounts of floating oil were present, the partially submerged natural materials enhanced the transfer of oil into the water column, which improved the dispersion effectiveness. However, dispersant effectiveness was significantly reduced when the amount of floating oil was relatively small and could not be released back to the water column. Surface tension may not be an adequate parameter for monitoring the effectiveness of dispersants in salt water environment. When distilled water was used (i.e., zero salinity), surface tension was significantly reduced with increasing dispersant concentration. However, there was no clear trend in the surface tension of the salt water solutions (17-51 ppt) containing crude oil and natural materials with increasing dispersant concentration.

  12. natural

    Directory of Open Access Journals (Sweden)

    Elías Gómez Macías

    2006-01-01

    Full Text Available Partiendo de óxido de magnesio comercial se preparó una suspensión acuosa, la cual se secó y calcinó para conferirle estabilidad térmica. El material, tanto fresco como usado, se caracterizó mediante DRX, área superficial BET y SEM-EPMA. El catalizador mostró una matriz de MgO tipo periclasa con CaO en la superficie. Las pruebas de actividad catalítica se efectuaron en lecho fijo empacado con partículas obtenidas mediante prensado, trituración y clasificación del material. El flujo de reactivos consistió en mezclas gas natural-aire por debajo del límite inferior de inflamabilidad. Para diferentes flujos y temperaturas de entrada de la mezcla reactiva, se midieron las concentraciones de CH4, CO2 y CO en los gases de combustión con un analizador de gases tipo infrarrojo no dispersivo (NDIR. Para alcanzar conversión total de metano se requirió aumentar la temperatura de entrada al lecho a medida que se incrementó el flujo de gases reaccionantes. Los resultados obtenidos permiten desarrollar un sistema de combustión catalítica de bajo costo con un material térmicamente estable, que promueva la alta eficiencia en la combustión de gas natural y elimine los problemas de estabilidad, seguridad y de impacto ambiental negativo inherentes a los procesos de combustión térmica convencional.

  13. Passive safety systems and natural circulation in water cooled nuclear power plants

    International Nuclear Information System (INIS)

    2009-11-01

    Nuclear power produces 15% of the world's electricity. Many countries are planning to either introduce nuclear energy or expand their nuclear generating capacity. Design organizations are incorporating both proven means and new approaches for reducing the capital costs of their advanced designs. In the future most new nuclear plants will be of evolutionary design, often pursuing economies of scale. In the longer term, innovative designs could help to promote a new era of nuclear power. Since the mid-1980s it has been recognized that the application of passive safety systems (i.e. those whose operation takes advantage of natural forces such as convection and gravity), can contribute to simplification and potentially improve economics of new nuclear power plant designs. The IAEA Conference on The Safety of Nuclear Power: Strategy for the Future, which was convened in 1991, noted that for new plants 'the use of passive safety features is a desirable method of achieving simplification and increasing the reliability of the performance of essential safety functions, and should be used wherever appropriate'. Some new designs also utilize natural circulation as a means to remove core power during normal operation. The use of passive systems can eliminate the costs associated with the installation, maintenance, and operation of active systems that require multiple pumps with independent and redundant electric power supplies. However, considering the weak driving forces of passive systems based on natural circulation, careful design and analysis methods must be employed to ensure that the systems perform their intended functions. To support the development of advanced water cooled reactor designs with passive systems, investigations of natural circulation are conducted in several IAEA Member States with advanced reactor development programmes. To foster international collaboration on the enabling technology of passive systems that utilize natural circulation, the IAEA

  14. Studies of the water adsorption on Lampung’s natural zeolite of Indonesia for cooling application

    Science.gov (United States)

    Wulandari, D. A.; Nasruddin; Lemington

    2018-03-01

    Part of minerals that originally formed from volcanic rock and ash layers reacting further with alkaline groundwater is called natural zeolite, where its sources are not always available in all countries. Indonesia is located in the ring of fire which have a huge sources of zeolite, one of the area is Lampung, South Sumatra. Natural zeolite has been considered as one of potential heat adsorbent medium which can contribute to the energy consumption and reduce air pollution in the using of cooling application. The characteristic of this Lampung natural zeolite such as adsorption kinetics, adsorption water uptake, and adsorption capacity were test with ASAP 2020 system. Sorption kinetics by this experiment of zeolite samples were carried out in a constant temperature and humidity chamber. The chamber can supply constant air condition with deviations of ±0.5 °C for temperature and ±3% for relative humidity. The data based on rate of adsorption and the defined working condition was set as 20°C and 70% RH. Pore volume is a significant parameter for determining the limitation of water uptake, which can describe the saturated condition of zeolite. Sorption isotherm models used to describe sorption phenomena are commonly deduced from the Polanyi potential theory were investigated. The water adsorption quantity increased with the increase of relative pressure. To sum up, this pure zeolite has a less heat and mass transfer performance so its need to be activated before using in cooling application to get their great potential and by being coated in a desiccant heat exchanger systems.

  15. EFFECTIVENESS OF CHITOSAN AS NATURAL COAGULANT AID IN TREATING TURBID WATERS

    Directory of Open Access Journals (Sweden)

    B. Bina ، M. H. Mehdinejad ، M. Nikaeen ، H. Movahedian Attar

    2009-10-01

    Full Text Available During the last decade, there has been a concern about the relation between aluminum residuals in treated water and Alzheimer disease, and more interest has been considered on the development of natural coagulants such as chitosan. Chitosan, a natural linear biopolyaminosaccharide, is obtained by alkaline deacetylation of chitin. The present study was aimed to investigate the effects of alum as coagulant in conjunction with chitosan as coagulant aid on the removal of turbidity, hardness and Escherichia coli from water. A conventional jar test apparatus was employed for the tests. The optimum pH was observed between 7 to 7.5 for all turbidities. The optimum doses of alum and chitosan when used in conjunction, were 10mg/L and 1mg/L, 5mg/L and 0.5mg/L, and 5mg/L and 0.5mg/L in low, medium and high turbidities, respectively. Turbidity removal efficiency was resulted between %74.3 to %98.2 by alum in conjunction with chitosan. Residual Al+3 in treated water was less than 0.2 mg/L, meeting the international guidelines. The results showed that turbidity decrease provided also a primary Escherichia coli reduction of 2-4 log units within the first 1 to 2 hr of treatment. Hardness removal efficiency decreased when the total hardness increased from 102 to 476mg/L as CaCO3. At low initial turbidity, chitosan showed marginally better performance on hardness, especially at the ranges of 100 to 210 mg/L as CaCO3. In conclusion, coagulant aid showed a useful method for coagulation process. By using natural coagulants, considerable savings in chemicals and sludge handling cost may be achieved.

  16. Examination of uranium recovery technique from sea water using natural components for adsorbent

    International Nuclear Information System (INIS)

    Tanaka, Nobuyuki; Masaki, Hiroyuki; Shimizu, Takao; Tokiwai, Moriyasu

    2010-01-01

    In this study, we investigated the potency of natural components as adsorbent for uranium recovery from seawater. In addition, cost evaluation of uranium recovery from seawater using natural components for adsorbents was performed. Furthermore, new ideas on reservation system of adsorbents at sea area were proposed. Several poly-phenols were selected as adsorbent reagents, then they were adsorbed on the support such as cotton fiber by several methods as the followings; chemical syntheses, electrical beam irradiation, and traditional dyeing. As a result, the adsorbent made by traditional dyeing method using gallnut tannin as natural component, was showed high performance for uranium recovery from seawater on only the first. It was evaluated that traditional dyeing method had also advantage in the manufacturing cost, comparing with earlier method. Additionally, it was considered that reservation system of adsorbent at sea was able to be simplified compared with earlier system. Consequently, uranium recovery from sea water using natural components as adsorbent proposed in this study had a potency of practical use. (author)

  17. Experimental study on convective heat transfer of water flow in a heated tube under natural circulation

    International Nuclear Information System (INIS)

    Yang Ruichang; Liu Ruolei; Zhong Yong; Liu Tao

    2006-01-01

    This paper reports on an experimental study on transitional heat transfer of water flow in a heated vertical tube under natural circulation conditions. In the experiments the local and average heat transfer coefficients were obtained. The experimental data were compared with the predictions by a forced flow correlation available in the literature. The comparisons show that the Nusselt number value in the fully developed region is about 30% lower than the predictions by the forced flow correlation due to flow laminarization in the layer induced by co-current bulk natural circulation and free convection. By using the Rayleigh number Ra to represent the influence of free convection on heat transfer, the empirical correlations for the calculation of local and average heat transfer behavior in the tube at natural circulation have been developed. The empirical correlations are in good agreement with the experimental data. Based on the experimental results, the effect of the thermal entry-length behavior on heat transfer design in the tube under natural circulation was evaluated

  18. Geo-inspired model: Agents vectors naturals inspired by the environmental management (AVNG of water tributaries

    Directory of Open Access Journals (Sweden)

    Edwin Eduardo Millán Rojas

    2018-02-01

    Full Text Available Context: Management to care for the environment and the Earth (geo can be source of inspiration for developing models that allow addressing complexity issues; the objective of this research was to develop an additional aspect of the inspired models. The geoinspired model has two features, the first covering aspects related to environmental management and the behavior of natural resources, and the second has a component of spatial location associated with existing objects on the Earth's surface. Method: The approach developed in the research is descriptive and its main objective is the representation or characterization of a case study within a particular context. Results: The result was the design of a model to emulate the natural behavior of the water tributaries of the Amazon foothills, in order to extend the application of the inspired models and allow the use of elements such as geo-referencing and environmental management. The proposed geoinspired model is called “natural vectors agents inspired in environmental management”. Conclusions: The agents vectors naturals inspired by the environmental are polyform elements that can assume the behavior of environmental entities, which makes it possible to achieve progress in other fields of environmental management (use of soil, climate, flora, fauna, and link environmental issues with the structure of the proposed model.

  19. Squeezed Interstitial Water and Soil Properties in Pleistocene Blue Clays under Different Natural Environments

    Directory of Open Access Journals (Sweden)

    Maria Dolores Fidelibus

    2018-03-01

    Full Text Available Studies dating almost a century relate clay properties with the structure of the diffuse double layer (DDL, where the charged surfaces of clay crystal behave like an electric capacitor, whose dielectric is the interstitial fluid. The intensity of the inner electric field relates to the concentration and type of ions in the DDL. Other important implications of the model are less stressed: this part of the clay soil system, energetically speaking, is conservative. External contribution of energy, work of overburden or sun driven capillarity and long exposure to border low salinity waters can modify the concentration of pore-waters, thus affecting the DDL geometry, with electric field and energy storage variations. The study of clay soils coming from various natural geomorphological and hydrogeological contexts, determining a different salinity of interacting groundwater, shows how the clay interaction with freely circulating waters at the boundaries produces alterations in the native pore water salinity, and, at the nano-scale, variations of electric field and stored energy from external work. The swelling and the shrinkage of clay soil with their volumetric and geotechnical implications should be regarded as variations of the electrostatic and mechanical energy of the system. The study is based on tests on natural clay soil samples coming from a formation of stiff blue clays, widespread in southern Italy. Geotechnical identification and oedometer tests have been performed, and pore waters squeezed out from the specimens have been analyzed. Tested samples have similar grain size, clay fraction and plasticity; sorted according to the classified geomorphological/hydrogeological contexts, they highlight good correlations among dry density, mechanical work performed in selected stages of the oedometric test, swelling and non-swelling behaviour, and electrical conductivity of the squeezed pore waters. The work performed for swelling and non

  20. Study of the separation of strontium from solutions which imitate natural waters of increased mineralization

    International Nuclear Information System (INIS)

    Golub, A.M.; Voitko, I.N.; Glushchenko, L.V.; Mitrofanova, O.G.; Zyryanova, N.P.

    1976-01-01

    It has been shown by experiments on synthetically prepared solutions that it is possible to separate strontium and calcium by carbonate precipitation from the larger part of the magnesium accompanying them in natural high mineral waters. In this way the residual content of strontium is reduced to a value of 40-50 mg/liter and, under conditions of removing CO 2 from the solution, to 5-10 mg/liter. The high ionic strength of the solution prevented a more complete precipitation of strontium. Magnesium may be isolated from the filtrate after precipitation of the calcium-strontium mixture. The possibility has been shown of isolating strontium from the mixture of carbonates by means of pyrolysis at 1100-1200 0 and the selective solution of SrO in hot water

  1. Aluminum uptake from natural waters by a radiation-grafted membrane

    Energy Technology Data Exchange (ETDEWEB)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C., E-mail: ageraldo@ipen.br, E-mail: ryamaguishi@ipen.br [Instituto de Pesquisas Energeticas e Nucleares (IPEN/CNEN-SP), Sao Paulo, SP (Brazil)

    2013-07-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  2. Measurement of natural radionuclides in Malaysian bottled mineral water and consequent health risk estimation

    Energy Technology Data Exchange (ETDEWEB)

    Priharti, W.; Samat, S. B.; Yasir, M. S. [School of Applied Physics, Faculty of Science and Technology, Universiti Kebangsaan Malaysia, 43600 UKM Bangi, Selangor (Malaysia)

    2015-09-25

    The radionuclides of {sup 226}Ra, {sup 232}Th and {sup 40}K were measured in ten mineral water samples, of which from the radioactivity obtained, the ingestion doses for infants, children and adults were calculated and the cancer risk for the adult was estimated. Results showed that the calculated ingestion doses for the three age categories are much lower than the average worldwide ingestion exposure of 0.29 mSv/y and the estimated cancer risk is much lower than the cancer risk of 8.40 × 10{sup −3} (estimated from the total natural radiation dose of 2.40 mSv/y). The present study concludes that the bottled mineral water produced in Malaysia is safe for daily human consumption.

  3. Separation of methyltin species from inorganic tin, and their interactions with humates in natural waters

    International Nuclear Information System (INIS)

    Omar, M.; Bowen, H.J.M.

    1982-01-01

    Tin(II) and tin(IV) are absorbed from aqueous solutions by Sephadex G-25 gel, from which they can be eluted by humates or fulvates, with which they interact more strongly. Methyltin species are not absorbed by Sephadex G-25, and so can be separated from inorganic tin. Both inorganic tin and methyltin species in natural waters at pH 7.4 can be quantitatively retained by passing through small columns of Chelex-100 resin: the methyltin species can then be washed off the resin with 4M nitric acid. Trimethyltin chloride 113 Sn in water scarcely interacts with fulvates, humates, kaolinite or montmorillonite but is absorbed by Sphagnum peat. Dimethyltin dichloride- 113 Sn reacts significantly with all the above materials after 2 hours equilibration. Methyltin trichloride- 113 Sn interacts weakly in alkaline solutions. (author)

  4. Capture (or watering the state): The making of law, state, and nature

    DEFF Research Database (Denmark)

    Andersen, Astrid Oberborbeck

    . This paper addresses the law as a liquid technology, an arrangement of ideas, interests, desires, intentions, bureaucratic processes and practices that materialize in concrete encounters and sites of implementation. The paper builds on ethnographic fieldwork carried out in 2011 – 2012, and follow......This paper follows the Peruvian law of water resources of 2009, Ley de Recursos Hídricos 29338, from ideological crafting in the capital of Lima, to practical implementation in institutional practices and encounters with water users, infrastructure and nature in and around the city of Arequipa...... and responsible population. However, the concrete implementation of these ideas reveals encounters where the concepts are being questioned and transformed – in words or in practice – by the population they seek to impact, as well as the officials meant to implement them. In the paper, some of these encounters...

  5. Irradiation techniques for the release of bound heavy metals in natural waters and blood

    International Nuclear Information System (INIS)

    Batley, G.E.; Farrar, Y.J.

    1978-01-01

    Irradiation techniques are compared with conventional acid digestion procedures for the release of bound heavy metals in natural waters and in blood, before their determination by anodic stripping voltammetry. Ultra-violet irradiation of acidified water with a 550-W mercury vapour lamp releases bound zinc, cadmium, lead and copper after 4 h. The same results can be achieved with a 30 Mrad dose of high-energy γ-irradiation. These techniques are also effective for the release of metals in whole blood and blood plasma, where sample volumes as small as 200 μl are adequate in analyses for zinc, copper and lead. By comparison with acid digestion and solvent extraction methods, irradiation treatments offer the advantages of minimum sample manipulation and negligible reagent blanks. (Auth.)

  6. Aluminum uptake from natural waters by a radiation-grafted membrane

    International Nuclear Information System (INIS)

    Bazante-Yamaguishi, Renata; Moura, Eduardo; Manzoli, Jose E.; Geraldo, Aurea B.C.

    2013-01-01

    Styrene grafted, chemically modified polymeric membranes were used to carry off aluminum of drinking water from wells located at Billings dam region. The membranes comprised polymeric substrates of PVC (polyvinylchloride) and PP (polypropylene), which were mutually grafted with gamma radiation. The chemical modification included three basic reaction paths: Friedel-Crafts acylation, 2-methylanisole coupling and a final oxidation; this modification enables aluminum selectivity on the membrane. This chemical process inserts a salicylated derivative bonded onto the aromatic ring of styrene; such molecular arrangement is responsible for complexation of aluminum ions. The aluminum sorption capacity of these membranes was evaluated firstly from an aluminum control solution, where parameters like the ideal pH value for aluminum sorption and the interfering species were studied and correlated to know the best conditions for aluminum uptake. Later, the membranes were used for aluminum remediation of natural waters (real-life samples). The applicability results and limits are then discussed. (author)

  7. Measurement of natural radionuclides in Malaysian bottled mineral water and consequent health risk estimation

    Science.gov (United States)

    Priharti, W.; Samat, S. B.; Yasir, M. S.

    2015-09-01

    The radionuclides of 226Ra, 232Th and 40K were measured in ten mineral water samples, of which from the radioactivity obtained, the ingestion doses for infants, children and adults were calculated and the cancer risk for the adult was estimated. Results showed that the calculated ingestion doses for the three age categories are much lower than the average worldwide ingestion exposure of 0.29 mSv/y and the estimated cancer risk is much lower than the cancer risk of 8.40 × 10-3 (estimated from the total natural radiation dose of 2.40 mSv/y). The present study concludes that the bottled mineral water produced in Malaysia is safe for daily human consumption.

  8. Uranium concentrations in natural waters, South Park, Colorado. [Part of National Uranium Resource Evaluation program

    Energy Technology Data Exchange (ETDEWEB)

    Sharp, R.R. Jr.; Aamodt, P.L.

    1976-08-01

    During the summer of 1975, 464 water samples from 149 locations in South Park, Colorado, were taken for the Los Alamos Scientific Laboratory in order to test the field sampling and analytical methodologies proposed for the NURE Hydrogeochemical and Stream Sediment Reconnaissance for uranium in the Rocky Mountain states and Alaska. The study showed, in the South Park area, that the analytical results do not vary significantly between samples which were untreated, filtered and acidified, filtered only, or acidified only. Furthermore, the analytical methods of fluorometry and delayed-neutron counting, as developed at the LASL for the reconnaissance work, provide fast, adequately precise, and complementary procedures for analyzing a broad range of uranium in natural waters. The data generated using this methodology does appear to identify uraniferous areas, and when applied using sound geochemical, geological, and hydrological principles, should prove a valuable tool in reconnaissance surveying to delineate new districts or areas of interest for uranium exploration.

  9. Numerical prediction of the natural frequency of an Oscillating Water Column operating under resonant conditions

    Directory of Open Access Journals (Sweden)

    Marco Torresi

    2016-12-01

    Full Text Available Among the different technologies developed in order to harness wave energy, the Oscillating Water Column devices are the most accredited for an actual diffusion. Recently, Boccotti has patented the REWEC1 (REsonant sea Wave Energy Converter solution 1, a submerged breakwater that performs an active coast protection, embedding an Oscillating Water Column device, which is capable of operating under resonant conditions with that sea state, which gives the highest yearly energy contribution. The REWEC1 dynamic behavior can be approximated by means of a mass-spring-damper system. According to this approximation, a criterion for evaluating the oscillating natural frequency of the REWEC1 has been derived. This criterion has been validated against both experimental results and computational fluid dynamics simulations, performed on a REWEC1 laboratory-scale model. The numerical simulations have shown a good agreement between measurements and predictions.

  10. XPS studies of water and oxygen on iron-sputtered natural ilmenite

    Science.gov (United States)

    Schulze, P. D.; Neil, T. E.; Shaffer, S. L.; Smith, R. W.; Mckay, D. S.

    1985-01-01

    The adsorption of D2O and O2 on polycrystalline FeTiO3 (natural ilmenite) has been studied by X-ray photoelectron spectroscopy. Oxygen was found to absorb reactively with Fe(0) on Ar(+)-sputtered surfaces at and above 150 K while D2O was found to adsorb molecularly or in ice layers below 170 K on both Ar(+) and O2(+) ion-bombarded ilmenite. The D2O desorbs at 170 K with either the formation of an OD complex or a strongly bound molecular layer of water.

  11. Flow injection spectrophotometric determination of low concentrations of orthosphate in natural waters employing ion exchange resin

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.

    1981-01-01

    A simple and fast method for the determination of low concentrations of orthophosphate in natural waters is described. Ion exchange is incorporated into a flow injection system by usina a resin column in the sample loop of a proportion injector. Effects of sample aspiration rate, sampling time, eluting agent concentration, pumping rate of the sample carrier stream and interfaces, were investigated both using 32 PO 3- 4 or 31 PO 3- 4 with columns coupled to a gerger-muller detector and incorporated in a flow system with molybdenum blue colorinetry. (M.A.C.) [pt

  12. Paper tests for the determination of heavy metals in waste and natural waters

    International Nuclear Information System (INIS)

    Amelin, V.G.

    1999-01-01

    Reactive papers are proposed for the semiquantitative determination of cadmium based on the intensity of color that appears after pumping a certain volume of the test liquid through the paper. The test systems involve precipitates of zinc dithizonate immobilized in pores of paper filters and capable of exchanging test ions to give compounds with intense and contrast colors. Rapid-test procedures are developed for determining 0.005-1 mg/L of cadmium in waste and natural waters. Analysis time is 10-15 min, the relative standard deviation of the results of analysis in the vicinity of the lower determination limit is no worse than 50 % [ru

  13. New composite fibres for natural and waste waters decontamination from cesium radionuclides

    Directory of Open Access Journals (Sweden)

    Yu. V. Bondar

    2017-08-01

    Full Text Available New composite adsorbent based on modified polyacrylonitrile fibers is synthesized by in situ deposition of potassium-nickel ferrocyanide layer on the fibers’ surface. It is shown that the ferrocyanide phase forms a compact homogeneous layer on the fibers’ surface consisted of rounded nanoaggregates (∼ 40 - 50 nm. Composite fibers are chemically stable in both acidic and alkaline solutions. Sorption experiments have demonstrated that synthesized fibers are high-selective adsorbents and can be used for the purification of natural waters and high-salt solutions from cesium radionuclides.

  14. MICROBIOLOGICAL STUDIES RECQUIRED FOR A SCIENTIFIC MANAGEMENT OF THE NATURAL MINERAL WATER SOURCES

    Directory of Open Access Journals (Sweden)

    IONESCU ANA DESPINA

    2007-01-01

    Full Text Available This paper presents some of the results obtained concerning the discovery,characterization, screening and management of some still unknown or not yet fullycharacterized natural sources of mineral waters, in order to render themeconomically profitable and to contribute to the public health development.Following some empiric, local observations upon the qualities they have in thetreatment of different maladies, a set of physical, hydrological, chemical andmicrobiological analyses was established, in order to substantiate scientifically theirtherapeutic potential. Moreover, the authors have selected some areas situated inthe neighborhood of the old (some of them already closed salt mines.

  15. Natural recovery and leaf water potential after fire influenced by salvage logging and induced drought stress

    Directory of Open Access Journals (Sweden)

    D. Moya

    2013-01-01

    Full Text Available Salvage logging is one of the most common emergency actions in the short-term management after a fire. Several studies have been carried out and some obtained positive results which incite to carry it out but other, found negative effects on seedling establishment and regeneration. In addition, climatic changes will have large impacts on vegetation productivity and resilience since the regional models for south-eastern Spain predicts a rainfall decrease of about 20% and temperature increase of 4.5 ºC. Our aim was to determine how short-term forest management and induced drought affect the ecosystem recovery in Aleppo pine stands naturally recovered after a fire.In summer 2009, a mid-high severity fire burned 968 ha of Aleppo pine (Pinus halepensis Mill. forest in south-eastern Spain. Six months later, a salvage logging was carried out. The Aleppo pine recruitment was negligible. During summer 2010, twelve square plots (2m x 2m were set in the three scenarios: control, salvaged and drought induced. The surface cover and soil water availability for three dominant understory species were recorded in four field campaigns: Spring-2010, Fall-2010, Spring-2011 and Fall-2011.The season, management and the target species showed significant differences in growing and water stress. In general, Esparto grass showed lower water stress, mainly in Fall, a higher increase of total coverage. Both effects were showing their highest values in non-salvaged areas and no drought. Changes in leaf water potential and soil water content after the drought season influence the survival and development of individuals.Our results indicate that soil water content and ecosystem response can be modified by short-term silvicultural treatments. Therefore, management after fire could cause opposite effects to those initially foreseen, since they depend on fire severity, and type of ecosystem management response. So, their application must be evaluated and assessed before

  16. The effects of tree establishment on water and salt dynamics in naturally salt-affected grasslands.

    Science.gov (United States)

    Nosetto, Marcelo D; Jobbágy, Esteban G; Tóth, Tibor; Di Bella, Carlos M

    2007-07-01

    Plants, by influencing water fluxes across the ecosystem-vadose zone-aquifer continuum, can leave an imprint on salt accumulation and distribution patterns. We explored how the conversion of native grasslands to oak plantations affected the abundance and distribution of salts on soils and groundwater through changes in the water balance in naturally salt-affected landscapes of Hortobagy (Hungary), a region where artificial drainage performed approximately 150 years ago lowered the water table (from -2 to -5 m) decoupling it from the surface ecosystem. Paired soil sampling and detailed soil conductivity transects revealed consistently different salt distribution patterns between grasslands and plantations, with shallow salinity losses and deep salinity gains accompanying tree establishment. Salts accumulated in the upper soil layers during pre-drainage times have remained in drained grasslands but have been flushed away under tree plantations (65 and 83% loss of chloride and sodium, respectively, in the 0 to -0.5 m depth range) as a result of a five- to 25-fold increase in infiltration rates detected under plantations. At greater depth, closer to the current water table level, the salt balance was reversed, with tree plantations gaining 2.5 kg sodium chloride m(-2) down to 6 m depth, resulting from groundwater uptake and salt exclusion by tree roots in the capillary fringe. Diurnal water table fluctuations, detected in a plantation stand but not in the neighbouring grasslands, together with salt mass balances suggest that trees consumed approximately 380 mm groundwater per year, re-establishing the discharge regime and leading to higher salt accumulation rates than those interrupted by regional drainage practices more than a century ago. The strong influences of vegetation changes on water dynamics can have cascading consequences on salt accumulation and distribution, and a broad ecohydrological perspective that explicitly considers vegetation-groundwater links is

  17. Integrated Modeling of the Human-Natural System to Improve Local Water Management and Planning

    Science.gov (United States)

    Gutowski, W. J., Jr.; Dziubanski, D.; Franz, K.; Goodwin, J.; Rehmann, C. R.; Simpkins, W. W.; Tesfastion, L.; Wanamaker, A. D.; Jie, Y.

    2015-12-01

    Communities across the world are experiencing the effects of unsustainable water management practices. Whether the problem is a lack of water, too much water, or water of degraded quality, finding acceptable solutions requires community-level efforts that integrate sound science with local needs and values. Our project develops both a software technology (agent-based hydrological modeling) and a social technology (a participatory approach to model development) that will allow communities to comprehensively address local water challenges. Using agent-based modeling (ABM), we are building a modeling system that includes a semi-distributed hydrologic process model coupled with agent (stakeholder) models. Information from the hydrologic model is conveyed to the agent models, which, along with economic information, determine appropriate agent actions that subsequently affect hydrology within the model. The iterative participatory modeling (IPM) process will assist with the continual development of the agent models. Further, IPM creates a learning environment in which all participants, including researchers, are co-exploring relevant data, possible scenarios and solutions, and viewpoints through continuous interactions. Our initial work focuses on the impact of flood mitigation and conservation efforts on reducing flooding in an urban area. We are applying all research elements above to the Squaw Creek watershed that flows through parts of four counties in central Iowa. The watershed offers many of the typical tensions encountered in Iowa, such as different perspectives on water management between upstream farmers and downstream urban areas, competition for various types of recreational services, and increasing absentee land ownership that may conflict with community values. Ultimately, climate change scenarios will be incorporated into the model to determine long term patterns that may develop within the social or natural system.

  18. Robust superhydrophobic surface by nature-inspired polyphenol chemistry for effective oil-water separation

    Science.gov (United States)

    Bu, Yiming; Huang, Jingjing; Zhang, Shiyu; Wang, Yinghua; Gu, Shaojin; Cao, Genyang; Yang, Hongjun; Ye, Dezhan; Zhou, Yingshan; Xu, Weilin

    2018-05-01

    With the ever-increasing oil spillages, oil-water separation has attracted widespread concern in recent years. In this work, a nature-inspired polyphenol method has been developed to fabricate the durable superhydrophobic surfaces for the oil-water separation. Inspiring from the adhesion of polyphenol and reducing capacity of free catechol/pyrogallol groups in polyphenol, firstly, the simple immersion of commercial materials (melamine sponge, PET, and nonwoven cotton fabrics) in tannic acid (TA) solution allows to form a multifunctional coating on the surface of sponge or fabrics, which was used as reducing reagent to generate Ag nanoparticles (NPs). Then, decoration of 1H, 1H, 2H, 2H-perfluorodecanethiol (PFDT) molecules produced superhydrophobic surfaces. The surface topological structure, chemical composition, and superhydrophobic property of the as-prepared surface are characterized by scanning electron microscopy (SEM), X-ray photoelectron spectroscopy (XPS), energy dispersive spectroscopy (EDS), and water contact angle (WCA) measurements. The WCAs of as-prepared sponge and fabrics were higher than 150°. The stability, absorption capacity, and recyclability of as-prepared sponge and fabrics were investigated. The as-prepared sponge demonstrates high oil/water selectivity and high absorption capacity (66-150 g/g) for a broad variety of oils and organic solvents, and was chemically resistant, robust against abrasion, and long-term durability in harsh environments. Most important of all, it can continuously separate various kinds of oils or organic pollutants from the surface of water. This study presents a facile strategy to fabricate superhydrophobic materials for continuous oil-water separation, displaying great potential in large-scale practical application.

  19. JGOFS IV. Subproject: natural radionuclides as tracers for particle dynamics in the water column. Final report

    International Nuclear Information System (INIS)

    Scholten, J.C.; Fietzke, J.; Mangini, A.; Stoffers, P.

    2000-01-01

    As part of the German JOINT GLOBAL OCEAN FLUX STUDY (JGOFS) the aim of the project was to investigate the particle dynamics in the water column, especially to estimate the trapping efficiencies of sediment traps deployed in the eastern North Atlantic (L1: 33 N 21 W; L2: 47 N 19.5 W; L3: 54,4 N 21,1 W; ESTOC: 29,07 N 15,25 W; OMEX: 49 N 12,5 W). This investigation was based on measurements of the distribution of natural radionuclides in the water column and in sediment traps. In the upper water column (≤1000 m) the 230 Th concentrations are similar at all locations investigated and a reversible scavenging model was able to describe the 230 Th distribution. In the deep water-column at L2 and L3 the 230 Th concentrations were significantly lower than predicted from the reversible scavenging model. The 230 Th concentrations here could be described by a scavenging-mixing model which assumes an advection of 230 Th depleted water masses and a rapid ventilation between 3 and 25 years. Based on two models, a mass balance for 230 Th and 231 Pa and a constant removal model, sediment trap efficiencies were calculated to be between 9% and 143%. The lowest efficiencies (9%-36%) were determined in the 500 m and 1000 m traps and no direct relation between water currents velocities and trapping biases were observed. The correction for trapping biases were found to be important for the understanding of the regional differences in the particle flux in the eastern north Atlantic. (orig.) [de

  20. Characterization and Monitoring of Natural Attenuation of Chlorinated Solvents in Ground Water: A Systems Approach

    Science.gov (United States)

    Cutshall, N. H.; Gilmore, T.; Looney, B. B.; Vangelas, K. M.; Adams, K. M.; Sink, C. H.

    2006-05-01

    Like many US industries and businesses, the Department of Energy (DOE) is responsible for remediation and restoration of soils and ground water contaminated with chlorinated ethenes. Monitored Natural Attenuation (MNA) is an attractive remediation approach and is probably the universal end-stage technology for removing such contamination. Since 2003 we have carried out a multifaceted program at the Savannah River Site designed to advance the state of the art for MNA of chlorinated ethenes in soils and groundwater. Three lines of effort were originally planned: 1) Improving the fundamental science for MNA, 2) Promoting better characterization and monitoring (CM) techniques, and 3) Advancing the regulatory aspects of MNA management. A fourth line, developing enhanced attenuation methods based on sustainable natural processes, was added in order to deal with sites where the initial natural attenuation capacity cannot offset contaminant loading rates. These four lines have been pursued in an integrated and mutually supportive fashion. Many DOE site-cleanup program managers view CM as major expenses, especially for natural attenuation where measuring attenuation is complex and the most critical attenuation mechanisms cannot be determined directly. We have reviewed new and developing approaches to CM for potential application in support of natural attenuation of chlorinated hydrocarbons in ground water at DOE sites (Gilmore, Tyler, et al., 2006 WSRC-TR- 2005-00199). Although our project is focused on chlorinated ethenes, many of the concepts and strategies are also applicable to a wider range of contaminants including radionuclides and metals. The greatest savings in CM are likely to come from new management approaches. New approaches can be based, for example, on conceptual models of attenuation capacity, the ability of a formation to reduce risks caused by contaminants. Using the mass balance concept as a guide, the integrated mass flux of contaminant is compared to

  1. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    International Nuclear Information System (INIS)

    Cornejo, Lorena; Lienqueo, Hugo; Arenas, Maria; Acarapi, Jorge; Contreras, David; Yanez, Jorge; Mansilla, Hector D.

    2008-01-01

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 μg L -1 . Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L -1 of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 μg L -1 . This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed

  2. Lampung natural zeolite filled cellulose acetate membrane for pervaporation of ethanol-water mixtures

    Science.gov (United States)

    Iryani, D. A.; Wulandari, N. F.; Cindradewi, AW; Ginting, S. Br; Ernawati, E.; Hasanudin, U.

    2018-03-01

    Pervaporation of ethanol–water can be cost-competitive in the production of renewable biomass ethanol. For the purpose of improving the pervaporation performance of polymeric membranes, we prepared cellulose acetate (CA) filled Lampung Natural Zeolite (LNZ) membranes by incorporating LNZ into CA for pervaporation separation of ethanol-water mixtures. The characteristics and performance of these filled membranes in the varied ratio of CA:LNZ (30:0, 30:5, 30:10, 30: 20, 20:20 and 40:10) wt% were investigated. The prepared membranes were characterized for pervaporation membrane performance such as %water content and membrane swelling degree. Further, the permeation flux and selectivity of membrane were also observed. The results of investigation show that water content of membrane tends to increase with increase of LNZ content. However, the swelling degree of membrane decrease compared than that of CA control membrane. The permeation flux and the selectivity of membranes tend to increase continuously. The CA membrane with ratio of CA:LNZ 30:20 shows the highest selectivity of 80.42 with a permeation flux of 0.986 kg/(m2 h) and ethanol concentration of 99.08 wt%.

  3. Water pollution risk associated with natural gas extraction from the Marcellus Shale.

    Science.gov (United States)

    Rozell, Daniel J; Reaven, Sheldon J

    2012-08-01

    In recent years, shale gas formations have become economically viable through the use of horizontal drilling and hydraulic fracturing. These techniques carry potential environmental risk due to their high water use and substantial risk for water pollution. Using probability bounds analysis, we assessed the likelihood of water contamination from natural gas extraction in the Marcellus Shale. Probability bounds analysis is well suited when data are sparse and parameters highly uncertain. The study model identified five pathways of water contamination: transportation spills, well casing leaks, leaks through fractured rock, drilling site discharge, and wastewater disposal. Probability boxes were generated for each pathway. The potential contamination risk and epistemic uncertainty associated with hydraulic fracturing wastewater disposal was several orders of magnitude larger than the other pathways. Even in a best-case scenario, it was very likely that an individual well would release at least 200 m³ of contaminated fluids. Because the total number of wells in the Marcellus Shale region could range into the tens of thousands, this substantial potential risk suggested that additional steps be taken to reduce the potential for contaminated fluid leaks. To reduce the considerable epistemic uncertainty, more data should be collected on the ability of industrial and municipal wastewater treatment facilities to remove contaminants from used hydraulic fracturing fluid. © 2012 Society for Risk Analysis.

  4. Extraction of natural coagulant from peanut seeds for treatment of turbid water

    International Nuclear Information System (INIS)

    Birima, A H; Desa, M N M; Muda, Z C; Hammad, H A

    2013-01-01

    This study investigates the potential of peanut seeds as an environmental friendly and natural coagulant for the treatment of high turbid water. The peanut seeds have been used after oil extraction; and the active coagulation component was extracted by distilled water and salt solution of different salt concentrations. The salts used were NaCl, KNO 3 , KCl, NH 4 Cl and NaNO 3 . Synthetic water with 200 NTU turbidity was used. Peanut extracted with NaCl (PC-NaCl) could effectively remove 92% of the 200 NTU turbidity using only 20 mg/l, while peanut seeds extracted with distilled water (PC-DW) could remove only 31.5% of the same turbidity with the same dosage. The coagulant dosage did not affected by the concentration of the salt solution, however, residual turbidity decreased with increasing the concentration of the salt; and the relationship was found to be a second order polynomial curve with R 2 of 0.9312. The other salts tested were also found to be good solvents to extract the active coagulation component with no much difference from NaCl solution in terms of efficiency.

  5. WATER HYACINTH: A POSSIBLE ALTERNATIVE RATE RETARDING NATURAL POLYMER USED IN SUSTAINED RELEASE TABLET DESIGN

    Directory of Open Access Journals (Sweden)

    Sabera eKhatun

    2014-06-01

    Full Text Available In recent years natural polymers have been widely used, because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5%, 10%, 15%, 20%, 25% and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr’s Index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR, Differential Scanning Calorimetry (DSC and Scanning Electron Microscopy (SEM studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37oC ± 0.5 temperature, for 8 hours. All the formulations comply with both BP and USP requirements, but among all the formulations F-1 (5% of Water hyacinth was the best fitted formula. The drug release patterns were explained in different kinetic models such as Zero order, First order, Higuchi, Hixson Crowell and Korsmeyer-Peppas equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations.

  6. Interaction between Soil Physicochemical Parameters and Earthworm Communities in Irrigated Areas with Natural Water and Wastewaters

    Directory of Open Access Journals (Sweden)

    Kourtel Ghanem Nadra

    2017-01-01

    Full Text Available Our objective is to study interaction between physical and chemical properties of soils and their earthworm community characteristics in different areas irrigated by wastewaters and well waters. The fields have different topography and agricultural practices conditions and are located in two regions of Batna department (Eastern Algeria. Both regions are characterized by a semiarid climate with cold winters and Calcisol soils. Nine fields were subject of this study. Three of these fields are located in Ouled Si Slimane region whose irrigation is effectuated by natural waters of Kochbi effluent. The other six fields are located at edges of Wed El Gourzi, effluent from Batna city, and partially treated through water treatment station. The best rates of water saturation and infiltration as well as abundance of earthworms were recorded at sites characterized by irrigation with wastewaters downstream of El Gourzi effluent. PCA characterizes two major groups: a group of hydrodynamic infiltration parameters and structural index stability of soil, explained by fields irrigated with wastewaters downstream of El Gourzi effluent. This group includes chemical characteristics: pH and electric conductivity. The second group is the characteristics of earthworms and includes organic matter content, active limestone levels, and Shannon Biodiversity Index.

  7. Using Coagulation Process in Optimizing Natural Organic Matter Removal from Low Turbidity Waters

    Directory of Open Access Journals (Sweden)

    Alireza Mesdaghinia

    2006-03-01

    Full Text Available Optimization of coagulation process  for efficient removal of Natural Organic Matters (NOM has gained a lot of focus over the last years to meet the requirements of enhanced coagulation. NOM comprises both particulate and soluble components which the latter usually comprises the main portion. Removal of soluble NOM from low turbidity waters by coagulation is not a successful process unless enough attention is paid to stages of formation and development of both micro and macro-flocs. This study, which presents experimental results from pilot scale research studies aimed at optimizing coagulation process applied to synthetic raw waters supplemented by adding commercial humic acid with low turbidity levels, explains how pH and turbidity can be controlled to maximize soluble NOM removal. The removal of NOM at various coagulant doses and coagulation pHs has been assessed through raw and treated (coagulated-settled water measurements of total organic carbon (TOC. For low turbidity waters, essential floc nucleation sites can be provided by creating synthetic turbidities, for example by adding clay. Adjusting the initial pH at 5.5 or adding clay before coagulant addition allows the formation of micro-flocs as well as formation of the insoluble flocs at low coagulant doses.

  8. Device for recirculation cooling of cooling water by natural or forced chaft

    Energy Technology Data Exchange (ETDEWEB)

    Ruehl, H; Honekamp, H; Katzmann, A

    1975-10-23

    The invention is concerned with a device for recirculation cooling of cooling water by natural or forced draft. Through a cascading system mounted on supporting columns at a vertical distance to ground level, cooling air is flowing in cross- or counterflow to the cooling water freely falling from the cascading system. The cooling water collecting zone below the cascading system has an absorption floor arranged nearly horizontal and/or inclined, with a cam-type profile on its upperside, which is bounded on its circumference by at least one cooling water release channel provided below its level and/or which is divided in the sense of a surface subdivision. By these means, a reduction of the amount of material required for the supporting columns and an increase of the stability of the columns is to be achieved. Furthermore, the deposition of mud is to be avoided as for as possible, and noise generation during operation is to be reduced considerably. For this purpose, the absorption floor may be made of material sound insulating and/or may be coated with such a material.

  9. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination

    KAUST Repository

    Dehwah, Abdullah

    2016-10-18

    An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.

  10. Water hyacinth: a possible alternative rate retarding natural polymer used in sustained release tablet design.

    Science.gov (United States)

    Khatun, Sabera; Sutradhar, Kumar B

    2014-01-01

    In recent years natural polymers have been widely used because of their effectiveness and availability over synthetic polymers. In this present investigation matrix tablets of Metformin hydrochloride were formulated using Water hyacinth powder and its rate retardant activity was studied. Tablets were prepared using wet granulation method with 8% starch as granulating agent and 5, 10, 15, 20, 25 and 30% of Water hyacinth powder to the drug. In preformulation study, angle of repose, Carr's Index and Hausner ratio were calculated. Fourier Transform Infrared Spectroscopy (FTIR), Differential Scanning Calorimetry (DSC), and Scanning Electron Microscopy (SEM) studies were performed and no interactions were found between drug and excipients. Weight variation, friability, hardness, thickness, diameter, and in vitro release study were performed with the prepared matrix tablets. Dissolution studies were conducted using USP type II apparatus at a speed of 100 rpm at 37°C ± 0.5 temperature for 8 h. Though all the formulations comply with both BP and USP requirements, formulation F-1 (5% of Water hyacinth) was the best fitted formula. The drug release patterns were explained in different kinetic models such as Zero order, First order, Higuchi, Hixson Crowell, and Korsmeyer-Peppas equations. The current investigation implies that Water hyacinth has the potential to be used as a rate-retarding agent in sustained release drug formulations.

  11. In field arsenic removal from natural water by zero-valent iron assisted by solar radiation

    Energy Technology Data Exchange (ETDEWEB)

    Cornejo, Lorena [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile)], E-mail: lorenacp@uta.cl; Lienqueo, Hugo; Arenas, Maria [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Acarapi, Jorge [Departamento de Quimica, Facultad de Ciencias, Universidad de Tarapaca, Casilla 7-D, Arica (Chile); Laboratorio de Investigaciones Medioambientales de Zonas Aridas, LIMZA, Centro de Investigaciones del Hombre en el Desierto, CIHDE, Arica (Chile); Contreras, David; Yanez, Jorge; Mansilla, Hector D. [Facultad de Ciencias Quimicas, Universidad de Concepcion, Casilla 160C, Concepcion (Chile)

    2008-12-15

    An in situ arsenic removal method applicable to highly contaminated water is presented. The method is based in the use of steel wool, lemon juice and solar radiation. The method was evaluated using water from the Camarones River, Atacama Desert in northern Chile, in which the arsenic concentration ranges between 1000 and 1300 {mu}g L{sup -1}. Response surface method analysis was used to optimize the amount of zero-valent iron (steel wool) and the citrate concentration (lemon juice) to be used. The optimal conditions when using solar radiation to remove arsenic from natural water from the Camarones river are: 1.3 g L{sup -1} of steel wool and one drop (ca. 0.04 mL) of lemon juice. Under these conditions, removal percentages are higher than 99.5% and the final arsenic concentration is below 10 {mu}g L{sup -1}. This highly effective arsenic removal method is easy to use and inexpensive to implement. - An in situ arsenic removal method applicable to highly contaminated waters by using zero-valent iron, citrate and solar radiation was developed.

  12. Aquifer Treatment of Sea Water to Remove Natural Organic Matter Before Desalination

    KAUST Repository

    Dehwah, Abdullah; Almashharawi, Samir; Ng, Kim Choon; Missimer, Thomas M.

    2016-01-01

    An investigation of a sea water reverse osmosis desalination facility located in western Saudi Arabia has shown that aquifer treatment of the raw sea water provides a high degree of removal of natural organic matter (NOM) that causes membrane biofouling. The aquifer is a carbonate system that has a good hydraulic connection to the sea and 14 wells are used to induce sea water movement 400 to 450 m from the sea to the wells. During aquifer transport virtually all of the algae, over 90% of the bacteria, over 90% of the biopolymer fraction of NOM, and high percentages of the humic substance, building blocks, and some of the low molecular weight fractions of NOM are removed. Between 44 and over 90% of the transparent exopolymer particles (TEP) are removed with a corresponding significant reduction in concentration of the colloidal fraction of TEP. The removal rate for TEP appears to be greater in carbonate aquifers compared to siliciclastic systems. Although the production wells range in age from 4 months to 14 years, no significant difference in the degree of water treatment provided by the aquifer was found.

  13. How Natural is the Dissolved Inorganic Composition of Mississippi River Water?

    Science.gov (United States)

    Peucker-Ehrenbrink, B.; Johnson, S. T.; Meaux, S. J.; Brown, K.; Blum, M. J.; Allison, M. A.; Halder, J.; Wassenaar, L. I.; Cuesta, A. M.; Norris, E. S.; Wang, R. S.

    2017-12-01

    The dissolved inorganic composition of rivers provides insights into natural interactions between the hydrologic cycle and the "critical zone" of watersheds, and anthropogenic modifications thereof. For instance, major ion compositions allow us to infer how effectively weathering processes counteract increasing atmospheric CO2 concentrations. Prerequisite to such assessments is the ability to detect and correct for anthropogenic modifications of river chemistry. An observatory campaign of the Mississippi River in New Orleans from July 2015 to October 2016 with an in-situ sensor system (LOBO-SUNA) and 161 discrete water sampling events reveals systematic changes in the dissolved ion and water stable isotope compositions, nutrient loading, and physical parameters of the Mississippi River. Monthly sampling has continued since as part of the Global Rivers Observatory. We compare this high-resolution data set to long-term data generated by the USGS at St. Francisville upstream of Baton Rouge, data from the USGS Baton Rouge gaging station and in-situ sensor system, as well as other historic data. Results reveal systematic changes in major ion composition in response to hydrologic conditions. In addition to annual and interannual changes, decadal trends in concentrations of certain major ions (Na, Mg, Ca) are consistent with anthropogenic activities in the drainage basin that are reminiscent of well-known, long-term changes in nutrient fluxes that affect the northern Gulf of Mexico. Our current working hypotheses to explain observed increases in Mg and Na concentrations, for example, are contaminations from road salt, from additives used in drinking and waste water treatment, as well as from groundwater pumping, particularly in the western part of the Mississippi River basin. Uncorrected, these changes impede our abilitiy to use the current chemical composition of Mississippi River water as a quantitative indicator of natural processes in the watershed.

  14. An assessment of natural radionuclides in water of Langat River estuary, Selangor

    Energy Technology Data Exchange (ETDEWEB)

    Hamzah, Zaini, E-mail: tengkuliana88@gmail.com; Rosli, Tengku Nurliana Tuan Mohd, E-mail: tengkuliana88@gmail.com; Saat, Ahmad, E-mail: tengkuliana88@gmail.com; Wood, Ab. Khalik, E-mail: tengkuliana88@gmail.com [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2014-02-12

    An estuary is an area that has a free connection with the open sea and it is a dynamic semi-enclosed coastal bodies. Ex-mining, aquaculture and industrial areas in Selangor are the sources of pollutants discharged into the estuary water. Radionuclides are considered as pollutants to the estuary water. Gamma radiations emitted by natural radionuclides through their decaying process may give impact to human. The radiological effect of natural radionuclides which are {sup 226}Ra, {sup 228}Ra, {sup 40}K, {sup 238}U and {sup 232}Th, were explored by determining the respective activity concentrations in filtered water along the Langat estuary, Selangor. Meanwhile, in- situ water quality parameters such as temperature, dissolve oxygen (DO), salinity, total suspended solid (TSS), pH and turbidity were measured by using YSI portable multi probes meter. The activity concentration of {sup 226}Ra, {sup 228}Ra and {sup 40}K were determined by using gamma-ray spectrometry with high-purity germanium (HPGe) detector. The activity concentrations of {sup 226}Ra, {sup 228}Ra and {sup 40}K in samples are in the range of 0.17 - 0.67 Bq/L, 0.16 - 0.97 Bq/L and 1.22 - 5.57 Bq/L respectively. On the other hand, the concentrations of uranium-238 and thorium-232 were determined by using Energy Dispersive X-ray Fluorescence Spectrometry (EDXRF). The thorium concentrations are between 0.17 ppm to 0.28 ppm and uranium concentrations were 0.25 ppm to 0.31 ppm. The results show activity concentrations of radionuclides are slightly high near the river estuary. The Radium Equivalent, Absorbed Dose Rate, External Hazard Index, and Annual Effective Dose of {sup 226}Ra, {sup 228}Ra and {sup 40}K are also studied.

  15. Sr isotopes in natural waters: Applications to source characterisation and water-rock interaction in contrasting landscapes

    International Nuclear Information System (INIS)

    Shand, P.; Darbyshire, D.P.F.; Love, A.J.; Edmunds, W.M.

    2009-01-01

    Strontium isotopes ( 87 Sr/ 86 Sr) are routinely measured in hydrochemical studies to determine sources and mixing relationships. They have proved particularly useful in determining weathering processes and quantifying end-member mixing processes. A number of routine case studies are presented which highlight that Sr isotopes represent a powerful tool in the geochemists toolbox helping to constrain weathering reactions, weathering rates, flow pathways and mixing scenarios. Differences in methodologies for determining the weathering component in natural environments, inherent differences in weathering rates of different minerals, and mineral heterogeneity often cause difficulties in defining the weathering component of different catchments or aquifer systems. Nevertheless, Sr isotopes are useful when combined with other hydrochemical data, to constrain models of water-rock interaction and mixing as well as geochemical processes such as ion-exchange. This paper presents a summary of recent work by the authors in constraining the sources of waters and weathering processes in surface catchments and aquifers, and indicates cases where Sr isotopes alone are insufficient to solve hydrological problems.

  16. Sr isotopes in natural waters: Applications to source characterisation and water-rock interaction in contrasting landscapes

    Energy Technology Data Exchange (ETDEWEB)

    Shand, P., E-mail: paul.shand@csiro.au [CSIRO Land and Water/CRC LEME, Private Bag 2, Glen Osmond, SA 5064 (Australia); Darbyshire, D.P.F. [NERC Isotope Geosciences Laboratory, Kingsley Dunham Centre, Keyworth, Nottingham NG12 5GG (United Kingdom); Love, A.J. [Department of Water, Land and Biodiversity Conservation, P.O. Box 2843, Adelaide 5001 (Australia); Edmunds, W.M. [School of Geography, Oxford University Centre for the Environment, South Parks Road, Oxford (United Kingdom)

    2009-04-15

    Strontium isotopes ({sup 87}Sr/{sup 86}Sr) are routinely measured in hydrochemical studies to determine sources and mixing relationships. They have proved particularly useful in determining weathering processes and quantifying end-member mixing processes. A number of routine case studies are presented which highlight that Sr isotopes represent a powerful tool in the geochemists toolbox helping to constrain weathering reactions, weathering rates, flow pathways and mixing scenarios. Differences in methodologies for determining the weathering component in natural environments, inherent differences in weathering rates of different minerals, and mineral heterogeneity often cause difficulties in defining the weathering component of different catchments or aquifer systems. Nevertheless, Sr isotopes are useful when combined with other hydrochemical data, to constrain models of water-rock interaction and mixing as well as geochemical processes such as ion-exchange. This paper presents a summary of recent work by the authors in constraining the sources of waters and weathering processes in surface catchments and aquifers, and indicates cases where Sr isotopes alone are insufficient to solve hydrological problems.

  17. Water quality in coastal wetlands: illicit drugs in surface waters of L'Albufera Natural Park (Valencia, Spain)

    Science.gov (United States)

    Vazquez-Roig, P.; Blasco, C.; Andreu, V.; Pascual, J. A.; Rubio, J. L.; Picó, Y.

    2010-05-01

    A wide range of emerging pollutants have been identified in environment: antibiotics, hormones, personal care products, etc. But quite recently a new class of ecological threat has been reported: the presence in waters of abuse drugs coming from human consumption [1,2]. Treatment of wastewaters may remove a portion of these compounds, but sometimes, these treatments are insufficient or nonexistent, residues can reach into the aquatic environment. ĹAlbufera Natural Park (Valencia, Spain) is a marsh area of a great interest because it is the habitat of a large quantity of unique species of flora and fauna, and a zone of refuge, feeding and breeding for a large number of migratory birds. However, this area is threatened by urban, industrial and agricultural pressures. The aim of this work has been to develop a fast and sensitive multi-residue analytical method for to establish the occurrence and distribution of commonly consumed illicit drugs in surface waters of ĹAlbufera lake. A representative set of abuse drugs with different mode of action was chosen for this purpose, including: amphetaminics, opiates, cocainics and cannabinoids (THC and nor-9-carboxy-THC). In April 2008 and October 2008 a total of 16 samples of water were collected, corresponding to different sampling points previously designed, and covering the most important channels that flow in to the lake. Samples of 250 mL of water were concentrated by Solid Phase Extraction through an Oasis HLB cartridge and extracted subsequently with methanol as solvent. Quantification was carried out by LC-MS/MS with an ESI interface. Performance characteristics of the PLE-SPE followed by LC-MS/MS were established by validation procedure. Selectivity, linearity, precision, recoveries and limits of detection (LOD) and quantification (LOQ) were studied. Our search shows that current sewage treatment systems do not completely remove illicit drug residues from urban wastewater. Benzoylecgonine, the main metabolite from

  18. Hot water in the Long Valley Caldera—The benefits and hazards of this large natural resource

    Science.gov (United States)

    Evans, William C.; Hurwitz, Shaul; Bergfeld, Deborah; Howle, James F.

    2018-03-26

    The volcanic processes that have shaped the Long Valley Caldera in eastern California have also created an abundant supply of natural hot water. This natural resource provides benefits to many users, including power generation at the Casa Diablo Geothermal Plant, warm water for a state fish hatchery, and beautiful scenic areas such as Hot Creek gorge for visitors. However, some features can be dangerous because of sudden and unpredictable changes in the location and flow rate of boiling water. The U.S. Geological Survey monitors several aspects of the hydrothermal system in the Long Valley Caldera including temperature, flow rate, and water chemistry.

  19. Phenomenon of organic carbon change in natural waters (system "catchment - Lake") of Russian Federation

    Science.gov (United States)

    Dinu, Marina; Tatyana, Moiseenko; Tatyana, Kremleva; Natalia, Gashkina

    2015-04-01

    In the last two decades in the Russian Federation was found significant increase in the concentration of dissolved organic carbon in many aqueous systems. Most obviously, these changes may be related to global warming. It is known that increasing the temperature dominate during dry periods and increases the concentration of nutrients, primary production increases, leading to an increase of the dissolved organic matter. At the same time, it is known that some of the increase in DOC may be largely due to a decrease of anthropogenic sulfur deposition and increasing organic matter in the soil. The European Russia (ER) is a region with substantial industrial emissions of sulphur. In the central part of ER are concentrated metallurgical productions. This has resulted in high concentrations of anthropogenic sulphate and an increase in the prevalence of acidification as well as a rise in metal concentrations in the lakes of North Kola. However, over the last 30 years, sulfur emissions in ?ola North have decreased substantially. The aim of this work was to explain the mechanisms to improve the content of natural organic matter and to assess its role in the processes of acidification and recovery of water quality while reducing the deposition of technogenic acid. The increasing of organic matter content in lake waters is being also observed for the totality of lakes in the Kola North. This conforms to the data reported by Skjelkvale et al. (2001a) which demonstrates the significant increase of DOC. Some authors explain the increased DOC levels by reduction in strong acid flow and return of water chemistry to its natural parameters of specifying organic matter concentrations in water. It is known that DOC level has a direct relationship with water color. In analyzing long-term study data with regard to the group of 75 lakes (obtained during 1990-2010) DOC is increased year-over-year, but the color decreased. The following chemical processes developing in water can explain

  20. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    International Nuclear Information System (INIS)

    Shin, Woo-Jin; Ryu, Jong-Sik; Mayer, Bernhard; Lee, Kwang-Sik; Lee, Sin-Woo

    2014-01-01

    lithologies and land-use patterns. - Graphical abstract: The distinct δ 34 S and δ 15 N values of the various source end-members enabled us to estimate the respective contributions of the various anthropogenic sources to stream water quality based on the sulfate and nitrate isotopic compositions of the analyzed water samples. - Highlights: • Isotopes were used to identify natural and anthropogenic sources in streams. • Water chemistry is dependent upon land use patterns in watersheds. • Manure is the main source supplying sulfate and nitrate to a stream. • Sulfate and nitrate in stream are derived mostly from AMD and soil solution

  1. Travel Times of Water Derived from Three Naturally Occurring Cosmogenic Radioactive Isotopes

    Science.gov (United States)

    Visser, Ate; Thaw, Melissa; Deinhart, Amanda; Bibby, Richard; Esser, Brad

    2017-04-01

    confirm a small fraction of younger (travel time responses to hydrological conditions and further characterize the catchment properties. Combined analysis of three cosmogenic tracers provides a unique insight into the functioning of the catchment and constrains the volume of subsurface water storage. Short-lived naturally occurring radioactive isotopes sulfur-35 and sodium-22 are especially useful for vulnerability assessment of springs and karst systems where a contribution of very young water is expected. This work performed under the auspices of the U.S. Department of Energy by Lawrence Livermore National Laboratory under Contract DE-AC52-07NA27344. LLNL-ABS-717377

  2. Zone peculiarities of natural conditions, affecting ran food stuffs and drinking water contamination with radionuclides

    International Nuclear Information System (INIS)

    Marej, A.N.

    1980-01-01

    The effect of natural conditions on the USSR territory connected with peculiar types of soil on the behaviour of radionuclides fallen from stratosphere is considered. Characteristics of tundra, taiga partially-wooded steppe, step.oe, mountain and semi-desert zones are presented. Peculiarities of soils in different geographical zones of the USSR conditioned by various properties and compositions have a significant effect on 90 Sr and especially 137 Cs migration intensity from the soil into plants and organisms of animals through biological chains. The administration of radionuclides in the ration with food stuffs obtained on the surface of reservoirs where zonality low is also rightful, is studied. It is established that indexes of 90 Sr and 137 Cs buildup in tissues of hydrobionts are in reverse dependence on calcium and potassium content in water. Therefore, maximum levels of 90 Sr and 137 Cs buildup in fish is characteristic of zones with the low content of these elements. The degree of water mineralization in ponds has a clear zonality which increases in the direction from the North to the South. The degree of pond well-drained nature is of great importance

  3. Reverse flow injection spectrophotometric determination of thiram and nabam fungicides in natural water samples

    International Nuclear Information System (INIS)

    Asghar, M.; Yaqoob, M.; Nabi, A.

    2014-01-01

    A reverse flow injection (rFI) spectrophotometric method is reported for determination of thiram and nabam fungicides in natural water samples. The method is based on the reduction of iron(III) in the presence of thiram/nabam in acidic medium at 60 degree C and formation of iron(II)-ferricyanide complex was measured at 790 nm. The limits of detection (3s blank) were 0.01 and 0.05 micro g mL1 for thiram and nabam respectively with a sample throughput of 60 h1. Calibration graphs were linear over the range of 0.02 - 8.0 micro g mL1 (R2 = 0.9999, n = 8) and 0.1 - 30 micro g mL1 (R2 = 0.9982, n = 10) for thiram and nabam with relative standard deviations (RSDs; n = 3) in the range of 0.8 - 1.6% respectively. Experimental parameters and potential interferences were examined. Thiram and nabam were determined in natural water samples using solid-phase extraction (SPE) procedure and recoveries were in the range of 93+-3 - 105+-2% and 87+-4 - 102+-3% respectively. The results obtained were not significantly different compared with a HPLC method. (author)

  4. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    Energy Technology Data Exchange (ETDEWEB)

    Metcalf, S.G.

    1998-06-11

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10.

  5. Natural radionuclides monitoring in Lombardia drinking water by liquid scintillation technique

    International Nuclear Information System (INIS)

    Forte, M.; Rusconi, R.; Bellinsona, S.; Sgorbati, G.

    2002-01-01

    Concern about total radionuclides content in water intended for human consumption has been brought to public attention by the recent Council Directive 98/83/EC, subsequently enforced through an Italian law (DL 31, February 2., 2001). Parameter values have been fixed for Tritium content and total indicative dose: the Directive points out that the total indicative dose must be evaluated excluding Tritium, 4 0K , 1 4C , Radon and its decay products, but including all other natural series radionuclides. Maximum concentration values for Radon are separately proposed in Commission Recommendation 2001/928/Euratom. Tritium determination follows a well established procedure, standardised by International Standard Organisation (ISO 9698, 1989). On the contrary, total indicative dose evaluation requires more specific and cumbersome procedures for the measurement of radioactivity content, with special regard to natural series radionuclides. The large number of possibly involved radionuclides and the good sensitivities required make the application of traditional analytical techniques unsuitable in view of a large scale monitoring program. World Health Organisation (WHO 1993 and 1996) guidelines for drinking water suggest performing an indirect evaluation of committed dose by measuring alpha and beta gross radioactivity and checking compliance to derived limit values; the proposed limit values are 0,1 Bq/l for gross alpha and 1 Bq/l for gross beta radioactivity. Nevertheless, it is desirable to identify single radionuclides contribution to alpha and beta activity in order to perform more accurate measurements of committed dose

  6. Operating experience of natural circulation core cooling in boiling water reactors

    International Nuclear Information System (INIS)

    Kullberg, C.; Jones, K.; Heath, C.

    1993-01-01

    General Electric (GE) has proposed an advanced boiling water reactor, the Simplified Boiling Water Reactor (SBWR), which will utilize passive, gravity-driven safety systems for emergency core coolant injection. The SBWR design includes no recirculation loops or recirculation pumps. Therefore the SBWR will operate in a natural circulation (NC) mode at full power conditions. This design poses some concerns relative to stability during startup, shutdown, and at power conditions. As a consequence, the NRC has directed personnel at several national labs to help investigate SBWR stability issues. This paper will focus on some of the preliminary findings made at the INEL. Because of the broad range of stability issues this paper will mainly focus on potential geysering instabilities during startup. The two NC designs examined in detail are the US Humboldt Bay Unit 3 BWR-1 plant and Dodewaard plant in the Netherlands. The objective of this paper will be to review operating experience of these two plants and evaluate their relevance to planned SBWR operational procedures. For completeness, experimental work with early natural circulation GE test facilities will also be briefly discussed

  7. Removal of Cu (II and Zn (II from water with natural adsorbents from cassava agroindustry residues

    Directory of Open Access Journals (Sweden)

    Daniel Schwantes

    2015-07-01

    Full Text Available Current study employs solid residues from the processing industry of the cassava (Manihot esculenta Crantz (bark, bagasse and bark + bagasse as natural adsorbents for the removal of metal ions Cu(II and Zn(II from contaminated water. The first stage comprised surface morphological characterization (SEM, determination of functional groups (IR, point of zero charge and the composition of naturally existent minerals in the biomass. Further, tests were carried out to evaluate the sorption process by kinetic, equilibrium and thermodynamic studies. The adsorbents showed a surface with favorable adsorption characteristics, with adsorption sites possibly derived from lignin, cellulose and hemicellulose. The dynamic equilibrium time for adsorption was 60 min. Results followed pseudo-second-order, Langmuir and Dubinin-Radushkevich models, suggesting a chemisorption monolayer. The thermodynamic parameters suggested that the biosorption process of Cu and Zn was endothermic, spontaneous or independent according to conditions. Results showed that the studied materials were potential biosorbents in the decontamination of water contaminated by Cu(II and Zn(II. Thus, the above practice complements the final stages of the cassava production chain of cassava, with a new disposal of solid residues from the cassava agroindustry activity.

  8. Reverse polarity capillary zone electrophoresis analysis of nitrate and nitrite in natural water samples

    International Nuclear Information System (INIS)

    Metcalf, S.G.

    1998-01-01

    This paper describes the application of reverse polarity capillary zone electrophoresis (RPCE) for rapid and accurate determination of nitrate and nitrite in natural water samples. Using hexamethonium bromide (HMB) as an electroosmotic flow modifier in a borate buffer at pH 9.2, the resolution of nitrate and nitrite was accomplished in less than 3 minutes. RPCE was compared with ion chromatographic (IC) and cadmium reduction flow injection analysis (Cd-FIA) methods which are the two most commonly used standard methods for the analysis of natural water samples for nitrate and nitrite. When compared with the ion chromatographic method for the determination of nitrate and nitrite, RPCE reduced analysis time, decreased detection limits by a factor of 10, cut laboratory wastes by more than two orders of magnitude, and eliminated interferences commonly associated with IC. When compared with the cadmium reduction method, RPCE had the advantage of simultaneous determination of nitrate and nitrite, could be used in the presence of various metallic ions that normally interfere in cadmium reduction, and decreased detection limits by a factor of 10

  9. Natural Radioactivity in Soil and Water from Likuyu Village in the Neighborhood of Mkuju Uranium Deposit

    Directory of Open Access Journals (Sweden)

    Najat K. Mohammed

    2013-01-01

    Full Text Available The discovery of high concentration uranium deposit at Mkuju, southern part of Tanzania, has brought concern about the levels of natural radioactivity at villages in the neighborhood of the deposit. This study determined the radioactivity levels of 30 soil samples and 20 water samples from Likuyu village which is 54 km east of the uranium deposit. The concentrations of the natural radionuclides 238U, 232Th, and 40K were determined using low level gamma spectrometry of the Tanzania Atomic Energy Commission (TAEC Laboratory in Arusha. The average radioactivity concentrations obtained in soil samples for 238U (51.7 Bq/kg, 232Th (36.4 Bq/kg, and 40K (564.3 Bq/kg were higher than the worldwide average concentrations value of these radionuclides reported by UNSCEAR, 2000. The average activity concentration value of 238U (2.35 Bq/L and 232Th (1.85 Bq/L in water samples was similar and comparable to their mean concentrations in the control sample collected from Nduluma River in Arusha.

  10. Experiments in a natural circulation loop with supercritical water at low powers

    International Nuclear Information System (INIS)

    Pilkhwal, D.S.; Sharma, Manish; Jana, S.S.; Vijayan, P.K.

    2013-05-01

    Earlier, 1/2 ″ uniform diameter Supercritical Pressure Natural Circulation Loop (SPNL) was set-up in hall-7, BARC for carrying out experiments related to supercritical fluids. The loop is a rectangular loop having two heaters and two coolers. Experiments were carried out with CO 2 under supercritical conditions for various pressures and different combinations of heater and cooler orientations. Since, the design conditions are more severe for supercritical water (SCW) experiments, the loop was modified for SCW by installing new test sections, pressurizer and power supply for operation with supercritical water. Experimental data were generated on steady state, heat transfer and stability under natural circulation conditions for the horizontal heater and horizontal cooler (HHHC) orientation with SCW up to a heater power of 8.5 kW. The flow rate data and instability data were compared with the predictions of in-house developed 1-D code NOLSTA, which showed reasonable agreement. The heat transfer coefficient data were also compared with the predictions of various correlations exhibit peak at bulk temperature lower than that obtained in the experiments. Most of these correlations predicted experimental data well in the pseudo-critical region. However, all correlations are matching well with experimental data beyond the pseudo-critical region. The details of the experimental facility, Experiments carried out and the results presented in this report. (author)

  11. Disinfection Byproduct Formation in Reverse-Osmosis Concentrated and Lyophilized Natural Organic Matter from a Drinking Water Source

    Science.gov (United States)

    Drinking water treatment and disinfection byproduct (DBP) research can be complicated by natural organic matter (NOM) temporal variability. NOM preservation by lyophilization (freeze-drying) has been long practiced to address this issue; however, its applicability for drinking wa...

  12. Natural Resources Management on Corps of Engineers Water Resources Development Projects: Practices, Challenges, and Perspectives on the Future

    National Research Council Canada - National Science Library

    Kasual, Richard

    1998-01-01

    Natural resources management on U.S. Army Corps of Engineers water resources development projects was documented from the responses of management personnel to a detailed questionnaire mailed to a stratified random sample of projects...

  13. The effect of pressure and temperature on aluminium hydrolysis: Implications to trace metal scavenging in natural waters

    Digital Repository Service at National Institute of Oceanography (India)

    DileepKumar, M.

    Removal of aluminium through precipitation/scavenging in natural waters was evaluated based on its hydrolysis at different temperatures and pressures. In general, pH for the occurrence of cation hydrolysis was lowered with hike in temperature which...

  14. Natural convection of Al2O3-water nanofluid in a wavy enclosure

    Science.gov (United States)

    Leonard, Mitchell; Mozumder, Aloke K.; Mahmud, Shohel; Das, Prodip K.

    2017-06-01

    Natural convection heat transfer and fluid flow inside enclosures filled with fluids, such as air, water or oil, have been extensively analysed for thermal enhancement and optimisation due to their applications in many engineering problems, including solar collectors, electronic cooling, lubrication technologies, food processing and nuclear reactors. In comparison, little effort has been given to the problem of natural convection inside enclosures filled with nanofluids, while the addition of nanoparticles into a fluid base to alter thermal properties can be a feasible solution for many heat transfer problems. In this study, the problem of natural convection heat transfer and fluid flow inside a wavy enclosure filled with Al2O3-water nanofluid is investigated numerically using ANSYS-FLUENT. The effects of surface waviness and aspect ratio of the wavy enclosure on the heat transfer and fluid flow are analysed for various concentrations of Al2O3 nanoparticles in water. Flow fields and temperature fields are investigated and heat transfer rate is examined for different values of Rayleigh number. Results show that heat transfer within the enclosure can be enhanced by increasing surface waviness, aspect ratio or nanoparticles volume fraction. Changes in surface waviness have little effect on the heat transfer rate at low Rayleigh numbers, but when Ra ≥ 105 heat transfer increases with the increase of surface waviness from zero to higher values. Increasing the aspect ratio causes an increase in heat transfer rate, as the Rayleigh number increases the effect of changing aspect ratio is more apparent with the greatest heat transfer enhancement seen at higher Rayleigh numbers. Nanoparticles volume fraction has a little effect on the average Nusselt number at lower Rayleigh numbers when Ra ≥ 105 average Nusselt number increases with the increase of volume fraction. These findings provide insight into the heat transfer effects of using Al2O3-water nanofluid as a heat

  15. The molecular mobility of water in natural polymers : Silk Bombyx mori with a low water content as studied by H-1 DQF NMR

    NARCIS (Netherlands)

    Rodin, VV; Knight, DP

    2004-01-01

    The molecular mobility of water in fibres of natural silk (Bombyx mori) was studied by the double-quantum-filtered (DQF) and single-pulse H-1 NMR techniques. The results obtained showed a slow motion of water molecules and their strong interaction with silk macromolecules. At different model

  16. Community Water Governance on Mount Kenya: An Assessment Based on Ostrom’s Design Principles of Natural Resource Management

    Directory of Open Access Journals (Sweden)

    Jampel Dell’Angelo

    2016-02-01

    Full Text Available Kenyan river basin governance underwent a pioneering reform in the Water Act of 2002, which established new community water-management institutions. This article focuses on community water projects in the Likii Water Resource Users Association in the Upper Ewaso Ng’iro River basin on Mount Kenya, and the extent to which their features are consistent with Ostrom’s design principles of natural resource management. Although the projects have developed solid institutional structures, pressures such as hydroclimatic change, population growth, and water inequality challenge their ability to manage their water resources. Institutional homogeneity across the different water projects and congruence with the design principles is not necessarily a positive factor. Strong differences in household water flows within and among the projects point to the disconnection between apparently successful institutions and their objectives, such as fair and equitable water allocation.

  17. Natural convection heat transfer of water in a horizontal circular gap

    Institute of Scientific and Technical Information of China (English)

    SU Guanghui; Kenichiro Sugiyama; WU Yingwei

    2007-01-01

    An experimental study on the natural convection heat transfer on a horizontal downward facing heated surface in a water gap was carried out under atmospheric pressure conditions. A total of 700 experimental data points were correlated using Rayleigh versus Nusselt number in various forms, based on different independent variables. The effects of different characteristic lengths and film temperatures were discussed. The results show that the buoyancy force acts as a resistance force for natural convecti on beat transfer ona downward facing horizontal heated surface in a confined space. For the estimation of the natural convection heat transfer under the present conditions, empirical correlations in which Nusselt number is expressed as a function of the Rayleigh number, or both Rayleigh and Prandtl numbers, may be used. When it is accurately predicted, the Nusselt number is expressed as a function of the Rayleigh and Prandtl numbers, as well as the gap width-to-heated surface diameter ratio; and uses the temperature difference between the heated surface and the ambient fluid in the definition of Rayleigh number. The characteristic length is the gap size and the film temperature is the average fluid temperature.

  18. Oil and Water: Essays on the Economics of Natural Resource Usage

    Science.gov (United States)

    Stolper, Samuel

    As the developing world continues its pace of rapid growth and the threat of climate change intensifies, the economics of natural resource usage become increasingly important. From the perspective of both economic efficiency and distributional equity, effective policy design is correspondingly urgent. Market failures such as imperfect competition, externalities, and incomplete information plague resource markets everywhere; and both initial endowments and policy interventions often have regressive incidence. I shed light on some of these issues by studying the economics of natural resource usage in two separate empirical contexts. The first is the market for automotive fuel in Spain; I measure pass-through--the degree to which retail fuel stations "pass through" diesel taxes to final consumer prices--and use it assess the distributional impacts of energy policy. The second is the Ganga River Basin of India; I estimate the impacts of environmental regulation on river water quality and infant mortality. In both contexts, I utilize estimates of policy impacts to examine the underlying mechanisms by which affected consumers and suppliers of natural resources make decisions.

  19. On-line gross alpha radiation monitoring of natural waters with extractive scintillating resins

    International Nuclear Information System (INIS)

    Hughes, Lara; De Vol, T.A.

    2003-01-01

    Extractive scintillating resins, which are used to simultaneously separate and quantify radioactivity in aqueous solutions, were developed for low-level alpha radiation monitoring of natural waters. Resins were investigated with bis(2-ethylhexyl)methane-diphosphonic acid (H 2 DEH[MDP], Dipex[reg]) extractant, which has a strong affinity for tri-, tetra- and hexavalent actinides in dilute acids. Extractive scintillating resins were manifested (1) as a mixed bed of scintillating resin and extraction chromatographic resin and (2) by diffusing the organic fluor 2-(1-naphtyl)-5-phenyloxazole into macroporous polystyrene chromatographic resin, then coating with H 2 DEH[MDP], or by coating H 2 DEH[MDP] on scintillating polyvinyltoluene beads. The scintillation light was detected with a modified Hidex Triathler to allow for continuous flow measurements. The average detection efficiencies were 51.7±2.6% and 65.8±10.1% for natural uranium and 241 Am, respectively, for the extractant coated scintillator. The resin was stable for solution flow of up to 1000 ml resulting in rapid real-time quantification of natural uranium in groundwater down to 30 μg/ml

  20. Enhanced Natural Convection in a Metal Layer Cooled by Boiling Water

    International Nuclear Information System (INIS)

    Cho, Jae-Seon; Suh, Kune Y.; Chung, Chang-Hyun; Park, Rae-Joon; Kim, Sang-Baik

    2004-01-01

    An experimental study is performed to investigate the natural convection heat transfer characteristics and the solidification of the molten metal pool concurrently with forced convective boiling of the overlying coolant to simulate a severe accident in a nuclear power plant. The relationship between the Nusselt number (Nu) and the Rayleigh number (Ra) in the molten metal pool region is determined and compared with the correlations in the literature and experimental data with subcooled water. Given the same Ra condition, the present experimental results for Nu of the liquid metal pool with coolant boiling are found to be higher than those predicted by the existing correlations or measured from the experiment with subcooled boiling. To quantify the observed effect of the external cooling on the natural convection heat transfer rate from the molten pool, it is proposed to include an additional dimensionless group characterizing the temperature gradients in the molten pool and in the external coolant region. Starting from the Globe and Dropkin correlation, engineering correlations are developed for the enhancement of heat transfer in the molten metal pool when cooled by an overlying coolant. The new correlations for predicting natural convection heat transfer are applicable to low-Prandtl-number (Pr) materials that are heated from below and solidified by the external coolant above. Results from this study may be used to modify the current model in severe accident analysis codes

  1. Natural convection in a water tank with a heated horizontal plate facing downward

    International Nuclear Information System (INIS)

    Yang, Sun Kyoo; Jung, Moon Kee; Helmut Hoffmann

    1995-01-01

    Experimental and computational studies were carried out to investigate the natural convection of the single phase flow in a tank with a heated horizontal plate facing downward. This is a simplified model for investigations of the influence of a core melt at the bottom of a reactor vessel on the thermal hydraulic behavior in a water filled cavity surrounding the vessel. In this case the vessel is simulated by a hexahedron insulated box with a heated plate horizontally mounted at the bottom of the box. The box with the heated plate is installed in a water filled hexahedron tank. Coolers are immersed in the U-type water volume between the box and the tank. Although the multicomponent flows exist more probably below the heated plate in reality, present study concentrates on the single phase flow in a first step prior to investigating the complicated multicomponent thermal hydraulic phenomena. In the present study, in order to get a better understanding for the natural convection characteristics below the heated plate, the velocity and temperature are measured by LDA(Laser Doppler Anemometry) and thermocouples, respectively. And flow fields are visualized by taking pictures of the flow region with suspended particles. The results show the occurrence of a very effective circulation of the fluid in the whole flow area as the heater and coolers are put into operation. In the remote region below the heated plate the flow is nearly stagnant, and a remarkable temperature stratification can be observed with very thin thermal boundary. Analytical predictions using the FLUTAN code show a reasonable matching of the measured velocity fields. 18 figs., 2 tabs., 18 refs. (Author)

  2. Natural Water Retention Measures (NWRM): from Design to Implementation through European Projects

    International Nuclear Information System (INIS)

    Magdaleno Mas, F.; Dalacamara Andres, G.

    2015-01-01

    The Centre for Applied Technique Studies (CETA) of CEDEX has been working over the last few years in different European projects related with the design and development of natural water retention measures (NWRM). These are a number of measures, boosted by the Water Unit of the Environment Directorate-General of the European Commission. with close links to green infrastructures, which try to integrate, from a multifunctional approach, different legal and technical requirements aimed at a better adaptation to extreme hydro meteorological events, environmental protection and conservation, and maintenance of ecosystem services. This paper reviews the underpinning foundations of the concept and the mechanisms for designing and implementing NWRM. It also shows the way they can be applied, by presenting different initiatives developed by CETA since 2008 in Navarra (Arga-Aragon rivers system). For fulfilling those works, CETA has collaborated with environmental and hydraulic authorities of Navarra. It has also actively cooperated with research centres, such as the Institute IMDEA Water. specifically in a European project devoted to the diffusion, assessment, and presentation of NWRM within the context of the EU River Basin Districts. (Author)

  3. Simultaneous determination of inorganic mercury and methylmercury compounds in natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Logar, Martina; Horvat, Milena [Jozef Stefan Institute, Jamova 39, 1000 Ljubljana (Slovenia); Akagi, Hirokatsu [National Institute for Minamata Disease, 4058-18 Hama, Minamata, Kumamoto 867-0008 (Japan); Pihlar, Boris [Faculty of Chemistry and Chemical Technology, University of Ljubljana, Askerceva 5, 1000 Ljubljana (Slovenia)

    2002-11-01

    The purpose of the present work was to develop a simple, rapid, sensitive and accurate method for the simultaneous determination of inorganic mercury (Hg{sup 2+}) and monomethylmercury compounds (MeHg) in natural water samples at the pg L{sup -1} level. The method is based on the simultaneous extraction of MeHg and Hg{sup 2+}dithizonates into an organic solvent (toluene) after acidification of about 300 mL of a water sample, followed by back extraction into an aqueous solution of Na {sub 2}S, removal of H {sub 2}S by purging with N {sub 2}, subsequent ethylation with sodium tetraethylborate, room temperature precollection on Tenax, isothermal gas chromatographic separation (GC), pyrolysis and cold vapour atomic fluorescence spectrometric detection (CV AFS) of mercury. The limit of detection calculated on the basis of three times the standard deviation of the blank was about 0.006 ng L {sup -1} for MeHg and 0.06 ng L {sup -1} for Hg {sup 2+}when 300 mL of water was analysed. The repeatability of the results was about 5% for MeHg and 10% for Hg {sup 2+}. Recoveries were 90-110% for both species. (orig.)

  4. [Influence of surface water availability on mammal distributions in Nonggang National Nature Reserve, Guangxi, China].

    Science.gov (United States)

    Chen, Tian-Bo; Sung, Yik-Hei; Bosco Chan, Pui-Lok; Meng, Yuan-Jun; Wan, Pak-Ho

    2013-06-01

    Surface water is a major limiting factor affecting animal activities in karst ecosystems. From March, 2006 to June, 2007 and from October, 2010 to May, 2011, infra-red camera traps were installed along animal trails and temporary rain pools in Nonggang National Nature Reserve, Guangxi, China, to monitor mammal diversity and relative abundance. In total, 19 species from 17 genera, 12 families, and 5 orders were recorded, including two State Key Protection Class I species, the François' langur (Trachypithecus francoisi) and Assam macaque (Macaca assamensis). Although 42% of species only occurred in one of the microhabitats, differences in species assemblages between trails and pools were not significant. The results of our observation indicated that camera trapping was effective in monitoring medium to large sized mammals, and for recording illegal hunting. In addition, our results suggest that authorities should reinforce patrolling, especially at water pools during the dry season, and eradicate unsustainable extraction of underground water. Moreover, based on the advantages of large inhibited environments to animal species, especially to large predators, we also recommend connecting the three isolated sections of the reserve to promote species recovery and dispersal.

  5. Rapid determination of uranium in natural waters by fthermal emission mass spectrometry

    International Nuclear Information System (INIS)

    Ferguson, J.R.; Caylor, J.D.; Rogers, E.R.; Cole, S.H.

    1977-03-01

    A method has been developed to rapidly analyze natural water samples for part-per-trillion (ng/l) concentrations of uranium using a custom-built thermal-emission mass spectrometer. The filtered water sample is spiked with 233 U as an internal standard and extracted with a 2 percent solution of TOPO (trioctylphosphine oxide) in carbon tetrachloride. An aliquot of the organic phase is evaporated and the uranium in the residue extracted with aqueous ammonium carbonate. A 5j-μl aliquot is taken and dried on a flat uranium concentration of 3 ng/l will yield a count rate greater than three times the standard deviation, plus the mean of the background, and is defined as the lowest determinable concentration. The standard deviation of the method is 3 percent at accuracy of the method has been evaluated by comparing the results with a fluorescence procedure. There is very good agreement for water samples with uranium concentrations from 200 to 1000 ng/l. The mass spectrometer is a 6-in. -radius, 60-degree-sector instrument equipped for ion counting and having a vacuum system allowing rapid sample changing while maintaining a high source vacuum. A multiplexer and high-voltage s witch provide synchronized peak switching and scaler gating for monitoring three isotopes of uranium 238, 235, and 233. With this instrument, an analyst can achieve an analysis rate in excess of 50 samples per eight-hour shift

  6. Field and laboratory arsenic speciation methods and their application to natural-water analysis

    Science.gov (United States)

    Bednar, A.J.; Garbarino, J.R.; Burkhardt, M.R.; Ranville, J.F.; Wildeman, T.R.

    2004-01-01

    The toxic and carcinogenic properties of inorganic and organic arsenic species make their determination in natural water vitally important. Determination of individual inorganic and organic arsenic species is critical because the toxicology, mobility, and adsorptivity vary substantially. Several methods for the speciation of arsenic in groundwater, surface-water, and acid mine drainage sample matrices using field and laboratory techniques are presented. The methods provide quantitative determination of arsenite [As(III)], arsenate [As(V)], monomethylarsonate (MMA), dimethylarsinate (DMA), and roxarsone in 2-8min at detection limits of less than 1??g arsenic per liter (??g AsL-1). All the methods use anion exchange chromatography to separate the arsenic species and inductively coupled plasma-mass spectrometry as an arsenic-specific detector. Different methods were needed because some sample matrices did not have all arsenic species present or were incompatible with particular high-performance liquid chromatography (HPLC) mobile phases. The bias and variability of the methods were evaluated using total arsenic, As(III), As(V), DMA, and MMA results from more than 100 surface-water, groundwater, and acid mine drainage samples, and reference materials. Concentrations in test samples were as much as 13,000??g AsL-1 for As(III) and 3700??g AsL-1 for As(V). Methylated arsenic species were less than 100??g AsL-1 and were found only in certain surface-water samples, and roxarsone was not detected in any of the water samples tested. The distribution of inorganic arsenic species in the test samples ranged from 0% to 90% As(III). Laboratory-speciation method variability for As(III), As(V), MMA, and DMA in reagent water at 0.5??g AsL-1 was 8-13% (n=7). Field-speciation method variability for As(III) and As(V) at 1??g AsL-1 in reagent water was 3-4% (n=3). ?? 2003 Elsevier Ltd. All rights reserved.

  7. Natural radioactivity levels in mineral, therapeutic and spring waters in Tunisia

    Energy Technology Data Exchange (ETDEWEB)

    Labidi, S., E-mail: labidisalam@yahoo.f [Institut Superieur des Technologies Medicales de Tunis (ISTMT), 9 Avenue du Docteur Z.Essafi, Tunis 1006 (Tunisia); Mahjoubi, H. [Institut Superieur des Technologies Medicales de Tunis (ISTMT), 9 Avenue du Docteur Z.Essafi, Tunis 1006 (Tunisia); Essafi, F. [Faculte de Medecine de Tunis. Section de Biophysique, Tunis (Tunisia); Ben Salah, R. [Faculte de Medecine de Sousse, 270, Sahloul II, 4054 Sousse (Tunisia)

    2010-12-15

    Radioactivity measurements were carried out in 26 groundwater samples from Tunisia. Activity concentrations of uranium were studied by radiochemical separation procedures followed by alpha spectrometry and that for radium isotopes by gamma-ray spectrometry. The results show that, the concentrations in water samples range from 1.2 to 69 mBq/L.1, 1.3 to 153.4 mBq/L, 2.0 to 1630.0 mBq/L and 2.0 to 1032.0 mBq/L for {sup 238}U, {sup 234}U, {sup 226}Ra and {sup 228}Ra, respectively. The U and Ra activity concentrations are low and similar to those published for other regions in the world. The natural radioactivity levels in the investigated samples are generally increased from mineral waters through therapeutic to the spring waters. The results show that a correlation between total dissolved solids (TDS) values and the {sup 226}Ra concentrations was found to be high indicating that {sup 266}Ra has a high affinity towards the majority of mineral elements dissolved in these waters. High correlation coefficients were also observed between {sup 226}Ra content and chloride ions for Cl{sup -}Na{sup +} water types. This can be explained by the fact that radium forms a complex with chloride and in this form is more soluble. The isotopic ratio of {sup 234}U/{sup 238}U and {sup 226}Ra/{sup 234}U varies in the range from 0.8 to 2.6 and 0.6 to 360.8, respectively, in all investigated waters, which means that there is no radioactive equilibrium between the two members of the {sup 238}U series. The fractionation of isotopes of a given element may occur because of preferential leaching of one, or by the direct action of recoil during radioactive decay. The annual effective doses due to ingestion of the mineral waters have been estimated to be well below the 0.1 mSv/y reference dose level.

  8. Geochemical analysis of atlantic rim water, carbon county, wyoming: New applications for characterizing coalbed natural gas reservoirs

    Science.gov (United States)

    McLaughlin, J.F.; Frost, C.D.; Sharma, Shruti

    2011-01-01

    Coalbed natural gas (CBNG) production typically requires the extraction of large volumes of water from target formations, thereby influencing any associated reservoir systems. We describe isotopic tracers that provide immediate data on the presence or absence of biogenic natural gas and the identify methane-containing reservoirs are hydrologically confined. Isotopes of dissolved inorganic carbon and strontium, along with water quality data, were used to characterize the CBNG reservoirs and hydrogeologic systems of Wyoming's Atlantic Rim. Water was analyzed from a stream, springs, and CBNG wells. Strontium isotopic composition and major ion geochemistry identify two groups of surface water samples. Muddy Creek and Mesaverde Group spring samples are Ca-Mg-S04-type water with higher 87Sr/86Sr, reflecting relatively young groundwater recharged from precipitation in the Sierra Madre. Groundwaters emitted from the Lewis Shale springs are Na-HCO3-type waters with lower 87Sr/86Sr, reflecting sulfate reduction and more extensive water-rock interaction. To distinguish coalbed waters, methanogenically enriched ??13CDIC wasused from other natural waters. Enriched ??13CDIC, between -3.6 and +13.3???, identified spring water that likely originates from Mesaverde coalbed reservoirs. Strongly positive ??13CDIC, between +12.6 and +22.8???, identified those coalbed reservoirs that are confined, whereas lower ??13CDIC, between +0.0 and +9.9???, identified wells within unconfined reservoir systems. Copyright ?? 2011. The American Association of Petroleum Geologists. All rights reserved.

  9. Hydrochemical Characteristics and Multivariate Statistical Analysis of Natural Water System: A Case Study in Kangding County, Southwestern China

    Directory of Open Access Journals (Sweden)

    Yunhui Zhang

    2018-01-01

    Full Text Available The utilization for water resource has been of great concern to human life. To assess the natural water system in Kangding County, the integrated methods of hydrochemical analysis, multivariate statistics and geochemical modelling were conducted on surface water, groundwater, and thermal water samples. Surface water and groundwater were dominated by Ca-HCO3 type, while thermal water belonged to Ca-HCO3 and Na-Cl-SO4 types. The analyzing results concluded the driving factors that affect hydrochemical components. Following the results of the combined assessments, hydrochemical process was controlled by the dissolution of carbonate and silicate minerals with slight influence from anthropogenic activity. The mixing model of groundwater and thermal water was calculated using silica-enthalpy method, yielding cold-water fraction of 0.56–0.79 and an estimated reservoir temperature of 130–199 °C, respectively. δD and δ18O isotopes suggested that surface water, groundwater and thermal springs were of meteoric origin. Thermal water should have deep circulation through the Xianshuihe fault zone, while groundwater flows through secondary fractures where it recharges with thermal water. Those analytical results were used to construct a hydrological conceptual model, providing a better understanding of the natural water system in Kangding County.

  10. The CARIPANDA project: Climate change and water resources in the Adamello Natural Park of Italy

    Science.gov (United States)

    Bocchiola, D.

    2009-04-01

    The three years (2007-2009) CARIPANDA project funded by the Cariplo Foundation of Italy is aimed to evaluate scenarios for water resources in the Adamello natural Park of Italy in a window of 50 years or so (until 2050). The project is led by Ente Parco Adamello and involves Politecnico di Milano, Università Statale di Milano, Università di Brescia, and ARPA Lombardia as scientific partners, while ENEL hydropower Company of Italy joins the project as stake holder. The Adamello Natural Park is a noteworthy resource in the Italian Alps. The Adamello Group is made of several glacierized areas (c. 24 km2), of both debris covered and free ice types, including the widest Italian Glacier, named Adamello, spreading on an area of about c. 18 km2. Also the Adamello Natural Reserve, covering 217 km2 inside the Adamello Park and including the Adamello glaciers, hosts a number of high altitude safeguarded vegetal and animal species, the safety of which is a primary task of the Reserve. Project's activity involves analysis of local climate trend, field campaigns on glaciers, hydrological modelling and remote sensing of snow and ice covered areas, aimed to build a consistent model of the present hydrological conditions and of the areas. Then, properly tailored climate change projections for the area, obtained using local data driven downscaling of climate change projections from GCMs model, are used to infer the likely response to expected climate change conditions. With two years in the project now some preliminary findings can be highlighted and some preliminary trend analysis carried out. The proposed poster provides a resume of the main results of the project insofar, of interest as a benchmark for similar ongoing and foregoing projects about climate change impact on European mountainous natural areas.

  11. Two-phase natural circulation experiments in a pressurized water loop with CANDU geometry

    Energy Technology Data Exchange (ETDEWEB)

    Ardron, K.H.; Krishnan, V.S.; McGee, G.R.; Anderson, J.W.D.; Hawley, E.H.

    1984-07-01

    A series of tests has been performed in the RD-12 loop, a 10-MPa pressurized-water loop containing two active boilers, two pumps, and two, or four, heated horizontal channels arranged in a symmetrical figure-of-eight configuration characteristic of the CANDU reactor primary heat-transport system. In the tests, single-phase natural circulation was established in the loop and void was introduced by controlled draining, with the surge tank (pressurizer) valved out of the system. Results indicate that a stable, two-phase, natural circulation flow can usually be established. However, as the void fraction in the loop is increased, large-amplitude flow oscillations can occur. The initial flow oscillations in the two halves of the loop are usually very nearly 180/sup 0/ out-of-phase. However, as the loop inventory is further decreased, an in-phase oscillation component is observed. In tests with two parallel, heated channels in each half-loop, oscillations associated with mass transfer between the channel pairs are also observed. Although flow oscillations can lead to intermittent dryout of the upper elements of the heater-rod assemblies in the horizontal channels, natural circulation cooling appears to be effective until about 50% of the loop inventory is drained; sustained flow stratification then occurs in the heated channels, leading to heater temperature excursions. The paper reviews the experimental results obtained and describes the evolution of natural circulation flow in particular cases as voidage is progressively increased. The stability behavior is discussed briefly with reference to a simple stability model.

  12. Removal of Natural Organic Matter Fractions by Anion Exchange : Impact on drinking water treatment processes and biological stability

    NARCIS (Netherlands)

    Grefte, A.

    2013-01-01

    This researched focused on improving drinking water quality, specifically the biological stability of the produced drinking water. Natural organic matter (NOM) can be a source of nutrients for bacteria present in the distribution system, which can cause regrowth. Specifically, small organic acids

  13. Measurement of M{sup 3} and k{sub {infinity}} for heavy water natural uranium assembly

    Energy Technology Data Exchange (ETDEWEB)

    Popovic, D; Raisic, N; Markovic, H; Takac, S; Zdravkovic, Z; Lolic, B [Boris Kidric Institute of Nuclear Sciences, Vinca, Beograd (Yugoslavia)

    1959-03-15

    The migration length M and the infinite multiplication factor k{sub {infinity}} of the heavy water-natural uranium bare assembly are determined by measuring the reactivity of the reactor as function of the heavy water level. Since the assembly is non reflected the results obtained are of relatively high accuracy. (author)

  14. A novel start-up procedure for natural-circulation boiling water reactors

    International Nuclear Information System (INIS)

    Annalisa Manera; Frank Schaefer

    2005-01-01

    Full text of publication follows: The elimination of recirculation pumps and associated systems, as proposed for natural-circulation Boiling Water Reactors (BWRs), allow a great simplification in the design of BWRs. On the other hand, it has been shown both experimentally and analytically that such a new reactor configuration makes the system susceptible to thermal-hydraulic instabilities during the start-up phase (so-called flashing-induced instabilities). Therefore, appropriate start-up procedures have to be planned to avoid instabilities in natural-circulation BWRs. Not many proposals of start-up procedures for natural-circulation BWRs are reported in literature, but all authors agree on the fact that the system should be pressurized before the transition to two-phase circulation is allowed. Nayak [1] and Jiang and coauthors [2] proposed to externally pressurize the system by injecting in the pressure vessel respectively steam produced in a separate boiler or nitrogen. Once the pressure in the reactor vessel is high enough, the reactor power can be increased to achieve two-phase natural circulation. Unfortunately, the procedure suggested by Nayak requires an external boiler of adequate volume and power and the related connecting piping to the reactor vessel, while the procedure suggested by Jiang and coauthors requires an additional system for the nitrogen storage and the related connecting piping to the reactor vessel. The external pressurization does not accomplish to the requirements of simplicity that are at the very base of natural circulation BWRs design and it is thus not recommendable. Cheung and Rao [3] suggested a start-up procedure in which the reactor is first filled with water at 80 deg. C at a pressure of 0.55 bar. The reactor is made critical and is pressurized in conditions of single-phase circulation up to a pressure of 63 bar. At this pressure a sudden transition to two-phase operation is achieved by opening the MSIVs (Main Steam Isolation

  15. Assessment of typical natural processes and human activities' impact on the quality of drinking water.

    Science.gov (United States)

    Kurilić, Sanja Mrazovac; Ulniković, Vladanka Presburger; Marić, Nenad; Vasiljević, Milenko

    2015-11-01

    This paper provides insight into the quality of groundwater used for public water supply on the territory of Temerin municipality (Vojvodina, Serbia). The following parameters were measured: color, turbidity, pH, KMnO4 consumption, total dissolved solids (TDS), EC, NH4+, Cl-, NO2-, NO3-, Fe, Mn, As, Ca2+, Mg2+, SO4(2-), HCO3-, K+, and Na+. The correlations and ratios among parameters that define the chemical composition were determined aiming to identify main processes that control the formation of the chemical composition of the analyzed waters. Groundwater from three analyzed sources is Na-HCO3 type. Elevated organic matter content, ammonium ion content, and arsene content are characteristic for these waters. The importance of organic matter decay is assumed by positive correlation between organic matter content and TDS, and HCO3- content. There is no evidence that groundwater chemistry is determined by the depth of captured aquifer interval. The main natural processes that control the chemistry of all analyzed water are cation exchange and feldspar weathering. The dominant cause of As concentration in groundwater is the use of mineral fertilizers and of KMnO4 in urban area. The concentration of As and KMnO4 in the observed sources is inversely proportional to the distance from agricultural land and urban area. 2D model of distribution of As and KMnO4 is done, and it is applicable in detecting sources of pollution. By using this model, we can quantify the impact of certain pollutants on unfavorable content of some parameters in groundwater.

  16. UPLC-MS/MS determination of ptaquiloside and pterosin B in preserved natural water.

    Science.gov (United States)

    Clauson-Kaas, Frederik; Hansen, Hans Christian Bruun; Strobel, Bjarne W

    2016-11-01

    The naturally occurring carcinogen ptaquiloside and its degradation product pterosin B are found in water leaching from bracken stands. The objective of this work is to present a new sample preservation method and a fast UPLC-MS/MS method for quantification of ptaquiloside and pterosin B in environmental water samples, employing a novel internal standard. A faster, reliable, and efficient method was developed for isolation of high purity ptaquiloside and pterosin B from plant material for use as analytical standards, with purity verified by 1 H-NMR. The chemical analysis was performed by cleanup and preconcentration of samples with solid phase extraction, before analyte quantification with UPLC-MS/MS. By including gradient elution and optimizing the liquid chromatography mobile phase buffer system, a total run cycle of 5 min was achieved, with method detection limits, including preconcentration, of 8 and 4 ng/L for ptaquiloside and pterosin B, respectively. The use of loganin as internal standard improved repeatability of the determination of both analytes, though it could not be employed for sample preparation. Buffering raw water samples in situ with ammonium acetate to pH ∼5.5 decisively increased sample integrity at realistic transportation and storing conditions prior to extraction. Groundwater samples collected in November 2015 at the shallow water table below a Danish bracken stand were preserved and analyzed using the above methods, and PTA concentrations of 3.8 ± 0.24 μg/L (±sd, n = 3) were found, much higher than previously reported. Graphical abstract Workflow overview of ptaquiloside determination.

  17. Almera Proficiency Test Determination of Naturally Occurring Radionuclides in Phosphogypsum and Water

    International Nuclear Information System (INIS)

    2010-01-01

    Phosphogypsum is generated as a by-product of the phosphoric acid based fertilizer industry. The discharge of phosphogypsum on earth surface deposits is a potential source of enhanced natural radiation and heavy metals, and the resulting environmental impact should be considered carefully to ensure safety and compliance with environmental regulations. A reliable determination of technologically enhanced naturally occurring radioactive materials in phosphogypsum is necessary to comply with the radiation protection and environmental regulations. This proficiency test (PT) is one of the series of the ALMERA network proficiency tests organised on a regular basis by the Chemistry Unit of the IAEA Terrestrial Environment Laboratory. These proficiency tests are designed to identify analytical problems, to support Member States laboratories to maintain their preparedness and to provide rapid and reliable analytical results. In this PT, the test item set consisted of six samples: one phosphogypsum (the IAEA-434 reference material) and five water samples spiked with natural radionuclides. The main task of the participating laboratories was to identify and quantify the activity levels of radionuclides present in these matrices. The tasks of IAEA were to prepare and distribute the samples to the participating laboratories, to collect and interpret analysis results and to compile a comprehensive report. The certified massic activity values of all radionuclides used in this PT were fulfilling the requirements of metrological traceability to international standards of radioactivity. In this PT, 306 test items (reference materials) were prepared and distributed to 52 participants from 40 countries in November 2008. The deadline for receiving the results from the participants was set to15 May 2009. For gross alpha/beta results the deadline was one working day from the date of sample delivery. The participating laboratories were requested to analyse Ra-226, U-234 and U-238 in water

  18. Worldwide Open Proficiency Test: Determination of Naturally Occurring Radionuclides in Phosphogypsum and Water

    International Nuclear Information System (INIS)

    2010-01-01

    A reliable determination of naturally occurring radionuclides in phosphogypsum is necessary to comply with the radiation protection and environmental regulations. This proficiency test (PT) is one of the series of the world wide proficiency tests organised every year by the IAEA Terrestrial Environment Laboratory. This series of PTs is designed to identify analytical problems, to support Member State laboratories to maintain their accreditation and to provide a forum for discussions regarding the analysis of naturally occurring radionuclides. The range of sample types available for analysis has been mainly at environmental levels. In this PT, the test item set consisted of six samples: one phosphogypsum (the IAEA-434 reference material) and five water samples spiked with natural radionuclides. The main task of the participating laboratories was to identify and traceably quantify the activity levels of radionuclides present in these matrices. The tasks of the IAEA were to prepare and distribute the samples to the participating laboratories, to collect and interpret analysis results and to compile a comprehensive report. The certified massic activity values of all radionuclides used in this PT were traceable to international standards of radioactivity. In this PT, 1800 test items (reference materials) were prepared and distributed to 300 laboratories from 76 countries in November 2008. The deadline for receiving the results from the participants was set at 15 May 2009. The participating laboratories were requested to analyse Ra-226, U-234 and U-238 in water samples 01 and 02, and gross alpha/beta in water samples 03, 04 and 05. In the phosphogypsum sample number 06 the participants were asked to analyse Pb-210, Ra-226, Th-230, U-234 and U-238. The analytical results of the participating laboratories were compared with the reference values assigned to the reference materials, and a rating system was applied. Three National Metrology Institutes (NMI) and six expert

  19. Environmental setting and natural factors and human influences affecting water quality in the White River Basin, Indiana

    Science.gov (United States)

    Schnoebelen, Douglas J.; Fenelon, Joseph M.; Baker, Nancy T.; Martin, Jeffrey D.; Bayless, E. Randall; Jacques, David V.; Crawford, Charles G.

    1999-01-01

    The White River Basin drains 11,349 square miles of central and southern Indiana and is one of 59 Study Units selected for water-quality assessment as part of the U.S. Geological Survey's National WaterQuality Assessment Program. Defining the environmental setting of the basin and identifying the natural factors and human influences that affect water quality are important parts of the assessment.

  20. Human-Nature Relationship in Mediterranean Streams: Integrating Different Types of Knowledge to Improve Water Management

    Directory of Open Access Journals (Sweden)

    Carla Gonzalez

    2009-12-01

    Full Text Available The social and ecological systems of Mediterranean streams are intrinsically linked as a result of long human occupation. In this region, these links vary greatly across small distances due to geomorphology, resulting in great diversity across space, which poses particular challenges for understanding and managing these systems. This demands (i interdisciplinary integration of knowledge that focuses on the social-ecological interactions, while according due consideration to the whole; and also (ii transdisciplinary integration, integrating lay and expert knowledge to understand local specificities. To address these needs - a focus on interactions and local knowledge - the research presented here studies the human-nature relationship in Mediterranean streams. Its main objective is to improve understanding of Mediterranean streams, but it also provides practical inputs to enhance local-level management. The study adopts an applied approach from the perspective of natural resources management. A case study was developed conducting field work on streams within the Natura 2000 site of Monfurado, Portugal - a mainly privately owned area with conflicting land uses between conservation and farming. Rivers and streams in Portugal are considered to be in very bad condition, particularly with regard to water quality. The experimental design was based, from a critical realism perspective of inter- and trans-disciplinarity, on the complementarities between methodologies from (i the social sciences: value survey and analysis of discourse; and (ii the natural sciences: biomonitoring and integrity biotic indexes. Results characterized the connected systems from both ecological and social points of view. They also characterized the relationship between both dimensions. We concluded that well-established riparian vegetation cover of streams is a key structural element of the human-nature relationship in the Mediterranean streams of Monfurado at several levels

  1. [Determination of barium in natural curative waters by ICP-OES technique. Part I. Waters taken on the area of health resorts in Poland].

    Science.gov (United States)

    Garboś, Sławomir; Swiecicka, Dorota

    2011-01-01

    Maximum admissible concentration level (MACL) of barium in natural mineral waters, natural spring waters and potable waters was set at the level of 1 mg/l, while MACL of this element in natural curative waters intended for drinking therapies and inhalations were set at the levels of 1.0 mg/l and 10.0 mg/l, respectively. Those requirements were related to therapies which are applied longer than one month. Above mentioned maximum admissible concentration levels of barium in consumed waters were established after taking into account actual criteria of World Health Organization which determined the guidelines value for this element in water intended for human consumption at the level of 0.7 mg/l. In this work developed and validated method of determination of barium by inductively coupled plasma emission spectrometry technique was applied for determination of this element in 45 natural curative waters sampled from 24 spa districts situated on the area of Poland. Concentrations of barium determined were in the range from 0.0036 mg/l to 24.0 mg/l. Natural curative waters characterized by concentrations of barium in the ranges of 0.0036 - 0.073 mg/l, 0.0036 - 1.31 mg/l and 0.0036 - 24.0 mg/l, were applied to drinking therapy, inhalations and balneotherapy, respectively (some of waters analyzed were simultaneously applied to drinking therapy, inhalations and balneotherapy). In the cases of 11 natural curative waters exceeding limit of 1 mg/l were observed, however they were classified mainly as waters applied to balneotherapy and in two cases to inhalation therapies (concentrations of barium - 1.08 mg/l and 1.31 mg/l). The procedure of classification of curative waters for adequate therapies based among other things on barium concentrations meets requirements of the Decree of Minister of Health from 13 April 2006 on the range of studies indispensable for establishing medicinal properties of natural curative materials and curative properties of climate, criteria of their

  2. Comparative Hydrology, Water Quality, and Ecology of Selected Natural and Augmented Freshwater Wetlands in West-Central Florida

    Science.gov (United States)

    Lee, T.M.; Haag, K.H.; Metz, P.A.; Sacks, L.A.

    2009-01-01

    Comparing altered wetlands to natural wetlands in the same region improves the ability to interpret the gradual and cumulative effects of human development on freshwater wetlands. Hydrologic differences require explicit attention because they affect nearly all wetland functions and are an overriding influence on other comparisons involving wetland water quality and ecology. This study adopts several new approaches to quantify wetland hydrologic characteristics and then describes and compares the hydrology, water quality, and ecology of 10 isolated freshwater marsh and cypress wetlands in the mantled karst landscape of central Florida. Four of the wetlands are natural, and the other six have water levels indirectly lowered by ground-water withdrawals on municipally owned well fields. For several decades, the water levels in four of these altered wetlands have been raised by adding ground water in a mitigation process called augmentation. The two wetlands left unaugmented were impaired because their water levels were lowered. Multifaceted comparisons between the altered and natural wetlands are used to examine differences between marshes and cypress wetlands and to describe the effects of augmentation practices on the wetland ecosystems. In the karstic geologic setting, both natural and altered wetlands predominantly lost water to the surficial aquifer. Water leaking out of the wetlands created water-table mounds below the wetlands. The smallest mounds radiated only slightly beyond the vegetated area of the wetlands. The largest and steepest mounds occurred below two of the augmented wetlands. There, rapid leakage rates regenerated a largely absent surficial aquifer and mounds encompassed areas 7-8 times as large as the wetlands. Wetland leakage rates, estimated using a daily water-budget analysis applied over multiple years and normalized as inches per day, varied thirtyfold from the slowest leaking natural wetland to the fastest leaking augmented wetland. Leakage

  3. Evaluation of some natural water-insoluble cellulosic material as lost circulation control additives in water-based drilling fluid

    Directory of Open Access Journals (Sweden)

    Ahmed Mohamed Alsabagh

    2015-12-01

    In this work, three natural water-insoluble cellulosic materials; peanut hulls, bagasse and sawdust were investigated as lost circulation control materials. One hundred and eight different LCM samples made of various materials were tested with mud. The experiments were conducted in a permeability plugging apparatus (PPA at a differential pressure of 100 psi and 300 psi, using 10, 60 and 90 ceramic discs. The performance of each LCM sample was determined based on the amount of spurt loss and total fluid loss of the mud according to the American Petroleum Institute (API standard. The obtained results showed that, the amount of the fluid loss depends on the LCM material, concentration and size distribution, testing results show that, the peanut gives the best results among the bagasse and sawdust, especially fine size which exhibited better results in the filtration characteristics due to the better filling properties of this size. Peanut hulls, bagasse and sawdust show a slight effect on the rheological properties of the mud. The results were discussed on light of particle size distribution.

  4. Radioactivity and Natural Radio nuclides Distribution in River Water, Coastal Water, Sediment and Eichornia Crassipes (Mart) Sloms and Their Accumulation Factor at Surabaya Area

    International Nuclear Information System (INIS)

    Agus Taftazani; Sumining; Muzakky

    2002-01-01

    Distribution of radioactivity and natural radionuclide in water, sediment and eichornia crassipes (mart) sloms from Surabaya river and coastal area have been evaluated. Five sampling locations were selected to represent fresh water and coastal water environment. The samples consist of water (fresh and coastal), bottom surface sediment and eichornia crassipes (mart) sloms The result showed that the gross-β activity from water environment were lower than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (1000 mBq/L) and indicated that β-radioecological quality of water were still good. But the activity of the gross-α of water environment were higher than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (100 mBq/L). The eichornia crassipes (mart) sloms (gross) activity were higher than water and sediment activities and indicated that transfer of radionuclides from water to sediment and organism can be detected in water environment. Two natural radionuclides can be identified by γ-Spectrometric technique, they were K-40 and TI-208. Generally the distribution factor F D were smaller than bioaccumulation factor F B . (author)

  5. Radioactivity and natural radionuclides distribution in river water, coastal water, sediment and Eichornia Crassipes (Mart) solms and their accumulation factor at Surabaya area

    International Nuclear Information System (INIS)

    Agus Taftazani; Sumining; Muzakky

    2002-01-01

    Distributions of radioactivity and natural radionuclides in water, sediment and eichornia crassipes (mart) solms from Surabaya River and coastal area have been evaluated. Five sampling locations were selected to represent fresh water and coastal water environment. The samples consist of water (fresh & coastal), bottom surface sediment and eichornia crassipes (mart) solms. The result showed that the gross-β activity from water environment were lower than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (1000 mBq/L) and indicated that β-radio ecological quality of water were still good. But the activity of the gross-α of water environment were higher than the threshold value of Environmental Minister Act. Kep.02/MENKLH/I/1988 (100 mBq/L). The eichornia crassipes (mart) solms (gross) activity were higher than water and sediment activities and indicated that transfer of radio nuclides from water to sediment and organism can be detected in water environment. Two natural radionuclide can be identified by γ-Spectrometric technique, they were K"4"0 and Tl"2"0"8. Generally the distribution factors F_D were smaller than bioaccumulation factor F_B. (author)

  6. Hydrodynamics and mass transfer deaeration of water on thermal power plants when used natural gas as a desorbing agent

    Science.gov (United States)

    Sharapov, V. I.; Kudryavtseva, E. V.

    2017-11-01

    The technology of low-temperature deaeration of water in thermal power plants was developed. It is proposed to use natural gas supplied to the furnace as desorbing agent in the deaerator instead steam or superheated water. Natural gas has low, often - negative temperature after reducing installs. At the same time, it contains virtually no corrosive gases, oxygen and carbon dioxide, thereby successfully may be used as a stripping agent in water deaeration. The calculation of the energy efficiency of the technology for a typical unit of CHP has shown that achieved a significant annual saving of fuel equivalent in the transition from the traditional method of deaeration of water in the low temperature deaeration. Hydrodynamic and mass transfer indicators were determined for the deaerator thermal power plants using as stripping medium natural gas supplied to the boiler burners. Theoretically required amount and the real specific consumption of natural gas were estimated for deaeration of water standard quality. The calculation of the hydrodynamic characteristics was presented for jet-bubbling atmospheric deaerator with undescended perforated plate when operating on natural gas. The calculation shows the possibility of using commercially available atmospheric deaerators for the application of the new low-temperature water deaeration technology.

  7. Automated microprocessor-controlled atomic absorption analysis of natural water for arsenic and selenium

    International Nuclear Information System (INIS)

    Morrow, R.W.; Futrell, T.L.; Adams, T.T.

    1978-08-01

    An automated, dual-channel atomic absorption spectrophotometer for the simultaneous determination of arsenic and selenium in natural water is now in operation. The instrument was constructed from commercially available optical components, spectral sources, and a sample changer. Automation was achieved by using an in-house-fabricated and programmed microprocessor. The instrument will analyze samples at a rate of 37 per hour, and a quantitative determination of arsenic and selenium to 0.2 μg/l (ppB) can be achieved. Arsenic can be determined with a precision of 19% at 1 μg/l and 6% at 10 μg/l, while selenium can be determined with a precision of 17% at 1 μg/l and 4% at 10 μg/l

  8. Extraction-absorptiometric determination of chromium by acridine yellow in natural and waste waters

    International Nuclear Information System (INIS)

    Arstamyan, Zh.M.; Mkrtchyan, K.K.

    2006-01-01

    In interaction of Cr(VI) anion with acridine basic dye - acridine yellow has been studied. The colored ionic associate could be extracted by dichlorethane: acetone (3:1) binary mixture in Ph 1 to 2 N hydrochloric acid solution. Optimal concentration of reagent is 1,83·10 - 3 - 2,94·10 - 3 M . The celebration graph obeyed Beer's law over the range 0,625-10 mkg Cr/ml and the apparent molar absorptivity of the extract at 454 nm was 3,4·10 4± 500 l mol - 1 c m 1 . The molar ratio between Cr(VI) anion and acridine yellow in ionic associate has been determined by method Asmuse which is (1:1). The influence of interfering elements on the determination of chromium has been studied. The elaborated methods has been applied for determination of Cr(VI) in natural and waste waters

  9. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body.

    Science.gov (United States)

    Ruan, Aidong; Zhao, Ying; Liu, Chenxiao; Zong, Fengjiao; Yu, Zhongbo

    2015-05-01

    Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review. © 2015 SETAC.

  10. Extraction-absorptiometric determination of copper by malachite green in natural and waste waters

    International Nuclear Information System (INIS)

    Arstamyan, Zh.M.; Mangasaryan, S.H.

    2006-01-01

    In interaction of Cu anionic complex with three phenylmethane basic dye-malachite green has been studied. The colored ionic associate could be extracted by benzene in 1.0 M hydrochloric acid solution. The method is based on the reduction of Cu(II) to Cu(I) with ascorbic acid.The calibration graph obeyed Beer's law over the range 0,125-10,0 m kg/ml copper. The apparent molar absorptivity of the extract was 8,7·10 4± 500 l mol - 1 c m 1 . The molar ratio between Cu(I) chloride complex and cation of malachite green in ionic associate has been determined by method Asmuse which is (1:1). The influence of foreign ions on the determination of copper has been studied. Methods was applied for determination of cooper in natural and waste waters

  11. Electricity, water, and natural gas consumption of a residential house in Canada from 2012 to 2014

    Science.gov (United States)

    Makonin, Stephen; Ellert, Bradley; Bajić, Ivan V.; Popowich, Fred

    2016-06-01

    With the cost of consuming resources increasing (both economically and ecologically), homeowners need to find ways to curb consumption. The Almanac of Minutely Power dataset Version 2 (AMPds2) has been released to help computational sustainability researchers, power and energy engineers, building scientists and technologists, utility companies, and eco-feedback researchers test their models, systems, algorithms, or prototypes on real house data. In the vast majority of cases, real-world datasets lead to more accurate models and algorithms. AMPds2 is the first dataset to capture all three main types of consumption (electricity, water, and natural gas) over a long period of time (2 years) and provide 11 measurement characteristics for electricity. No other such datasets from Canada exist. Each meter has 730 days of captured data. We also include environmental and utility billing data for cost analysis. AMPds2 data has been pre-cleaned to provide for consistent and comparable accuracy results amongst different researchers and machine learning algorithms.

  12. Environmental water requirements of groundwater dependent ecosystems: conflict between nature and man

    Science.gov (United States)

    Witczak, S.; Kania, J.; Rozanski, K.; Wachniew, P.; Zurek, A.; Dulinski, M.

    2012-04-01

    The presented study was aimed at investigating possible interactions between the porous sandy aquifer intensively exploited for drinking water purposes and the groundwater dependent ecosystem (GDE) consisting of a valuable forest stand. The investigated aquifer (Bogucice Sands) and the associated GDE (Niepolomice Forest) are located in the south of Poland. The aquifer covers the area of ca. 200 km2 and belongs to the category of medium groundwater basins in Poland. The Niepolomice Forest is a lowland forest covering around 110 km2. This relic of once vast forests is protected as a Natura 2000 Special Protection Area "Puszcza Niepolomicka" (PLB120002) that supports bird populations of European importance. Additionally, a fen in the western part of the Niepolomice Forest comprises a separate Natura 2000 area "Torfowisko Wielkie Bloto" (PLH120080), a significant habitat of endangered butterfly species associated with wet meadows. The Niepolomice Forest contains also several nature reserves and the European bison breeding centre and has an important recreational value as the largest forest complex in the vicinity of Krakow. Due to spatially variable lithologies and groundwater levels, the Niepolomice Forest is a mosaic of various forest and non-forest habitats, including wetlands, marsh forests, humid forests and fresh forests. Dependence of the Niepolomice Forest stands on groundwater is enhanced by low available water capacity and low capillary rise of soils in the area. Groundwater conditions in the Niepolomice Forest, including Wielkie Bloto fen have been affected by meliorations carried out mostly in the period 1900-1930 and after the Second World War and by forest management. Due to artesian conditions in the area and relatively thin clay layer separating Tertiary aquifer layers from shallow Quaternary aquifer, the upward leaching of deeper groundwater may contribute in a significant way to the water balance of the investigated GDE. In September 2009 a cluster of

  13. Effect of temperature, pH, and oxygen level on the multiplication of naturally occurring Legionella pneumophila in potable water.

    Science.gov (United States)

    Wadowsky, R M; Wolford, R; McNamara, A M; Yee, R B

    1985-05-01

    A water culture containing naturally occurring Legionella pneumophila and associated microbiota was maintained in the laboratory by serially transferring the culture in tap water which had been sterilized by membrane filtration. Successful maintenance of the water culture depended upon transferring the culture when the growth of L. pneumophila was in the late-exponential to early-stationary phase. The water culture was used as a source of naturally occurring bacteria to determine some of the parameters which affect the multiplication of L. pneumophila in tap water. Naturally occurring L. pneumophila multiplied at a temperature between 25 and 37 degrees C, at pH levels of 5.5 to 9.2, and at concentrations of dissolved oxygen of 6.0 to 6.7 mg/liter. Multiplication did not occur in tap water which contained less than 2.2 mg of dissolved oxygen per liter. An association was observed between the multiplication of L. pneumophila and the non-Legionellaceae bacteria which were also present in the water culture. The method of preserving naturally occurring L. pneumophila and associated microbiota may facilitate studies on the symbiosis of L. pneumophila with other microorganisms.

  14. Some processes affecting the mobility of thorium in natural ground waters

    International Nuclear Information System (INIS)

    Oesthols, E.

    1994-04-01

    Thorium is a useful model element for tetravalent actinides such as U(IV), Pu(IV) and Np(IV) which are important constituents of spent nuclear fuel. Thorium is also an important tracer element for particle pathways in natural environments. In order to correctly model the transport of Th in the environment, it is important to have quantitative models for processes that effect its mobility. Some of these processes have been experimentally investigated in laboratory studies, and interpreted with quantitative models where possible. The carbonate complexation in aqueous solution of Th has been investigated through solubility studies of ThO 2 in carbonate media. It is shown, that thorium carbonate complexes are likely to be predominant in many natural waters. They also increase solubility of the oxide significantly, and hence the mobility of Th. Carbonate also increases the dissolution rate of thorium oxide. This effect will only be important in environments with a pH and total carbonate alkalinity higher than those of most natural aquatic environments. Solubility studies of thorium oxide in phosphate media show that phosphate does not significantly increase the mobility of Th in aqueous media. The presence of phosphate may cause the precipitation of sparingly soluble thorium phosphates which will decrease the mobility of Th. The pentahydroxo complex for Th is shown to be significant up to pH 13. Potentiometric studies of Th sorption on amorphous colloidal silica indicate, that pure aluminosilicates will probably not be efficient scavengers of tetravalent actinides above pH values of approximately 6. In neutral to alkaline solutions, iron (hydr)oxides are likely to be the predominant sorbents. Th binds to the silica surface through corner-sharing bonds, where Th and Si share one, but not more oxygen atoms. 72 refs

  15. Applicability of a liquid membrane in enrichment and determination of nickel traces from natural waters

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez-Lledo, F.C.; Diaz-Lopez, I.C. [University of Havana, Department of Analytical Chemistry, Faculty of Chemistry, Havana (Cuba); Galindo-Riano, Maria D.; Garcia-Vargas, M.; Granado-Castro, M.D. [University of Cadiz, Department of Analytical Chemistry, Faculty of Sciences, Cadiz (Spain)

    2007-09-15

    In this work, a bulk liquid membrane method has been applied for Ni enrichment and separation from natural waters. The carrier-mediated transport was accomplished by pyridine-2-acetaldehyde benzoylhydrazone dissolved in toluene as a complexing agent. The preconcentration was achieved through pH control of source and receiving solutions via a counterflow of protons. The main variables were optimized by using a modified simplex technique. High transport efficiencies (101.2 {+-} 1.8-99.7 {+-} 4.2%) were provided by the carrier for nickel ions in a receiving phase of 0.31 mol L{sup -1} nitric acid after 9-13 h depending on sample salinity. The precision of the method was 2.05% (without a saline matrix) and 4.04% (with 40 g L{sup -1} NaCl) at the 95% confidence level and the detection limit of the blank was 0.015 {mu}g L{sup -1} Ni for detection by atomic absorption spectroscopy. The applicability of the method was tested on certified reference and real water samples with successful results, even for saline samples. The relative errors were -0.60% for certified reference materials and ranged from -0.39 to 2.90% and from 0.3 to 11.05% for real samples, obtained by comparison of inductively coupled plasma mass spectrometry and adsorptive cathodic stripping voltammetry measurements, respectively. (orig.)

  16. Using reverse osmosis to remove natural organic matter from power plant makeup water

    International Nuclear Information System (INIS)

    Mattaraj, S.; Kilduff, J.E.

    2003-01-01

    A field-scale reverse osmosis (RO) system was used to remove salts and natural organic matter (NOM) from a surface water source. The RO membrane exhibited an NOM solution hydraulic permeability of 8.33 x 10 -9 m x s -1 x kPa -1 , about 6% less than the clean water value, over pressures ranging from 414 to 1 000 kPa (60 to 145 psi). The rejection of salt and NOM were greater than 98% and 99%, respectively. Under controlled laboratory conditions, greater than 99% mass recovery of NOM could be obtained. A small fraction of NOM was not recovered using hydrodynamic cleaning but could be recovered with chemical cleaning (NaOH wash solution). The mass recovered in the NaOH solution increased from 6% with increasing transmembrane pressures from 414 kPa to 1 000 kPa, respectively. This is consistent with fouling that results from an increase in solution flux, and a concomitant decrease in tangential crossflow velocity. (orig.)

  17. Experiences from the Swedish programme - heavy water and natural uranium in the Aagesta cogeneration plant

    International Nuclear Information System (INIS)

    Oestman, Alvar

    2002-11-01

    A short review of the Swedish programme for nuclear power in the 50's and the 60's is given, and in particular a description of the operating experiences of the Aagesta nuclear cogeneration plant, producing district heating for the south Stockholm area (12 MW el and 68 MW heat ). The original Swedish nuclear programme was built on heavy water and natural uranium and had the objective to construct small nuclear plants in the vicinity of some 10 large cities in south and middle Sweden. Aagesta was the only full-scale plant to be built according to this programme, as Sweden adopted the light-water reactor policy and eventually constructed 12 large reactors at four sites. The report is based on the experiences of the author from his work at the Aagesta plant in the sixties. In an appendix, the experiences from Vattenfall (the Swedish electric utility which took over the operating responsibility for the Aagesta plant), of the plant operation is reviewed

  18. Time evolution simulation of heat removal in a small water tank by natural convection

    Energy Technology Data Exchange (ETDEWEB)

    Freitas, Carlos Alberto de, E-mail: carlos.freitas1950@hotmail.com [Instituto Federal do Rio de Janeiro (IFRJ), Nilopolis, RJ (Brazil); Jachic, Joao; Moreira, Maria de Lourdes, E-mail: jjachic@ien.gov.br, E-mail: malu@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil)

    2013-07-01

    One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)

  19. Time evolution simulation of heat removal in a small water tank by natural convection

    International Nuclear Information System (INIS)

    Freitas, Carlos Alberto de; Jachic, Joao; Moreira, Maria de Lourdes

    2013-01-01

    One of the cooling modes for any source of heat such as in a shutdown nuclear core is the natural convection. The design specifications of any cooling pool can only be done when the removal heat rate and the corresponding mass flow rate is reasonably established. In our simulation scheme, we assumed that the body forces acting in the cubic water cell are: the weight, the drag force and the integrated pressure forces on the horizontal surfaces, the viscosity shear forces on the vertical surfaces and also a special viscosity drag force due to the mass dislocation along a Bernoulli type current tube outside the motive region. For a suitable time step, the uprising convection velocity is determined by an implicit and also by an explicit solution algorithm. The resulting differential equation depends on updating specific mass, dynamic viscosity and constant pressure heat coefficient with the last known temperature in the cell that absorbed heat. Numerical calculation software was performed using MATLAB’s technical computing language and then applied for a heat generation plate simulating a spent fuel assembler from a shutdown nuclear core. The results show time evolution of convection, terminal velocity and water temperature distribution. Pool dimension as well as pool level decrement are also determined for various air exhausting system conditions and heat rate of the spent fuel plate being cooled. (author)

  20. Natural organic matter and sunlight accelerate the degradation of 17ss-estradiol in water

    International Nuclear Information System (INIS)

    Leech, Dina M.; Snyder, Matthew T.; Wetzel, Robert G.

    2009-01-01

    Nanomolar concentrations of steroid hormones such as 17β-estradiol can influence the reproductive development and sex ratios of invertebrate and vertebrate populations. Thus their release into surface and ground waters from wastewater facilities and agricultural applications of animal waste is of environmental concern. Many of these compounds are chromophoric and susceptible to photolytic degradation. High intensity UV-C radiation has been demonstrated to degrade some of these compounds in engineered systems. However, the degradation efficacy of natural solar radiation in shallow fresh waters is less understood. Here photolytic experiments with 17β-estradiol demonstrated modest photodegradation (∼ 26%) when exposed to simulated sunlight between 290 and 720 nm. Photodegradation significantly increased (∼ 40-50%) in the presence of 2.0-15.0 mg/l of dissolved organic carbon (DOC) derived from humic acids of the Suwannee River, GA. However, rates of photodegradation reached a threshold at approximately 5.0 mg/l DOC. Observed suppression of photolysis in the presence of a radical inhibitor (i.e. 2-propanol) indicated that a significant proportion of the degradation was due to radicals formed from the photolysis of DOC. Although photodegradation was greatest in full sunlight containing UV-B (290-320 nm), degradation was also detected with UV-A (320-400 nm) and visible light (400-720 nm) alone

  1. Determination of Nitrite and Nitrate in Natural Waters Using Flow Injection with Spectrophotometric Detection

    International Nuclear Information System (INIS)

    Yaqoob, M.; Nabi, A.

    2013-01-01

    A simple and sensitive flow injection spectrophotometric method is reported for the room temperature determination of nitrite and nitrate based on the Griess reaction and a copperised cadmium column for reduction of nitrate. Calibration graphs were linear over the range 2 - 1000 micro g N L /sup -1/ (R2 = 0.9997 and 0.9999, n = 9) with a limit of detection (3 s.d.) of 1.0 micro g N L and relative standard deviations (n = 10) of 0.9 and 1.2% for 50 micro g N L nitrite and nitrate respectively. The sample throughput was 50 h. The effect of reagent concentrations, physical parameters (flow rate, sample volume, reaction coil and copperised cadmium column length) and the potential interferences are reported. The effect of salinity on the blank and on the determination of nitrite and nitrate are also presented. The method was applied to natural waters (rainwater, freshwater and estuarine water) and the results for nitrite + nitrate (140 - 7310 micro g N L/sup -1/) were not significantly different (95% confidence interval) from results obtained using a segmented flow analyser reference method with spectrophotometric detection. (author)

  2. Natural uranium fueled light water moderated breeding hybrid power reactors: a feasibility study

    International Nuclear Information System (INIS)

    Greenspan, E.; Schneider, A.; Misolovin, A.; Gilai, D.; Levin, P.

    1978-06-01

    The first part of the study consists of a thorough investigation of the properties of subcritical thermal lattices for hybrid reactor applications. Light water is found to be the best moderator for (fuel-self-sufficient) FSS hybrid reactors for power generation. Several lattice geometries and compositions of particular promise for LWHRs are identified. Using one of these lattices, fueled with natural uranium, the performance of several concepts of LWHR blankets is investigated, and optimal blanket designs are identified. The effect of blanket coverage efficiency and the feasibility of separating the functions of tritium breeding and of power generation to different blankets are investigated. Optimal iron-water shields for LWHRs are also determined. The performance of generic types of LWHRs is evaluated. The evolution of the blanket properties with burnup is evaluated and fuel management schemes are briefly examined. The feasibility of using the lithium system of the blanket to control the blanket power amplitude and shape is also investigated. A parametric study of the energy balance of LWHR power plants is carried out, and performance parameters expected from LWHRs are estimated. Discussions are given of special features of LWHRs and their fuel cycle

  3. Natural radioactivity of ground water in some areas in Aden governorate South of Yemen region

    International Nuclear Information System (INIS)

    Harb, S.; El-Kamel, A.H.; Zahran, A.M.; Abbady, A.A.; Ahmed, F.A.

    2013-01-01

    This paper presents the concentrations of naturally occurring radionuclides 226 Ra, 232 Th and 40 K measured in groundwater samples collected from Aden governorate South of Yemen region using gamma spectroscopy. A total of 37 groundwater samples were collected from four areas in Aden governorate. The average activity concentrations for groundwater from Beer Ahmed area were 1.60 Bq/L, 1.25 Bq/L and 16.90 Bq/L for 226 Ra, 232 Th and 40 K respectively and from Beer Fadle area were 1.45 Bq/L, 0.87 Bq/L and 19.8 Bq/L for 226 Ra, 232 Th and 40 K, respectively, while that for groundwater samples from Daar-saad area were 1.27 Bq/L, 1.18 Bq/L and 18.28 Bq/L for 226 Ra, 232 Th and 40 K, respectively and Al-Masabian area were 1.55 Bq/L, 1.421 Bq/L and 19.03 Bq/L for 226 Ra, 232 Th and 40 K respectively. Furthermore, annual effective dose equivalent of ingestion of these waters was calculated. The results showed that the annual dose obtained in the present study was much higher than the recommended value (0.1 mSv/year) as reported by WHO. The results were compared with those for drinking water. (author)

  4. Natural radionuclides in Austrian mineral water and their sequential measurement by fast methods

    International Nuclear Information System (INIS)

    Wallner, Gabriele; Wagner, Rosmarie; Katzlberger, Christian

    2008-01-01

    Ten samples of Austrian mineral water were investigated with regard to the natural radionuclides 228 Ra, 226 Ra, 210 Pb, 210 Po, 238 U and 234 U. The radium isotopes as well as 210 Pb were measured by liquid scintillation counting (LSC) after separation on a membrane loaded with element-selective particles (Empore TM Radium Disks) and 210 Po was determined by α-spectroscopy after spontaneous deposition onto a copper planchette. Uranium was determined by ICP-MS as well as by α-spectroscopy after ion separation and microprecipitation with NdF 3 . From the measured activity concentrations the committed effective doses for adults and babies were calculated and compared to the total indicative dose of 0.1 mSv/a given in the EC Drinking Water Directive as a maximum dose. The dominant portion of the committed effective dose was due to the radium isotopes; the dose from 228 Ra in most samples clearly exceeded the dose from 226 Ra

  5. Natural organic matter and sunlight accelerate the degradation of 17ss-estradiol in water

    Energy Technology Data Exchange (ETDEWEB)

    Leech, Dina M. [Institute of Marine Sciences, University of North Carolina at Chapel Hill, 3431 Arendell Street, Morehead City, NC 28557 (United States)], E-mail: dmleech@email.unc.edu; Snyder, Matthew T.; Wetzel, Robert G. [Department of Environmental Sciences and Engineering, School of Public Health, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599 (United States)

    2009-03-01

    Nanomolar concentrations of steroid hormones such as 17{beta}-estradiol can influence the reproductive development and sex ratios of invertebrate and vertebrate populations. Thus their release into surface and ground waters from wastewater facilities and agricultural applications of animal waste is of environmental concern. Many of these compounds are chromophoric and susceptible to photolytic degradation. High intensity UV-C radiation has been demonstrated to degrade some of these compounds in engineered systems. However, the degradation efficacy of natural solar radiation in shallow fresh waters is less understood. Here photolytic experiments with 17{beta}-estradiol demonstrated modest photodegradation ({approx} 26%) when exposed to simulated sunlight between 290 and 720 nm. Photodegradation significantly increased ({approx} 40-50%) in the presence of 2.0-15.0 mg/l of dissolved organic carbon (DOC) derived from humic acids of the Suwannee River, GA. However, rates of photodegradation reached a threshold at approximately 5.0 mg/l DOC. Observed suppression of photolysis in the presence of a radical inhibitor (i.e. 2-propanol) indicated that a significant proportion of the degradation was due to radicals formed from the photolysis of DOC. Although photodegradation was greatest in full sunlight containing UV-B (290-320 nm), degradation was also detected with UV-A (320-400 nm) and visible light (400-720 nm) alone.

  6. Analytical strategies for uranium determination in natural water and industrial effluents samples

    International Nuclear Information System (INIS)

    Santos, Juracir Silva

    2011-01-01

    The work was developed under the project 993/2007 - 'Development of analytical strategies for uranium determination in environmental and industrial samples - Environmental monitoring in the Caetite city, Bahia, Brazil' and made possible through a partnership established between Universidade Federal da Bahia and the Comissao Nacional de Energia Nuclear. Strategies were developed to uranium determination in natural water and effluents of uranium mine. The first one was a critical evaluation of the determination of uranium by inductively coupled plasma optical emission spectrometry (ICP OES) performed using factorial and Doehlert designs involving the factors: acid concentration, radio frequency power and nebuliser gas flow rate. Five emission lines were simultaneously studied (namely: 367.007, 385.464, 385.957, 386.592 and 409.013 nm), in the presence of HN0 3 , H 3 C 2 00H or HCI. The determinations in HN0 3 medium were the most sensitive. Among the factors studied, the gas flow rate was the most significant for the five emission lines. Calcium caused interference in the emission intensity for some lines and iron did not interfere (at least up to 10 mg L -1 ) in the five lines studied. The presence of 13 other elements did not affect the emission intensity of uranium for the lines chosen. The optimized method, using the line at 385.957 nm, allows the determination of uranium with limit of quantification of 30 μg L -1 and precision expressed as RSD lower than 2.2% for uranium concentrations of either 500 and 1000 μg L -1 . In second one, a highly sensitive flow-based procedure for uranium determination in natural waters is described. A 100-cm optical path flow cell based on a liquid-core waveguide (LCW) was exploited to increase sensitivity of the arsenazo 111 method, aiming to achieve the limits established by environmental regulations. The flow system was designed with solenoid micro-pumps in order to improve mixing and minimize reagent consumption, as well as

  7. Stability monitoring of a natural-circulation-cooled boiling water reactor

    International Nuclear Information System (INIS)

    Hagen, T.H.J.J. van der.

    1989-01-01

    Methods for monitoring the stability of a boiling water reactor (BWR) are discussed. Surveillance of BWR stability is of importance as problems were encountered in several large reactors. Moreover, surveying stability allows plant owners to operate at high power with acceptable stability margins. The results of experiments performed on the Dodewaard BWR (the Netherlands) are reported. This type reactor is cooled by natural circulation, a cooling principle that is also being considered for new reactor designs. The stability of this reactor was studied both with deterministic methods and by noise analysis. Three types of stability are distinguished and were investigated separately: reactor-kinetic stability, thermal-hydraulic stability and total-plant stability. It is shown that the Dodewaard reactor has very large stability margins. A simple yet reliable stability criterion is introduced. It can be derived on-line from thhe noise signal of ex-vessel neutron detectors during normal operation. The sensitivity of neutron detectors to in-core flux perturbations - reflected in the field-of-view of the detector - was calculated in order to insure proper stability surveillance. A novel technique is presented which enables the determination of variations of the in-core coolant velocity by noise correlation. The velocity measured was interpreted on the basis of experiments performed on the air/water flow in a model of a BWR coolant channel. It appeared from this analysis that the velocity measured was much higher than the volume-averaged water and air velocities and the volumetric flux. The applicability of the above-mentioned technique to monitoring of local channel-flow stability was tested. It was observed that stability effects on the coolant velocity are masked by other effects originating from the local flow pattern. Experimental and theoretical studies show a shorter effective fuel time constant in a BWR than was assumed. (author). 118 refs.; 73 figs.; 21 tabs

  8. Natural and anthropogenic sources and processes affecting water chemistry in two South Korean streams

    Energy Technology Data Exchange (ETDEWEB)

    Shin, Woo-Jin [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Ryu, Jong-Sik [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Mayer, Bernhard [Department of Geoscience, University of Calgary, Calgary, Alberta T2N 1N4 (Canada); Lee, Kwang-Sik, E-mail: kslee@kbsi.re.kr [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Lee, Sin-Woo [Division of Earth and Environmental Sciences, Korea Basic Science Institute, Cheongwon-gun, Chungbuk 363-883 (Korea, Republic of); Department of Geology, Chungnam National University, Yuseong-gu, Daejeon 305-764 (Korea, Republic of)

    2014-07-01

    controlling the water chemistry of streams draining watersheds having different lithologies and land-use patterns. - Graphical abstract: The distinct δ{sup 34}S and δ{sup 15}N values of the various source end-members enabled us to estimate the respective contributions of the various anthropogenic sources to stream water quality based on the sulfate and nitrate isotopic compositions of the analyzed water samples. - Highlights: • Isotopes were used to identify natural and anthropogenic sources in streams. • Water chemistry is dependent upon land use patterns in watersheds. • Manure is the main source supplying sulfate and nitrate to a stream. • Sulfate and nitrate in stream are derived mostly from AMD and soil solution.

  9. Determination of natural radioactivity in public water supplies of Sao Paulo State. V.1-2

    International Nuclear Information System (INIS)

    Oliveira, Joselene de

    1998-01-01

    This study aimed to determine the activity concentrations of natural occurring radionuclides of the 238 U and 232 Th series in drinking water supplies of Sao Paulo State. A sampling program was carried out, in order to perform this survey, starting in 1994 and covering 54% of the 574 existing counties. The locations studied correspond to the public water systems operated routinely by SABESP - Companhia de Saneamento Basico do Estado de Sao Paulo, which is the state company responsible for collecting, treating and supplying water. The activity concentrations of 226 Ra and 228 Ra were determined by gross alpha and beta counting, respectively, of a Ba(Ra)SO 4 precipitate in a low-background gasflow proportional counter. The 228 Rn concentrations were determined by liquid scintillation method. Concentrations up to 235 mBq/L and 131 mBq/L were observed for 226 Rn and 228 Ra, respectively, whereas 222 Rn concentrations reached 315 Bq/L. Of the 452 water samples analyzed, a total of 3 presented activity concentrations for 226 Ra above the limit of 0.1 Bq/L adopted by the Brazilian regulation for the gross-alpha activity in drinking water. These results, however, are below 1/50 of the annual limit of intake recommended for 226 Ra by 'Comissao Nacional de Energia Nuclear', if an ingestion rate of 2L/d per person is considered. For the gross-beta activity, all the measured samples presented 228 Ra activity concentrations below 1 Bq/L. It is concluded that the consumption of such waters will not imply in any additional health risk to the population. In order to evaluate the radioactive doses due to the ingestion of these waters, a conservative dosimetric calculation was carried out using dose conversion factors suggested by ICRP (International Commission on Radiological Protection). Doses up to 0.3 mSv/y, 0.6 mSv/y and 3.2 mSv/y were estimated for the critical organs, for the ingestion of 226 Ra, 228 Ra and 222 Rn, respectively; while the corresponding committed effective

  10. Use of natural tracers in identification and characterisation. Of water-conducting features at Yucca Mountain, Nevada

    International Nuclear Information System (INIS)

    Henning, R.; Patterson, R.

    1999-01-01

    Understanding rates and pathways of water movement at the potential repository site is crucial in assessing the probable performance in isolating waste from the accessible environment. Of major concern is the amount of water migrating through the mountain and entering the repository. Studies of water migration are being performed in the Exploratory Studies Facility at Yucca Mountain (ESF). The ESF is an eight-km long tunnel, which was constructed between 1995 and 1997. Samples collected in this facility were analyzed for natural tracers that may indicate water presence and movement. Some natural tracers have proven to be very useful in conjunction with other data, but others, such as tritium and stable isotopes, that can be found in gas, liquid and solid phases, have been difficult to understand and correlate to water movement. (author)

  11. Fuzzy rule-based modelling for human health risk from naturally occurring radioactive materials in produced water

    International Nuclear Information System (INIS)

    Shakhawat, Chowdhury; Tahir, Husain; Neil, Bose

    2006-01-01

    Produced water, discharged from offshore oil and gas operations, contains chemicals from formation water, condensed water, and any chemical added down hole or during the oil/water separation process. Although, most of the contaminants fall below the detection limits within a short distance from the discharge port, a few of the remaining contaminants including naturally occurring radioactive materials (NORM) are of concern due to their bioavailability in the media and bioaccumulation characteristics in finfish and shellfish species used for human consumption. In the past, several initiatives have been taken to model human health risk from NORM in produced water. The parameters of the available risk assessment models are imprecise and sparse in nature. In this study, a fuzzy possibilistic evaluation using fuzzy rule based modeling has been presented. Being conservative in nature, the possibilistic approach considers possible input parameter values; thus provides better environmental prediction than the Monte Carlo (MC) calculation. The uncertainties of the input parameters were captured with fuzzy triangular membership functions (TFNs). Fuzzy if-then rules were applied for input concentrations of two isotopes of radium, namely 226 Ra, and 228 Ra, available in produced water and bulk dilution to evaluate the radium concentration in fish tissue used for human consumption. The bulk dilution was predicted using four input parameters: produced water discharge rate, ambient seawater velocity, depth of discharge port and density gradient. The evaluated cancer risk shows compliance with the regulatory guidelines; thus minimum risk to human health is expected from NORM components in produced water

  12. The nature and causes of the global water crisis: Syndromes from a meta-analysis of coupled human-water studies

    Science.gov (United States)

    Srinivasan, V.; Lambin, E. F.; Gorelick, S. M.; Thompson, B. H.; Rozelle, S.

    2012-10-01

    Freshwater scarcity has been cited as the major crisis of the 21st century, but it is surprisingly hard to describe the nature of the global water crisis. We conducted a meta-analysis of 22 coupled human-water system case studies, using qualitative comparison analysis (QCA) to identify water resource system outcomes and the factors that drive them. The cases exhibited different outcomes for human wellbeing that could be grouped into a six "syndromes": groundwater depletion, ecological destruction, drought-driven conflicts, unmet subsistence needs, resource capture by elite, and water reallocation to nature. For syndromes that were not successful adaptations, three characteristics gave cause for concern: (1) unsustainability—a decline in the water stock or ecosystem function that could result in a long-term steep decline in future human wellbeing; (2) vulnerability—high variability in water resource availability combined with inadequate coping capacity, leading to temporary drops in human wellbeing; (3) chronic scarcity—persistent inadequate access and hence low conditions of human wellbeing. All syndromes could be explained by a limited set of causal factors that fell into four categories: demand changes, supply changes, governance systems, and infrastructure/technology. By considering basins as members of syndrome classes and tracing common causal pathways of water crises, water resource analysts and planners might develop improved water policies aimed at reducing vulnerability, inequity, and unsustainability of freshwater systems.

  13. A comparison of surface water natural organic matter in raw filtered water samples, XAD, and reverse osmosis isolates

    Science.gov (United States)

    Maurice, P.A.; Pullin, M.J.; Cabaniss, S.E.; Zhou, Q.; Namjesnik-Dejanovic, K.; Aiken, G.R.

    2002-01-01

    This research compared raw filtered waters (RFWs), XAD resin isolates (XAD-8 and XAD-4), and reverse osmosis (RO) isolates of several surface water samples from McDonalds Branch, a small freshwater fen in the New Jersey Pine Barrens (USA). RO and XAD-8 are two of the most common techniques used to isolate natural organic matter (NOM) for studies of composition and reactivity; therefore, it is important to understand how the isolates differ from bulk (unisolated) samples and from one another. Although, any comparison between the isolation methods needs to consider that XAD-8 is specifically designed to isolate the humic fraction, whereas RO concentrates a broad range of organic matter and is not specific to humics. The comparison included for all samples: weight average molecular weight (Mw), number average molecular weight (Mn), polydispersity (??), absorbance at 280nm normalized to moles C (??280) (RFW and isolates); and for isolates only: elemental analysis, % carbon distribution by 13C NMR, and aqueous FTIR spectra. As expected, RO isolation gave higher yield of NOM than XAD-8, but also higher ash content, especially Si and S. Mw decreased in the order: RO>XAD-8>RFW>XAD-4. The Mw differences of isolates compared with RFW may be due to selective isolation (fractionation), or possibly in the case of RO to condensation or coagulation during isolation. 13C NMR results were roughly similar for the two methods, but the XAD-8 isolate was slightly higher in 'aromatic' C and the RO isolate was slightly higher in heteroaliphatic and carbonyl C. Infrared spectra indicated a higher carboxyl content for the XAD-8 isolates and a higher ester:carboxyl ratio for the RO isolates. The spectroscopic data thus are consistent with selective isolation of more hydrophobic compounds by XAD-8, and also with potential ester hydrolysis during that process, although further study is needed to determine whether ester hydrolysis does indeed occur. Researchers choosing between XAD and RO

  14. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    Energy Technology Data Exchange (ETDEWEB)

    Goodarzi, Mohsen; Amooie, Hossein [Bu-Ali Sina Univ., Hamedan (Iran, Islamic Republic of). Dept. of Mechanical Engineering

    2016-04-15

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficiency with heterogeneous water distribution within the cooling tower radiators under crosswind condition is analysed. A CFD approach was used to model the flow field and heat transfer phenomena within the cooling tower and airflow surrounding the cooling tower. A mathematical model was developed from various CFD results. Having used a trained Genetic Algorithm with the result of mathematical model, the best water distribution was found among the others. Remodeling the best water distribution with the CFD approach showed that the highest enhancement of the heat transfer compared to the usual uniform water distribution.

  15. Heat transfer enhancement in a natural draft dry cooling tower under crosswind operation with heterogeneous water distribution

    International Nuclear Information System (INIS)

    Goodarzi, Mohsen; Amooie, Hossein

    2016-01-01

    Crosswind significantly decreases cooling efficiency of a natural draft dry cooling tower. The possibility of improving cooling efficien