WorldWideScience

Sample records for natural soil microbiota1cwoa

  1. Expanding the Repertoire of Carbapenem-Hydrolyzing Metallo-ß-Lactamases by Functional Metagenomic Analysis of Soil Microbiota

    DEFF Research Database (Denmark)

    Gudeta, Dereje D.; Bortolaia, Valeria; Pollini, Simona

    2016-01-01

    , diversity and functionality of carbapenemase-encoding genes in soil microbiota by functional metagenomics. Ten plasmid libraries were generated by cloning metagenomic DNA from agricultural (n = 6) and grassland (n = 4) soil into Escherichia coli. The libraries were cultured on amoxicillin-containing agar......% identity). RAIphy analysis indicated that six enzymes (CRD3-1, GRD23-1, DHT2-1, SPN79-1, ALG6-1, and ALG11-1) originated from Proteobacteria, two (PEDO-1 and ESP-2) from Bacteroidetes and one (GRD33-1) from Gemmatimonadetes. All MBLs detected in soil microbiota were functional when expressed in E. coli...... approaches targeted different subpopulations in soil microbiota....

  2. Diversity and metabolic potential of the microbiota associated with a soil arthropod.

    Science.gov (United States)

    Bahrndorff, Simon; de Jonge, Nadieh; Hansen, Jacob Kjerulf; Lauritzen, Jannik Mørk Skovgaard; Spanggaard, Lasse Holt; Sørensen, Mathias Hamann; Yde, Morten; Nielsen, Jeppe Lund

    2018-02-06

    Springtails are important members of the soil fauna and play a key role in plant litter decomposition, for example through stimulation of the microbial activity. However, their interaction with soil microorganisms remains poorly understood and it is unclear which microorganisms are associated to the springtail (endo) microbiota. Therefore, we assessed the structure of the microbiota of the springtail Orchesella cincta (L.) using 16S rRNA gene amplicon sequencing. Individuals were sampled across sites in the field and the microbiota and in particular the endomicrobiota were investigated. The microbiota was dominated by the families of Rickettsiaceae, Enterobacteriaceae and Comamonadaceae and at the genus level the most abundant genera included Rickettsia, Chryseobacterium, Pseudomonas, and Stenotrophomonas. Microbial communities were distinct for the interior of the springtails for measures of community diversity and exhibited structure according to collection sites. Functional analysis of the springtail bacterial community suggests that abundant members of the microbiota may be associated with metabolism including decomposition processes. Together these results add to the understanding of the microbiota of springtails and interaction with soil microorganisms including their putative functional roles.

  3. Steam-treatment-based soil remediation promotes heat-tolerant, potentially pathogenic microbiota

    DEFF Research Database (Denmark)

    Altenburger, Andreas; Bender, Mikkel; Ekelund, Flemming

    2014-01-01

    We investigated microbiota in surface and subsurface soil from a site, above steam-treated deep sub-soil originally contaminated with chlorinated solvents. During the steam treatment, the surface soil reached temperatures c. 30°C higher than the temperature in untreated soil; whereas the subsurfa...

  4. Expanding the Repertoire of Carbapenem-Hydrolyzing Metallo-ß-Lactamases by Functional Metagenomic Analysis of Soil Microbiota.

    Science.gov (United States)

    Gudeta, Dereje D; Bortolaia, Valeria; Pollini, Simona; Docquier, Jean-Denis; Rossolini, Gian M; Amos, Gregory C A; Wellington, Elizabeth M H; Guardabassi, Luca

    2016-01-01

    Carbapenemases are bacterial enzymes that hydrolyze carbapenems, a group of last-resort β-lactam antibiotics used for treatment of severe bacterial infections. They belong to three β-lactamase classes based amino acid sequence (A, B, and D). The aim of this study was to elucidate occurrence, diversity and functionality of carbapenemase-encoding genes in soil microbiota by functional metagenomics. Ten plasmid libraries were generated by cloning metagenomic DNA from agricultural ( n = 6) and grassland ( n = 4) soil into Escherichia coli . The libraries were cultured on amoxicillin-containing agar and up to 100 colonies per library were screened for carbapenemase production by CarbaNP test. Presumptive carbapenemases were characterized with regard to DNA sequence, minimum inhibitory concentration (MIC) of β-lactams, and imipenem hydrolysis. Nine distinct class B carbapenemases, also known as metallo-beta-lactamases (MBLs), were identified in six soil samples, including two subclass B1 (GRD23-1 and SPN79-1) and seven subclass B3 (CRD3-1, PEDO-1, GRD33-1, ESP-2, ALG6-1, ALG11-1, and DHT2-1). Except PEDO-1 and ESP-2, these enzymes were distantly related to any previously described MBLs (33 to 59% identity). RAIphy analysis indicated that six enzymes (CRD3-1, GRD23-1, DHT2-1, SPN79-1, ALG6-1, and ALG11-1) originated from Proteobacteria , two (PEDO-1 and ESP-2) from Bacteroidetes and one (GRD33-1) from Gemmatimonadetes . All MBLs detected in soil microbiota were functional when expressed in E. coli , resulting in detectable imipenem-hydrolyzing activity and significantly increased MICs of clinically relevant ß-lactams. Interestingly, the MBLs yielded by functional metagenomics generally differed from those detected in the same soil samples by antibiotic selective culture, showing that the two approaches targeted different subpopulations in soil microbiota.

  5. Intrinsic factors of Peltigera lichens influence the structure of the associated soil bacterial microbiota.

    Science.gov (United States)

    Leiva, Diego; Clavero-León, Claudia; Carú, Margarita; Orlando, Julieta

    2016-11-01

    Definition of lichens has evolved from bi(tri)partite associations to multi-species symbioses, where bacteria would play essential roles. Besides, although soil bacterial communities are known to be affected by edaphic factors, when lichens grow upon them these could become less preponderant. We hypothesized that the structure of both the lichen microbiota and the microbiota in the soil underneath lichens is shaped by lichen intrinsic and extrinsic factors. In this work, intrinsic factors corresponded to mycobiont and cyanobiont identities of Peltigera lichens, metabolite diversity and phenoloxidase activity and extrinsic factors involved the site of the forest where lichens grow. Likewise, the genetic and metabolic structure of the lichen and soil bacterial communities were analyzed by fingerprinting. Among the results, metabolite diversity was inversely related to the genetic structure of bacterial communities of lichens and soils, highlighting the far-reaching effect of these substances; while phenoloxidase activity was inversely related to the metabolic structure only of the lichen bacterial microbiota, presuming a more limited effect of the products of these enzymes. Soil bacterial microbiota was different depending on the site and, strikingly, according to the cyanobiont present in the lichen over them, which could indicate an influence of the photobiont metabolism on the availability of soil nutrients. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  6. Soil microbiota of Area 13 of the Nevada Test Site

    International Nuclear Information System (INIS)

    Au, F.H.F.; Leavitt, V.D.

    1985-01-01

    The influence of two desert plants, Atriplex canescens and Eurotia lanata, on kind and abundance of soil microbiota was determined in soil samples collected from Area 13 of the Nevada Test Site. This study was part of a larger research program to elucidate the role of soil microorganisms on the biological availability and the mobility of soil-deposited plutonium. The fungi identified in the soil samples included Aspergillus, Penicillium, Rhizopus, Stachybotrys, stysanus, Circinella, Cheaetomium, and Fusarium. The numbers of bacteria and fungi were generally highest at the 2.5- to 5.0-cm soil depth at both the mound and the interspace sampling sites. The highest numbers of fungi were found around the mound. The relative abundance of Aspergillus increased with increasing distance from the plants, whereas that of Penicillium decreased. Dematiaceae and chaetomium, both cellulose decomposers, were highest in the 0- to 2.5-cm soil segment. The abundance and distribution of soil microorganisms capable of incorporating plutonium (and probably other radionuclides as well) around the plants investigated indicate that this may be a factor in the bioavailability and movement of plutonium in the edaphic system. 17 references, 1 figure, 27 tables

  7. Response of soil microbiota to selected herbicide treatments.

    Science.gov (United States)

    Roslycky, E B

    1977-04-01

    Recommended concentrations of paraquat alone and its combination with each of linuron, diuron, atrazine, simazine, and simazine plus diuron exerted little effect on total populations of bacteria, actinomycetes, and fungi in Fox sandy loam under laboratory and simulated field conditions in 66 and 77 days, respectively. Respiration of the total microbiota in soil suspension was afeected by the combinations as well as individual herbicides in various concentrations. Yet, the inhibition of the O2 uptake by any of these herbicides, including some extreme concentrations, was not permanent, indicating adaptation, or suppression of specific organisms. Only linuron in concentrations up to 20 microng/ml stimulated respiration of the soil.

  8. Expanding the Repertoire of Carbapenem-Hydrolyzing Metallo-ß-Lactamases by Functional Metagenomic Analysis of Soil Microbiota

    DEFF Research Database (Denmark)

    Gudeta, Dereje D.; Bortolaia, Valeria; Pollini, Simona

    2016-01-01

    as metallo-beta-lactamases (MBLs), were identified in six soil samples, including two subclass B1 (GRD23-1 and SPN79-1) and seven subclass B3 (CRD3-1, PEDO-1, GRD33-1, ESP-2, ALG6-1, ALG11-1, and DHT2-1). Except PEDO-1 and ESP-2, these enzymes were distantly related to any previously described MBLs (33 to 59......% identity). RAIphy analysis indicated that six enzymes (CRD3-1, GRD23-1, DHT2-1, SPN79-1, ALG6-1, and ALG11-1) originated from Proteobacteria, two (PEDO-1 and ESP-2) from Bacteroidetes and one (GRD33-1) from Gemmatimonadetes. All MBLs detected in soil microbiota were functional when expressed in E. coli...

  9. New Therapeutic Drugs from Bioactive Natural Molecules: the Role of Gut Microbiota Metabolism in Neurodegenerative Diseases.

    Science.gov (United States)

    Di Meo, Francesco; Donato, Stella; Di Pardo, Alba; Maglione, Vittorio; Filosa, Stefania; Crispi, Stefania

    2018-04-03

    The gut-brain axis is considered a neuroendocrine system, which connects brain and gastrointestinal tract and plays an important role in stress response. The homeostasis of gut-brain axis is important for healthy conditions and its alterations are associated to neurological disorders and neurodegenerative diseases. Gut microbiota is a dynamic ecosystem that can be altered by external factors such as diet composition, antibiotics or xenobiotics. Recent advances in gut microbiota analyses indicate that the gut bacterial community plays a key role in maintaining normal brain functions. Recent metagenomic analyses have elucidated that the relationship between gut and brain, either in normal or in pathological conditions, reflects the existence of a "microbiota-gut-brain" axis. Gut microbiota composition can be influenced by dietary ingestion of probiotics or natural bioactive molecules such as prebiotics and polyphenols. Their derivatives coming from microbiota metabolism can affect both gut bacterial composition and brain biochemistry. Modifications of microbiota composition by natural bioactive molecules could be used to restore the altered brain functions, which characterize neurodegenerative diseases, leading to consider these compounds as novel therapeutic strategies for the treatment of neuropathologies. Copyright© Bentham Science Publishers; For any queries, please email at epub@benthamscience.org.

  10. Bacterial microbiota compositions of naturally fermented milk are shaped by both geographic origin and sample type.

    Science.gov (United States)

    Zhong, Z; Hou, Q; Kwok, L; Yu, Z; Zheng, Y; Sun, Z; Menghe, B; Zhang, H

    2016-10-01

    Naturally fermented dairy products contain a rich microbial biodiversity. This study aimed to provide an overview on the bacterial microbiota biodiversity of 85 samples, previously collected across a wide region of China, Mongolia, and Russia. Data from these 85 samples, including 55 yogurts, 18 naturally fermented yak milks, 6 koumisses, and 6 cheeses, were retrieved and collectively analyzed. The most prevalent phyla shared across samples were Firmicutes, Proteobacteria, Bacteroidetes, and Actinobacteria, which together accounted for 99% of bacterial sequences. The predominant genera were Lactobacillus, Lactococcus, Streptococcus, Acetobacter, Acinetobacter, Leuconostoc, and Macrococcus, which together corresponded to 96.63% of bacterial sequences. Further multivariate statistical analyses revealed significant differences in the microbiota structure across sample geographic origin and type. First, on the principal coordinate score plot, samples representing the 3 main sample collection regions (Russia, Xinjiang, and Tibet) were mostly located respectively in the upper left, lower right, and lower left quadrants, although slight overlapping occurred. In contrast, samples from the minor sampling areas (Inner Mongolia, Mongolia, Gansu, and Sichuan) were predominantly distributed in the lower left quadrant. These results suggest a possible association between sample geographical origin and microbiota composition. Second, bacterial microbiota structure was stratified by sample type. In particular, the microbiota of cheese was largely distinct from the other sample types due to its high abundances of Lactococcus and Streptococcus. The fermented yak milk microbiota was most like that of the yogurts. Koumiss samples had the lowest microbial diversity and richness. In conclusion, both geographic origin and sample type shape the microbial diversity of naturally fermented milk. Copyright © 2016 American Dairy Science Association. Published by Elsevier Inc. All rights

  11. Structure, Variation, and Co-occurrence of Soil Microbial Communities in Abandoned Sites of a Rare Earth Elements Mine.

    Science.gov (United States)

    Chao, Yuanqing; Liu, Wenshen; Chen, Yanmei; Chen, Wenhui; Zhao, Lihua; Ding, Qiaobei; Wang, Shizhong; Tang, Ye-Tao; Zhang, Tong; Qiu, Rong-Liang

    2016-11-01

    Mining activity for rare earth elements (REEs) has caused serious environmental pollution, particularly for soil ecosystems. However, the effects of REEs on soil microbiota are still poorly understood. In this study, soils were collected from abandoned sites of a REEs mine, and the structure, diversity, and co-occurrence patterns of soil microbiota were evaluated by Illumina high-throughput sequencing targeting 16S rRNA genes. Although microbiota developed significantly along with the natural restoration, the microbial structure on the site abandoned for 10 years still significantly differed from that on the unmined site. Potential plant growth promoting bacteria (PGPB) were identified by comparing 16S sequences against a self-constructed PGPB database via BLAST, and it was found that siderophore-producing and phosphorus-solubilizing bacteria were more abundant in the studied soils than in reference soils. Canonical correspondence analysis indicated that species richness of plant community was the prime factor affecting microbial structure, followed by limiting nutrients (total carbon and total nitrogen) and REEs content. Further co-occurring network analysis revealed nonrandom assembly patterns of microbiota in the studied soils. These results increase our understanding of microbial variation and assembly pattern during natural restoration in REE contaminated soils.

  12. Development of phenanthrene catabolism in natural and artificial soils

    International Nuclear Information System (INIS)

    Rhodes, Angela H.; Hofman, Jakub; Semple, Kirk T.

    2008-01-01

    The characteristics of natural soils often vary from those of artificial soil (e.g. OECD), which may lead to substantial differences in the bioavailability of test substances. The aim of this investigation was to characterise the development of phenanthrene catabolism in both natural and artificial soils with varying total organic carbon (TOC) content after 1, 14, 42 and 84 d soil-phenanthrene contact time. Indigenous catabolic activity was measured via the addition of 14 C-phenanthrene using the respirometric soil slurry assay. Notably, the lag phases, fastest rates and total extents of 14 C-phenanthrene degradation were relatively comparable in soils with similar TOC content after 1 d contact time. However, natural soils generally exhibited significantly shorter lag phases, faster rates and higher extents of mineralisation, than their artificial counterparts after 42 and 84 d contact time. Such findings suggest that the extrapolation of results from artificial soils to real/natural soils may not be straightforward. - Natural and artificial soils display different phenanthrene mineralisation profiles suggesting that the extrapolation of results from artificial soils to real/natural soils may not be straightforward

  13. Microbiota formed on attached stainless steel coupons correlates with the natural biofilm of the sink surface in domestic kitchens.

    Science.gov (United States)

    Moen, Birgitte; Røssvoll, Elin; Måge, Ingrid; Møretrø, Trond; Langsrud, Solveig

    2016-02-01

    Stainless steel coupons are frequently used in biofilm studies in the laboratory, as this material is commonly used in the food industry. The coupons are attached to different surfaces to create a "natural" biofilm to be studied further in laboratory trials. However, little has been done to investigate how well the microbiota on such coupons represents the surrounding environment. The microbiota on sink wall surfaces and on new stainless steel coupons attached to the sink wall for 3 months in 8 domestic kitchen sinks was investigated by next-generation sequencing (MiSeq) of the 16S rRNA gene derived from DNA and RNA (cDNA), and by plating and identification of colonies. The mean number of colony-forming units was about 10-fold higher for coupons than sink surfaces, and more variation in bacterial counts between kitchens was seen on sink surfaces than coupons. The microbiota in the majority of biofilms was dominated by Moraxellaceae (genus Moraxella/Enhydrobacter) and Micrococcaceae (genus Kocuria). The results demonstrated that the variation in the microbiota was mainly due to differences between kitchens (38.2%), followed by the different nucleic acid template (DNA vs RNA) (10.8%), and that only 5.1% of the variation was a result of differences between coupons and sink surfaces. The microbiota variation between sink surfaces and coupons was smaller for samples based on their RNA than on their DNA. Overall, our results suggest that new stainless steel coupons are suited to model the dominating part of the natural microbiota of the surrounding environment and, furthermore, are suitable for different downstream studies.

  14. Temporal Stability of the Microbial Community in Sewage-Polluted Seawater Exposed to Natural Sunlight Cycles and Marine Microbiota

    Science.gov (United States)

    Sassoubre, Lauren M.; Yamahara, Kevan M.

    2015-01-01

    Billions of gallons of untreated wastewater enter the coastal ocean each year. Once sewage microorganisms are in the marine environment, they are exposed to environmental stressors, such as sunlight and predation. Previous research has investigated the fate of individual sewage microorganisms in seawater but not the entire sewage microbial community. The present study used next-generation sequencing (NGS) to examine how the microbial community in sewage-impacted seawater changes over 48 h when exposed to natural sunlight cycles and marine microbiota. We compared the results from microcosms composed of unfiltered seawater (containing naturally occurring marine microbiota) and filtered seawater (containing no marine microbiota) to investigate the effect of marine microbiota. We also compared the results from microcosms that were exposed to natural sunlight cycles with those from microcosms kept in the dark to investigate the effect of sunlight. The microbial community composition and the relative abundance of operational taxonomic units (OTUs) changed over 48 h in all microcosms. Exposure to sunlight had a significant effect on both community composition and OTU abundance. The effect of marine microbiota, however, was minimal. The proportion of sewage-derived microorganisms present in the microcosms decreased rapidly within 48 h, and the decrease was the most pronounced in the presence of both sunlight and marine microbiota, where the proportion decreased from 85% to 3% of the total microbial community. The results from this study demonstrate the strong effect that sunlight has on microbial community composition, as measured by NGS, and the importance of considering temporal effects in future applications of NGS to identify microbial pollution sources. PMID:25576619

  15. Managing soil natural capital

    DEFF Research Database (Denmark)

    Cong, Ronggang; Termansen, Mette; Brady, Mark

    2017-01-01

    Farmers are exposed to substantial weather and market related risks. Rational farmers seek to avoid large losses. Future climate change and energy price fluctuations therefore make adaptating to increased risks particularly important for them. Managing soil natural capital—the capacity of the soil...... to generate ecosystem services of benefit to farmers—has been proven to generate the double dividend: increasing farm profit and reducing associated risk. In this paper we explore whether managing soil natural capital has a third dividend: reducing the downside risk (increasing the positive skewness of profit......). This we refer to as the prudence effect which can be viewed as an adaptation strategy for dealing with future uncertainties through more prudent management of soil natural capital. We do this by developing a dynamic stochastic portfolio model to optimize the stock of soil natural capital—as indicated...

  16. Bioremediation of a polyaromatic hydrocarbon contaminated soil by native soil microbiota and bioaugmentation with isolated microbial consortia.

    Science.gov (United States)

    Silva, Isis Serrano; Santos, Eder da Costa dos; Menezes, Cristiano Ragagnin de; Faria, Andréia Fonseca de; Franciscon, Elisangela; Grossman, Matthew; Durrant, Lucia Regina

    2009-10-01

    Biodegradation of a mixture of PAHs was assessed in forest soil microcosms performed either without or with bioaugmentation using individual fungi and bacterial and a fungal consortia. Respiratory activity, metabolic intermediates and extent of PAH degradation were determined. In all microcosms the low molecular weight PAH's naphthalene, phenanthrene and anthracene, showed a rapid initial rate of removal. However, bioaugmentation did not significantly affect the biodegradation efficiency for these compounds. Significantly slower degradation rates were demonstrated for the high molecular weight PAH's pyrene, benz[a]anthracene and benz[a]pyrene. Bioaugmentation did not improve the rate or extent of PAH degradation, except in the case of Aspergillus sp. Respiratory activity was determined by CO(2) evolution and correlated roughly with the rate and timing of PAH removal. This indicated that the PAHs were being used as an energy source. The native microbiota responded rapidly to the addition of the PAHs and demonstrated the ability to degrade all of the PAHs added to the soil, indicating their ability to remediate PAH-contaminated soils.

  17. Investigation of natural radionuclide contents in soil in China

    International Nuclear Information System (INIS)

    Pan Sanming; Liu Ruye

    1992-01-01

    The survey of natural radionuclide contents in soil in China (1983-1990) is a part of investigation of environmental natural radioactivity level on China. The results of the investigation area as follows: (1) The average content of natural radionuclides 238 U, 226 Ra, 232 Th and 40 K(area weighted) and its standard deviation for single measurement is 39.5 and 34.4,36.5 and 22.0, 49.1 and 27.6, 580.0 and 202.0 Bq.kg -1 ,respectively.(2) The content of natural radionuclides is apparently correlated to the types of soil-forming rock. The analysis results from 1552 soil samples of soil-forming rock show that: the content of 238 U, 226 Ra, 232 Th and 40 K for magmatic rock type is the highest, 238 U, 226 Ra and 232 Th of metamorphic rock type higher, sedimentary rock type the lowest. However, the content of 40 K of sedimentary rock type is more higher, magmatic rock type the lowest. In magmatic rock type, the content of 238 U, 226 Ra, 232 Th of granite and acidic magmatic rock type, and the content of 40 K of acidic and alkaline magmatic rock type are higher. (3) The analysis results from 9613 various types of soil samples show that for crimson soil of ferralsol wind soil of rock soil-forming order at northern part is lower. For frigid dessert soil of alpine soil order, alpine dessert soil, and the burozem, dark burozem and drab soil of alfisol order and semialfisol order, the content of 40 K is shown to be higher, and it is lower for latosol of ferralsol order, crimson soil, yellow soil and various lime soil. (4) The geographical distribution of the natural radionuclide content in soil appears apparently regional

  18. Differences in Cellulosic Supramolecular Structure of Compositionally Similar Rice Straw Affect Biomass Metabolism by Paddy Soil Microbiota.

    Directory of Open Access Journals (Sweden)

    Tatsuki Ogura

    Full Text Available Because they are strong and stable, lignocellulosic supramolecular structures in plant cell walls are resistant to decomposition. However, they can be degraded and recycled by soil microbiota. Little is known about the biomass degradation profiles of complex microbiota based on differences in cellulosic supramolecular structures without compositional variations. Here, we characterized and evaluated the cellulosic supramolecular structures and composition of rice straw biomass processed under different milling conditions. We used a range of techniques including solid- and solution-state nuclear magnetic resonance (NMR and Fourier transform infrared spectroscopy followed by thermodynamic and microbial degradability characterization using thermogravimetric analysis, solution-state NMR, and denaturing gradient gel electrophoresis. These measured data were further analyzed using an "ECOMICS" web-based toolkit. From the results, we found that physical pretreatment of rice straw alters the lignocellulosic supramolecular structure by cleaving significant molecular lignocellulose bonds. The transformation from crystalline to amorphous cellulose shifted the thermal degradation profiles to lower temperatures. In addition, pretreated rice straw samples developed different microbiota profiles with different metabolic dynamics during the biomass degradation process. This is the first report to comprehensively characterize the structure, composition, and thermal degradation and microbiota profiles using the ECOMICS toolkit. By revealing differences between lignocellulosic supramolecular structures of biomass processed under different milling conditions, our analysis revealed how the characteristic compositions of microbiota profiles develop in addition to their metabolic profiles and dynamics during biomass degradation.

  19. The Soil Microbiota Harbors a Diversity of Carbapenem-Hydrolyzing β-Lactamases of Potential Clinical Relevance.

    Science.gov (United States)

    Gudeta, Dereje Dadi; Bortolaia, Valeria; Amos, Greg; Wellington, Elizabeth M H; Brandt, Kristian K; Poirel, Laurent; Nielsen, Jesper Boye; Westh, Henrik; Guardabassi, Luca

    2016-01-01

    The origin of carbapenem-hydrolyzing metallo-β-lactamases (MBLs) acquired by clinical bacteria is largely unknown. We investigated the frequency, host range, diversity, and functionality of MBLs in the soil microbiota. Twenty-five soil samples of different types and geographical origins were analyzed by antimicrobial selective culture, followed by phenotypic testing and expression of MBL-encoding genes in Escherichia coli, and whole-genome sequencing of MBL-producing strains was performed. Carbapenemase activity was detected in 29 bacterial isolates from 13 soil samples, leading to identification of seven new MBLs in presumptive Pedobacter roseus (PEDO-1), Pedobacter borealis (PEDO-2), Pedobacter kyungheensis (PEDO-3), Chryseobacterium piscium (CPS-1), Epilithonimonas tenax (ESP-1), Massilia oculi (MSI-1), and Sphingomonas sp. (SPG-1). Carbapenemase production was likely an intrinsic feature in Chryseobacterium and Epilithonimonas, as it occurred in reference strains of different species within these genera. The amino acid identity to MBLs described in clinical bacteria ranged between 40 and 69%. Remarkable features of the new MBLs included prophage integration of the encoding gene (PEDO-1), an unusual amino acid residue at a key position for MBL structure and catalysis (CPS-1), and overlap with a putative OXA β-lactamase (MSI-1). Heterologous expression of PEDO-1, CPS-1, and ESP-1in E. coli significantly increased the MICs of ampicillin, ceftazidime, cefpodoxime, cefoxitin, and meropenem. Our study shows that MBL producers are widespread in soil and include four genera that were previously not known to produce MBLs. The MBLs produced by these bacteria are distantly related to MBLs identified in clinical samples but constitute resistance determinants of clinical relevance if acquired by pathogenic bacteria. Copyright © 2015, American Society for Microbiology. All Rights Reserved.

  20. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard.

    Science.gov (United States)

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time) were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  1. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard

    Directory of Open Access Journals (Sweden)

    Giorgia Novello

    2017-08-01

    Full Text Available Microorganisms associated with Vitis vinifera (grapevine can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two phenological stages such as flowering and early fruit development (variable: time were characterized. The grapevine microbiota was identified using metagenomics and next-generation sequencing. Biodiversity was higher in the rhizosphere than in the bulk soil, independent of the phenological stage. Actinobacteria were the dominant class with frequencies ≥ 50% in all the soil samples, followed by Proteobacteria, Gemmatimonadetes, and Bacteroidetes. While Actinobacteria and Proteobacteria are well-known as being dominant in soil, this is the first time the presence of Gemmatimonadetes has been observed in vineyard soils. Gaiella was the dominant genus of Actinobacteria in all the samples. Finally, the microbiota associated with grapevine differed from the bulk soil microbiota and these variations were independent of the phenological stage of the plant.

  2. Natural Radioactivity of Soil in Sabah and Sarawak

    International Nuclear Information System (INIS)

    Ismail Sulaiman; Muhamat Omar; Mohd Suhaimi Elias

    2015-01-01

    Soil samples were collected from 40 locations throughout Sabah and Sarawak and were analysed for natural radionuclides concentration. The mean soil concentrations of "2"3"8U, "2"3"2Th, "2"2"6Ra and "4"0K in Sabah were 22, 18, 24 and 216 Bq kg"-"1 respectively while corresponding values in Sarawak were 25, 25, 38 and 305 Bq kg"-"1 respectively. This study showed that the concentration of natural radionuclides (except "4"0K) in soil in Sabah and Sarawak were about one third of the respective values in Peninsular Malaysia. The results of the study can be used as baseline data of natural radioactivity for East Malaysia. (Author)

  3. Three Gorges Reservoir Area: soil erosion under natural condition vs. soil erosion under current land use

    Science.gov (United States)

    Schönbrodt, Sarah; Behrens, Thorsten; Scholten, Thomas

    2010-05-01

    Apparently, the current most prominent human-induced example for large scale environmental impact is the Three Gorges Dam in China. The flooding alongside the Yangtze River, and its tributaries results in a vast loss of settlement and farmland area with productive, fertile valley soils. Due to the associated high land use dynamic on uphill-sites, the soil resources are underlying high land use pressure. Within our study, the soil erosion under natural conditions is compared to the soil erosion under current land use after the impoundment. Both were modeled using the empirical Universal Soil Loss Equation (USLE) which is able to predict long-term annual soil loss with limited data. The database consists of digital terrain data (45 m resolution DEM, erosive slope length based on Monte-Carlo-Aggregation according to Behrens et al. (2008)), field investigations of recent erosion forms, and literature studies. The natural disposition to soil erosion was calculated considering the USLE factors R, S, and K. The soil erosion under current land use was calculated taking into account all USLE factors. The study area is the catchment of the Xiangxi River in the Three Gorges Reservoir area. Within the Xiangxi Catchment (3,200 km²) the highly dynamic backwater area (580 km²), and two micro-scale study sites (Xiangjiaba with 2.8 km², and Quyuan with 88 km²) are considered more detailed as they are directly affected by the river impoundment. Central features of the Xiangxi Catchment are the subtropical monsoon climate, an extremely steep sloping relief (mean slope angle 39°, SD 22.8°) artificially fractured by farmland terraces, and a high soil erodibility (mean K factor 0.37, SD 0.13). On the catchment scale the natural disposition to soil erosion makes up to mean 518.0 t ha-1 a-1. The maximum potential soil loss of 1,730.1 t ha-1 a-1 under natural conditions is reached in the Quyuan site (mean 635.8 t ha-1 a-1) within the backwater area (mean 582.9 t ha-1 a-1). In the

  4. The remediation of the lead-polluted garden soil by natural zeolite.

    Science.gov (United States)

    Li, Hua; Shi, Wei-yu; Shao, Hong-bo; Shao, Ming-an

    2009-09-30

    The current study investigated the remediation effect of lead-polluted garden soil by natural zeolite in terms of soil properties, Pb fraction of sequential extraction in soil and distribution of Pb in different parts of rape. Natural zeolite was added to artificially polluted garden soil to immobilize and limit the uptake of lead by rape through changing soil physical and chemical properties in the pot experiment under greenhouse conditions. Results indicated that the addition of natural zeolite could increase soil pH, CEC, content of soil organic matter and promote formation of soil aggregate. The application of zeolite decreased the available fraction of Pb in the garden soil by adjusting soil pH rather than CEC, and restrained the Pb uptake by rape. Data obtained suggested that the application of a dose of zeolite was adequate (>or=10 g kg(-1)) to reduce soluble lead significantly, even if lead pollution is severe in garden soil (>or=1000 mg kg(-1)). An appropriate dose of zeolite (20 g kg(-1)) could reduce the Pb concentration in the edible part (shoots) of rape up to 30% of Pb in the seriously polluted soil (2000 mg kg(-1)).

  5. Plant-Microbiota Interactions as a Driver of the Mineral Turnover in the Rhizosphere.

    Science.gov (United States)

    Alegria Terrazas, R; Giles, C; Paterson, E; Robertson-Albertyn, S; Cesco, S; Mimmo, T; Pii, Y; Bulgarelli, D

    2016-01-01

    A major challenge facing agriculture in the 21st century is the need to increase the productivity of cultivated land while reducing the environmentally harmful consequences of mineral fertilization. The microorganisms thriving in association and interacting with plant roots, the plant microbiota, represent a potential resource of plant probiotic function, capable of conjugating crop productivity with sustainable management in agroecosystems. However, a limited knowledge of the organismal interactions occurring at the root-soil interface is currently hampering the development and use of beneficial plant-microbiota interactions in agriculture. Therefore, a comprehensive understanding of the recruitment cues of the plant microbiota and the molecular basis of nutrient turnover in the rhizosphere will be required to move toward efficient and sustainable crop nutrition. In this chapter, we will discuss recent insights into plant-microbiota interactions at the root-soil interface, illustrate the processes driving mineral dynamics in soil, and propose experimental avenues to further integrate the metabolic potential of the plant microbiota into crop management and breeding strategies for sustainable agricultural production. Copyright © 2016 Elsevier Inc. All rights reserved.

  6. Microbial colonisation in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2014-09-01

    Colonisation of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focusing on settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associate vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soils types on the surface of the island. Total viable bacterial counts were performed with plate count at 22, 30 and 37 °C for all soils samples and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms aerobic and anaerobic bacteria. The deep subsurface biosphere was investigated by collecting liquid subsurface samples from a 182 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between N deficits and the number of microorganisms in surface soils samples. The lowest number of bacteria (1 × 104-1 × 105 g-1) was detected in almost pure pumice but the count was significant higher (1 × 106-1 × 109 g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 m and 172 m depth at 80 °C and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  7. Microbial colonization in diverse surface soil types in Surtsey and diversity analysis of its subsurface microbiota

    Science.gov (United States)

    Marteinsson, V.; Klonowski, A.; Reynisson, E.; Vannier, P.; Sigurdsson, B. D.; Ólafsson, M.

    2015-02-01

    Colonization of life on Surtsey has been observed systematically since the formation of the island 50 years ago. Although the first colonisers were prokaryotes, such as bacteria and blue-green algae, most studies have been focused on the settlement of plants and animals but less on microbial succession. To explore microbial colonization in diverse soils and the influence of associated vegetation and birds on numbers of environmental bacteria, we collected 45 samples from different soil types on the surface of the island. Total viable bacterial counts were performed with the plate count method at 22, 30 and 37 °C for all soil samples, and the amount of organic matter and nitrogen (N) was measured. Selected samples were also tested for coliforms, faecal coliforms and aerobic and anaerobic bacteria. The subsurface biosphere was investigated by collecting liquid subsurface samples from a 181 m borehole with a special sampler. Diversity analysis of uncultivated biota in samples was performed by 16S rRNA gene sequences analysis and cultivation. Correlation was observed between nutrient deficits and the number of microorganisms in surface soil samples. The lowest number of bacteria (1 × 104-1 × 105 cells g-1) was detected in almost pure pumice but the count was significantly higher (1 × 106-1 × 109 cells g-1) in vegetated soil or pumice with bird droppings. The number of faecal bacteria correlated also to the total number of bacteria and type of soil. Bacteria belonging to Enterobacteriaceae were only detected in vegetated samples and samples containing bird droppings. The human pathogens Salmonella, Campylobacter and Listeria were not in any sample. Both thermophilic bacteria and archaea 16S rDNA sequences were found in the subsurface samples collected at 145 and 172 m depth at 80 and 54 °C, respectively, but no growth was observed in enrichments. The microbiota sequences generally showed low affiliation to any known 16S rRNA gene sequences.

  8. Fate and behaviour of phenanthrene in the natural and artificial soils

    International Nuclear Information System (INIS)

    Hofman, Jakub; Rhodes, Angela; Semple, Kirk T.

    2008-01-01

    OECD artificial soil has been used routinely as a standardized substrate for soil toxicity tests. However, can be the fate, behaviour and effects of contaminants in artificial soil extrapolated to natural soils? The aim of our study was to verify this hypothesis by comparing the loss, extraction, and bioavailability of phenanthrene in three artificial and three natural soils of comparable organic carbon content. Soils were spiked with 14 C-phenanthrene and total 14 C-activity change, the fractions extracted by dichloromethane, 70% ethanol, and hydroxypropyl-β-cyclodextrin, the fraction mineralized by Pseudomonas sp., and taken up by Enchytraeus albidus were measured after 1, 14, 42, and 84 d aging. The loss, extraction, biodegradation and uptake were several times lower in the artificial than natural soils and these differences increased with increasing soil-phenanthrene contact time. These results imply that artificial soil should be used cautiously for the prediction of fate and behaviour in natural soils. - Artificial soils show substantially different fate and behaviour of phenanthrene than natural soils, which cannot be easily extrapolated or modelled

  9. Aberrant gut microbiota composition at the onset of type 1 diabetes in young children

    NARCIS (Netherlands)

    Goffau, de M.C.; Fuentes, S.; Bogert, van den B.; Honkanen, H.; Vos, de W.M.; Welling, G.W.; Hyöty, H.; Harmsen, H.J.

    2014-01-01

    Aims/hypothesis Recent studies indicate that an aberrant gut microbiota is associated with the development of type 1 diabetes, yet little is known about the microbiota in children who have diabetes at an early age. To this end, the microbiota of children aged 1–5 years with new-onset type 1 diabetes

  10. Microbiota restoration : natural and supplemented recovery of human microbial communities

    NARCIS (Netherlands)

    Reid, Gregor; Younes, Jessica A.; Van der Mei, Henny C.; Gloor, Gregory B.; Knight, Rob; Busscher, Henk J.

    In a healthy host, a balance exists between members of the microbiota, such that potential pathogenic and non-pathogenic organisms can be found in apparent harmony. During infection, this balance can become disturbed, leading to often dramatic changes in the composition of the microbiota. For most

  11. Biotransformation of 1-nitropyrene to 1-aminopyrene and N-formyl-1-aminopyrene by the human intestinal microbiota

    International Nuclear Information System (INIS)

    Manning, B.W.; Cerniglia, C.E.; Federle, T.W.

    1986-01-01

    The nitropolycyclic aromatic hydrocarbon 1-nitropyrene (1-NP) is an environmental pollutant, a potent bacterial and mammalian mutagen, and a carcinogen. The metabolism of 1-NP by the human intestinal microbiota was studied using a semicontinuous culture system that simulates the colonic lumen. [ 3 H]-1-Nitropyrene was metabolized by the intestinal microbiota to 1-aminopyrene (1-AP) and N-formyl-1-aminopyrene (FAP) as determined by high-performance liquid chromatography (HPLC) and mass spectrometry. Twenty-four hours after the addition of [ 3 H]-1-NP, the formylated compound and 1-AP accounted for 20 and 80% of the total metabolism respectively. This percentage increased to 66% for FAP after 24 h following 10 d of chronic exposure to unlabeled 1-NP, suggesting metabolic adaptation to 1-NP by the microbiota. Both 1-AP and FAP have been shown to be nonmutagenic towards Salmonella typhimurium TA98, which indicates that the intestinal microflora may potentially detoxify 1-NP

  12. Soil architecture relationships with dynamic soil physical processes: a conceptual study using natural, artificial, and 3D-printed soil cores

    DEFF Research Database (Denmark)

    Lamandé, Mathieu; Schjønning, Per; Dal Ferro, Nicola

    Pore system architecture is a key feature for understanding physical, biological and chemical processes in soils. Development of visualisation technics, especially x-ray CT, during recent years has been useful in describing the complex relationships between soil architecture and soil functions. We...... believe that combining visualization with physical models is a step further towards a better understanding of these relationships. We conducted a concept study using natural, artificial and 3D-printed soil cores. Eight natural soil cores (100 cm3) were sampled in a cultivated stagnic Luvisol at two depths...... (topsoil and subsoil), representing contrasting soil pore systems. Cylinders (100 cm3) were produced from plastic or from autoclaved aerated concrete. Holes of diameters 1.5 and 3 mm were drilled in the cylinder direction for the plastic cylinder and for one of the AAC cylinders. All natural and artificial...

  13. Standard colonic lavage alters the natural state of mucosal-associated microbiota in the human colon.

    Directory of Open Access Journals (Sweden)

    Laura Harrell

    Full Text Available Past studies of the human intestinal microbiota are potentially confounded by the common practice of using bowel-cleansing preparations. We examined if colonic lavage changes the natural state of enteric mucosal-adherent microbes in healthy human subjects.Twelve healthy individuals were divided into three groups; experimental group, control group one, and control group two. Subjects in the experimental group underwent an un-prepped flexible sigmoidoscopy with biopsies. Within two weeks, subjects were given a standard polyethylene glycol-based bowel cleansing preparation followed by a second flexible sigmoidoscopy. Subjects in control group one underwent two un-prepped flexible sigmoidoscopies within one week. Subjects in the second control group underwent an un-prepped flexible sigmoidoscopy followed by a second flexible sigmoidoscopy after a 24-hour clear liquid diet within one week. The mucosa-associated microbial communities from the two procedures in each subject were compared using 16S rRNA gene based terminal restriction fragment length polymorphism (T-RFLP, and library cloning and sequencing.Clone library sequencing analysis showed that there were changes in the composition of the mucosa-associated microbiota in subjects after colonic lavage. These changes were not observed in our control groups. Standard bowel preparation altered the diversity of mucosa-associated microbiota. Taxonomic classification did not reveal significant changes at the phylum level, but there were differences observed at the genus level.Standard bowel cleansing preparation altered the mucosal-adherent microbiota in all of our subjects, although the degree of change was variable. These findings underscore the importance of considering the confounding effects of bowel preparation when designing experiments exploring the gut microbiota.

  14. Distribution Of Natural Radioactivity On Soil Size Particles

    International Nuclear Information System (INIS)

    Tran Van Luyen; Trinh Hoai Vinh; Thai Khac Dinh

    2008-01-01

    This report presents a distribution of natural radioactivity on different soil size particles, taken from one soil profile. On the results shows a range from 52% to 66% of natural radioisotopes such as 238 U, 232 Th, 226 Ra and 40 K concentrated on the soil particles below 40 micrometers in diameter size. The remained of natural radioisotopes were distributed on a soil particles with higher diameter size. The study is available for soil sample collected to natural radioactive analyze by gamma and alpha spectrometer methods. (author)

  15. Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC)

    Science.gov (United States)

    Requejo Silva, Ana; Lozano García, Beatriz; Parras Alcántara, Luis

    2017-04-01

    Effects of different soil types in natural Mediterranean areas on soil organic carbon (SOC) Ana Requejo1, Beatriz Lozano-García1, Luis Parras Alcántara1 1 Department of Agricultural Chemistry and Soil Science, Faculty of Science, Agrifood Campus of International Excellence - ceiA3, University of Córdoba, Spain. The carbon content of the atmosphere can be influenced by soils, since they can store carbon or emit large quantities of CO2. C sequestration into soils is one of the most important ecosystems services because of its role in climate regulation (IPPC, 2007). Thereof, agriculture and forestry are the only activities that can contribute to C sequestration through photosynthesis and its carbon incorporation into carbohydrates (Parras Alcántara et al., 2013). Dehesa is a multifunctional agro-sylvo-pastoral system and typical landscape of southern and central Spain and southern Portugal. It is an anthropogenic system dedicated to the combined production of black iberian pigs, a variety of foods, fuel, coal, and cork. Besides, it acts as well in the production of endangered species as wildlife habitat and as sustainable hunting areas. These dehesa areas are defined by a relationship between productivity and conservation of forest oaks, providing environmental benefits such as carbon capture and storage. The area focused in this study is the Cardeña-Montoro Nature Reserve, located within the Sierra Morena (Córdoba, South Spain). The most representative soils in Cardeña-Montoro Nature Reserve are Cambisols, Regosols, Leptosols and Fluvisols according to IUSS Working Group WRB (2006). They are characterized by a low fertility, poor physical conditions and marginal capacity for agricultural use, along with low organic matter content due to climate conditions (semiarid Mediterranean climate) and soil texture (sandy). Several studies have shown that land use affects the SOC concentration (Lozano-García et al., 2016; Khaledian et al., 2016). Based on this

  16. Effect of long-term farming strategies on soil microbiota and soil health

    Science.gov (United States)

    Sommermann, Loreen; Babin, Doreen; Sandmann, Martin; Smalla, Kornelia; Schellenberg, Ingo; Grosch, Rita; Geistlinger, Joerg

    2017-04-01

    Increasing food and energy demands have resulted in considerable intensification of farming practices, which brought about severe consequences for agricultural soils, e.g. loss of fertility, erosion and enrichment of soil-borne plant diseases. In order to maintain soil quality and health for the future, the development of more extensive and sustainable farming strategies is urgently needed. The soil microbiome is regarded as a key player in soil ecosystem functions, particularly the natural ability of soils to suppress plant pathogens (suppressiveness). Recent studies showed that soil microbial communities are influenced by agricultural management. To further analyze the effects of farming strategies on soil suppressiveness and plant performance, agricultural soils from three long-term field trials in Thyrow, Bernburg (both in Germany) and Therwil (Switzerland) were sampled and subjected to molecular profiling of soil bacteria and fungi using marker genes and high-throughput amplicon sequencing. Significant effects on bacterial as well as fungal community composition, including plant pathogenic and beneficial taxa, were observed among variants of tillage and crop rotation. The least effect on both communities had fertilization, with no significance between variants. Subsequently, the same soils were subjected to growth chamber pot experiments with lettuce as a model (Lactuca sativa). After a growth period of six weeks significant differences in lettuce shoot and soil microbial biomass were observed among soil samples of the different long-term trials. Furthermore, the lettuce rhizosphere exhibited diverse bacterial community compositions as observed by DGGE (denaturing gradient gel electrophoresis). Using group-specific PCR-DGGE fingerprints, bacterial responders to fertilization, soil management and crop rotation were identified among different taxonomic groups. Currently, bacterial and fungal amplicon sequencing of rhizosphere and bulk soil from these pot

  17. Microbial Diversity in Soil Treatment Systems for Wastewater

    Science.gov (United States)

    Van Cuyk, S.; Spear, J.; Siegrist, R.; Pace, N.

    2002-05-01

    There is an increasing awareness and concern over land based wastewater system performance with respect to the removal of bacteria and virus. The goal of this work is to describe and identify the organismal composition of the microbiota in the applied wastewater effluent, the rich biomat that develops at the infiltrative surface, and in the soil percolate in order to aid in the understanding of bacterial and virus purification in soil treatment systems. The traditional reliance on pure culture techniques to describe microbiota is circumvented by the employment of a molecular approach. Microbial community characterization is underway based on cloning and sequencing of 16S rRNA genes for phylogenetic analyses, to determine the nature and quantity of microbiota that constitute these ecosystems. Knowledge of the organisms naturally present can influence the design and treatment capacity of these widely used land based systems. Laboratory, intermediate and field scale systems are currently under study. Since human pathogens are known to exist in sewage effluents, their removal in wastewater infiltration systems and within the underlying soil are in need of a more fundamental understanding. The relationship between design parameters and environmental conditions, including a microbial characterization, is essential for the prevention of contamination in groundwater sources. Preliminary results indicate the presence of uncultured organisms and phylogenetic kinds that had not been detected in these systems using other methods. Acinetobacter johnsonii and Acrobacter cryaerophilus were the two dominant species found in septic tank effluent, comprising 20% and 11% of the library respectively. In soil samples collected from the infiltrative surface of a column dosed with STE, there was no dominant bacterial species present. Percolate samples collected from the outflow of the column showed that a tuber borchii symbiont, a common soil microorganism, dominated the bacterial

  18. Microbiota and Pelvic Inflammatory Disease

    Science.gov (United States)

    Sharma, Harsha; Tal, Reshef; Clark, Natalie A.; Segars, James H.

    2014-01-01

    Female genital tract microbiota play a crucial role in maintaining health. Disequilibrium of the microbiota has been associated with increased risk of pelvic infections. In recent years, culture-independent molecular techniques have expanded understanding of the composition of genital microbiota and the dynamic nature of the microbiota. There is evidence that upper genital tract may not be sterile and may harbor microflora in the physiologic state. The isolation of bacterial vaginosis-associated organisms in women with genital infections establishes a link between pelvic infections and abnormal vaginal flora. With the understanding of the composition of the microbiota in healthy and diseased states, the next logical step is to identify the function of the newly identified microbes. This knowledge will further expand our understanding of the causation of pelvic infections, which may lead to more effective prevention and treatment strategies. PMID:24390920

  19. Hydrocarbon and Carbon Dioxide Fluxes from Natural Gas Well Pad Soils and Surrounding Soils in Eastern Utah.

    Science.gov (United States)

    Lyman, Seth N; Watkins, Cody; Jones, Colleen P; Mansfield, Marc L; McKinley, Michael; Kenney, Donna; Evans, Jordan

    2017-10-17

    We measured fluxes of methane, nonmethane hydrocarbons, and carbon dioxide from natural gas well pad soils and from nearby undisturbed soils in eastern Utah. Methane fluxes varied from less than zero to more than 38 g m -2 h -1 . Fluxes from well pad soils were almost always greater than from undisturbed soils. Fluxes were greater from locations with higher concentrations of total combustible gas in soil and were inversely correlated with distance from well heads. Several lines of evidence show that the majority of emission fluxes (about 70%) were primarily due to subsurface sources of raw gas that migrated to the atmosphere, with the remainder likely caused primarily by re-emission of spilled liquid hydrocarbons. Total hydrocarbon fluxes during summer were only 39 (16, 97)% as high as during winter, likely because soil bacteria consumed the majority of hydrocarbons during summer months. We estimate that natural gas well pad soils account for 4.6 × 10 -4 (1.6 × 10 -4 , 1.6 × 10 -3 )% of total emissions of hydrocarbons from the oil and gas industry in Utah's Uinta Basin. Our undisturbed soil flux measurements were not adequate to quantify rates of natural hydrocarbon seepage in the Uinta Basin.

  20. Effects of natural and synthetic soil conditioners on soil moisture ...

    African Journals Online (AJOL)

    The efficacy of a natural soil conditioner, Coco-Peat (C-P), and synthetic soil conditioners, Terawet (T-200) and Teraflow (T-F), in improving soil moisture content were examined on five Ghanaian soil series (Akroso, Akuse, Amo, Hake and Oyarifa). In general, the water retention of T-200 and C-P treated soils were similar ...

  1. NMR relaxation in natural soils: Fast Field Cycling and T1-T2 Determination by IR-MEMS

    Science.gov (United States)

    Haber-Pohlmeier, S.; Pohlmeier, A.; Stapf, S.; van Dusschoten, D.

    2009-04-01

    Soils are natural porous media of highest importance for food production and sustainment of water resources. For these functions, prominent properties are their ability of water retainment and transport, which are mainly controlled by pore size distribution. The latter is related to NMR relaxation times of water molecules, of which the longitudinal relaxation time can be determined non-invasively by fast-field cycling relaxometry (FFC) and both are obtainable by inversion recovery - multi-echo- imaging (IR-MEMS) methods. The advantage of the FFC method is the determination of the field dependent dispersion of the spin-lattice relaxation rate, whereas MRI at high field is capable of yielding spatially resolved T1 and T2 times. Here we present results of T1- relaxation time distributions of water in three natural soils, obtained by the analysis of FFC data by means of the inverse Laplace transformation (CONTIN)1. Kaldenkirchen soil shows relatively broad bimodal distribution functions D(T1) which shift to higher relaxation rates with increasing relaxation field. These data are compared to spatially resolved T1- and T2 distributions, obtained by IR-MEMS. The distribution of T1 corresponds well to that obtained by FFC.

  2. Ultrasound improves chemical reduction of natural contaminant microbiota and Salmonella enterica subsp. enterica on strawberries.

    Science.gov (United States)

    do Rosário, Denes Kaic Alves; da Silva Mutz, Yhan; Peixoto, Jaqueline Moreira Curtis; Oliveira, Syllas Borburema Silva; de Carvalho, Raquel Vieira; Carneiro, Joel Camilo Souza; de São José, Jackline Freitas Brilhante; Bernardes, Patrícia Campos

    2017-01-16

    New sanitization methods have been evaluated to improve food safety and food quality and to replace chlorine compounds. However, these new methods can lead to physicochemical and sensory changes in fruits and vegetables. The present study evaluated the effects of acetic acid, peracetic acid, and sodium dodecylbenzenesulfonate isolated or combined with 5min of ultrasound treatment (40kHz, 500W) on strawberry quality over 9days of storage at 8°C. The strawberry natural contaminant microbiota (molds and yeasts, mesophilic aerobic and lactic acid bacteria), physicochemical quality (pH, total titratable acidity, total soluble solids, vitamin C, and color), sensory quality (triangle test) and inactivation of Salmonella enterica subsp. enterica intentionally inoculated onto strawberries were analyzed. Ultrasound increased the effect of all chemical compounds in the reduction of aerobic mesophilic, molds and yeasts. The best treatment for those groups of microorganisms was ultrasound combined with peracetic acid (US+PA) that reduced 1.8 and 2.0logcfu/g during 9days of storage. Bactericidal effect of peracetic acid was also improved by ultrasound inactivation of S. enterica, reaching a decimal reduction of 2.1logcfu/g. Moreover, synergistic effects were observed in contaminant natural microbiota inactivation for all tested compounds during storage, without any major physicochemical or sensory alteration to the strawberries. Therefore, ultrasound treatment can improve the effect of sanitizers that are substitutes of chlorine compounds without altering the quality of strawberries during storage. Acetic acid (PubChem CID: 176); Peracetic acid (PubChem CID: 6585); Sodium dodecylbenzenesulfonate (PubChem CID: 18372154). Copyright © 2016 Elsevier B.V. All rights reserved.

  3. SOILS AS NATURAL REACTORS FOR SWINE WASTEWATER TREATMENT

    Directory of Open Access Journals (Sweden)

    Francisco Bautista

    2011-04-01

    Full Text Available The ability of soils to mineralize organic matter depends on their individual characteristics; when waste waters are added to them their organic matter content (OM, cationic exchange capacity (CEC and percentage of clay (PC are altered. Pedotransfer functions (PTF enable certain processes to be determined from easily measured soil properties. The aims of this study were i to generate PTF to estimate the retention and mineralisation of dissolved organic matter (DOM present in swine wastewater (SWW based on measurements of OM, CEC and PC and ii to identify the soils most suited to acting as natural reactors for treating SWW, using multicriteria analysis. Samples were taken from ten soils (epipedons or superficial samples to measure the retention of dissolved organic matter (RDOM in 30 cm high soil columns, making three applications of SWW. In addition, an experiment was carried out in pots to measure the effect of SWW on soil carbon evolution (SCE and the potential anaerobic nitrogen mineralisation (PANM. Multiple regressions were made using soil OM (%, CEC (cmol+ kg-1 and PC (% as independent variables and Chemical Oxygen Demand (COD, SCE and PANM as dependent variables. The PFT found were RDOM = 41.5 + (2.8*CEC – (0.81*PC – (3.5*OM  r= 0.81; SCE =  542.3 + (20.1*OM + (4.6*CEC – (2.7*PC r= 0.96; PANM = -8.4 + (3.45*OM + (1.12*PC – (2.20*CEC r= 0.88. The most suitable soils for acting as natural reactors of SWW were the Luvisol LVct and an unclassified EPI-1. Â

  4. Antibiotics and specialized metabolites from the human microbiota.

    Science.gov (United States)

    Mousa, Walaa K; Athar, Bilal; Merwin, Nishanth J; Magarvey, Nathan A

    2017-11-15

    Covering: 2000 to 2017Decades of research on human microbiota have revealed much of their taxonomic diversity and established their direct link to health and disease. However, the breadth of bioactive natural products secreted by our microbial partners remains unknown. Of particular interest are antibiotics produced by our microbiota to ward off invasive pathogens. Members of the human microbiota exclusively produce evolved small molecules with selective antimicrobial activity against human pathogens. Herein, we expand upon the current knowledge concerning antibiotics derived from human microbiota and their distribution across body sites. We analyze, using our in-house chem-bioinformatic tools and natural products database, the encoded antibiotic potential of the human microbiome. This compilation of information may create a foundation for the continued exploration of this intriguing resource of chemical diversity and expose challenges and future perspectives to accelerate the discovery rate of small molecules from the human microbiota.

  5. Gut microbiota induce IGF-1 and promote bone formation and growth

    Science.gov (United States)

    Yan, Jing; Herzog, Jeremy W.; Tsang, Kelly; Brennan, Caitlin A.; Bower, Maureen A.; Garrett, Wendy S.; Sartor, Balfour R.; Charles, Julia F.

    2016-01-01

    Appreciation of the role of the gut microbiome in regulating vertebrate metabolism has exploded recently. However, the effects of gut microbiota on skeletal growth and homeostasis have only recently begun to be explored. Here, we report that colonization of sexually mature germ-free (GF) mice with conventional specific pathogen-free (SPF) gut microbiota increases both bone formation and resorption, with the net effect of colonization varying with the duration of colonization. Although colonization of adult mice acutely reduces bone mass, in long-term colonized mice, an increase in bone formation and growth plate activity predominates, resulting in equalization of bone mass and increased longitudinal and radial bone growth. Serum levels of insulin-like growth factor 1 (IGF-1), a hormone with known actions on skeletal growth, are substantially increased in response to microbial colonization, with significant increases in liver and adipose tissue IGF-1 production. Antibiotic treatment of conventional mice, in contrast, decreases serum IGF-1 and inhibits bone formation. Supplementation of antibiotic-treated mice with short-chain fatty acids (SCFAs), products of microbial metabolism, restores IGF-1 and bone mass to levels seen in nonantibiotic-treated mice. Thus, SCFA production may be one mechanism by which microbiota increase serum IGF-1. Our study demonstrates that gut microbiota provide a net anabolic stimulus to the skeleton, which is likely mediated by IGF-1. Manipulation of the microbiome or its metabolites may afford opportunities to optimize bone health and growth. PMID:27821775

  6. Effect of natural microbiota on growth of Salmonella spp. in fresh pork – A predictive microbiology approach

    DEFF Research Database (Denmark)

    Møller, Cleide; Ilg, Y.; Aabo, Søren

    2013-01-01

    for lag time, max. specific growth rate and max. population density. Data from literature were used to develop growth models for the natural pork microbiota. Challenge tests at temperatures from 9.4 to 24.1 °C and with Salmonella inoculated in ground pork were used for evaluation of interaction models....... The existing Jameson-effect and Lotka–Volterra species interaction models and a new expanded Jameson-effect model were evaluated. F-test indicated lack-of-fit for the classical Jameson-effect model at all of the tested temperatures and at 14.1–20.2 °C this was caused by continued growth of Salmonella after...

  7. Predictive modeling of gingivitis severity and susceptibility via oral microbiota.

    Science.gov (United States)

    Huang, Shi; Li, Rui; Zeng, Xiaowei; He, Tao; Zhao, Helen; Chang, Alice; Bo, Cunpei; Chen, Jie; Yang, Fang; Knight, Rob; Liu, Jiquan; Davis, Catherine; Xu, Jian

    2014-09-01

    Predictive modeling of human disease based on the microbiota holds great potential yet remains challenging. Here, 50 adults underwent controlled transitions from naturally occurring gingivitis, to healthy gingivae (baseline), and to experimental gingivitis (EG). In diseased plaque microbiota, 27 bacterial genera changed in relative abundance and functional genes including 33 flagellar biosynthesis-related groups were enriched. Plaque microbiota structure exhibited a continuous gradient along the first principal component, reflecting transition from healthy to diseased states, which correlated with Mazza Gingival Index. We identified two host types with distinct gingivitis sensitivity. Our proposed microbial indices of gingivitis classified host types with 74% reliability, and, when tested on another 41-member cohort, distinguished healthy from diseased individuals with 95% accuracy. Furthermore, the state of the microbiota in naturally occurring gingivitis predicted the microbiota state and severity of subsequent EG (but not the state of the microbiota during the healthy baseline period). Because the effect of disease is greater than interpersonal variation in plaque, in contrast to the gut, plaque microbiota may provide advantages in predictive modeling of oral diseases.

  8. Natural radioactivity in soils from Piracicaba, SP (Brazil)

    International Nuclear Information System (INIS)

    Oliveira, H. de.

    1988-01-01

    Using high resolution gamma spectrometry, the specific radioactivity of soils and rocks from Piracicaba, SP (Brazil) was determined. For this purpose, the Ra, Th and Ac natural series and some other nuclides such as sup(40)K and sup(137)Cs were considered. Soil samples representing the main Soil Groups were collected at 60-cm depth. Typical rock samples were also collected. After initial sample preparation, the sealed sample were allowed to rest until reaching the conditions approaching the secular equilibrium. Thereafter, counting was carried out, peak areas being the measurements basis. The mean ponderated values for soil specific activity were 24.1 and 34.8 Bq.kg sup(-1) for the sup(226)Ra and sup(232)Th, respectively. (author)

  9. Human Gut Microbiota: Toward an Ecology of Disease

    Science.gov (United States)

    Selber-Hnatiw, Susannah; Rukundo, Belise; Ahmadi, Masoumeh; Akoubi, Hayfa; Al-Bizri, Hend; Aliu, Adelekan F.; Ambeaghen, Tanyi U.; Avetisyan, Lilit; Bahar, Irmak; Baird, Alexandra; Begum, Fatema; Ben Soussan, Hélène; Blondeau-Éthier, Virginie; Bordaries, Roxane; Bramwell, Helene; Briggs, Alicia; Bui, Richard; Carnevale, Matthew; Chancharoen, Marisa; Chevassus, Talia; Choi, Jin H.; Coulombe, Karyne; Couvrette, Florence; D'Abreau, Samantha; Davies, Meghan; Desbiens, Marie-Pier; Di Maulo, Tamara; Di Paolo, Sean-Anthony; Do Ponte, Sabrina; dos Santos Ribeiro, Priscyla; Dubuc-Kanary, Laure-Anne; Duncan, Paola K.; Dupuis, Frédérique; El-Nounou, Sara; Eyangos, Christina N.; Ferguson, Natasha K.; Flores-Chinchilla, Nancy R.; Fotakis, Tanya; Gado Oumarou H D, Mariam; Georgiev, Metodi; Ghiassy, Seyedehnazanin; Glibetic, Natalija; Grégoire Bouchard, Julien; Hassan, Tazkia; Huseen, Iman; Ibuna Quilatan, Marlon-Francis; Iozzo, Tania; Islam, Safina; Jaunky, Dilan B.; Jeyasegaram, Aniththa; Johnston, Marc-André; Kahler, Matthew R.; Kaler, Kiranpreet; Kamani, Cedric; Karimian Rad, Hessam; Konidis, Elisavet; Konieczny, Filip; Kurianowicz, Sandra; Lamothe, Philippe; Legros, Karina; Leroux, Sebastien; Li, Jun; Lozano Rodriguez, Monica E.; Luponio-Yoffe, Sean; Maalouf, Yara; Mantha, Jessica; McCormick, Melissa; Mondragon, Pamela; Narayana, Thivaedee; Neretin, Elizaveta; Nguyen, Thi T. T.; Niu, Ian; Nkemazem, Romeo B.; O'Donovan, Martin; Oueis, Matthew; Paquette, Stevens; Patel, Nehal; Pecsi, Emily; Peters, Jackie; Pettorelli, Annie; Poirier, Cassandra; Pompa, Victoria R.; Rajen, Harshvardhan; Ralph, Reginald-Olivier; Rosales-Vasquez, Josué; Rubinshtein, Daria; Sakr, Surya; Sebai, Mohammad S.; Serravalle, Lisa; Sidibe, Fily; Sinnathurai, Ahnjana; Soho, Dominique; Sundarakrishnan, Adithi; Svistkova, Veronika; Ugbeye, Tsolaye E.; Vasconcelos, Megan S.; Vincelli, Michael; Voitovich, Olga; Vrabel, Pamela; Wang, Lu; Wasfi, Maryse; Zha, Cong Y.; Gamberi, Chiara

    2017-01-01

    Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics. PMID:28769880

  10. Type 1 diabetes susceptibility alleles are associated with distinct alterations in the gut microbiota.

    Science.gov (United States)

    Mullaney, Jane A; Stephens, Juliette E; Costello, Mary-Ellen; Fong, Cai; Geeling, Brooke E; Gavin, Patrick G; Wright, Casey M; Spector, Timothy D; Brown, Matthew A; Hamilton-Williams, Emma E

    2018-02-17

    Dysbiosis of the gut microbiota has been implicated in the pathogenesis of many autoimmune conditions including type 1 diabetes (T1D). It is unknown whether changes in the gut microbiota observed in T1D are due to environmental drivers, genetic risk factors, or both. Here, we have performed an analysis of associations between the gut microbiota and T1D genetic risk using the non-obese diabetic (NOD) mouse model of T1D and the TwinsUK cohort. Through the analysis of five separate colonies of T1D susceptible NOD mice, we identified similarities in NOD microbiome that were independent of animal facility. Introduction of disease protective alleles at the Idd3 and Idd5 loci (IL2, Ctla4, Slc11a1, and Acadl) resulted in significant alterations in the NOD microbiome. Disease-protected strains exhibited a restoration of immune regulatory pathways within the gut which could also be reestablished using IL-2 therapy. Increased T1D disease risk from IL-2 pathway loci in the TwinsUK cohort of human subjects resulted in some similar microbiota changes to those observed in the NOD mouse. These findings demonstrate for the first time that type 1 diabetes-associated genetic variants that restore immune tolerance to islet antigens also result in functional changes in the gut immune system and resultant changes in the microbiota.

  11. Soil arthropod fauna from natural ecosites and reclaimed oil sands soils in northern Alberta

    Energy Technology Data Exchange (ETDEWEB)

    Battigelli, J.P.; Leskiw, L.A. [Paragon Soil and Environmental Consulting Inc., Edmonton, AB (Canada)

    2006-07-01

    An understanding of soil invertebrates may facilitate current reclamation activities in the oil sands region of Alberta. This paper presented the results of a study investigating the density, diversity, and structure of soil arthropod assemblages in natural habitats and reclaimed sites. The purpose of the study was to establish a baseline inventory of soil arthropod assemblages in order to enable long-term monitoring of soil arthropod recolonization in disturbed sites. Nine natural ecosites were sampled for the study, including peat mix over secondary material over tailing sand; direct placement over tailing sand; peat mix over secondary over overburden; direct placement over overburden; peat mix over tailing sand; and peat mix over overburden. Samples were collected from previously established long-term soil and vegetation treatment plots in both natural ecosites and reclaimed soil sites located near Fort McMurray, Alberta. Results showed that densities of mesofauna were significantly higher in samples collected from natural ecosites. Acari and Collembola represented approximately 97 to 98 per cent of the fauna collected. It was also noted that the overall structure of the soil mesofauna community differed between natural soils and reclaimed soils. A significant reduction in the abundance of oribatid mites was observed in soils that had been reclaimed for over 34 years. Changes in the soil mesofauna community structure suggested that reclaimed soils continue to represent disturbed ecosites, as was indicated by higher proportions of prostigmatid mites and some collembolan families. Differences in community structure may influence soil ecosystem functions, including decomposition rates; nutrient recycling; soil structure; and fungal and bacterial biomass. It was concluded that further research is needed to examine oribatid mites and collembolan species diversity and community structure in reclaimed soils. 18 refs., 6 figs.

  12. Natural and anthropogenic rates of soil erosion

    Science.gov (United States)

    Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natur...

  13. Natural attenuation of diesel fuel in heavy clay soil

    International Nuclear Information System (INIS)

    Berry, K.A.T.; Burton, D.L.

    1997-01-01

    The application of bioremediation techniques on heavy clay soils contaminated with diesel fuels was studied. Earlier studies suggested that in-situ bioreclamation was only effective on permeable soils such as medium- to coarse-textured sandy or loamy soils. It was assumed that heavy clay soils such as those found in the Red River Valley in Southern Manitoba had physical and chemical properties that would limit the usefulness of natural attenuation. In this study, the disappearance and the natural attenuation of diesel fuel added to soil at a rate of 5000 mg/kg soil in tilled and untilled heavy clay soil was monitored. Three methods of analysis were used: (1) oil and grease content, (2) extractable organics, and (3) the Millipore EnviroGard ELISA method for petroleum hydrocarbons. Effects of the contamination on the soil microbial population were measured using surface CO 2 flux measurements and microbial biomass carbon analysis. Soil moisture contents at all sample times were between 44 and 49 per cent. Soil temperature was also monitored. All three analytical methods used in the study showed the near-complete disappearance of detectable diesel fuel hydrocarbons from the soil after 30 days with half-lives ranging from 11 to 26 days. The advantages and limitations of the ELISA kit were described. No hydrocarbons were detected in the groundwater sample. 45 refs., 7 tabs., 2 figs

  14. Levels and effects of natural radionuclides in soil samples of Garhwal Himalaya

    International Nuclear Information System (INIS)

    Manjulata Yadav; Mukesh Rawat; Anoop Dangwal; Mukesh Prasad; Gusain, G.S.; Ramola, R.C.

    2014-01-01

    Distribution of natural radionuclide gives significant parameter to assess the presence of gamma radioactivity and its radiological effect in our environment. Natural radionuclides are present in the form of 226 Ra, 232 Th and 40 K in soil, rocks, water, air, and building materials. Distribution of natural radionuclides depends on the type of minerals present in the soil and rocks. For this purpose gamma spectrometer is used as tool for finding the concentration of these radionuclides. The activity concentration of naturally occurring radionuclides 226 Ra, 232 Th and 40 K in these soil samples were found to vary from of 8 ± 1 Bq/kg to 50 ± 10 Bq/kg with an average 20 Bq/kg, 7 ± 1-88 ± 16 Bq/kg with an Average 26 Bq/kg and 115 ± 18-885 ± 132 Bq/kg with an average 329 Bq/kg, respectively. In this paper, we are presenting the radiological effect due to distribution of natural radionuclide present in soil of Garhwal Himalaya. (author)

  15. Behavior of Salmonella spp. and natural microbiota on fresh-cut dragon fruits at different storage temperatures.

    Science.gov (United States)

    Sim, Hui Li; Hong, Yoon-Ki; Yoon, Won Byong; Yuk, Hyun-Gyun

    2013-01-01

    The aim of this study was to determine survival or growth of unadapted, acid-adapted and cold-stressed Salmonella spp., and natural microbiota on fresh-cut dragon fruits at different storage temperatures. Dragon fruits were sliced and spot inoculated with five-strain cocktail of Salmonella spp. at two inoculum levels (2.5 or 5.5 log CFU/g). Inoculated fruits were stored at 28°C for 48h and at 4°C and 12°C for 96 h. Salmonella population significantly increased by 2.4 to 3.0 log CFU/g at low inoculum level, whereas the numbers increased by 0.4 to 0.7 log CFU/g at the high inoculum level on fruits held at 28°C for 48h. Only unadapted and acid-adapted cells grew with 0.7 to 0.9log increase at the low inoculum level at 12°C for 96h. No significant growth was observed at both inoculum levels during storage at 4°C. Overall, acid, starved and cold adaptation of Salmonella spp. did not show significant difference in survival or growth on fresh-cut dragon fruits during storage compared to unadapted control cells. For natural microbiota on the fruit, mesophilic bacterial counts reached to 5-log CFU/g at 28 and 12°C by 9.9 and 52.9h. Similar with Salmonella spp. there was no growth of natural microbiota at 4°C. These results showed that Salmonella spp. could grow on fresh-cut dragon fruits under inappropriate storage conditions, indicating that fresh-cut dragon fruits could be a potential vehicle for salmonellosis. Thus, this study suggests that fresh-cut dragon fruits should be stored at 4°C to ensure the safety as well as to extend the shelf life of fresh-cut dragon fruits. Copyright © 2012 Elsevier B.V. All rights reserved.

  16. Soil remediation: humic acids as natural surfactants in the washings of highly contaminated soils

    International Nuclear Information System (INIS)

    Conte, Pellegrino; Agretto, Anna; Spaccini, Riccardo; Piccolo, Alessandro

    2005-01-01

    The remediation of the highly contaminated site around the former chemical plant of ACNA (near Savona) in Northern Italy is a top priority in Italy. The aim of the present work was to contribute in finding innovative and environmental-friendly technology to remediate soils from the ACNA contaminated site. Two soils sampled from the ACNA site (A and B), differing in texture and amount and type of organic contaminants, were subjected to soil washings by comparing the removal efficiency of water, two synthetic surfactants, sodium dodecylsulphate (SDS) and Triton X-100 (TX100), and a solution of a natural surfactant, a humic acid (HA) at its critical micelle concentration (CMC). The extraction of pollutants by sonication and soxhlet was conducted before and after the soil washings. Soil A was richer in polycyclic aromatic hydrocarbons, whereas soil B had a larger content of thiophenes. Sonication resulted more analytically efficient in the fine-textured soil B. The coarse-textured soil A was extracted with a general equal efficiency also by soxhlet. Clean-up by water was unable to exhaustively remove contaminants from the two soils, whereas all the organic surfactants revealed very similar efficiencies (up to 90%) in the removal of the contaminants from the soils. Hence, the use of solutions of natural HAs appears as a better choice for soil washings of highly polluted soils due to their additional capacity to promote microbial activity, in contrast to synthetic surfactants, for a further natural attenuation in washed soils. - Solutions of natural humic acids appear to be a better choice for washing highly polluted soils

  17. Human Gut Microbiota: Toward an Ecology of Disease

    Directory of Open Access Journals (Sweden)

    Susannah Selber-Hnatiw

    2017-07-01

    Full Text Available Composed of trillions of individual microbes, the human gut microbiota has adapted to the uniquely diverse environments found in the human intestine. Quickly responding to the variances in the ingested food, the microbiota interacts with the host via reciprocal biochemical signaling to coordinate the exchange of nutrients and proper immune function. Host and microbiota function as a unit which guards its balance against invasion by potential pathogens and which undergoes natural selection. Disturbance of the microbiota composition, or dysbiosis, is often associated with human disease, indicating that, while there seems to be no unique optimal composition of the gut microbiota, a balanced community is crucial for human health. Emerging knowledge of the ecology of the microbiota-host synergy will have an impact on how we implement antibiotic treatment in therapeutics and prophylaxis and how we will consider alternative strategies of global remodeling of the microbiota such as fecal transplants. Here we examine the microbiota-human host relationship from the perspective of the microbial community dynamics.

  18. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence.

    Science.gov (United States)

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stilianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-05-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  19. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence

    KAUST Repository

    Mapelli, Francesca; Marasco, Ramona; Fusi, Marco; Scaglia, Barbara; Tsiamis, George; Rolli, Eleonora; Fodelianakis, Stylianos; Bourtzis, Kostas; Ventura, Stefano; Tambone, Fulvia; Adani, Fabrizio; Borin, Sara; Daffonchio, Daniele

    2018-01-01

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  20. The stage of soil development modulates rhizosphere effect along a High Arctic desert chronosequence

    KAUST Repository

    Mapelli, Francesca

    2018-01-09

    In mature soils, plant species and soil type determine the selection of root microbiota. Which of these two factors drives rhizosphere selection in barren substrates of developing desert soils has, however, not yet been established. Chronosequences of glacier forelands provide ideal natural environments to identify primary rhizosphere selection factors along the changing edaphic conditions of a developing soil. Here, we analyze changes in bacterial diversity in bulk soils and rhizospheres of a pioneer plant across a High Arctic glacier chronosequence. We show that the developmental stage of soil strongly modulates rhizosphere community assembly, even though plant-induced selection buffers the effect of changing edaphic factors. Bulk and rhizosphere soils host distinct bacterial communities that differentially vary along the chronosequence. Cation exchange capacity, exchangeable potassium, and metabolite concentration in the soil account for the rhizosphere bacterial diversity. Although the soil fraction (bulk soil and rhizosphere) explains up to 17.2% of the variation in bacterial microbiota, the soil developmental stage explains up to 47.7% of this variation. In addition, the operational taxonomic unit (OTU) co-occurrence network of the rhizosphere, whose complexity increases along the chronosequence, is loosely structured in barren compared with mature soils, corroborating our hypothesis that soil development tunes the rhizosphere effect.

  1. Mycotoxin: Its Impact on Gut Health and Microbiota

    Science.gov (United States)

    Liew, Winnie-Pui-Pui; Mohd-Redzwan, Sabran

    2018-01-01

    The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death) in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins) toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin contamination and

  2. Mycotoxin: Its Impact on Gut Health and Microbiota

    Directory of Open Access Journals (Sweden)

    Winnie-Pui-Pui Liew

    2018-02-01

    Full Text Available The secondary metabolites produced by fungi known as mycotoxins, are capable of causing mycotoxicosis (diseases and death in human and animals. Contamination of feedstuffs as well as food commodities by fungi occurs frequently in a natural manner and is accompanied by the presence of mycotoxins. The occurrence of mycotoxins' contamination is further stimulated by the on-going global warming as reflected in some findings. This review comprehensively discussed the role of mycotoxins (trichothecenes, zearalenone, fumonisins, ochratoxins, and aflatoxins toward gut health and gut microbiota. Certainly, mycotoxins cause perturbation in the gut, particularly in the intestinal epithelial. Recent insights have generated an entirely new perspective where there is a bi-directional relationship exists between mycotoxins and gut microbiota, thus suggesting that our gut microbiota might be involved in the development of mycotoxicosis. The bacteria–xenobiotic interplay for the host is highlighted in this review article. It is now well established that a healthy gut microbiota is largely responsible for the overall health of the host. Findings revealed that the gut microbiota is capable of eliminating mycotoxin from the host naturally, provided that the host is healthy with a balance gut microbiota. Moreover, mycotoxins have been demonstrated for modulation of gut microbiota composition, and such alteration in gut microbiota can be observed up to species level in some of the studies. Most, if not all, of the reported effects of mycotoxins, are negative in terms of intestinal health, where beneficial bacteria are eliminated accompanied by an increase of the gut pathogen. The interactions between gut microbiota and mycotoxins have a significant role in the development of mycotoxicosis, particularly hepatocellular carcinoma. Such knowledge potentially drives the development of novel and innovative strategies for the prevention and therapy of mycotoxin

  3. ) and “maintains the balance of healthy microbiota that helps to strengthen the natural defence” (ID 2942) (further assessment) pursuant to Article 13(1) of Regulation (EC) No 1924/2006

    DEFF Research Database (Denmark)

    Tetens, Inge

    of Lactobacillus helveticus CNCM I-1722 and Bifidobacterium longum subsp. longum CNCM I-3470 and alleviation of psychological stress and “maintains the balance of healthy microbiota that helps to strengthen the natural defence”. The food constituent that is the subject of the health claims, a combination of L...... of the claim. On the basis of the data provided, the Panel concludes that a cause and effect relationship has not been established between the consumption of a combination of L. helveticus CNCM I-1722 and B. longum subsp. longum CNCM I-3470 and alleviation of psychological stress. From the information provided...... for the claimed effect “maintains the balance of healthy microbiota that helps to strengthen the natural defence” it was not possible to establish the specific effect which is the subject of the claim. The Panel considers that the claimed effect is general and non-specific, and does not refer to any specific...

  4. The Rhizosphere Bacterial Microbiota of Vitis vinifera cv. Pinot Noir in an Integrated Pest Management Vineyard

    OpenAIRE

    Novello, Giorgia; Gamalero, Elisa; Bona, Elisa; Boatti, Lara; Mignone, Flavio; Massa, Nadia; Cesaro, Patrizia; Lingua, Guido; Berta, Graziella

    2017-01-01

    Microorganisms associated with Vitis vinifera (grapevine) can affect its growth, health and grape quality. The aim of this study was to unravel the biodiversity of the bacterial rhizosphere microbiota of grapevine in an integrated pest management vineyard located in Piedmont, Italy. Comparison between the microbial community structure in the bulk and rhizosphere soil (variable: space) were performed. Moreover, the possible shifts of the bulk and rhizosphere soil microbiota according to two ph...

  5. NATURAL ATTENUATION OF COPPER IN SOILS AND SOIL MINERALS - II

    Science.gov (United States)

    The bioabailability and toxicity of Cu in soils is controlled by a number of soil properties and processes. Some of these such as pH, adsorption/desorption and competition with beneficial cations have been extensively studied. However, the effects of natural attenuation (or aging...

  6. CARACTERIZAÇÃO DA MICROBIOTA CUTÂNEA DE Aplastodiscus leucopygius DO PARQUE MUNICIPAL NATURAL AUGUSTO RUSCHI

    Directory of Open Access Journals (Sweden)

    Laryssa Nolasco

    2017-05-01

    Full Text Available A Aplastodiscus leucopygius é um anfíbio da ordem Anura pertencente à família Hylidae, espécie endêmica do Brasil, encontrada em áreas de Mata Atlântica do planalto e serras do Mar e da Mantiqueira, nos Estados de São Paulo e Rio de Janeiro. O presente estudo teve como objetivo analisar e caracterizar a microbiota de A. leucopygius encontrados no Parque Municipal Natural Augusto Ruschi, Unidade de Conservação de Proteção Integral da cidade de São José do Campos no estado de São Paulo. Para isso foram coletadas e analisadas amostras biológicas da microbiota cutânea de indivíduos de A. leucopygius. Dentre os microorganismos encontrados estão Staphylococcus aureus, Staphylococcus epidermidis, Streptococcus sp., além da presença de fungos da ordem Eurotiales.

  7. Cesium-137 and natural radionuclides in soils from southern Brazil and soils and others environmental samples from Antarctic

    International Nuclear Information System (INIS)

    Schuch, L.A.

    1993-04-01

    This work presents a study of environmental artificial and natural radioactivity levels in soil samples from the Southern Brazil and in soils and other environmental samples form Antarctica. Artificial radioactivity was determined by measuring Cs-137 which is a 30.1 year half-life man-made radionuclide produced in the past by atmospheric tests of nuclear weapons. Natural radioactivity was determined by measuring some radionuclides belonging to Th-232 and U-238 natural radioactive families, and of K-40 concentrations. Several types of soils from Southern Brazil; and soil samples, marine sediments, lichens, mosses and algae collected at King George and other nearby islands (South Shetland Archipelago, Antarctica) were analyzed. A gamma-ray spectrometer was used to measure radioactivity levels of the collected samples and its overall characteristics are analyzed in this work. (author)

  8. [Organic carbon and carbon mineralization characteristics in nature forestry soil].

    Science.gov (United States)

    Yang, Tian; Dai, Wei; An, Xiao-Juan; Pang, Huan; Zou, Jian-Mei; Zhang, Rui

    2014-03-01

    Through field investigation and indoor analysis, the organic carbon content and organic carbon mineralization characteristics of six kinds of natural forest soil were studied, including the pine forests, evergreen broad-leaved forest, deciduous broad-leaved forest, mixed needle leaf and Korean pine and Chinese pine forest. The results showed that the organic carbon content in the forest soil showed trends of gradual decrease with the increase of soil depth; Double exponential equation fitted well with the organic carbon mineralization process in natural forest soil, accurately reflecting the mineralization reaction characteristics of the natural forest soil. Natural forest soil in each layer had the same mineralization reaction trend, but different intensity. Among them, the reaction intensity in the 0-10 cm soil of the Korean pine forest was the highest, and the intensities of mineralization reaction in its lower layers were also significantly higher than those in the same layers of other natural forest soil; comparison of soil mineralization characteristics of the deciduous broad-leaved forest and coniferous and broad-leaved mixed forest found that the differences of litter species had a relatively strong impact on the active organic carbon content in soil, leading to different characteristics of mineralization reaction.

  9. Natural radionuclides in soils - relation between soil properties and the activities

    International Nuclear Information System (INIS)

    Fujiyoshi, Ryoko; Nakayama, Masashi; Sawamura, Sadashi

    2000-01-01

    Vertical profiles of natural radionuclides (K-40 and Ra-226) have been investigated in a soil core with 8 m in depth to elucidate its relation to the bed rock activity and to several soil properties. Pattern of the Ra-226 activity with soil depth suggests inhomogeneity of this nuclide during the accumulating process. Radiometric sorption experiments with Pb-210 as a tracer gave the result that almost all Pb(II) in the soil solution disappeared to be sorbed to the soil components

  10. Implications of polluted soil biostimulation and bioaugmentation with spent mushroom substrate (Agaricus bisporus) on the microbial community and polycyclic aromatic hydrocarbons biodegradation.

    Science.gov (United States)

    García-Delgado, Carlos; D'Annibale, Alessandro; Pesciaroli, Lorena; Yunta, Felipe; Crognale, Silvia; Petruccioli, Maurizio; Eymar, Enrique

    2015-03-01

    Different applications of spent Agaricus bisporus substrate (SAS), a widespread agro-industrial waste, were investigated with respect to the remediation of a historically polluted soil with Polycyclic Aromatic Hydrocarbons (PAH). In one treatment, the waste was sterilized (SSAS) prior to its application in order to assess its ability to biostimulate, as an organic amendment, the resident soil microbiota and ensuing contaminant degradation. For the other treatments, two bioaugmentation approaches were investigated; the first involved the use of the waste itself and thus implied the application of A. bisporus and the inherent microbiota of the waste. In the second treatment, SAS was sterilized and inoculated again with the fungus to assess its ability to act as a fungal carrier. All these treatments were compared with natural attenuation in terms of their impact on soil heterotrophic and PAH-degrading bacteria, fungal growth, biodiversity of soil microbiota and ability to affect PAH bioavailability and ensuing degradation and detoxification. Results clearly showed that historically PAH contaminated soil was not amenable to natural attenuation. Conversely, the addition of sterilized spent A. bisporus substrate to the soil stimulated resident soil bacteria with ensuing high removals of 3-ring PAH. Both augmentation treatments were more effective in removing highly condensed PAH, some of which known to possess a significant carcinogenic activity. Regardless of the mode of application, the present results strongly support the adequacy of SAS for environmental remediation purposes and open the way to an attractive recycling option of this waste. Copyright © 2014 Elsevier B.V. All rights reserved.

  11. The transport of natural radionuclides from soil to plants

    International Nuclear Information System (INIS)

    Bikit, I.; Conkic, Lj.; Slivka, J.; Krmar, M.

    1995-01-01

    The transport and accumulation processes of Ra-226, U-238, Th-232 and K-40 from soil to plants have been studied. Plant samples with consumable parts grown below surface have been bred in natural conditions on soil with enhanced levels of natural radioactivity (barren soil of the uranium mine Gabrovnica-Kalna). An intensive transport of heavy natural radionuclides from soil to the roots was established. The transfer factors for U-238 and Ra-226 have been much bigger than for Th-232. The most intensive uptake was registered for beet root. (author)

  12. Natural radioactivity in soils of the state of Rio de Janeiro (Brazil): Radiological characterization and relationships to geological formation, soil types and soil properties.

    Science.gov (United States)

    Ribeiro, F C A; Silva, J I R; Lima, E S A; do Amaral Sobrinho, N M B; Perez, D V; Lauria, D C

    2018-02-01

    Located in the south-western part of Brazil, the state of Rio de Janeiro is geotectonically contained within a complex structural province that resulted in the amalgamation of the Western Gondwana Paleocontinent. To undertake an extensive radiological characterization of this complex geological province and investigate the influence of bedrock, soil type and soil chemical-physical characteristics on natural radionuclide levels in soils, 259 surface soil samples were collected that encompassed the main soil types and geological formations throughout the state. Gamma spectrometry analysis of the samples resulted in median values of 114 Bq.kg -1 for 40 K, 32 Bq.kg -1 for 226 Ra and 74 Bq.kg -1 for 228 Ra. The median value for 226 Ra was similar to the world median value for soils, the 40 K value was well below the worldwide value, and that for 228 Ra exceeded the world median value. The intense weathering caused by the high rainfall rates and high temperatures may be responsible for the low levels of 40 K in the soils, of which the strongly acidic and clayey soils are markedly K-depleted. A soil from a high-grade metamorphic rock (granulite) presented the lowest 226 Ra (18 Bq.kg -1 ) content, whereas the highest levels for 226 Ra (92 Bq.kg -1 ) and 228 Ra (139 Bq.kg - 1) were observed in a young soil enriched in primary minerals (Leptsol). A lowland soil (Gleysol) showed the highest median of 40 K (301 Bq.kg -1 ). Strongly acidic soils tended to present high amounts of 226 Ra, and sandy soils tended to contain low levels of 228 Ra. The external radiation dose indicates that the state has a background radiation level within the natural range. Copyright © 2017 Elsevier Ltd. All rights reserved.

  13. Sorption and Transport of Ranitidine in Natural Soils

    Science.gov (United States)

    Gaynor, A. J.; Vulava, V. M.

    2013-12-01

    Increasing levels of pharmaceuticals and their degradants are being discovered in natural water systems all over the world. These chemicals are reported to be discharged from wastewater treatment plants, sewage overflow, and leaking septic tanks. Ranitidine is an example of one such pharmaceutical chemical found in municipal drinking water, streams, and streambed sediments. It is a histamine H2-receptor antagonist, which inhibits the production of stomach acid and is commonly used to treat peptic ulcers and gastro esophageal reflux disease. Ranitidine is a complex organic compound; it is acidic, highly polar, and has two pKa values of approximately 8.2 and 2.7 because of the amine functional groups. When administered orally 25 - 30% of unchanged ranitidine has been shown to expel through urine. The objective of this research is to establish sorption and transport patterns of ranitidine in natural soils and to determine which soil properties influence these patterns the most. Laboratory experiments were preformed on A-horizon and B-horizon soil samples collected from the relatively undisturbed Francis Marion National Forest, a managed forest near Charleston, SC. The soils were characterized for chemical and physical properties: ranges of clay content = 6-20%, total organic content = 1-8%, and pH = 3.6-4.9. Kinetic reaction rates and equilibrium sorption isotherms were measured using batch experiments, whereas column experiments were used to quantify transport behavior. The reaction rates were -0.22/day and -0.33/day for organic-rich and clay-rich soils, respectively. The kinetic reaction rates were used to determine equilibration times for further equilibrium batch reactor experiments, which have soil solutions spiked with concentrations of ranitidine ranging from 0.1 mg/L to 100 mg/L. The concentration remaining in solution (C, mg/L) was plotted against the concentration in the soil (q, mg/kg) to create sorption isotherms. Ranitidine was more strongly sorbed to B

  14. The role of gut microbiota in the development of type 1, type 2 diabetes mellitus and obesity.

    Science.gov (United States)

    Tai, Ningwen; Wong, F Susan; Wen, Li

    2015-03-01

    Diabetes is a group of metabolic disorders characterized by persistent hyperglycemia and has become a major public health concern. Autoimmune type 1 diabetes (T1D) and insulin resistant type 2 diabetes (T2D) are the two main types. A combination of genetic and environmental factors contributes to the development of these diseases. Gut microbiota have emerged recently as an essential player in the development of T1D, T2D and obesity. Altered gut microbiota have been strongly linked to disease in both rodent models and humans. Both classic 16S rRNA sequencing and shot-gun metagenomic pyrosequencing analysis have been successfully applied to explore the gut microbiota composition and functionality. This review focuses on the association between gut microbiota and diabetes and discusses the potential mechanisms by which gut microbiota regulate disease development in T1D, T2D and obesity.

  15. Soil fertility, humic fractions and natural abundance of "1"3C and "1"5N in soil under different land use in Parana State, Southern Brazil

    International Nuclear Information System (INIS)

    Loss, Arcangelo; Pereia, Marcos Gervasio; Costa, Elias Mendes; Beutler, Sidinei Julio; Piccolo, Marisa de Cassia

    2016-01-01

    Humic fractions of soil organic matter (SOM) and measurements of "1"3C and "1"5N isotope can be used to highlight differences between management systems with different intensities of land use. This study characterized soil fertility, quantified carbon levels in the humic fractions and evaluated the natural abundance of "1"3C and "1"5N in systems cultivated under no-tillage system (NTS) and conventional tillage system (CTS) or used with secondary forest or perennial pasture in Marmeleiro, Parana State, Southern Brazil. NTS was more efficient than the conventional tillage system (CTS) in increasing pH (0.0-0.10 m layer), Ca (0.0-0.05 m layer), P (except 0.05-0.10 m layer) and N (0.0-0.10 m) levels, total organic carbon (TOC) stocks (0.0-0.20 and 0.0-0.40 m layers); carbon of the humin fraction (C-HUM) in 0.0-0.40 m; the fulvic acid fraction (C-FAF) and humic acid (C-HAF) in 0.0-0.05 m. The use of grasses, in NTS and pasture, increased TOC stocks compared to the other soil use or management systems evaluated in the 0.0-0.40 m layer. In the topsoil layer, the anthropogenic influence of plowing and harrowing in CTS promoted greater loss of carbon in C-HUM, C-FAF and C-HAF than NTS, forest and pasture. In CTS, growing corn for 42 years after the removal of forest cover did not alter the "1"3C at 0.0-0.40 m. In pasture, the absence of legumes, constant deposition of cattle manure and a more stable organic matter favored high "1"5N levels (except at 0.0-0.05 m in CTS). The decrease in "1"5N values from the 0.0-0.10 to 0.10-0.20 m layer in CTS indicates that soil turnover (by plowing and harrowing) has the potential to disturb the depth-related variation in soil "1"5N, accelerating decomposition and compromising N transformations. Among the variables analyzed, the determination of carbon in humic fractions and "1"5N values were efficient in identifying soil changes produced by land use or management systems

  16. Natural radioactive environment of urban soils in Shihezi, China

    International Nuclear Information System (INIS)

    Ge Benwei; Liu Anna

    2009-01-01

    Radionuclides, such as 238 U, 232 Th and 40 K, can be found in urban soil. To evaluate the natural radioactivity in the environment, soil samples were collected form Shihezi city and radioisotope concentrations were determined by X-ray fluorescence. The dose rate of urban soil (mGy per year, mGy/a) was calculated. The results indicate that the U, Th and K concentrations of the urban soils were, respectively, 1.2-3.2 mg/kg, 6.4-12.3 mg/kg and 2.05%-2.24%, with the mean values of 2.47 mg/kg, 10.47 mg/kg and 2.16 %. Dose rates of urban soils were 10.04-19.55 mGy/a with the mean value of 16.31 mGy/a. This dose rate is the perfect and maximum value of natural radiation in soil and different with the air absorbed dose rate from terrestrial γ-rays. The mean value of air absorbed dose rate was about 57.42 nGy/h. The annual effective dose rate in air was about 0.07 mSv/a and the average value of Ra eq in urban soil was 120.37 Bq/kg. The relative contribution of α particle to the dose rate is higher than that derived from β- and γ-rays in the urban soils. (authors)

  17. Half-lives of PAHs and temporal microbiota changes in commonly used urban landscaping materials

    Directory of Open Access Journals (Sweden)

    Marja I. Roslund

    2018-03-01

    Full Text Available Background Polycyclic aromatic hydrocarbons (PAHs accumulate in urban soils, and PAH contamination can change soil microbial community composition. Environmental microbiota is associated with human commensal microbiota, immune system and health. Therefore, studies investigating the degradation of PAHs, and the consequences of soil pollution on microbial communities in urban landscaping materials, are crucial. Methods Four landscaping materials (organic matter 1, 2, 13 and 56% were contaminated with PAHs commonly found at urban sites (phenanthrene, fluoranthene, pyrene, chrysene and benzo(bfluoranthene in PAH concentrations that reflect urban soils in Finland (2.4 µg g -1 soil dry weight. PAHs were analyzed initially and after 2, 4, 8 and 12 weeks by gas chromatography-mass spectrometry. Half-lives of PAHs were determined based on 12-weeks degradation. Bacterial communities were analyzed at 1 and 12 weeks after contamination using Illumina MiSeq 16S rRNA gene metabarcoding. Results Half-lives ranged from 1.5 to 4.4 weeks for PAHs with relatively low molecular weights (phenanthrene, fluoranthene and pyrene in landscaping materials containing 1–2% organic matter. In contrast, in materials containing 13% and 56% organic matter, the half-lives ranged from 2.5 to 52 weeks. Shorter half-lives of phenanthrene and fluoranthene were thus associated with low organic matter content. The half-life of pyrene was inversely related to the relative abundance of Beta-, Delta- and Gammaproteobacteria, and diversity of Bacteroidetes and Betaprotebacteria. Compounds with higher molecular weights followed compound-specific patterns. Benzo(bfluoranthene was resistant to degradation and half-life of chrysene was shorter when the relative abundance of Betaproteobacteria was high. Temporal microbiota changes involved increase in the relative abundance of Deltaproteobacteria and decrease in genera Flavobacterium and Rhodanobacter. Exposure to PAHs seems to adjust

  18. Cultured skin microbiota attracts malaria mosquitoes

    Directory of Open Access Journals (Sweden)

    Takken Willem

    2009-12-01

    Full Text Available Abstract Background Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human body odours. It is hypothesized that host attractiveness and selection of An. gambiae is affected by the species composition, density, and metabolic activity of the skin microbiota. A study is presented in which the production and constituency of volatile organic compounds (VOCs by human skin microbiota is examined and the behavioural responses of An. gambiae to VOCs from skin microbiota are investigated. Methods Blood agar plates incubated with skin microbiota from human feet or with a reference strain of Staphylococcus epidermidis were tested for their attractiveness to An. gambiae in olfactometer bioassays and indoor trapping experiments. Entrained air collected from blood agar plates incubated with natural skin microbiota or with S. epidermidis were analysed using GC-MS. A synthetic blend of the compounds identified was tested for its attractiveness to An. gambiae. Behavioural data were analysed by a χ2-test and GLM. GC-MS results were analysed by fitting an exponential regression line to test the effect of the concentration of bacteria. Results More An. gambiae were caught with blood agar plates incubated with skin bacteria than with sterile blood agar plates, with a significant effect of incubation time and dilution of the skin microbiota. When bacteria from the feet of four other volunteers were tested, similar effects were found. Fourteen putative attractants were found in the headspace of the skin bacteria. A synthetic blend of 10 of these was attractive to An. gambiae. Conclusions The discovery that volatiles produced by human skin microorganisms in vitro mediate An. gambiae host-seeking behaviour creates new opportunities for the

  19. Natural and anthropogenic rates of soil erosion

    Directory of Open Access Journals (Sweden)

    Mark A. Nearing

    2017-06-01

    Full Text Available Regions of land that are brought into crop production from native vegetation typically undergo a period of soil erosion instability, and long term erosion rates are greater than for natural lands as long as the land continues being used for crop production. Average rates of soil erosion under natural, non-cropped conditions have been documented to be less than 2 Mg ha−1 yr−1. On-site rates of erosion of lands under cultivation over large cropland areas, such as in the United States, have been documented to be on the order of 6 Mg ha−1 yr−1 or more. In northeastern China, lands that were brought into production during the last century are thought to have average rates of erosion over this large area of as much as 15 Mg ha−1 yr−1 or more. Broadly applied soil conservation practices, and in particular conservation tillage and no-till cropping, have been found to be effective in reducing rates of erosion, as was seen in the United States when the average rates of erosion on cropped lands decreased from on the order of 9 Mg ha−1 yr−1 to 6 or 7 Mg ha−1 yr−1 between 1982 and 2002, coincident with the widespread adoption of new conservation tillage and residue management practices. Taking cropped lands out of production and restoring them to perennial plant cover, as was done in areas of the United States under the Conservation Reserve Program, is thought to reduce average erosion rates to approximately 1 Mg ha−1 yr−1 or less on those lands.

  20. Soil salinization in different natural zones of intermontane depressions in Tuva

    Science.gov (United States)

    Chernousenko, G. I.; Kurbatskaya, S. S.

    2017-11-01

    Soil salinization features in semidesert, dry steppe, and chernozemic steppe zones within intermontane depressions in the central part of the Tuva Republic are discussed. Chernozems, chestnut soils, and brown desert-steppe soils of these zones are usually nonsaline. However, salinization of these zonal soils is possible in the case of the presence of salt-bearing parent materials (usually, the derivatives of Devonian deposits). In different natural zones of the intermontane depressions, salt-affected soils are mainly allocated to endorheic lake basins, where they are formed in places of discharge of mineral groundwater, and to river valleys. The composition and content of salts in the natural waters are dictated by the local hydrogeological conditions. The total content of dissolved solids in lake water varies from 1 to 370 g/L; the water is usually of the sulfate-chloride or chloride-sulfate salinity type; in some cases, soda-sulfate water is present. Soil salinity around the lakes is usually of the chloride-sulfate-sodium type; gypsum is often present in the profiles. Chloride salinization rarely predominates in this part of Tuva, because chlorides are easily leached off from the mainly coarse-textured soils. In some cases, the predominance of magnesium over sodium is observed in the composition of dissolved salts, which may be indicative of the cryogenic transformation of soil salts. Soda-saline soils are present in all the considered natural zones on minor areas. It is hardly possible to make unambiguous statements about the dominance of the particular type of salinity in the given natural zones. Zonal salinity patterns are weakly expressed in salinization of hydromorphic soils. However, a tendency for more frequent occurrence of soda-saline soils in steppe landscapes and chloride-sulfate salinization (often, with participation of gypsum) in the dry steppe and semidesert landscapes is observed.

  1. Interleukin 1α-Deficient Mice Have an Altered Gut Microbiota Leading to Protection from Dextran Sodium Sulfate-Induced Colitis.

    Science.gov (United States)

    Nunberg, Moran; Werbner, Nir; Neuman, Hadar; Bersudsky, Marina; Braiman, Alex; Ben-Shoshan, Moshe; Ben Izhak, Meirav; Louzoun, Yoram; Apte, Ron N; Voronov, Elena; Koren, Omry

    2018-01-01

    Inflammatory bowel diseases (IBD) are a group of chronic inflammatory disorders of the intestine, with as-yet-unclear etiologies, affecting over a million people in the United States alone. With the emergence of microbiome research, numerous studies have shown a connection between shifts in the gut microbiota composition (dysbiosis) and patterns of IBD development. In a previous study, we showed that interleukin 1α (IL-1α) deficiency in IL-1α knockout (KO) mice results in moderate dextran sodium sulfate (DSS)-induced colitis compared to that of wild-type (WT) mice, characterized by reduced inflammation and complete healing, as shown by parameters of weight loss, disease activity index (DAI) score, histology, and cytokine expression. In this study, we tested whether the protective effects of IL-1α deficiency on DSS-induced colitis correlate with changes in the gut microbiota and whether manipulation of the microbiota by cohousing can alter patterns of colon inflammation. We analyzed the gut microbiota composition in both control (WT) and IL-1α KO mice under steady-state homeostasis, during acute DSS-induced colitis, and after recovery using 16S rRNA next-generation sequencing. Additionally, we performed cohousing of both mouse groups and tested the effects on the microbiota and clinical outcomes. We demonstrate that host-derived IL-1α has a clear influence on gut microbiota composition, as well as on severity of DSS-induced acute colon inflammation. Cohousing both successfully changed the gut microbiota composition and increased the disease severity of IL-1α-deficient mice to levels similar to those of WT mice. This study shows a strong and novel correlation between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. IMPORTANCE Here, we show a connection between IL-1α expression, microbiota composition, and clinical outcomes of DSS-induced colitis. Specifically, we show that the mild colitis symptoms seen in IL-1

  2. Metaproteomics of Microbiota in Naturally Fermented Soybean Paste, Da-jiang.

    Science.gov (United States)

    Zhang, Ping; Zhang, Pengfei; Xie, Mengxi; An, Feiyu; Qiu, Boshu; Wu, Rina

    2018-05-01

    Da-jiang is a typical traditional fermented soybean product in China. At present, the proteins in da-jiang are needed to be explored. The composition and species of microbial proteins in traditional fermented da-jiang were analyzed by metaproteomics based on sodium dodecyl sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). The results showed that the number and variety of microbial proteins in the traditional fermented da-jiang from different regions were different. The production site influences the fermentation in da-jiang. Then we analyzed the functions of the microbial proteins identified in da-jiang, and found that they were mainly involved in the process of protein synthesis, glycometabolism and nucleic acid synthesis. In addtion, we compared the proteins composition in different da-jiang. There are 51 common proteins of naturally fermented da-jiang, and 25 common microbial sources. The main commonly microbial sources of fungal proteins are Saccharomyces cerevisiae and Schizosaccharomyces; the main commonly microbial sources of bacterial proteins are Enterococcus faecalis, Leuconostoc mesenteroides, Acinetobacter baumannii, and Bacillus subtilis. These common microbes play the predominant role in da-jiang fermentation. The present results help us to understand the fermentation of da-jiang and improve the quality and safety of final products in the future. The study illustrated metaproteome of microbiota in traditional fermented soybean paste, da-jiang, by sodium dodecyl sulfonate-polyacrylamide gel electrophoresis (SDS-PAGE) and liquid chromatography-mass spectrometry/mass spectrometry (LC-MS/MS). A method of extracting metaproteome from microbiota in da-jiang was attempted. The findings help to understand the fermentation of da-jiang and improve the quality and safety of da-jiang in fermented industry. © 2018 Institute of Food Technologists®.

  3. Impact of the Fenton-like treatment on the microbial community of a diesel-contaminated soil.

    Science.gov (United States)

    Polli, Flavia; Zingaretti, Daniela; Crognale, Silvia; Pesciaroli, Lorena; D'Annibale, Alessandro; Petruccioli, Maurizio; Baciocchi, Renato

    2018-01-01

    Fenton-like treatment (FLT) is an ISCO technique relying on the iron-induced H 2 O 2 activation in the presence of additives aimed at increasing the oxidant lifetime and maximizing iron solubility under natural soil pH conditions. The efficacy of FLT in the clean-up of hydrocarbon-contaminated soils is well established at the field-scale. However, a better assessment of the impact of the FLT on density, diversity and activity of the indigenous soil microbiota, might provide further insights into an optimal combination between FLT and in-situ bioremediation (ISB). The aim of this work was to assess the impacts of FLT on the microbial community of a diesel-contaminated soil collected nearby a gasoline station. Different FLT conditions were tested by varying either the H 2 O 2 concentrations (2 and 6%) or the oxidant application mode (single or double dosage). The impact of these treatments on the indigenous microbial community was assessed immediately after the Fenton-like treatment and after 30, 60 and 90 d and compared with enhanced natural attenuation (ENA). After FLT, a dramatic decrease in bacterial density, diversity and functionality was evident. Although in microcosms with double dosing at 2% H 2 O 2 a delayed recovery of the indigenous microbiota was observed as compared to those subjected to single oxidant dose, after 60 d incubation the respiration rate increased from 0.036 to 0.256 μg CCO 2 g -1 soil h -1 . Irrespective of the oxidant dose, best degradation results after 90 d incubation (around 80%) were observed with combined FLT, relying on double oxidant addition, and bioremediation. Copyright © 2017 Elsevier Ltd. All rights reserved.

  4. Transient and Prolonged Response of Chicken Cecum Mucosa to Colonization with Different Gut Microbiota

    Science.gov (United States)

    Volf, Jiri; Polansky, Ondrej; Varmuzova, Karolina; Gerzova, Lenka; Sekelova, Zuzana; Faldynova, Marcela; Babak, Vladimir; Medvecky, Matej; Smith, Adrian L.; Kaspers, Bernd; Velge, Philippe; Rychlik, Ivan

    2016-01-01

    In this study we determined protein and gene expression in the caeca of newly hatched chickens inoculated with cecal contents sourced from hens of different ages. Over 250 proteins exhibited modified expression levels in response to microbiota inoculation. The most significant inductions were observed for ISG12-2, OASL, ES1, LYG2, DMBT1-L, CDD, ANGPTL6, B2M, CUZD1, IgM and Ig lambda chain. Of these, ISG12-2, ES1 and both immunoglobulins were expressed at lower levels in germ-free chickens compared to conventional chickens. In contrast, CELA2A, BRT-2, ALDH1A1, ADH1C, AKR1B1L, HEXB, ALDH2, ALDOB, CALB1 and TTR were expressed at lower levels following inoculation of microbiota. When chicks were given microbiota preparations from different age donors, the recipients mounted differential responses to the inoculation which also differed from the response profile in naturally colonised birds. For example, B2M, CUZD1 and CELA2A responded differently to the inoculation with microbiota of 4- or 40-week-old hens. The increased or decreased gene expression could be recorded 6 weeks after the inoculation of newly hatched chickens. To characterise the proteins that may directly interact with the microbiota we characterised chicken proteins that co-purified with the microbiota and identified a range of host proteins including CDD, ANGPTL6, DMBT1-L, MEP1A and Ig lambda. We propose that induction of ISG12-2 results in reduced apoptosis of host cells exposed to the colonizing commensal microbiota and that CDD, ANGPTL6, DMBT1-L, MEP1A and Ig lambda reduce contact of luminal microbiota with the gut epithelium thereby reducing the inflammatory response. PMID:27685470

  5. Establishment of normal gut microbiota is compromised under excessive hygiene conditions.

    Directory of Open Access Journals (Sweden)

    Bettina Schmidt

    Full Text Available BACKGROUND: Early gut colonization events are purported to have a major impact on the incidence of infectious, inflammatory and autoimmune diseases in later life. Hence, factors which influence this process may have important implications for both human and animal health. Previously, we demonstrated strong influences of early-life environment on gut microbiota composition in adult pigs. Here, we sought to further investigate the impact of limiting microbial exposure during early life on the development of the pig gut microbiota. METHODOLOGY/PRINCIPAL FINDINGS: Outdoor- and indoor-reared animals, exposed to the microbiota in their natural rearing environment for the first two days of life, were transferred to an isolator facility and adult gut microbial diversity was analyzed by 16S rRNA gene sequencing. From a total of 2,196 high-quality 16S rRNA gene sequences, 440 phylotypes were identified in the outdoor group and 431 phylotypes in the indoor group. The majority of clones were assigned to the four phyla Firmicutes (67.5% of all sequences, Proteobacteria (17.7%, Bacteroidetes (13.5% and to a lesser extent, Actinobacteria (0.1%. Although the initial maternal and environmental microbial inoculum of isolator-reared animals was identical to that of their naturally-reared littermates, the microbial succession and stabilization events reported previously in naturally-reared outdoor animals did not occur. In contrast, the gut microbiota of isolator-reared animals remained highly diverse containing a large number of distinct phylotypes. CONCLUSIONS/SIGNIFICANCE: The results documented here indicate that establishment and development of the normal gut microbiota requires continuous microbial exposure during the early stages of life and this process is compromised under conditions of excessive hygiene.

  6. Correlations between Natural Radionuclide Concentrations in Soil and Vine-Growth Potential

    International Nuclear Information System (INIS)

    Modisane, T.G.D.

    2008-01-01

    Stellenbosch district is known as one of the best wine-producing regions in South Africa and lies 45 km east of Cape Town. It has a large number of estates, of which one of them was earmarked for vineyard development and is of much importance to this study. Soil plays an important role in the development of the vine and ultimately the grapes harvested from the vine. It is therefore important to characterise vineyard soils (quantitatively and qualitatively) and to study the impact of soil properties on the vine. These properties include among others and of importance to this study, the soil ph, concentrations of trace elements, clay content and natural radioactivity concentrations (1). In this study correlations between radiometric data and traditional chemical data in vineyard soils used to infer growth potential were studied. Discussed below are experimental techniques used in the determination of activity concentration of natural radionuclide ( 40 K, 232 Th and 238 U) in soil, data analysis, results and conclusions

  7. Comparative assessment of the effect of synthetic and natural fungicides on soil respiration.

    Science.gov (United States)

    Stefani, Angelo; Felício, Joanna D'Arc; de Andréa, Mara M

    2012-01-01

    As toxic pesticide residues may persist in agricultural soils and cause environmental pollution, research on natural fungicides to replace the synthetic compounds is currently increasing. The effect of the synthetic fungicide chlorothalonil and a natural potential fungicide on the soil microbial activity was evaluated here by the substrate-induced respiration by addition of glucose (SIR), as bioindicator in two soils (Eutrophic Humic Gley-GHE and Typic Eutroferric Chernosol-AVEC). The induced soil respiration parameter was followed during 28 days after soil treatment either with chlorathalonil (11 μg·g(-1)), or the methanolic fraction from Polymnia sonchifolia extraction (300 μg·g(-1)), and (14)C-glucose (4.0 mg and 5.18 Bq of (14)C-glucose g(-1)). The (14)C-CO(2) produced by the microbial respiration was trapped in NaOH (0.1 M) which was changed each two hours during the first 10 h, and 1, 3, 5, 7, 14 and 28 days after the treatments. The methanolic fraction of the plant extract inhibited (2.2%) and stimulated (1.8%) the respiration of GHE and AVEC, respectively, but the synthetic chlorothalonil caused 16.4% and 2.6% inhibition of the respiration, respectively of the GHE and AVEC soils. As the effects of the natural product were statistically small, this bioindicator indicates that the methanolic fraction of the Polymnia sonchifolia extract, which has fungicide properties, has no environmental effects.

  8. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Science.gov (United States)

    Zhu, Yong; Jiang, Wanlu; Kong, Xiangdong; Quan, Lingxiao; Zhang, Yongshun

    2017-10-01

    To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA) with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as "winner-take-all" and the update mechanism as "survival of the fittest" were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  9. Soil dehydrogenase activity of natural macro aggregates in a toposequence of forest soil

    Directory of Open Access Journals (Sweden)

    Maira Kussainova

    2013-01-01

    Full Text Available The main objective of this study was to determine changes in soil dehydrogenase activity in natural macro aggregates development along a slope in forest soils. This study was carried out in Kocadag, Samsun, Turkey. Four landscape positions i.e., summit, shoulder backslope and footslope, were selected. For each landseape position, soil macro aggregates were separated into six aggregate size classes using a dry sieving method and then dehydrogenase activity was analyzed. In this research, topography influenced the macroaggregate size and dehydrogenase activity within the aggregates. At all landscape positions, the contents of macro aggregates (especially > 6.3 mm and 2.00–4.75 mm in all soil samples were higher than other macro aggregate contents. In footslope position, the soils had generally the higher dehydrogenase activity than the other positions at all landscape positions. In all positions, except for shoulder, dehydrogenase activity was greater macro aggregates of <1 mm than in the other macro aggregate size.

  10. SoilGrids1km--global soil information based on automated mapping.

    Directory of Open Access Journals (Sweden)

    Tomislav Hengl

    Full Text Available BACKGROUND: Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. METHODOLOGY/PRINCIPAL FINDINGS: We present SoilGrids1km--a global 3D soil information system at 1 km resolution--containing spatial predictions for a selection of soil properties (at six standard depths: soil organic carbon (g kg-1, soil pH, sand, silt and clay fractions (%, bulk density (kg m-3, cation-exchange capacity (cmol+/kg, coarse fragments (%, soil organic carbon stock (t ha-1, depth to bedrock (cm, World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles, and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images, lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database. Prediction accuracies assessed using 5-fold cross-validation were between 23-51%. CONCLUSIONS/SIGNIFICANCE: SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1 weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2 difficulty to obtain covariates that capture soil forming factors, (3 low sampling density and spatial clustering of soil profile locations. However, as the SoilGrids system is

  11. Soil organic carbon stocks assessment in Mediterranean natural areas: a comparison of entire soil profiles and soil control sections.

    Science.gov (United States)

    Parras-Alcántara, L; Lozano-García, B; Brevik, E C; Cerdá, A

    2015-05-15

    Soil organic carbon (SOC) is an important part of the global carbon (C) cycle. In addition, SOC is a soil property subject to changes and highly variable in space and time. Over time, some researches have analyzed entire soil profile (ESP) by pedogenetic horizons and other researches have analyzed soil control sections (SCS) to different thickness. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km(2) forested area in southern Spain. Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The soils investigated in this study included Phaeozems, Cambisols, Regosols and Leptosols. Total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C (10,604.2 Mg km(-2)) to 0.6353 Tg C (8272.1 Mg km(-2)) respectively (1 Tg = 10(12) g). However, when the topsoil (surface horizon and superficial section control) was analyzed, this difference increased to 59.8% in SCS compared to ESP. The comparison between ESP and SCS showed the effect of mixing pedogenetic horizons when depth increments were analyzed. This indicates an overestimate of T-SOCS when sampling by SCS. Copyright © 2015 Elsevier Ltd. All rights reserved.

  12. Broad spectrum antibiotic enrofloxacin modulates contact sensitivity through gut microbiota in a murine model.

    Science.gov (United States)

    Strzępa, Anna; Majewska-Szczepanik, Monika; Lobo, Francis M; Wen, Li; Szczepanik, Marian

    2017-07-01

    Medical advances in the field of infection therapy have led to an increasing use of antibiotics, which, apart from eliminating pathogens, also partially eliminate naturally existing commensal bacteria. It has become increasingly clear that less exposure to microbiota early in life may contribute to the observed rise in "immune-mediated" diseases, including autoimmunity and allergy. We sought to test whether the change of gut microbiota with the broad spectrum antibiotic enrofloxacin will modulate contact sensitivity (CS) in mice. Natural gut microbiota were modified by oral treatment with enrofloxacin prior to sensitization with trinitrophenyl chloride followed by CS testing. Finally, adoptive cell transfers were performed to characterize the regulatory cells that are induced by microbiota modification. Oral treatment with enrofloxacin suppresses CS and production of anti-trinitrophenyl chloride IgG1 antibodies. Adoptive transfer experiments show that antibiotic administration favors induction of regulatory cells that suppress CS. Flow cytometry and adoptive transfer of purified cells show that antibiotic-induced suppression of CS is mediated by TCR αβ + CD4 + CD25 + FoxP3 + Treg, CD19 + B220 + CD5 + IL-10 + , IL-10 + Tr1, and IL-10 + TCR γδ + cells. Treatment with the antibiotic induces dysbiosis characterized by increased proportion of Clostridium coccoides (cluster XIVa), C coccoides-Eubacterium rectale (cluster XIVab), Bacteroidetes, and Bifidobacterium spp, but decreased segmented filamentous bacteria. Transfer of antibiotic-modified gut microbiota inhibits CS, but this response can be restored through oral transfer of control gut bacteria to antibiotic-treated animals. Oral treatment with a broad spectrum antibiotic modifies gut microbiota composition and promotes anti-inflammatory response, suggesting that manipulation of gut microbiota can be a powerful tool to modulate the course of CS. Copyright © 2017 American Academy of Allergy, Asthma & Immunology

  13. Biochar for soil fertility and natural carbon sequestration

    Science.gov (United States)

    Rostad, C.E.; Rutherford, D.W.

    2011-01-01

    Biochar is charcoal (similar to chars generated by forest fires) that is made for incorporation into soils to increase soil fertility while providing natural carbon sequestration. The incorporation of biochar into soils can preserve and enrich soils and also slow the rate at which climate change is affecting our planet. Studies on biochar, such as those cited by this report, are applicable to both fire science and soil science.

  14. Sorption and Transport of Sildenafil in Natural Soils

    Science.gov (United States)

    Boudinot, F. G.; Vulava, V. M.

    2013-12-01

    Pharmaceutical Chemicals (PCs) mainly enter our ecosystems from discharges of treated wastewater and have direct effects on the ecological health of that area. Sildenafil citrate (Viagra) is one such PC, whose presence has been reported in stream waters. Although one study has shown that sildenafil is not harmful in bacterial and fungal environments, there remains much unknown about its fate elsewhere in ecosystems. Sildenafil is a complex organic molecule with two amino functional groups that result in pKa's of 7.27 and 5.97. It also has a high solubility of 3.5 g/L. Given that sildenafil consumption (and concurrently disposal) is on the rise, it is essential that its behavior in the natural environment be better understood. The goal of this study was to quantify the sorption and transport behavior of sildenafil in differing natural soils with varying compositions. Pristine A- and B- horizon soil samples from several soil series were collected in a managed forest near Charleston, SC and used for these studies. The soils were characterized for physical and chemical properties: soil organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 4-5. These soils were then used to perform kinetic reaction, sorption, and column transport experiments. Batch kinetic experiments showed a fast reaction rate in both clay-rich and organic-rich soils and an equilibration time of less than 24 hours. Batch reactor sorption experiments provided data for sorption isotherms (plot of sildenafil in solution, C vs. sildenafil sorbed in soil, q) which were nonlinear. The isotherms were fit using Freundlich model (q=KfCn, where Kf and n are fitting parameters). Sildenafil sorbed more strongly to clay-rich soils compared with organic-rich soils with less clay. It is hypothesized that permanent negative charge on clay mineral surfaces form ionic bonds with positively charged amines in sildenafil in acidic pHs. Transport experiments were conducted using

  15. Natural radioactivity in soil around Baoji coal-fired power plant

    International Nuclear Information System (INIS)

    Wang Lingqing; Lu Xinwei; Jia Xiaodan; Wang Fengling

    2007-01-01

    Based on systematic sampling of soil around the Baoji coal-fired power plant, the activity concentrations of the natural radionuclides 226 Ra, 232 Th and 40 K were determined using γ-ray spectrometry. Each eight soil samples were collected within the range of 1 km of the plant, and at a distance of 1 and 3 km from the plant, respectively. Two layers of soil sample [0-25cm(layer A), 25cm-50cm(layer B)] were collected at each location. The concentrations of these radionuclides are different horizontally and vertically. The measured specific activity of 226 Ra, 232 Th and 40 K were compared with the average activity of other cities in Shaanxi soil. The results show that 226 Ra concentrations in layer A were higher than those in layer B and concentrations of 232 Th and 40 K in layer B were greater than those in layer A in soil samples collected at 1 km. (authors)

  16. The methane sink associated to soils of natural and agricultural ecosystems in Italy.

    Science.gov (United States)

    Castaldi, Simona; Costantini, Massimo; Cenciarelli, Pietro; Ciccioli, Paolo; Valentini, Riccardo

    2007-01-01

    In the present work, the CH4 sink associated to Italian soils was calculated by using a process-based model controlled by gas diffusivity and microbial activity, which was run by using a raster-based geographical information system. Georeferenced data included land cover CLC2000, soil properties from the European Soil Database, climatic data from the MARS-STAT database, plus several derived soils properties based on published algorithms applied to the above mentioned databases. Overall CH4 consumption from natural and agricultural sources accounted for a total of 43.3 Gg CH4 yr(-1), with 28.1 Gg CH4 yr(-1) removed in natural ecosystems and 15.1 Gg CH4 yr(-1) in agricultural ecosystems. The highest CH4 uptake rates were obtained for natural areas of Southern Apennines and islands of Sardinia and Sicily, and were mainly associated to areas covered by sclerophyllous vegetation (259.7+/-30.2 mg CH4 m(-2) yr(-1)) and broad-leaved forest (237.5 mg CH4 m(-2) yr(-1)). In terms of total sink strength broad-leaved forests were the dominant ecosystem. The overall contribution of each ecosystem type to the whole CH4 sink depended on the total area covered by the specific ecosystem and on its exact geographic distribution. The latter determines the type of climate present in the area and the dominant soil type, both factors which showed to have a strong influence on CH4 uptake rates. The aggregated CH4 sink, calculated for natural ecosystems present in the Italian region, is significantly higher than previously reported estimates, which were extrapolated from fluxes measured in other temperate ecosystems.

  17. Commensal microbiota contributes to chronic endocarditis in TAX1BP1 deficient mice.

    Directory of Open Access Journals (Sweden)

    Satoko Nakano

    Full Text Available Tax1-binding protein 1 (Tax1bp1 negatively regulates NF-κB by editing the ubiquitylation of target molecules by its catalytic partner A20. Genetically engineered TAX1BP1-deficient (KO mice develop age-dependent inflammatory constitutions in multiple organs manifested as valvulitis or dermatitis and succumb to premature death. Laser capture dissection and gene expression microarray analysis on the mitral valves of TAX1BP1-KO mice (8 and 16 week old revealed 588 gene transcription alterations from the wild type. SAA3 (serum amyloid A3, CHI3L1, HP, IL1B and SPP1/OPN were induced 1,180-, 361-, 187-, 122- and 101-fold respectively. WIF1 (Wnt inhibitory factor 1 exhibited 11-fold reduction. Intense Saa3 staining and significant I-κBα reduction were reconfirmed and massive infiltration of inflammatory lymphocytes and edema formation were seen in the area. Antibiotics-induced 'germ free' status or the additional MyD88 deficiency significantly ameliorated TAX1BP1-KO mice's inflammatory lesions. These pathological conditions, as we named 'pseudo-infective endocarditis' were boosted by the commensal microbiota who are usually harmless by their nature. This experimental outcome raises a novel mechanistic linkage between endothelial inflammation caused by the ubiquitin remodeling immune regulators and fatal cardiac dysfunction.

  18. Bioaugmentation of thiabendazole-contaminated soils from a wastewater disposal site: Factors driving the efficacy of this strategy and the diversity of the indigenous soil bacterial community.

    Science.gov (United States)

    Papadopoulou, Evangelia S; Genitsaris, Savvas; Omirou, Michalis; Perruchon, Chiara; Stamatopoulou, Anastasia; Ioannides, Ioannis; Karpouzas, Dimitrios G

    2018-02-01

    The application of the fungicide thiabendazole (TBZ) in fruit packaging plants (FPP) results in the production of effluents which are often disposed in adjacent field sites. These require remediation to prevent further environmental dispersal of TBZ. We assessed the bioaugmentation potential of a newly isolated TBZ-degrading bacterial consortium in a naturally contaminated soil (NCS) exhibiting a natural gradient of TBZ levels (12000, 400, 250 and 12 mg kg -1 ). The effect of aging on bioaugmentation efficacy was comparatively tested in a soil with similar physicochemical properties and soil microbiota, which was artificially, contaminated with the same TBZ levels (ACS). The impact of bioaugmentation and TBZ on the bacterial diversity in the NCS was explored via amplicon sequencing. Bioaugmentation effectively removed TBZ from both soils at levels up to 400 mg kg -1 but failed at the highest contamination level (12000 mg kg -1 ). Dissipation of TBZ in bioaugmented samples showed a concentration-dependent pattern, while aging of TBZ had a slight effect on bioaugmentation efficiency. Bioaugmentation had no impact on the soil bacterial diversity, in contrast to TBZ contamination. Soils from the hotspots of TBZ contamination (12000 mg kg -1 ) showed a drastically lower α-diversity driven by the dominance of β- and γ-proteobacteria at the expense of all other bacterial phyla, especially Actinobacteria. Overall, bioaugmentation with specialized microbial inocula could be an effective solution for the recovery of disposal sites contaminated with persistent chemicals like TBZ. Copyright © 2017 Elsevier Ltd. All rights reserved.

  19. The impact of the postnatal gut microbiota on animal models

    DEFF Research Database (Denmark)

    Hansen, Axel Jacob Kornerup; Ejsing-Duun, Maria; Aasted, Bent

    2007-01-01

    Quality control of laboratory animals has been mostly concentrated on eliminating and securing the absence of specific infections, but event barrier bred laboratory animals harbour a huge number of gut bacteria. There is scientific evidence that the nature of the gut microbiota especially in early...... correlated to factors related to early exposure to microorganisms, e.g. the so-called hygiene hypothesis claims that the increasing human incidence of allergy. T1D, RA and IBD may be due to the lack of such exposure. It is possible today by various molecular techniques to profile the gut microbiota...

  20. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    International Nuclear Information System (INIS)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-01-01

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm 3 g −1 and 76.9 m 2 g −1 , respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl 2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments

  1. Enhanced Trapping of HIV-1 by Human Cervicovaginal Mucus Is Associated with Lactobacillus crispatus-Dominant Microbiota

    Science.gov (United States)

    Nunn, Kenetta L.; Wang, Ying-Ying; Harit, Dimple; Humphrys, Michael S.; Ma, Bing; Cone, Richard; Ravel, Jacques

    2015-01-01

    ABSTRACT Cervicovaginal mucus (CVM) can provide a barrier that precludes HIV and other sexually transmitted virions from reaching target cells in the vaginal epithelium, thereby preventing or reducing infections. However, the barrier properties of CVM differ from woman to woman, and the causes of these variations are not yet well understood. Using high-resolution particle tracking of fluorescent HIV-1 pseudoviruses, we found that neither pH nor Nugent scores nor total lactic acid levels correlated significantly with virus trapping in unmodified CVM from diverse donors. Surprisingly, HIV-1 was generally trapped in CVM with relatively high concentrations of d-lactic acid and a Lactobacillus crispatus-dominant microbiota. In contrast, a substantial fraction of HIV-1 virions diffused rapidly through CVM with low concentrations of d-lactic acid that had a Lactobacillus iners-dominant microbiota or significant amounts of Gardnerella vaginalis, a bacterium associated with bacterial vaginosis. Our results demonstrate that the vaginal microbiota, including specific species of Lactobacillus, can alter the diffusional barrier properties of CVM against HIV and likely other sexually transmitted viruses and that these microbiota-associated changes may account in part for the elevated risks of HIV acquisition linked to bacterial vaginosis or intermediate vaginal microbiota. PMID:26443453

  2. Microbial activities in soil near natural gas leaks

    Energy Technology Data Exchange (ETDEWEB)

    Adamse, A D; Hoeks, J; de Bont, J A.M.

    1971-01-01

    Gas leaks cause the death of more than half the trees that perish in the streets since natural gas has been distributed in the Netherlands. Measurements performed in pot experiments, in which a sandy soil was supplied with a constant stream of a mixture of natural gas and air, proved that gas components, such as methane (81.6%), ethane (2.7%), propane (0.37%), were oxidized. Consumption of methane and oxygen, and production of carbon dioxide could be clearly demonstrated. Oxidation of methane started after an extended lag phase during which propane and ethane were found to be consumed. Methane oxidation was demonstrated by a sharp rise of the oxygen-consumption curve, followed by a fall until it became rather constant. After the gas supply had been stopped, a long recovery period was found to be needed for restoring the normal oxygen consumption of the soil. The rate of oxidation was subject to seasonal differences in temperature. Counts of bacteria in soil were carried out using Oxiod membrane filters on Whatman paper discs soaked with a basic salts solutions according to Leadbetter and Foster (1958) or on soil-extract agar plates. Incubation temperature was 30C. The presence of natural gas in soil resulted in an adaptation of the aerobic microflora to this substrate. Moreover, it stimulated the total aerobic microflora as counted on soil-extract agar plates.

  3. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils

    Energy Technology Data Exchange (ETDEWEB)

    Ye, Xinxin, E-mail: xxye@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Kang, Shenghong; Wang, Huimin [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Li, Hongying [Institute of Soil and Fertilizer, Anhui Academy of Agricultural Sciences, Hefei 230031 (China); Zhang, Yunxia [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Wang, Guozhong, E-mail: gzhwang@issp.ac.cn [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Zhao, Huijun [Key Laboratory of Materials Physics, Centre for Environmental and Energy Nanomaterials, Anhui Key Laboratory of Nanomaterials and Nanotechnology, Institute of Solid State Physics, Chinese Academy of Sciences, Hefei 230031 (China); Centre for Clean Environment and Energy, Gold Coast Campus, Griffith University, Queensland 4222 (Australia)

    2015-05-30

    Highlights: • We modify natural diatomite using the facile acid treatment and ultrasonication. • Modification add pore volume, surface area and electronegativity of natural diatomite. • Modified diatomite is superior to natural diatomite in soil heavy metal remediation. • Modified diatomite can be promising for in-situ immobilization of heavy metal in soil. - Abstract: Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm{sup 3} g{sup −1} and 76.9 m{sup 2} g{sup −1}, respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl{sub 2} extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (P < 0.05) in 5.0% modified diatomite-amended soils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments.

  4. Implementation of a monitoring protocol for the natural attenuation of soil

    International Nuclear Information System (INIS)

    Setier, J.C.; Pornain, J.L.; Millette, D.; Perie, F.; Deschenes, L.; Samson, R.

    2005-01-01

    Large quantities of hydrocarbons are extracted, produced, refined, and transported each year. Despite environmental procedures that are used in industry, the risk of environmental degradation cannot be avoided. Furthermore, aging installations can also present residual contamination. Some of these sites must be decontaminated to residual levels of soil contaminants that are established through discussions with national authorities. These levels are set with respect to the intended use of the site. For several years now, the evaluation of the risk of a contaminant in a particular environment must take into account land use. For certain sites that do not present direct risks for the surrounding environment, natural attenuation offers an interesting alternative to costly remediation strategies. In order to determine whether natural attenuation is a technique suited for soil restoration, TOTAL Exploration Production launched a research project on natural attenuation in 1997. By natural attenuation, we refer to all the processes that act to reduce the concentrations of contaminants in soil (i.e. biotic and abiotic mechanisms). The research project consists of two main components: - The development of decision-making tools designed to evaluate the potential for natural attenuation of hydrocarbons. These software programs, named SITE I and SITE II and developed by the Industrial Chair in Site Remediation and Management of the Ecole Polytechnique de Montreal take into account microbial and biotic processes involved the natural attenuation of contaminants in groundwater (SITE I) and soil (SITE II). - The set-up of a pilot-scale demonstration of natural attenuation in soils within the vadose zone at a refinery belonging to the TOTAL group. This pilot project, done in collaboration with the NSERC Industrial Chair in Site Remediation and Management of the Ecole Polytechnique de Montreal, has the following objectives : 1. Evaluation of the feasibility of natural attenuation as

  5. Radiometric assessment of natural radioactivity levels of agricultural soil samples collected in Dakahlia, Egypt.

    Science.gov (United States)

    Issa, Shams A M

    2013-01-01

    Determination of the natural radioactivity has been carried out, by using a gamma-ray spectrometry [NaI (Tl) 3″ × 3″] system, in surface soil samples collected from various locations in Dakahlia governorate, Egypt. These locations form the agriculturally important regions of Egypt. The study area has many industries such as chemical, paper, organic fertilisers and construction materials, and the soils of the study region are used as a construction material. Therefore, it becomes necessary to study the natural radioactivity levels in soil to assess the dose for the population in order to know the health risks. The activity concentrations of (226)Ra, (232)Th and (40)K in the soil ranged from 5.7 ± 0.3 to 140 ± 7, from 9.0 ± 0.4 to 139 ± 7 and from 22 ± 1 to 319 ± 16 Bq kg(-1), respectively. The absorbed dose rate, annual effective dose rate, radium equivalent (Req), excess lifetime cancer risk, hazard indices (Hex and Hin) and annual gonadal dose equivalent, which resulted from the natural radionuclides in the soil were calculated.

  6. Efficacy of Natural Polymer Derivatives on Soil Physical Properties and Erosion on an Experimental Loess Hillslope.

    Science.gov (United States)

    Liu, Jun'e; Wang, Zhanli; Li, Yuanyuan

    2017-12-22

    Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162) on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m²), three rainfall intensities (1, 1.5 and 2 mm/min) and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S.

  7. Efficacy of Natural Polymer Derivatives on Soil Physical Properties and Erosion on an Experimental Loess Hillslope

    Directory of Open Access Journals (Sweden)

    Jun’e Liu

    2017-12-01

    Full Text Available Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162 on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m2, three rainfall intensities (1, 1.5 and 2 mm/min and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S.

  8. Efficacy of Natural Polymer Derivatives on Soil Physical Properties and Erosion on an Experimental Loess Hillslope

    Science.gov (United States)

    Liu, Jun’e; Wang, Zhanli; Li, Yuanyuan

    2017-01-01

    Raindrops disperse large soil aggregates into smaller particles, which can clog soil pores, cause soil crusting, reduce rainfall infiltration and increase soil loss. It was found that natural polymer derivatives were effective in improving soil physical properties and decreasing soil erosion on an experimental loess hillslope. This study investigated the effect of new natural polymer derivatives (Jag S and Jag C162) on soil properties, rainfall infiltration and sediment yield at four rates of sprayed polymers (0, 1, 3 and 5 g/m2), three rainfall intensities (1, 1.5 and 2 mm/min) and a slope gradient of 15° with a silt loam soil through simulated rain. The results showed that both Jag S and Jag C162 significantly increased the shear strength and improved the aggregates composition of the soil surface. The water-stable soil aggregates >0.25 mm increased from 9% to 50% with increasing rates of Jag S and Jag C162. Jag S and Jag C162 also effectively increased rainfall infiltration and final infiltration rate, and reduced erosion compared to controls without natural polymer derivatives added. However, higher rates of Jag S produced lower infiltration rates. Although both Jag S and Jag C162 effectively influenced soil physical properties and erosion, the effect of Jag C162 was more significant than that of Jag S. PMID:29271899

  9. Beyond genetics. Influence of dietary factors and gut microbiota on type 1 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Dennis Sandris; Krych, Lukasz; Buschard, Karsten

    2014-01-01

    Type 1 diabetes (T1D) is an autoimmune disease ultimately leading to destruction of insulin secreting β-cells in the pancreas. Genetic susceptibility plays an important role in T1D etiology, but even mono-zygotic twins only have a concordance rate of around 50%, underlining that other factors than...... purely genetic are involved in disease development. Here we review the influence of dietary and environmental factors on T1D development in humans as well as animal models. Even though data are still inconclusive, there are strong indications that gut microbiota dysbiosis plays an important role in T1D...... development and evidence from animal models suggests that gut microbiota manipulation might prove valuable in future prevention of T1D in genetically susceptible individuals....

  10. Revealing structure and assembly cues for Arabidopsis root-inhabiting bacterial microbiota.

    Science.gov (United States)

    Bulgarelli, Davide; Rott, Matthias; Schlaeppi, Klaus; Ver Loren van Themaat, Emiel; Ahmadinejad, Nahal; Assenza, Federica; Rauf, Philipp; Huettel, Bruno; Reinhardt, Richard; Schmelzer, Elmon; Peplies, Joerg; Gloeckner, Frank Oliver; Amann, Rudolf; Eickhorst, Thilo; Schulze-Lefert, Paul

    2012-08-02

    The plant root defines the interface between a multicellular eukaryote and soil, one of the richest microbial ecosystems on Earth. Notably, soil bacteria are able to multiply inside roots as benign endophytes and modulate plant growth and development, with implications ranging from enhanced crop productivity to phytoremediation. Endophytic colonization represents an apparent paradox of plant innate immunity because plant cells can detect an array of microbe-associated molecular patterns (also known as MAMPs) to initiate immune responses to terminate microbial multiplication. Several studies attempted to describe the structure of bacterial root endophytes; however, different sampling protocols and low-resolution profiling methods make it difficult to infer general principles. Here we describe methodology to characterize and compare soil- and root-inhabiting bacterial communities, which reveals not only a function for metabolically active plant cells but also for inert cell-wall features in the selection of soil bacteria for host colonization. We show that the roots of Arabidopsis thaliana, grown in different natural soils under controlled environmental conditions, are preferentially colonized by Proteobacteria, Bacteroidetes and Actinobacteria, and each bacterial phylum is represented by a dominating class or family. Soil type defines the composition of root-inhabiting bacterial communities and host genotype determines their ribotype profiles to a limited extent. The identification of soil-type-specific members within the root-inhabiting assemblies supports our conclusion that these represent soil-derived root endophytes. Surprisingly, plant cell-wall features of other tested plant species seem to provide a sufficient cue for the assembly of approximately 40% of the Arabidopsis bacterial root-inhabiting microbiota, with a bias for Betaproteobacteria. Thus, this root sub-community may not be Arabidopsis-specific but saprophytic bacteria that would naturally be found

  11. Soil Properties and Plant Biomass Production in Natural Rangeland Management Systems

    Directory of Open Access Journals (Sweden)

    Romeu de Souza Werner

    Full Text Available ABSTRACT Improper management of rangelands can cause land degradation and reduce the economic efficiency of livestock activity. The aim of this study was to evaluate soil properties and quantify plant biomass production in four natural rangeland management systems in the Santa Catarina Plateau (Planalto Catarinense of Brazil. The treatments, which included mowed natural rangeland (NR, burned natural rangeland (BR, natural rangeland improved through the introduction of plant species after harrowing (IH, and natural rangeland improved through the introduction of plant species after chisel plowing (IC, were evaluated in a Nitossolo Bruno (Nitisol. In the improved treatments, soil acidity was corrected, phosphate fertilizer was applied, and intercropped annual ryegrass (Lolium multiflorum, velvet grass (Holcus lanatus, and white clover (Trifolium repens were sown. Management systems with harrowed or chisel plowed soil showed improved soil physical properties; however, the effect decreased over time and values approached those of burned and mowed natural rangelands. Natural rangeland systems in the establishment phase had little influence on soil organic C. The mowed natural rangeland and improved natural rangeland exhibited greater production of grazing material, while burning the field decreased production and increased the proportion of weeds. Improvement of the natural rangelands increased leguminous biomass for pasture.

  12. Individual diet has sex-dependent effects on vertebrate gut microbiota

    Science.gov (United States)

    Bolnick, Daniel I.; Snowberg, Lisa K.; Hirsch, Philipp E.; Lauber, Christian L.; Org, Elin; Parks, Brian; Lusis, Aldons J.; Knight, Rob; Caporaso, J. Gregory; Svanbäck, Richard

    2014-01-01

    Vertebrates harbour diverse communities of symbiotic gut microbes. Host diet is known to alter microbiota composition, implying that dietary treatments might alleviate diseases arising from altered microbial composition (‘dysbiosis’). However, it remains unclear whether diet effects are general or depend on host genotype. Here we show that gut microbiota composition depends on interactions between host diet and sex within populations of wild and laboratory fish, laboratory mice and humans. Within each of two natural fish populations (threespine stickleback and Eurasian perch), among-individual diet variation is correlated with individual differences in gut microbiota. However, these diet–microbiota associations are sex dependent. We document similar sex-specific diet–microbiota correlations in humans. Experimental diet manipulations in laboratory stickleback and mice confirmed that diet affects microbiota differently in males versus females. The prevalence of such genotype by environment (sex by diet) interactions implies that therapies to treat dysbiosis might have sex-specific effects. PMID:25072318

  13. MICROMICETES QUANTITY AND BIOMASS IN TECHNOGENIC AND NATURAL SOILS

    Directory of Open Access Journals (Sweden)

    O. N. Korinovskaya

    2014-08-01

    Krivorozhskiy Surikovyy Zavod» the fungal mycelium length and biomass were in 1.2-1.4 times and the spores amount and biomass – in 1.5-1.7 times less than in the natural soil. Key words: mycromycetes, contamination, soil, quantity, biomass, heavy metals.

  14. Correlation between soil parameters and natural radioactivity

    International Nuclear Information System (INIS)

    Jasinska, M.; Niewiadomski, T.; Schwabenthan, J.

    1982-01-01

    It has been suggested that a linear correlation exists between the concentration of natural elements U-238, Th-232 and K-40 contained in the upper layer of the soil, and the fraction (by weight) of particles of diameter less than 0.02 mm, i.e. the soil's mechanical composition. This hypothesis has been verified on a larger and statistically significant material of soils frequently occurring in Poland: chernozem, podzolic, muds, and anthropogenic, where for a given soil type, samples were chosen to represent various mechanical compositions. And it is concluded that the radioactivity concentrations of the head elements in the soil depend on its mechanical composition rather than on the type of soil. Thus, in principle, one is able to estimate dose rates from terrestrial sources directly from soil maps, without the need for outdoor measurements

  15. A chaos wolf optimization algorithm with self-adaptive variable step-size

    Directory of Open Access Journals (Sweden)

    Yong Zhu

    2017-10-01

    Full Text Available To explore the problem of parameter optimization for complex nonlinear function, a chaos wolf optimization algorithm (CWOA with self-adaptive variable step-size was proposed. The algorithm was based on the swarm intelligence of wolf pack, which fully simulated the predation behavior and prey distribution way of wolves. It possessed three intelligent behaviors such as migration, summons and siege. And the competition rule as “winner-take-all” and the update mechanism as “survival of the fittest” were also the characteristics of the algorithm. Moreover, it combined the strategies of self-adaptive variable step-size search and chaos optimization. The CWOA was utilized in parameter optimization of twelve typical and complex nonlinear functions. And the obtained results were compared with many existing algorithms, including the classical genetic algorithm, the particle swarm optimization algorithm and the leader wolf pack search algorithm. The investigation results indicate that CWOA possess preferable optimization ability. There are advantages in optimization accuracy and convergence rate. Furthermore, it demonstrates high robustness and global searching ability.

  16. Intestinal Microbiota: Early Formation, Health Effects, and Correction Ways

    Directory of Open Access Journals (Sweden)

    Andrey S. Yakushin

    2017-01-01

    Full Text Available An increase in the prevalence of diseases resulting from disorders of metabolism and immune system functions is largely due to disturbances in the intestinal microbiota composition at an early age. The review  considers the stages and conditions of the natural development of the  intestinal microbiota, starting from the intrauterine period. We  conducted the analysis of possible risk factors for the intestinal  microbiota composition disorders in the pre- and postnatal periods. The  results of modern studies on the association between the intestinal  microbiota composition in infancy and the development of «civilization  diseases» at older ages are given. A separate section is devoted to a  discussion of the efficacy and appropriateness of taking probiotic drugs for disease prevention.

  17. Natural attenuation of diesel aliphatic hydrocarbons in contaminated agricultural soil

    International Nuclear Information System (INIS)

    Serrano, Antonio; Gallego, Mercedes; Gonzalez, Jose Luis; Tejada, Manuel

    2008-01-01

    A diesel fuel spill at a concentration of 1 L m -2 soil was simulated on a 12 m 2 plot of agricultural land, and natural attenuation of aliphatic hydrocarbons was monitored over a period of 400 days following the spill after which the aliphatic hydrocarbon concentrations were found to be below the legal contamination threshold for soil. The main fraction of these compounds (95%) remained at the surface layer (0-10 cm). Shortly after the spill (viz. between days 0 and 18), evaporation was the main origin of the dramatic decrease in pollutant concentrations in the soil. Thereafter, soil microorganisms used aliphatic hydrocarbons as sources of carbon and energy, as confirmed by the degradation ratios found. Soil quality indicators, soil microbial biomass and dehydrogenase activity, regained their original levels about 200 days after the spill. - The effect of aliphatic hydrocarbons contamination on soil quality was monitored over a period of 400 days after a Diesel fuel spill

  18. SoilGrids1km — Global Soil Information Based on Automated Mapping

    Science.gov (United States)

    Hengl, Tomislav; de Jesus, Jorge Mendes; MacMillan, Robert A.; Batjes, Niels H.; Heuvelink, Gerard B. M.; Ribeiro, Eloi; Samuel-Rosa, Alessandro; Kempen, Bas; Leenaars, Johan G. B.; Walsh, Markus G.; Gonzalez, Maria Ruiperez

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited spatial detail. Methodology/Principal Findings We present SoilGrids1km — a global 3D soil information system at 1 km resolution — containing spatial predictions for a selection of soil properties (at six standard depths): soil organic carbon (g kg−1), soil pH, sand, silt and clay fractions (%), bulk density (kg m−3), cation-exchange capacity (cmol+/kg), coarse fragments (%), soil organic carbon stock (t ha−1), depth to bedrock (cm), World Reference Base soil groups, and USDA Soil Taxonomy suborders. Our predictions are based on global spatial prediction models which we fitted, per soil variable, using a compilation of major international soil profile databases (ca. 110,000 soil profiles), and a selection of ca. 75 global environmental covariates representing soil forming factors. Results of regression modeling indicate that the most useful covariates for modeling soils at the global scale are climatic and biomass indices (based on MODIS images), lithology, and taxonomic mapping units derived from conventional soil survey (Harmonized World Soil Database). Prediction accuracies assessed using 5–fold cross-validation were between 23–51%. Conclusions/Significance SoilGrids1km provide an initial set of examples of soil spatial data for input into global models at a resolution and consistency not previously available. Some of the main limitations of the current version of SoilGrids1km are: (1) weak relationships between soil properties/classes and explanatory variables due to scale mismatches, (2) difficulty to obtain covariates that capture soil forming factors, (3) low sampling density and spatial clustering of soil profile locations. However, as the Soil

  19. Natural products in soil microbe interactions and evolution.

    Science.gov (United States)

    Traxler, Matthew F; Kolter, Roberto

    2015-07-01

    In recent years, bacterial interspecies interactions mediated by small molecule natural products have been found to give rise to a surprising array of phenotypes in soil-dwelling bacteria, especially among Streptomyces and Bacillus species. This review examines these interspecies interactions, and the natural products involved, as they have been presented in literature stemming from four disciplines: soil science, interspecies microbiology, ecology, and evolutionary biology. We also consider how these interactions fit into accepted paradigms of signaling, cueing, and coercion.

  20. Determination of moisture content and natural radioactivity in soils using gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Hady, E E [Department of Physics, Faculty of Science, Qater University (Qatar); El-Sayed, A M.A.; Alaa, H B [Department of Physics, Faculty of Science, El-Minia University, Minia (Egypt)

    1997-12-31

    The gamma-ray transmission method has been used to study the soil-water properties in the laboratory as well as in the field. The present measurements were performed using gamma-ray spectroscopy system based on a 5 x 5 cm Nal (T 1) scintillation detector and combined sources ({sup 137} Cs and {sup 241} Am). The two sources are placed in a suitable lead collimator to obtain a pin beam of 1 mm diameter. Suitable samples of clay and sandy soils obtained from the local field were prepared to determine the water content and the soil bulk densities by the combined method for different moisture stages. From the results obtained, it is clear that the soil density at both stages (saturated and after drainage) remains the same. this is because the soil particles do not rearrange during the wetting and drying process. The full results will be presented in the text. Natural radioactivity of the investigated samples was also studied using gamma-ray spectrometer having HPGe detector. Qualitative and quantitative analysis of natural gamma radiations revealed the presence of {sup 40} K, {sup 214} Bi, {sup 208} TI and {sup 228} Ac in meaningful concentrations. 3 figs.

  1. Gut Microbiota Signatures Predict Host and Microbiota Responses to Dietary Interventions in Obese Individuals

    Science.gov (United States)

    Korpela, Katri; Flint, Harry J.; Johnstone, Alexandra M.; Lappi, Jenni; Poutanen, Kaisa; Dewulf, Evelyne; Delzenne, Nathalie; de Vos, Willem M.; Salonen, Anne

    2014-01-01

    Background Interactions between the diet and intestinal microbiota play a role in health and disease, including obesity and related metabolic complications. There is great interest to use dietary means to manipulate the microbiota to promote health. Currently, the impact of dietary change on the microbiota and the host metabolism is poorly predictable and highly individual. We propose that the responsiveness of the gut microbiota may depend on its composition, and associate with metabolic changes in the host. Methodology Our study involved three independent cohorts of obese adults (n = 78) from Belgium, Finland, and Britain, participating in different dietary interventions aiming to improve metabolic health. We used a phylogenetic microarray for comprehensive fecal microbiota analysis at baseline and after the intervention. Blood cholesterol, insulin and inflammation markers were analyzed as indicators of host response. The data were divided into four training set – test set pairs; each intervention acted both as a part of a training set and as an independent test set. We used linear models to predict the responsiveness of the microbiota and the host, and logistic regression to predict responder vs. non-responder status, or increase vs. decrease of the health parameters. Principal Findings Our models, based on the abundance of several, mainly Firmicute species at baseline, predicted the responsiveness of the microbiota (AUC  =  0.77–1; predicted vs. observed correlation  =  0.67–0.88). Many of the predictive taxa showed a non-linear relationship with the responsiveness. The microbiota response associated with the change in serum cholesterol levels with an AUC of 0.96, highlighting the involvement of the intestinal microbiota in metabolic health. Conclusion This proof-of-principle study introduces the first potential microbial biomarkers for dietary responsiveness in obese individuals with impaired metabolic health, and reveals the potential of

  2. Intermittent Fasting Promotes White Adipose Browning and Decreases Obesity by Shaping the Gut Microbiota.

    Science.gov (United States)

    Li, Guolin; Xie, Cen; Lu, Siyu; Nichols, Robert G; Tian, Yuan; Li, Licen; Patel, Daxeshkumar; Ma, Yinyan; Brocker, Chad N; Yan, Tingting; Krausz, Kristopher W; Xiang, Rong; Gavrilova, Oksana; Patterson, Andrew D; Gonzalez, Frank J

    2017-10-03

    While activation of beige thermogenesis is a promising approach for treatment of obesity-associated diseases, there are currently no known pharmacological means of inducing beiging in humans. Intermittent fasting is an effective and natural strategy for weight control, but the mechanism for its efficacy is poorly understood. Here, we show that an every-other-day fasting (EODF) regimen selectively stimulates beige fat development within white adipose tissue and dramatically ameliorates obesity, insulin resistance, and hepatic steatosis. EODF treatment results in a shift in the gut microbiota composition leading to elevation of the fermentation products acetate and lactate and to the selective upregulation of monocarboxylate transporter 1 expression in beige cells. Microbiota-depleted mice are resistance to EODF-induced beiging, while transplantation of the microbiota from EODF-treated mice to microbiota-depleted mice activates beiging and improves metabolic homeostasis. These findings provide a new gut-microbiota-driven mechanism for activating adipose tissue browning and treating metabolic diseases. Published by Elsevier Inc.

  3. A naturally ventilated accumulator for integrating measurements of radon flux from soil

    International Nuclear Information System (INIS)

    Zhuo Weihai; Furukawa, Masahide; Tokonami, Shinji

    2007-01-01

    For long-term and large-scale measurements of the averaged 222 Rn fluxes from soils in the general environmental conditions, a simple measuring method was developed. 222 Rn exhaling from soils is accumulated by a naturally ventilated accumulator (NVA) and its concentration is measured with passive 222 Rn monitors set inside the NVA. The ventilation rate of the NVA is about 0.26 h -1 and it is hardly affected by the changes of meteorological conditions during field measurements. The air and soil conditions inside and outside of the NVA are nearly the same throughout the measurements. It indicates that the natural conditions of soils will not be significantly disturbed by the NVA. Field measurements confirmed that soil 222 Rn fluxes measured by the new method were in general agreement with the results measured by another commonly used method and theoretical estimations. As no electric power is needed as well as the operation and maintenance are easy, the low-cost system offers a promise as an improved technique for long-term measurements of soil 222 Rn fluxes in the general environmental conditions. (author)

  4. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants

    Science.gov (United States)

    Santamans, Anna C.; Boluda, Rafael; Picazo, Antonio; Gil, Carlos; Ramos-Miras, Joaquín; Tejedo, Pablo; Pertierra, Luis R.; Benayas, Javier

    2017-01-01

    The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica). This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins’ faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa dominance in the

  5. Soil features in rookeries of Antarctic penguins reveal sea to land biotransport of chemical pollutants.

    Directory of Open Access Journals (Sweden)

    Anna C Santamans

    Full Text Available The main soil physical-chemical features, the concentrations of a set of pollutants, and the soil microbiota linked to penguin rookeries have been studied in 10 selected sites located at the South Shetland Islands and the Antarctic Peninsula (Maritime Antarctica. This study aims to test the hypothesis that biotransport by penguins increases the concentration of pollutants, especially heavy metals, in Antarctic soils, and alters its microbiota. Our results show that penguins do transport certain chemical elements and thus cause accumulation in land areas through their excreta. Overall, a higher penguin activity is associated with higher organic carbon content and with higher concentrations of certain pollutants in soils, especially cadmium, cooper and arsenic, as well as zinc and selenium. In contrast, in soils that are less affected by penguins' faecal depositions, the concentrations of elements of geochemical origin, such as iron and cobalt, increase their relative weighted contribution, whereas the above-mentioned pollutants maintain very low levels. The concentrations of pollutants are far higher in those penguin rookeries that are more exposed to ship traffic. In addition, the soil microbiota of penguin-influenced soils was studied by molecular methods. Heavily penguin-affected soils have a massive presence of enteric bacteria, whose relative dominance can be taken as an indicator of penguin influence. Faecal bacteria are present in addition to typical soil taxa, the former becoming dominant in the microbiota of penguin-affected soils, whereas typical soil bacteria, such as Actinomycetales, co-dominate the microbiota of less affected soils. Results indicate that the continuous supply by penguin faeces, and not the selectivity by increased pollutant concentrations is the main factor shaping the soil bacterial community. Overall, massive penguin influence results in increased concentrations of certain pollutants and in a strong change in taxa

  6. Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    Directory of Open Access Journals (Sweden)

    Tanić Milan N.

    2016-01-01

    Full Text Available This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (40K, 226Ra and 232Th. Spatial and vertical distribution of radionuclides was determined and analyzed to show the relations between the specific activities in the soil and soil properties and the most influential factors of natural radionuclide variability were identified. The radiological indices for surface soil were calculated and radiological risk assessment was performed. The measured specific activities were similar to values of background levels for Serbia. The sampling depth did not show any significant influence on specific activities of natural radionuclides. The strongest predictor of specific activities of the investigated radionuclides was soil granulometry. All parameters of radiological risk assessment were below the recommended values and adopted limits. It appears that the coal-fired power plant does not have a significant impact on the spatial and vertical distribution of natural radionuclides in the area of interest, but technologically enhanced natural radioactivity as a consequence of the plant operations was identified within the first 1.5 km from the power plant. [Projekat Ministarstva nauke Republike Srbije br. III43009 i br. III41005

  7. Assessment of gamma radiation levels and natural radioactivity in soils along a subtropical river basin, China

    Energy Technology Data Exchange (ETDEWEB)

    Huang, Dekun; Yu, Tao [Third Institute of Oceanography, Xiamen (China). Lab. of Marine Isotopic Technology and Environmental Risk Assessment

    2017-07-01

    The activities of natural radionuclides in the environment can be used to assess radiological effects. Monitoring the radiation level in soils is important for public health. It also has important geochemical implications as most of the sediment eroded from river basins is from soil. Therefore, we carried out a soil sampling campaign along a subtropical river basin in southeastern China (Jiulong River). Surface and depth profile soils were collected, and the natural radionuclide activities were measured. The activities of the natural radionuclides {sup 238}U, {sup 232}Th, and {sup 40}K in the surface soils varied from 31.6 to 132.1 Bq kg-dry{sup -1}, 37.8 to 174.0 Bq kg-dry{sup -1}, and 52.3 to 596.2 Bq kg-dry{sup -1}, with average values of 56.7±30.3 Bq kg-dry{sup -1}, 86.7±41.3 Bq kg-dry{sup -1}, and 352.8±190.6 Bq kg-dry{sup -1}, respectively. The absorbed gamma dose in air and the annual effective dose equivalent (AEDE) in surface soils along the river basin were both higher than the world average. In the depth profiles, excess {sup 210}Pb ({sup 210}Pbex) decreased with depth and significant correlation between {sup 210}Pbex and TOC was observed, suggesting that they are affected by similar processes (leaching and sorption).

  8. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Science.gov (United States)

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  9. Multi-level comparisons of cloacal, skin, feather and nest-associated microbiota suggest considerable influence of horizontal acquisition on the microbiota assembly of sympatric woodlarks and skylarks.

    Science.gov (United States)

    van Veelen, H Pieter J; Falcao Salles, Joana; Tieleman, B Irene

    2017-12-01

    Working toward a general framework to understand the role of microbiota in animal biology requires the characterisation of animal-associated microbial communities and identification of the evolutionary and ecological factors shaping their variation. In this study, we described the microbiota in the cloaca, brood patch skin and feathers of two species of birds and the microbial communities in their nest environment. We compared patterns of resemblance between these microbial communities at different levels of biological organisation (species, individual, body part) and investigated the phylogenetic structure to deduce potential microbial community assembly processes. Using 16S rRNA gene amplicon data of woodlarks (Lullula arborea) and skylarks (Alauda arvensis), we demonstrated that bird- and nest-associated microbiota showed substantial OTU co-occurrences and shared dominant taxonomic groups, despite variation in OTU richness, diversity and composition. Comparing host species, we uncovered that sympatric woodlarks and skylarks harboured similar microbiota, dominated by Proteobacteria, Firmicutes, Actinobacteria, Bacteroidetes and Acidobacteria. Yet, compared with the nest microbiota that showed little variation, each species' bird-associated microbiota displayed substantial variation. The latter could be partly (~ 20%) explained by significant inter-individual differences. The various communities of the bird's body (cloaca, brood patch skin and feathers) appeared connected with each other and with the nest microbiota (nest lining material and surface soil). Communities were more similar when the contact between niches was frequent or intense. Finally, bird microbiota showed significant phylogenetic clustering at the tips, but not at deeper branches of the phylogeny. Our interspecific comparison suggested that the environment is more important than phylogeny in shaping the bird-associated microbiotas. In addition, variation among individuals and among body parts

  10. MICROMICETES QUANTITY AND BIOMASS IN TECHNOGENIC AND NATURAL SOILS

    Directory of Open Access Journals (Sweden)

    Korinovskaya Olga Nikolaevna

    2014-08-01

    Krivorozhskiy Surikovyy Zavod» the fungal mycelium length and biomass were in 1.2-1.4 times and the spores amount and biomass – in 1.5-1.7 times less than in the natural soil.

  11. Soil water repellency of the artificial soil and natural soil in rocky slopes as affected by the drought stress and polyacrylamide.

    Science.gov (United States)

    Chen, Zhang; Wang, Ruixin; Han, Pengyuan; Sun, Hailong; Sun, Haifeng; Li, Chengjun; Yang, Lixia

    2018-04-01

    Soil water repellency (SWR) causes reduced soil water storage, enhanced runoff and reduced ecosystem productivity. Therefore, characterization of SWR is a prerequisite for effective environmental management. SWR has been reported under different soils, land uses and regions of the world, particularly in forest land and after wildfires; however, the understanding of this variable in the artificial soil of rocky slope eco-engineering is still rather limited. This study presented the characterization of SWR in the artificial soil affected by the polyacrylamide (PAM) and drought stress. There were two molecular weights of PAM, and the CK was without PAM application. Three types of soil were studied: natural soil and two types of artificial soil which have been sprayed for 1y and 5y, respectively. The drought stress experiments had three drought gradients, lasted for three weeks. Water repellency index (WRI) and soil-water contact angle (β) were determined using intrinsic sorptivity method by measuring the water sorptivity (S W ) and ethanol sorptivity (S E ) in all soil samples. The results showed that (1) Polyacrylamide treatments significantly increased S W by 3% to 38%, and reduced S E by 1% to 15%, WRI by 6% to 38%, β by 3% to 23% compared to the control group. Polyacrylamide treatments also increased water-stable aggregates content and total porosity by 22% to 33%, 11% to 20% relative to the control, while PAM with a higher molecular weight performed best. (2) The interaction between PAM and drought stress had a significant effect on WRI and β for all soil types (Pnatural soil. Copyright © 2017 Elsevier B.V. All rights reserved.

  12. Vaginal microbiota in menopause

    OpenAIRE

    Martinus Tarina; Larisa Paramitha; Evita Halim Effendi; Shannaz Nadia Yusharyahya; Hanny Nilasari; Wresti Indriatmi

    2016-01-01

    The human vagina together with its resident, microbiota, comprise a dynamic ecosystem. Normal microbiota is dominated by Lactobacillus species, and pathogen microbiota such as Gardnerella species and Bacteroides species can occur due to decrease in Lactobacillus domination. Lactobacillus plays an essential role in keeping normal vaginal microbiota in balance. Vaginal microbiota adapts to pH change and hormonal value. Changes in the vaginal microbiota over a woman’s lifespan will influence the...

  13. CARACTERIZAÇÃO DA MICROBIOTA CUTÂNEA DE Aplastodiscus leucopygius DO PARQUE MUNICIPAL NATURAL AUGUSTO RUSCHI

    OpenAIRE

    Laryssa Nolasco; Mariana Maykot Serafim; Claudineia Aparecida da Silva Araujo; Jonatas Alves Ferreira Neto; Matheus de Toledo Moroti; Cristina Pacheco Soares; Flavia Villaça Morais

    2017-01-01

    A Aplastodiscus leucopygius é um anfíbio da ordem Anura pertencente à família Hylidae, espécie endêmica do Brasil, encontrada em áreas de Mata Atlântica do planalto e serras do Mar e da Mantiqueira, nos Estados de São Paulo e Rio de Janeiro. O presente estudo teve como objetivo analisar e caracterizar a microbiota de A. leucopygius encontrados no Parque Municipal Natural Augusto Ruschi, Unidade de Conservação de Proteção Integral da cidade de São José do Campos no estado de São Paulo. Para is...

  14. Natural radioactivity in soil samples of Kocaeli basin, Turkey

    International Nuclear Information System (INIS)

    Karakelle, B.; Oeztuerk, N.; Erkol, A.Y.; Koese, A.; Varinlioglu, A.; Yilmaz, F.

    2002-01-01

    The city of Kocaeli is in the western part of Anatolia in Turkey and has a population of approximately 1.000.000. There is no information about radioactivity in the Kocaeli soils samples so far. For this reason, the concentrations of the natural radionuclides in soil samples from 27 different sampling stations in Kocaeli Basin and its surroundings have been determined. The results have been compared with other radioactivity measurements in different country's soils. The typical concentrations of 137 Cs, 238 U, 40 K, 226 Ra, 232 Th found in surface soil samples ranged from 2 ± 0.6 to 25 ± 6 Bq/kg, from 11 ± 4 to 49 ± 10 Bq/kg, from 161 ± 30 to 964 ± 127 Bq/kg, from 10 ± 4 to 58 ± 11 Bq/kg, and from 11 ± 3 to 65 ± 13 Bq/kg, respectively. (author)

  15. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Juhasz, Albert L., E-mail: albert.juhasz@unisa.edu.a [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Smith, Euan [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia); Waller, Natasha [CSIRO Land and Water, Glen Osmond, SA 5064 (Australia); Stewart, Richard [Remediate, Kent Town, SA 5067 (Australia); Weber, John [Centre for Environmental Risk Assessment and Remediation, University of South Australia, Mawson Lakes Campus, SA 5095 (Australia)

    2010-02-15

    The impact of residual PAHs (2250 +- 71 mug total PAHs g{sup -1}) following enhanced natural attenuation (ENA) of creosote-contaminated soil (7767 +- 1286 mug total PAHs g{sup -1}) was assessed using a variety of ecological assays. Microtox{sup TM} results for aqueous soil extracts indicated that there was no significant difference in EC{sub 50} values for uncontaminated, pre- and post-remediated soil. However, in studies conducted with Eisenia fetida, PAH bioaccumulation was reduced by up to 6.5-fold as a result of ENA. Similarly, Beta vulgaris L. biomass yields were increased 2.1-fold following ENA of creosote-contaminated soil. While earthworm and plant assays indicated that PAH bioavailability was reduced following ENA, the residual PAH fraction still exerted toxicological impacts on both receptors. Results from this study highlight that residual PAHs following ENA (presumably non-bioavailable to bioremediation) may still be bioavailable to important receptor organisms such as earthworms and plants. - Residual PAHs in creosote-contaminated soil following enhanced natural attenuation impacted negatively on ecological receptors.

  16. Bioavailability of residual polycyclic aromatic hydrocarbons following enhanced natural attenuation of creosote-contaminated soil

    International Nuclear Information System (INIS)

    Juhasz, Albert L.; Smith, Euan; Waller, Natasha; Stewart, Richard; Weber, John

    2010-01-01

    The impact of residual PAHs (2250 ± 71 μg total PAHs g -1 ) following enhanced natural attenuation (ENA) of creosote-contaminated soil (7767 ± 1286 μg total PAHs g -1 ) was assessed using a variety of ecological assays. Microtox TM results for aqueous soil extracts indicated that there was no significant difference in EC 50 values for uncontaminated, pre- and post-remediated soil. However, in studies conducted with Eisenia fetida, PAH bioaccumulation was reduced by up to 6.5-fold as a result of ENA. Similarly, Beta vulgaris L. biomass yields were increased 2.1-fold following ENA of creosote-contaminated soil. While earthworm and plant assays indicated that PAH bioavailability was reduced following ENA, the residual PAH fraction still exerted toxicological impacts on both receptors. Results from this study highlight that residual PAHs following ENA (presumably non-bioavailable to bioremediation) may still be bioavailable to important receptor organisms such as earthworms and plants. - Residual PAHs in creosote-contaminated soil following enhanced natural attenuation impacted negatively on ecological receptors.

  17. Effects of predation stress and food ration on perch gut microbiota.

    Science.gov (United States)

    Zha, Yinghua; Eiler, Alexander; Johansson, Frank; Svanbäck, Richard

    2018-02-06

    Gut microbiota provide functions of importance to influence hosts' food digestion, metabolism, and protection against pathogens. Factors that affect the composition and functions of gut microbial communities are well studied in humans and other animals; however, we have limited knowledge of how natural food web factors such as stress from predators and food resource rations could affect hosts' gut microbiota and how it interacts with host sex. In this study, we designed a two-factorial experiment exposing perch (Perca fluviatilis) to a predator (pike, Esox lucius), and different food ratios, to examine the compositional and functional changes of perch gut microbiota based on 16S rRNA amplicon sequencing. We also investigated if those changes are host sex dependent. We showed that overall gut microbiota composition among individual perch significantly responded to food ration and predator presence. We found that species richness decreased with predator presence, and we identified 23 taxa from a diverse set of phyla that were over-represented when a predator was present. For example, Fusobacteria increased both at the lowest food ration and at predation stress conditions, suggesting that Fusobacteria are favored by stressful situations for the host. In concordance, both food ration and predation stress seemed to influence the metabolic repertoire of the gut microbiota, such as biosynthesis of other secondary metabolites, metabolism of cofactors, and vitamins. In addition, the identified interaction between food ration and sex emphasizes sex-specific responses to diet quantity in gut microbiota. Collectively, our findings emphasize an alternative state in gut microbiota with responses to changes in natural food webs depending on host sex. The obtained knowledge from this study provided us with an important perspective on gut microbiota in a food web context.

  18. Microbial biomass, community structure and metal tolerance of a naturally Pb-enriched forest soil.

    Science.gov (United States)

    Bååth, E; Díaz-Raviña, M; Bakken, L R

    2005-11-01

    The effect of long-term elevated soil Pb levels on soil microbiota was studied at a forest site in Norway, where the soil has been severely contaminated with Pb since the last period of glaciation (several thousand years). Up to 10% Pb (total amount, w/w) has been found in the top layer. The microbial community was drastically affected, as judged from changes in the phospholipid fatty acid (PLFA) pattern. Specific PLFAs that were high in Pb-enriched soil were branched (especially br17:0 and br18:0), whereas PLFAs common in eukaryotic organisms such as fungi (18:2omega6,9 and 20:4) were low compared with levels at adjacent, uncontaminated sites. Congruent changes in the PLFA pattern were found upon analyzing the culturable part of the bacterial community. The high Pb concentrations in the soil resulted in increased tolerance to Pb of the bacterial community, measured using both thymidine incorporation and plate counts. Furthermore, changes in tolerance were correlated to changes in the community structure. The bacterial community of the most contaminated soils showed higher specific activity (thymidine and leucine incorporation rates) and higher culturability than that of control soils. Fungal colony forming units (CFUs) were 10 times lower in the most Pb-enriched soils, the species composition was widely different from that in control soils, and the isolated fungi had high Pb tolerance. The most commonly isolated fungus in Pb-enriched soils was Tolypocladium inflatum. Comparison of isolates from Pb-enriched soil and isolates from unpolluted soils showed that T. inflatum was intrinsically Pb-tolerant, and that the prolonged conditions with high Pb had not selected for any increased tolerance.

  19. Geochemical variability of natural soils and reclaimed minespoil soils in the San Juan Basin, New Mexico

    Science.gov (United States)

    Gough, L.P.; Severson, R.C.

    1981-01-01

    An inventory of total-and extractable-element concentrations in soils was made for three areas of the San Juan Basin in New Mexico: (1) the broad area likely to be affected by energy-related development. (2) an area of soils considered to have potential for use as topsoil in mined-land reclamation. and (3) an area of the San Juan coal mine that has been regraded. topsoiled, and revegetated. Maps made of concentrations of 16 elements in area 1 soils show no gradational pattern across the region. Further. these maps do not correspond to those showing geology or soil types. Sodic or saline problems, and a possible but unproven deficiency of zinc available to plants. may make some of the soils in this area undesirable for use as topsoil in mined-land reclamation. Taxonomic great groups of soil in this area cannot be distinguished because each great group tends to have a large within-group variability if compared to the between-group variability. In area 2 the major soils sampled were of the Sheppard. Shiprock. and Doak association. These soils are quite uniform in chemical composition and are not greatly saline or sodic. As in area 1 soils. zinc deficiency may cause a problem in revegetating most of these soils. It is difficult to distinguish soil taxonomic families by using their respective chemical compositions. because of small between-family variability. Topsoil from a reclaimed area of the San Juan mine (area 3) most closely resembles the chemical composition of natural C horizons of soil from area 1. Spoil material that has not been topsoiled is likely to cause sodic-and saline-related problems in revegetation and may cause boron toxicity in plants. Topsoiling has apparently ameliorated these potential problems for plant growth on mine spoil. Total and extractable concentrations for elements and other parameters for each area of the San Juan Basin provide background information for the evaluation of the chemical quality of soils in each area.

  20. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  1. Immobilization of metals in contaminated soils using natural polymer-based stabilizers.

    Science.gov (United States)

    Tao, Xue; Li, Aimin; Yang, Hu

    2017-03-01

    Three low-cost natural polymer materials, namely, lignin (Ln), carboxymethyl cellulose, and sodium alginate, were used for soil amendment to immobilize lead and cadmium in two contaminated soil samples collected from a mining area in Nanjing, China. The remediation effects of the aforementioned natural polymers were evaluated by toxicity characteristic leaching procedure (TCLP) and sequential extractions. The stabilizers could lower the bioavailability of Pb and Cd in the contaminated soils, and the amount of the exchangeable forms of the aforementioned two metals were reduced evidently. TCLP results showed that the leaching concentrations of Pb and Cd were decreased by 5.46%-71.1% and 4.25%-49.6%, respectively, in the treated soils. The contents of the organic forms of the two metals both increased with the increase in stabilizer dose on the basis of the redistribution of metal forms by sequential extractions. These findings were due to the fact that the abundant oxygen-containing groups on the polymeric amendments were effective in chelating and immobilizing Pb and Cd, which have been further confirmed from the metal adsorptions in aqueous solutions. Moreover, Ln achieved the greatest effect among the three polymers under study because of the former's distinct three-dimensional molecular structure, showing the preferential immobilization of Pb over Cd in soils also. Thus, the above-mentioned natural polymers hold great application potentials for reducing metal ion entry into the food chain at a field scale. Copyright © 2016 Elsevier Ltd. All rights reserved.

  2. Gut microbiota, immunity and disease: a complex relationship

    Directory of Open Access Journals (Sweden)

    Michele M Kosiewicz

    2011-09-01

    Full Text Available Our immune system has evolved to recognize and eradicate pathogenic microbes. However, we have a symbiotic relationship with multiple species of bacteria that occupy the gut and comprise the natural commensal flora or microbiota. The microbiota is critically important for the breakdown of nutrients, and also assists in preventing colonization by potentially pathogenic bacteria. In addition, the gut commensal bacteria appears to be critical for the development of an optimally functioning immune system. Various studies have shown that individual species of the microbiota can induce very different types of immune cells (e.g., Th17 cells, Foxp3+ regulatory T cells and responses, suggesting that the composition of the microbiota can have an important influence on the immune response. Although the microbiota resides in the gut, it appears to have a significant impact on the systemic immune response. Indeed, specific gut commensal bacteria have been shown to affect disease development in organs other than the gut, and depending on the species, have been found to have a wide range of effects on diseases from induction and exacerbation to inhibition and protection. In this review, we will focus on the role that the gut microbiota plays in the development and progression of inflammatory/autoimmune disease, and we will also touch upon its role in allergy and cancer.

  3. Intestinal microbiota pathogenesis and fecal microbiota transplantation for inflammatory bowel disease

    Science.gov (United States)

    Wang, Zi-Kai; Yang, Yun-Sheng; Chen, Ye; Yuan, Jing; Sun, Gang; Peng, Li-Hua

    2014-01-01

    The intestinal microbiota plays an important role in inflammatory bowel disease (IBD). The pathogenesis of IBD involves inappropriate ongoing activation of the mucosal immune system driven by abnormal intestinal microbiota in genetically predisposed individuals. However, there are still no definitive microbial pathogens linked to the onset of IBD. The composition and function of the intestinal microbiota and their metabolites are indeed disturbed in IBD patients. The special alterations of gut microbiota associated with IBD remain to be evaluated. The microbial interactions and host-microbe immune interactions are still not clarified. Limitations of present probiotic products in IBD are mainly due to modest clinical efficacy, few available strains and no standardized administration. Fecal microbiota transplantation (FMT) may restore intestinal microbial homeostasis, and preliminary data have shown the clinical efficacy of FMT on refractory IBD or IBD combined with Clostridium difficile infection. Additionally, synthetic microbiota transplantation with the defined composition of fecal microbiota is also a promising therapeutic approach for IBD. However, FMT-related barriers, including the mechanism of restoring gut microbiota, standardized donor screening, fecal material preparation and administration, and long-term safety should be resolved. The role of intestinal microbiota and FMT in IBD should be further investigated by metagenomic and metatranscriptomic analyses combined with germ-free/human flora-associated animals and chemostat gut models. PMID:25356041

  4. Seed longevity of Eragrostis plana Nees buried in natural grassland soil

    Directory of Open Access Journals (Sweden)

    Renato Borges de Medeiros

    2014-11-01

    Full Text Available The objective of this research was to evaluate the seed longevity of Eragrostis plana Nees buried at different soil depths, in a natural-grassland area in the Pampa biome (46 m altitude, 30º05´S and 51º40´W of Rio Grande do Sul State, Brazil. The experimental design was a split-plot type in complete blocks with two factors: seeds buried at five different depth levels (soil surface and 2.5, 5, 10 and 20 cm and seven exhumation dates. The blocks were allocated in natural grassland grazed by cattle, allocated in a 12-m-long transection. Fifty-four permeable nylon bags filled with 100 seeds in each division, with five vertical divisions, were buried in each row. Seven exhumation dates were used: the first on October 14, 2003 and the last on January 14, 2006. The percentage of viable seeds of E. plana, collected at seven exhumation times and set at different depths in the soil horizon, were described by simple negative exponential equations. Based on the model, the percentage of viable seeds collected at the five depths, (soil surface and 2.5, 5, 10, and 20 cm, after 2.5 years of burial, were 0.1, 0.5, 1.0, 7.4 and 22.1%, respectively. Increase in depth is directly associated with physical and physiological seed integrity of E. plana. Negative simple exponential equations can be used to predict seed longevity of E. plana buried in nylon bags. This invader species accumulates soil seed-bank of high longevity.

  5. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Knols, B.G.J.; Takken, W.; Schraa, G.; Bouwmeester, H.J.; Smallegange, R.C.

    2009-01-01

    Background - Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human

  6. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, N.O.; Beijleveld, H.; Knols, B.G.J.; Takken, W.; Schraa, G.; Bouwmeester, H.J.; Smallegange, R.C.

    2009-01-01

    Background: Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human

  7. Gut Microbiota-brain Axis

    Institute of Scientific and Technical Information of China (English)

    Hong-Xing Wang; Yu-Ping Wang

    2016-01-01

    Objective:To systematically review the updated information about the gut microbiota-brain axis.Data Sources:All articles about gut microbiota-brain axis published up to July 18,2016,were identified through a literature search on PubMed,ScienceDirect,and Web of Science,with the keywords of"gut microbiota","gut-brain axis",and "neuroscience".Study Selection:All relevant articles on gut microbiota and gut-brain axis were included and carefully reviewed,with no limitation of study design.Results:It is well-recognized that gut microbiota affects the brain's physiological,behavioral,and cognitive functions although its precise mechanism has not yet been fully understood.Gut microbiota-brain axis may include gut microbiota and their metabolic products,enteric nervous system,sympathetic and parasympathetic branches within the autonomic nervous system,neural-immune system,neuroendocrine system,and central nervous system.Moreover,there may be five communication routes between gut microbiota and brain,including the gut-brain's neural network,neuroendocrine-hypothalamic-pituitary-adrenal axis,gut immune system,some neurotransmitters and neural regulators synthesized by gut bacteria,and barrier paths including intestinal mucosal barrier and blood-brain barrier.The microbiome is used to define the composition and functional characteristics of gut microbiota,and metagenomics is an appropriate technique to characterize gut microbiota.Conclusions:Gut microbiota-brain axis refers to a bidirectional information network between the gut microbiota and the brain,which may provide a new way to protect the brain in the near future.

  8. Distribution and activity of anaerobic ammonium-oxidising bacteria in natural freshwater wetland soils.

    Science.gov (United States)

    Shen, Li-dong; Wu, Hong-sheng; Gao, Zhi-qiu; Cheng, Hai-xiang; Li, Ji; Liu, Xu; Ren, Qian-qi

    2016-04-01

    Anaerobic ammonium oxidation (anammox) process plays a significant role in the marine nitrogen cycle. However, the quantitative importance of this process in nitrogen removal in wetland systems, particularly in natural freshwater wetlands, is still not determined. In the present study, we provided the evidence of the distribution and activity of anammox bacteria in a natural freshwater wetland, located in southeastern China, by using (15)N stable isotope measurements, quantitative PCR assays and 16S rRNA gene clone library analysis. The potential anammox rates measured in this wetland system ranged between 2.5 and 25.5 nmol N2 g(-1) soil day(-1), and up to 20% soil dinitrogen gas production could be attributed to the anammox process. Phylogenetic analysis of 16S rRNA genes showed that anammox bacteria related to Candidatus Brocadia, Candidatus Kuenenia, Candidatus Anammoxoglobus and two novel anammox clusters coexisted in the collected soil cores, with Candidatus Brocadia and Candidatus Kuenenia being the dominant anammox genera. Quantitative PCR of hydrazine synthase genes showed that the abundance of anammox bacteria varied from 2.3 × 10(5) to 2.2 × 10(6) copies g(-1) soil in the examined soil cores. Correlation analyses suggested that the soil ammonium concentration had significant influence on the activity of anammox bacteria. On the basis of (15)N tracing technology, it is estimated that a total loss of 31.1 g N m(-2) per year could be linked the anammox process in the examined wetland.

  9. Gut microbiota and obesity.

    Science.gov (United States)

    Gérard, Philippe

    2016-01-01

    The human intestine harbors a complex bacterial community called the gut microbiota. This microbiota is specific to each individual despite the existence of several bacterial species shared by the majority of adults. The influence of the gut microbiota in human health and disease has been revealed in the recent years. Particularly, the use of germ-free animals and microbiota transplant showed that the gut microbiota may play a causal role in the development of obesity and associated metabolic disorders, and lead to identification of several mechanisms. In humans, differences in microbiota composition, functional genes and metabolic activities are observed between obese and lean individuals suggesting a contribution of the gut microbiota to these phenotypes. Finally, the evidence linking gut bacteria to host metabolism could allow the development of new therapeutic strategies based on gut microbiota modulation to treat or prevent obesity.

  10. Assessment of radiological significance of naturally occurring radionuclides in soil and rock matrices around Kakrapar environment

    International Nuclear Information System (INIS)

    Patra, A.K.; Jaison, T.J.; Baburajan, A.; Hegde, A.G.

    2008-01-01

    The activity and gamma-absorbed dose rate due to the naturally occurring radionuclides in the terrestrial environment such as 238 U, 232 Th and 40 K were determined in soil and rock samples collected around Kakrapar Atomic Power Plant site, using gamma-ray spectrometry. The mean concentration levels measured in Kakrapar soil from naturally occurring radioisotopes such as 238 U, 232 Th and 40 K are lower than the corresponding global average values obtained in worldwide soil. The external hazard index (Hex) and absorbed gamma dose rate in air outdoors is observed to be 0.04-0.18 and 3.1-14.1 nGy h -1 , respectively. (authors)

  11. Natural radioactivity in Swedish agricultural soils and crops

    International Nuclear Information System (INIS)

    Eriksson, Ake; Rosen, K.

    2000-01-01

    In this work we report on investigations in Sweden of the natural radioactivity of 40 K, 226 Ra and 232 Th in the agricultural soils and of 226 Ra in the crops. In addition information is given on factors important for the plant availability of these nuclides to the crop plants. Also, from a number of works, background data on the transfer from soils to plants in different environments are presented. These works show that there is a large variation depending on local conditions and crop type in the accumulation of natural radioactive elements by the plants. Thus, concentration ratios (plant/soil) calculated for fresh crop weight and dry soil weight showed for 238 U in forage crops and in grain a range 0.001-0.005, for 226 Ra a range 0.001-0.03 and for 210 Pb a range 0.0004-0.2. The higher value was limit for vegetative plant parts and the lower value limit for generative parts, seeds and grain. In Swedish early studies, evidence was found that in field crops on the same soils the radium/calcium-ratio in grain was reduced according to the following order winter wheat>spring wheat> barley>oats. Variation among the crops on different soils showed ranges from 1-0.1 to 1-0.4. The radium/calcium-ratio in straw was 4 to 7 times higher than in grain. Also field experiments showed that proper liming on acid soils could reduce the radium/calcium ratio by 40 per cent. Our study shows that the average contents of the nuclides 226 Ra and 232 Th in Bq per kg dry weight is of the same size of order, 40, 50 and 80 Bq per kg in the southern, in the western and in the middle regions of Sweden, respectively. The difference between regions is not occasional. It depends on the type of the mother material and on the different clay contents of the soils, as is indicated also by the potassium content. Considering also the daughters of the nuclide series it is found that the total nuclide activity will reach a sum of 300-600 kBq per square meter of the plough layer. The total activity may

  12. The developing hypopharyngeal microbiota in early life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen; Brejnrod, Asker Daniel; Roggenbuck, Michael

    2016-01-01

    BACKGROUND: The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand the establi......BACKGROUND: The airways of healthy humans harbor a distinct microbial community. Perturbations in the microbial community have been associated with disease, yet little is known about the formation and development of a healthy airway microbiota in early life. Our goal was to understand...... the establishment of the airway microbiota within the first 3 months of life. We investigated the hypopharyngeal microbiota in the unselected COPSAC2010 cohort of 700 infants, using 16S rRNA gene sequencing of hypopharyngeal aspirates from 1 week, 1 month, and 3 months of age. RESULTS: Our analysis shows...... that majority of the hypopharyngeal microbiota of healthy infants belong to each individual's core microbiota and we demonstrate five distinct community pneumotypes. Four of these pneumotypes are dominated by the genera Staphylococcus, Streptococcus, Moraxella, and Corynebacterium, respectively. Furthermore, we...

  13. Heavy metal and natural radionuclide levels in urban soils from Cienfuegos city, Cuba

    International Nuclear Information System (INIS)

    Diaz Rizo, Oscar; Quintana Miranda, Eduardo; D Alessandro Rodriguez, Katia; Lopez Pino, Neivy; Arado Lopez, Juana O.; Alonso Hernandez, Carlos M.; Cartas Aguila, Hector

    2013-01-01

    Concentrations of heavy metals and natural radionuclides in topsoil (0-10cm) from Cienfuegos city, Cuba, were determined by using X-ray fluorescence analysis and gamma ray spectrometry, respectively. The measured results of heavy metals show that the mean concentrations of Ni, Cu, Zn and Pb in the studied soil samples are higher than their corresponding background values. The calculated results of integrated pollution index of heavy metals indicate that the studied soils present severely heavy metal contamination. The concentrations of 226Ra, 232Th and 40K in the studied soil samples range from 8.3 to 32.7, 3.7 to 10.7 and 129 to 356 Bq.kg-1 with an average of 22.6, 6.3 and 272 Bq.kg-1 , respectively, which are similar than the average concentrations reported for South-central Cuban soils. The air absorbed dose rate and the annual effective dose equivalent received by the local residents due to the natural radionuclides in soil are lesser than the worldwide established limits. A significantly positive 232Th-Cu and 232Th-Zn correlations were determined, indicating the possible presence of these elements pollution source in the area.(author)

  14. Commensal microbiota and NKT cells in the control of inflammatory diseases at mucosal surfaces.

    Science.gov (United States)

    Zeissig, Sebastian; Blumberg, Richard S

    2013-12-01

    Natural Killer T (NKT) cells are a phenotypically and functionally diverse subset of T cells, which recognizes self- and microbial lipids in the context of the atypical MHC class I molecule CD1d. NKT cells exhibit potent effector functions and play critical roles in antimicrobial defense, cancer immunosurveillance and the modulation of immune-mediated disorders. Recent evidence has revealed extensive cross-regulation between the mucosal microbiota and CD1d as well as NKT cells. Microbial exposure at mucosal surfaces, particularly during early postnatal development, regulates NKT cell trafficking and function in the intestine and the lung and determines the susceptibility to NKT cell-mediated inflammatory disorders. Conversely, CD1d controls the composition of the intestinal microbiota; perhaps through the regulation of Paneth cell function. Here, we provide an overview of recent findings on the crosstalk between the microbiota and NKT cells and discuss the implication for mucosal homeostasis and its dysregulation in inflammatory disorders. Copyright © 2013 Elsevier Ltd. All rights reserved.

  15. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation.

    Science.gov (United States)

    Vergani, Lorenzo; Mapelli, Francesca; Marasco, Ramona; Crotti, Elena; Fusi, Marco; Di Guardo, Antonio; Armiraglio, Stefano; Daffonchio, Daniele; Borin, Sara

    2017-01-01

    The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates

  16. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation

    KAUST Repository

    Vergani, Lorenzo

    2017-07-25

    The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs), together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP) traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed among the isolates

  17. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Lorenzo Vergani

    2017-07-01

    Full Text Available The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore the selection of root-associated bacterial communities driven by different plant species spontaneously established in abandoned agricultural soils within a historical polluted site in north Italy. The site is highly contaminated by chlorinated persistent organic pollutants, mainly constituted by polychlorobiphenyls (PCBs, together with heavy metals and metalloids, in variable concentrations and uneven distribution. The overall structure of the non-vegetated and root-associated soil fractions bacterial communities was described by high-throughput sequencing of the 16S rRNA gene, and a collection of 165 rhizobacterial isolates able to use biphenyl as unique carbon source was assayed for plant growth promotion (PGP traits and bioremediation potential. The results showed that the recruitment of specific bacterial communities in the root-associated soil fractions was driven by both soil fractions and plant species, explaining 21 and 18% of the total bacterial microbiome variation, respectively. PCR-based detection in the soil metagenome of bacterial bphA gene, encoding for the biphenyl dioxygenase α subunit, indicated that the soil in the site possesses metabolic traits linked to PCB degradation. Biphenyl-utilizing bacteria isolated from the rhizosphere of the three different plant species showed low phylogenetic diversity and well represented functional traits, in terms of PGP and bioremediation potential. On average, 72% of the strains harbored the bphA gene and/or displayed catechol 2,3-dioxygenase activity, involved in aromatic ring cleavage. PGP traits, including 1-aminocyclopropane-1-carboxylic acid deaminase activity potentially associated to plant stress tolerance induction, were widely distributed

  18. Remediation mechanisms for Cd-contaminated soil using natural sepiolite at the field scale.

    Science.gov (United States)

    Yin, Xiuling; Xu, Yingming; Huang, Rong; Huang, Qingqing; Xie, Zhonglei; Cai, Yanming; Liang, Xuefeng

    2017-12-13

    Remediation of heavy metal polluted agricultural soil is essential for human health and ecological safety and remediation mechanisms at the microscopic level are vital for their large-scale utilization. In this study, natural sepiolite was employed as an immobilization agent for in situ field-scale remediation of Cd-contaminated paddy soil and the remediation mechanisms were investigated in terms of soil chemistry and plant physiology. Natural sepiolite had a significant immobilization effect for bioavailable Cd contents in paddy soil, and consequently could lower the Cd concentrations of brown rice, husk, straw, and roots of rice plants by 54.7-73.7%, 44.0-62.5%, 26.5-67.2%, and 36.7-46.7%, respectively. Regarding soil chemistry, natural sepiolite increased the soil pH values and shifted the zeta potentials of soil particles to be more negative, enhancing the fixation or sorption of Cd on soil particles, and resulted in the reduction of HCl and DTPA extractable Cd concentrations in paddy soil. Natural sepiolite neither enhanced nor inhibited iron plaques on the rice root surface, but did change the chemical environments of Fe and S in rice root. Natural sepiolite improved the activities of antioxidant enzymes and enhanced the total antioxidant capacity to alleviate the stress of Cd. It also promotes the synthesis of GSH and NPT to complete the detoxification. In general, the remediation mechanisms of natural sepiolite for the Cd pollutant in paddy soil could be summarized as the collective effects of soil chemistry and plant physiology.

  19. Culture-independent discovery of natural products from soil metagenomes.

    Science.gov (United States)

    Katz, Micah; Hover, Bradley M; Brady, Sean F

    2016-03-01

    Bacterial natural products have proven to be invaluable starting points in the development of many currently used therapeutic agents. Unfortunately, traditional culture-based methods for natural product discovery have been deemphasized by pharmaceutical companies due in large part to high rediscovery rates. Culture-independent, or "metagenomic," methods, which rely on the heterologous expression of DNA extracted directly from environmental samples (eDNA), have the potential to provide access to metabolites encoded by a large fraction of the earth's microbial biosynthetic diversity. As soil is both ubiquitous and rich in bacterial diversity, it is an appealing starting point for culture-independent natural product discovery efforts. This review provides an overview of the history of soil metagenome-driven natural product discovery studies and elaborates on the recent development of new tools for sequence-based, high-throughput profiling of environmental samples used in discovering novel natural product biosynthetic gene clusters. We conclude with several examples of these new tools being employed to facilitate the recovery of novel secondary metabolite encoding gene clusters from soil metagenomes and the subsequent heterologous expression of these clusters to produce bioactive small molecules.

  20. Cultured skin microbiota attracts malaria mosquitoes

    NARCIS (Netherlands)

    Verhulst, Niels O.; Beijleveld, Hans; Knols, Bart Gj; Takken, Willem; Schraa, Gosse; Bouwmeester, Harro J.; Smallegange, Renate C.

    2009-01-01

    Host-seeking of the African malaria mosquito, Anopheles gambiae sensu stricto, is guided by human odours. The precise nature of the odours, and the composition of attractive blends of volatiles, remains largely unknown. Skin microbiota plays an important role in the production of human body odours.

  1. Use of Coffee Pulp and Minerals for Natural Soil Ameliorant

    Directory of Open Access Journals (Sweden)

    Pujiyanto Pujiyanto

    2007-05-01

    Full Text Available In coffee plantation, solid waste of coffee pulp is usually collected as heap nearby processing facilities for several months prior being used as compost. The practice is leading to the formation of odor and liquid which contaminate the environment. Experiments to evaluate the effect of natural soil ameliorant derived from coffee pulp and minerals were conducted at The Indonesian Coffee and Cocoa Research Institute in Jember, East Java. The experiments were intended to optimize the use of coffee pulp to support farming sustainability and minimize negative impacts of solid waste disposal originated from coffee cherry processing. Prior to applications, coffee pulp was hulled to organic paste. The paste was then mixed with 10% minerals (b/b. Composition of the minerals was 50% zeolite and 50% rock phosphate powder. The ameliorant was characterized for their physical and chemical properties. Agronomic tests were conducted on coffee and cocoa seedling. The experiments were arranged according to Randomized Completely Design with 2 factors, consisted of natural ameliorant and inorganic fertilizer respectively. Natural ameliorant derived from coffee pulp was applied at 6 levels: 0, 30, 60, 90, 120 and 150 g dry ameliorant/seedling of 3 kg soil, equivalent to 0, 1, 2, 3, 4 and 5% (b/b of ameliorant respectively. Inorganic fertilizer was applied at 2 levels: 0 and 2 g fertilizer/application of N-P-K compound fertilizer of 15-15-15 respectively. The inorganic fertilizer was applied 4 times during nursery of coffee and cocoa. The result of the experiment indicated that coffee pulp may be used as natural soil ameliorant. Composition of ameliorant of 90% coffee pulp and 10% of minerals has good physical and chemical characteristics for soil amelioration. The composition has high water holding capacity; cations exchange capacity, organic carbon and phosphorus contents which are favorable to increase soil capacity to support plant growth. Application of

  2. C and N Content in Density Fractions of Whole Soil and Soil Size Fraction Under Cacao Agroforestry Systems and Natural Forest in Bahia, Brazil

    Science.gov (United States)

    Rita, Joice Cleide O.; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R.; Baligar, Virupax C.

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO2. Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and cacao AFS soils consisted mainly (65 %) of mega-aggregates (>2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical

  3. Relation of forms of compounds of heavy natural radionuclides in soils

    International Nuclear Information System (INIS)

    Arkhipov, N.P.; Fedorova, T.A.; Fevraleva, L.T.

    1986-01-01

    Results of studying forms of 238 U, 232 Th, 226 Ra, 210 Po, 210 Pb compounds in nonfertilized soils (under control) and in soils fertilized with ammophos containing increased amount of the mentioned radionuclides are given. The study was performed in main-year field experiment with sandy ashen gray soil and leached chernozemic soil. It is shown that a main share of radionuclides in nonfertilized soils is presened with tightly bound compounds and compounds bound with sesquioxide compounds. After 5 years labelled natural radionuclides introduced into the ammophos composition are in a more mobile state as compared with radionuclides in nonfertilized soil and they are presented with acid-soluble and bound with humus compound forms. Systematical application of fertilizers during along-term period results in the concentration increase of heavy natural radionuclides in soil

  4. Comparison of hydrocarbon gases in soils from natural seeps and anthropogenic sources

    International Nuclear Information System (INIS)

    Ririe, G.T.; Sweeney, R.E.

    1993-01-01

    Soil gas geochemical data are commonly used in site assessments to determine the nature and extent of soil contamination. There are also a number of sites where soil gas data can be used to infer the nature and approximate extent of free product or high concentration of dissolved contaminant in ground waters. The authors have conducted a variety of soil gas investigations in support of UNOCAL's site assessment and remediation efforts that have included studies on abandoned oil fields. Because many of these abandoned oil field sites will be used for residential development it is necessary to distinguish the type of soil gas data that are to be expected from natural sources from those derived from subsurface contamination. Data have been collected from a number of active and abandoned oil fields where a variety of subsurface contaminants including spilled crude oil, condensate, and solvents have been found. In several of these sites the authors have found evidence for both natural sources of soil gas anomalies, and anomalies associated with anthropogenic sources/causes. The distinction becomes particularly important when remedial options are being evaluated because it is impossible to remediate most natural sources

  5. Influence of natural pozzolana and lime additives on the temporal variation of soil compaction and shear strength

    Science.gov (United States)

    Harichane, Khelifa; Ghrici, Mohamed; Missoum, Hanifi

    2011-06-01

    Soil stabilization has been practiced for quite some time by adding mixtures, such as cement, lime and fly ash. The additives of lime (L), natural pozzolana (NP) or a combination of both were investigated here on the impact on the temporal variation of geotechnical characteristics of two cohesive soils. Lime and natural pozzolana were added at the content of 0-8% and 0-20%, respectively. The soil specimens were cured for 1, 7, 28 and 90 days and then tested for shear strength. Our data show that a combination of lime with natural pozzolana causes the increase in the maximum dry density but the decrease in the optimum moisture content in the gray soil, and vice verse in the red soil. The shear stress of both cohesive soils stabilized with lime or with the combination of lime and natural pozzolana was found to increase with time. The cohesion and the internal friction angle in lime-added samples were demonstrated to increase with time. The combination of lime with natural pozzolana exhibits a significant effect on the enhancement of the cohesion and the internal friction angle at later stages. The lime-natural pozzolana combination appears to produce higher shear parameters than lime or natural pozzolana used alone.

  6. Effect of Soil Tillage Practices on Dynamic of Bacterial Communities in Soil

    OpenAIRE

    Mirna Mrkonjić Fuka; Mihaela Blažinkov; Viviane Radl; Danijel Jug; Nataša Hulak; Sulejman Redžepović; Michael Schloter

    2016-01-01

    Several studies have indicated that intensive tillage has notable effect on properties of the soil microbiota that may influence numerous important soils functions, e.g. mobilization of nutrients or change of the overall emission rates of greenhouse gases. Therefore, the aim of our study was to investigate dynamic of microbial communities in soil planted with soybean under different tillage systems. Moreover, abundance of populations harboring the nitrous- oxide reductase gene (nosZ) a...

  7. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste

    International Nuclear Information System (INIS)

    Clemente, Rafael; Almela, Concepcion; Bernal, M. Pilar

    2006-01-01

    Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcollar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha -1 ) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. Natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg -1 TOC and 123, 170 and 275 μg g -1 biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil. - The addition of lime and organic amendments decreased heavy metal solubility and promoted Natural attenuation of a recently-contaminated soil

  8. A remediation strategy based on active phytoremediation followed by natural attenuation in a soil contaminated by pyrite waste

    Energy Technology Data Exchange (ETDEWEB)

    Clemente, Rafael [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Campus Universitario de Espinardo, Apartado 164, 30100 Espinardo, Murcia (Spain)]. E-mail: rclemente@cebas.csic.es; Almela, Concepcion [Instituto de Agroquimica y Tecnologia de Alimentos, CSIC, Apartado 73, 46100 Burjassot, Valencia (Spain); Bernal, M. Pilar [Department of Soil and Water Conservation and Organic Waste Management, Centro de Edafologia y Biologia Aplicada del Segura, CSIC, Campus Universitario de Espinardo, Apartado 164, 30100 Espinardo, Murcia (Spain)

    2006-10-15

    Phytoremediation of metal-polluted soils can be promoted by the proper use of soil amendments and agricultural practices. A 4-year phytoremediation programme was applied to a site affected by the toxic spill of pyrite residue at Aznalcollar (Spain) in 1998, contaminated with heavy metals (Zn, Cu, Pb, Cd) and arsenic. This consisted of active phytoremediation, using organic amendments (cow manure and compost) and lime and growing two successive crops of Brassica juncea (L.) Czern., followed by natural attenuation without further intervention. Changes in soil pH, extractable metal and As concentrations, organic carbon content and microbial biomass was evaluated. The initial oxidation of metal sulphides from pyrite residues released soluble metals and reduced soil pH to extremely acidic values (mean 4.1, range 2.0-7.0). The addition of lime (up to 64 t ha{sup -1}) increased soil pH to adequate values for plant growth, resulting in a significant decrease in DTPA-extractable metal concentrations in all plots. Natural attenuation phase showed also a decrease in extractable metals. Organic treatments increased the soil total organic carbon, which led to higher values of microbial biomass (11.6, 15.2 and 14.9 g kg{sup -1} TOC and 123, 170 and 275 {mu}g g{sup -1} biomass-C in control, compost and manure plots, respectively). Active phytoremediation followed by natural attenuation, was effective for remediation of this pyrite-polluted soil. - The addition of lime and organic amendments decreased heavy metal solubility and promoted Natural attenuation of a recently-contaminated soil.

  9. Bioremediation of Contaminated Soil with Oils Residuals through Bioaugmentation and Natural Attenuation

    Directory of Open Access Journals (Sweden)

    Maitê Carla Deon

    2012-04-01

    Full Text Available The potential for soil contamination by oil spills is growing, due to heavy industrialization and economic development of countries. Due to this fact, the bioremediation has become an alternative to remediate areas through the use of biological agents. Two microorganisms, isolated from a lipid-rich effluent, were used in the bioaugmentation of soils contaminated with diesel oil, lubricating oil and soybean oil. Natural attenuation tests were conducted as controls. The removal of diesel fuel at the time of 21 d were of 18.5%, 7.30% and 11.38%, respectively, for the bioaugmentation with isolated I1 and I2 and natural attenuation. The removal of lubricating oil were 41.6%, 14.16% and 6.91% respectively for the bioaugmentation with the isolated I1 and I2 and natural attenuation, while for soybean oil removals were of 87 8%, 73.9% and 49.4%. Considering the processes of bioaugmentatiom and natural attenuation, the bioaugmentation with the isolated I1 showed better results, possibly due to the production of compounds capable of reducing the surface tension during the preparation of bioaugmentation.

  10. Long-term antibiotic exposure in soil is associated with changes in microbial community structure and prevalence of class 1 integrons.

    Science.gov (United States)

    Cleary, David W; Bishop, Alistair H; Zhang, Lihong; Topp, Edward; Wellington, Elizabeth M H; Gaze, William H

    2016-10-01

    Antimicrobial resistance is one of the most significant challenges facing the global medical community and can be attributed to the use and misuse of antibiotics. This includes use as growth promoters or for prophylaxis and treatment of bacterial infection in intensively farmed livestock from where antibiotics can enter the environment as residues in manure. We characterised the impact of the long-term application of a mixture of veterinary antibiotics alone (tylosin, sulfamethazine and chlortetracycline) on class 1 integron prevalence and soil microbiota composition. Class 1 integron prevalence increased significantly (P Soil microbiota was analysed using 16S rRNA gene sequencing and revealed significant alterations in composition. Of the 19 significantly different (P < 0.05) OTUs identified, 16 were of the Class Proteobacteria and these decreased in abundance relative to the control plots. Only one OTU, of the Class Cyanobacteria, was shown to increase in abundance significantly; a curiosity given the established sensitivity of this class to antibiotics. We hypothesise that the overrepresentation of Proteobacteria as OTUs that decreased significantly in relative abundance, coupled with the observations of an increase in integron prevalence, may represent a strong selective pressure on these taxa. © FEMS 2016. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  11. Marked seasonal variation in the wild mouse gut microbiota.

    Science.gov (United States)

    Maurice, Corinne F; Knowles, Sarah C L; Ladau, Joshua; Pollard, Katherine S; Fenton, Andy; Pedersen, Amy B; Turnbaugh, Peter J

    2015-11-01

    Recent studies have provided an unprecedented view of the microbial communities colonizing captive mice; yet the host and environmental factors that shape the rodent gut microbiota in their natural habitat remain largely unexplored. Here, we present results from a 2-year 16 S ribosomal RNA gene sequencing-based survey of wild wood mice (Apodemus sylvaticus) in two nearby woodlands. Similar to other mammals, wild mice were colonized by 10 bacterial phyla and dominated by the Firmicutes, Bacteroidetes and Proteobacteria. Within the Firmicutes, the Lactobacillus genus was most abundant. Putative bacterial pathogens were widespread and often abundant members of the wild mouse gut microbiota. Among a suite of extrinsic (environmental) and intrinsic (host-related) factors examined, seasonal changes dominated in driving qualitative and quantitative differences in the gut microbiota. In both years examined, we observed a strong seasonal shift in gut microbial community structure, potentially due to the transition from an insect- to a seed-based diet. This involved decreased levels of Lactobacillus, and increased levels of Alistipes (Bacteroidetes phylum) and Helicobacter. We also detected more subtle but statistically significant associations between the gut microbiota and biogeography, sex, reproductive status and co-colonization with enteric nematodes. These results suggest that environmental factors have a major role in shaping temporal variations in microbial community structure within natural populations.

  12. C and N content in density fractions of whole soil and soil size fraction under cacao agroforestry systems and natural forest in Bahia, Brazil.

    Science.gov (United States)

    Rita, Joice Cleide O; Gama-Rodrigues, Emanuela Forestieri; Gama-Rodrigues, Antonio Carlos; Polidoro, Jose Carlos; Machado, Regina Cele R; Baligar, Virupax C

    2011-07-01

    Agroforestry systems (AFSs) have an important role in capturing above and below ground soil carbon and play a dominant role in mitigation of atmospheric CO(2). Attempts has been made here to identify soil organic matter fractions in the cacao-AFSs that have different susceptibility to microbial decomposition and further represent the basis of understanding soil C dynamics. The objective of this study was to characterize the organic matter density fractions and soil size fractions in soils of two types of cacao agroforestry systems and to compare with an adjacent natural forest in Bahia, Brazil. The land-use systems studied were: (1) a 30-year-old stand of natural forest with cacao (cacao cabruca), (2) a 30-year-old stand of cacao with Erythrina glauca as shade trees (cacao + erythrina), and (3) an adjacent natural forest without cacao. Soil samples were collected from 0-10 cm depth layer in reddish-yellow Oxisols. Soil samples was separated by wet sieving into five fraction-size classes (>2000 μm, 1000-2000 μm, 250-1000 μm, 53-250 μm, and 2000 μm) mixed with macroaggregates (32-34%), and microaggregates (1-1.3%). Soil organic carbon (SOC) and total N content increased with increasing soil size fraction in all land-use systems. Organic C-to-total N ratio was higher in the macroaggregate than in the microaggregate. In general, in natural forest and cacao cabruca the contribution of C and N in the light and heavy fractions was similar. However, in cacao + erythrina the heavy fraction was the most common and contributed 67% of C and 63% of N. Finding of this study shows that the majority of C and N in all three systems studied are found in macroaggregates, particularly in the 250-1000 μm size aggregate class. The heavy fraction was the most common organic matter fraction in these soils. Thus, in mature cacao AFS on highly weathered soils the main mechanisms of C stabilization could be the physical protection within macroaggregate structures thereby

  13. Environmental assessment of heavy metal and natural radioactivity in soil around a coal-fired power plant in China

    International Nuclear Information System (INIS)

    Xinwei Lu; Chinese Academy of Sciences, Xi'an; Wen Liu; Caifeng Zhao; Cancan Chen

    2013-01-01

    Concentrations of heavy metals and natural radionuclides in soil around a major coal-fired power plant of Xi'an, China were determined by using XRF and gamma ray spectrometry, respectively. The measured results of heavy metals show that the mean concentrations of Cu, Pb, Zn, Co and Cr in the studied soil samples are higher than their corresponding background values in Shaanxi soil, while the mean concentrations of Mn, Ni and V are close to the corresponding background values. The calculated results of pollution load index of heavy metals indicate that the studied soils presented heavy metal contamination. The concentrations of 226 Ra, 232 Th and 40 K in the studied soil samples range from 27.6 to 48.8, 44.4 to 61.4 and 640.2 to 992.2 Bq kg -1 with an average of 36.1, 51.1 and 733.9 Bq kg -1 , respectively, which are slightly higher than the average of Shaanxi soil. The air absorbed dose rate and the annual effective dose equivalent received by the local residents due to the natural radionuclides in soil are slightly higher than the mean values of Shaanxi. Coal combustion for energy production has affected the natural radioactivity level and heavy metals (Cu, Pb, Zn, Co and Cr) concentrations of soil around the coal-fired power plant. (author)

  14. Natural radioactivity levels in soils of Fiji

    International Nuclear Information System (INIS)

    Garimella, S.; Kumar, A.; Prasad, U.; Jafar, M.

    1998-01-01

    A 10 cm (diameter) x 7.5 cm NaI(Tl) gamma-ray spectrometer with a low background shield has been used to measure the natural radioactivity levels in soils of Viti Levu, the main island of Fiji. From this, the external gamma-dose which is likely to be delivered to the local population in this region is computed and found to be 99 μGy a -1 . This is well below the world average, but it is comparable to that observed in Marshall Islands and the Micronesia

  15. Natural radioactivity levels in soils of Fiji

    International Nuclear Information System (INIS)

    Garimella, S.; Kumar, A.; Prasad, U.; Jafar, M.

    1998-01-01

    A 10 cm (diameter) x 7.5 cm NaI(TI) gamma-ray spectrometer with a low background shield has been used to measure the natural radioactivity levels in soils of Viti Levu, the main island of Fiji. From this, the external gamma-dose which is likely to be delivered to the local population in this region is computed and found to be 99 microG a -1 . This is well below the world average, but it is comparable to that observed in Marshall Islands and the Micronesia. (author). 17 refs., 3 figs., 5 tabs

  16. Modified natural diatomite and its enhanced immobilization of lead, copper and cadmium in simulated contaminated soils.

    Science.gov (United States)

    Ye, Xinxin; Kang, Shenghong; Wang, Huimin; Li, Hongying; Zhang, Yunxia; Wang, Guozhong; Zhao, Huijun

    2015-05-30

    Natural diatomite was modified through facile acid treatment and ultrasonication, which increased its electronegativity, and the pore volume and surface area achieved to 0.211 cm(3) g(-1) and 76.9 m(2) g(-1), respectively. Modified diatomite was investigated to immobilize the potential toxic elements (PTEs) of Pb, Cu and Cd in simulated contaminated soil comparing to natural diatomite. When incubated with contaminated soils at rates of 2.5% and 5.0% by weight for 90 days, modified diatomite was more effective in immobilizing Pb, Cu and Cd than natural diatomite. After treated with 5.0% modified diatomite for 90 days, the contaminated soils showed 69.7%, 49.7% and 23.7% reductions in Pb, Cu and Cd concentrations after 0.01 M CaCl2 extraction, respectively. The concentrations of Pb, Cu and Cd were reduced by 66.7%, 47.2% and 33.1% in the leaching procedure, respectively. The surface complexation played an important role in the immobilization of PTEs in soils. The decreased extractable metal content of soil was accompanied by improved microbial activity which significantly increased (Psoils. These results suggested that modified diatomite with micro/nanostructured characteristics increased the immobilization of PTEs in contaminated soil and had great potential as green and low-cost amendments. Copyright © 2015 Elsevier B.V. All rights reserved.

  17. SoilGrids1km— global soil information based on automated mapping

    NARCIS (Netherlands)

    Hengl, T.; Mendes de Jesus, J.S.; Macmillan, R.A.; Batjes, N.H.; Heuvelink, G.B.M.; Carvalho Ribeiro, E.D.; Samuel Rosa, A.; Kempen, B.; Leenaars, J.G.B.; Walsh, M.G.; Ruiperez Gonzalez, M.

    2014-01-01

    Background Soils are widely recognized as a non-renewable natural resource and as biophysical carbon sinks. As such, there is a growing requirement for global soil information. Although several global soil information systems already exist, these tend to suffer from inconsistencies and limited

  18. Measurement conditions of natural soil thermoluminescence and their application in a granite type uranium deposit

    International Nuclear Information System (INIS)

    Chen Yue; Yang Yaxin; Liu Qingcheng

    2009-01-01

    A measuring method of natural soil thermoluminescence is used for prospecting of uranium deposits. The better effects are obtained by using the method, but the parameters selected have significant effects on the intensity of soil thermoluminescent. So, the measuring parameters are selected according to the different soil samples. Based on the measuring 1 000 soil samples of granite type uranium deposit,the optimum heating up program of natural soil thermoluminescence is obtained, that is, preheating, lasting heating, constant temperature and the halting heating. The parameters selected are as follows: the heating rate being 15 degree C/s, the temperatures of the first and second constant temperature being 135 degree C and 400 degree C respectively. Using the selected parameters for measuring soil samples from a known mining area in Guangdong province, the result indicates that the abnormities of thermoluminescence have corresponding relations with the underground orebodies. (authors)

  19. Natural and fire-induced soil water repellency in a Portugese Shrubland

    NARCIS (Netherlands)

    Stoof, C.R.; Moore, D.; Ritsema, C.J.; Dekker, L.W.

    2011-01-01

    Post-fire land degradation is often attributed to fire-induced soil water repellency, despite the fact that soil water repellency is a natural phenomenon in many soils and is therefore not necessarily caused by fire. To improve our understanding of the role of soil water repellency in causing

  20. The intricate association between gut microbiota and development of type 1, type 2 and type 3 diabetes.

    Science.gov (United States)

    Bekkering, Pjotr; Jafri, Ismael; van Overveld, Frans J; Rijkers, Ger T

    2013-11-01

    It has been proposed that changes in the composition of gut microbiota contribute to the development of diabetes Types 1, 2 and 3 (the latter known as Alzheimer's disease). The onset of these diseases is affected by complex interactions of genetic and several environmental factors. Alterations in gut microbiota in combination with specific diets can result in increased intestinal permeability leading via a continuous state of low-grade inflammation to the development of insulin resistance. Since a change in composition of gut microbiota is also suggested to be the underlying factor for the development of obesity, it is obvious to link gut microbiota with the pathogenesis of diabetes. In addition, insulin resistance in the brain has been recently associated with Alzheimer's disease. These new paradigms in combination with data from studies with prebiotics and probiotics may lead to a novel way to control and even prevent diabetes in general.

  1. The soils of the Parque Natural da Arrábida

    Directory of Open Access Journals (Sweden)

    Rolf Schrittenlocher

    1997-11-01

    Full Text Available The soils of the Parque Natural da Arrábida are surveyed along four "catenae" right across the Parque. Dominant soil formating processes and their regional importance are shown. The soils are described as units according to FAO (1988. On the basis of the FAO units an attempt is made to combine soil units with ecological classes. A comparison with the soil map 38-B and the portuguese classification (Cardoso 1964 is given. Unfortunately it is not possible to transform the units of that map into soil units according to FAO (1988.

  2. The natural radioactivity of soils in The Netherlands

    International Nuclear Information System (INIS)

    Bannink, D.W.; Keen, A.; Koester, H.W.; Pennders, R.M.J.; Winkel, J.H. de

    1986-02-01

    Forty percent of the natural radiation exposure of man is caused by the primordial radionuclides - U-238, Th-232 and K-40 - and their daughters in the soil. It is shown that the activity concentrations of these nuclides vary between Dutch soils and that they lie within the normal range reported by the UNSCEAR committee. In linear regression models a clear link was found between the activity concentrations and the following soil properties: grain size distribution, organic matter and lime content, whether or not in combination with soil type. The same models are capable to predict the activity concentrations in various soils with reasonable precision. No improvement of the models was obtained by incorporating the pH and/or sampling depth. Possible further investigations to refine the models are suggested. (Auth.)

  3. Long-term assessment of natural attenuation: statistical approach on soils with aged PAH contamination.

    Science.gov (United States)

    Ouvrard, Stéphanie; Chenot, Elodie-Denise; Masfaraud, Jean-François; Schwartz, Christophe

    2013-07-01

    Natural attenuation processes valorization for PAH-contaminated soil remediation has gained increasing interest from site owners. A misunderstanding of this method and a small amount of data available does not encourage its development. However, monitored natural attenuation (MNA) offers a valuable, cheaper and environmentally friendly alternative to more classical options such as physico-chemical treatments (e.g., chemical oxidation, thermal desorption). The present work proposes the results obtained during a long-term natural attenuation assessment of historically contaminated industrial soils under real climatic conditions. This study was performed after a 10 year natural attenuation period on 60 off-ground lysimeters filled with contaminated soils from different former industrial sites (coking industry, manufactured gas plants) whose initial concentration of PAH varied between 380 and 2,077 mg kg(-1). The analysed parameters included leached water characterization, soil PAH concentrations, evaluation of vegetation cover quality and quantity. Results showed a good efficiency of the PAH dissipation and limited transfer of contaminants to the environment. It also highlighted the importance of the fine soil fractions in controlling PAH reactivity. PAH dissipation through water leaching was limited and did not present a significant risk for the environment. This PAH water concentration appeared however as a good indicator of overall dissipation rate, thereby illustrating the importance of pollutant availability in predicting its degradation potential.

  4. Salmonella enterica serovar Typhimurium exploits inflammation to modify swine intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Rosanna eDrumo

    2016-01-01

    Full Text Available Salmonella enterica serovar Typhimurium is an important zoonotic gastrointestinal pathogen responsible for foodborne disease worldwide. It is a successful enteric pathogen because it has developed virulence strategies allowing it to survive in a highly inflamed intestinal environment exploiting inflammation to overcome colonization resistance provided by intestinal microbiota. In this study, we used piglets featuring an intact microbiota, which naturally develop gastroenteritis, as model for salmonellosis. We compared the effects on the intestinal microbiota induced by a wild type and an attenuated S. Typhimurium in order to evaluate whether the modifications are correlated with the virulence of the strain. This study showed that Salmonella alters microbiota in a virulence-dependent manner. We found that the wild type S. Typhimurium induced inflammation and a reduction of specific protecting microbiota species (SCFA-producing bacteria normally involved in providing a barrier against pathogens. Both these effects could contribute to impair colonization resistance, increasing the host susceptibility to wild type S. Typhimurium colonization. In contrast, the attenuated S. Typhimurium, which is characterized by a reduced ability to colonize the intestine, and by a very mild inflammatory response, was unable to successfully sustain competition with the microbiota.

  5. Soil-to-plant transfer factors for natural radionuclides in the Brazilian cerrado region

    International Nuclear Information System (INIS)

    Jacomino, Vanusa M.F.; Oliveira, Kerley A.; Menezes, Maria Angela de B.; Mello, Jaime de; Silva, David F. da

    2009-01-01

    Large amounts of phosphogypsum produced have been attracting attention of Radiological Protection institutions and Environmental Protection agencies worldwide, given its high potential for environmental contamination. In Brazil, this material has been used for several decades, especially for agricultural purposes. Due to the presence of radionuclides in its composition, it is necessary to understand the mechanisms for natural radionuclide transfer in the soil/plant system and to evaluate if the use of phosphogypsum in soil contributes to increased exposition of humans to natural radioactivity. Experiments were accomplished in a greenhouse with lettuce cultivation in two types of soil (sandy and clayey) fertilized with four different amounts of phosphogypsum. Samples of phosphogypsum, soil, lettuce and drainage water were then analyzed for key radionuclides. 238 U and 232 Th analyses were carried out by Neutron Activation Analysis; 226 Ra, 228 Ra, and 210 Pb by analyzed by Gamma Spectrometry; and 210 Po by Alpha Spectrometry Technique. Finally, Transfer Factors of soil-plant were calculated as well as annual contribution to the effective dose due to the ingestion of lettuces. 22 '6Ra average specific activity in phosphogypsum samples (252 Bq kg -1 ) was below the maximum level recommended by USEPA, which is 370 Bq.kg -1 for agricultural use. Although most of the results for mean specific activity of radionuclides in lettuce presented values below the Minimum Detectable Activity (MDA), Transfer Factors were estimated for those conditions in which the mean specific activity proved to be superior to MDA. Values ranged from 1.8 10 -3 to 2.3 10 -2 for 232 Th; 3.5 10 - '2 to 4.1 10 -2 for 226 Ra, 2.4 10 -1 to 3.2 10 - '1 for 228 Ra, and 3.5 10 -2 to 8.5 10 -2 for 210 Po, depending on the type of soil used for planting vegetables. In general, results obtained in the present study indicated that mobility of radionuclides was low in both soils studied. Calculated effective

  6. Soil-to-plant transfer factors for natural radionuclides in the Brazilian cerrado region

    Energy Technology Data Exchange (ETDEWEB)

    Jacomino, Vanusa M.F.; Oliveira, Kerley A.; Menezes, Maria Angela de B., E-mail: vmfj@cdtn.b [Centro de Desenvolvimento da Tecnologia Nuclear (CDTN/CNEN-MG), Belo Horizonte, MG (Brazil); Mello, Jaime de; Silva, David F. da, E-mail: jwvmello@ufv.b [Universidade Federal de Vicosa (UFV), MG (Brazil). Dept. de Solos; Siqueira, Maria C.; Taddei, Maria H.; Dias, Fabiana F., E-mail: mc_quimica@hotmail.co, E-mail: mhtaddei@cnen.gov.b, E-mail: fdias@cnen.gov.b [Comissao Nacional de Energia Nuclear (CNEN-MG), Pocos de Caldas, MG (Brazil). Lab. de Pocos de Caldas (LAPOC)

    2009-07-01

    Large amounts of phosphogypsum produced have been attracting attention of Radiological Protection institutions and Environmental Protection agencies worldwide, given its high potential for environmental contamination. In Brazil, this material has been used for several decades, especially for agricultural purposes. Due to the presence of radionuclides in its composition, it is necessary to understand the mechanisms for natural radionuclide transfer in the soil/plant system and to evaluate if the use of phosphogypsum in soil contributes to increased exposition of humans to natural radioactivity. Experiments were accomplished in a greenhouse with lettuce cultivation in two types of soil (sandy and clayey) fertilized with four different amounts of phosphogypsum. Samples of phosphogypsum, soil, lettuce and drainage water were then analyzed for key radionuclides. {sup 238}U and {sup 232}Th analyses were carried out by Neutron Activation Analysis; {sup 226}Ra, {sup 228}Ra, and {sup 210}Pb by analyzed by Gamma Spectrometry; and {sup 210}Po by Alpha Spectrometry Technique. Finally, Transfer Factors of soil-plant were calculated as well as annual contribution to the effective dose due to the ingestion of lettuces. {sup 22}'6Ra average specific activity in phosphogypsum samples (252 Bq kg{sup -1}) was below the maximum level recommended by USEPA, which is 370 Bq.kg{sup -1} for agricultural use. Although most of the results for mean specific activity of radionuclides in lettuce presented values below the Minimum Detectable Activity (MDA), Transfer Factors were estimated for those conditions in which the mean specific activity proved to be superior to MDA. Values ranged from 1.8 10{sup -3} to 2.3 10{sup -2} for {sup 232}Th; 3.5 10{sup -}'2 to 4.1 10{sup -2} for {sup 226}Ra, 2.4 10{sup -1} to 3.2 10{sup -}'1 for {sup 228}Ra, and 3.5 10{sup -2} to 8.5 10{sup -2} for {sup 210}Po, depending on the type of soil used for planting vegetables. In general, results

  7. A Glucagon-Like Peptide-1 Receptor Agonist Lowers Weight by Modulating the Structure of Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Li Zhao

    2018-05-01

    Full Text Available In addition to improving glucose metabolism, liraglutide, a glucagon-like peptide-1 receptor agonist, has weight-loss effects. The underlying mechanisms are not completely understood. This study was performed to explore whether liraglutide could lower weight by modulating the composition of the gut microbiota in simple obese and diabetic obese rats. In our study, Wistar and Goto-Kakizaki (GK rats were randomly treated with liraglutide or normal saline for 12 weeks. The biochemical parameters and metabolic hormones were measured. Hepatic glucose production and lipid metabolism were also assessed with isotope tracers. Changes in gut microbiota were analyzed by 16S rRNA gene sequencing. Both glucose and lipid metabolism were significantly improved by liraglutide. Liraglutide lowered body weight independent of glycemia status. The abundance and diversity of gut microbiota were considerably decreased by liraglutide. Liraglutide also decreased obesity-related microbial phenotypes and increased lean-related phenotypes. In conclusion, liraglutide can prevent weight gain by modulating the gut microbiota composition in both simple obese and diabetic obese subjects.

  8. Gut microbiota diversity and T1DM onset: Preliminary data of a case-control study

    Directory of Open Access Journals (Sweden)

    Deborah Traversi

    2017-12-01

    Full Text Available Type-1 diabetes incidence is increasing during the last decades. Recently, a role of microbiota alteration is proposed as pre-diabetic and diabetic risk factor. A bicentric case-control study is in progress in Northern Italy. Here preliminary results are shown. The microbiome clusterization showed a division between cases and controls even if fingerprint profiles are heterogenic. Methanobrevibacter smithii is highly present only in few patients. The diversity index and the microorganism sequenced in cases and controls, seems to be quite dissimilar. The conclusive results could show a significant predictive value for the bio-indicators evaluated. Keywords: Type 1 diabetes mellitus, Microbiota, Children, Methanobrevibacter smithii, qRT-PCR

  9. Natural physical and biological processes compromise the long-term performance of compacted soil caps

    International Nuclear Information System (INIS)

    Smith, E.D.

    1995-01-01

    Compacted soil barriers are components of essentially all caps placed on closed waste disposal sites. The intended functions of soil barriers in waste facility caps include restricting infiltration of water and release of gases and vapors, either independently or in combination with synthetic membrane barriers, and protecting other manmade or natural barrier components. Review of the performance of installed soil barriers and of natural processes affecting their performance indicates that compacted soil caps may function effectively for relatively short periods (years to decades), but natural physical and biological processes can be expected to cause them to fail in the long term (decades to centuries). This paper addresses natural physical and biological processes that compromise the performance of compacted soil caps and suggests measures that may reduce the adverse consequences of these natural failure mechanisms

  10. Distribution of some artificial and natural radionuclides and trace elements in Syrian soils

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Shaik Khalil, H.; Amin, Y.; Ibrahim, S.; Hassan, M.

    2004-07-01

    Within the environmental monitoring program in Syria, about 115 surface soil and 38 profile soil samples were collected and analyzed during the period of 1998 to 2003 in order to determine the levels of natural and artificial radionuclides and some of trace elements (Cu, Zn, Cd, Pb). The concentrations of the natural radionuclides in the surface samples were found to vary from area to another and ranged from 2-50 Bq/kg, 4-228 Bq/kg, 4-55 Bq/kg, 1-143 Bq/kg and 96-672 Bq/kg for 224 Ra, 226 Ra, 228 Ra, 137 Cs and 04 K, respectively. While, the concentrations of the studied trace elements were varied between 0.5-5.6 mg/kg for U, 3.2-31.7 mg/kg for Pb, 14-141 mg/kg for Zn, 1.6-114 mg/kg for Cu and 0.25-2.7 mg/kg for Cd. Most of the reported values in this study were in the range of the natural uncontaminated surface soil concentrations and published values in many countries in the world. The results showed that the relation between the distribution of the natural radionuclides and depth was approximately the same for all radionuclides except for 137 Cs, which was extremely binded in the upper layers of soil. In addition, some differences in the concentrations of the studied trace elements with depth were observed. These differences may be due to the average of rainfall and the existence of some potential sources of contamination of such elements. However, the results of this study can be considered as a database for the natural background in Syria that helps to establish the radiation map of the country.(author)

  11. Soil organic carbon stocks quantification in Mediterranean natural areas, a trade-off between entire soil profiles and soil control sections

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Brevik, Eric. C.; Cerdá, Artemi

    2015-04-01

    Soil organic carbon (SOC) is extremely important in the global carbon (C) cycle; also, SOC is a soil property subject to changes, inasmuch as SOC is highly variable in space and time. The scientific community is researching the fate of the organic carbon in the ecosystems and this is why there is a blooming interest on this topic (Oliveira et al., 2014; Kukal et al., 2015). Soil organic matter play a key role in the Soil System (Fernández-Romero et al., 2014; Parras-Alcántara and Lozano García, 2014; Lozano-García and Parras-Alcántara; Parras-Alcántara et al., 2015).Globally it is known that soil C sequestration is a strategy to mitigate climate change. Over time, some researchers have analyzed entire soil profiles (ESP) by pedogenetic horizons and other researchers have analyzed soil control sections (SCS) (edaphic controls to different thickness), and in each case the benefits of the methodology established was justified. However, very few studies compare both methods (ESP versus SCS). This research sought to analyze the SOC stock (SOCS) variability using both methods (ESP and SCS) in The Despeñaperros Natural Park, a nature reserve that consists of a 76.8 km2 forested area in southern Spain. The park is in a Mediterranean environment and is a natural area (free of human disturbance). Thirty-four sampling points were selected in the study zone. Each sampling point was analyzed in two different ways, as ESP (by horizons) and as SCS with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The major goal of this research was to study the SOCS variability at regional scale. The studied soils were classified as Phaeozems, Cambisols, Regosols and Leptosols. The total SOCS in the Despeñaperros Natural Park was over 28.2% greater when SCS were used compared to ESP, ranging from 0.8144 Tg C to 0.6353 Tg C respectively (1 Tg = 10E12 g). However, when the top soil (surface horizon and superficial section control) was analyzed, this difference increased to

  12. The effect of tributyltin-oxide on earthworms, springtails, and plants in artificial and natural soils.

    Science.gov (United States)

    Römbke, J; Jänsch, S; Junker, T; Pohl, B; Scheffczyk, A; Schallnass, H-J

    2007-05-01

    Chemical bioavailability in Organisation for Economic Co-operation and Development (OECD) artificial soil can contrast with bioavailability in natural soils and produce ecotoxicologic benchmarks that are not representative of species' exposure conditions in the field. Initially, reproduction and growth of earthworm and Collembolan species, and early seedling growth of a dicotyledonous plant species, in nine natural soils (with a wide range of physicochemical properties) and in OECD soil were evaluated. Soils that supported reproduction and growth of the test species were then used to investigate the toxicity of tributyltin-oxide (TBT-O). Natural soils caused greater toxicity of TBT-O to earthworms (EC(50) values varied from 0.5 to 4.7 mg/kg soil dry weight [dw]) compared with toxicity in OECD soil (EC(50) = 13.4 mg/kg dw). Collembolans were less sensitive to TBT-O than earthworms in natural soils, with EC(50) values ranging from 23.4 to 177.8 mg/kg dw. In contrast, the toxicity of TBT-O to collembolans in OECD soil (EC(50) = 104.0 mg/kg dw) was within the range of EC(50) values in natural soils. Phytotoxicity tests revealed even greater difference between the effects in natural soils (EC(50) values ranged from 10.7 to 189.2 mg/kg dw) and in OECD soil (EC(50) = 535.5 mg/kg dw) compared with results of the earthworm tests. Studies also showed that EC(50) values were a more robust end point compared with EC(10) values based on comparisons of coefficients of variation. These results show that toxicity testing should include studies with natural soils in addition to OECD soil to better reflect exposure conditions in the field.

  13. Root uptake of 137Cs by natural and semi-natural grasses as a function of texture and moisture of soils

    International Nuclear Information System (INIS)

    Grytsyuk, N.; Arapis, G.; Davydchuk, V.

    2006-01-01

    This work studies the dependence of 137 Cs root uptake on the structure of landscape, especially on texture and moisture of soils, under natural conditions, on abandoned radiopolluted lands in Northern Ukraine. Researches were carried out on a wide range of landscape conditions, at various levels of 137 Cs contamination (from 20 up to 5000 kBq m -2 ), with different types of soils (approx. 20 soil varieties), which differ in texture, granulometric composition, degrees of gleyization and water regime, and anthropogenic transformation. The results showed that transfer factor (TF) values of 137 Cs differ 50 times for the natural grassy coenoses and 8 times for the semi-natural ones. The lowest 137 Cs TF values were measured in the herbages of dry meadows at automorphous loamy soils, while the highest were observed in wetland meadows at organic soils. Finally, the correlation between 137 Cs TF values and granulometric composition of soil was determined for both automorphic and hydromorphic mineral soils

  14. Natural and artificial radioactivity distribution In soil of Fars province (IR)

    International Nuclear Information System (INIS)

    Faghihi, R.; Mehdizadeh, S.; Sina, S.

    2011-01-01

    Fars province is a large populated large province located in the southwest of Iran. This work presents a study of natural and radioactivity levels in soil samples of this province. For this purpose, 126 samples were gathered from different regions of the province and analysed by gamma spectroscopy to quantify radioactivity concentrations of radionuclides using a high-purity germanium detector and spectroscopy system. The results of this investigation show the average concentrations of 271 ± 28 Bq kg -1 , 6.37 ± 0.5 Bq kg -1 , 14.9 ± 0.9 Bq kg -1 and 26.3 ± 1.9 Bq kg -1 for 40 K, 137 Cs, 232 Th and 238 U in soil, respectively. Finally, baseline maps were established for the concentrations of each of the radionuclides in different regions. The absorbed dose rate and the annual effective dose (AED) were also calculated for the radionuclides according to the guidelines of UNSCEAR 2000. The average AED from the radioactivity content of soil in this province was found to be 39.9 ± 1.8 μSv. (authors)

  15. Does the maternal vaginal microbiota play a role in seeding the microbiota of neonatal gut and nose?

    Science.gov (United States)

    Sakwinska, O; Foata, F; Berger, B; Brüssow, H; Combremont, S; Mercenier, A; Dogra, S; Soh, S-E; Yen, J C K; Heong, G Y S; Lee, Y S; Yap, F; Meaney, M J; Chong, Y-S; Godfrey, K M; Holbrook, J D

    2017-10-13

    The acquisition and early maturation of infant microbiota is not well understood despite its likely influence on later health. We investigated the contribution of the maternal microbiota to the microbiota of infant gut and nose in the context of mode of delivery and feeding. Using 16S rRNA sequencing and specific qPCR, we profiled microbiota of 42 mother-infant pairs from the GUSTO birth cohort, at body sites including maternal vagina, rectum and skin; and infant stool and nose. In our study, overlap between maternal vaginal microbiota and infant faecal microbiota was minimal, while the similarity between maternal rectal microbiota and infant microbiota was more pronounced. However, an infant's nasal and gut microbiota were no more similar to that of its own mother, than to that of unrelated mothers. These findings were independent of delivery mode. We conclude that the transfer of maternal vaginal microbes play a minor role in seeding infant stool microbiota. Transfer of maternal rectal microbiota could play a larger role in seeding infant stool microbiota, but approaches other than the generally used analyses of community similarity measures are likely to be needed to quantify bacterial transmission. We confirmed the clear difference between microbiota of infants born by Caesarean section compared to vaginally delivered infants and the impact of feeding mode on infant gut microbiota. Only vaginally delivered, fully breastfed infants had gut microbiota dominated by Bifidobacteria. Our data suggest that reduced transfer of maternal vaginal microbial is not the main mechanism underlying the differential infant microbiota composition associated with Caesarean delivery. The sources of a large proportion of infant microbiota could not be identified in maternal microbiota, and the sources of seeding of infant gut and nasal microbiota remain to be elucidated.

  16. Diuron mineralisation in a Mediterranean vineyard soil: impact of moisture content and temperature.

    Science.gov (United States)

    El Sebaï, Talaat; Devers, Marion; Lagacherie, Bernard; Rouard, Nadine; Soulas, Guy; Martin-Laurent, Fabrice

    2010-09-01

    The diuron-mineralising ability of the microbiota of a Mediterranean vineyard soil exposed each year to this herbicide was measured. The impact of soil moisture and temperature on this microbial activity was assessed. The soil microbiota was shown to mineralise diuron. This mineralising activity was positively correlated with soil moisture content, being negligible at 5% and more than 30% at 20% soil moisture content. According to a double Gaussian model applied to fit the dataset, the optimum temperature/soil moisture conditions were 27.9 degrees C/19.3% for maximum mineralisation rate and 21.9 degrees C/18.3% for maximum percentage mineralisation. The impact of temperature and soil moisture content variations on diuron mineralisation was estimated. A simulated drought period had a suppressive effect on subsequent diuron mineralisation. This drought effect was more marked when higher temperatures were used to dry (40 degrees C versus 28 degrees C) or incubate (28 degrees C versus 20 degrees C) the soil. The diuron kinetic parameters measured after drought conditions were no longer in accordance with those estimated by the Gaussian model. Although soil microbiota can adapt to diuron mineralisation, its activity is strongly dependent on climatic conditions. It suggests that diuron is not rapidly degraded under Mediterranean climate, and that arable Mediterranean soils are likely to accumulate diuron residues. (c) 2010 Society of Chemical Industry.

  17. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    International Nuclear Information System (INIS)

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated

  18. Investigation of dielectric constant variations for Malaysians soil species towards its natural background dose

    Science.gov (United States)

    Jafery, Khawarizmi Mohd; Embong, Zaidi; Khee, Yee See; Haimi Dahlan, Samsul; Tajudin, Saiful Azhar Ahmad; Ahmad, Salawati; Kudnie Sahari, Siti; Maxwell, Omeje

    2018-01-01

    The correlation of natural background gamma radiation and real part of the complex relative permittivity (dielectric constant) for various species Malaysian soils was investigated in this research. The sampling sites were chosen randomly according to soils groups that consist of sedentary, alluvial and miscellaneous soil which covered the area of Batu Pahat, Kluang and Johor Bahru, Johor state of Malaysia. There are 11 types of Malaysian soil species that have been studied; namely Peat, Linau-Sedu, Selangor-Kangkong, Kranji, Telemong-Akob-Local Alluvium, Holyrood-Lunas, Batu Anam-Melaka-Tavy, Harimau Tampoi, Kulai-Yong Peng, Rengam-Jerangau, and Steepland soils. In-situ exposure rates of each soil species were measured by using portable gamma survey meter and ex-situ analysis of real part of relative permittivity was performed by using DAK (Dielectric Assessment Kit assist by network analyser). Results revealed that the highest and the lowest background dose rate were 94 ± 26.28 μR hr-1 and 7 ± 0.67 μR hr-1 contributed by Rengam Jerangau and Peat soil species respectively. Meanwhile, dielectric constant measurement, it was performed in the range of frequency between 100 MHz to 3 GHz. The measurements of each soils species dielectric constant are in the range of 1 to 3. At the lower frequencies in the range of 100 MHz to 600 MHz, it was observed that the dielectric constant for each soil species fluctuated and inconsistent. But it remained consistent in plateau form of signal at higher frequency at range above 600 MHz. From the comparison of dielectric properties of each soil at above 600 MHz of frequency, it was found that Rengam-Jerangau soil species give the highest reading and followed by Selangor-Kangkong species. The average dielectric measurement for both Selangor-Kangkong and Rengam-Jerangau soil species are 2.34 and 2.35 respectively. Meanwhile, peat soil species exhibits the lowest dielectric measurement of 1.83. It can be clearly seen that the pattern

  19. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils

    Science.gov (United States)

    Prescott, Cindy E.; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J.

    2017-01-01

    ABSTRACT The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km2, land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of

  20. Estimative of the soil amount ingested by cattle in high natural radioactive region

    International Nuclear Information System (INIS)

    Rosa, Roosevelt; Silva, Lucia H.C.; Taddei, Maria H.T.

    1997-01-01

    Considering that Pocos de Caldas is a region of high natural radioactivity, where many environmental impacts have been studied, 27 samples of cattle faeces and 24 samples of local soil were collected and analyzed for Ti concentrations, during dry and rain periods. Using this element as an indicator, the percentage of soil ingestion by cattle were estimated for three management practices: confined, semi-confined and free. The results showed the management practices influence on the cattle soil ingestion percentage, and the importance of this pathway in the environmental impact assessment. (author). 7 refs., 1 tab

  1. Soil mineral composition matters: response of microbial communities to phenanthrene and plant litter addition in long-term matured artificial soils.

    Science.gov (United States)

    Babin, Doreen; Vogel, Cordula; Zühlke, Sebastian; Schloter, Michael; Pronk, Geertje Johanna; Heister, Katja; Spiteller, Michael; Kögel-Knabner, Ingrid; Smalla, Kornelia

    2014-01-01

    The fate of polycyclic aromatic hydrocarbons (PAHs) in soil is determined by a suite of biotic and abiotic factors, and disentangling their role in the complex soil interaction network remains challenging. Here, we investigate the influence of soil composition on the microbial community structure and its response to the spiked model PAH compound phenanthrene and plant litter. We used long-term matured artificial soils differing in type of clay mineral (illite, montmorillonite) and presence of charcoal or ferrihydrite. The soils received an identical soil microbial fraction and were incubated for more than two years with two sterile manure additions. The matured artificial soils and a natural soil were subjected to the following spiking treatments: (I) phenanthrene, (II) litter, (III) litter + phenanthrene, (IV) unspiked control. Total community DNA was extracted from soil sampled on the day of spiking, 7, 21, and 63 days after spiking. Bacterial 16S rRNA gene and fungal internal transcribed spacer amplicons were quantified by qPCR and subjected to denaturing gradient gel electrophoresis (DGGE). DGGE analysis revealed that the bacterial community composition, which was strongly shaped by clay minerals after more than two years of incubation, changed in response to spiked phenanthrene and added litter. DGGE and qPCR showed that soil composition significantly influenced the microbial response to spiking. While fungal communities responded only in presence of litter to phenanthrene spiking, the response of the bacterial communities to phenanthrene was less pronounced when litter was present. Interestingly, microbial communities in all artificial soils were more strongly affected by spiking than in the natural soil, which might indicate the importance of higher microbial diversity to compensate perturbations. This study showed the influence of soil composition on the microbiota and their response to phenanthrene and litter, which may increase our understanding of

  2. Microbiome and ecotypic adaption of Holcus lanatus (L.) to extremes of its soil pH range, investigated through transcriptome sequencing.

    Science.gov (United States)

    Young, Ellen; Carey, Manus; Meharg, Andrew A; Meharg, Caroline

    2018-03-20

    Plants can adapt to edaphic stress, such as nutrient deficiency, toxicity and biotic challenges, by controlled transcriptomic responses, including microbiome interactions. Traditionally studied in model plant species with controlled microbiota inoculation treatments, molecular plant-microbiome interactions can be functionally investigated via RNA-Seq. Complex, natural plant-microbiome studies are limited, typically focusing on microbial rRNA and omitting functional microbiome investigations, presenting a fundamental knowledge gap. Here, root and shoot meta-transcriptome analyses, in tandem with shoot elemental content and root staining, were employed to investigate transcriptome responses in the wild grass Holcus lanatus and its associated natural multi-species eukaryotic microbiome. A full factorial reciprocal soil transplant experiment was employed, using plant ecotypes from two widely contrasting natural habitats, acid bog and limestone quarry soil, to investigate naturally occurring, and ecologically meaningful, edaphically driven molecular plant-microbiome interactions. Arbuscular mycorrhizal (AM) and non-AM fungal colonization was detected in roots in both soils. Staining showed greater levels of non-AM fungi, and transcriptomics indicated a predominance of Ascomycota-annotated genes. Roots in acid bog soil were dominated by Phialocephala-annotated transcripts, a putative growth-promoting endophyte, potentially involved in N nutrition and ion homeostasis. Limestone roots in acid bog soil had greater expression of other Ascomycete genera and Oomycetes and lower expression of Phialocephala-annotated transcripts compared to acid ecotype roots, which corresponded with reduced induction of pathogen defense processes, particularly lignin biosynthesis in limestone ecotypes. Ascomycota dominated in shoots and limestone soil roots, but Phialocephala-annotated transcripts were insignificant, and no single Ascomycete genus dominated. Fusarium-annotated transcripts were

  3. INTERRELATIONS BETWEEN THE MYCORRHIZAL SYSTEMS AND SOIL ORGANISMS

    Directory of Open Access Journals (Sweden)

    BALAEŞ TIBERIUS

    2011-12-01

    Full Text Available The mycorrhizae are largely spread in natural ecosystems, and the proportion of plants that realise mycorrhizas is overwhelming, this relation involving advantages for both partners. The presence or absence of mycorrhizae, the rate and intensity of mycorrhiza formation are aspects with ecological importance, but also present importance in modern agriculture. The research results published on international literature which views the principal relations between mycorrhizae and soil microbiota, the way in which these relations affect the intensity of mycorrhizae formation and also the efficiency of mycorrhizae under the influence of soil organisms are synthesized and commented in this paper. The relations between mycorrhizae and different categories of bacteria, protozoa or microfungi, as well the influence of invertebrates through interactions of them with microorganisms are also being analyzed.

  4. Response of Soil Microbial Communities to Elevated Antimony and Arsenic Contamination Indicates the Relationship between the Innate Microbiota and Contaminant Fractions.

    Science.gov (United States)

    Sun, Weimin; Xiao, Enzong; Xiao, Tangfu; Krumins, Valdis; Wang, Qi; Häggblom, Max; Dong, Yiran; Tang, Song; Hu, Min; Li, Baoqin; Xia, Bingqing; Liu, Wei

    2017-08-15

    Mining of sulfide ore deposits containing metalloids, such as antimony and arsenic, has introduced serious soil contamination around the world, posing severe threats to food safety and human health. Hence, it is important to understand the behavior and composition of the microbial communities that control the mobilization or sequestration of these metal(loid)s. Here, we selected two sites in Southwest China with different levels of Sb and As contamination to study interactions among various Sb and As fractions and the soil microbiota, with a focus on the microbial response to metalloid contamination. Comprehensive geochemical analyses and 16S rRNA gene amplicon sequencing demonstrated distinct soil taxonomic inventories depending on Sb and As contamination levels. Stochastic gradient boosting indicated that citric acid extractable Sb(V) and As(V) contributed 5% and 15%, respectively, to influencing the community diversity. Random forest predicted that low concentrations of Sb(V) and As(V) could enhance the community diversity but generally, the Sb and As contamination impairs microbial diversity. Co-occurrence network analysis indicated a strong correlation between the indigenous microbial communities and various Sb and As fractions. A number of taxa were identified as core genera due to their elevated abundances and positive correlation with contaminant fractions (total Sb and As concentrations, bioavailable Sb and As extractable fractions, and Sb and As redox species). Shotgun metagenomics indicated that Sb and As biogeochemical redox reactions may exist in contaminated soils. All these observations suggest the potential for bioremediation of Sb- and As-contaminated soils.

  5. Impact of delivery mode on the colostrum microbiota composition.

    Science.gov (United States)

    Toscano, Marco; De Grandi, Roberta; Peroni, Diego Giampietro; Grossi, Enzo; Facchin, Valentina; Comberiati, Pasquale; Drago, Lorenzo

    2017-09-25

    Breast milk is a rich nutrient with a temporally dynamic nature. In particular, numerous alterations in the nutritional, immunological and microbiological content occur during the transition from colostrum to mature milk. The objective of our study was to evaluate the potential impact of delivery mode on the microbiota of colostrum, at both the quantitative and qualitative levels (bacterial abundance and microbiota network). Twenty-nine Italian mothers (15 vaginal deliveries vs 14 Cesarean sections) were enrolled in the study. The microbiota of colostrum samples was analyzed by next generation sequencing (Ion Torrent Personal Genome Machine). The colostrum microbiota network associated with Cesarean section and vaginal delivery was evaluated by means of the Auto Contractive Map (AutoCM), a mathematical methodology based on Artificial Neural Network (ANN) architecture. Numerous differences between Cesarean section and vaginal delivery colostrum were observed. Vaginal delivery colostrum had a significant lower abundance of Pseudomonas spp., Staphylococcus spp. and Prevotella spp. when compared to Cesarean section colostrum samples. Furthermore, the mode of delivery had a strong influence on the microbiota network, as Cesarean section colostrum showed a higher number of bacterial hubs if compared to vaginal delivery, sharing only 5 hubs. Interestingly, the colostrum of mothers who had a Cesarean section was richer in environmental bacteria than mothers who underwent vaginal delivery. Finally, both Cesarean section and vaginal delivery colostrum contained a greater number of anaerobic bacteria genera. The mode of delivery had a large impact on the microbiota composition of colostrum. Further studies are needed to better define the meaning of the differences we observed between Cesarean section and vaginal delivery colostrum microbiota.

  6. The gut microbiota and its relationship to diet and obesity

    Science.gov (United States)

    Clarke, Siobhan F.; Murphy, Eileen F.; Nilaweera, Kanishka; Ross, Paul R.; Shanahan, Fergus; O’Toole, Paul W.; Cotter, Paul D.

    2012-01-01

    Obesity develops from a prolonged imbalance of energy intake and energy expenditure. However, the relatively recent discovery that the composition and function of the gut microbiota impacts on obesity has lead to an explosion of interest in what is now a distinct research field. Here, research relating to the links between the gut microbiota, diet and obesity will be reviewed under five major headings: (1) the gut microbiota of lean and obese animals, (2) the composition of the gut microbiota of lean and obese humans, (3) the impact of diet on the gut microbiota, (4) manipulating the gut microbiota and (5) the mechanisms by which the gut microbiota can impact on weight gain. PMID:22572830

  7. Naturally Occurring Radionuclides and Rare Earth Elements Pattern in Weathered Japanese Soil Samples

    International Nuclear Information System (INIS)

    Sahoo, S.K.; Hosoda, M.; Takahashi, H.; Sorimachi, A.; Ishikawa, T.; Tokonami, S.; Uchida, S.

    2011-01-01

    From the viewpoint of radiation protection, determination of natural radionuclides e.g. thorium and uranium in soil samples are important. Accurate methods for determination of Th and U is gaining importance. The geochemical behavior of Th, U and rare earth elements (REEs) are relatively close to one another while compared to other elements in geological environment. Radioactive elements like 232 Th and 238 U along with their decay products (e.g. 226 Ra) are present in most of the environmental matrices and can be transferred to living bodies by different pathways that can lead to sources of exposure of man. Therefore, it is necessary to monitor these natural radionuclides in weathered soil samples to assess the possible hazards. The activity concentrations of 226 Ra, 228 Th, and 40 K in soils have been measured using a g γ-ray spectroscopy system with high purity germanium detector. The thorium, uranium and REEs were determined from the same sample using inductively coupled plasma mass spectrometry (ICP-MS). Granitic rocks contain higher amounts of Th, U and light REEs compared to other igneous rocks such as basalt and andesites. Therefore, it is necessary to understand the interaction between REEs and nature of soils, as soils are complex heterogeneous mixture of organic and inorganic solids, water and gases. In this paper, we have discussed about distribution pattern of 226 Ra, 232 Th and 238 U along with REEs in soil samples of weathered acid rock (granite and ryolite) collected from two prefectures in Japan: 1. Gifu and 2. Okinawa. (author)

  8. The commensal microbiota and the development of human disease - an introduction

    OpenAIRE

    Marsh, Philip D.

    2015-01-01

    Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immun...

  9. Modulation of gut microbiota and increase in fecal water content in mice induced by administration of Lactobacillus kefiranofaciens DN1.

    Science.gov (United States)

    Jeong, Dana; Kim, Dong-Hyeon; Kang, Il-Byeong; Kim, Hyunsook; Song, Kwang-Young; Kim, Hong-Seok; Seo, Kun-Ho

    2017-02-22

    Lactobacillus kefiranofaciens is the key probiotic bacterium in kefir. In this study, we investigated the effects of oral consumption of L. kefiranofaciens on the fecal quality and intestinal microbiota of mice. Four-week-old Balb/c mice were divided into two groups (n = 8 each) and administered 0.2 mL of saline (control group) or saline containing 2 × 10 8 cfu L. kefiranofaciens DN1 (LKF_DN1 group) for two weeks. At the end of the experiment, their fecal samples were collected and the fecal quality and microbiota were assessed. The LKF_DN1 group exhibited higher total fecal weight and fecal weight per stool sample than the control group (p kefiranofaciens DN1 administration could alleviate constipation and improve gut microbiota.

  10. Leaching Properties of Naturally Occurring Heavy Metals from Soils

    Science.gov (United States)

    Zhang, M.; Hoshino, M.; Yoshikawa, M.; Hara, J.; Sugita, H.

    2014-12-01

    The major threats to human health from heavy metals are associated with exposure to arsenic, lead, cadmium, chromium, mercury, as well as some other elements. The effects of such heavy metals on human health have been extensively studied and reviewed by international organizations such as WHO. Due to their toxicity, heavy metal contaminations have been regulated by national environmental standards in many countries, and/or laws such as the Soil Contamination Countermeasures Act in Japan. Leaching of naturally occurring heavy metals from the soils, especially those around abandoned metal mines into surrounding water systems, either groundwater or surface water systems, is one of the major pathways of exposure. Therefore, understanding the leaching properties of toxic heavy metals from naturally polluted soils is of fundamentally importance for effectively managing abandoned metal mines, excavated rocks discharged from infrastructure constructions such as tunneling, and/or selecting a pertinent countermeasure against pollution when it is necessary. In this study, soil samples taken from the surroundings of abandoned metal mines in different regions in Japan were collected and analyzed. The samples contained multiple heavy metals such as lead, arsenic and chromium. Standard leaching test and sequential leaching test considering different forms of contaminants, such as trivalent and pentavalent arsenics, and trivalent and hexavalent chromiums, together with standard test for evaluating total concentration, X-ray Fluorescence Analysis (XRF), X-ray diffraction analysis (XRD) and Cation Exchange Capacity (CEC) tests were performed. In addition, sequential leaching tests were performed to evaluate long-term leaching properties of lead from representative samples. This presentation introduces the details of the above experimental study, discusses the relationships among leaching properties and chemical and mineral compositions, indicates the difficulties associated with

  11. Immune homeostasis, dysbiosis and therapeutic modulation of the gut microbiota.

    Science.gov (United States)

    Peterson, C T; Sharma, V; Elmén, L; Peterson, S N

    2015-03-01

    The distal gut harbours ∼10(13) bacteria, representing the most densely populated ecosystem known. The functional diversity expressed by these communities is enormous and relatively unexplored. The past decade of research has unveiled the profound influence that the resident microbial populations bestow to host immunity and metabolism. The evolution of these communities from birth generates a highly adapted and highly personalized microbiota that is stable in healthy individuals. Immune homeostasis is achieved and maintained due in part to the extensive interplay between the gut microbiota and host mucosal immune system. Imbalances of gut microbiota may lead to a number of pathologies such as obesity, type I and type II diabetes, inflammatory bowel disease (IBD), colorectal cancer (CRC) and inflammaging/immunosenscence in the elderly. In-depth understanding of the underlying mechanisms that control homeostasis and dysbiosis of the gut microbiota represents an important step in our ability to reliably modulate the gut microbiota with positive clinical outcomes. The potential of microbiome-based therapeutics to treat epidemic human disease is of great interest. New therapeutic paradigms, including second-generation personalized probiotics, prebiotics, narrow spectrum antibiotic treatment and faecal microbiome transplantation, may provide safer and natural alternatives to traditional clinical interventions for chronic diseases. This review discusses host-microbiota homeostasis, consequences of its perturbation and the associated challenges in therapeutic developments that lie ahead. © 2014 British Society for Immunology.

  12. Improvement of Characteristics of Clayey Soil Mixed with Randomly Distributed Natural Fibers

    Science.gov (United States)

    Maity, J.; Chattopadhyay, B. C.; Mukherjee, S. P.

    2017-11-01

    In subgrade construction for flexible road pavement, properties of clayey soils available locally can be improved by providing randomly distributed fibers in the soil. The fibers added in subgrade constructions are expected to provide better compact interlocking system between the fiber and the soil grain, greater resistance to deformation and quicker dissipation of pore water pressure, thus helping consolidation and strengthening. Many natural fibers like jute, coir, sabai grass etc. which are economical and eco-friendly, are grown in abundance in India. If suitable they can be used as additive material in the subgrade soil to result in increase in strength and decrease in deformability. Such application will also reduce the cost of construction of roads, by providing lesser thickness of pavement layer. In this paper, the efficacy of using natural jute, coir or sabai grass fibers with locally available clayey soil has been studied. A series of Standard Proctor test, Soaked and Unsoaked California Bearing Ratio (CBR) test, and Unconfined Compressive Strength test were done on locally available clayey soil mixed with different types of natural fiber for various length and proportion to study the improvement of strength properties of fiber-soil composites placed at optimum moisture content. From the test results, it was observed that there was a substantial increase in CBR value for the clayey soil when mixed with increasing percentage of all three types of randomly distributed natural fibers up to 2% of the dry weight of soil. The CBR attains maximum value when the length for all types of fibers mixed with the clay taken in this study, attains a value of 10 mm.

  13. Lead (II) removal from natural soils by enhanced electrokinetic remediation.

    Science.gov (United States)

    Altin, Ahmet; Degirmenci, Mustafa

    2005-01-20

    Electrokinetic remediation is a very effective method to remove metal from fine-grained soils having low adsorption and buffering capacity. However, remediation of soil having high alkali and adsorption capacity via the electrokinetic method is a very difficult process. Therefore, enhancement techniques are required for use in these soil types. In this study, the effect of the presence of minerals having high alkali and cation exchange capacity in natural soil polluted with lead (II) was investigated by means of the efficiency of electrokinetic remediation method. Natural soil samples containing clinoptilolite, gypsum and calcite minerals were used in experimental studies. Moreover, a sample containing kaolinite minerals was studied to compare with the results obtained from other samples. Best results for soils bearing alkali and high sorption capacity minerals were obtained upon addition of 3 mol AcH and application of 20 V constant potential after a remediation period of 220 h. In these test conditions, lead (II) removal efficiencies for these samples varied between 60% and 70% up to 0.55 normalized distance. Under the same conditions, removal efficiencies in kaolinite sample varied between 50% and 95% up to 0.9 normalized distance.

  14. Natural radioactivity levels of geothermal waters and their influence on soil and agricultural activities.

    Science.gov (United States)

    Murat Saç, Müslim; Aydemir, Sercan; Içhedef, Mutlu; Kumru, Mehmet N; Bolca, Mustafa; Ozen, Fulsen

    2014-01-01

    All over the world geothermal sources are used for different purposes. The contents of these waters are important to understand positive/negative effects on human life. In this study, natural radioactivity concentrations of geothermal waters were investigated to evaluate the effect on soils and agricultural activities. Geothermal water samples were collected from the Seferihisar Geothermal Region, and the radon and radium concentrations of these waters were analysed using a collector chamber method. Also soil samples, which are irrigated with geothermal waters, were collected from the surroundings of geothermal areas, and natural radioactivity concentrations of collected samples (U, Th and K) were determined using an NaI(Tl) detector system. The activity concentrations of radon and radium were found to be 0.6-6.0 and 0.1-1.0 Bq l(-1), respectively. Generally, the obtained results are not higher compared with the geothermal waters of the world. The activity concentrations in soils were found to be in the range of 3.3-120.3 Bq kg(-1) for (226)Ra (eU), 0.3-108.5 Bq kg(-1) for (232)Th (eTh), 116.0-850.0 Bq kg(-1) for (40)K (% K).

  15. Vaginal microbiota in menopause

    Directory of Open Access Journals (Sweden)

    Martinus Tarina

    2016-12-01

    Full Text Available The human vagina together with its resident, microbiota, comprise a dynamic ecosystem. Normal microbiota is dominated by Lactobacillus species, and pathogen microbiota such as Gardnerella species and Bacteroides species can occur due to decrease in Lactobacillus domination. Lactobacillus plays an essential role in keeping normal vaginal microbiota in balance. Vaginal microbiota adapts to pH change and hormonal value. Changes in the vaginal microbiota over a woman’s lifespan will influence the colonization of pathogenic microbes. They include changes in child, puberty, reproductive state, menopause, and postmenopause. Estrogen levels change will affect the colonization of pathogenic microbium, leading to genitourinary syndrome of menopause. Vulvovaginal atrophy is often found in postmenopausal women, and dominated by L. iners, Anaerococcus sp, Peptoniphilus sp, Prevotella sp, and Streptococcus sp. The normal vaginal microbiota’s imbalance in menopause will cause diseases such as bacterial vaginosis, and recurrent vulvovaginal candidiasis due to hormonal therapies. Changes in the vaginal microbiota due to bacterial vaginosis are characterized by decrease in H2O2-producing Lactobacillus. They are also caused by the increase in numbers and concentration of Gardnerella vaginalis, Mycoplasma hominis, and other anaerob species such as Peptostreptococci, Prevotella spp, and Mobiluncus spp.

  16. Assessment of changes of some functions of Ukrainian acid soils after chemical amelioration

    Directory of Open Access Journals (Sweden)

    Zapko Yurij

    2014-09-01

    Full Text Available The objective of the article was to determine the effectiveness of lime of different origin for chemical amelioration of soils and examine its impact on soil functions such as productivity, habitat, regulation of water quality, and the protective buffer biogeocenotic screen. Limy ameliorants were applied in small local field experiment on Luvic Chernozem, and experiment with lysimeter columns was carried out on Albic Luvisol. The number of the main groups of microflora and enzymatic activity of soil was determined in soil samples taken for the analysis from the root zone. Research concerning the influence of natural and industrial origin ameliorants on soil as habitat showed the correlation of sugar beets productivity with soil biogenic. The increase of biomultiplicity of soil microbiota after addition of a cement dust and negative influence of red sludge on soil as habitat for living organisms was observed. Research involving the influence of ameliorants on soil by lime as the protective buffer biogeocenotic screen was carried out using lysimeter columns. It was stated that the addition of limy ameliorants reduces mobility of heavy metals.

  17. Skin Microbiota Workshop: Multidisciplinary Perspectives, Challenges and Opportunities

    Science.gov (United States)

    2014-12-08

    SECURITY CLASSIFICATION OF: This report details the outcome of the 1st Skin Microbiota Workshop, Boulder, CO, held on October 15th-16th 2012. The...Sep-2014 Approved for Public Release; Distribution Unlimited Final Report: Skin Microbiota Workshop: Multidisciplinary Perspectives, Challenges and...Number of Papers published in peer-reviewed journals: Number of Papers published in non peer-reviewed journals: Final Report: Skin Microbiota Workshop

  18. Restoration of cefixime-induced gut microbiota changes by Lactobacillus cocktails and fructooligosaccharides in a mouse model.

    Science.gov (United States)

    Shi, Ying; Zhai, Qixiao; Li, Dongyao; Mao, Bingyong; Liu, Xiaoming; Zhao, Jianxin; Zhang, Hao; Chen, Wei

    2017-07-01

    Probiotics have been used to rebuild the antibiotic-induced dysfunction in gut microbiota, but whether the different strains of probiotics result in similar or reverse effects remains unclear. In this study, the different recovery effects of two cocktails (each contains four strains) of Lactobacillus and fructooligosaccharide against cefixime-induced change of gut microbiota were evaluated in C57BL/6J mice. The results show that the use of cefixime caused a reduction in the diversities of the microbial community and led to significantly decreasing to one preponderant Firmicutes phylum, which was difficult to restore naturally in the short term. The gut microbiota compositions of the groups treated with the probiotic cocktails were much more diverse than those of the natural recovery group. The effects of Lactobacillus cocktails against the cefixime-induced gut microbiota change may mainly be due to the beneficial SCFAs production in vivo and also be related to the good cell adhesion properties performed in vitro. Meanwhile, the restoration of the cefixime-induced gut microbiota was significantly different between two Lactobacillus groups since the Lactobacillus strains with high levels of fructooligosaccharide use and better cell adhesion properties performed considerably better than the Lactobacillus strains with high survival rates in the gastrointestinal tract. The contents of short-chain fatty acids in ceca were increased to 26.483±1.925 and 25.609±2.782μmol/g in the two probiotic cocktail groups respectively compared to 15.791±0.833μmol/g (PLactobacillus cocktails. However, fructooligasaccharide administration showed certain effects on gut microbiota restoration (such as an increase of Akkermansia), although its effect on the entire microbiome structure is not so obvious. Copyright © 2017 Elsevier GmbH. All rights reserved.

  19. Neuropeptides, Microbiota, and Behavior.

    Science.gov (United States)

    Holzer, P

    2016-01-01

    The gut microbiota and the brain interact with each other through multiple bidirectional signaling pathways in which neuropeptides and neuroactive peptide messengers play potentially important mediator roles. Currently, six particular modes of a neuropeptide link are emerging. (i) Neuropeptides and neurotransmitters contribute to the mutual microbiota-host interaction. (ii) The synthesis of neuroactive peptides is influenced by microbial control of the availability of amino acids. (iii) The activity of neuropeptides is tempered by microbiota-dependent autoantibodies. (iv) Peptide signaling between periphery and brain is modified by a regulatory action of the gut microbiota on the blood-brain barrier. (v) Within the brain, gut hormones released under the influence of the gut microbiota turn into neuropeptides that regulate multiple aspects of brain activity. (vi) Cerebral neuropeptides participate in the molecular, behavioral, and autonomic alterations which the brain undergoes in response to signals from the gut microbiota. © 2016 Elsevier Inc. All rights reserved.

  20. Pyrosequencing analysis of the microbiota of kusaya gravy obtained from Izu Islands.

    Science.gov (United States)

    Fujii, Tateo; Kyoui, Daisuke; Takahashi, Hajime; Kuda, Takashi; Kimura, Bon; Washizu, Yukio; Emoto, Eiji; Hiramoto, Tadahiro

    2016-12-05

    Kusaya is a salted, dried fish product traditionally produced on the Izu Islands in Japan. Fish are added to kusaya gravy repeatedly and intermittently, and used over several hundred years, which makes unique microbiota and unique flavors. In this study, we performed a metagenomic analysis to compare the composition of the microbiota of kusaya gravy between different islands. Twenty samples obtained from a total of 13 manufacturers on three islands (Hachijojima, Niijima, and Oshima Islands) were analyzed. The statistical analysis revealed that the microbiota in kusaya gravy maintain a stable composition regardless of the production steps, and that the microbiota are characteristic to the particular islands. The bacterial taxa common to all of the samples were not necessarily the dominant ones. On the other hand, the genera Halanaerobium and Tissierella were found to be characteristic to the microbiota of one or two islands. Because these genera are known to be present in the natural environment, it is likely that the bacterial strains peculiar to an island had colonized kusaya gravy for many years. The results of this study revealed an influence of geographical conditions on the microbiota in fermented food. Copyright © 2016 Elsevier B.V. All rights reserved.

  1. Negative plant-phyllosphere feedbacks in native Asteraceae hosts - a novel extension of the plant-soil feedback framework.

    Science.gov (United States)

    Whitaker, Briana K; Bauer, Jonathan T; Bever, James D; Clay, Keith

    2017-08-01

    Over the past 25 years, the plant-soil feedback (PSF) framework has catalyzed our understanding of how belowground microbiota impact plant fitness and species coexistence. Here, we apply a novel extension of this framework to microbiota associated with aboveground tissues, termed 'plant-phyllosphere feedback (PPFs)'. In parallel greenhouse experiments, rhizosphere and phyllosphere microbiota of con- and heterospecific hosts from four species were independently manipulated. In a third experiment, we tested the combined effects of soil and phyllosphere feedback under field conditions. We found that three of four species experienced weak negative PSF whereas, in contrast, all four species experienced strong negative PPFs. Field-based feedback estimates were highly negative for all four species, though variable in magnitude. Our results suggest that phyllosphere microbiota, like rhizosphere microbiota, can potentially mediate plant species coexistence via negative feedbacks. Extension of the PSF framework to the phyllosphere is needed to more fully elucidate plant-microbiota interactions. © 2017 John Wiley & Sons Ltd/CNRS.

  2. How gut transcriptional function of Drosophila melanogaster varies with the presence and composition of the gut microbiota.

    Science.gov (United States)

    Bost, Alyssa; Franzenburg, Soeren; Adair, Karen L; Martinson, Vincent G; Loeb, Greg; Douglas, Angela E

    2018-04-01

    Despite evidence from laboratory experiments that perturbation of the gut microbiota affects many traits of the animal host, our understanding of the effect of variation in microbiota composition on animals in natural populations is very limited. The core purpose of this study on the fruit fly Drosophila melanogaster was to identify the impact of natural variation in the taxonomic composition of gut bacterial communities on host traits, with the gut transcriptome as a molecular index of microbiota-responsive host traits. Use of the gut transcriptome was validated by demonstrating significant transcriptional differences between the guts of laboratory flies colonized with bacteria and maintained under axenic conditions. Wild Drosophila from six field collections made over two years had gut bacterial communities of diverse composition, dominated to varying extents by Acetobacteraceae and Enterobacteriaceae. The gut transcriptomes also varied among collections and differed markedly from those of laboratory flies. However, no overall relationship between variation in the wild fly transcriptome and taxonomic composition of the gut microbiota was evident at all taxonomic scales of bacteria tested for both individual fly genes and functional categories in Gene Ontology. We conclude that the interaction between microbiota composition and host functional traits may be confounded by uncontrolled variation in both ecological circumstance and host traits (e.g., genotype, age physiological condition) under natural conditions, and that microbiota effects on host traits identified in the laboratory should, therefore, be extrapolated to field population with great caution. © 2017 John Wiley & Sons Ltd.

  3. Plant Community and Nitrogen Deposition as Drivers of Alpha and Beta Diversities of Prokaryotes in Reconstructed Oil Sand Soils and Natural Boreal Forest Soils.

    Science.gov (United States)

    Masse, Jacynthe; Prescott, Cindy E; Renaut, Sébastien; Terrat, Yves; Grayston, Sue J

    2017-05-01

    The Athabasca oil sand deposit is one of the largest single oil deposits in the world. Following surface mining, companies are required to restore soil-like profiles that can support the previous land capabilities. The objective of this study was to assess whether the soil prokaryotic alpha diversity (α-diversity) and β-diversity in oil sand soils reconstructed 20 to 30 years previously and planted to one of three vegetation types (coniferous or deciduous trees and grassland) were similar to those found in natural boreal forest soils subject to wildfire disturbance. Prokaryotic α-diversity and β-diversity were assessed using massively parallel sequencing of 16S rRNA genes. The β-diversity, but not the α-diversity, differed between reconstructed and natural soils. Bacteria associated with an oligotrophic lifestyle were more abundant in natural forest soils, whereas bacteria associated with a copiotrophic lifestyle were more abundant in reconstructed soils. Ammonia-oxidizing archaea were most abundant in reconstructed soils planted with grasses. Plant species were the main factor influencing α-diversity in natural and in reconstructed soils. Nitrogen deposition, pH, and plant species were the main factors influencing the β-diversity of the prokaryotic communities in natural and reconstructed soils. The results highlight the importance of nitrogen deposition and aboveground-belowground relationships in shaping soil microbial communities in natural and reconstructed soils. IMPORTANCE Covering over 800 km 2 , land disturbed by the exploitation of the oil sands in Canada has to be restored. Here, we take advantage of the proximity between these reconstructed ecosystems and the boreal forest surrounding the oil sand mining area to study soil microbial community structure and processes in both natural and nonnatural environments. By identifying key characteristics shaping the structure of soil microbial communities, this study improved our understanding of how

  4. Microbial activities in soil near natural gas leaks

    Energy Technology Data Exchange (ETDEWEB)

    Adamse, A D; Hoeks, J; de Bont, J A.M.; van Kessel, J F

    1972-01-01

    From the present experiments it may be concluded that in the surroundings of natural gas leaks, methane, ethane and possibly some other components of the natural gas are oxidized by microbial activities as long as oxygen is available. This is demonstrated by an increased oxygen consumption and carbon dioxide production, as well as by increased numbers of different types of bacteria. The resulting deficiency of oxygen, the excess of carbon dioxide, and perhaps the formation of inhibitory amounts of ethylene, are considered to be mainly responsible for the death of trees near natural gas leaks. Also the long period of time needed by the soil to recover, may be due to prolonged microbial activities, as well as to the presence of e.g. ethylene. The present experiments suggest that especially methane-oxidizing bacteria of the Methylosinus trichosporium type were present in predominating numbers and consequently have mainly been responsible for the increased oxygen consumption. However, some fungi oxidizing components of natural gas, including methane and ethane may also have contributed to the increased microbial activities in the soil. The same will be true of a possible secondary microflora on products derived from microorganisms oxidizing natural gas components. 12 references, 9 figures, 7 tables.

  5. Defra Soil Protection Research in the Context of the Soil Natural Capital / Ecosystem Services Framework

    OpenAIRE

    Robinson, David A.; Cooper, David; Emmett, Bridget A.; Evans, Chris D.; Keith, Aidan; Lebron, Inma; Lofts, Stephen; Norton, Lisa; Reynolds, Brian; Tipping, Edward; Rawlins, Barry G.; Tye, Andrew M.; Watts, Chris W.; Whalley, W. Richard; Black, Helaina I.J.

    2011-01-01

    Summary: "A Nation that destroys its soil destroys itself." This quote from, F.D. Roosevelt, 1937, from a letter written to all state Governors in the USA following the dust bowl, encapsulates the importance of soil protection. The dust bowl brought about legislation to protect and conserve soils as a fundamental natural resource in the USA between 1930 and 1936. In current times we are facing unprecedented pressure on land resources from multiple uses here in the UK and across Euro...

  6. Modelling seasonal variations of natural radioactivity in soils: A case study in southern Italy

    Science.gov (United States)

    Guagliardi, Ilaria; Rovella, Natalia; Apollaro, Carmine; Bloise, Andrea; Rosa, Rosanna De; Scarciglia, Fabio; Buttafuoco, Gabriele

    2016-12-01

    The activity of natural radionuclides in soil has become an environmental concern for local public and national authorities because of the harmful effects of radiation exposure on human health. In this context, modelling and mapping the activity of natural radionuclides in soil is an important research topic. The study was aimed to model, in a spatial sense, the soil radioactivity in an urban and peri-urban soils area in southern Italy to analyse the seasonal influence on soil radioactivity. Measures of gamma radiation naturally emitted through the decay of radioactive isotopes (potassium, uranium and thorium) were analysed using a geostatistical approach to map the spatial distribution of soil radioactivity. The activity of three radionuclides was measured at 181 locations using a high-resolution ?-ray spectrometry. To take into account the influence of season, the measurements were carried out in summer and in winter. Activity data were analysed by using a geostatistical approach and zones of relatively high or low radioactivity were delineated. Among the main processes which influence natural radioactivity such as geology, geochemical, pedological, and ecological processes, results of this study showed a prominent control of radio-emission measurements by seasonal changes. Low natural radioactivity levels were measured in December associated with winter weather and moist soil conditions (due to high rainfall and low temperature), and higher activity values in July, when the soil was dry and no precipitations occurred.

  7. Soil dioxins levels at agriculture sites and natural preserve areas of Taiwan.

    Science.gov (United States)

    Jou, Jin-juh; Lin, Kae-Long; Chung, Jen-Chir; Liaw, Shu-Liang

    2007-08-17

    In this study, agriculture soil in Taiwan has been sampled and analyzed to determine the background level of polychlorinated dibenzo-p-dioxins and dibenzofurans (PCDD/DF) in the agricultural and nature preserve areas. Another objective is to investigate relationship between soil characteristics and air deposition in Taiwan. The results indicate that in nature preserve areas the topsoil shows an extraordinary profile of PCDD/DF compared to that in the air deposition. The PCDD/DF levels of the low-contaminated agricultural soils are compatible with those of the nature preserves soils. However, in the highly-contaminated agricultural soils, there is an abrupt jump in their concentrations, 10-100 times higher. The overall I-TEQ values of the background topsoils range from 0.101 to 15.2 ng I-TEQ/kg. Near industrial/urban areas in Taiwan the PCDD/DF are slightly higher compared to those in the low concentration group. Typically, the PCDD/DF background values found in this survey fall in the 90% confidence interval and can thus, be deemed the background levels in Taiwan. Ninety-five percent of these data are below the European and American soil standard of 10 ng I-TEQ/kg d.w. The PCDD/DF profile with one neighborhood soil sample was shown no significant difference.

  8. Fecal microbiota transplant

    Science.gov (United States)

    ... page: //medlineplus.gov/ency/article/007703.htm Fecal microbiota transplant To use the sharing features on this page, please enable JavaScript. Fecal microbiota transplantation (FMT) helps to replace some of the " ...

  9. The commensal microbiota and the development of human disease - an introduction.

    Science.gov (United States)

    Marsh, Philip D

    2015-01-01

    Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and prevention of colonisation by exogenous microbes. The biological properties of each habitat determine which microorganisms can colonise and grow, and dictate which will be major or minor components of the resident microbiota of a site. This results in different surfaces having distinct but characteristic microbiotas. This relationship between the resident microbiota and the host is dynamic and, on occasions, this symbiotic relationship breaks down due to, for example, changes in lifestyle, immune status or following broad spectrum antibiotic therapy. This 'dysbiosis' can result in previously minor components of the microbiota out-competing the normally dominant and beneficial bacteria, thereby increasing the risk of disease. Such perturbations have been associated with a number of clinical disorders such as obesity, allergy, and a variety of inflammatory diseases, including periodontal diseases. A better understanding of the delicate balance between the host and its resident microbiota could lead to novel approaches to the promotion of health and the prevention of dysbiosis.

  10. Application of atomic force microscopy to the study of natural and model soil particles.

    Science.gov (United States)

    Cheng, S; Bryant, R; Doerr, S H; Rhodri Williams, P; Wright, C J

    2008-09-01

    The structure and surface chemistry of soil particles has extensive impact on many bulk scale properties and processes of soil systems and consequently the environments that they support. There are a number of physiochemical mechanisms that operate at the nanoscale which affect the soil's capability to maintain native vegetation and crops; this includes soil hydrophobicity and the soil's capacity to hold water and nutrients. The present study used atomic force microscopy in a novel approach to provide unique insight into the nanoscale properties of natural soil particles that control the physiochemical interaction of material within the soil column. There have been few atomic force microscopy studies of soil, perhaps a reflection of the heterogeneous nature of the system. The present study adopted an imaging and force measurement research strategy that accounted for the heterogeneity and used model systems to aid interpretation. The surface roughness of natural soil particles increased with depth in the soil column a consequence of the attachment of organic material within the crevices of the soil particles. The roughness root mean square calculated from ten 25 microm(2) images for five different soil particles from a Netherlands soil was 53.0 nm, 68.0 nm, 92.2 nm and 106.4 nm for the respective soil depths of 0-10 cm, 10-20 cm, 20-30 cm and 30-40 cm. A novel analysis method of atomic force microscopy phase images based on phase angle distribution across a surface was used to interpret the nanoscale distribution of organic material attached to natural and model soil particles. Phase angle distributions obtained from phase images of model surfaces were found to be bimodal, indicating multiple layers of material, which changed with the concentration of adsorbed humic acid. Phase angle distributions obtained from phase images of natural soil particles indicated a trend of decreasing surface coverage with increasing depth in the soil column. This was consistent with

  11. The role of tissue-specific microbiota in initial establishment success of Pacific oysters.

    Science.gov (United States)

    Lokmer, Ana; Kuenzel, Sven; Baines, John F; Wegner, Karl Mathias

    2016-03-01

    Microbiota can have positive and negative effects on hosts depending on the environmental conditions. Therefore, it is important to decipher host-microbiota-environment interactions, especially under natural conditions exerting (a)biotic stress. Here, we assess the relative importance of microbiota in different tissues of Pacific oyster for its successful establishment in a new environment. We transplanted oysters from the Southern to the Northern Wadden Sea and controlled for the effects of resident microbiota by administering antibiotics to half of the oysters. We then followed survival and composition of haemolymph, mantle, gill and gut microbiota in local and translocated oysters over 5 days. High mortality was recorded only in non-antibiotic-treated translocated oysters, where high titres of active Vibrio sp. in solid tissues indicated systemic infections. Network analyses revealed the highest connectivity and a link to seawater communities in the haemolymph microbiota. Since antibiotics decreased modularity and increased connectivity of the haemolymph-based networks, we propose that community destabilization in non-treated translocated oysters could be attributed to interactions between resident and external microbiota, which in turn facilitated passage of vibrios into solid tissues and invoked disease. These interactions of haemolymph microbiota with the external and internal environment may thus represent an important component of oyster fitness. © 2015 Society for Applied Microbiology and John Wiley & Sons Ltd.

  12. Comparative Analysis of the Gut Microbiota Composition between Captive and Wild Forest Musk Deer

    Directory of Open Access Journals (Sweden)

    Yimeng Li

    2017-09-01

    Full Text Available The large and complex gut microbiota in animals has profound effects on feed utilization and metabolism. Currently, gastrointestinal diseases due to dysregulated gut microbiota are considered important factors that limit growth of the captive forest musk deer population. Compared with captive forest musk deer, wild forest musk deer have a wider feeding range with no dietary limitations, and their gut microbiota are in a relatively natural state. However, no reports have compared the gut microbiota between wild and captive forest musk deer. To gain insight into the composition of gut microbiota in forest musk deer under different food-source conditions, we employed high-throughput 16S rRNA sequencing technology to investigate differences in the gut microbiota occurring between captive and wild forest musk deer. Both captive and wild forest musk deer showed similar microbiota at the phylum level, which consisted mainly of Firmicutes and Bacteroidetes, although significant differences were found in their relative abundances between both groups. α-Diversity results showed that no significant differences occurred in the microbiota between both groups, while β-diversity results showed that significant differences did occur in their microbiota compositions. In summary, our results provide important information for improving feed preparation for captive forest musk deer and implementing projects where captive forest musk deer are released into the wild.

  13. Diet, gut microbiota and cognition.

    Science.gov (United States)

    Proctor, Cicely; Thiennimitr, Parameth; Chattipakorn, Nipon; Chattipakorn, Siriporn C

    2017-02-01

    The consumption of a diet high in fat and sugar can lead to the development of obesity, type 2 diabetes mellitus (T2DM), cardiovascular disease and cognitive decline. In the human gut, the trillions of harmless microorganisms harboured in the host's gastrointestinal tract are called the 'gut microbiota'. Consumption of a diet high in fat and sugar changes the healthy microbiota composition which leads to an imbalanced microbial population in the gut, a phenomenon known as "gut dysbiosis". It has been shown that certain types of gut microbiota are linked to the pathogenesis of obesity. In addition, long-term consumption of a high fat diet is associated with cognitive decline. It has recently been proposed that the gut microbiota is part of a mechanistic link between the consumption of a high fat diet and the impaired cognition of an individual, termed "microbiota-gut-brain axis". In this complex relationship between the gut, the brain and the gut microbiota, there are several types of gut microbiota and host mechanisms involved. Most of these mechanisms are still poorly understood. Therefore, this review comprehensively summarizes the current evidence from mainly in vivo (rodent and human) studies of the relationship between diet, gut microbiota and cognition. The possible mechanisms that the diet and the gut microbiota have on cognition are also presented and discussed.

  14. Three Simple Hands-On Soil Exercises Extension Professionals Can Incorporate into Natural Sciences Curriculum

    Science.gov (United States)

    Kleinschmidt, Andy

    2011-01-01

    The importance of healthy soil and of conveying the importance of soils starts by conveying a few basic concepts of soil science cannot be overstated. This article provides three hands-on exercises Extension professionals can add to natural resources or Master Gardener education curricula. These natural sciences exercises are easy to prepare for…

  15. A survey of natural radiation levels in soils and rocks from Aliaga-Foca region in Izmir, Turkey

    International Nuclear Information System (INIS)

    Fuesun cam, N.; Oezken, I.; Yaprak, G.

    2013-01-01

    The gamma spectroscopic analysis of 226 Ra, 232 Th and 40 K has been carried out in surface soil samples collected from Aliaga-Foca industrial region. The rock samples as parent materials of the soils are also collected and analysed for relevant radionuclides in order to evaluate the natural radiation levels. In the present study, the mean activity concentrations and ranges of the related radionuclides in the soil samples from 60 sites distributed all over the region are as follows: 226 Ra is 38 (14-123) Bq kg -1 ; 232 Th, 63 (27-132) Bq kg -1 and 40 K , 633 (141-1666) Bq kg -1 . Meanwhile, the ranges of natural radionuclide activities in the rock samples characterising the region are 41-95 Bq kg -1 for 226 Ra, 10-122 Bq kg -1 for 232 Th and 264-1470 Bq kg -1 for 40 K , respectively. Based on the available data, the radiation hazard parameters associated with the surveyed soils/rocks are calculated and the results do not exceed the permissible recommended values except for soils originated from Foca rhyolites and tuffs. Furthermore, the collected data allowed for the mapping of the measured activities and corresponding gamma dose rates. (authors)

  16. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota.

    Science.gov (United States)

    Zhao, Kai; Ren, Fangfang; Han, Fangting; Liu, Qiwen; Wu, Guogan; Xu, Yan; Zhang, Jian; Wu, Xiao; Wang, Jinbin; Li, Peng; Shi, Wei; Zhu, Hong; Lv, Jianjun; Zhao, Xiao; Tang, Xueming

    2016-01-01

    In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1) studying horizontal gene transfer (HGT) in Sprague Dawley rats fed transgenic rice for 90 d; (2) examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3) studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt) rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.

  17. Edible Safety Assessment of Genetically Modified Rice T1C-1 for Sprague Dawley Rats through Horizontal Gene Transfer, Allergenicity and Intestinal Microbiota.

    Directory of Open Access Journals (Sweden)

    Kai Zhao

    Full Text Available In this study, assessment of the safety of transgenic rice T1C-1 expressing Cry1C was carried out by: (1 studying horizontal gene transfer (HGT in Sprague Dawley rats fed transgenic rice for 90 d; (2 examining the effect of Cry1C protein in vitro on digestibility and allergenicity; and (3 studying the changes of intestinal microbiota in rats fed with transgenic rice T1C-1 in acute and subchronic toxicity tests. Sprague Dawley rats were fed a diet containing either 60% GM Bacillus thuringiensis (Bt rice T1C-1 expressing Cry1C protein, the parental rice Minghui 63, or a basic diet for 90 d. The GM Bt rice T1C-1 showed no evidence of HGT between rats and transgenic rice. Sequence searching of the Cry1C protein showed no homology with known allergens or toxins. Cry1C protein was rapidly degraded in vitro with simulated gastric and intestinal fluids. The expressed Cry1C protein did not induce high levels of specific IgG and IgE antibodies in rats. The intestinal microbiota of rats fed T1C-1 was also analyzed in acute and subchronic toxicity tests by DGGE. Cluster analysis of DGGE profiles revealed significant individual differences in the rats' intestinal microbiota.

  18. Sorption and Transport of Diphenhydramine in Natural Soils

    Science.gov (United States)

    Rutherford, C. J.; Vulava, V. M.

    2013-12-01

    Pharmaceutical and related chemicals have been detected in streams and ground water sources throughout the world, as a result of sewage overflows, runoff, or sewage treatment facilities unequipped to remove trace levels of pharmaceuticals. Diphenhydramine- an antihistamine that is used to treat allergy and common cold symptoms, induce sleep, suppress cough, and treat motion sickness- is prominent among them. Diphenhydramine has a complex, highly polar organic structure including two benzene rings and an amine functional group. It has a solubility of 3.06 g/L and a pKa of 8.98. Recent studies have shown that diphenhydramine in streams disrupts the ecology by affecting the algal and bacterial biofilms present on the streambed. In streams, photosynthesis has been found to decrease by up to 99% and plant respiration has been inhibited. Diphenhydramine has also altered the types and numbers of bacteria found in streams. Its presence in contaminated stream bodies can result in contact with soils and sediment in the stream floodplain. The objective of this study is to measure sorption and transport behavior of diphenhydramine in natural soils and determine reactivity of soil components. These studies were conducted in the laboratory using natural soil collected from the Francis Marion National Forrest. Soil samples from A and B horizons of several soil series were characterized for physical and chemical properties: organic matter content ranged between 0.6-7.6%, clay content between 6-20%, and soil pH between 3.7-4.9. The B-horizon soils contain a higher amount of clay than the organic-rich A-horizon soils. Equilibrium sorption isotherms and reaction kinetic rates were measured using batch reactor experiments and chromatographic column experiments were conducted to measure transport behavior. Kinetic experiments showed that diphenhydramine sorbed more strongly to the clay-rich soils and reached equilibrium after seven days, compared to ten days in organic-rich soils. The

  19. Effects of Soil Management Practices on Water Erosion under Natural Rainfall Conditions on a Humic Dystrudept

    Directory of Open Access Journals (Sweden)

    Vinicius Ferreira Chaves de Souza

    Full Text Available ABSTRACT Water erosion is the main cause of soil degradation and is influenced by rainfall, soil, topography, land use, soil cover and management, and conservation practices. The objective of this study was to quantify water erosion in a Humic Dystrudept in two experiments. In experiment I, treatments consisted of different rates of fertilizer applied to the soil surface under no-tillage conditions. In experiment II, treatments consisted of a no-tillage in natural rangeland, burned natural rangeland and natural rangeland. Forage turnip, black beans, common vetch, and corn were used in rotation in the treatments with crops in the no-tillage during study period. The treatments with crops and the burned rangeland and natural rangeland were compared to a bare soil control, without cultivation and without fertilization. Increasing fertilization rates increased organic carbon content, soil resistance to disintegration, and the macropore volume of the soil, due to the increase in the dry mass of the crops, resulting in an important reduction in water erosion. The exponential model of the ŷ = ae-bx type satisfactorily described the reduction in water and soil losses in accordance with the increase in fertilization rate and also described the decrease in soil losses in accordance with the increase in dry mass of the crops. Water erosion occurred in the following increasing intensity: in natural rangeland, in cultivated natural rangeland, and in burned natural rangeland. Water erosion had less effect on water losses than on soil losses, regardless of the soil management practices.

  20. Gut microbiota regulates NKG2D ligand expression on intestinal epithelial cells

    DEFF Research Database (Denmark)

    Hansen, Camilla Hartmann Friis; Holm, Thomas L.; Krych, Lukasz

    2013-01-01

    Intestinal epithelial cells (IECs) are one of a few cell types in the body with constitutive surface expression of natural killer group 2 member D (NKG2D) ligands, although the magnitude of ligand expression by IECs varies. Here, we investigated whether the gut microbiota regulates the NKG2D ligand...... expression is kept in check by an intestinal regulatory immune milieu induced by members of the gut microbiota, for example A. muciniphila....

  1. [Gut microbiota and immune crosstalk in metabolic disease].

    Science.gov (United States)

    Burcelin, Rémy

    2017-01-01

    The aim of the review is to discuss about the role played by the defence crosstalk between the gut microbiota and the intestinal immune system, in the development of metabolic disease focusing on obesity and diabetes. Starting from physiological and pathological stand points and based on the latest published data, this review is addressing how the concept of the hologenome theory of evolution can drive the fate of metabolic disease. The notion of "metabolic infection" to explain the "metabolic inflammation" is discussed. This imply comments about the process of bacterial translocation and impaired intestinal immune defense against commensals. Eventually this review sets the soil for personalized medicine. The monthly increase in the number of publications on the gut microbiota to intestinal immune defense and the control of metabolism demonstrate the importance of this field of investigation. The notion of commensal as "self or non-self" has to be reevaluated in the light of the current data. Furthermore, data demonstrate the major role played by short chain fatty acids, secondary bile acids, LPS, peptidoglycans, indole derivatives, and other bacteria-related molecules on the shaping of cells involved in the intestinal protection against commensals is now becoming a central player in the incidence of metabolic diseases. The literature demonstrates that the onset of metabolic diseases and some specific co-morbidities can be explained by a gut microbiota to intestinal immune system crosstalk. Therefore, one should now consider this avenue of investigation as a putative source of biomarkers and therapeutic targets to personalize the treatment of metabolic disease and its co-morbidities. Gut microbiota is considered as a major regulator of metabolic disease. This reconciles the notion of metabolic inflammation and the epidemic development of the disease. In addition to evidence showing that a specific gut microbiota characterizes patients with obesity, type 2 diabetes

  2. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis

    NARCIS (Netherlands)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    Scope: Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on

  3. Natural radiation dose estimates from soils

    International Nuclear Information System (INIS)

    Silveira, M.A.G.R.; Moreira, H.; Medina, N.H.

    2009-01-01

    In this work the natural radiation from soils of southeastern Brazil has been studied. Soil samples from Interlagos, Sao Paulo; parks and Billings dam, in Sao Bernardo do Campo city; Santos, Sao Vicente and Sao Sebastiao beaches, Sao Paulo and sands from Ilha Grande beaches, Rio de Janeiro, were analyzed. The results show that the main contribution to the effective dose is due to elements of the 232 Th decay chain, with a smaller contribution from the radionuclide 40 K and the elements of the series of 238 U. The obtained values found in the studied regions, are around the average international dose due to external exposure to gamma rays (0.48 mSv/yr), except in Praia Preta, Ilha Grande, where the effective dose exceeds the average value. (author)

  4. Natural radioactivity and external dose assessment of surface soils in Vietnam

    International Nuclear Information System (INIS)

    Huy, N. Q.; Hien, P. D.; Luyen, T. V.; Hoang, D. V.; Hiep, H. T.; Quang, N. H.; Long, N. Q.; Nhan, D. D.; Binh, N. T.; Hai, P. S.; Ngo, N. T.

    2012-01-01

    In this study, natural radioactivity in surface soils of Vietnam and external dose assessment to human population, deduced from activities of 226 Ra, 232 Th and 40 K nuclides, were determined. From 528 soil samples collected in 63 provinces of Vietnam, including five centrally governed cities, the average activities were obtained and equal to 42.77 ± 18.15 Bq kg -1 for 226 Ra, 59.84 ± 19.81 Bq kg -1 for 232 Th and 411.93 ± 230.69 Bq kg -1 for 40 K. The outdoor absorbed dose rates (OADRs) in air at 1 m above the ground level for 63 provinces were calculated, and their average value was 71.72 ± 24.72 nGy h -1 , with a range from 17.45 to 149.40 nGy h -1 . The population-weighted OADR of Vietnam was 66.70 nGy h -1 , which lies in the range of 18-93 nGy h -1 found in the World. From the OADRs obtained, it was estimated that the outdoor annual effective dose and indoor annual effective dose to the population were 0.082 and 0.458 mSv, which are higher than the corresponding values 0.07 and 0.41 mSv, respectively, of the World. The radium equivalent activity Ra eq and the external hazard index H ex of surface soils of Vietnam are lower than the corresponding permissible limits of 370 Bq kg -1 and 1, respectively. Therefore, soil from Vietnam is safe for the human population when it is used as a building material. (authors)

  5. Natural Radioactivity and External Dose Assessment of Surface Soils in Vietnam

    International Nuclear Information System (INIS)

    Huy, N.Q.; Hien, P.D.; Hoang, D.V.; Quang, N.H.; Long, N.Q.; Binh, N.T.; Hai, P.S.

    2012-01-01

    In this study, natural radioactivity in surface soils of Vietnam and external dose assessment to human population, deduces from activities of 226 Ra, 232 Th and 40 K nuclides, were determined. From 528 soil samples collected in 63 provinces of Vietnam, including five centrally governed cities, the average activities were obtained and equal to 42.77 ± 18.15 Bq kg -1 for 226 Ra, 59.84 ± 19.81 Bq kg -1 for 232 Th and 411.93 ± 230.69 Bq kg -1 for 40 K. The outdoor absorbed dose rates (OADRs) in air at 1 m above the ground level for 63 provinces were calculated, and their average value was 71.72 ± 24.72 nGy h -1 , with a range from 17.45 to 149.40 nGy h -1 . The population-weighted OADR of Vietnam was 66.70 nGy h -1 , which lies in the range of 18-93 nGy h -1 found in the World. From the OADR obtained, it was estimated that the outdoor annual effective dose and indoor annual effective dose to the population were 0.082 and 0.458 mSv, which are higher than the corresponding values 0.07 and 0.41 mSv, respectively, of the World. The radium equivalent activity Ra eq and the external hazard index H ex of surface soils of Vietnam are lower than the corresponding permissible limits of 370 Bq kg -1 and 1, respectively. Therefore, soil from Vietnam is safe for the human population when it used as a building material. (author)

  6. Natural radioactivity content in soil and indoor air of Chellanam.

    Science.gov (United States)

    Mathew, S; Rajagopalan, M; Abraham, J P; Balakrishnan, D; Umadevi, A G

    2012-11-01

    Contribution of terrestrial radiation due to the presence of naturally occurring radionuclides in soil and air constitutes a significant component of the background radiation exposure to the population. The concentrations of natural radionuclides in the soil and indoor air of Chellanam were investigated with an aim of evaluating the environmental radioactivity level and radiation hazard to the population. Chellanam is in the suburbs of Cochin, with the Arabian Sea in the west and the Cochin backwaters in the east. Chellanam is situated at ∼25 km from the sites of these factories. The data obtained serve as a reference in documenting changes to the environmental radioactivity due to technical activities. Soil samples were collected from 30 locations of the study area. The activity concentrations of (232)Th, (238)U and (40)K in the samples were analysed using gamma spectrometry. The gamma dose rates were calculated using conversion factors recommended by UNSCEAR [United Nations Scientific Committee on the Effects of Atomic Radiation. Sources and effects of ionizing radiation. UNSCEAR (2000)]. The ambient radiation exposure rates measured in the area ranged from 74 to 195 nGy h(-1) with a mean value of 131 nGy h(-1). The significant radionuclides being (232)Th, (238)U and (40)K, their activities were used to arrive at the absorbed gamma dose rate with a mean value of 131 nGy h(-1) and the radium equivalent activity with a mean value of 162 Bq kg(-1). The radon progeny levels varied from 0.21 to 1.4 mWL with a mean value of 0.6 mWL. The thoron progeny varied from 0.34 to 2.9 mWL with a mean value of 0.85 mWL. The ratio between thoron and radon progenies varied from 1.4 to 2.3 with a mean of 1.6. The details of the study, analysis and results are discussed.

  7. Gut Microbiota and Metabolic Disorders

    Directory of Open Access Journals (Sweden)

    Kyu Yeon Hur

    2015-06-01

    Full Text Available Gut microbiota plays critical physiological roles in the energy extraction and in the control of local or systemic immunity. Gut microbiota and its disturbance also appear to be involved in the pathogenesis of diverse diseases including metabolic disorders, gastrointestinal diseases, cancer, etc. In the metabolic point of view, gut microbiota can modulate lipid accumulation, lipopolysaccharide content and the production of short-chain fatty acids that affect food intake, inflammatory tone, or insulin signaling. Several strategies have been developed to change gut microbiota such as prebiotics, probiotics, certain antidiabetic drugs or fecal microbiota transplantation, which have diverse effects on body metabolism and on the development of metabolic disorders.

  8. Characterization of Gastric Microbiota in Twins.

    Science.gov (United States)

    Dong, Quanjiang; Xin, Yongning; Wang, Lili; Meng, Xinying; Yu, Xinjuan; Lu, Linlin; Xuan, Shiying

    2017-02-01

    Contribution of host genetic backgrounds in the development of gastric microbiota has not been clearly defined. This study was aimed to characterize the biodiversity, structure and composition of gastric microbiota among twins. A total of four pairs of twins and eight unrelated individuals were enrolled in the study. Antral biopsies were obtained during endoscopy. The bacterial 16S rRNA gene was amplified and pyrosequenced. Sequences were analyzed for the composition, structure, and α and β diversities of gastric microbiota. Proteobacteria, Firmicutes, Bacteroidetes, Actinobacteria, and Fusobacteria were the most predominant phyla of gastric microbiota. Each individual, twins as well as unrelated individuals, harbored a microbiota of distinct composition. There was no evidence of additional similarity in the richness and evenness of gastric microbiota among co-twins as compared to unrelated individuals. Calculations of θ YC and PCoA demonstrated that the structure similarity of gastric microbial community between co-twins did not increase compared to unrelated individuals. In contrast, the structure of microbiota was altered enormously by Helicobacter pylori infection. These results suggest that host genetic backgrounds had little effect in shaping the gastric microbiota. This property of gastric microbiota could facilitate the studies discerning the role of microbiota from genetic grounds in the pathogenesis.

  9. Role of the normal gut microbiota.

    Science.gov (United States)

    Jandhyala, Sai Manasa; Talukdar, Rupjyoti; Subramanyam, Chivkula; Vuyyuru, Harish; Sasikala, Mitnala; Nageshwar Reddy, D

    2015-08-07

    Relation between the gut microbiota and human health is being increasingly recognised. It is now well established that a healthy gut flora is largely responsible for overall health of the host. The normal human gut microbiota comprises of two major phyla, namely Bacteroidetes and Firmicutes. Though the gut microbiota in an infant appears haphazard, it starts resembling the adult flora by the age of 3 years. Nevertheless, there exist temporal and spatial variations in the microbial distribution from esophagus to the rectum all along the individual's life span. Developments in genome sequencing technologies and bioinformatics have now enabled scientists to study these microorganisms and their function and microbe-host interactions in an elaborate manner both in health and disease. The normal gut microbiota imparts specific function in host nutrient metabolism, xenobiotic and drug metabolism, maintenance of structural integrity of the gut mucosal barrier, immunomodulation, and protection against pathogens. Several factors play a role in shaping the normal gut microbiota. They include (1) the mode of delivery (vaginal or caesarean); (2) diet during infancy (breast milk or formula feeds) and adulthood (vegan based or meat based); and (3) use of antibiotics or antibiotic like molecules that are derived from the environment or the gut commensal community. A major concern of antibiotic use is the long-term alteration of the normal healthy gut microbiota and horizontal transfer of resistance genes that could result in reservoir of organisms with a multidrug resistant gene pool.

  10. Assessment of natural radiation exposure and radon exhalation rates from the soil of Islamabad District of Pakistan

    International Nuclear Information System (INIS)

    Mujahid, S.A.

    2007-01-01

    Complete text of publication follows. The earth's crust is a main source of natural radionuclides in soils and rocks. The specific levels of background gamma radiation depend upon the geological composition of each lithologically separated area, and the content of the rock from which the soils originate the radioactive elements of 226Rn, 232Th and 40K. These naturally occurring radionuclides of terrestrial origin in soil can be a source of external radiation exposure through the gamma ray emission whereas internal exposure occurs through the inhalation of radon gas. The measurements of natural radioactivity and the assessment of radiological hazards in the soil samples of Islamabad district of Pakistan have been carried out using High Purity Germanium (HPGe) detector. The radon exhalation rates from these samples have also been estimated employing the 'closed-can' technique of passive dosimeters. The measured activities of 226Ra, 232Th and 40K were found in the range 14 - 30, 18 - 40 and 301 - 655 Bq.kg-1. The annual effective dose was calculated in the range 0.15 - 0.31 mSv. The values of external and internal hazard indices were less than 1. The radon exhalation rates these areas were found in the range 200 - 345 mBq.m-2h-1.

  11. A field method for soil erosion measurements in agricultural and natural lands

    Science.gov (United States)

    Y.P. Hsieh; K.T. Grant; G.C. Bugna

    2009-01-01

    Soil erosion is one of the most important watershed processes in nature, yet quantifying it under field conditions remains a challenge. The lack of soil erosion field data is a major factor hindering our ability to predict soil erosion in a watershed. We present here the development of a simple and sensitive field method that quantifies soil erosion and the resulting...

  12. Natural radioactivity in soil samples of Yelagiri Hills, Tamil Nadu, India and the associated radiation hazards

    International Nuclear Information System (INIS)

    Ravisankar, R.; Chandrasekaran, A.; Vijayagopal, P.; Venkatraman, B.; Senthilkumar, G.; Eswaran, P.; Rajalakshmi, A.

    2012-01-01

    The natural radioactivity of soils at Yelagiri hills has been studied in this paper. The radioactivities of 25 samples have been measured with a NaI(Tl) detector. The radioactivity concentrations of 238 U, 232 Th and 40 K ranged from ≤2.17 to 53.23, 13.54 to 89.89 and from 625.09 to 2207.3 Bq kg −1 , respectively. The measured activity concentrations for these radionuclides were compared with world average activity of soil. The average activity concentration of 232 Th in the present study is 1.19 times higher than world median value while the activity of 238 U and 40 K is found to be lower. In order to evaluate the radiological hazard of the natural radioactivity, the radium equivalent activity Ra eq , the absorbed dose rate D R , the annual effective dose rate and the external hazard index (H ex ) have been calculated and compared with the internationally approved values. The study provides background radioactivity concentrations in Yelagiri hills. - Highlights: ► Soil radioactivity is used for base line data in future impact assessment. ► We report the results of radiation hazard parameters in soils of Yelagiri hills. ► The level of the natural radiation in the studied area does not exceed the norm.

  13. DIFFERENT SOURCES OF INOCULUM TO THE BOKASHI PROVIDES DISTINCT EFFECTS ON THE SOIL QUALITY

    Directory of Open Access Journals (Sweden)

    Juliana Cristina Scotton

    2017-10-01

    Full Text Available Bokashi soil conditioner aims to assist in the resilience of natural microbiota and its associated functions. Currently, there are several formulations of this conditioner, however, little is known about the influence of the sources of inoculum on the quality of the same. This study objective was to evaluate the effects of different sources of bokashi inoculum on microbiological and physical attributes of the soil. The experiment was conducted in tubes designated as microcosms, incubated at 24 °C for 32 days, with 4 treatments and 10 replications: C - control; SI - bokashi bran without inoculum; IN1 - bokashi with forest inoculum; IN2 - bokashi with consortium inoculum. The microbiological parameters of colony forming units of fungi and bacteria, microbial biomass carbon, basal soil respiration, metabolic and microbial quotient were evaluated. Among the physical parameters evaluated were dispersed clay, geometric mean diameter and organic carbon. The data were submitted to ANOVA and the measurements compared by the Tukey test at 5%. The fungal density was significantly higher for SI and IN1, as compared to the other treatments. In regards to the bacteria, there was an increase for IN1, in comparison with the control. The IN1 treatment demonstrated higher microbial activity and higher C uptake in the soil. Regarding the physical attributes, there was greater clay dispersion for IN2 and greater GMD for C. The bokashi formulation with forest inoculum and cropping field provides higher microbiological quality to the soil under controlled conditions.

  14. Intestinal barrier: A gentlemen's agreement between microbiota and immunity.

    Science.gov (United States)

    Caricilli, Andrea Moro; Castoldi, Angela; Câmara, Niels Olsen Saraiva

    2014-02-15

    Our body is colonized by more than a hundred trillion commensals, represented by viruses, bacteria and fungi. This complex interaction has shown that the microbiome system contributes to the host's adaptation to its environment, providing genes and functionality that give flexibility of diet and modulate the immune system in order not to reject these symbionts. In the intestine, specifically, the microbiota helps developing organ structures, participates of the metabolism of nutrients and induces immunity. Certain components of the microbiota have been shown to trigger inflammatory responses, whereas others, anti-inflammatory responses. The diversity and the composition of the microbiota, thus, play a key role in the maintenance of intestinal homeostasis and explain partially the link between intestinal microbiota changes and gut-related disorders in humans. Tight junction proteins are key molecules for determination of the paracellular permeability. In the context of intestinal inflammatory diseases, the intestinal barrier is compromised, and decreased expression and differential distribution of tight junction proteins is observed. It is still unclear what is the nature of the luminal or mucosal factors that affect the tight junction proteins function, but the modulation of the immune cells found in the intestinal lamina propria is hypothesized as having a role in this modulation. In this review, we provide an overview of the current understanding of the interaction of the gut microbiota with the immune system in the development and maintenance of the intestinal barrier.

  15. Remediation of a historically Pb contaminated soil using a model natural Mn oxide waste.

    Science.gov (United States)

    McCann, Clare M; Gray, Neil D; Tourney, Janette; Davenport, Russell J; Wade, Matthew; Finlay, Nina; Hudson-Edwards, Karen A; Johnson, Karen L

    2015-11-01

    A natural Mn oxide (NMO) waste was assessed as an in situ remediation amendment for Pb contaminated sites. The viability of this was investigated using a 10 month lysimeter trial, wherein a historically Pb contaminated soil was amended with a 10% by weight model NMO. The model NMO was found to have a large Pb adsorption capacity (qmax 346±14 mg g(-1)). However, due to the heterogeneous nature of the Pb contamination in the soils (3650.54-9299.79 mg kg(-1)), no treatment related difference in Pb via geochemistry could be detected. To overcome difficulties in traditional geochemical techniques due to pollutant heterogeneity we present a new method for unequivocally proving metal sorption to in situ remediation amendments. The method combines two spectroscopic techniques; namely electron probe microanalysis (EPMA) and X-ray photoelectron spectroscopy (XPS). Using this we showed Pb immobilisation on NMO, which were Pb free prior to their addition to the soils. Amendment of the soil with exogenous Mn oxide had no effect on microbial functioning, nor did it perturb the composition of the dominant phyla. We conclude that NMOs show excellent potential as remediation amendments. Copyright © 2015 The Authors. Published by Elsevier Ltd.. All rights reserved.

  16. Sources of organic compounds in fine soil and sand particles during winter in the metropolitan area of Riyadh, Saudi Arabia.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Mutlaq, Khalid; Simoneit, Bernd R T

    2005-11-01

    Major advances have been made in molecular marker analysis to distinguish between natural and anthropogenic organic matter inputs to the atmosphere. Resuspension of soil and sand by wind is one of the major mechanisms that produces particle dusts in the atmosphere. Soil and sand samples from the Riyadh area were collected in winter 2002, sieved to remove coarse particles and extracted with a mixture of dichloromethane and methanol (3:1, v:v). The total extracts were analyzed by gas chromatography-mass spectrometry in order to characterize the contents and identify the potential sources of the organic components. The major organic compounds of these extracts were derived from natural biogenic and anthropogenic sources. Organic compounds from natural sources, mainly vegetation, were major in samples from outside the city of Riyadh and included n-alkanes, n-alkanoic acids, n- alkanols, methyl alkanoates, and sterols. Anthropogenic inputs were significant in the fine particles of soil and sand samples collected from populated areas of the city. They consisted mainly of n-alkanes, hopanes, UCM (from vehicular emissions), and plasticizers (from discarded plastics, e.g., shopping bags). Carbohydrates had high concentrations in all samples and indicate sources from decomposed cellulose fibers and/or the presence of viable microbiota such as bacteria and fungi.

  17. Soil Properties in Natural Forest Destruction and Conversion to Agricultural Land,in Gunung Leuser National Park, North Sumatera Province

    Directory of Open Access Journals (Sweden)

    Basuki Wasis

    2012-12-01

    Full Text Available Destruction of the Gunung Leuser National Park area of North Sumatera Province through land clearing and land cover change from natural forest to agricultural land. Less attention to land use and ecosystem carrying capacity of the soil can cause soil degradation and destruction of flora, fauna, and wildlife habitat destruction. Environmental damage will result in a national park wild life will come out of the conservation area and would damage the agricultural community. Soil sampling conducted in purposive sampling in natural forest and agricultural areas.  Observation suggest that damage to the natural forest vegetation has caused the soil is not protected so that erosion has occurred. Destruction of natural forest into agricultural are as has caused damage to soil physical properties, soil chemical properties, and biological soil properties significantly. Forms of soil degradation caused by the destruction of natural forests, which is an increase in soil density (density Limbak by 103%, a decrease of 93% organic C and soil nitrogen decreased by 81%. The main factors causing soil degradation is the reduction of organic matter and soil erosion due to loss of natural forest vegetation.  Criteria for soil degradation in Governance Regulation Number 150/2000 can be used to determine the extent of soil degradation in natural forest ecosystems.Keywords: Gunung Leuser National Park, natural forest, agricultural land, land damage, soil properties

  18. Radiation dose from natural and manmade radionuclides in the soil of NIAB, Faisalabad, Pakistan

    International Nuclear Information System (INIS)

    Akhtar, N.; Choudhry, M.A.; Orfi, S.D.; Waqas, M.

    2004-01-01

    Natural Radioactivity originates from extraterrestrial sources as well as from radioactive elements in the earth's crust. The amount of radioactivity in soil varies widely and is a source of continuous exposure to human beings. Amount of radioactivity in soil depends upon the type of soil and its uses. For the investigation of amount of radioactivity in the fertile soil, an area of about 100 hectares of land was selected in NIAB (Nuclear Institute for Agriculture and Biology) at Faisalabad, Pakistan. Soil samples were collected from the cultivated and fertilized land. Activity concentration was measured using a HPGe (high purity germanium) ray detector and a PC based MCA. Specific activity levels due to /sup 40/K, /sup 137/Cs, /sup 226/Ra and /sup 232/Th were determined in 125 fertilized soil samples collected at a spacing of about 4 hectares at the depth level of 0-25 cm with a step of 5 cm depth. Activity concentration of the concerned radionuclides for the NIAB soil is: /sup 40/K, 614.4 670.7 Bqkg/sup -1/; /sup 137/Cs, 2.1 3.1 Bqkg/sup -1/; /sup 226/Ra, 28.6 32.6 Bqkg/sup -1/; and /sup 232/Th, 51.6 60.3 Bqkg/sup -1/. Chemical analysis for concentration of Na, Ca and Mg was also carried out along with the measurement of electrical conductivity and pH of the soil samples. The absorbed dose in air at NIAB Farm is 75 nGyh/sup -1/ which is higher than the world average of 57 nGyh/sup -1/ but lies within the range (18-93) nGyh/sup -1/. (author)

  19. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1 Virus Infection on Migrating Whooper Swans Fecal Microbiota

    Directory of Open Access Journals (Sweden)

    Na Zhao

    2018-02-01

    Full Text Available The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus. We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.

  20. Influence of Novel Highly Pathogenic Avian Influenza A (H5N1) Virus Infection on Migrating Whooper Swans Fecal Microbiota.

    Science.gov (United States)

    Zhao, Na; Wang, Supen; Li, Hongyi; Liu, Shelan; Li, Meng; Luo, Jing; Su, Wen; He, Hongxuan

    2018-01-01

    The migration of wild birds plays an important role in the transmission and spread of H5 highly pathogenic avian influenza (HPAI) virus, posing a severe risk to animal and human health. Substantial evidence suggests that altered gut microbial community is implicated in the infection of respiratory influenza virus. However, the influence of H5N1 infection in gut microbiota of migratory birds remains unknown. In January 2015, a novel recombinant H5N1 virus emerged and killed about 100 migratory birds, mainly including whooper swans in Sanmenxia Reservoir Area of China. Here, we describe the first fecal microbiome diversity study of H5N1-infected migratory birds. By investigating the influence of H5N1 infection on fecal bacterial communities in infected and uninfected individuals, we found that H5N1 infection shaped the gut microbiota composition by a difference in the dominance of some genera, such as Aeromonas and Lactobacillus . We also found a decreased α diversity and increased β diversity in infectious individuals. Our results highlight that increases in changes in pathogen-containing gut communities occur when individuals become infected with H5N1. Our study may provide the first evidence that there are statistical association among H5N1 presence and fecal microbiota compositional shifts, and properties of the fecal microbiota may serve as the risk of gut-linked disease in migrates with H5N1 and further aggravate the disease transmission.

  1. Exploring flavour-producing core microbiota in multispecies solid-state fermentation of traditional Chinese vinegar.

    Science.gov (United States)

    Wang, Zong-Min; Lu, Zhen-Ming; Shi, Jin-Song; Xu, Zheng-Hong

    2016-05-31

    Multispecies solid-state fermentation (MSSF), a natural fermentation process driven by reproducible microbiota, is an important technique to produce traditional fermented foods. Flavours, skeleton of fermented foods, was mostly produced by microbiota in food ecosystem. However, the association between microbiota and flavours and flavour-producing core microbiota are still poorly understood. Here, acetic acid fermentation (AAF) of Zhenjiang aromatic vinegar was taken as a typical case of MSSF. The structural and functional dynamics of microbiota during AAF process was determined by metagenomics and favour analyses. The dominant bacteria and fungi were identified as Acetobacter, Lactobacillus, Aspergillus, and Alternaria, respectively. Total 88 flavours including 2 sugars, 9 organic acids, 18 amino acids, and 59 volatile flavours were detected during AAF process. O2PLS-based correlation analysis between microbiota succession and flavours dynamics showed bacteria made more contribution to flavour formation than fungi. Seven genera including Acetobacter, Lactobacillus, Enhydrobacter, Lactococcus, Gluconacetobacer, Bacillus and Staphylococcus were determined as functional core microbiota for production of flavours in Zhenjiang aromatic vinegar, based on their dominance and functionality in microbial community. This study provides a perspective for bridging the gap between the phenotype and genotype of ecological system, and advances our understanding of MSSF mechanisms in Zhenjiang aromatic vinegar.

  2. Soils - SOILS_STATSGO_IN: Soil Associations in Indiana (U.S. Dept. of Agriculture, 1:250,000, Polygon Shapefile)

    Data.gov (United States)

    NSGIC State | GIS Inventory — Natural Resources Conservation Service, STATSGO metadata reports- "This data set is a digital general soil association map developed by the National Cooperative Soil...

  3. Natural 15N abundance of soil N pools and N2O reflect the nitrogen dynamics of forest soils

    DEFF Research Database (Denmark)

    Pörtl, K.; Zechmeister-Boltenstern, S.; Wanek, W.

    2007-01-01

    Natural N-15 abundance measurements of ecosystem nitrogen (N) pools and N-15 pool dilution assays of gross N transformation rates were applied to investigate the potential of delta N-15 signatures of soil N pools to reflect the dynamics in the forest soil N cycle. Intact soil cores were collected...

  4. Rearing room affects the non-dominant chicken caecum microbiota, while diet affects the dominant microbiota

    Directory of Open Access Journals (Sweden)

    Jane eLudvigsen

    2016-02-01

    Full Text Available The combined effect of environment and diet in shaping the gut microbiota remain largely unknown. This knowledge, however, is important for animal welfare and safe food production. For these reasons we determined the effect of experimental units on the chicken caecum microbiota for a full factorial experiment where we tested the combined effect of room, diet and antimicrobial treatment. By Illumina Deep sequencing of the 16S rRNA gene, we found that diet mainly affected the dominant microbiota, while the room as a proxy for environment had major effects on the non-dominant microbiota (p=0.006, Kruskal Wallis test. We therefore propose that the dominant and non-dominant microbiotas are shaped by different experimental units. These findings have implications both for our general understanding of the host-associated microbiota, and for setting up experiments related to specific targeting of pathogens.

  5. The Human Microbiota in Early Life

    DEFF Research Database (Denmark)

    Mortensen, Martin Steen

    The bacteria that colonize the human body, our microbiota, can influence our health, both positively and negatively. The importance and functions of the microbiota in our intestinal tract have been the focus of several research projects and are widely published. However, there are great gaps in our...... knowledge concerning microbiota composition, development and function in other areas of human body. Lack of knowledge about the microbiota development in the airways is an example of such a deficiency. The work presented in this PhD thesis is based on the vast sample collection of the COPSAC2010 cohort......, with 700 mother-infant pairs. The objectives were to perform a detailed examination of the mothers’ vaginal microbiota, describe the early composition and development of the microbiota in the airways of their infants, and determine whether the infants’ microbiota are affected by that of their mothers...

  6. Twice-daily application of HIV microbicides alter the vaginal microbiota.

    Science.gov (United States)

    Ravel, Jacques; Gajer, Pawel; Fu, Li; Mauck, Christine K; Koenig, Sara S K; Sakamoto, Joyce; Motsinger-Reif, Alison A; Doncel, Gustavo F; Zeichner, Steven L

    2012-12-18

    Vaginal HIV microbicides offer great promise in preventing HIV transmission, but failures of phase 3 clinical trials, in which microbicide-treated subjects had an increased risk of HIV transmission, raised concerns about endpoints used to evaluate microbicide safety. A possible explanation for the increased transmission risk is that the agents shifted the vaginal bacterial community, resulting in loss of natural protection and enhanced HIV transmission susceptibility. We characterized vaginal microbiota, using pyrosequencing of bar-coded 16S rRNA gene fragments, in samples from 35 healthy, sexually abstinent female volunteer subjects (ages 18 to 50 years) with regular menses in a repeat phase 1 study of twice-daily application over 13.5 days of 1 of 3 gel products: a hydroxyethylcellulose (HEC)-based "universal" placebo (10 subjects), 6% cellulose sulfate (CS; 13 subjects), and 4% nonoxynol-9 (N-9; 12 subjects). We used mixed effects models inferred using Bayesian Markov chain Monte Carlo methods, which showed that treatment with active agents shifted the microbiota toward a community type lacking significant numbers of Lactobacillus spp. and dominated by strict anaerobes. This state of the vaginal microbiota was associated with a low or intermediate Nugent score and was not identical to bacterial vaginosis, an HIV transmission risk factor. The placebo arm contained a higher proportion of communities dominated by Lactobacillus spp., particularly L. crispatus, throughout treatment. The data suggest that molecular evaluation of microbicide effects on vaginal microbiota may be a critical endpoint that should be incorporated in early clinical assessment of microbicide candidates. Despite large prevention efforts, HIV transmission and acquisition rates remain unacceptably high. In developing countries, transmission mainly occurs through heterosexual intercourse, where women are significantly more vulnerable to infection than men. Vaginal microbicides are considered to

  7. Analyzing anthropogenic pressures in soils of agro-ecological protected coastal wetlands in L'Albufera de Valencia Natural Park, Spain

    Science.gov (United States)

    Pascual-Aguilar, Juan Antonio; Andreu, Vicente; Gimeno, Eugenia; Picó, Yolanda

    2013-04-01

    Coastal wetlands, despite the importance of their environmental and ecological functions, are areas that suffer of great pressures. Most of them are produced by the rapid development of the surrounding artificial landscapes. Socio-economic factors such as population growth and urban-industrial surfaces expansion introduce pressures on the nearby environment affecting the quality of natural and agricultural landscapes. The present research analyses interconnections among landscapes (urban, agricultural and natural) under the hypothesis that urban-artificial impacts could be detected on soils of an agro-ecological protected area, L'Albufera de Valencia, Natural Park, located in the vicinity or the urban area of the City of Valencia, Spain. It has been developed based on Environmental Forensics criteria witch attend two types of anthropogenic pressures: (1) direct, due to artificialization of soil covers that produce anthropogenic soil sealing, and (2) indirect, which are related to water flows coming from urban populations throw artificial water networks (sewage and irrigation systems) and that ultimately will be identified by the presence of o emerging-pharmaceuticals contaminants in soils of the protected area. For the first case, soil sealing a methodology based on temporal comparison of two digital layers for the years 1991 and 2011 applying Geographical Information Systems and Landscapes Metrics were undertaken. To determine presence of emerging contaminants 15 soil samples within the Natural Park were analyzed applying liquid chromatography tandem mass spectrometry for the detection of 17 pharmaceutical compounds. Results show that both processes are present in the Natural Park with a clear geographical pattern. Either soil sealing or detection of pharmaceuticals are more intensive in the northern part of the study area. This is related to population density (detection of pharmaceuticals) and land cover conversion from agricultural and natural surfaces to

  8. The Role of Gut Microbiota in Obesity and Type 2 and Type 1 Diabetes Mellitus: New Insights into "Old" Diseases.

    Science.gov (United States)

    Harsch, Igor Alexander; Konturek, Peter Christopher

    2018-04-17

    The investigation of the human microbiome is the most rapidly expanding field in biomedicine. Early studies were undertaken to better understand the role of microbiota in carbohydrate digestion and utilization. These processes include polysaccharide degradation, glycan transport, glycolysis, and short-chain fatty acid production. Recent research has demonstrated that the intricate axis between gut microbiota and the host metabolism is much more complex. Gut microbiota—depending on their composition—have disease-promoting effects but can also possess protective properties. This review focuses on disorders of metabolic syndrome, with special regard to obesity as a prequel to type 2 diabetes, type 2 diabetes itself, and type 1 diabetes. In all these conditions, differences in the composition of the gut microbiota in comparison to healthy people have been reported. Mechanisms of the interaction between microbiota and host that have been characterized thus far include an increase in energy harvest, modulation of free fatty acids—especially butyrate—of bile acids, lipopolysaccharides, gamma-aminobutyric acid (GABA), an impact on toll-like receptors, the endocannabinoid system and “metabolic endotoxinemia” as well as “metabolic infection.” This review will also address the influence of already established therapies for metabolic syndrome and diabetes on the microbiota and the present state of attempts to alter the gut microbiota as a therapeutic strategy.

  9. Fixation of soil surface contamination using natural polysaccharides

    International Nuclear Information System (INIS)

    Sackschewsky, M.R.

    1993-09-01

    Natural polysaccharides were evaluated as alternatives to commercially available dust-control agents for application in buried-waste and contaminated-soil remediation situations. Materials were identified and evaluated with specific criteria in mind: the materials must be environmentally benign and must not introduce any additional hazardous materials; they must be effective for at least 2 or 3 days, but they do not necessarily have to be effective for more than 2 to 3 weeks; they should be relatively resistant to light traffic; they must not interfere with subsequent soil treatment techniques, especially soil washing; and they must be relatively inexpensive. Two products, a pregelled potato starch and a mixture of carbohydrates derived from sugar beets, were selected for evaluation. Testing included small- and large-scale field demonstrations, laboratory physical property analyses, and wind-tunnel evaluations

  10. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Science.gov (United States)

    Opazo, Maria C.; Ortega-Rocha, Elizabeth M.; Coronado-Arrázola, Irenice; Bonifaz, Laura C.; Boudin, Helene; Neunlist, Michel; Bueno, Susan M.; Kalergis, Alexis M.; Riedel, Claudia A.

    2018-01-01

    The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases. PMID:29593681

  11. Intestinal Microbiota Influences Non-intestinal Related Autoimmune Diseases

    Directory of Open Access Journals (Sweden)

    Maria C. Opazo

    2018-03-01

    Full Text Available The human body is colonized by millions of microorganisms named microbiota that interact with our tissues in a cooperative and non-pathogenic manner. These microorganisms are present in the skin, gut, nasal, oral cavities, and genital tract. In fact, it has been described that the microbiota contributes to balancing the immune system to maintain host homeostasis. The gut is a vital organ where microbiota can influence and determine the function of cells of the immune system and contributes to preserve the wellbeing of the individual. Several articles have emphasized the connection between intestinal autoimmune diseases, such as Crohn's disease with dysbiosis or an imbalance in the microbiota composition in the gut. However, little is known about the role of the microbiota in autoimmune pathologies affecting other tissues than the intestine. This article focuses on what is known about the role that gut microbiota can play in the pathogenesis of non-intestinal autoimmune diseases, such as Grave's diseases, multiple sclerosis, type-1 diabetes, systemic lupus erythematosus, psoriasis, schizophrenia, and autism spectrum disorders. Furthermore, we discuss as to how metabolites derived from bacteria could be used as potential therapies for non-intestinal autoimmune diseases.

  12. Natural and anthropogenic radioactivity of feedstuffs, mosses and soil in the Belgrade environment, Serbia

    Directory of Open Access Journals (Sweden)

    Grdović Svetlana

    2010-01-01

    Full Text Available By gamma spectroscopic measurement a content of natural radio-nuclides (40K, 238U, 226Ra, 232Th and 137Cs was determined in samples of soil, alfalfa, maize and moss on six sites in the surroundings of Belgrade. Natural radionuclides in the soil were at the level characteristic for Serbia, whereas a relatively high level of activity of 137Cs (around 30 Bq kg-1 was determined. On the other hand, in plant samples mostly used as feed (such as alfalfa and maize the concentration of natural radio-nuclide activity and 137Cs was relatively low, i.e. below the range of detection. The content of natural radio-nuclides in moss was within the standard range of values specific for Serbia. However, the activity level of 137Cs in moss gathered from the wider area around Belgrade, was high, the highest measured level being in the Avala-Zuce area (158-221 Bq kg-1. Our results show that this radio-nuclide is still present in the living environment of Belgrade even 20 years after the Chernobyl disaster, and that moss is a good indicator of living environment 137Cs contamination.

  13. Impact of HydroPolymers on the soil biological components in mediterranean drylands

    Science.gov (United States)

    Dvořáčková, Helena; Hueso González, Paloma; Záhora, Jaroslav; Mikajlo, Irina; Damián Ruiz Sinoga, Jose

    2016-04-01

    Soil degradation affects more than 52 million ha of land in counties of the European Union. This problem is particularly serious in Mediterranean areas, where the effects of anthropogenic activities (tillage on slopes, deforestation, and pasture production) add to problems caused by prolonged periods of drought and intense and irregular rainfall. Soil microbiota can be used as an indicator of the soil healthy in degraded areas. This is because soil microbiota participates in the cycle elements and in the organic matter decomposition. All this helps to the young plants establishment and in long term protect the soils against the erosion. During dry periods in the Mediterranean areas, the lack of water entering the soil matrix leads to a loss of soil microbiological activity and it turns into a lower soil production capabilities. Under these conditions, the aim of this study was to evaluate the positive effect on soil biological components produced by an hydro absorbent polymer (Terracottem). The aim of the experiment was to evaluate the impact assessment of an hydropolymer (Terracottem) on the soil biological components. An experimental flowerpot layout was established in June 2015 and 12 variants with different amount of Terracottem were applied as follow: i) 3.0 kg.m3 ; ii) 1.5 kg.m3 and; iii) 0 kg.m3. In all the variants were tested the further additives: a) 1% of glucose, b) 50 kg N.ha-1 of Mineral nitrogen, c) 1% of Glucose + 50 kg N.ha-1 of Mineral nitrogen d) control (no additive). According to natural conditions, humidity have been kept at 15% in all the variants. During four weeks, mineral nitrogen leaching and soil respiration have been measured in each flowerplot. Respiration has been quantified four times every time while moistening containers and alkaline soda lime has been used as a sorbent. The amount of CO2 increase has been measured with the sorbent. Leaching of mineral nitrogen has been quantified by ion exchange resins (IER). IER pouches have been

  14. Studies on the Biodegradation of Ordnance-Related Hazardous Waste, Phase II: Soil Degradation Kinetics

    National Research Council Canada - National Science Library

    Govind, Rakesh

    1994-01-01

    ...), Triethylene glycol dinitrate (TEGDN) and Trimethyloethanetrinitrate (TMETN). Soil microcosm reactors were designed, assembled and operated to acclimate the soil microbiota to a mixture of the four selected nitrate ester compounds...

  15. Gut Microbiota: From Fundamental Research to Translational Medicine

    Directory of Open Access Journals (Sweden)

    Yujing Bi

    2015-12-01

    Full Text Available The human microbiota is a hot topic at present because increasing evidences demonstrate that it should be considered an organ based on its importance to human health. Dysbiosis of the gut microbiota is significantly related to many human disorders. In turn, correcting such imbalances and taking advantage of gut microbes are possible methods for alleviating or even curing host diseases. A recent study published in Cell indicated that inhibition of gut microbial production of trimethylamine(TMA specifically prevents atherosclerosis in vivo. Another study found that a diet supplemented with TMA N-oxide (TMAO increased the level of atherosclerosis in mice, which suggested TMAO might be a causative factor in cardiovascular disease (CVD. However, direct inhibition of flavin-containing monooxygenase (FMO3, a hepatic enzyme that catalyzes the conversion of TMA to TMAO, results in TMA accumulation and several unpleasant side effects. The small-molecule 3, 3-dimethyl-1-butanol (DMB, identified by Wang et al., reduces TMAO through non-lethal inhibition of microbial TMA formation in mice, even when fed a western diet, including high choline. DMB is a non-toxic compound found naturally in foods such as olive oil and red wine. Therefore, the risk of CVD could be reduced by some dietary habits (such as a Mediterranean diet, which might stem from changes in gut microbiota. Although the impact of DMB on microbial TMA has only been observed in mouse models, it provides a guideline for the treatment of CVD in humans by regulating gut microbes. There are many similar studies that target gut microbes to treat host disorders. For example, Sarkis’ group verified that a human commensal bacterium could improve autism spectrum disorder (ASD-related gastrointestinal deficits and behavioral abnormalities in mice, which indicated that microbiome-mediated therapies might be a safe and effective treatment for ASD. In addition, fecal microbiota transplantation, which has

  16. Natural attenuation in soils: an alternative to usual remedial methods: A case study of its application for diesel contamination

    International Nuclear Information System (INIS)

    Morin, D.; Desbiens, R.

    1998-01-01

    Various pollution abatement measures available to combat oil spills were reviewed with emphasis on biodegradation. Microorganisms naturally found in soils and groundwater can efficiently degrade a variety of organic contaminants. For certain sites, local temperature allows the microorganisms to reduce the contaminant concentrations without human intervention. In April 1994, a diesel fuel leak was found at a telecommunication station located in a park. The leak had already contaminated the surrounding soil. The first step of the clean-up procedure was to excavate the contaminated soil, followed by an evaluation to determine the extent of the remaining contamination. It was concluded that by using natural attenuation the deforestation of the remaining affected area could be prevented. In this instance, the natural attenuation process is expected to take five years for completion. 4 refs., 1 tab., 1 fig

  17. Solvent-dependent transformation of aflatoxin B1 in soil.

    Science.gov (United States)

    Starr, James M; Rushing, Blake R; Selim, Mustafa I

    2017-08-01

    To date, all studies of aflatoxin B 1 (AFB 1 ) transformation in soil or in purified mineral systems have identified aflatoxins B 2 (AFB 2 ) and G 2 (AFG 2 ) as the primary transformation products. However, identification in these studies was made using thin layer chromatography which has relatively low resolution, and these studies did not identify a viable mechanism by which such transformations would occur. Further, the use of methanol as the solvent delivery vehicle in these studies may have contributed to formation of artifactual transformation products. In this study, we investigated the role of the solvent vehicle in the transformation of AFB 1 in soil. To do this, we spiked soils with AFB 1 dissolved in water (93:7, water/methanol) or methanol and used HPLC-UV and HPLC-MS to identify the transformation products. Contrasting previous published reports, we did not detect AFB 2 or AFG 2 . In an aqueous-soil environment, we identified aflatoxin B 2a (AFB 2a ) as the single major transformation product. We propose that AFB 2a is formed from hydrolysis of AFB 1 with the soil acting as an acid catalyst. Alternatively, when methanol was used, we identified methoxy aflatoxin species likely formed via acid-catalyzed addition of methanol to AFB 1 . These results suggest that where soil moisture is adequate, AFB 1 is hydrolyzed to AFB 2a and that reactive organic solvents should be avoided when replicating natural conditions to study the fate of AFB 1 in soil.

  18. Interactions in Natural Colloid Systems "Biosolids" - Soil and Plant

    Science.gov (United States)

    Kalinichenko, Kira V.; Nikovskaya, Galina N.; Ulberg, Zoya R.

    2016-04-01

    The "biosolids" are complex biocolloid system arising in huge amounts (mln tons per year) from biological municipal wastewater treatment. These contain clusters of nanoparticles of heavy metal compounds (in slightly soluble or unsoluble forms, such as phosphates, sulphates, carbonates, hydroxides, and etc.), cells, humic substances and so on, involved in exopolysaccharides (EPS) net matrix. One may consider that biosolids are the natural nanocomposite. Due to the presence of nitrogen, phosphorus, potassium and other macro- and microelements (heavy metals), vitamins, aminoacids, etc., the biosolids are a depot of bioelements for plant nutrition. Thus, it is generally recognized that most rationally to utilize them for land application. For this purpose the biocolloid process was developed in biosolids system by initiation of microbial vital ability followed by the synthesis of EPS, propagation of ecologically important microorganisms, loosening of the structure and weakening of the coagulation contacts between biosolids colloids, but the structure integrity maintaining [1,2]. It was demonstrated that the applying of biosolids with metabolizing microorganisms to soil provided the improving soil structure, namely the increasing of waterstable aggregates content (70% vs. 20%). It occurs due to flocculation ability of biosolids EPS. The experimental modelling of mutual interactions in systems of soils - biosolids (with metabolizing microorganisms) were realized and their colloid and chemical mechanisms were formulated [3]. As it is known, the most harmonious plant growth comes at a prolonged entering of nutrients under the action of plant roots exudates which include pool of organic acids and polysaccharides [4]. Special investigations showed that under the influence of exudates excreted by growing plants, the biosolids microelements can release gradually from immobilized state into environment and are able to absorb by plants. Thus, the biosolids can serve as an active

  19. Effects of antibiotics on human microbiota and subsequent disease.

    Science.gov (United States)

    Keeney, Kristie M; Yurist-Doutsch, Sophie; Arrieta, Marie-Claire; Finlay, B Brett

    2014-01-01

    Although antibiotics have significantly improved human health and life expectancy, their disruption of the existing microbiota has been linked to significant side effects such as antibiotic-associated diarrhea, pseudomembranous colitis, and increased susceptibility to subsequent disease. By using antibiotics to break colonization resistance against Clostridium, Salmonella, and Citrobacter species, researchers are now exploring mechanisms for microbiota-mediated modulation against pathogenic infection, revealing potential roles for different phyla and family members as well as microbiota-liberated sugars, hormones, and short-chain fatty acids in regulating pathogenicity. Furthermore, connections are now being made between microbiota dysbiosis and a variety of different diseases such as rheumatoid arthritis, inflammatory bowel disease, type 1 diabetes, atopy, and obesity. Future advances in the rapidly developing field of microbial bioinformatics will enable researchers to further characterize the mechanisms of microbiota modulation of disease and potentially identify novel therapeutics against disease.

  20. Determination of naturally occurring radionuclides in soil samples of Ayranci, Turkey

    Science.gov (United States)

    Agar, Osman; Eke, Canel; Boztosun, Ismail; Emin Korkmaz, M.

    2015-04-01

    The specific activity, radiation hazard index and the annual effective dose of the naturally occurring radioactive elements (238U, 232Th and 40K) were determined in soil samples collected from 12 different locations in Ayranci region by using a NaI(Tl) gamma-ray spectrometer. The measured activity concentrations of the natural radionuclides in studied soil samples were compared with the corresponding results of different countries and the internationally reported values. From the analysis, it is found that these materials may be safely used as construction materials and do not pose significant radiation hazards.

  1. The commensal microbiota and the development of human disease – an introduction

    Directory of Open Access Journals (Sweden)

    Philip D. Marsh

    2015-09-01

    Full Text Available Humans have co-evolved with microorganisms, and both exist in a symbiotic or mutualistic relationship. We are colonised by a diverse, resident microbiota, which develop into structurally and functionally organised biofilms. The resident microorganisms gain a secure, warm, nutritious habitat from the host and, in return, contribute to the development of many important host functions. The resident microbiota of each habitat is natural and provides important benefits for the host including immunological priming, down-regulation of excessive pro-inflammatory responses, regulation of gastrointestinal and cardiovascular systems, and prevention of colonisation by exogenous microbes. The biological properties of each habitat determine which microorganisms can colonise and grow, and dictate which will be major or minor components of the resident microbiota of a site. This results in different surfaces having distinct but characteristic microbiotas. This relationship between the resident microbiota and the host is dynamic and, on occasions, this symbiotic relationship breaks down due to, for example, changes in lifestyle, immune status or following broad spectrum antibiotic therapy. This ‘dysbiosis’ can result in previously minor components of the microbiota out-competing the normally dominant and beneficial bacteria, thereby increasing the risk of disease. Such perturbations have been associated with a number of clinical disorders such as obesity, allergy, and a variety of inflammatory diseases, including periodontal diseases. A better understanding of the delicate balance between the host and its resident microbiota could lead to novel approaches to the promotion of health and the prevention of dysbiosis.

  2. Could saponins be used to enhance bioremediation of polycyclic aromatic hydrocarbons in aged-contaminated soils?

    Science.gov (United States)

    Davin, Marie; Starren, Amandine; Deleu, Magali; Lognay, Georges; Colinet, Gilles; Fauconnier, Marie-Laure

    2018-03-01

    Polycyclic aromatic hydrocarbons (PAH) are persistent organic compounds of major concern that tend to accumulate in the environment, threatening ecosystems and health. Brownfields represent an important tank for PAHs and require remediation. Researches to develop bioremediation and phytoremediation techniques are being conducted as alternatives to environmentally aggressive, expensive and often disruptive soil remediation strategies. The objectives of the present study were to investigate the potential of saponins (natural surfactants) as extracting agents and as bioremediation enhancers on an aged-contaminated soil. Two experiments were conducted on a brownfield soil containing 15 PAHs. In a first experiment, soil samples were extracted with saponins solutions (0; 1; 2; 4 and 8 g.L -1 ). In a second experiment conducted in microcosms (28 °C), soil samples were incubated for 14 or 28 days in presence of saponins (0; 2.5 and 5 mg g -1 ). CO 2 emissions were monitored throughout the experiment. After the incubation, dehydrogenase activity was measured as an indicator of microbiological activity and residual PAHs were determined. In both experiments PAHs were determined using High-Performance Liquid Chromatography and Fluorimetric Detection. The 4 g.L -1 saponins solution extracted significantly more acenaphtene, fluorene, phenanthrene, anthracene, and pyrene than water. PAHs remediation was not enhanced in presence of saponins compared to control samples after 28 days. However CO 2 emissions and dehydrogenase activities were significantly more important in presence of saponins, suggesting no toxic effect of these surfactants towards soil microbiota. Copyright © 2017 Elsevier Ltd. All rights reserved.

  3. Does relatedness of natives used for soil conditioning influence plant-soil feedback of exotics?

    Czech Academy of Sciences Publication Activity Database

    Dostál, Petr; Plačková, M.

    2011-01-01

    Roč. 13, č. 2 (2011), s. 331-340 ISSN 1387-3547 R&D Projects: GA AV ČR KJB600050713 Institutional research plan: CEZ:AV0Z60050516 Keywords : phylogenetic relatedness * plant invasions * soil microbiota Subject RIV: EF - Botanics Impact factor: 2.896, year: 2011

  4. Comparative bioremediation of soils contaminated with diesel oil by natural attenuation, biostimulation and bioaugmentation.

    Science.gov (United States)

    Bento, Fatima M; Camargo, Flávio A O; Okeke, Benedict C; Frankenberger, William T

    2005-06-01

    Bioremediation of diesel oil in soil can occur by natural attenuation, or treated by biostimulation or bioaugmentation. In this study we evaluated all three technologies on the degradation of total petroleum hydrocarbons (TPH) in soil. In addition, the number of diesel-degrading microorganisms present and microbial activity as indexed by the dehydrogenase assay were monitored. Soils contaminated with diesel oil in the field were collected from Long Beach, California, USA and Hong Kong, China. After 12 weeks of incubation, all three treatments showed differing effects on the degradation of light (C12-C23) and heavy (C23-C40) fractions of TPH in the soil samples. Bioaugmentation of the Long Beach soil showed the greatest degradation in the light (72.7%) and heavy (75.2%) fractions of TPH. Natural attenuation was more effective than biostimulation (addition of nutrients), most notably in the Hong Kong soil. The greatest microbial activity (dehydrogenase activity) was observed with bioaugmentation of the Long Beach soil (3.3-fold) and upon natural attenuation of the Hong Kong sample (4.0-fold). The number of diesel-degrading microorganisms and heterotrophic population was not influenced by the bioremediation treatments. Soil properties and the indigenous soil microbial population affect the degree of biodegradation; hence detailed site specific characterization studies are needed prior to deciding on the proper bioremediation method.

  5. Impact of vegetation types on soil organic carbon stocks SOC-S in Mediterranean natural areas

    Science.gov (United States)

    Parras-Alcántara, Luis; Lozano-García, Beatriz; Cantudo-Pérez, Marta

    2015-04-01

    with different vegetation types (Quercus suber, Quercus ilex, Quercus faginea, Pinus pinaster and Pinus pinea) in The Cardeña-Montoro Natural Park, a nature reserve that consists of a 38,449 ha forested area in southern Spain. Sixty-eight sampling points were selected in the study zone. Each sampling point was analyzed as soil control section with different depth increments (0-25, 25-50, 50-75 and 75-100 cm). The studied soils were classified as Cambisols and the major goal of this research was to study the SOCS variability at regional scale. The total SOCS in The Cardeña-Montoro Natural Park was higher in MEOW with olive grove (111,69 Mg ha-1) and lower in MEOW with Quercus faginea (93,57 Mg ha-1). However, when the top soil (superficial section control) was analyzed, the SOCS was the highest in MEOW with olive grove (70,12 Mg-1) and the lowest in MEOW with Pinus (47,82 Mg ha-1). This research is a preliminary assessment for modeling SOCS at the regional level in Mediterranean natural areas. References Hontoria, C., Rodríguez-Murillo, J., and Saa, A.: Contenido de carbono orgánico en el suelo y factores de control en la España Peninsular, Edafología, 11, 149-155, 2004. Parras-Alcántara, L., Díaz-Jaimes, L., and Lozano-García, B: Organic farming affects C and N in soils under olive groves in Mediterranean areas, Land Degrad. Develop., in press, available online: in Wiley Online Library (wileyonlinelibrary.com), http://dx.doi.org/10.1002/ldr.2231, 2013. Parras-Alcántara, L., Díaz-Jaimes, L., Lozano-García, B., Fernández Rebollo, P., Moreno Elcure, F., Carbonero Muñoz, M.D.: Organic farming has little effect on carbon stock in a Mediterranean dehesa (southern Spain). Catena 113 (2014) 9-17. http://dx.doi.org/10.1016/j.catena.2013.09.002 Parras-Alcántara, L., Díaz-Jaimes, L., and Lozano-García, B.: Management effects on soil organic carbon stock in Mediterranean open rangelands -- treeless grasslands, Land Degrad. Develop., in press, available online: in

  6. Immobilization of uranium in contaminated soil by natural apatite addition

    International Nuclear Information System (INIS)

    Mrdakovic Popic, Jelena; Stojanovic, Mirjana; Milosevic, Sinisa; Iles, Deana; Zildzovic, Snezana

    2007-01-01

    Available in abstract form only. Full text of publication follows: The goal of this study was to evaluate the effectiveness of Serbian natural mineral apatite as soil additive for reducing the migration of uranium from contaminated sediments. In laboratory study we investigated the sorption properties of domestic apatite upon different experimental conditions, such as pH, adsorbent mass, reaction period, concentration of P 2 O 5 in apatite, solid/liquid ratio. In second part of study, we did the quantification of uranium in soil samples, taken from uranium mine site 'Kalna', by sequential extraction method. The same procedure was, also, used for uranium determination in contaminated soil samples after apatite addition, in order to determine the changes in U distribution in soil fraction. The obtained results showed the significant level of immobilization (96.7%) upon certain conditions. Increase of %P 2 O 5 in apatite and process of mechano-chemical activation led to increase of immobilization capacity from 17.50% till 91.64%. The best results for uranium binding were obtained at pH 5.5 and reaction period 60 days (98.04%) The sequential extraction showed the presence of uranium (48.2%) in potentially available soil fractions, but with the apatite addition uranium content in these fractions decreased (30.64%), what is considering environmental aspect significant fact. In situ immobilization of radionuclide using inexpensive sequestering agents, such as apatite, is very adequate for big contaminated areas of soil with low level of contamination. This investigation study on natural apatite from deposit 'Lisina' Serbia was the first one of this type in our country. Key words: apatite, uranium, immobilization, soil, contamination. (authors)

  7. The gut microbiota and metabolic disease

    DEFF Research Database (Denmark)

    Arora, T; Bäckhed, Gert Fredrik

    2016-01-01

    The human gut microbiota has been studied for more than a century. However, of nonculture-based techniques exploiting next-generation sequencing for analysing the microbiota, development has renewed research within the field during the past decade. The observation that the gut microbiota......, as an environmental factor, contributes to adiposity has further increased interest in the field. The human microbiota is affected by the diet, and macronutrients serve as substrates for many microbially produced metabolites, such as short-chain fatty acids and bile acids, that may modulate host metabolism. Obesity......-producing bacteria might be causally linked to type 2 diabetes. Bariatric surgery, which promotes long-term weight loss and diabetes remission, alters the gut microbiota in both mice and humans. Furthermore, by transferring the microbiota from postbariatric surgery patients to mice, it has been demonstrated...

  8. Efeito da suplementação orgânica sobre a toxidez do fungicida clorotalonil na microbiota do solo Effect of organic amendment on the toxicity of chlorothalonil fungicide on soil microflora

    Directory of Open Access Journals (Sweden)

    Rosana Faria Vieira

    2001-12-01

    Full Text Available Avaliou-se o efeito da suplementação do solo com material orgânico (aveia nas proporções de 0, 7,5 e 15 g kg-1, sobre a toxidez do fungicida clorotalonil (0, 12 e 48 µg de i.a. g-1 de solo, na microbiota do solo. As avaliações ocorridas aos 11 e 26 dias após esta aplicação demonstraram que, embora tenha ocorrido uma recuperação do carbono da biomassa microbiana, as doses de aveia utilizadas ainda não foram suficientes para inibir o efeito adverso do fungicida. Os resultados de comprimento de hifas vivas demonstraram que não foi possível recuperar a população fúngica do solo na maior dose do fungicida.The effect of soil amendment with organic matter (Avena sativa on the proportions of 0, 7.5 and 15 g kg-1 on the toxicity of chlorothalonil fungicide (0, 12 and 48 µg of active ingredient per gram of soil on the soil microflora was evaluated. The microbial biomass and the living hyphal length was measured at 11 and 26 days after application. Although the organic matter promotes a recuperation of the carbon of the microbial biomass, the oat doses used were not sufficient to inhibit completely the toxic effect of chlorothalonil. The results of living hyphal length demonstrated that it was not possible to recuperate the soil fungi population at the higher fungicide dose.

  9. Effects of almond and pistachio consumption on gut microbiota composition in a randomised cross-over human feeding study.

    Science.gov (United States)

    Ukhanova, Maria; Wang, Xiaoyu; Baer, David J; Novotny, Janet A; Fredborg, Marlene; Mai, Volker

    2014-06-28

    The modification of microbiota composition to a 'beneficial' one is a promising approach for improving intestinal as well as overall health. Natural fibres and phytochemicals that reach the proximal colon, such as those present in various nuts, provide substrates for the maintenance of healthy and diverse microbiota. The effects of increased consumption of specific nuts, which are rich in fibre as well as various phytonutrients, on human gut microbiota composition have not been investigated to date. The objective of the present study was to determine the effects of almond and pistachio consumption on human gut microbiota composition. We characterised microbiota in faecal samples collected from volunteers in two separate randomised, controlled, cross-over feeding studies (n 18 for the almond feeding study and n 16 for the pistachio feeding study) with 0, 1·5 or 3 servings/d of the respective nuts for 18 d. Gut microbiota composition was analysed using a 16S rRNA-based approach for bacteria and an internal transcribed spacer region sequencing approach for fungi. The 16S rRNA sequence analysis of 528 028 sequence reads, retained after removing low-quality and short-length reads, revealed various operational taxonomic units that appeared to be affected by nut consumption. The effect of pistachio consumption on gut microbiota composition was much stronger than that of almond consumption and included an increase in the number of potentially beneficial butyrate-producing bacteria. Although the numbers of bifidobacteria were not affected by the consumption of either nut, pistachio consumption appeared to decrease the number of lactic acid bacteria (Ppistachios appears to be an effective means of modifying gut microbiota composition.

  10. Development of soil-cement blocks with three interventions: natural soil, soil corrected with sand and soil more phase change materials (PCMs)

    International Nuclear Information System (INIS)

    Dantas, Valter Bezerra; Gomes, Uilame Umbelino; Reis, Edmilson Pedreira; Valcacer, Samara Melo; Silva, A.S.

    2014-01-01

    In this work, the results of characterization tests of soil samples collected in Mossoro-RN, UFERSA-RN Campus, located approximately 20 meters high, and "5 ° 12'34.68 south latitude and 37 ° 19'5.74 "west longitude, with the purpose of producing soil-cement for the manufacture of pressed blocks with good resistance to compression and thermal stability. The following tests were performed: granulometry, plasticity limit, liquidity limit, particle size correction, scanning electron microscopy (SEM), X-ray fluorescence. In this soil, based on the results of the granulometric analysis, 10% of medium sand with 3% and 5% of eicosane paraffin and 10% of medium sand with 3% and 5% of paraffin 120 / 125F were added, forming analysis compositions, standard soil-cement block and natural soil-cement block with addition of 10% medium sand and 0% paraffin. Paraffins are referred to as PCMs (Phase Change Material). The contrasting effect between the different dosages on the compressive strength values of the soil-cement blocks was observed. The objective is to create new materials that give the block quality equal to or higher than the recommendations of ABNT norms, and that offer greater thermal comfort in the constructions. Soil particles of different sizes were added to 8% (by weight) of cement, and about 9.20% of water added to the mixture

  11. Inhibition of hydrocarbon bioremediation by lead in a crude oil-contaminated soil

    Energy Technology Data Exchange (ETDEWEB)

    Al-Saleh, E.S.; Obuekwe, C. [Kuwait University (Kuwait). Department of Biological Sciences, Microbiology Program

    2005-07-01

    Analyses of soil samples revealed that the level of lead (total or bioavailable) was three-fold greater in crude oil contaminated than in uncontaminated Kuwaiti soils. Investigation of the possible inhibitory effect of lead on hydrocarbon degradation by the soil microbiota showed that the number of hydrocarbon-degrading bacteria decreased with increased levels of lead nitrate added to soil samples, whether oil polluted or not. At 1.0 mg lead nitrate g{sup -1} dry soil, the number of degraders of hexadecane, naphthalene and crude oil declined by 14%, 23% and 53%, respectively. In a similar manner, the degradation and mineralization of different hydrocarbons decreased with increased lead content in cultures, although the decreases were not significantly different (P>0.05). The dehydrogenase activities of soil samples containing hydrocarbons as substrates also declined with an increase in the lead content of soil samples. (author)

  12. Different Sex-Based Responses of Gut Microbiota During the Development of Hepatocellular Carcinoma in Liver-Specific Tsc1-Knockout Mice.

    Science.gov (United States)

    Huang, Rong; Li, Ting; Ni, Jiajia; Bai, Xiaochun; Gao, Yi; Li, Yang; Zhang, Peng; Gong, Yan

    2018-01-01

    Gut microbial dysbiosis is correlated with the development of hepatocellular carcinoma (HCC). Therefore, analyzing the changing patterns in gut microbiota during HCC development, especially before HCC occurrence, is essential for the diagnosis and prevention of HCC based on gut microbial composition. However, these changing patterns in HCC are poorly understood, especially considering the sex differences in HCC incidence and mortality. Here, with an aim to determine the relationship between gut microbiota and HCC development in both sexes, and to screen potential microbial biomarkers for HCC diagnosis, we studied the changing patterns in the gut microbiota from mice of both sexes with liver-specific knockout of Tsc1 ( LTsc1KO ) that spontaneously developed HCC by 9-10 months of age and compared them to the patterns observed in their wide-type Tsc1 fl/fl cohorts using high-throughput sequencing. Using the LTsc1KO model, we were able to successfully exclude the continuing influence of diet on the gut microbiota. Based on gut microbial composition, the female LTsc1KO mice exhibited gut microbial disorder earlier than male LTsc1KO mice during the development of HCC. Our findings also indicated that the decrease in the relative abundance of anaerobic bacteria and the increase in the relative abundance of facultative anaerobic bacteria can be used as risk indexes of female HCC, but would be invalid for male HCC. Most of the changes in the gut bacteria were different between female and male LTsc1KO mice. In particular, the increased abundances of Allobaculum , Erysipelotrichaceae, Neisseriaceae, Sutterella , Burkholderiales, and Prevotella species have potential for use as risk indicators of female HCC, and the increased abundances of Paraprevotella, Paraprevotellaceae, and Prevotella can probably be applied as risk indicators of male HCC. These relationships between the gut microbiota and HCC discovered in the present study may serve as a platform for the identification

  13. Determination of Ra-226 and Th-232 in samples of natural phosphates, industrial gypsums and surface soils by gamma spectrometry

    International Nuclear Information System (INIS)

    Pessenda, L.C.R.; Nascimento Filho, V.F. do; Nadai, E.A. de; Barros Ferraz, E.S. de; Sao Paulo Univ., Piracicaba

    1988-01-01

    The natural radioactivity in Ra-226 and Th-232 in samples of natural phosphates, industrial gypsums (phosphogypsums) and surface soils of different regions was measured by γ-ray spectrometry. The majority of phosphates and gypsums examined showed significantly higher values than soils, mainly in relation to Ra-226 activity. The activity ranges found for phosphates, gypsums and soils were: 79.1 - 3180 Bq/kg, 56.3 - 986.6 Bq/kg, 8.8 - 54.3 Bq/kg for Ra-226 and 33.6 - 1450.3 Bq/kg; 17.4 - 130,1 Bq/kg, 9.8 - 108.9 Bq/kg for Th-232, respectively. (author) [pt

  14. Diet-induced extinction in the gut microbiota compounds over generations

    Science.gov (United States)

    Sonnenburg, Erica D.; Smits, Samuel A.; Tikhonov, Mikhail; Higginbottom, Steven K.; Wingreen, Ned S.; Sonnenburg, Justin L.

    2015-01-01

    The gut is home to trillions of microbes that play a fundamental role in many aspects of human biology including immune function and metabolism 1,2. The reduced diversity of the Western microbiota compared to populations living traditional lifestyles presents the question of which factors have driven microbiota change during modernization. Microbiota accessible carbohydrates (MACs) found in dietary fiber, play a key role in shaping this microbial ecosystem, and are strikingly reduced in the Western diet relative to more traditional diets 3. Here we show that changes in the microbiota of mice consuming a low-MAC diet and harboring a human microbiota are largely reversible within a single generation, however over multiple generations a low-MAC diet results in a progressive loss of diversity, which is not recoverable upon the reintroduction of dietary MACs. To restore the microbiota to its original state requires the administration of missing taxa in combination with dietary MAC consumption. Our data illustrate that taxa driven to low abundance when dietary MACs are scarce are inefficiently transferred to the next generation and are at increased risk of becoming extinct within an isolated population. As more diseases are linked to the Western microbiota and the microbiota is targeted therapeutically, microbiota reprogramming may need to involve strategies that incorporate dietary MACs as well as taxa not currently present in the Western gut. PMID:26762459

  15. A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging.

    Science.gov (United States)

    Vlčková, Klára; Hofman, Jakub

    2012-01-01

    The close relationship between soil organic matter and the bioavailability of POPs in soils suggests the possibility of using it for the extrapolation between different soils. The aim of this study was to prove that TOC content is not a single factor affecting the bioavailability of POPs and that TOC based extrapolation might be incorrect, especially when comparing natural and artificial soils. Three natural soils with increasing TOC and three artificial soils with TOC comparable to these natural soils were spiked with phenanthrene, pyrene, lindane, p,p'-DDT, and PCB 153 and studied after 0, 14, 28, and 56 days. At each sampling point, total soil concentration and bioaccumulation in earthworms Eisenia fetida were measured. The results showed different behavior and bioavailability of POPs in natural and artificial soils and apparent effects of aging on these differences. Hence, direct TOC based extrapolation between various soils seems to be limited. Copyright © 2011 Elsevier Ltd. All rights reserved.

  16. The Microbiota of the Human Skin.

    Science.gov (United States)

    Egert, Markus; Simmering, Rainer

    2016-01-01

    The aim of this chapter is to sum up important progress in the field of human skin microbiota research that was achieved over the last years.The human skin is one of the largest and most versatile organs of the human body. Owing to its function as a protective interface between the largely sterile interior of the human body and the highly microbially contaminated outer environment, it is densely colonized with a diverse and active microbiota. This skin microbiota is of high importance for human health and well-being. It is implicated in several severe skin diseases and plays a major role in wound infections. Many less severe, but negatively perceived cosmetic skin phenomena are linked with skin microbes, too. In addition, skin microorganisms, in particular on the human hands, are crucial for the field of hygiene research. Notably, apart from being only a potential source of disease and contamination, the skin microbiota also contributes to the protective functions of the human skin in many ways. Finally, the analysis of structure and function of the human skin microbiota is interesting from a basic, evolutionary perspective on human microbe interactions.Key questions in the field of skin microbiota research deal with (a) a deeper understanding of the structure (species inventory) and function (physiology) of the healthy human skin microbiota in space and time, (b) the distinction of resident and transient skin microbiota members, (c) the distinction of beneficial skin microorganisms from microorganisms or communities with an adverse or sickening effect on their hosts, (d) factors shaping the skin microbiota and its functional role in health and disease, (e) strategies to manipulate the skin microbiota for therapeutic reasons.

  17. Towards Integrating Soil Quality Monitoring Targets as Measures of Soil Natural Capital Stocks with the Provision of Ecosystem Services

    Science.gov (United States)

    Taylor, M. D.; Mackay, A. D.; Dominati, E.; Hill, R. B.

    2012-04-01

    This paper presents the process used to review soil quality monitoring in New Zealand to better align indicators and indicator target ranges with critical values of change in soil function. Since its inception in New Zealand 15 year ago, soil quality monitoring has become an important state of the environment reporting tool for Regional Councils. This tool assists councils to track the condition of soils resources, assess the impact of different land management practices, and provide timely warning of emerging issues to allow early intervention and avoid irreversible loss of natural capital stocks. Critical to the effectiveness of soil quality monitoring is setting relevant, validated thresholds or target ranges. Provisional Target Ranges were set in 2003 using expert knowledge available and data on production responses. Little information was available at that time for setting targets for soil natural capital stocks other than those for food production. The intention was to revise these provisional ranges as further information became available and extend target ranges to cover the regulating and cultural services provided by soils. A recently developed ecosystems service framework was used to explore the feasibility of linking soil natural capital stocks measured by the current suite of soil quality indicators to the provision of ecosystem services by soils. Importantly the new approach builds on and utilises the time series data sets collected by current suite of soil quality indicators, adding value to the current effort, and has the potential to set targets ranges based on the economic and environmental outcomes required for a given farm, catchment or region. It is now timely to develop a further group of environmental indicators for measuring specific soil issues. As with the soil quality indicators, these environmental indicators would be aligned with the provision of ecosystem services. The toolbox envisaged is a set of indicators for specific soil issues

  18. Antibiotics as deep modulators of gut microbiota: between good and evil.

    Science.gov (United States)

    Ianiro, Gianluca; Tilg, Herbert; Gasbarrini, Antonio

    2016-11-01

    The recent increase in our knowledge of human gut microbiota has changed our view on antibiotics. Antibiotics are, indeed, no longer considered only beneficial, but also potentially harmful drugs, as their abuse appears to play a role in the pathogenesis of several disorders associated with microbiota impairment (eg, Clostridium difficile infection or metabolic disorders). Both drug-related factors (such as antibiotic class, timing of exposure or route of administration) and host-related factors appear to influence the alterations of human gut microbiota produced by antibiotics. Nevertheless, antibiotics are nowadays considered a reliable therapy for some non-communicable disorders, including IBS or hepatic encephalopathy. Moreover, some antibiotics can also act positively on gut microbiota, providing a so-called 'eubiotic' effect, by increasing abundance of beneficial bacteria. Therefore, antibiotics appear to change, for better or worse, the nature of several disorders, including IBS, IBD, metabolic disorders or liver disease. This reviews aims to address the potential of antibiotics in the development of major non-communicable disorders associated with the alteration of gut microbiota and on newly discovered therapeutic avenues of antibiotics beyond the cure of infectious diseases. Published by the BMJ Publishing Group Limited. For permission to use (where not already granted under a licence) please go to http://www.bmj.com/company/products-services/rights-and-licensing/.

  19. The microbiota revolution: Excitement and caution.

    Science.gov (United States)

    Rescigno, Maria

    2017-09-01

    Scientific progress is characterized by important technological advances. Next-generation DNA sequencing has, in the past few years, led to a major scientific revolution: the microbiome revolution. It has become possible to generate a fingerprint of the whole microbiota of any given environment. As it becomes clear that the microbiota affects several aspects of our lives, each new scientific finding should ideally be analyzed in light of these communities. For instance, animal experimentation should consider animal sources and husbandry; human experimentation should include analysis of microenvironmental cues that might affect the microbiota, including diet, antibiotic, and drug use, genetics. When analyzing the activity of a drug, we should remember that, according to the microbiota of the host, different drug activities might be observed, either due to modification or degradation by the microbiota, or because the microbiota changes the immune system of the host in a way that makes that drug more or less effective. This minireview will not be a comprehensive review on the interaction between the host and microbiota, but it will aim at creating awareness on why we should not forget the contribution of the microbiota in any single aspect of biology. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  20. High fat diet drives obesity regardless the composition of gut microbiota in mice

    OpenAIRE

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Deborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurelia; Gerard, Philippe; Siddharth, Jay; Lauber, Christian L.

    2016-01-01

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1st week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not...

  1. Analysis of natural radionuclides in soil samples of Purola area of Garhwal Himalaya, India.

    Science.gov (United States)

    Yadav, Manjulata; Rawat, Mukesh; Dangwal, Anoop; Prasad, Mukesh; Gusain, G S; Ramola, R C

    2015-11-01

    Naturally occurring radioactive materials are widely spread in the earth's environment, being distributed in soil, rocks, water, air, plants and even within the human body. All of these sources have contributed to an increase in the levels of environmental radioactivity and population radiation doses. This paper presents the activity level due to the presence of (226)Ra, (232)Th and (40)K in soil samples of Purola area in Garhwal Himalaya region. The measured activity of (226)Ra, (232)Th and (40)K in collected soil samples of Purola was found to vary from 13±10 to 55±10 Bq kg(-1) with an average of 31±2 Bq kg(-1), 13±10 to 101±13 Bq kg(-1) with an average 30±3 Bq kg(-1) and 150±81 to 1310±154 Bq kg(-1) with an average 583±30 Bq kg(-1), respectively. The radium equivalent activity in collected soil samples was found to vary from 47 to 221 Bq kg(-1) with an average of 115 Bq kg(-1). The total absorbed gamma dose rate in this area was found to vary from 22 to 93 nGy h(-1) with an average of 55 nGy h(-1). The distribution of these radionuclides in the soil of study area is discussed in details. © The Author 2015. Published by Oxford University Press. All rights reserved. For Permissions, please email: journals.permissions@oup.com.

  2. Determination of factors associated with natural soil suppressivity to potato common scab

    Czech Academy of Sciences Publication Activity Database

    Ságová-Marečková, M.; Daniel, O.; Omelka, M.; Krištůfek, Václav; Diviš, J.; Kopecký, J.

    2015-01-01

    Roč. 10, č. 1 (2015), e0116291 E-ISSN 1932-6203 R&D Projects: GA MZe QJ1210359 Grant - others:GA ČR(CZ) GPP201/11/P290 Program:GP Institutional support: RVO:60077344 Keywords : natural soil suppressivity * potato common scab * pathogenic bacteria Subject RIV: GF - Plant Pathology, Vermin, Weed, Plant Protection Impact factor: 3.057, year: 2015

  3. Intestinal Microbiota of White Shrimp Penaeus vannamei Under Intensive Cultivation Conditions in Ecuador.

    Science.gov (United States)

    Gainza, Oreste; Ramírez, Carolina; Ramos, Alfredo Salinas; Romero, Jaime

    2018-04-01

    The goal of the study was to characterize the intestinal tract bacterial microbiota composition of Penaeus vannamei in intensive commercial ponds in Ecuador, comparing two shrimp-farming phases: nursery and harvest. Bacterial microbiota was examined by sequencing amplicons V2-V3 of the 16S rRNA using Ion Torrent technology. Archaea sequences were detected in both phases. Sequence analyses revealed quantitative and qualitative differences between the nursery phase and the harvest phase in shrimp intestinal microbiota composition. The main differences were observed at the phylum level during the nursery phase, and the prevailing phyla were CKC4 (37.3%), Proteobacteria (29.8%), Actinobacteria (11.6%), and Firmicutes (10.1%). In the harvest phase, the prevailing phyla were Proteobacteria (28.4%), Chloroflexi (19.9%), and Actinobacteria (15.1%). At the genus level, microbiota from the nursery phase showed greater relative abundances of CKC4 uncultured bacterium (37%) and Escherichia-Shigella (18%). On the contrary, in the microbiota of harvested shrimp, the prevailing genera were uncultured Caldilinea (19%) and Alphaproteobacteria with no other assigned rate (10%). The analysis of similarity ANOSIM test (beta diversity) indicated significant differences between the shrimp microbiota for these two farming phases. Similarly, alfa-diversity analysis (Chao1) indicated that the microbiota at harvest was far more diverse than the microbiota during the nursery phase, which showed a homogeneous composition. These results suggest that shrimp microbiota diversify their composition during intensive farming. The present work offers the most detailed description of the microbiota of P. vannamei under commercial production conditions to date.

  4. The gut microbiota in type 2 diabetes

    DEFF Research Database (Denmark)

    Nielsen, Trine; Allin, Kristine Højgaard; Pedersen, Oluf

    2016-01-01

    The exploration of the gut microbiota has intensified within the past decade with the introduction of cultivation-independent methods. By investigation of the gut bacterial genes, our understanding of the compositional and functional capability of the gut microbiome has increased. It is now widely...... recognized that the gut microbiota has profound effect on host metabolism and recently changes in the gut microbiota have been associated with type 2 diabetes. Animal models and human studies have linked changes in the gut microbiota to the induction of low-grade inflammation, altered immune response......, and changes in lipid and glucose metabolism. Several factors have been identified that might affect the healthy microbiota, potentially inducing a dysbiotic microbiota associated with a disease state. This increased understanding of the gut microbiota might potentially contribute to targeted intervention...

  5. Changes of saliva microbiota in nasopharyngeal carcinoma patients under chemoradiation therapy.

    Science.gov (United States)

    Xu, Yuan; Teng, Fei; Huang, Shi; Lin, Zhengmei; Yuan, Xiao; Zeng, Xiaowei; Yang, Fang

    2014-02-01

    A growing body of evidence has implicated human oral microbiota in the aetiology of oral and systemic diseases. Nasopharyngeal carcinoma (NPC), an epithelial-originated malignancy, has a complex aetiology not yet fully understood. Chemoradiation therapy of NPC can affect oral microbiota and is usually accompanied by plaque accumulation. Thus, the study aimed to understand the diversity, divergence and development of the oral microbiota in NPC patients and their associated treatment, which might provide useful insights into disease aetiology and treatment side effects. A longitudinal study was designed that included three Chinese adults with NPC. Saliva samples were collected at three time points: prior to the chemoradiation treatment (carcinoma baseline, or CB), 7 months post-treatment (carcinoma-after-therapy phase 1 or CA1) and 12 months post-treatment (carcinoma-after-therapy phase 2 or CA2). Pyrosequencing of the bacterial 16S ribosomal DNA (rDNA) V1-V3 hypervariable region was employed to characterise the microbiota. Saliva samples of three healthy subjects from our former study were employed as healthy controls. Principal coordinates analysis (PCoA), Metastats and random forest prediction models were used to reveal the key microbial members associated with NPC and its treatment programme. (1) In total, 412 bacterial species from at least 107 genera and 13 phyla were found in the saliva samples of the NPC patients. (2) PCoA revealed that not only were the microbiota from NPC patients distinct from those of healthy controls (p<0.001) but also that separation was found on the saliva microbiota between pre- and post-therapy (p<0.001) in the NPC samples. (3) At the genus level and the operational taxonomic unit (OTU) level, Streptococcus was found with lower abundance in NPC samples. (4) Chemoradiation therapy did not incur similar changes in microbiota structure among the three NPC patients; the microbiota in one of them stayed largely steady, while those in the

  6. Elevated atmospheric CO2 in a semi-natural grassland: Root dynamics, decomposition and soil C balances

    International Nuclear Information System (INIS)

    Sindhoej, Erik

    2001-01-01

    This thesis focuses on how elevated atmospheric CO 2 affects a semi-natural grassland, with emphasis on root growth, decomposition and the subsequent long-term effects on soil C balances. Parts of a semi-natural grassland in Central Sweden were enclosed in open-top chambers and exposed to ambient and elevated levels of CO 2 (+350 μmol mol -1 ) from 1995 to 2000, while chamberless rings were used for controls. Root dynamics were observed with minirhizotrons while root biomass and production were studied with soil cores and ingrowth cores. Roots collected from ingrowth cores were incubated under controlled conditions for 160 days to measure root decomposition rates. Treatment-induced differences in microclimate, C input and root decomposability were entered into the ICBM soil C balance model for 30-year projections of soil C balances for the three treatments. Elevated CO 2 chambers had higher biomass production both above and below ground compared to ambient, however the root response increased over the years while the shoot response decreased. Plants grown under elevated CO 2 had greater water-use efficiency compared to ambient, which was shown in higher soil moisture and greater biomass production during slightly dry years. Elevated CO 2 chambers showed higher root appearance rates in spring and higher disappearance rates during autumn and winter. Roots from plants grown under elevated CO 2 decomposed more rapidly. The decreased input and the drier conditions in the ambient chambers were projected to lead to a 1.7% decrease in soil C over 30 years. Under elevated CO 2 , however, the increased input compensated for the higher root decomposability and moister soil conditions and lead only to a projected 1.3% decrease in soil C. This work shows that six years of elevated CO 2 exposure had extensive effects on this semi-natural grassland. The CO 2 response of the grassland was dependent on weather conditions and production increased most when under slight water stress

  7. Gut microbiota in health and disease

    Directory of Open Access Journals (Sweden)

    M.E. Icaza-Chávez

    2013-10-01

    Full Text Available Gut microbiota is the community of live microorganisms residing in the digestive tract. There are many groups of researchers worldwide that are working at deciphering the collective genome of the human microbiota. Modern techniques for studying the microbiota have made us aware of an important number of nonculturable bacteria and of the relation between the microorganisms that live inside us and our homeostasis. The microbiota is essential for correct body growth, the development of immunity, and nutrition. Certain epidemics affecting humanity such as asthma and obesity may possibly be explained, at least partially, by alterations in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The present article deals with the nomenclature, modern study techniques, and functions of gut microbiota, and its relation to health and disease.

  8. Association of the vaginal microbiota with human papillomavirus infection in a Korean twin cohort.

    Science.gov (United States)

    Lee, Jung Eun; Lee, Sunghee; Lee, Heetae; Song, Yun-Mi; Lee, Kayoung; Han, Min Ji; Sung, Joohon; Ko, GwangPyo

    2013-01-01

    Human papillomavirus (HPV) is the most important causative agent of cervical cancers worldwide. However, our understanding of how the vaginal microbiota might be associated with HPV infection is limited. In addition, the influence of human genetic and physiological factors on the vaginal microbiota is unclear. Studies on twins and their families provide the ideal settings to investigate the complicated nature of human microbiota. This study investigated the vaginal microbiota of 68 HPV-infected or uninfected female twins and their families using 454-pyrosequencing analysis targeting the variable region (V2-V3) of the bacterial 16S rRNA gene. Analysis of the vaginal microbiota from both premenopausal women and HPV-discordant twins indicated that HPV-positive women had significantly higher microbial diversity with a lower proportion of Lactobacillus spp. than HPV-negative women. Fusobacteria, including Sneathia spp., were identified as a possible microbiological marker associated with HPV infection. The vaginal microbiotas of twin pairs were significantly more similar to each other than to those from unrelated individuals. In addition, there were marked significant differences from those of their mother, possibly due to differences in menopausal status. Postmenopausal women had a lower proportion of Lactobacillus spp. and a significantly higher microbiota diversity. This study indicated that HPV infection was associated with the composition of the vaginal microbiota, which is influenced by multiple host factors such as genetics and menopause. The potential biological markers identified in this study could provide insight into HPV pathogenesis and may represent biological targets for diagnostics.

  9. The lung tissue microbiota of mild and moderate chronic obstructive pulmonary disease.

    Science.gov (United States)

    Pragman, Alexa A; Lyu, Tianmeng; Baller, Joshua A; Gould, Trevor J; Kelly, Rosemary F; Reilly, Cavan S; Isaacson, Richard E; Wendt, Chris H

    2018-01-09

    Oral taxa are often found in the chronic obstructive pulmonary disease (COPD) lung microbiota, but it is not clear if this is due to a physiologic process such as aspiration or experimental contamination at the time of specimen collection. Microbiota samples were obtained from nine subjects with mild or moderate COPD by swabbing lung tissue and upper airway sites during lung lobectomy. Lung specimens were not contaminated with upper airway taxa since they were obtained surgically. The microbiota were analyzed with 16S rRNA gene qPCR and 16S rRNA gene hypervariable region 3 (V3) sequencing. Data analyses were performed using QIIME, SourceTracker, and R. Streptococcus was the most common genus in the oral, bronchial, and lung tissue samples, and multiple other taxa were present in both the upper and lower airways. Each subject's own bronchial and lung tissue microbiota were more similar to each other than were the bronchial and lung tissue microbiota of two different subjects (permutation test, p = 0.0139), indicating more within-subject similarity than between-subject similarity at these two lung sites. Principal coordinate analysis of all subject samples revealed clustering by anatomic sampling site (PERMANOVA, p = 0.001), but not by subject. SourceTracker analysis found that the sources of the lung tissue microbiota were 21.1% (mean) oral microbiota, 8.7% nasal microbiota, and 70.1% unknown. An analysis using the neutral theory of community ecology revealed that the lung tissue microbiota closely reflects the bronchial, oral, and nasal microbiota (immigration parameter estimates 0.69, 0.62, and 0.74, respectively), with some evidence of ecologic drift occurring in the lung tissue. This is the first study to evaluate the mild-moderate COPD lung tissue microbiota without potential for upper airway contamination of the lung samples. In our small study of subjects with COPD, we found oral and nasal bacteria in the lung tissue microbiota, confirming that

  10. Gut bacterial microbiota and obesity.

    Science.gov (United States)

    Million, M; Lagier, J-C; Yahav, D; Paul, M

    2013-04-01

    Although probiotics and antibiotics have been used for decades as growth promoters in animals, attention has only recently been drawn to the association between the gut microbiota composition, its manipulation, and obesity. Studies in mice have associated the phylum Firmicutes with obesity and the phylum Bacteroidetes with weight loss. Proposed mechanisms linking the microbiota to fat content and weight include differential effects of bacteria on the efficiency of energy extraction from the diet, and changes in host metabolism of absorbed calories. The independent effect of the microbiota on fat accumulation has been demonstrated in mice, where transplantation of microbiota from obese mice or mice fed western diets to lean or germ-free mice produced fat accumulation among recipients. The microbiota can be manipulated by prebiotics, probiotics, and antibiotics. Probiotics affect the microbiota directly by modulating its bacterial content, and indirectly through bacteriocins produced by the probiotic bacteria. Interestingly, certain probiotics are associated with weight gain both in animals and in humans. The effects are dependent on the probiotic strain, the host, and specific host characteristics, such as age and baseline nutritional status. Attention has recently been drawn to the association between antibiotic use and weight gain in children and adults. We herein review the studies describing the associations between the microbiota composition, its manipulation, and obesity. © 2013 The Authors Clinical Microbiology and Infection © 2013 European Society of Clinical Microbiology and Infectious Diseases.

  11. Let the Core Microbiota Be Functional.

    Science.gov (United States)

    Lemanceau, Philippe; Blouin, Manuel; Muller, Daniel; Moënne-Loccoz, Yvan

    2017-07-01

    The microbial community that is systematically associated with a given host plant is called the core microbiota. The definition of the core microbiota was so far based on its taxonomic composition, but we argue that it should also be based on its functions. This so-called functional core microbiota encompasses microbial vehicles carrying replicators (genes) with essential functions for holobiont (i.e., plant plus microbiota) fitness. It builds up from enhanced horizontal transfers of replicators as well as from ecological enrichment of their vehicles. The transmission pathways of this functional core microbiota vary over plant generations according to environmental constraints and its added value for holobiont fitness. Copyright © 2017. Published by Elsevier Ltd.

  12. Linking Gut Microbiota to Colorectal Cancer

    DEFF Research Database (Denmark)

    Raskov, Hans; Burcharth, Jakob; Pommergaard, Hans-Christian

    2017-01-01

    Pre-clinical and clinical data produce mounting evidence that the microbiota is strongly associated with colorectal carcinogenesis. Dysbiosis may change the course of carcinogenesis as microbial actions seem to impact genetic and epigenetic alterations leading to dysplasia, clonal expansion...... and malignant transformation. Initiation and promotion of colorectal cancer may result from direct bacterial actions, bacterial metabolites and inflammatory pathways. Newer aspects of microbiota and colorectal cancer include quorum sensing, biofilm formation, sidedness and effects/countereffects of microbiota...... and probiotics on chemotherapy. In the future, targeting the microbiota will probably be a powerful weapon in the battle against CRC as gut microbiology, genomics and metabolomics promise to uncover important linkages between microbiota and intestinal health....

  13. Natural radionuclides in soils from Sao Paulo State cerrado forest

    International Nuclear Information System (INIS)

    Miranda, Marcia V.F.E.S.; Farias, Emerson E.G. de; Cantinha, Rebeca S.; Franca, Elvis J. de

    2015-01-01

    Considering the long life history, forests should be preferentially evaluated for the monitoring of radionuclides, mainly artificial radioisotopes. However, little is known about nuclides from Uranium and Thorium series, as well as, K-40, in soils from the Sao Paulo State forests. Soils are the main reservoir of natural radionuclides for vegetation, thereby deserving attention. Taking into account the advantages of High-Resolution Gamma-ray Spectrometry (HRGS), diverse radionuclides can be quantified simultaneously. In this work natural radionuclides in soils from the Estacao Ecologica de Assis were evaluated by HRGS. Samples of 0-10 cm depth were collected under crown projection of most abundant tree species of long-term plots installed within the Estacao Ecologica de Assis, Sao Paulo State, Brazil. After drying and milling until 0.5 mm particle size, test portions of 30 g were transferred to polypropylene vials, sealed with silicone and kept under controlled conditions until 30 days to achieve secular equilibrium. A group of gamma-ray spectrometers was used to analyze about 27 samples by 80,000 seconds. Activity concentrations of Pb-214, Ac-228 and K-40 and their respective expanded analytical uncertainties at the 95% confidence level were calculated by Genie software from Canberra. Abnormal values were not detected for radionuclides in soils samples, however K-40 activity concentrations changed considerably due to the mineral cycling, in which K and, consequently K-40, is mainly stocked in vegetation in spite of soils. (author)

  14. Natural radionuclides in soils from Sao Paulo State cerrado forest

    Energy Technology Data Exchange (ETDEWEB)

    Miranda, Marcia V.F.E.S.; Farias, Emerson E.G. de; Cantinha, Rebeca S.; Franca, Elvis J. de, E-mail: mvaleria@cnen.gov.br, E-mail: emersonemiliano@yahoo.com.br, E-mail: rebecanuclear@gmail.com, E-mail: ejfranca@cnen.gov.br [Centro Regional de Ciencias Nucleares do Nordeste (CRCN-NE/CNEN-PE), Recife, PE (Brazil)

    2015-07-01

    Considering the long life history, forests should be preferentially evaluated for the monitoring of radionuclides, mainly artificial radioisotopes. However, little is known about nuclides from Uranium and Thorium series, as well as, K-40, in soils from the Sao Paulo State forests. Soils are the main reservoir of natural radionuclides for vegetation, thereby deserving attention. Taking into account the advantages of High-Resolution Gamma-ray Spectrometry (HRGS), diverse radionuclides can be quantified simultaneously. In this work natural radionuclides in soils from the Estacao Ecologica de Assis were evaluated by HRGS. Samples of 0-10 cm depth were collected under crown projection of most abundant tree species of long-term plots installed within the Estacao Ecologica de Assis, Sao Paulo State, Brazil. After drying and milling until 0.5 mm particle size, test portions of 30 g were transferred to polypropylene vials, sealed with silicone and kept under controlled conditions until 30 days to achieve secular equilibrium. A group of gamma-ray spectrometers was used to analyze about 27 samples by 80,000 seconds. Activity concentrations of Pb-214, Ac-228 and K-40 and their respective expanded analytical uncertainties at the 95% confidence level were calculated by Genie software from Canberra. Abnormal values were not detected for radionuclides in soils samples, however K-40 activity concentrations changed considerably due to the mineral cycling, in which K and, consequently K-40, is mainly stocked in vegetation in spite of soils. (author)

  15. Effect of leaking natural gas on soil and vegetation in urban areas

    NARCIS (Netherlands)

    Hoeks, J.

    1972-01-01

    Leakage of natural gas from the gas distribution system affects the physical, chemical and biological processes in the soil. Particularly the microbial oxidation of methane is then of predominant importance for the composition of the soil gas phase. The rate of methane oxidation was

  16. Gut microbiota and immunopathogenesis of diabetes mellitus type 1 and 2.

    Science.gov (United States)

    Wang, Fei; Zhang, Chunfang; Zeng, Qiang

    2016-06-01

    Diabetes mellitus (DM) is a major increasing global health burden in the aging population. Understanding the etiology of DM is beneficial for its prevention as well as treatment. In light of the metagenome hypothesis, defined as the overall bacterial genome, gut microbes have attracted increasing attention in the pathogenesis of DM. Many studies have found that gut microbes are involved in the immunopathogenesis of DM. Probiotics strengthen the host's intestinal barrier and modulate the immune system, and have therefore been investigated in DM management. Recent epigenetic findings in context of genes associated with inflammation suggest a possible way in which gut microbiota participate in the immunopathogenesis of DM. In this review, we discuss the role of gut microbiota in the immunopathogenesis of DM.

  17. Microbiota, Inflammation and Colorectal Cancer

    Directory of Open Access Journals (Sweden)

    Cécily Lucas

    2017-06-01

    Full Text Available Colorectal cancer, the fourth leading cause of cancer-related death worldwide, is a multifactorial disease involving genetic, environmental and lifestyle risk factors. In addition, increased evidence has established a role for the intestinal microbiota in the development of colorectal cancer. Indeed, changes in the intestinal microbiota composition in colorectal cancer patients compared to control subjects have been reported. Several bacterial species have been shown to exhibit the pro-inflammatory and pro-carcinogenic properties, which could consequently have an impact on colorectal carcinogenesis. This review will summarize the current knowledge about the potential links between the intestinal microbiota and colorectal cancer, with a focus on the pro-carcinogenic properties of bacterial microbiota such as induction of inflammation, the biosynthesis of genotoxins that interfere with cell cycle regulation and the production of toxic metabolites. Finally, we will describe the potential therapeutic strategies based on intestinal microbiota manipulation for colorectal cancer treatment.

  18. Gut Microbiota in Human Systemic Lupus Erythematosus and a Mouse Model of Lupus.

    Science.gov (United States)

    Luo, Xin M; Edwards, Michael R; Mu, Qinghui; Yu, Yang; Vieson, Miranda D; Reilly, Christopher M; Ahmed, S Ansar; Bankole, Adegbenga A

    2018-02-15

    Gut microbiota dysbiosis has been observed in a number of autoimmune diseases. However, the role of the gut microbiota in systemic lupus erythematosus (SLE), a prototypical autoimmune disease characterized by persistent inflammation in multiple organs of the body, remains elusive. Here we report the dynamics of the gut microbiota in a murine lupus model, NZB/W F1, as well as intestinal dysbiosis in a small group of SLE patients with active disease. The composition of the gut microbiota changed markedly before and after the onset of lupus disease in NZB/W F1 mice, with greater diversity and increased representation of several bacterial species as lupus progressed from the predisease stage to the diseased stage. However, we did not control for age and the cage effect. Using dexamethasone as an intervention to treat SLE-like signs, we also found that a greater abundance of a group of lactobacilli (for which a species assignment could not be made) in the gut microbiota might be correlated with more severe disease in NZB/W F1 mice. Results of the human study suggest that, compared to control subjects without immune-mediated diseases, SLE patients with active lupus disease possessed an altered gut microbiota that differed in several particular bacterial species (within the genera Odoribacter and Blautia and an unnamed genus in the family Rikenellaceae ) and was less diverse, with increased representation of Gram-negative bacteria. The Firmicutes / Bacteroidetes ratios did not differ between the SLE microbiota and the non-SLE microbiota in our human cohort. IMPORTANCE SLE is a complex autoimmune disease with no known cure. Dysbiosis of the gut microbiota has been reported for both mice and humans with SLE. In this emerging field, however, more studies are required to delineate the roles of the gut microbiota in different lupus-prone mouse models and people with diverse manifestations of SLE. Here, we report changes in the gut microbiota in NZB/W F1 lupus-prone mice and a

  19. Nutrition meets the microbiome: micronutrients and the microbiota.

    Science.gov (United States)

    Biesalski, Hans K

    2016-05-01

    There is increasing evidence that food is an important factor that influences and shapes the composition and configuration of the gut microbiota. Most studies have focused on macronutrients (fat, carbohydrate, protein) in particular and their effects on the gut microbiota. Although the microbiota can synthesize different water-soluble vitamins, the effects of vitamins synthesized within the microbiota on systemic vitamin status are unclear. Few studies exist on the shuttling of vitamins between the microbiota and intestine and the impact of luminal vitamins on the microbiota. Studying the interactions between vitamins and the microbiota may help to understand the effects of vitamins on the barrier function and immune system of the intestinal tract. Furthermore, understanding the impact of malnutrition, particularly low micronutrient supply, on microbiota development, composition, and metabolism may help in implementing new strategies to overcome the deleterious effects of malnutrition on child development. This article reviews data on the synthesis of different micronutrients and their effects on the human microbiota, and further discusses the consequences of malnutrition on microbiota composition. © 2016 New York Academy of Sciences.

  20. A comparison of POPs bioaccumulation in Eisenia fetida in natural and artificial soils and the effects of aging

    International Nuclear Information System (INIS)

    Vlčková, Klára; Hofman, Jakub

    2012-01-01

    The close relationship between soil organic matter and the bioavailability of POPs in soils suggests the possibility of using it for the extrapolation between different soils. The aim of this study was to prove that TOC content is not a single factor affecting the bioavailability of POPs and that TOC based extrapolation might be incorrect, especially when comparing natural and artificial soils. Three natural soils with increasing TOC and three artificial soils with TOC comparable to these natural soils were spiked with phenanthrene, pyrene, lindane, p,p′-DDT, and PCB 153 and studied after 0, 14, 28, and 56 days. At each sampling point, total soil concentration and bioaccumulation in earthworms Eisenia fetida were measured. The results showed different behavior and bioavailability of POPs in natural and artificial soils and apparent effects of aging on these differences. Hence, direct TOC based extrapolation between various soils seems to be limited. - Highlights: ► Artificial and natural soils with the same TOC content were used in this study. ► BAF and total concentration of five POPs were measured during 56 days after spiking. ► Bioaccumulation was significantly lower in NS than in AS with the same TOC. ► Direct extrapolation according to TOC was possible for soils with levels >10%. ► Microbial degradation probably influences PAHs bioavailability. - Organic matter is an important factor in the bioavailability of POPs in soils, but direct extrapolation based on TOC content might lead to incorrect results in risk assessment.

  1. Untangle soil-water-mucilage interactions: 1H NMR Relaxometry is lifting the veil

    Science.gov (United States)

    Brax, Mathilde; Buchmann, Christian; Schaumann, Gabriele Ellen

    2017-04-01

    situ the presence of mucilage in soil and characterizes several gel-specific parameters of the mucilage. Based on these findings, we discussed the potential and limitations of 1H-NMR relaxometry for following natural swelling and shrinking processes of a natural biopolymer in soil.

  2. [Gut microbiota in health and disease].

    Science.gov (United States)

    Icaza-Chávez, M E

    2013-01-01

    Gut microbiota is the community of live microorganisms residing in the digestive tract. There are many groups of researchers worldwide that are working at deciphering the collective genome of the human microbiota. Modern techniques for studying the microbiota have made us aware of an important number of nonculturable bacteria and of the relation between the microorganisms that live inside us and our homeostasis. The microbiota is essential for correct body growth, the development of immunity, and nutrition. Certain epidemics affecting humanity such as asthma and obesity may possibly be explained, at least partially, by alterations in the microbiota. Dysbiosis has been associated with a series of gastrointestinal disorders that include non-alcoholic fatty liver disease, celiac disease, and irritable bowel syndrome. The present article deals with the nomenclature, modern study techniques, and functions of gut microbiota, and its relation to health and disease. Copyright © 2013 Asociación Mexicana de Gastroenterología. Published by Masson Doyma México S.A. All rights reserved.

  3. The Effect of Drying-Wetting Cycle’s Repetition to the Characteristic of Natural and Stabilization Residual Soils Jawa Timur - Indonesia

    Science.gov (United States)

    Muntaha, M.

    2017-11-01

    Indonesia, which located in tropical region, continuously undergoes wetting and drying cycles due to the changeable seasons. An important role in activating the clay minerals on tropical residual soils is the main factor that affects the static and dynamic properties, such as: volume change, soil suction and dynamic modulus. The purpose of this paper is to evaluate the effect of drying-wetting cycles repetition on volume change, soil suction and mechanical characteristics of natural and stabilization of residual soils from Jawa Timur - Indonesia. The natural undisturbed and stabilized residual soil sample was naturally and gradually dried up with air to 25%, 50%, 75%, and 100 % of the initial water content. The wetting processes were carried out with the gradual increment water content of 25 %(wsat - wi), 50 %(wsat - wi), 75 %(wsat - wi), up to 100 %(wsat - wi). The Direct Shear test is used to measure the mechanic properties, and Whatman filter paper No. 42 is used to measure the soil suction. The drying-wetting processes were carried out for 1, 2, 4, and 6 cycles. The laboratory test results showed that, the void ratio decreased, the unit weight, cohesion and the internal friction angle were increasing due to stabilization. Drying-wetting cycle repetition reduces void ratio, negative pore-water pressure, cohesion and internal friction angle of natural and stabilized soils. Briefly, the decreased of mechanical soil properties was proven from the physical properties change observation.

  4. High fat diet drives obesity regardless the composition of gut microbiota in mice.

    Science.gov (United States)

    Rabot, Sylvie; Membrez, Mathieu; Blancher, Florence; Berger, Bernard; Moine, Déborah; Krause, Lutz; Bibiloni, Rodrigo; Bruneau, Aurélia; Gérard, Philippe; Siddharth, Jay; Lauber, Christian L; Chou, Chieh Jason

    2016-08-31

    The gut microbiota is involved in many aspects of host physiology but its role in body weight and glucose metabolism remains unclear. Here we studied the compositional changes of gut microbiota in diet-induced obesity mice that were conventionally raised or received microbiota transplantation. In conventional mice, the diversity of the faecal microbiota was weakly associated with 1(st) week weight gain but transferring the microbiota of mice with contrasting weight gain to germfree mice did not change obesity development or feed efficiency of recipients regardless whether the microbiota was taken before or after 10 weeks high fat (HF) feeding. Interestingly, HF-induced glucose intolerance was influenced by microbiota inoculation and improved glucose tolerance was associated with a low Firmicutes to Bacteroidetes ratio. Transplantation of Bacteroidetes rich microbiota compared to a control microbiota ameliorated glucose intolerance caused by HF feeding. Altogether, our results demonstrate that gut microbiota is involved in the regulation of glucose metabolism and the abundance of Bacteroidetes significantly modulates HF-induced glucose intolerance but has limited impact on obesity in mice. Our results suggest that gut microbiota is a part of complex aetiology of insulin resistance syndrome, individual microbiota composition may cause phenotypic variation associated with HF feeding in mice.

  5. Characterization of Microbiota in Children with Chronic Functional Constipation.

    Science.gov (United States)

    de Meij, Tim G J; de Groot, Evelien F J; Eck, Anat; Budding, Andries E; Kneepkens, C M Frank; Benninga, Marc A; van Bodegraven, Adriaan A; Savelkoul, Paul H M

    2016-01-01

    Disruption of the intestinal microbiota is considered an etiological factor in pediatric functional constipation. Scientifically based selection of potential beneficial probiotic strains in functional constipation therapy is not feasible due to insufficient knowledge of microbiota composition in affected subjects. The aim of this study was to describe microbial composition and diversity in children with functional constipation, compared to healthy controls. Fecal samples from 76 children diagnosed with functional constipation according to the Rome III criteria (median age 8.0 years; range 4.2-17.8) were analyzed by IS-pro, a PCR-based microbiota profiling method. Outcome was compared with intestinal microbiota profiles of 61 healthy children (median 8.6 years; range 4.1-17.9). Microbiota dissimilarity was depicted by principal coordinate analysis (PCoA), diversity was calculated by Shannon diversity index. To determine the most discriminative species, cross validated logistic ridge regression was performed. Applying total microbiota profiles (all phyla together) or per phylum analysis, no disease-specific separation was observed by PCoA and by calculation of diversity indices. By ridge regression, however, functional constipation and controls could be discriminated with 82% accuracy. Most discriminative species were Bacteroides fragilis, Bacteroides ovatus, Bifidobacterium longum, Parabacteroides species (increased in functional constipation) and Alistipes finegoldii (decreased in functional constipation). None of the commonly used unsupervised statistical methods allowed for microbiota-based discrimination of children with functional constipation and controls. By ridge regression, however, both groups could be discriminated with 82% accuracy. Optimization of microbiota-based interventions in constipated children warrants further characterization of microbial signatures linked to clinical subgroups of functional constipation.

  6. Application of radiochemical methods for development of new biological preparation designed for soil bioremediation

    International Nuclear Information System (INIS)

    Kim, A.A.; Djuraeva, G.T.; Djumaniyazova, G.I.; Yadgarov, Kh.T.

    2006-01-01

    Full text: Internationally the bioremediation of agricultural lands contaminated by persistent chloroorganic compounds by means of the microbial methods are used as the most low-cost and the most effective. One of the factors reducing efficacy of microbial degradation, is often the low quantity of microorganisms - destructors in the soil. Therefore, we have designed bioremediation technology of soils, contaminated by organochlorine compounds, with use of the alive microorganisms as active agent. We developed the biological preparation containing 5 aboriginal active strains of bacteria - destructors of persistent chloroorganic compounds and investigated the ability of biological preparation to increase the bioremediation potential of contaminated soils. To carry out the investigation we developed the complex of radiochemical methods with use of tritium labeled PCBs, including the following methods: 1.The method to define the accumulation and degradation of PCBs in soil bacteria in culture allows determination of quantitative characteristics of bacterial strains. 2. The method to define the PCBs degradation by soil bacteria strains in model conditions in the soil allows to estimate the PCB-destructive activity of strains after introducing in soil. 3. A method to define the PCB-destructive activity of own microbiota of contaminated soil. 4. A method to define the effect of stimulation of the PCB-destructive activity of biological preparation and own microbiota of soil with the help of biofertilizers. By using the developed radiochemical methods we have carried out investigation on creation of new biological preparation on the basis of strains of soil bacteria - destructors of PCBs. We also determined the quality and quantity characteristics of HCCH and PCBs-destructive activity of new biological preparation. It is shown that the new biological preparation is capable of accumulation and destruction of the PCBs in culture and in soil at model conditions. Thus, the

  7. Soils Newsletter, Vol. 37, No. 1, July 2014

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2014-07-15

    With increasing concern for the impacts of climate change and extreme weather events on the fragility of food production systems, food security and the natural resource base, there is an urgent need to enhance soil resilience to erosion, salinization, droughts, floods, and changes in soil and air temperature. By 2050, the world population will reach nine billion people, compared with the present number of nearly seven billion. The greatest challenge we face, is to meet the food demand associated with this increase in population growth without degrading the natural resource base and at the same time, minimizing greenhouse gas (GHG) emissions, which contribute to climate change. Integrated management of soil and water resources can make a positive difference, not only towards food security and sustainable agriculture but also to sustainable development (SD), since SD as defined by the United Nations, encompasses the importance of soil and water management for food security and poverty alleviation. Isotopic and nuclear techniques play an important role in assessing the impacts of climate change and variability on the natural resource base and evaluating different soil and water management practices on soil fertility, water use efficiency and land productivity for climate change adaptation and mitigation. Some of these aspects will be discussed in detail in one of the feature articles in this Soils Newsletter. More information on the use of isotopic and nuclear techniques in soil and water management can be seen in the FAO/IAEA Proceedings on Managing Soils for Food Security and Climate Change Adaptation and Mitigation which will be published this year. This publication is a compilation of selected papers presented at the International Symposium organized by the Joint FAO/IAEA Division from 23-27 July 2012.

  8. Soils Newsletter, Vol. 37, No. 1, July 2014

    International Nuclear Information System (INIS)

    2014-07-01

    With increasing concern for the impacts of climate change and extreme weather events on the fragility of food production systems, food security and the natural resource base, there is an urgent need to enhance soil resilience to erosion, salinization, droughts, floods, and changes in soil and air temperature. By 2050, the world population will reach nine billion people, compared with the present number of nearly seven billion. The greatest challenge we face, is to meet the food demand associated with this increase in population growth without degrading the natural resource base and at the same time, minimizing greenhouse gas (GHG) emissions, which contribute to climate change. Integrated management of soil and water resources can make a positive difference, not only towards food security and sustainable agriculture but also to sustainable development (SD), since SD as defined by the United Nations, encompasses the importance of soil and water management for food security and poverty alleviation. Isotopic and nuclear techniques play an important role in assessing the impacts of climate change and variability on the natural resource base and evaluating different soil and water management practices on soil fertility, water use efficiency and land productivity for climate change adaptation and mitigation. Some of these aspects will be discussed in detail in one of the feature articles in this Soils Newsletter. More information on the use of isotopic and nuclear techniques in soil and water management can be seen in the FAO/IAEA Proceedings on Managing Soils for Food Security and Climate Change Adaptation and Mitigation which will be published this year. This publication is a compilation of selected papers presented at the International Symposium organized by the Joint FAO/IAEA Division from 23-27 July 2012

  9. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    International Nuclear Information System (INIS)

    Breulmann, Marc; Boettger, Tatjana; Buscot, François; Gruendling, Ralf; Schulz, Elke

    2016-01-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm"−"3 (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm"−"3; and LF2, 1.8–2.0 g cm"−"3) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C_H_W_E) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ"1"3C values. The hot water extraction and natural δ"1"3C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying soil depths in extensively

  10. Experience in organization of soil science–biogeographical part of educational natural science practical work of students-geographers

    Directory of Open Access Journals (Sweden)

    Юлія Прасул

    2016-10-01

    Full Text Available The article considers the experience of practical field training of students- geographers, defines its role in training geographers, looks at the ways of rational organization of soil science, biogeographic section of natural science educational practices in terms of training at high school stationary practice grounds. The educational natural science practice of the 1st year-students-geographers of V.N. Karazin Kharkiv National University takes place on the educational and scientific geographical grounds «Gaidary» in Zmiiv district, Kharkiv region. The location of the base allows to explore a typical structure of the Siversky Donets river valley, select a variety of elements and components to form an understanding in students of both the knowledge of the individual components of nature, and the processes of natural complexes functioning as a whole, to introduce the elements of environmental knowledge and factors of anthropogenic impact on the environment. The soil-biogeographical section of practical work focuses on acquiring skills of field research methods of soil and ecological communities by the students; planning of the routes, taking into account the conditions and landscape features of the territory; cameral treatment of the data and samples collected in the field; identification of cause-and-effect relationships of soil and vegetation development. Landscape diversity of the territory in the area of practice allows to study the soil and vegetation within the natural systems of the watershed, its slopes, gullies and gully areas of the floodplain, the first floodplain terrace during 5-6 days of soil-biogeographic section of the practical work through the daily radial routes. During the practice traditional classical techniques of field studies of soils and ecological communities (primarily tab and a description of soil profiles and geo-botanical areas are combined with new, present-day approaches (use of GPS-navigators, GIS

  11. High natural erosion rates are the backdrop for enhanced anthropogenic soil erosion in the Middle Hills of Nepal

    Science.gov (United States)

    West, A. J.; Arnold, M.; Aumaître, G.; Bourlès, D. L.; Keddadouche, K.; Bickle, M.; Ojha, T.

    2014-08-01

    Although agriculturally accelerated soil erosion is implicated in the unsustainable environmental degradation of mountain environments, such as in the Himalaya, the effects of land use can be difficult to quantify in many mountain settings because of the high and variable natural background rates of erosion. In this study, we present new long-term denudation rates, derived from cosmogenic 10Be analysis of quartz in river sediment from the Likhu Khola, a small agricultural river basin in the Middle Hills of central Nepal. Calculated long-term denudation rates, which reflect background natural erosion processes over 1000+ years prior to agricultural intensification, are similar to present-day sediment yields and to soil loss rates from terraces that are well-maintained. Similarity in short- and long-term catchment-wide erosion rates for the Likhu is consistent with data from elsewhere in the Nepal Middle Hills, but contrasts with the very large increases in short-term erosion rates seen in agricultural catchments in other steep mountain settings. Our results suggest that the large sediment fluxes exported from the Likhu and other Middle Hills rivers in the Himalaya are derived in large part from natural processes, rather than from soil erosion as a result of agricultural activity. Because of the high natural background rates, simple comparison of short- and long-term rates may not reveal unsustainable soil degradation, particularly if much of the catchment-scale erosion flux derives from mass wasting. Correcting for the mass wasting contribution in the Likhu implies minimum catchment-averaged soil production rates of ~0.25-0.35 mm yr-1. The deficit between these production rates and soil losses suggests that terraced agriculture in the Likhu may not be associated with a large systematic soil deficit, at least when terraces are well maintained, but that poorly managed terraces, forest and scrubland may lead to rapid depletion of soil resources.

  12. INTESTINAL MICROBIOTA AND USE OF PROBIOTICS IN PEDIATRIC PRACTICE: NEWS

    Directory of Open Access Journals (Sweden)

    S. G. Makarova

    2015-01-01

    Full Text Available Condition of intestinal microbiota is a key factor of a child's health. According to the latest studies, distinctness and certain stability of every person's microbiota is to a large extent determined genetically; at the same time, microbiocenosis is sensitive to external exposure, i.e. it is labile. The article presents new data on the intestinal microflora's composition and function, as well as on the nature of interaction in the microbiocenosis-host system. Intestinal microflora directly affects formation of a child's immune system, ensures protection from pathogens and takes part in all types of metabolism. The article presents modern approaches to intestinal microflora modulation and use of probiotics to prevent and treat various pathologies in pediatric practice.

  13. Gut microbiota modulation of chemotherapy efficacy and toxicity.

    Science.gov (United States)

    Alexander, James L; Wilson, Ian D; Teare, Julian; Marchesi, Julian R; Nicholson, Jeremy K; Kinross, James M

    2017-06-01

    Evidence is growing that the gut microbiota modulates the host response to chemotherapeutic drugs, with three main clinical outcomes: facilitation of drug efficacy; abrogation and compromise of anticancer effects; and mediation of toxicity. The implication is that gut microbiota are critical to the development of personalized cancer treatment strategies and, therefore, a greater insight into prokaryotic co-metabolism of chemotherapeutic drugs is now required. This thinking is based on evidence from human, animal and in vitro studies that gut bacteria are intimately linked to the pharmacological effects of chemotherapies (5-fluorouracil, cyclophosphamide, irinotecan, oxaliplatin, gemcitabine, methotrexate) and novel targeted immunotherapies such as anti-PD-L1 and anti-CLTA-4 therapies. The gut microbiota modulate these agents through key mechanisms, structured as the 'TIMER' mechanistic framework: Translocation, Immunomodulation, Metabolism, Enzymatic degradation, and Reduced diversity and ecological variation. The gut microbiota can now, therefore, be targeted to improve efficacy and reduce the toxicity of current chemotherapy agents. In this Review, we outline the implications of pharmacomicrobiomics in cancer therapeutics and define how the microbiota might be modified in clinical practice to improve efficacy and reduce the toxic burden of these compounds.

  14. Soil amendments reduce trace element solubility in a contaminated soil and allow regrowth of natural vegetation

    International Nuclear Information System (INIS)

    Madejon, Engracia; Perez de Mora, Alfredo; Felipe, Efrain; Burgos, Pilar; Cabrera, Francisco

    2006-01-01

    We tested the effects of three amendments (a biosolid compost, a sugar beet lime, and a combination of leonardite plus sugar beet lime) on trace element stabilisation and spontaneous revegetation of a trace element contaminated soil. Soil properties were analysed before and after amendment application. Spontaneous vegetation growing on the experimental plot was studied by three surveys in terms of number of taxa colonising, percentage vegetation cover and plant biomass. Macronutrients and trace element concentrations of the five most frequent species were analysed. The results showed a positive effect of the amendments both on soil chemical properties and vegetation. All amendments increased soil pH and TOC content and reduced CaCl 2 -soluble-trace element concentrations. Colonisation by wild plants was enhanced in all amended treatments. The nutritional status of the five species studied was improved in some cases, while a general reduction in trace element concentrations of the aboveground parts was observed in all treated plots. The results obtained show that natural assisted remediation has potential for success on a field scale reducing trace element entry in the food chain. - Soil amendments affect soil chemistry and allow revegetation of soils contaminated by trace elements

  15. Influence of the sunflower rhizosphere on the biodegradation of PAHs in soil

    OpenAIRE

    Tejeda Agredano, M. C.; Gallego, Sara; Vila, Joaquim; Ortega Calvo, J. J.; Cantos, Manuel

    2013-01-01

    Reduced bioavailability to soil microorganisms is probably the most limiting factor in the bioremediation of polycyclic aromatic hydrocarbons PAH-polluted soils. We used sunflowers planted in pots containing soil to determine the influence of the rhizosphere on the ability of soil microbiota to reduce PAH levels. The concentration of total PAHs decreased by 93% in 90 days when the contaminated soil was cultivated with sunflowers, representing an improvement of 16% compared to contaminated soi...

  16. Radiological assessment of natural radionuclides in soil within and around crude oil flow and gas compression stations in the Niger Delta, Nigeria

    International Nuclear Information System (INIS)

    Ademola, J.A.; Atare, E.E.

    2010-01-01

    Natural radionuclide concentrations in soil samples collected within and around crude oil flow and gas compression stations in the Niger Delta, Nigeria, were determined using gamma-ray spectroscopy. The mean activity concentrations of 40 K, 238 U and 232 Th varied from 30.1 ± 3.0 to 59.0 ± 17.1, B.D.L. to 8.8 ± 2.3 and 7.9 ± 3.7 to 10.9 ± 1.9 Bq.kg-1, respectively. The 40 K, 238 U and 232 Th contents of the soil samples are very low compared with the world average for natural background area. The absorbed dose rate and effective dose ranged from 6.9 to 11.1 n Gy.h-1 and 8.5 to 13.6 μSv.y-1, respectively. The annual gonadal dose equivalent rate ranged from 48.9 to 77.5 μSv.y-1, which is lower than the world average of 0.30 mSv.y-1. The radium equivalent activity and the external hazard index of the soil samples were below the recommended limits of 370 Bq.kg-1 and unity, respectively. The results obtained reveal that there is no significant radiation hazard due to natural radionuclides of the soil samples in the studied areas. (authors)

  17. The human microbiota associated with overall health.

    Science.gov (United States)

    Xu, Xiaofei; Wang, Zhujun; Zhang, Xuewu

    2015-03-01

    Human body harbors diverse microbes, the main components include bacteria, eukaryotes and viruses. Emerging evidences show that the human microbiota is intrinsically linked with overall health. The development of next-generation sequencing provides an unprecedented opportunity to investigate the complex microbial communities that are associated with the human body. Many factors like host genetics and environmental factors have a major impact on the composition and dynamic changes of human microbiota. The purpose of this paper is to present an overview of the relationship between human health and human microbiota (skin, nasal, throat, oral, vaginal and gut microbiota), then to focus on the factors modulating the composition of the microbiota and the future challenges to manipulate the microbiota for personalized health.

  18. [Community structure and diversity of soil arthropods in naturally restored sandy grasslands after grazing].

    Science.gov (United States)

    Liu, Ren-tao; Zhao, Ha-lin; Zhao, Xue-yong

    2010-11-01

    Taking the Naiman Desertification Research Station under Chinese Academy of Sciences as a base, an investigation was conducted on the community structure of soil arthropods in the naturally restored sandy grasslands after different intensity grazing disturbance, with the effects of vegetation and soil on this community structure approached. In the non-grazing grassland, soil arthropods were rich in species and more in individuals, and had the highest diversity. In the restored grassland after light grazing, soil arthropods had the lowest evenness and diversity. In the restored grassland after moderate grazing, the individuals of soil arthropods were lesser but the major groups were more, and the evenness and diversity were higher. In the restored grassland after heavy grazing, the individuals of soil arthropods were more but the major groups were lesser, and the diversity was higher. Plant individuals' number, vegetation height and coverage, and soil alkalinity were the main factors affecting the soil arthropod community in naturally restored grasslands after different intensity grazing disturbance. It was implied that after 12-year exclosure of grassland, soil arthropod community could be recovered to some degree, while grazing disturbance had long-term negative effects on the arthropod community.

  19. Correlation of natural and artificial radionuclides in soils with pedological, climatological and geographic parameters

    International Nuclear Information System (INIS)

    Schuch, L.A.; Nordemann, D.J.R.; Zago, A.; Dallpai, D.L.; Godoy, J.M.; Pecequilo, B.

    1994-01-01

    Various types of soil samples were collected in the southern part of Brazil, with depth intervals of 5 cm, down to 50 cm, using a specially designed sampler. Pedological analysis of these soils were performed. Nuclear activities of 137 Cs (expressed in Bq m -2 ) and radioactive natural element ( 226 Ra, 228 Ra and 40 K) concentrations were determined by low background gamma-ray spectrometry. 137 Cs concentrations were correlated with radioactive natural element concentrations and pedological, climatological and geographic parameters to the soil samples collected. (author) 6 refs.; 4 tabs

  20. Microbiota-Brain-Gut Axis and Neurodegenerative Diseases.

    Science.gov (United States)

    Quigley, Eamonn M M

    2017-10-17

    The purposes of this review were as follows: first, to provide an overview of the gut microbiota and its interactions with the gut and the central nervous system (the microbiota-gut-brain axis) in health, second, to review the relevance of this axis to the pathogenesis of neurodegenerative diseases, such as Parkinson's disease, and, finally, to assess the potential for microbiota-targeted therapies. Work on animal models has established the microbiota-gut-brain axis as a real phenomenon; to date, the evidence for its operation in man has been limited and has been confronted by considerable logistical challenges. Animal and translational models have incriminated a disturbed gut microbiota in a number of CNS disorders, including Parkinson's disease; data from human studies is scanty. While a theoretical basis can be developed for the use of microbiota-directed therapies in neurodegenerative disorders, support is yet to come from high-quality clinical trials. In theory, a role for the microbiota-gut-brain axis is highly plausible; clinical confirmation is awaited.

  1. Non-target effects of the microbial control agents Pseudomonas fluorescens DR54 and Clonostachys rosea IK726 in soils cropped with barley followed by sugar beet: a greenhouse assessment

    DEFF Research Database (Denmark)

    Johansen, A.; Knudsen, I. M. B.; Binnerup, S. J.

    2005-01-01

    Non-target effects of a bacterial (Pseudomonas fluorescens DR54) and a fungal (Clonostachys rosea IK726) microbial control agent (MCA), on the indigenous microbiota in bulk soil and rhizosphere of barley, and subsequent a sugar beet crop, were studied in a greenhouse experiment. MCAs were...... introduced by seed and soil inoculation. Bulk and rhizosphere soils were sampled regularly during the growth of barley and sugar beet. The soils were assayed for the fate of MCAs and various features of the indigenous soil microbiota. At the end of the experiment (193 d), DR54 and IK726 had declined...... by a factor of 106 and 20, respectively, and DR54 showed a short-lasting growth increase in the sugar beet rhizosphere. In general, the non-target effects were small and transient. IK726 seemed to have general stimulating effects on soil enzyme activity and the soil microbiota, and resulted in a significant...

  2. Convergence of gut microbiotas in the adaptive radiations of African cichlid fishes.

    Science.gov (United States)

    Baldo, Laura; Pretus, Joan Lluís; Riera, Joan Lluís; Musilova, Zuzana; Bitja Nyom, Arnold Roger; Salzburger, Walter

    2017-09-01

    Ecoevolutionary dynamics of the gut microbiota at the macroscale level, that is, in across-species comparisons, are largely driven by ecological variables and host genotype. The repeated explosive radiations of African cichlid fishes in distinct lakes, following a dietary diversification in a context of reduced genetic diversity, provide a natural setup to explore convergence, divergence and repeatability in patterns of microbiota dynamics as a function of the host diet, phylogeny and environment. Here we characterized by 16S rRNA amplicon sequencing the gut microbiota of 29 cichlid species from two distinct lakes/radiations (Tanganyika and Barombi Mbo) and across a broad dietary and phylogenetic range. Within each lake, a significant deviation between a carnivorous and herbivorous lifestyle was found. Herbivore species were characterized by an increased bacterial taxonomic and functional diversity and converged in key compositional and functional community aspects. Despite a significant lake effect on the microbiota structure, this process has occurred with remarkable parallels in the two lakes. A metabolic signature most likely explains this trend, as indicated by a significant enrichment in herbivores/omnivores of bacterial taxa and functions associated with fiber degradation and detoxification of plant chemical compounds. Overall, compositional and functional aspects of the gut microbiota individually and altogether validate and predict main cichlid dietary habits, suggesting a fundamental role of gut bacteria in cichlid niche expansion and adaptation.

  3. Influence of the Vaginal Microbiota on Toxic Shock Syndrome Toxin 1 Production by Staphylococcus aureus

    OpenAIRE

    MacPhee, Roderick A.; Miller, Wayne L.; Gloor, Gregory B.; McCormick, John K.; Hammond, Jo-Anne; Burton, Jeremy P.; Reid, Gregor

    2013-01-01

    Menstrual toxic shock syndrome (TSS) is a serious illness that afflicts women of premenopausal age worldwide and arises from vaginal infection by Staphylococcus aureus and concurrent production of toxic shock syndrome toxin-1 (TSST-1). Studies have illustrated the capacity of lactobacilli to reduce S. aureus virulence, including the capacity to suppress TSST-1. We hypothesized that an aberrant microbiota characteristic of pathogenic bacteria would induce the increased production of TSST-1 and...

  4. Natural radioactivity and metal concentrations in soil samples taken along the Izmir - Ankara E-023 highway, Turkey

    International Nuclear Information System (INIS)

    Baba, A.; Bassari, A.; Erees, F; Cam, S.

    2004-01-01

    The specific activity and the gamma-absorbed dose rates of the terrestrial naturally occurring radionuclides ( 238 U, 232 Th, and 40 K) were determined in roadside soil obtained from fifteen sites along Izmir-Ankara Highway, using gamma-ray spectrometry. The soil activity ranged from 42.6 to 47.3 Bqkg -1 for 238 U, 31.8 to 36.3 Bqkg -1 for 232 Th, and 432 to 488 Bqkg -1 for 40 K. The highest mean value of 238 U was found in the soil samples obtained from a site close to the intersection of the roads. The study yielded an annual effective dose equivalent in the range of 58 - 80 μSv. The average value falls within the global range of outdoor radiation exposure given in UNSCEAR-2000 publications. Also Ca, Ti, Fe, Cu, Zn, Rb, Sr and Zr concentrations were determined in roadside soil. Rb, Sr, Zr and Zn concentrations in roadside soil around the intersection of the roads were higher than maximum concentration levels of these heavy metals in normal soil

  5. Microbiota dynamics in patients treated with fecal microbiota transplantation for recurrent Clostridium difficile infection.

    Directory of Open Access Journals (Sweden)

    Yang Song

    Full Text Available Clostridium difficile causes antibiotic-associated diarrhea and pseudomembraneous colitis and is responsible for a large and increasing fraction of hospital-acquired infections. Fecal microbiota transplantation (FMT is an alternate treatment option for recurrent C. difficile infection (RCDI refractory to antibiotic therapy. It has recently been discussed favorably in the clinical and scientific communities and is receiving increasing public attention. However, short- and long-term health consequences of FMT remain a concern, as the effects of the transplanted microbiota on the patient remain unknown. To shed light on microbial events associated with RCDI and treatment by FMT, we performed fecal microbiota analysis by 16S rRNA gene amplicon pyrosequencing of 14 pairs of healthy donors and RCDI patients treated successfully by FMT. Post-FMT patient and healthy donor samples collected up to one year after FMT were studied longitudinally, including one post-FMT patient with antibiotic-associated relapse three months after FMT. This analysis allowed us not only to confirm prior reports that RCDI is associated with reduced diversity and compositional changes in the fecal microbiota, but also to characterize previously undocumented post-FMT microbiota dynamics. Members of the Streptococcaceae, Enterococcaceae, or Enterobacteriaceae were significantly increased and putative butyrate producers, such as Lachnospiraceae and Ruminococcaceae were significantly reduced in samples from RCDI patients before FMT as compared to post-FMT patient and healthy donor samples. RCDI patient samples showed more case-specific variations than post-FMT patient and healthy donor samples. However, none of the bacterial groups were invariably associated with RCDI or successful treatment by FMT. Overall microbiota compositions in post-FMT patients, specifically abundances of the above-mentioned Firmicutes, continued to change for at least 16 weeks after FMT, suggesting that

  6. Natural self-reclamation of soils and landscapes affected by agriculture and mining

    Science.gov (United States)

    Alekseenko, Vladimir; Bech, Jaume; Alekseenko, Alexey; Shvydkaya, Natalya; Puzanov, Alexander; Roca, Núria

    2017-04-01

    Processes of possible self-restoration of technogenically disturbed soils are studied in Central and Southern European Russia. Reclamation procedures are mainly not implemented in this vast region, and the natural soil restoration is supposed. Heaps overlaying the former steppe and cropland landscapes are created in the course of rock waste stacking after preparative and cleaning mining works during the underground coal extraction. Approximately 1 500 heaps occupying over 8 000 ha were formed in the area of the Donets Coal Basin. Soils are destroyed under heaps, land subsidence occurs in coal mining areas and acid lakes are usually formed in these ground depressions. Spontaneous combustions happen often and can continue for decades. In order to prevent them, heap surfaces are in some cases levelled and filled with water, forming peculiar ponds. After 70 years of heaps existence and ca. 50 years after their ignition, soil formation is just in the early stages. Heap surface differs a lot in geochemical and mineralogical characteristics from those of surrounding steppe soils that suffered substantial changes at distances up to 1 km. Development of plant communities in areas near coal dumps and heaps is one of the indicators of landscape-geochemical changes. Formation of ruderal phytocenoses with 10-15 % of local flora, as well as invasive and introduced plants occurred under the complex impact of ecological conditions. Communities formed by them are distinguished by the structure simplicity, low species diversity, and plant growth anomalies. Quarries and dumps are formed during underground and open-cast mining of ore deposits. During the last 50 years after abandoning mines in forest areas, the 30 m deep quarries have filled with the creep material less for 0.5 m, and sediments from water streams have added 1-3 cm. Thickness of argillaceous layers does not exceed 1-2 cm at small rock chips of the dumps that measures up to 70 km in length. The dumps are partially

  7. The emissions and soil concentrations of N2O and CH4 from natural soil temperature gradients in a volcanic area in southwest Iceland

    Science.gov (United States)

    Maljanen, Marja; Yli-Moijala, Heli; Leblans, Niki I. W.; De Boeck, Hans J.; Bjarnadóttir, Brynhildur; Sigurdsson, Bjarni D.

    2016-04-01

    We studied nitrous oxide (N2O) and methane (CH4) emissions along three natural geothermal soil temperature (Ts) gradients in a volcanic area in southwest Iceland. Two of the gradients (on a grassland and a forest site, respectively) were recently formed (in May 2008). The third gradient, a grassland site, had been subjected to long-term soil warming (over 30 years, and probably centuries). Nitrous oxide and methane emissions were measured along the temperature gradients using the static chamber method and also soil gas concentrations were studied. With a moderate soil temperature increase (up to +5 °C) there were no significant increase in gas flux rates in any of the sites but an increase of 20 to 45 °C induced an increase in both N2O and CH4 emissions. The measured N2O emissions (up to 2600 μg N2O m-2 h-1) from the warmest plots were about two magnitudes higher compared with the coolest plots (less than 20 μg N2O m-2 h-1). While a net uptake of CH4 was measured in the coolest plots (up to -0.15 mg CH4 m-2 h-1), a net emission of CH4 was measured from the warmest plots (up to 1.3 mg CH4 m-2 h-1). Soil CH4 concentrations decreased first with a moderate (up to +5 °C) increase in Ts, but above that threshold increased significantly. The soil N2O concentration at depths from 5 to 20 cm increased with increasing Ts, indicating enhanced N-turnover. Further, there was a clear decrease in soil organic matter (SOM), C- and N concentration with increasing Ts at all sites. One should note, however, that a part of the N2O emitted from the warmest plots may be partly geothermally derived, as was revealed by 15N2O isotope studies. These natural Ts gradients show that the emission of N2O and CH4 can increase significantly when Ts increases considerably. This implies that these geothermally active sites can act as local hot spots for CH4 and N2O emissions.

  8. Individual Patterns of Complexity in Cystic Fibrosis Lung Microbiota, Including Predator Bacteria, over a 1-Year Period.

    Science.gov (United States)

    de Dios Caballero, Juan; Vida, Rafael; Cobo, Marta; Máiz, Luis; Suárez, Lucrecia; Galeano, Javier; Baquero, Fernando; Cantón, Rafael; Del Campo, Rosa

    2017-09-26

    Cystic fibrosis (CF) lung microbiota composition has recently been redefined by the application of next-generation sequencing (NGS) tools, identifying, among others, previously undescribed anaerobic and uncultivable bacteria. In the present study, we monitored the fluctuations of this ecosystem in 15 CF patients during a 1-year follow-up period, describing for the first time, as far as we know, the presence of predator bacteria in the CF lung microbiome. In addition, a new computational model was developed to ascertain the hypothetical ecological repercussions of a prey-predator interaction in CF lung microbial communities. Fifteen adult CF patients, stratified according to their pulmonary function into mild ( n = 5), moderate ( n = 9), and severe ( n = 1) disease, were recruited at the CF unit of the Ramón y Cajal University Hospital (Madrid, Spain). Each patient contributed three or four induced sputum samples during a 1-year follow-up period. Lung microbiota composition was determined by both cultivation and NGS techniques and was compared with the patients' clinical variables. Results revealed a particular microbiota composition for each patient that was maintained during the study period, although some fluctuations were detected without any clinical correlation. For the first time, Bdellovibrio and Vampirovibrio predator bacteria were shown in CF lung microbiota and reduced-genome bacterial parasites of the phylum Parcubacteria were also consistently detected. The newly designed computational model allows us to hypothesize that inoculation of predators into the pulmonary microbiome might contribute to the control of chronic colonization by CF pathogens in early colonization stages. IMPORTANCE The application of NGS to sequential samples of CF patients demonstrated the complexity of the organisms present in the lung (156 species) and the constancy of basic individual colonization patterns, although some differences between samples from the same patient were

  9. The Natural Terrestrial Carbon Sequestration Potential of Rocky Mountain Soils Derived From Volcanic Bedrock

    Science.gov (United States)

    Yager, D. B.; Burchell, A.; Johnson, R. H.

    2008-12-01

    .01 to 0.78 Wt. %), C:N (2.4 to 6.5), and arylsulfatase (0 to 41). However, reclaimed and undisturbed mined-lands soils derived from propylitized andesite have high C (13.5 - 25.6 Wt. %), C:N (27), arylsulfatase (338). In our previous studies, propylitic bedrock were also found to have a high acid neutralizing capacity (ANC) characterized by epidote-chlorite-calcite. Radiocarbon dates on charcoal collected from paleo-burn horizons (found in high C, N soils) indicate an old carbon pool (840-5,440 ]pm40 yrs B.P). High-flow dissolved organic carbon (DOC) concentrations are low (ave. 1.9 ppm) in both surface water and ground-water samples collected in subalpine catchments underlain by intermediate to mafic igneous bedrocks. The low DOC concentrations are consistent with these soils sequestering carbon. This is likely related to high specific surface area and high adsorption-enhancing Ca-Mg-Fe clays. Observations at naturally-reclaimed mine sites indicate the use of ANC rock plus other soil amendments (biochar, soil nutrients, bioactive teas, native vegetation seeding) can aid more traditional reclamation measures that use limestone and compost hauled from long distances by reducing both the cost and carbon footprint of reclamation projects.

  10. Study on natural radioactive elements in soil and rock samples around Mandya district, India

    International Nuclear Information System (INIS)

    Shivakumara, B.C.; Paramesh, L.; Shashikumar, T.S.; Chandrashekara, M.S.

    2012-01-01

    The soil is a complex mixture of different compounds and rocks. In the natural environment, it is an important source of exposure to radiation due to naturally occurring, gamma emitting radionuclides which include 226 Ra, 232 Th and 40 K present in the soil. The study of distribution of these radionuclides in soil and rock is of great importance for radiation protection and measurements. The activity concentrations of 226 Ra, 232 Th, and 40 K in soil and rock samples collected in Mandya District, Karnataka state, India have been measured by gamma ray spectrometry. The average activity concentrations of 226 Ra, 232 Th, and 40 K (Bq/kg) are found to be 40.2, 62.3, and 317.5 Bq/kg, respectively, in soil samples and 30.5, 34.4, and 700.2 Bq/kg, respectively, in rock samples. The concentrations of radionuclides in soil samples are found to higher than in rock samples. The concentrations of radionuclides in soil and rock samples in the study area are slightly higher than Indian average and world average values. (author)

  11. Carbon storage potential in size–density fractions from semi-natural grassland ecosystems with different productivities over varying soil depths

    Energy Technology Data Exchange (ETDEWEB)

    Breulmann, Marc [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); Helmholtz-Centre for Environmental Research – UFZ, Environmental and Biotechnology Centre (UBZ), Permoserstraße 15, 04318 Leipzig (Germany); Boettger, Tatjana [Helmholtz-Centre for Environmental Research – UFZ, Department of Isotope Hydrology, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Buscot, François [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany); German Centre for Integrative Biodiversity Research (iDiv) Halle-Jena-Leipzig, Deutscher Platz 5e, 04103 Leipzig (Germany); Gruendling, Ralf [Helmholtz-Centre for Environmental Research – UFZ, Department, Department of Soil Physics, Theodor-Lieser-Str. 4, D-06120 Halle (Germany); Schulz, Elke [Helmholtz-Centre for Environmental Research – UFZ, Department of Soil Ecology, Theodor-Lieser-Str. 4, 06120 Halle (Germany)

    2016-03-01

    Researchers have increasingly recognised a profound need for more information on SOC stocks in the soil and the factors governing their stability and dynamics. Many questions still remain unanswered about the interplay between changes in plant communities and the extent to which changes in aboveground productivity affect the carbon dynamics in soils through changes in its quantity and quality. Therefore, the main aim of this research was to examine the SOC accumulation potential of semi-natural grasslands of different productivities and determine the distribution of SOM fractions over varying soil depth intervals (0–10, 10–20, 20–30 30–50 50–80 and 80 + cm). SOM fractionation was considered as a relative measure of stability to separate SOM associated with clay minerals from SOM of specific light densities less than 2 g cm{sup −3} (size-density fractionation). Two clay-associated fractions (CF1, < 1 μm; and CF2, 1–2 μm) and two light fractions (LF1, < 1.8 g cm{sup −3}; and LF2, 1.8–2.0 g cm{sup −3}) were separated. The stability of these fractions was characterised by their carbon hot water extractability (C{sub HWE}) and stable carbon isotope composition. In the semi-natural grasslands studied, most OC was stored in the top 30 cm, where turnover is rapid. Effects of low productivity grasslands became only significantly apparent when fractional OC contributions of total SOM was considered (CF1 and LF1). In deeper soil depths OC was largely attributed to the CF1 fraction of low productivity grasslands. We suggest that the majority of OM in deeper soil depth intervals is microbially-derived, as evidenced by decreasing C/N ratios and decreasing δ{sup 13}C values. The hot water extraction and natural δ{sup 13}C abundance, employed here allowed the characterisation of SOM stabilisation properties, however how climatic changes affect the fate of OM within different soil depth intervals is still unknown. - Highlights: • OC stocks over varying

  12. IMPACT OF MICROBIOTA ON RESISTANCE TO OCULAR PSEUDOMONAS AERUGINOSA–INDUCED KERATITIS

    DEFF Research Database (Denmark)

    Kugadas, Abirami; Christiansen, Stig Hill; Sankaranarayanan, Saiprasad

    2016-01-01

    The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa...... to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß–dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls...... for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections....

  13. Sugary Kefir Strain Lactobacillus mali APS1 Ameliorated Hepatic Steatosis by Regulation of SIRT-1/Nrf-2 and Gut Microbiota in Rats.

    Science.gov (United States)

    Chen, Yung-Tsung; Lin, Yu-Chun; Lin, Jin-Seng; Yang, Ning-Sun; Chen, Ming-Ju

    2018-04-01

    Non-alcoholic fatty liver disease (NAFLD) is a common disease that is concomitant with obesity, resulting in increased mortality. To date, the efficiency of NAFLD treatment still needs to be improved. Therefore, we aimed to evaluate the effect of Lactobacillus mali APS1, which was isolated from sugary kefir, on hepatic steatosis in rats fed a high-fat diet (HFD). Sprague Dawley rats were fed a control diet, a HFD with saline, and a HFD with APS1 intervention by gavage daily for 12 weeks. The results showed that APS1 significantly reduced body weight and body weight gain in HFD-fed rats. APS1 reduced hepatic lipid accumulation by regulating SIRT-1/PGC-1α/SREBP-1 expression. Moreover, APS1 increased hepatic antioxidant activity by modulating Nrf-2/HO-1 expression. Notably, APS1 manipulated the gut microbiota, resulting in increasing proportions of the phylum Bacteroidetes/Firmicutes and reducing the abundance of specific NAFLD-associated bacteria. These results suggested that APS1 ameliorated hepatic steatosis by modulating lipid metabolism and antioxidant activity via manipulating specific NAFLD-associated gut microbiota in vivo. © 2018 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  14. Natural radionuclides in soils of a forest fragment of Atlantic Forest under ecological restoration process

    International Nuclear Information System (INIS)

    Ferreira, F.S.; Lira, M.B.; Souza, E.M.; França, E.J.

    2017-01-01

    The natural radioactive isotopes come from the radioactive series of the 238 U (Uranium Series), the 235 U (Actinium Series) and the 232 Th (Thorium Series) series, or they can occur in isolation as is the case with the 40 K. Primordial radionuclides such as 40 K, 232 Th, 235 U and 238 U exist since the formation of the earth, being found in appreciable amounts in nature and in some cases may present a mass activity above the acceptable of environmental radiation. The objective of this work was to evaluate the mass activity of 40 K, 226 Ra and 228 Ra in the soils of a fragment of Atlantic Forest under ecological restoration process located in the Municipality of Paulista, PE, Brazil. Soil samples (0 - 15 cm) were collected under the projection of the treetops of the most abundant trees in the region. After drying and comminution, analytical portions of 40 g were transferred to polyethylene petri dishes, sealed and stored for 30 days to ensure secular equilibrium. Radioactivity was quantified by High Resolution Gamma Spectrometry - EGAR. The mean physical activities of 40 K, 226 Ra and 228 Ra were 12, 15 and 20 Bq kg -1 , respectively, for the surface soil of the Parque Natural Municipal Mata do Frio. The values found were lower than those found in mangroves in the state of Pernambuco and those considered normal for soils worldwide

  15. Faecal microbiota transplantation

    DEFF Research Database (Denmark)

    Jørgensen, Simon M D; Hansen, Mette Mejlby; Erikstrup, Christian

    2017-01-01

    BACKGROUND: Faecal microbiota transplantation (FMT) is currently being established as a second-line treatment for recurrent Clostridium difficile infection. FMT is further being considered for other infectious and inflammatory conditions. Safe and reproducible methods for donor screening, laborat......BACKGROUND: Faecal microbiota transplantation (FMT) is currently being established as a second-line treatment for recurrent Clostridium difficile infection. FMT is further being considered for other infectious and inflammatory conditions. Safe and reproducible methods for donor screening...

  16. A novel method for collection of soil-emitted nitric oxide (NO) for natural abundance stable N isotope analysis

    Science.gov (United States)

    Yu, Z.; Elliott, E. M.

    2016-12-01

    The global inventory of NO emissions is poorly constrained with a large portion of the uncertainty attributed to soil NO emissions that result from soil abiotic and microbial processes. While natural abundance stable N isotopes (δ15N) in various soil N-containing compounds have proven to be a robust tracer of soil N cycling, soil δ15N-NO is rarely quantified mainly due to the diffuse nature, low concentrations, and high reactivity of soil-emitted NO. Here, we present the development and application of a dynamic flux chamber system capable of simultaneously measuring soil NO fluxes and collecting NO for δ15N-NO measurements. The system couples a widely used flow-through soil chamber with a NO collection train, in which NO can be converted to NO2 through O3 titration in a Teflon reaction coil, followed by NO2 collection in a 20% triethanolamine (TEA) solution as nitrite and nitrate for δ15N analysis using the denitrifier method. The efficiency of NO-NO2 conversion in the reaction coil and the recovery of NO in the TEA solution were determined experimentally and found to be quantitative (>99%) over a 10 to 749 ppbv NO mixing ratio range. An analytical NO tank (δ15N-NO=71.0±0.4‰) was used to calibrate the method for δ15N-NO analysis. The resulting accuracy and precision (1σ) of the method across various environmental conditions were 1.6‰ and 1.2‰, respectively. Using this new method, controlled laboratory incubations have been conducted to characterize NO emissions induced by rewetting of air-dried surface soil sampled from an urban forest. Pulsed NO emissions, up to 30 times higher than maximum soil NO emissions under steady state, were triggered upon the rewetting and lasted for next 36 hours. While the measured δ15N-NO over the course of the NO pulsing ranged from -52.0‰ and -34.6‰, reinforcing the notion that soil δ15N-NO is lower than those of fossil-fuel combustion sources, a transient δ15N-NO shift was captured immediately after the

  17. Natural radioactivity in sediments and river bank soil of Kallada river of Kerala, South India and associated radiological risk

    International Nuclear Information System (INIS)

    Venunathan, N.; Kaliprasad, C.S.; Narayana, Y.

    2015-01-01

    The paper presents the activity concentrations of 232 Th, 226 Ra and 40 K in the sediments and river bank soil samples collected from the Kallada river environs of coastal Kerala. The radiological risks associated with these radionuclides were calculated. The samples were processed following standard procedure and activity were counted using a high efficiency 5 inch x 5 inch NaI(Tl) detector coupled to GSPEC gamma spectroscopy system. The mean values of measured activities of 232 Th, 226 Ra and 40 K in soil samples were found to be 98.1±04, 60.3±1.1 and 343.4 ± 1.8 Bq.kg -1 respectively, which results in an average absorbed dose rate of 103 nGyh -1 . The corresponding values for sediment samples were found to be 88.0±04, 48.6±0.9 and 423.2±2.03 Bq.kg -1 respectively, with a resulting absorbed dose rate of 95 nGyh -1 . The mean value of radium equivalent activity in soil and sediments were found to be 227.1 Bq.kg -1 and 207.1 Bq.kg -1 respectively, which are within the recommended limit. External and internal hazard indices were also calculated and were found to be 0.61 and 0.78 respectively for soil, and 0.56 and 0.69 respectively for sediments. The Annual Effective Dose equivalents from the soil and sediment matrices in the Kallada river environment were estimated to be 0.13 mSv y -1 and 0.12 mSv y -1 respectively. The measured radioactivity, hazard indices and effective dose received by population were found to be within the recommended limits. The results of the work provide background data on natural radioactive isotopes which are useful in the assessment of human radiation exposure from natural environment. The accumulation of information on natural radiation is of great value for radiation protection. (author)

  18. Classification and Use of Natural and Anthropogenic Soils by Indigenous Communities of the Upper Amazon Region of Colombia

    OpenAIRE

    Peña-Venegas, C.P.; Stomph, T.J.; Verschoor, G.; Echeverri, J.A.; Struik, P.C.

    2016-01-01

    Outsiders often oversimplify Amazon soil use by assuming that abundantly available natural soils are poorly suited to agriculture and that sporadic anthropogenic soils are agriculturally productive. Local perceptions about the potentials and limitations of soils probably differ, but information on these perceptions is scarce. We therefore examined how four indigenous communities in the Middle Caquetá River region in the Colombian Amazon classify and use natural and anthropogenic soils. The st...

  19. Bioremediation (Natural Attenuation and Biostimulation) of Diesel-Oil-Contaminated Soil in an Alpine Glacier Skiing Area

    Science.gov (United States)

    Margesin, R.; Schinner, F.

    2001-01-01

    We investigated the feasibility of bioremediation as a treatment option for a chronically diesel-oil-polluted soil in an alpine glacier area at an altitude of 2,875 m above sea level. To examine the efficiencies of natural attenuation and biostimulation, we used field-incubated lysimeters (mesocosms) with unfertilized and fertilized (N-P-K) soil. For three summer seasons (July 1997 to September 1999), we monitored changes in hydrocarbon concentrations in soil and soil leachate and the accompanying changes in soil microbial counts and activity. A significant reduction in the diesel oil level could be achieved. At the end of the third summer season (after 780 days), the initial level of contamination (2,612 ± 70 μg of hydrocarbons g [dry weight] of soil−1) was reduced by (50 ± 4)% and (70 ± 2)% in the unfertilized and fertilized soil, respectively. Nonetheless, the residual levels of contamination (1,296 ± 110 and 774 ± 52 μg of hydrocarbons g [dry weight] of soil−1 in the unfertilized and fertilized soil, respectively) were still high. Most of the hydrocarbon loss occurred during the first summer season ([42 ± 6]% loss) in the fertilized soil and during the second summer season ([41 ± 4]% loss) in the unfertilized soil. In the fertilized soil, all biological parameters (microbial numbers, soil respiration, catalase and lipase activities) were significantly enhanced and correlated significantly with each other, as well as with the residual hydrocarbon concentration, pointing to the importance of biodegradation. The effect of biostimulation of the indigenous soil microorganisms declined with time. The microbial activities in the unfertilized soil fluctuated around background levels during the whole study. PMID:11425732

  20. MICROBIOTA INTESTINAL Y SU INFLUENCIA EN EL SÍNDROME METABÓLICO

    Directory of Open Access Journals (Sweden)

    Bertha Maggi De Monserrate

    2016-04-01

    Full Text Available La pandemia de la obesidad, diabetes mellitus 2, enfermedades cardiovasculares son la mejor prueba de que el tratamiento para estas patologías han fracasado, hasta ahora se ha intervenido en el factor genético y ambiental; pero surge como un posible tercer factor, la microbiota intestinal que podría estar relacionada con el síndrome metabólico el cual se ha comprobado es causante de las enfermedades crónicas no trasmisibles anteriores citadas. Se realizó una revisión bibliográfica, que permita dilucidar la situación actual de las investigaciones que establecen una relación entre la microbiota intestinal y el Síndrome metabólico. La clave para esta hipótesis fue el paradigma emergente de la esencia natural de las comunidades microbianas complejas y su importancia para la biología de los mamíferos, la salud y las enfermedades humanas. Dos proyectos llevan a cabo la tarea de descifrar la estructura y funcionalidad de la flora intestinal humana, así como su relación con estados de enfermedad, el Proyecto MetaHIT y el Proyecto de la Microbiota Humana(2007, otros autores como Diaman et al (2011, Robles-Alonso, Guarner F. (2013, Devaraj S (2013, Fernández Palomares (2013, entre otros han estudiado directamente síndrome metabólico-obesidad y diabetes mellitus 2 y microbiota intestinal. La determinación de los microrganismos de la microbiota se analiza mediante metagenómica y la secuenciación de genes ARNr 16S en heces. El desequilibrio de la microbiota intestinal (disbiosis afecta la obtención de nutrientes, energía y un sinfín de rutas metabólicas del huésped. El avance de estos estudios han determinando una mejor comprensión del papel de la microbiota intestinal en la obesidad, síndrome metabólico, diabetes mellitus 2 y enfermedades cardiovasculares.

  1. Microbiota-induced obesity requires farnesoid X receptor

    DEFF Research Database (Denmark)

    Parséus, Ava; Sommer, Nina; Sommer, Felix

    2017-01-01

    weight gain and hepatic steatosis in an FXR-dependent manner, and the bile acid profiles and composition of faecal microbiota differed between Fxr-/- and wild-type mice. The obese phenotype in colonised wild-type mice was associated with increased beta-cell mass, increased adipose inflammation, increased...... microbiota and bile acid composition, beta-cell mass, accumulation of macrophages in adipose tissue, liver steatosis, and expression of target genes in adipose tissue and liver. We also transferred the microbiota of wild-type and Fxr-deficient mice to GF wild-type mice. RESULTS: The gut microbiota promoted...... steatosis and expression of genes involved in lipid uptake. By transferring the caecal microbiota from HFD-fed Fxr-/- and wild-type mice into GF mice, we showed that the obesity phenotype was transferable. CONCLUSIONS: Our results indicate that the gut microbiota promotes diet-induced obesity and associated...

  2. Modulation of Gut Microbiota in Pathological States

    DEFF Research Database (Denmark)

    Wang, Yulan; Wang, Baohong; Wu, Junfang

    2017-01-01

    The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT). Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact...... on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic...... fatty liver disease (NAFLD); obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more...

  3. Enterotypes influence temporal changes in gut microbiota

    DEFF Research Database (Denmark)

    Roager, Henrik Munch; Licht, Tine Rask; Kellebjerg Poulsen, Sanne

    The human gut microbiota plays an important role for human health. The question is whether we can modulate the gut microbiota by changing diet. During a 6-month, randomised, controlled dietary intervention, the effect of consuming a diet following the New Nordic Diet recommendations (NND......) as opposed to Average Danish Diet (ADD) on the gut microbiota in humans (n=62) was investigated. Quantitative PCR analysis showed that the microbiota did not change significantly by the intervention. Nevertheless, by stratifying subjects into two enterotypes, distinguished by the Prevotella/Bacteroides ratio...... (P/B), we were able to detect significant changes in the gut microbiota composition resulting from the interventions. Subjects with a high-P/B experienced more pronounced changes in the gut microbiota composition than subjects with a low-P/B. The study is the first to indicate that enterotypes...

  4. Microbiota in fermented feed and swine gut.

    Science.gov (United States)

    Wang, Cheng; Shi, Changyou; Zhang, Yu; Song, Deguang; Lu, Zeqing; Wang, Yizhen

    2018-04-01

    Development of alternatives to antibiotic growth promoters (AGP) used in swine production requires a better understanding of their impacts on the gut microbiota. Supplementing fermented feed (FF) in swine diets as a novel nutritional strategy to reduce the use of AGP and feed price, can positively affect the porcine gut microbiota, thereby improving pig productivities. Previous studies have noted the potential effects of FF on the shift in benefit of the swine microbiota in different regions of the gastrointestinal tract (GIT). The positive influences of FF on swine gut microbiota may be due to the beneficial effects of both pre- and probiotics. Necessarily, some methods should be adopted to properly ferment and evaluate the feed and avoid undesired problems. In this mini-review, we mainly discuss the microbiota in both fermented feed and swine gut and how FF influences swine gut microbiota.

  5. Geological background of the estimation of natural stresses in soil body

    Directory of Open Access Journals (Sweden)

    Chernyshev Sergey Nikolaevich

    2015-01-01

    Full Text Available Initial and boundary conditions are always given for solving the problem of calculating the interaction of tunnels and other underground structures with soil and rocks. The same conditions are set for calculating the surface buildings. These initial data for calculation are divided into three groups: 1 the geometrical shape of the layers of rocks (geological structure; 2 the parameters of the strength and compressibility of rocks; 3 compressive stresses in the array. These data all over the world are set with engineering surveys. In engineering surveys there are good methods of determining the source of the data 1 and 2. But there is no available methodology for determining the natural stress state. Therefore, compressive and tensile stresses are usually determined by mathematical modeling. The calculation of the compressive stresses is done on the basis of the following hypotheses: compressive stresses are created by the weight of rocks; they go down in proportion to the density of rocks; the main normal stress is has a vertical direction; normal stress in horizontal direction is smaller. The value of the horizontal stress is was calculated using Poisson’s ratio. This hypothesis of the nineteenth century was used another 50 years ago, when it was not known exactly about the movement of the continents and when compressive stresses in the earth’s crust have not yet been measured. Today a universal application of this hypothesis is not correct. Now the application of this hypothesis in many cases is not correct. In this research paper an attempt is made to specify the area, in which the above hypothesis can be used. This is done on the basis of current scientific evidence. Abroad this way of calculating tunnels and other underground structures and bases of buildings should be done taking into account the real field of natural stresses. The geological characteristics of the location of the axes of stresses in soil body are based on the study of

  6. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review

    Directory of Open Access Journals (Sweden)

    Dinesh K. Dahiya

    2017-04-01

    Full Text Available In the present world scenario, obesity has almost attained the level of a pandemic and is progressing at a rapid rate. This disease is the mother of all other metabolic disorders, which apart from placing an added financial burden on the concerned patient also has a negative impact on his/her well-being and health in the society. Among the various plausible factors for the development of obesity, the role of gut microbiota is very crucial. In general, the gut of an individual is inhabited by trillions of microbes that play a significant role in host energy homeostasis by their symbiotic interactions. Dysbiosis in gut microbiota causes disequilibrium in energy homeostasis that ultimately leads to obesity. Numerous mechanisms have been reported by which gut microbiota induces obesity in experimental models. However, which microbial community is directly linked to obesity is still unknown due to the complex nature of gut microbiota. Prebiotics and probiotics are the safer and effective dietary substances available, which can therapeutically alter the gut microbiota of the host. In this review, an effort was made to discuss the current mechanisms through which gut microbiota interacts with host energy metabolism in the context of obesity. Further, the therapeutic approaches (prebiotics/probiotics that helped in positively altering the gut microbiota were discussed by taking experimental evidence from animal and human studies. In the closing statement, the challenges and future tasks within the field were discussed.

  7. Gut Microbiota Modulation and Its Relationship with Obesity Using Prebiotic Fibers and Probiotics: A Review.

    Science.gov (United States)

    Dahiya, Dinesh K; Renuka; Puniya, Monica; Shandilya, Umesh K; Dhewa, Tejpal; Kumar, Nikhil; Kumar, Sanjeev; Puniya, Anil K; Shukla, Pratyoosh

    2017-01-01

    In the present world scenario, obesity has almost attained the level of a pandemic and is progressing at a rapid rate. This disease is the mother of all other metabolic disorders, which apart from placing an added financial burden on the concerned patient also has a negative impact on his/her well-being and health in the society. Among the various plausible factors for the development of obesity, the role of gut microbiota is very crucial. In general, the gut of an individual is inhabited by trillions of microbes that play a significant role in host energy homeostasis by their symbiotic interactions. Dysbiosis in gut microbiota causes disequilibrium in energy homeostasis that ultimately leads to obesity. Numerous mechanisms have been reported by which gut microbiota induces obesity in experimental models. However, which microbial community is directly linked to obesity is still unknown due to the complex nature of gut microbiota. Prebiotics and probiotics are the safer and effective dietary substances available, which can therapeutically alter the gut microbiota of the host. In this review, an effort was made to discuss the current mechanisms through which gut microbiota interacts with host energy metabolism in the context of obesity. Further, the therapeutic approaches (prebiotics/probiotics) that helped in positively altering the gut microbiota were discussed by taking experimental evidence from animal and human studies. In the closing statement, the challenges and future tasks within the field were discussed.

  8. Natural radionuclides in mangrove soils from the State of Pernambuco, Brazil

    International Nuclear Information System (INIS)

    Paiva, J.D.S. de; Sousa, E.E.; Farias, E.E.G. de; Carmo, A.M.; Souza, E.M.; Franca, E.J. De

    2016-01-01

    Mangroves are essential for protecting coastal environments and biodiversity; however few studies encompass the distribution of radionuclides in soils from these ecosystems. By applying high resolution gamma-ray spectrometry, natural radionuclides were quantified in soils from the Chico Science Mangrove and Rio Formoso Mangrove (RFM), areas subjected to different human impacts. The activity concentrations of 226 Ra and 228 Ra were quite similar for the mangroves despite the differences found for 40 K. Moreover, no correlation with the environmental impacts on the mangroves was observed, although RFM soil was 40 K-enriched compared to deep sediments from other estuaries in the world. (author)

  9. Gut microbiota modulates alcohol withdrawal-induced anxiety in mice.

    Science.gov (United States)

    Xiao, Hui-Wen; Ge, Chang; Feng, Guo-Xing; Li, Yuan; Luo, Dan; Dong, Jia-Li; Li, Hang; Wang, Haichao; Cui, Ming; Fan, Sai-Jun

    2018-05-01

    Excessive alcohol consumption remains a major public health problem that affects millions of people worldwide. Accumulative experimental evidence has suggested an important involvement of gut microbiota in the modulation of host's immunological and neurological functions. However, it is previously unknown whether enteric microbiota is implicated in the formation of alcohol withdrawal-induced anxiety. Using a murine model of chronic alcoholism and withdrawal, we examined the impact of alcohol consumption on the possible alterations of gut microbiota as well as alcohol withdrawal-induced anxiety and behavior changes. The 16S rRNA sequencing revealed that alcohol consumption did not alter the abundance of bacteria, but markedly changed the composition of gut microbiota. Moreover, the transplantation of enteric microbes from alcohol-fed mice to normal healthy controls remarkably shaped the composition of gut bacteria, and elicited behavioral signs of alcohol withdrawal-induced anxiety. Using quantitative real-time polymerase chain reaction, we further confirmed that the expression of genes implicated in alcohol addiction, BDNF, CRHR1 and OPRM1, was also altered by transplantation of gut microbes from alcohol-exposed donors. Collectively, our findings suggested a possibility that the alterations of gut microbiota composition might contribute to the development of alcohol withdrawal-induced anxiety, and reveal potentially new etiologies for treating alcohol addiction. Copyright © 2018 The Author(s). Published by Elsevier B.V. All rights reserved.

  10. How informative is the mouse for human gut microbiota research?

    Science.gov (United States)

    Nguyen, Thi Loan Anh; Vieira-Silva, Sara; Liston, Adrian; Raes, Jeroen

    2015-01-01

    The microbiota of the human gut is gaining broad attention owing to its association with a wide range of diseases, ranging from metabolic disorders (e.g. obesity and type 2 diabetes) to autoimmune diseases (such as inflammatory bowel disease and type 1 diabetes), cancer and even neurodevelopmental disorders (e.g. autism). Having been increasingly used in biomedical research, mice have become the model of choice for most studies in this emerging field. Mouse models allow perturbations in gut microbiota to be studied in a controlled experimental setup, and thus help in assessing causality of the complex host-microbiota interactions and in developing mechanistic hypotheses. However, pitfalls should be considered when translating gut microbiome research results from mouse models to humans. In this Special Article, we discuss the intrinsic similarities and differences that exist between the two systems, and compare the human and murine core gut microbiota based on a meta-analysis of currently available datasets. Finally, we discuss the external factors that influence the capability of mouse models to recapitulate the gut microbiota shifts associated with human diseases, and investigate which alternative model systems exist for gut microbiota research. © 2015. Published by The Company of Biologists Ltd.

  11. Soil depth profiles and radiological assessment of natural radionuclides in forest ecosystem

    International Nuclear Information System (INIS)

    Manigandan, P.K.; Chandar Shekar, B.

    2017-01-01

    We measured the distribution of three naturally occurring radionuclides, "2"3"8U, "2"3"2Th, and "4"0K, in soil samples collected from a rainforest in the Western Ghats of India. For each surface sample, we calculated average activity concentration, outdoor terrestrial γ dose rate, annual effective dose equivalent (AEDE), and radiation hazard index. The activity concentrations of surface samples were randomly distributed over space, but differed slightly with different soil depths. The concentration of "2"3"2Th and the average terrestrial γ dose rates were slightly higher than the world averages, so slightly high γ radiation appears to be a general characteristic of the Western Ghats. However, all radiological hazard indices were within the limits proposed by the International Commission on Radiological Protection. The results reported here indicate that, except for "2"3"2Th, the naturally occurring radionuclides in the forest soils of the Western Ghats were within the ranges specified by United Nations Scientific Committee on the Effects of Atomic Radiation for undisturbed virgin soils.

  12. Soil depth profiles and radiological assessment of natural radionuclides in forest ecosystem

    Energy Technology Data Exchange (ETDEWEB)

    Manigandan, P.K. [Al Musanna College of Technology, Muscat (Oman); Chandar Shekar, B. [Bharathiar Univ., Coimbatore (India). Kongunadu Arts and Science College

    2017-08-01

    We measured the distribution of three naturally occurring radionuclides, {sup 238}U, {sup 232}Th, and {sup 40}K, in soil samples collected from a rainforest in the Western Ghats of India. For each surface sample, we calculated average activity concentration, outdoor terrestrial γ dose rate, annual effective dose equivalent (AEDE), and radiation hazard index. The activity concentrations of surface samples were randomly distributed over space, but differed slightly with different soil depths. The concentration of {sup 232}Th and the average terrestrial γ dose rates were slightly higher than the world averages, so slightly high γ radiation appears to be a general characteristic of the Western Ghats. However, all radiological hazard indices were within the limits proposed by the International Commission on Radiological Protection. The results reported here indicate that, except for {sup 232}Th, the naturally occurring radionuclides in the forest soils of the Western Ghats were within the ranges specified by United Nations Scientific Committee on the Effects of Atomic Radiation for undisturbed virgin soils.

  13. Natural Radioactivity Measurements in Soil and Phosphate Samples from El-Sabaea, Aswan, Egypt

    International Nuclear Information System (INIS)

    Harb, S.; Abbady, A.; El-Kamel, A.H.; Abd El-Mageed, A.I.; Negm, H.H.

    2009-01-01

    The knowledge on radioactivity content of the various radionuclides in the soil and rocks play an important role in health physics. The main aim of this work is to estimate the concentrations of natural radionuclides 226 Ra, 228 Ra, 228 Th, 232 Th and 40 k in soil and phosphate samples and, impact of the El-Sabaea phosphate factory on the human health. This can be investigated via gamma-ray spectroscopy by 2 x 2 inch NaI(Tl) scintillation detector. The range of 226 Ra, 232 Th and 40k were from 59.7±6.7 to 638.3±31.0, from 9.4±1.4 to 40.6±6.3, from 213.1±9.5 to 798.9±30.6 in Bq/kg respectively

  14. Influence of gut microbiota on neuropsychiatric disorders.

    Science.gov (United States)

    Cenit, María Carmen; Sanz, Yolanda; Codoñer-Franch, Pilar

    2017-08-14

    The last decade has witnessed a growing appreciation of the fundamental role played by an early assembly of a diverse and balanced gut microbiota and its subsequent maintenance for future health of the host. Gut microbiota is currently viewed as a key regulator of a fluent bidirectional dialogue between the gut and the brain (gut-brain axis). A number of preclinical studies have suggested that the microbiota and its genome (microbiome) may play a key role in neurodevelopmental and neurodegenerative disorders. Furthermore, alterations in the gut microbiota composition in humans have also been linked to a variety of neuropsychiatric conditions, including depression, autism and Parkinson's disease. However, it is not yet clear whether these changes in the microbiome are causally related to such diseases or are secondary effects thereof. In this respect, recent studies in animals have indicated that gut microbiota transplantation can transfer a behavioral phenotype, suggesting that the gut microbiota may be a modifiable factor modulating the development or pathogenesis of neuropsychiatric conditions. Further studies are warranted to establish whether or not the findings of preclinical animal experiments can be generalized to humans. Moreover, although different communication routes between the microbiota and brain have been identified, further studies must elucidate all the underlying mechanisms involved. Such research is expected to contribute to the design of strategies to modulate the gut microbiota and its functions with a view to improving mental health, and thus provide opportunities to improve the management of psychiatric diseases. Here, we review the evidence supporting a role of the gut microbiota in neuropsychiatric disorders and the state of the art regarding the mechanisms underlying its contribution to mental illness and health. We also consider the stages of life where the gut microbiota is more susceptible to the effects of environmental stressors, and

  15. Losing weight for a better health: Role for the gut microbiota

    Directory of Open Access Journals (Sweden)

    Maria Carlota Dao

    2016-04-01

    Full Text Available In recent years, there have been several reviews on gut microbiota, obesity and cardiometabolism summarizing interventions that may impact the gut microbiota and have beneficial effects on the host (some examples include [1–3]. In this review we discuss how the gut microbiota changes with weight loss (WL interventions in relation to clinical and dietary parameters. We also evaluate available evidence on the heterogeneity of response to these interventions. Two important questions were generated in this regard: 1 Can response to an intervention be predicted? 2 Could pre-intervention modifications to the gut microbiota optimize WL and metabolic improvement? Finally, we have delineated some recommendations for future research, such as the importance of assessment of diet and other environmental exposures in WL intervention studies, and the need to shift to more integrative approaches of data analysis.

  16. Gut microbiota, low-grade inflammation, and metabolic syndrome.

    Science.gov (United States)

    Chassaing, Benoit; Gewirtz, Andrew T

    2014-01-01

    The intestinal tract is inhabited by a large diverse community of bacteria collectively referred to as the gut microbiota. Alterations in gut microbiota composition are associated with a variety of disease states including obesity, diabetes, and inflammatory bowel disease (IBD). Transplant of microbiota from diseased persons (or mice) to germfree mice transfers some aspects of disease phenotype, indicating that altered microbiota plays a role in disease establishment and manifestation. There are myriad potential mechanisms by which alterations in gut microbiota might promote disease, including increasing energy harvest, production of toxic metabolites, and molecular mimicry of host proteins. However, our research indicates that an overarching mechanism by which an aberrant microbiota negatively impacts health is by driving chronic inflammation. More specifically, we hypothesize that the histopathologically evident gut inflammation that defines IBD is a severe but relatively rare outcome of an altered host-microbiota relationship, while a much more common consequence of such disturbances is "low-grade" inflammation characterized by elevated proinflammatory gene expression that associates with, and may promote, metabolic syndrome. In this context, a variety of chronic inflammatory diseases may stem from inability of the mucosal immune system to properly manage a stable healthy relationship with the gut microbiota. While one's ability to manage their gut microbiota is dictated in part by genetics, it can be markedly influenced by the composition of the microbiota one inherits from their early environment. Moreover, the host-microbiota relationship can be perturbed by instigator bacteria or dietary components, which may prove to play a role in promoting chronic inflammatory disease states.

  17. Gut microbiota and the development of obesity.

    Science.gov (United States)

    Boroni Moreira, A P; Fiche Salles Teixeira, T; do C Gouveia Peluzio, M; de Cássia Gonçalves Alfenas, R

    2012-01-01

    Advances in tools for molecular investigations have allowed deeper understanding of how microbes can influence host physiology. A very interesting field of research that has gained attention recently is the possible role of gut microbiota in the development of obesity and metabolic disorders. The aim of this review is to discuss mechanisms that explain the influence of gut microbiota on host metabolism. The gut microbiota is important for normal physiology of the host. However, differences in their composition may have different impacts on host metabolism. It has been shown that obese and lean subjects present different microbiota composition profile. These differences in microbiota composition may contribute to weight imbalance and impaired metabolism. The evidences from animal models suggest that it is possible that the microbiota of obese subjects has higher capacity to harvest energy from the diet providing substrates that can activate lipogenic pathways. In addition, microorganisms can also influence the activity of lipoprotein lipase interfering in the accumulation of triglycerides in the adipose tissue. The interaction of gut microbiota with the endocannabinoid system provides a route through which intestinal permeability can be altered. Increased intestinal permeability allows the entrance of endotoxins to the circulation, which are related to the induction of inflammation and insulin resistance in mice. The impact of the proposed mechanisms for humans still needs further investigations. However, the fact that gut microbiota can be modulated through dietary components highlights the importance to study how fatty acids, carbohydrates, micronutrients, prebiotics, and probiotics can influence gut microbiota composition and the management of obesity. Gut microbiota seems to be an important and promising target in the prevention and treatment of obesity and its related metabolic disturbances in future studies and in clinical practice.

  18. Hanford Site background: Part 1, Soil background for nonradioactive analytes

    International Nuclear Information System (INIS)

    1993-04-01

    The determination of soil background is one of the most important activities supporting environmental restoration and waste management on the Hanford Site. Background compositions serve as the basis for identifying soil contamination, and also as a baseline in risk assessment processes used to determine soil cleanup and treatment levels. These uses of soil background require an understanding of the extent to which analytes of concern occur naturally in the soils. This report documents the results of sampling and analysis activities designed to characterize the composition of soil background at the Hanford Site, and to evaluate the feasibility for use as Sitewide background. The compositions of naturally occurring soils in the vadose Zone have been-determined for-nonradioactive inorganic and organic analytes and related physical properties. These results confirm that a Sitewide approach to the characterization of soil background is technically sound and is a viable alternative to the determination and use of numerous local or area backgrounds that yield inconsistent definitions of contamination. Sitewide soil background consists of several types of data and is appropriate for use in identifying contamination in all soils in the vadose zone on the Hanford Site. The natural concentrations of nearly every inorganic analyte extend to levels that exceed calculated health-based cleanup limits. The levels of most inorganic analytes, however, are well below these health-based limits. The highest measured background concentrations occur in three volumetrically minor soil types, the most important of which are topsoils adjacent to the Columbia River that are rich in organic carbon. No organic analyte levels above detection were found in any of the soil samples

  19. Lymphoma Caused by Intestinal Microbiota

    Directory of Open Access Journals (Sweden)

    Mitsuko L. Yamamoto

    2014-09-01

    Full Text Available The intestinal microbiota and gut immune system must constantly communicate to maintain a balance between tolerance and activation: on the one hand, our immune system should protect us from pathogenic microbes and on the other hand, most of the millions of microbes in and on our body are innocuous symbionts and some can even be beneficial. Since there is such a close interaction between the immune system and the intestinal microbiota, it is not surprising that some lymphomas such as mucosal-associated lymphoid tissue (MALT lymphoma have been shown to be caused by the presence of certain bacteria. Animal models played an important role in establishing causation and mechanism of bacteria-induced MALT lymphoma. In this review we discuss different ways that animal models have been applied to establish a link between the gut microbiota and lymphoma and how animal models have helped to elucidate mechanisms of microbiota-induced lymphoma. While there are not a plethora of studies demonstrating a connection between microbiota and lymphoma development, we believe that animal models are a system which can be exploited in the future to enhance our understanding of causation and improve prognosis and treatment of lymphoma.

  20. Gut Microbiota: Modulate its Complexity to Restore the Balance

    Directory of Open Access Journals (Sweden)

    Fermín Mearin

    2015-12-01

    Full Text Available The importance of the gut microbiota to health is becoming more widely appreciated. The range of commensal microorganisms in healthy individuals and in patients with a variety of digestive diseases is under active investigation, and evidence is accumulating to suggest that both the diversity and balance of bacterial species are important for health. Disturbance of the balance of microorganisms – dysbiosis – is associated with obesity and a variety of diseases. Restoring the balance by modulating the microbiota through diet, probiotics, or drugs is now being developed as a potential treatment for digestive diseases. Rifaximin has been shown to increase levels of beneficial bacterial species without perturbing the overall composition of the microbiota in patients with a variety of digestive diseases, making it a ‘eubiotic’ rather than an antibiotic. Rifaximin has demonstrated clinical benefit in the treatment of symptomatic uncomplicated diverticular disease, where changes in the colonic microbiota contribute to the pathogenesis of this disease. Modulating the microbiota is also a promising treatment for some types of irritable bowel syndrome (IBS that have been linked to an overgrowth of coliform and Aeromonas species in the small intestine. Rifaximin has demonstrated efficacy in relieving symptoms and reducing relapses in diarrhoeal IBS in the TARGET-1, 2, and 3 trials, without reducing microbial diversity or increasing antimicrobial resistance. While many aspects of the balance of gut microbiota in disease are not yet fully understood, the new understanding of rifaximin as a modulator of gut microbiota may open up new treatment options in digestive disease.

  1. Omics approaches to study host-microbiota interactions

    NARCIS (Netherlands)

    Baarlen, van P.; Kleerebezem, M.; Wells, J.

    2013-01-01

    The intestinal microbiota has profound effects on our physiology and immune system and disturbances in the equilibrium between microbiota and host have been observed in many disorders. Here we discuss the possibilities to further our understanding of how microbiota impacts on human health and

  2. High-Fat Diet Induces Dysbiosis of Gastric Microbiota Prior to Gut Microbiota in Association With Metabolic Disorders in Mice.

    Science.gov (United States)

    He, Cong; Cheng, Dandan; Peng, Chao; Li, Yanshu; Zhu, Yin; Lu, Nonghua

    2018-01-01

    Accumulating evidence suggests that high-fat diet (HFD) induced metabolic disorders are associated with dysbiosis of gut microbiota. However, no study has explored the effect of HFD on the gastric microbiota. This study established the HFD animal model to determine the impact of HFD on the gastric microbiota and its relationship with the alterations of gut microbiota. A total of 40 male C57BL/6 mice were randomly allocated to receive a standard chow diet (CD) or HFD for 12 weeks (12CD group and 12HFD group) and 24 weeks (24CD group and 24HFD group) ( n = 10 mice per group). Body weight and length were measured and Lee's index was calculated at different time points. The insulin sensitivity and serum levels of metabolic parameters including blood glucose, insulin and lipid were also evaluated. The gastric mucosa and fecal microbiota of mice were characterized by 16S rRNA gene sequencing. The body weight was much heavier and the Lee's index was higher in 24HFD group than 12HFD. The insulin resistance and serum level of lipid were increased in 24HFD group compared to 12HFD, indicating the aggravation of metabolic disorders as HFD went on. 16S rRNA gene sequencing showed dysbiosis of gastric microbiota with decreased community diversity while no significant alteration in gut microbiota after 12 weeks of HFD. The phyla Firmicutes and Proteobacteria tended to increase whereas Bacteroidetes and Verrucomicrobia decrease in the gastric microbiota of 12HFD mice compared to 12CD. Moreover, a remarkable reduction of bacteria especially Akkermansia muciniphila , which has beneficial effects on host metabolism, was observed firstly in the stomach of 12HFD group and then in the gut of 24HFD group, indicating the earlier alterations of microbiota in stomach than gut after HFD. We also found structural segregation of microbiota in the stomach as well as gut between 12HFD and 24HFD group, which is accompanied by the aggregation of metabolic disorders. These data suggest that HFD

  3. Host-microbiota interplay in mediating immune disorders.

    Science.gov (United States)

    Felix, Krysta M; Tahsin, Shekha; Wu, Hsin-Jung Joyce

    2018-04-01

    To maintain health, the immune system must maintain a delicate balance between eliminating invading pathogens and avoiding immune disorders such as autoimmunity and allergies. The gut microbiota provide essential health benefits to the host, particularly by regulating immune homeostasis. Dysbiosis, an alteration and imbalance of the gut microbiota, is associated with the development of several autoimmune diseases in both mice and humans. In this review, we discuss recent advances in understanding how certain factors, such as age and gender, affect the gut microbiota, which in turn can influence the development of autoimmune diseases. The age factor in microbiota-dependent immune disorders indicates a window of opportunity for future diagnostic and therapeutic approaches. We also discuss unique commensal bacteria with strong immunomodulatory activity. Finally, we provide an overview of the potential molecular mechanisms whereby gut microbiota induce autoimmunity, as well as the evidence that gut microbiota trigger extraintestinal diseases by inducing the migration of gut-derived immune cells. Elucidating the interaction of gut microbiota and the host immune system will help us understand the pathogenesis of immune disorders, and provide us with new foundations to develop novel immuno- or microbe-targeted therapies. © 2017 New York Academy of Sciences.

  4. Mobility of radionuclides and trace elements in soil from legacy NORM and undisturbed naturally 232Th-rich sites.

    Science.gov (United States)

    Mrdakovic Popic, Jelena; Meland, Sondre; Salbu, Brit; Skipperud, Lindis

    2014-05-01

    Investigation of radionuclides (232Th and 238U) and trace elements (Cr, As and Pb) in soil from two legacy NORM (former mining sites) and one undisturbed naturally 232Th-rich site was conducted as a part of the ongoing environmental impact assessment in the Fen Complex area (Norway). The major objectives were to determine the radionuclide and trace element distribution and mobility in soils as well as to analyze possible differences between legacy NORM and surrounding undisturbed naturally 232Th-rich soils. Inhomogeneous soil distribution of radionuclides and trace elements was observed for each of the investigated sites. The concentration of 232Th was high (up to 1685 mg kg(-1), i.e., ∼7000 Bq kg(-1)) and exceeded the screening value for the radioactive waste material in Norway (1 Bq g(-1)). Based on the sequential extraction results, the majority of 232Th and trace elements were rather inert, irreversibly bound to soil. Uranium was found to be potentially more mobile, as it was associated with pH-sensitive soil phases, redox-sensitive amorphous soil phases and soil organic compounds. Comparison of the sequential extraction datasets from the three investigated sites revealed increased mobility of all analyzed elements at the legacy NORM sites in comparison with the undisturbed 232Th-rich site. Similarly, the distribution coefficients Kd (232Th) and Kd (238U) suggested elevated dissolution, mobility and transportation at the legacy NORM sites, especially at the decommissioned Nb-mining site (346 and 100 L kg(-1) for 232Th and 238U, respectively), while the higher sorption of radionuclides was demonstrated at the undisturbed 232Th-rich site (10,672 and 506 L kg(-1) for 232Th and 238U, respectively). In general, although the concentration ranges of radionuclides and trace elements were similarly wide both at the legacy NORM and at the undisturbed 232Th-rich sites, the results of soil sequential extractions together with Kd values supported the expected differences

  5. Phosphorus cycling in natural and low input soil/plant systems: the role of soil microorganisms

    Science.gov (United States)

    Tamburini, F.; Bünemann, E. K.; Oberson, A.; Bernasconi, S. M.; Frossard, E.

    2011-12-01

    was faster in the P-free treatment. Laboratory incubation also showed a more rapid P uptake by microbial biomass in the NK than in the NPK treatment (37% and 6% of added 33P recovered in microbial P after 100 minutes in NK and NPK, respectively). The seasonal microbial P flux in both treatments was 1.5-4 times larger than the annual plant P uptake. In field studies carried out on highly weathered low P soils in Colombia, the comparison between grass-legume and grass-only pastures showed that the presence of legumes had an impact on the overall biological activity. In fact, microbial biomass and phosphatase activity were significantly larger in grass-legume pastures than in the legume-free experiments. Larger release of Pi from the organic P pool improved P availability to plants and pointed at a modified C:N:P stoichiometry along pathways of the nutrient cycle in the soil/plant system. All these data are evidence of a highly dynamic microbial P pool, which controls Pi concentration and, hence, availability for plants in natural and low input agricultural ecosystems.

  6. Linking Microbiota to Human Diseases

    DEFF Research Database (Denmark)

    Wu, Hao; Tremaroli, Valentina; Bäckhed, F

    2015-01-01

    The human gut microbiota encompasses a densely populated ecosystem that provides essential functions for host development, immune maturation, and metabolism. Alterations to the gut microbiota have been observed in numerous diseases, including human metabolic diseases such as obesity, type 2...

  7. Natural nanoparticles in soils and their role in organic-mineral interactions and cooloid-facilitated transport

    NARCIS (Netherlands)

    Regelink, I.C.

    2014-01-01

    Mineral nanoparticles are naturally present in the soil and play an important role in several soil processes. This thesis uses a combination of novel analytical techniques, among which Field-Flow-Fractionation, to study nanoparticles in soil and water samples. The results show that nanoparticles

  8. Nitrogen-15 natural abundance of different soil N pools as a tool for assessing N transformation processes in alpine soils

    Science.gov (United States)

    Makarov, Mikhail; Malysheva, Tatiana; Tiunov, Alexei; Kadulin, Maxim; Maslov, Mikhail

    2017-04-01

    Nitrogen availability, net N mineralization, nitrification and 15N natural abundance of total soil N and small soil N pools (N-NH4+, N-NO3-, DON and microbial biomass N) were studied in a toposequence of alpine ecosystems in the Northern Caucasus. The toposequence was represented by (1) low productive alpine lichen heath (ALH) of the wind-exposed ridge and upper slope; (2) more productive Festuca varia grassland (FG) of the middle slope; (3) most productive Geranium gymnocaulon/Hedysarum caucasicum meadow (GHM) of the lower slope and (4) low productive snow bed community (SBC) of the slope bottom. Nitrogen transformation in the alpine soils produces distinct N pools with different 15N enrichment: DON/microbial biomass N > total N > N-NH4+ > N-NO3-. Grassland and meadow soils of the middle part of the toposequence are characterized by higher nitrogen transformation activities and higher δ15 values of total N and N-NH4+. Field incubation of alpine soils increased δ15N of N-NH4+ from -2.6 - +2.0‰ to +6.1 - +15.7‰. The N-NO3-produced in the incubation experiment had extremely low (negative) δ15N values (up to -14‰). We found a positive correlation between δ15N of different soil N pools (total N, N-NH4+ and N-NO3-) and net N mineralization and nitrification. Nitrification controls the formation of 15N enriched N-NH4+ pool while N mineralization probably had an important role in regulation of 15N enrichment of DON pool in alpine soils. Overall, our results support the hypothesis that 15N is more enriched in N-rich and more depleted in N-poor ecosystems. We conclude that δ15N values of different soil N pools could be a good indicator of microbial N transformation in alpine soils of the Northern Caucasus. Acknowledgement: This study was supported by Russian Science Foundation (16-14-10208).

  9. Changes in microbiological composition of soils and soil contamination with drug-resistant bacteria caused by the use of sewage sludge in nature

    Science.gov (United States)

    Stanczyk-Mazanek, Ewa; Pasonl, Lukasz; Kepa, Urszula

    2017-11-01

    This study evaluated the effect of the use of sewage sludge in nature on biological soil parameters. The study was conducted is field experiment environment (small beds). The sandy soil was fertilized with sewage sludge dried naturally (in heaps) and in solar drying facilities. The fertilization was based on the doses of sewage sludge and manure with the amounts of 10, 20, 30 and 40 Mg/ha. The experiment duration was 3 years. The sanitary status of the soils fertilized with the sludge and manure was evaluated (coliform index, Clostridium perfrinens). Furthermore, the content of pathogenic bacteria was evaluated, with determination of its resistance to first-line antibiotics.

  10. Comparison of Polycyclic Aromatic Hydrocarbon (PAHs concentrations in urban and natural forest soils in the Atlantic Forest (São Paulo State

    Directory of Open Access Journals (Sweden)

    Christine Bourotte

    2009-03-01

    Full Text Available Studies about pollution by Polycyclic Aromatic Hydrocarbons (PAHs in tropical soils and Brazil are scarce. A study was performed to examine the PAHs composition, concentrations and sources in red-yellow Oxisols of remnant Atlantic Forest of the São Paulo State. Sampling areas were located in an urban site (PEFI and in a natural one (CUNHA.The granulometric composition, pH, organic matter content and mineralogical composition were determined in samples of superficial soils. The sum of PAHs (ΣHPAs was 4.5 times higher in the urban area than in the natural one. Acenaphthylene, acenaphthene, fluorene, phenanthrene and fluoranthene have been detected in the soils of both areas and presented similar concentrations. Acenaphthene and fluorene were the most abundant compounds. Pyrene was twice more abundant in the soils of natural area (15 µg.kg-1 than of the urban area and fluoranthene was the dominant compound (203 µg.kg-1 in urban area (6.8 times higher than in the natural area. Some compounds of higher molecular weight, which are tracers of vehicular emissions showed significant concentrations in urban soils. Pyrene represented 79% of ΣPAHs whereas it has not been detected in natural soils. The results showed that forest soils in urban area are characterized by the accumulation of high molecular weight compounds of industrial and vehicular origin.Estudos sobre a poluição por Hidrocarbonetos Policíclicos Aromáticos (HPAs são escassos em solos tropicais e no Brasil. Um estudo foi realizado para examinar a composição, as concentrações e fontes de HPAs encontrados em Latossolos vermelho-amarelo (Oxissolos, remanescentes de Mata Atlântica no Estado de São Paulo. As áreas de estudos localizaram-se em um sítio urbano (PEFI e um natural (CUNHA. A composição granulométrica, pH, teor de matéria orgânica e composição mineralógica foram determinados em amostras de solo superficial. A soma dos HPAs analisados (ΣHPAs foi 4,5 vezes mais

  11. Soil Erodibility under Natural Rainfall Conditions as the K Factor of the Universal Soil Loss Equation and Application of the Nomograph for a Subtropical Ultisol

    Directory of Open Access Journals (Sweden)

    Elemar Antonino Cassol

    2018-05-01

    Full Text Available ABSTRACT: Erodibility represents the intrinsic susceptibility of the soil to the erosion process, represented by the K factor in the Universal Soil Loss Equation (USLE. In Brazil, there are few field experiments determined with a series larger than ten years of data, which are the most reliable for quantifying the K factor. The aim of this study was to determine the K factor of the USLE by the direct method, relating soil losses determined in the field under standard conditions to erosivity of rains, and by the analytic method, applying the Wischmeier nomograph. The data on soil loss by water erosion were obtained in a field experiment under natural rainfall conditions from 1976 to 1989 in an Ultisol at the Agronomic Experimental Station in Eldorado do Sul, RS, Brazil. The value of the K factor by the direct method was 0.0338 Mg ha h ha-1 MJ-1 mm-1, which is high, showing considerable susceptibility of the soil to erosion. From the analytical method, the K factor obtained was 0.0325 Mg ha h ha-1 MJ-1 mm-1, a value very close to that determined experimentally. Thus, the Wischmeier nomograph proved to be valid for determination of the K factor of the Ultisol under study. This method proved to be valid for this type of soil. These results can be used for calibration models based on the USLE.

  12. Pore structure of natural and regenerated soil aggregates

    DEFF Research Database (Denmark)

    Naveed, Muhammad; Arthur, Emmanuel; de Jonge, Lis Wollesen

    2014-01-01

    Quantitative characterization of aggregate pore structure can reveal the evolution of aggregates under different land use and management practices and their effects on soil processes and functions. Advances in X-ray Computed Tomography (CT) provide powerful means to conduct such characterization....... This study examined aggregate pore structure of three differently managed same textured Danish soils (mixed forage cropping, MFC; mixed cash cropping, MCC; cereal cash cropping, CCC) for (i) natural aggregates, and (ii) aggregates regenerated after 20 months of incubation. In total, 27 aggregates (8-16 mm...... pore diameter of 200 and 170 Hm, respectively. Pore shape analysis indicated that CCC and MFC aggregates had an abundance of rounded and elongated pores, respectively, and those of MCC were in-between CCC and MFC. Aggregate pore structure development in the lysimeters was nearly similar irrespective...

  13. Estimating soil erosion on hiking trails in the Sierra Mariola Natural Park in southern Spain

    Science.gov (United States)

    Magdalena Warter, Maria; Peeters, Mattias; Kuppen, Emiel; Blok, Kas; Dilly, Lina

    2017-04-01

    Natural parks and protected natural areas provide excellent recreational opportunities for outdoor activities through the richness of the natural environment and the abundance of walking trails. Hiking, mountain biking and running have rapidly gained popularity over recent years increasing concerns about the erosion and degradation of hiking trails caused by (over)use. This is also the case in the Sierra Mariola Natural Park in southeast Spain, which is a popular destination for tourists due to its diverse fauna and flora. The increasing number of tourists together with the negative impacts of climate change necessitates a better understanding of the key soil erosion processes impacting hiking trails. There are 4 scenic trail routes in the Natural Park amounting to 21 km plus an additional network of unofficial trails. Apart from the heavy touristic traffic on the trails there are large trail running events with up to 1000 participants becoming increasingly popular, however local park authorities have voiced concerns about the impacts of these activities on the trails. Despite the popularity of walking trails around the world, there is a paucity of research exploring soil erosion from these features. Therefore, the aims of this study are: 1) to ascertain the amount of erosion that occurs on trails in the Sierra Mariola Natural Park, and 2) determine the key factors that influence soil erosion. Some 100 km of trails were evaluated (both official and unmarked trails), with route segments ranging between 2 and 10 km. A trail classification system was developed to group trail segments based on their surface characteristics (bedrock, gravel, mixed sediment, soil or man-made) and specific erosion features (rills, ditch-shaped, tilted). For each class, the average erosion rate was calculated which ranged from 262 t/ha for soil-based trails to 2006 t/ha for heavily eroded, ditch-shaped trails. The spatial distribution of the different erosion rates and trail types were

  14. Effects of Formica ants on soil fauna-results from a short-term exclusion and a long-term natural experiment.

    Science.gov (United States)

    Lenoir, Lisette; Bengtsson, Jan; Persson, Tryggve

    2003-02-01

    Wood ants (Formica spp.) were hypothesised to affect the composition and greatly reduce the abundance of large-sized soil fauna by predation. This was tested in two ways. Firstly, a 4-year-long experimental study was carried out in a mixed forest. Five ant-free 1.3-m(2) plots were created by fenced exclosures within an ant territory. Five nearby plots had fences with entrances for the ants. In addition, five non-fenced control plots were selected. Soil fauna (e.g. Coleoptera, Diptera larvae, Collembola and Araneae) was sampled during the summers of 1997-2000. The soil fauna was affected by the exclosures but there was no detectable effect of ants on the soil fauna. Secondly, soil fauna was studied within a large-scale natural experiment in which the long-term (30 years) effects of red wood ants could be assessed inside and outside ant territories. This long-term natural experiment revealed no significant effects of ants on the abundance or composition of soil fauna. The results from the two studies indicate that the effects of wood ants on soil fauna are fairly small. The hypothesis that wood ants are key-stone predators on soil fauna could, thus, not be supported.

  15. Gut Microbiota in Cardiovascular Health and Disease

    Science.gov (United States)

    Tang, W.H. Wilson; Kitai, Takeshi; Hazen, Stanley L

    2017-01-01

    Significant interest in recent years has focused on gut microbiota-host interaction because accumulating evidence has revealed that intestinal microbiota play an important role in human health and disease, including cardiovascular diseases. Changes in the composition of gut microbiota associated with disease, referred to as dysbiosis, have been linked to pathologies such as atherosclerosis, hypertension, heart failure, chronic kidney disease, obesity and type 2 diabetes mellitus. In addition to alterations in gut microbiota composition, the metabolic potential of gut microbiota has been identified as a contributing factor in the development of diseases. Recent studies revealed that gut microbiota can elicit a variety of effects on the host. Indeed, the gut microbiome functions like an endocrine organ, generating bioactive metabolites, that can impact host physiology. Microbiota interact with the host through a number of pathways, including the trimethylamine (TMA)/ trimethylamine N-oxide (TMAO) pathway, short-chain fatty acids pathway, and primary and secondary bile acids pathways. In addition to these “metabolism dependent” pathways, metabolism independent processes are suggested to also potentially contribute to CVD pathogenesis. For example, heart failure associated splanchnic circulation congestion, bowel wall edema and impaired intestinal barrier function are thought to result in bacterial translocation, the presence of bacterial products in the systemic circulation and heightened inflammatory state. These are believed to also contribute to further progression of heart failure and atherosclerosis. The purpose of the current review is to highlight the complex interplay between microbiota, their metabolites and the development and progression of cardiovascular diseases. We will also discuss the roles of gut microbiota in normal physiology and the potential of modulating intestinal microbial inhabitants as novel therapeutic targets. PMID:28360349

  16. Calculation of the effective dose from natural radioactivity in soil using MCNP code.

    Science.gov (United States)

    Krstic, D; Nikezic, D

    2010-01-01

    Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this work. Calculations have been done for the most common natural radionuclides in soil (238)U, (232)Th series and (40)K. A ORNL human phantoms and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs. The effective dose was calculated according to ICRP 74 recommendations. Conversion factors of effective dose per air kerma were determined. Results obtained here were compared with other authors. Copyright 2009 Elsevier Ltd. All rights reserved.

  17. Prebiotics and gut microbiota in chickens.

    Science.gov (United States)

    Pourabedin, Mohsen; Zhao, Xin

    2015-08-01

    Prebiotics are non-digestible feed ingredients that are metabolized by specific members of intestinal microbiota and provide health benefits for the host. Fermentable oligosaccharides are best known prebiotics that have received increasing attention in poultry production. They act through diverse mechanisms, such as providing nutrients, preventing pathogen adhesion to host cells, interacting with host immune systems and affecting gut morphological structure, all presumably through modulation of intestinal microbiota. Currently, fructooligosaccharides, inulin and mannanoligosaccharides have shown promising results while other prebiotic candidates such as xylooligosaccharides are still at an early development stage. Despite a growing body of evidence reporting health benefits of prebiotics in chickens, very limited studies have been conducted to directly link health improvements to prebiotic-dependent changes in the gut microbiota. This article visits the current knowledge of the chicken gastrointestinal microbiota and reviews most recent publications related to the roles played by prebiotics in modulation of the gut microbiota and immune functions. Progress in this field will help us better understand how the gut microbiota contributes to poultry health and productivity, and support the development of new prebiotic products as an alternative to in-feed antibiotics. © FEMS 2015. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  18. Radiological impact due to natural radionuclides (U and Th-isotopes) in soils from Salamanca, Mexico

    Energy Technology Data Exchange (ETDEWEB)

    Mandujano G, C. D.; Sosa, M. [Universidad de Guanajuato, Division de Ciencias e Ingenierias, Loma del Bosque 103, Col. Lomas del Campestre, 37150 Leon, Guanajuato (Mexico); Mantero, J.; Manjon, G.; Garcia T, R. [Universidad de Sevilla, Grupo en Fisica Nuclear Aplicada, Av. Reina Mercedes No. 2, 41012 Sevilla (Spain); Costilla, R., E-mail: cmandujano@fisica.ugto.mx [Universidad de Guanajuato, Division de Ciencias de la Vida, Departamento de Ciencias Ambientales, Ex-Hacienda El Copal Km 9 Irapuato-Silao, 36500 Irapuato, Guanajuato (Mexico)

    2015-10-15

    Full text: Activity concentrations of U ({sup 238}U, {sup 234}U) and Th ({sup 232}Th, {sup 230}Th) radionuclides in samples of superficial urban soils surrounding an industrial complex in Salamanca, Mexico have been determined. Levels of naturally occurring radionuclides (Norm) in the environment may be affected due to the presence of different industrial activities in this zone, representing a potential radiological risk for the population which should be evaluated. Alpha-particle Spectrometry with Pips detectors has been used for the radiometric characterization. A well established radiochemical procedure was used for the isolation of the radionuclides of interest. Alkali fusion for sample digestion, liquid-liquid extraction with Tbp (tri-butyl-phosphate) for U and Th isolation and electrodeposition in stainless steel dishes for measurement conditioning has been used. The results cover the ranges of 10-42, 12-60, 12-52 and 11-51 Bq·kg{sup -1} for {sup 238}U, {sup 234}U, {sup 230}Th, and {sup 232}Th respectively, being not observed any clear anthropogenic increments in relation with the values normally found in unaffected soils. Although there is disequilibrium between U isotopes and {sup 230}Th in some soil samples, it can be attributed to natural processes. The radiological impact of the industrial activities in the surrounding soils can be then evaluated as very low. Hence, from the Radiological Protection point of view, the soils studied do not represent a radiological risk for the health of the population. (Author)

  19. Natural radioactivity and radon exhalation rate of soil in southern Egypt

    International Nuclear Information System (INIS)

    Sroor, A.; El-Bahi, S.M.; Ahmed, F.; Abdel-Haleem, A.S.

    2001-01-01

    The level of natural radioactivity in soil of 30 mining samples collected from six locations in southern Egypt was measured. Concentrations of radionuclides in samples were determined by γ-ray spectrometer using HPGe detector with a specially designed shield. The obtained results of uranium and thorium series as well as potassium (K-40) are discussed. The present data were compared with data obtained from different areas in Egypt. Also, a solid state nuclear track detector SSNTD (Cr-39) was used to measure the radon concentration as well as exhalation rate for these samples. The radon concentrations were found to vary from 1.54 to 5.37 Bq/kg. The exhalation rates were found to vary from 338.81 to 1426.47 Bq/m 2 d. The values of the radon exhalation rate are found to correspond with the uranium concentration values measured by the germanium detector in the corresponding soil samples

  20. Rectal swabs for analysis of the intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Andries E Budding

    Full Text Available The composition of the gut microbiota is associated with various disease states, most notably inflammatory bowel disease, obesity and malnutrition. This underlines that analysis of intestinal microbiota is potentially an interesting target for clinical diagnostics. Currently, the most commonly used sample types are feces and mucosal biopsy specimens. Because sampling method, storage and processing of samples impact microbiota analysis, each sample type has its own limitations. An ideal sample type for use in routine diagnostics should be easy to obtain in a standardized fashion without perturbation of the microbiota. Rectal swabs may satisfy these criteria, but little is known about microbiota analysis on these sample types. In this study we investigated the characteristics and applicability of rectal swabs for gut microbiota profiling in a clinical routine setting in patients presenting with various gastro-intestinal disorders. We found that rectal swabs appeared to be a convenient means of sampling the human gut microbiota. Swabs can be performed on demand, whenever a patient presents; swab-derived microbiota profiles are reproducible, whether they are gathered at home by patients or by medical professionals in an outpatient setting and may be ideally suited for clinical diagnostics and large-scale studies.

  1. Assessment of natural radioactivity and radiation hazard indices in different soil samples from Assiut governorate

    International Nuclear Information System (INIS)

    Issa, S.A.M.; Uosif, M.A.M.; Hefni, M.A.; El-Kamel, A.H; Nesreen, A.A.

    2013-01-01

    Natural radioactive materials under certain conditions can reach hazard radiological levels. So, it becomes necessary to study the natural radioactivity levels in soil to assess the dose for the population in order to know the health risks and to have a baseline for future changes in the environmental radioactivity due to human activities. Determine the radioactivity concentration of 226 Ra, 232 Th and 40 K in surface and 20 cm soil samples collected beside Assiut fertilizer plant, Assiut government in south Upper Egypt, to assess their contribution to the external dose exposure. The contents of natural radionuclides 226 Ra, 232 Th and 40 K were measured in investigated samples by using gamma spectrometry [NaI (Tl) 3”x 3”]. The total absorbed dose rate, annual effective dose rate, radium equivalent, excess lifetime cancer risk and the external hazard index, which resulted from the natural radionuclides in soil, were calculated

  2. Pediocin PA-1 and a pediocin producing Lactobacillus plantarum strain do not change the HMA rat microbiota

    DEFF Research Database (Denmark)

    Bernbom, Nete; Jelle, N.B.; Brogren, C.-H.

    2009-01-01

    microbiota was in all treatments dominated by lactic acid bacteria and coliforms and no changes in the rat commensal microbiota were detected after ingestion of either of the two L plantarum strains as determined by both culturable methods and molecular methods (DGGE). Both strains were detected...

  3. Drosophila melanogaster as a High-Throughput Model for Host–Microbiota Interactions

    Directory of Open Access Journals (Sweden)

    Gregor Reid

    2017-04-01

    Full Text Available Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host–microbial interactions. Drosophila melanogaster (fruit flies can be used as a high throughput in vivo screening model of host–microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host–microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.

  4. Drosophila melanogaster as a High-Throughput Model for Host-Microbiota Interactions.

    Science.gov (United States)

    Trinder, Mark; Daisley, Brendan A; Dube, Josh S; Reid, Gregor

    2017-01-01

    Microbiota research often assumes that differences in abundance and identity of microorganisms have unique influences on host physiology. To test this concept mechanistically, germ-free mice are colonized with microbial communities to assess causation. Due to the cost, infrastructure challenges, and time-consuming nature of germ-free mouse models, an alternative approach is needed to investigate host-microbial interactions. Drosophila melanogaster (fruit flies) can be used as a high throughput in vivo screening model of host-microbiome interactions as they are affordable, convenient, and replicable. D. melanogaster were essential in discovering components of the innate immune response to pathogens. However, axenic D. melanogaster can easily be generated for microbiome studies without the need for ethical considerations. The simplified microbiota structure enables researchers to evaluate permutations of how each microbial species within the microbiota contribute to host phenotypes of interest. This enables the possibility of thorough strain-level analysis of host and microbial properties relevant to physiological outcomes. Moreover, a wide range of mutant D. melanogaster strains can be affordably obtained from public stock centers. Given this, D. melanogaster can be used to identify candidate mechanisms of host-microbe symbioses relevant to pathogen exclusion, innate immunity modulation, diet, xenobiotics, and probiotic/prebiotic properties in a high throughput manner. This perspective comments on the most promising areas of microbiota research that could immediately benefit from using the D. melanogaster model.

  5. Pb concentrations and isotope ratios of soil O and C horizons in Nord-Trøndelag, central Norway: Anthropogenic or natural sources?

    International Nuclear Information System (INIS)

    Reimann, C.; Fabian, K.; Flem, B.; Schilling, J.; Roberts, D.; Englmaier, P.

    2016-01-01

    Soil O and C horizon samples (N = 752) were collected at a sample density of 1 site/36 km"2 in Nord-Trøndelag and parts of Sør-Trøndelag (c. 25,000 km"2), and analysed for Pb and three of the four naturally occurring Pb isotopes ("2"0"6Pb, "2"0"7Pb and "2"0"8Pb) in a HNO_3/HCl extraction. Soil O and C horizons are decoupled in terms of both Pb concentrations and Pb isotope ratios. In the soil C horizon the Grong-Olden Culmination, a continuous exposure of the Precambrian crystalline basement across the general grain of the Caledonian orogen, is marked by a distinct "2"0"6Pb/"2"0"7Pb isotope ratio anomaly. No clear regional or even local patterns are detected when mapping the Pb isotope ratios in the soil O horizon samples. Variation in the isotope ratios declines significantly from the soil C to the O horizon. On average, Pb concentrations in the O horizon are four times higher and the "2"0"6Pb/"2"0"7Pb isotope ratio is shifted towards a median of 1.15 in comparison to 1.27 in the C horizon. It is demonstrated that natural processes like weathering in combination with plant uptake need to be taken into account in order to distinguish anthropogenic input from natural influences on Pb concentration and the "2"0"6Pb/"2"0"7Pb isotope ratio in the soil O horizon. - Highlights: • Lead concentrations are on average higher by a factor of 4 in the soil O than in the C horizon. • The "2"0"6Pb/"2"0"7Pb isotope ratio is considerably lower in the soil O than in the C horizon. • The observed shifts are in conflict with exclusive anthropogenic input of Pb. • The hypothesis of natural Pb-isotope invariance can not be hold.

  6. Diet dominates host genotype in shaping the murine gut microbiota

    Science.gov (United States)

    Carmody, Rachel N.; Gerber, Georg K.; Luevano, Jesus M.; Gatti, Daniel M.; Somes, Lisa; Svenson, Karen L.; Turnbaugh, Peter J.

    2014-01-01

    SUMMARY Mammals exhibit marked inter-individual variations in their gut microbiota, but it remains unclear if this is primarily driven by host genetics or by extrinsic factors like dietary intake. To address this, we examined the effect of dietary perturbations on the gut microbiota of five inbred mouse strains, mice deficient for genes relevant to host-microbial interactions (MyD88−/−, NOD2−/−, ob/ob, and Rag1−/−), and >200 outbred mice. In each experiment, consumption of a high-fat, high-sugar diet reproducibly altered the gut microbiota despite differences in host genotype. The gut microbiota exhibited a linear dose response to dietary perturbations, taking an average of 3.5 days for each diet-responsive bacterial groups to reach a new steady state. Repeated dietary shifts demonstrated that most changes to the gut microbiota are reversible, while also uncovering bacteria whose abundance depends on prior consumption. These results emphasize the dominant role that diet plays in shaping inter-individual variations in host-associated microbial communities. PMID:25532804

  7. Microbiota-Derived Metabolic Factors Reduce Campylobacteriosis in Mice.

    Science.gov (United States)

    Sun, Xiaolun; Winglee, Kathryn; Gharaibeh, Raad Z; Gauthier, Josee; He, Zhen; Tripathi, Prabhanshu; Avram, Dorina; Bruner, Steven; Fodor, Anthony; Jobin, Christian

    2018-05-01

    Campylobacter jejuni, a prevalent foodborne bacterial pathogen, exploits the host innate response to induce colitis. Little is known about the roles of microbiota in C jejuni-induced intestinal inflammation. We investigated interactions between microbiota and intestinal cells during C jejuni infection of mice. Germ-free C57BL/6 Il10 -/- mice were colonized with conventional microbiota and infected with a single dose of C jejuni (10 9 colony-forming units/mouse) via gavage. Conventional microbiota were cultured under aerobic, microaerobic, or anaerobic conditions and orally transplanted into germ-free Il10 -/- mice. Colon tissues were collected from mice and analyzed by histology, real-time polymerase chain reaction, and immunoblotting. Fecal microbiota and bile acids were analyzed with 16S sequencing and high-performance liquid chromatography with mass spectrometry, respectively. Introduction of conventional microbiota reduced C jejuni-induced colitis in previously germ-free Il10 -/- mice, independent of fecal load of C jejuni, accompanied by reduced activation of mammalian target of rapamycin. Microbiota transplantation and 16S ribosomal DNA sequencing experiments showed that Clostridium XI, Bifidobacterium, and Lactobacillus were enriched in fecal samples from mice colonized with microbiota cultured in anaerobic conditions (which reduce colitis) compared with mice fed microbiota cultured under aerobic conditions (susceptible to colitis). Oral administration to mice of microbiota-derived secondary bile acid sodium deoxycholate, but not ursodeoxycholic acid or lithocholic acid, reduced C jejuni-induced colitis. Depletion of secondary bile acid-producing bacteria with antibiotics that kill anaerobic bacteria (clindamycin) promoted C jejuni-induced colitis in specific pathogen-free Il10 -/- mice compared with the nonspecific antibiotic nalidixic acid; colitis induction by antibiotics was associated with reduced level of luminal deoxycholate. We identified a

  8. Faecal microbiota in lean and obese dogs.

    Science.gov (United States)

    Handl, Stefanie; German, Alexander J; Holden, Shelley L; Dowd, Scot E; Steiner, Jörg M; Heilmann, Romy M; Grant, Ryan W; Swanson, Kelly S; Suchodolski, Jan S

    2013-05-01

    Previous work has shown obesity to be associated with changes in intestinal microbiota. While obesity is common in dogs, limited information is available about the role of the intestinal microbiota. The aim of this study was to investigate whether alterations in the intestinal microbiota may be associated with canine obesity. Using 16S rRNA gene pyrosequencing and quantitative real-time PCR, we evaluated the composition of the faecal microbiota in 22 lean and 21 obese pet dogs, as well as in five research dogs fed ad libitum and four research dogs serving as lean controls. Firmicutes, Fusobacteria and Actinobacteria were the predominant bacterial phyla. The phylum Actinobacteria and the genus Roseburia were significantly more abundant in the obese pet dogs. The order Clostridiales significantly increased under ad libitum feeding in the research dogs. Canine intestinal microbiota is highly diverse and shows considerable interindividual variation. In the pet dogs, influence on the intestinal microbiota besides body condition, like age, breed, diet or lifestyle, might have masked the effect of obesity. The study population of research dogs was small, and further work is required before the role of the intestinal microbiota in canine obesity is clarified. © 2013 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  9. Comparative bioremediation of heavy metals and petroleum hydrocarbons co-contaminated soil by natural attenuation, phytoremediation, bioaugmentation and bioaugmentation-assisted phytoremediation.

    Science.gov (United States)

    Agnello, A C; Bagard, M; van Hullebusch, E D; Esposito, G; Huguenot, D

    2016-09-01

    Biological remediation technologies are an environmentally friendly approach for the treatment of polluted soils. This study evaluated through a pot experiment four bioremediation strategies: a) natural attenuation, b) phytoremediation with alfalfa (Medicago sativa L.), c) bioaugmentation with Pseudomonas aeruginosa and d) bioaugmentation-assisted phytoremediation, for the treatment of a co-contaminated soil presenting moderate levels of heavy metals (Cu, Pb and Zn at 87, 100 and 110mgkg(-1) DW, respectively) and petroleum hydrocarbons (3800mgkg(-1) DW). As demonstrated by plant biomass and selected physiological parameters alfalfa plants were able to tolerate and grow in the co-contaminated soil, especially when soil was inoculated with P. aeruginosa, which promoted plant growth (56% and 105% increase for shoots and roots, respectively) and appeared to alleviate plant stress. The content of heavy metals in alfalfa plants was limited and followed the order: Zn>Cu>Pb. Heavy metals were mainly concentrated in plant roots and were poorly translocated, favouring their stabilization in the root zone. Bioaugmentation of planted soil with P. aeruginosa generally led to a decrease of plant metal concentration and translocation. The highest degree of total petroleum hydrocarbon removal was obtained for bioaugmentation-assisted phytoremediation treatment (68%), followed by bioaugmentation (59%), phytoremediation (47%) and natural attenuation (37%). The results of this study demonstrated that the combined use of plant and bacteria was the most advantageous option for the treatment of the present co-contaminated soil, as compared to natural attenuation, bioaugmentation or phytoremediation applied alone. Copyright © 2015 Elsevier B.V. All rights reserved.

  10. Influence of IL-1 gene polymorphism on the periodontal microbiota of HIV-infected Brazilian individuals

    OpenAIRE

    Gonçalves, Lucio de Souza; Ferreira, Sônia Maria Soares; Souza, Celso Oliveira; Colombo, Ana Paula Vieira

    2009-01-01

    This study investigated the association of IL-1A (+4845) and IL-1B (+3954) gene polymorphism with the subgingival microbiota and periodontal status of HIV-infected Brazilian individuals on highly active antiretroviral therapy (HAART). One hundred and five subjects were included in the study, distributed into 2 HIV groups [29 chronic periodontitis (CP+) and 30 periodontally healthy (H+)]; and 2 non-HIV groups (29 CP- and 17 H- patients). IL-1A and B were genotyped by PCR and restriction enzyme...

  11. Anal microbiota profiles in HIV-positive and HIV-negative MSM.

    Science.gov (United States)

    Yu, Guoqin; Fadrosh, Doug; Ma, Bing; Ravel, Jacques; Goedert, James J

    2014-03-13

    Because differences in anal microbial populations (microbiota) could affect acquisition of HIV or other conditions, especially among MSM, we profiled the microbiota of the anal canal, assessed its stability, and investigated associations with diversity and composition. Microbiota profiles in anal swabs collected from 76 MSM (52 in 1989, swab-1; 66 1-5 years later, swab-2) were compared by HIV status (25 HIV-positive), T-cell subsets, and questionnaire data. Bacterial 16S rRNA genes were amplified, sequenced (Illumina MiSeq), and clustered into species-level operational taxonomic units (QIIME and Greengenes). Regression models and Wilcoxon tests were used for associations with alpha diversity (unique operational taxonomic units, Shannon's index). Composition was compared by Adonis (QIIME). Most anal bacteria were Firmicutes (mean 60.6%, range 21.1-91.1%) or Bacteroidetes (29.4%, 4.1-70.8%). Alpha diversity did not change between the two swabs (N = 42 pairs). In swab-2, HIV-positives had lower alpha diversity (P ≤ 0.04) and altered composition, with fewer Firmicutes and more Fusobacteria taxa (P ≤ 0.03), not completely attributable to very low CD4(+) cell count (median 232 cells/μl), prior AIDS clinical diagnosis (N = 17), or trimethoprim-sulfamethoxazole use (N = 6). Similar but weaker differences were observed in swab-1 (HIV-positive median 580 CD4(+) cells/μl; no trimethoprim-sulfamethoxazole). Associations with T-cell subsets, smoking, and sexual practices were null or inconsistent. The anal microbiota of MSM was relatively stable over 1-5 years. However, with uncontrolled, advanced HIV infection, the microbiota had altered composition and reduced diversity partially attributable to antibiotics. Investigations of microbial community associations with other immune perturbations and clinical abnormalities are needed.

  12. The microbiota in inflammatory bowel disease: current and therapeutic insights

    Directory of Open Access Journals (Sweden)

    Lane ER

    2017-06-01

    Full Text Available Erin R Lane,1 Timothy L Zisman,2 David L Suskind1 1Division of Gastroenterology and Hepatology, Seattle Children’s Hospital, 2Division of Gastroenterology, University of Washington, Seattle, WA, USA Abstract: Inflammatory bowel disease is a heterogeneous group of chronic disorders that result from the interaction of the intestinal immune system with the gut microbiome. Until recently, most investigative efforts and therapeutic breakthroughs were centered on understanding and manipulating the altered mucosal immune response that characterizes these diseases. However, more recent studies have highlighted the important role of environmental factors, and in particular the microbiota, in disease onset and disease exacerbation. Advances in genomic sequencing technology and bioinformatics have facilitated an explosion of investigative inquiries into the composition and function of the intestinal microbiome in health and disease and have advanced our understanding of the interplay between the gut microbiota and the host immune system. The gut microbiome is dynamic and changes with age and in response to diet, antibiotics and other environmental factors, and these alterations in the microbiome contribute to disease onset and exacerbation. Strategies to manipulate the microbiome through diet, probiotics, antibiotics or fecal microbiota transplantation may potentially be used therapeutically to influence modulate disease activity. This review will characterize the factors involved in the development of the intestinal microbiome and will describe the typical alterations in the microbiota that are characteristic of inflammatory bowel disease. Additionally, this manuscript will summarize the early but promising literature on the role of the gut microbiota in the pathogenesis of inflammatory bowel disease with implications for utilizing this data for diagnostic or therapeutic application in the clinical management of patients with these diseases. Keywords

  13. The metabolism of the Antartic crytoendolithic microbiota

    Science.gov (United States)

    Vestal, J. Robie

    1989-01-01

    The carbon metabolism of the cryptoendolithic microbiota in sandstones from the Ross Desert region of Antarctica was studied in situ and in vitro. Organic and inorganic compounds were metabolized by the microbiota, with bicarbonate being metabolized maximally in the light. There was a linear response of photosynthesis to light up to 200 to 300 micromole photons/sq m/s. The community photosynthetic response to temperature was a minimum at -5 C, two optima at +5 and +15 C and a maximum at +35 C. Photosynthetic metabolism occurred maximally in the presence of liquid water, but could occur in an environment of water vapor. Biomass of the cryptoendolithic microbiota was measured as the amount of lipid phosphate present. The in situ biomass ranged from 1.92 to 3.26 g carbon/sq m of rock and 2 orders of magnitude less than epilithic lichen microbiota from Antarctica in a location 7 degrees more north in latitude. With these data, it was possible to calculate primary production and carbon turnover in this simple microbiota. Production values ranged from 0.108 to 4.41 mg carbon/sq m/yr, while carbon turnover values ranged from 576 to 23,520 years. These values are the lowest and longest yet recorded for any ecosystem on Earth. If life did evolve on Mars to the level of prokaryotes or primitive eukaryotes, the possibility that the organisms retreated, to the protection of the inside of the rock so that metabolism could continue during planetary cooling, cannot be overlooked.

  14. Salmonella enterica serovar typhimurium exploits inflammation to compete with the intestinal microbiota.

    Directory of Open Access Journals (Sweden)

    Bärbel Stecher

    2007-10-01

    Full Text Available Most mucosal surfaces of the mammalian body are colonized by microbial communities ("microbiota". A high density of commensal microbiota inhabits the intestine and shields from infection ("colonization resistance". The virulence strategies allowing enteropathogenic bacteria to successfully compete with the microbiota and overcome colonization resistance are poorly understood. Here, we investigated manipulation of the intestinal microbiota by the enteropathogenic bacterium Salmonella enterica subspecies 1 serovar Typhimurium (S. Tm in a mouse colitis model: we found that inflammatory host responses induced by S. Tm changed microbiota composition and suppressed its growth. In contrast to wild-type S. Tm, an avirulent invGsseD mutant failing to trigger colitis was outcompeted by the microbiota. This competitive defect was reverted if inflammation was provided concomitantly by mixed infection with wild-type S. Tm or in mice (IL10(-/-, VILLIN-HA(CL4-CD8 with inflammatory bowel disease. Thus, inflammation is necessary and sufficient for overcoming colonization resistance. This reveals a new concept in infectious disease: in contrast to current thinking, inflammation is not always detrimental for the pathogen. Triggering the host's immune defence can shift the balance between the protective microbiota and the pathogen in favour of the pathogen.

  15. Colonic lesions, cytokine profiles, and gut microbiota in plasminogen-deficient mice

    DEFF Research Database (Denmark)

    Vestergaard, Bill; Krych, Lukasz; Lund, Leif R.

    2015-01-01

    Plasminogen-deficient (FVB/NPan-plg(tm1Jld), plg(tm1Jld)) mice, which are widely used as a wound-healing model, are prone to spontaneous rectal prolapses. The aims of this study were 1) to evaluate the fecal microbiome of plg(tm1Jld) mice for features that might contribute to the development...... the composition of the gut microbiota, and none of the clinical or biochemical parameters correlated with the gut microbiota composition....

  16. Could the gut microbiota reconcile the oral bioavailability conundrum of traditional herbs?

    Science.gov (United States)

    Chen, Feng; Wen, Qi; Jiang, Jun; Li, Hai-Long; Tan, Yin-Feng; Li, Yong-Hui; Zeng, Nian-Kai

    2016-02-17

    A wealth of information is emerging about the impact of gut microbiota on human health and diseases such as cardiovascular diseases, obesity and diabetes. As we learn more, we find out the gut microbiota has the potential as new territory for drug targeting. Some novel therapeutic approaches could be developed through reshaping the commensal microbial structure using combinations of different agents. The gut microbiota also affects drug metabolism, directly and indirectly, particularly towards the orally administered drugs. Herbal products have become the basis of traditional medicines such as traditional Chinese medicine and also been being considered valuable materials in modern drug discovery. Of note, low oral bioavailability but high bioactivity is a conundrum not yet solved for some herbs. Since most of herbal products are orally administered, the herbs' constituents are inevitably exposed to the intestinal microbiota and the interplays between herbal constituents and gut microbiota are expected. Emerging explorations of herb-microbiota interactions have an opportunity to revolutionize the way we view herbal therapeutics. The present review aims to provide information regarding the health promotion and/or disease prevention by the interplay between traditional herbs with low bioavailability and gut microbiota through gut microbiota via two different types of mechanisms: (1) influencing the composition of gut microbiota by herbs and (2) metabolic reactions of herbal constituents by gut microbiota. The major data bases (PubMed and Web of Science) were searched using "gut microbiota", "intestinal microbiota", "gut flora", "intestinal flora", "gut microflora", "intestinal microflora", "herb", "Chinese medicine", "traditional medicine", or "herbal medicine" as keywords to find out studies regarding herb-microbiota interactions. The Chinese Pharmacopoeia (2010 edition, Volume I) was also used to collect the data of commonly used medicinal herbs and their quality

  17. Modulation of Gut Microbiota in Pathological States

    Directory of Open Access Journals (Sweden)

    Yulan Wang

    2017-02-01

    Full Text Available The human microbiota is an aggregate of microorganisms residing in the human body, mostly in the gastrointestinal tract (GIT. Our gut microbiota evolves with us and plays a pivotal role in human health and disease. In recent years, the microbiota has gained increasing attention due to its impact on host metabolism, physiology, and immune system development, but also because the perturbation of the microbiota may result in a number of diseases. The gut microbiota may be linked to malignancies such as gastric cancer and colorectal cancer. It may also be linked to disorders such as nonalcoholic fatty liver disease (NAFLD; obesity and diabetes, which are characterized as “lifestyle diseases” of the industrialized world; coronary heart disease; and neurological disorders. Although the revolution in molecular technologies has provided us with the necessary tools to study the gut microbiota more accurately, we need to elucidate the relationships between the gut microbiota and several human pathologies more precisely, as understanding the impact that the microbiota plays in various diseases is fundamental for the development of novel therapeutic strategies. Therefore, the aim of this review is to provide the reader with an updated overview of the importance of the gut microbiota for human health and the potential to manipulate gut microbial composition for purposes such as the treatment of antibiotic-resistant Clostridium difficile (C. difficile infections. The concept of altering the gut community by microbial intervention in an effort to improve health is currently in its infancy. However, the therapeutic implications appear to be very great. Thus, the removal of harmful organisms and the enrichment of beneficial microbes may protect our health, and such efforts will pave the way for the development of more rational treatment options in the future.

  18. Role of gut microbiota in atherosclerosis

    DEFF Research Database (Denmark)

    Jonsson, Annika Lindskog; Bäckhed, Gert Fredrik

    2017-01-01

    describe three pathways by which microbiota might affect atherogenesis. First, local or distant infections might cause a harmful inflammatory response that aggravates plaque development or triggers plaque rupture. Second, metabolism of cholesterol and lipids by gut microbiota can affect the development...... of atherosclerotic plaques. Third, diet and specific components that are metabolized by gut microbiota can have various effects on atherosclerosis; for example, dietary fibre is beneficial, whereas the bacterial metabolite trimethylamine-N-oxide is considered harmful. Although specific bacterial taxa have been...... associated with atherosclerosis, which is supported by increasing mechanistic evidence, several questions remain to be answered to understand fully how the microbiota contributes to atherosclerosis and cardiovascular disease. Such knowledge might pave the way for novel diagnostics and therapeutics based...

  19. Vaginal Microbiota.

    Science.gov (United States)

    Mendling, Werner

    2016-01-01

    The knowledge about the normal and abnormal vaginal microbiome has changed over the last years. Culturing techniques are not suitable any more for determination of a normal or abnormal vaginal microbiota. Non culture-based modern technologies revealed a complex and dynamic system mainly dominated by lactobacilli.The normal and the abnormal vaginal microbiota are complex ecosystems of more than 200 bacterial species influenced by genes, ethnic background and environmental and behavioral factors. Several species of lactobacilli per individuum dominate the healthy vagina. They support a defense system together with antibacterial substances, cytokines, defensins and others against dysbiosis, infections and care for an normal pregnancy without preterm birth.The numbers of Lactobacillus (L.) iners increase in the case of dysbiosis.Bacterial vaginosis (BV) - associated bacteria (BVAB), Atopobium vaginae and Clostridiales and one or two of four Gardnerella vaginalis - strains develop in different mixtures and numbers polymicrobial biofilms on the vaginal epithelium, which are not dissolved by antibiotic therapies according to guidelines and, thus, provoke recurrences.Aerobic vaginitis seems to be an immunological disorder of the vagina with influence on the microbiota, which is here dominated by aerobic bacteria (Streptococcus agalactiae, Escherichia coli). Their role in AV is unknown.Vaginal or oral application of lactobacilli is obviously able to improve therapeutic results of BV and dysbiosis.

  20. Fatty acids from diet and microbiota regulate energy metabolism [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Joe Alcock

    2015-09-01

    Full Text Available A high-fat diet and elevated levels of free fatty acids are known risk factors for metabolic syndrome, insulin resistance, and visceral obesity. Although these disease associations are well established, it is unclear how different dietary fats change the risk of insulin resistance and metabolic syndrome. Here, we review emerging evidence that insulin resistance and fat storage are linked to changes in the gut microbiota. The gut microbiota and intestinal barrier function, in turn, are highly influenced by the composition of fat in the diet. We review findings that certain fats (for example, long-chain saturated fatty acids are associated with dysbiosis, impairment of intestinal barrier function, and metabolic endotoxemia. In contrast, other fatty acids, including short-chain and certain unsaturated fatty acids, protect against dysbiosis and impairment of barrier function caused by other dietary fats. These fats may promote insulin sensitivity by inhibiting metabolic endotoxemia and dysbiosis-driven inflammation. During dysbiosis, the modulation of metabolism by diet and microbiota may represent an adaptive process that compensates for the increased fuel demands of an activated immune system.

  1. Characterization of Antibiotic Resistance Gene Abundance and Microbiota Composition in Feces of Organic and Conventional Pigs from Four EU Countries.

    Science.gov (United States)

    Gerzova, Lenka; Babak, Vladimir; Sedlar, Karel; Faldynova, Marcela; Videnska, Petra; Cejkova, Darina; Jensen, Annette Nygaard; Denis, Martine; Kerouanton, Annaelle; Ricci, Antonia; Cibin, Veronica; Österberg, Julia; Rychlik, Ivan

    2015-01-01

    One of the recent trends in animal production is the revival of interest in organic farming. The increased consumer interest in organic animal farming is mainly due to concerns about animal welfare and the use of antibiotics in conventional farming. On the other hand, providing animals with a more natural lifestyle implies their increased exposure to environmental sources of different microorganisms including pathogens. To address these concerns, we determined the abundance of antibiotic resistance and diversity within fecal microbiota in pigs kept under conventional and organic farming systems in Sweden, Denmark, France and Italy. The abundance of sul1, sul2, strA, tet(A), tet(B) and cat antibiotic resistance genes was determined in 468 samples by real-time PCR and the fecal microbiota diversity was characterized in 48 selected samples by pyrosequencing of V3/V4 regions of 16S rRNA. Contrary to our expectations, there were no extensive differences between the abundance of tested antibiotic resistance genes in microbiota originating from organic or conventionally housed pigs within individual countries. There were also no differences in the microbiota composition of organic and conventional pigs. The only significant difference was the difference in the abundance of antibiotic resistance genes in the samples from different countries. Fecal microbiota in the samples originating from southern European countries (Italy, France) exhibited significantly higher antibiotic resistance gene abundance than those from northern parts of Europe (Denmark, Sweden). Therefore, the geographical location of the herd influenced the antibiotic resistance in the fecal microbiota more than farm's status as organic or conventional.

  2. Soil-to-plant transfer factors of stable elements and naturally occurring radionuclides. (1) Upland field crops collected in Japan

    International Nuclear Information System (INIS)

    Uchida, Shigeo; Tagami, Keiko; Hirai, Ikuko

    2007-01-01

    In long-term dose assessment models for radioactive waste disposal, an important exposure pathway to humans is via ingestion of contaminated foods. In order to obtain soil-to-plant transfer factors (TFs) of radionuclides under equilibrium conditions, naturally existing elements were measured as analogues of radionuclides. Crops grown in upland fields and associated soil samples were collected from 62 sampling sites throughout Japan. The total concentrations of 52 elements in the crops and 54 elements in the soil samples were measured. The TFs of 40 elements (Li, Na, Mg, Al, Si, P, K, Ca, Ti, V, Cr, Mn, Fe, Co, Ni, Cu, Zn, As, Se, Rb, Sr, Y, Mo, Cd, Sn, Cs, Ba, La, Ce, Pr, Nd, Sm, Eu, Gd, Dy, Ho, Er, Pb, Th and U) were calculated on a dry weight basis. Among all the TF data, K showed the highest TF with a geometric mean (GM) of 2.1, followed by P. The GMs of TFs for rare earth elements, Th and U were on the order of 10 -4 . Most of the TF-GMs for green vegetables were higher than GMs of all crops for the elements. The obtained TFs of some elements for green vegetables and potatoes were compared with those in the technical report series-364 (TRS-364) compiled by IAEA in 1994. The TF-GMs were usually lower than the best estimates (expected values) listed in TRS-364; however, the GMs of TF for La and TF for Th observed for potatoes were slightly higher than the expected values. (author)

  3. RADIOACTIVITY OF ROCKS, SOILS AND NATURAL WATERS OF DAGESTAN AND DUE TO THEIR EFFECTIVE DOSE

    Directory of Open Access Journals (Sweden)

    A. S. Abdulaeva

    2012-01-01

    Full Text Available The results of long-term radioecological studies in the mountainous areas of Dagestan. The data of the study of territorial exposure dose, determination of natural radioactive nuclides in rocks, soils and natural waters of Dagestan. The parameters of the correlation between alpha-and beta-activity of rocks, soil, and radon in water and indoor air. This paper discusses issues related to the formation of radiation dose from natural sources of ionizing radiation in the biosphere and as a result of this review - doses to man.

  4. The gut microbiota of nonalcoholic fatty liver disease: current methods and their interpretation

    NARCIS (Netherlands)

    van Best, Niels; Jansen, Peter L.; Rensen, Sander S.

    2015-01-01

    The role of intestinal bacteria in the pathogenesis of nonalcoholic fatty liver disease is increasingly acknowledged. Recently developed microbial profiling techniques are beginning to shed light on the nature of gut microbiota alterations in nonalcoholic fatty liver disease. In this review, we

  5. Short-term impact of a classical ketogenic diet on gut microbiota in GLUT1 Deficiency Syndrome: A 3-month prospective observational study.

    Science.gov (United States)

    Tagliabue, Anna; Ferraris, Cinzia; Uggeri, Francesca; Trentani, Claudia; Bertoli, Simona; de Giorgis, Valentina; Veggiotti, Pierangelo; Elli, Marina

    2017-02-01

    The classical ketogenic diet (KD) is a high-fat, very low-carbohydrate normocaloric diet used for drug-resistant epilepsy and Glucose Transporter 1 Deficiency Syndrome (GLUT1 DS). In animal models, high fat diet induces large alterations in microbiota producing deleterious effects on gut health. We carried out a pilot study on patients treated with KD comparing their microbiota composition before and after three months on the diet. Six patients affected by GLUT1 DS were asked to collect fecal samples before and after three months on the diet. RT - PCR analysis was performed in order to quantify Firmicutes, Bacteroidetes, Bifidobacterium spp., Lactobacillus spp., Clostridium perfringens, Enterobacteriaceae, Clostridium cluster XIV, Desulfovibrio spp. and Faecalibacterium prausnitzii. Compared with baseline, there were no statistically significant differences at 3 months in Firmicutes and Bacteroidetes. However fecal microbial profiles revealed a statistically significant increase in Desulfovibrio spp. (p = 0.025), a bacterial group supposed to be involved in the exacerbation of the inflammatory condition of the gut mucosa associated to the consumption of fats of animal origin. A future prospective study on the changes in gut microbiota of all children with epilepsy started on a KD is warranted. In patients with dysbiosis demonstrated by fecal samples, it my be reasonable to consider an empiric trial of pre or probiotics to potentially restore the «ecological balance» of intestinal microbiota. Copyright © 2016 European Society for Clinical Nutrition and Metabolism. Published by Elsevier Ltd. All rights reserved.

  6. Distinct roles for soil fungal and bacterial communities associated with the suppression of vanilla Fusarium wilt disease

    NARCIS (Netherlands)

    Xiong, Wu; Li, Rong; Ren, Yi; Liu, Chen; Zhao, Qingyun; Wu, Huasong; Jousset, Alexandre; Shen, Qirong

    2017-01-01

    Characterizing microbial communities associated with disease-suppressive soil is an important first step toward understanding the potential of microbiota to protect crops against plant pathogens. In the present study, we compared microbial communities in suppressive- and conducive-soils associated

  7. Atopic asthmatic immune phenotypes associated with airway microbiota and airway obstruction.

    Directory of Open Access Journals (Sweden)

    Benjamin A Turturice

    Full Text Available Differences in asthma severity may be related to inflammation in the airways. The lower airway microbiota has been associated with clinical features such as airway obstruction, symptom control, and response to corticosteroids.To assess the relationship between local airway inflammation, severity of disease, and the lower airway microbiota in atopic asthmatics.A cohort of young adult, atopic asthmatics with intermittent or mild/moderate persistent symptoms (n = 13 were assessed via bronchoscopy, lavage, and spirometry. These individuals were compared to age matched non-asthmatic controls (n = 6 and to themselves after six weeks of treatment with fluticasone propionate (FP. Inflammation of the airways was assessed via a cytokine and chemokine panel. Lower airway microbiota composition was determined by metagenomic shotgun sequencing.Unsupervised clustering of cytokines and chemokines prior to treatment with FP identified two asthmatic phenotypes (AP, termed AP1 and AP2, with distinct bronchoalveolar lavage inflammatory profiles. AP2 was associated with more obstruction, compared to AP1. After treatment with FP reduced MIP-1β and TNF-α and increased IL-2 was observed. A module of highly correlated cytokines that include MIP-1β and TNF-α was identified that negatively correlated with pulmonary function. Independently, IL-2 was positively correlated with pulmonary function. The airway microbiome composition correlated with asthmatic phenotypes. AP2, prior to FP treatment, was enriched with Streptococcus pneumoniae. Unique associations between IL-2 or the cytokine module and the microbiota composition of the airways were observed in asthmatics subjects prior to treatment but not after or in controls.The underlying inflammation in atopic asthma is related to the composition of microbiota and is associated with severity of airway obstruction. Treatment with inhaled corticosteroids was associated with changes in the airway inflammatory response to

  8. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    Directory of Open Access Journals (Sweden)

    Clarissa Schwab

    Full Text Available BACKGROUND: Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos and relates these to food resources consumed by bears. METHODOLOGY/PRINCIPAL FINDINGS: Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. CONCLUSION: This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  9. Diet and environment shape fecal bacterial microbiota composition and enteric pathogen load of grizzly bears.

    Science.gov (United States)

    Schwab, Clarissa; Cristescu, Bogdan; Northrup, Joseph M; Stenhouse, Gordon B; Gänzle, Michael

    2011-01-01

    Diet and environment impact the composition of mammalian intestinal microbiota; dietary or health disturbances trigger alterations in intestinal microbiota composition and render the host susceptible to enteric pathogens. To date no long term monitoring data exist on the fecal microbiota and pathogen load of carnivores either in natural environments or in captivity. This study investigates fecal microbiota composition and the presence of pathogenic Escherichia coli and toxigenic clostridia in wild and captive grizzly bears (Ursus arctos) and relates these to food resources consumed by bears. Feces were obtained from animals of two wild populations and from two captive animals during an active bear season. Wild animals consumed a diverse diet composed of plant material, animal prey and insects. Captive animals were fed a regular granulated diet with a supplement of fruits and vegetables. Bacterial populations were analyzed using quantitative PCR. Fecal microbiota composition fluctuated in wild and in captive animals. The abundance of Clostridium clusters I and XI, and of C. perfringens correlated to regular diet protein intake. Enteroaggregative E. coli were consistently present in all populations. The C. sordellii phospholipase C was identified in three samples of wild animals and for the first time in Ursids. This is the first longitudinal study monitoring the fecal microbiota of wild carnivores and comparing it to that of captive individuals of the same species. Location and diet affected fecal bacterial populations as well as the presence of enteric pathogens.

  10. The impact of liposomal linolenic acid on gastrointestinal microbiota in mice

    Directory of Open Access Journals (Sweden)

    Li XX

    2018-03-01

    Full Text Available Xuan-xuan Li,1 Si Shi,2 Lan Rong,1 Mei-qing Feng,2 Liang Zhong1 1Department of Digestive Diseases, Huashan Hospital Affiliated to Fudan University, Shanghai, China; 2School of Pharmacy, Fudan University, Shanghai, China Background: The prevalence of Helicobacter pylori has long been a global health issue. Triple therapy, being the first-line treatment, has caused dysbiosis of the gastrointestinal tract that led to various complications. A novel nanomedicine – liposomal linolenic acid (LipoLLA – has been proven to have great potential in eradicating H. pylori. However, the possible side effects of LipoLLA due to alteration of the gastrointestinal microbiota remain unknown.Aim: This study focused on the impact of LipoLLA on gastrointestinal microbiota in mice in comparison with triple therapy in order to assess the safety profile.Methods: Mice were divided into five groups: blank control group; H. pylori control group; triple therapy group; low-dose LipoLLA group (25 mg/kg; and high-dose LipoLLA group (50 mg/kg. Fecal samples were collected before and after the intake of corresponding formulas. Gastric tissues were obtained after mice dissection. These samples were analyzed with high-throughput sequencing.Results: The analysis revealed that LipoLLA resulted in minor gut microbiota alteration at different levels. The altered proportions in the high-dose group were higher than that of the low-dose group. On the other hand, the triple therapy group showed dramatic shifts in the major community composition. It displayed a notable boost in the relative abundance of Proteobacteria and Firmicutes along with a decrease in that of Verrucomicrobia and Bacteroidetes. All of them belonged to the major phyla in the microbiome. Triple therapy also led to the growth of the family Enterobacteriaceae, Enterococcaceae, and Clostridiaceae_1 that may be associated with clinical illnesses. Gastric microbiota analysis reached similar conclusions.Conclusion: Our

  11. Influence of Vegetations' Metabolites on the Composition and Functioning of Soil Microbial Complex

    Science.gov (United States)

    Biryukov, Mikhail

    2013-04-01

    Microbiota is one of the major factors of soils fertility. It transforms organic substances in soil and, therefore, serves as the main component in the cycles of carbon and nitrogen. Microbial communities (MC) are characterized as highly diverse and extremely complex structures. This allows them to adapt to any affection and provide all the necessary biospheric functions. Hence, the study of their functional diversity and adaptivity of microbiota provides the key to the understanding of the ecosystems' functioning and their adaptivity to the human impact. The formation of MC at the initial stage is regulated by the fluxes of substrates and biologically active substances (BAS), which vary greatly in soils under different vegetations. These fluxes are presented by: low molecular weights organic substances (LMWOS), which can be directly included in metabolism of microbes; polymers, that can be decomposed to LMWOS by exoenzymes; and more complex compounds, having different "drug effects" (e.g. different types of phenolic acids) and regulating growth and enzymatic properties of microbiota. Therefore, the main hypothesis of the research was formulated as follows: penetration of different types of substrates and BAS into soil leads to the emergence of MC varying in enzymatic properties and structure. As a soil matrix we used the soil from the untreated variant of the lysimeter model experiment taking place in the faculty of Soil Science of the MSU for over the last 40 years. It was sieved with a 2mm sieves, humidified and incubated at 25C during one week. Subsequently, the samples were air-dried with occasional stirring for one more week. Thereafter, aliquots of the prepared soil were taken for the different experimental variants. The samples were rewetted with solutions of various substrates (glucose, cellulose, starch, etc.) and thoroughly mixed. The control variant was established with addition of deionised water. The samples were incubated at the 25C. During the

  12. A study for natural radioactivity levels in some soil samples using gamma spectrometry

    International Nuclear Information System (INIS)

    Mohamed, Yousif Hassab El Rasoul

    1997-05-01

    The purpose of this study was to investigate a few selected soil samples and to study their natural radioactivity using gamma spectrometry. The first sample was a rock phosphate from Nuba mountains region which is being considered as a low cost fertilizer. Another sample came from Miri lake area (Nuba mountains) which is known to have elevated natural radioactivity level. The other four samples came from different other regions in Sudan for comparison. The idea was to identify the radioactive nuclides present in these soil samples, to trace their sources and to determine the activity present in them. (Author)

  13. Impact of Microbiota on Resistance to Ocular Pseudomonas aeruginosa-Induced Keratitis.

    Directory of Open Access Journals (Sweden)

    Abirami Kugadas

    2016-09-01

    Full Text Available The existence of the ocular microbiota has been reported but functional analyses to evaluate its significance in regulating ocular immunity are currently lacking. We compared the relative contribution of eye and gut commensals in regulating the ocular susceptibility to Pseudomonas aeruginosa-induced keratitis. We find that in health, the presence of microbiota strengthened the ocular innate immune barrier by significantly increasing the concentrations of immune effectors in the tear film, including secretory IgA and complement proteins. Consistent with this view, Swiss Webster (SW mice that are typically resistant to P. aeruginosa-induced keratitis become susceptible due to the lack of microbiota. This was exemplified by increased corneal bacterial burden and elevated pathology of the germ free (GF mice when compared to the conventionally maintained SW mice. The protective immunity was found to be dependent on both eye and gut microbiota with the eye microbiota having a moderate, but significant impact on the resistance to infection. These events were IL-1ß-dependent as corneal IL-1ß levels were decreased in the infected GF and antibiotic-treated mice when compared to the SPF controls, and neutralization of IL-1ß increased the ocular bacterial burden in the SPF mice. Monocolonizing GF mice with Coagulase Negative Staphylococcus sp. isolated from the conjunctival swabs was sufficient to restore resistance to infection. Cumulatively, these data underline a previously unappreciated role for microbiota in regulating susceptibility to ocular keratitis. We predict that these results will have significant implications for contact lens wearers, where alterations in the ocular commensal communities may render the ocular surface vulnerable to infections.

  14. The Gut Microbiota of Marine Fish

    Science.gov (United States)

    Egerton, Sian; Culloty, Sarah; Whooley, Jason; Stanton, Catherine; Ross, R. Paul

    2018-01-01

    The body of work relating to the gut microbiota of fish is dwarfed by that on humans and mammals. However, it is a field that has had historical interest and has grown significantly along with the expansion of the aquaculture industry and developments in microbiome research. Research is now moving quickly in this field. Much recent focus has been on nutritional manipulation and modification of the gut microbiota to meet the needs of fish farming, while trying to maintain host health and welfare. However, the diversity amongst fish means that baseline data from wild fish and a clear understanding of the role that specific gut microbiota play is still lacking. We review here the factors shaping marine fish gut microbiota and highlight gaps in the research. PMID:29780377

  15. Assessment of natural radioactivity and radiation hazard indices in soil samples of East Khasi Hills District, Meghalaya, India

    Science.gov (United States)

    Lyngkhoi, B.; Nongkynrih, P.

    2018-04-01

    The Activity Concentrations of naturally occurring radionuclides such as 40K, 238U and 232Th were determined from 20 (twenty) villages of East Khasi Hills District of Meghalaya, India using gamma-ray spectroscopy. This District is adjacent to the South-West Khasi Hills District located in the same state where heavy deposit of uranium has been identified [1]. The measured activities of 40K, 238U and 232Th were found ranging from 93.4 to 606.3, 23.2 to 140.9 and 25.1 to 158.9 Bq kg-1 with their average values of 207.9, 45.6 and 63.8 Bq kg-1, respectively. The obtained value of activity concentration for 40K is lower than the world average value 400.0 Bq kg-1 while for 238U and 232Th, the average concentrations are above the world average values 35.0 and 30.0 Bq kg-1, respectively. The calculated Absorbed Dose Rate gamma-radiation of the natural radionuclides ranged from 37.4 to 186.5 nGy h-1 with an average of 71.3 nGy h-1. The outdoor Annual Effective Dose Rate received by an individual ranged from 50.0-230.0 µSv y-1 with an average value of 87.5 µSv y-1. The physical and chemical properties of the soil have no effects on the naturally occurring radionuclides concentrations. This has been revealed by the results obtained as there is no positive correlation between physical/chemical parameters and the radionuclides concentrations in the soil samples [2]. It is observed that good positive correlations among the radionuclides concentrations and with the measured dose rate prevail. The findings show that the values of external and internal hazard indices resulting from the measured activity concentrations of natural radionuclides in soil from the collected sampling areas are less than the International Recommended safety limits of 1 (unity) with the exception of Mylliem (1.12) where the External hazard index is slightly higher.

  16. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    Science.gov (United States)

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik; Saat, Ahmad; Hamzah, Zaini

    2015-04-01

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The Kd values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The Kd values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  17. The Gut Microbiota in Host Metabolism and Pathogen Challenges

    DEFF Research Database (Denmark)

    Holm, Jacob Bak

    The human microbiota consists of a complex community of microbial cells that live on and inside each person in a close relationship with their host. The majority of the microbial cells are harboured by the gastro intestinal tract where 10-100 trillion bacteria reside. The microbiota is a dynamic...... community where both composition and function can be affected by changes in the local environment. With the microbiota containing ~150 times more genes than the human host, the microbiota provides a large modifiable “secondary genome” (metagenome). Within the last decade, changes in the gut microbiota...... composition has indeed been established as a factor contributing to the health of the host. Therefore, being able to understand, control and modify the gut microbiota is a promising way of improving health. The following thesis is based on four different projects investigating the murine gut microbiota...

  18. Mesocosm trials of bioremediation of contaminated soil of a petroleum refinery: comparison of natural attenuation, biostimulation and bioaugmentation.

    Science.gov (United States)

    Couto, M Nazaré P F S; Monteiro, Emanuela; Vasconcelos, M Teresa S D

    2010-08-01

    Contamination with petroleum hydrocarbons (PHC) is a global problem with environmental implications. Physico-chemical treatments can be used for soil cleanup, but they are expensive, and can have implications for soil structure and environment. Otherwise, biological remediation treatments are cost-effective and restore soil structure. Several remediation experiments have been carried out in the lab and in the field; however, there is the challenge to achieve as good or better results in the field as in the laboratory. In the ambit of a project aiming at investigating suitable biological remediation approaches for recovering a refinery contaminated soil, we present here results obtained in bioremediation trials. The approaches biostimulation and bioaugmentation were tested, in parallel, and compared with natural attenuation. For this purpose, mesocosm experiments were carried out inside the refinery area, which constitutes a real asset of this work. Soil contaminated with crude oil was excavated, re-contaminated with turbine oil, homogenised and used to fill several 0.5 m(3) high-density polyethylene containers. The efficiency of procedures as follows: (1) natural attenuation; (2) manual aeration; (3) biostimulation by adding (3.1) only nutrients; and (3.2) nutrients and a non-ionic surfactant; and (4) bioaugmentation in the presence of added (4.1) nutrients or (4.2) nutrients and a non-ionic surfactant were evaluated after a 9-month period of experiment. For bioaugmentation, a commercial bacterial product was used. In addition to physico-chemical characterization, initial and final soil contents in total petroleum hydrocarbons (TPH) (by Fourier transform infrared spectrophotometry) and the total number of bacteria (by total cell counts) were carried out. For TPH degradation evaluation the soil was divided in four fractions corresponding to different depths: 0-5; 5-10; 10-15; and 15-20 cm. Mean values of percentages of PHC degradation varied between 20 and 50% at

  19. Distribution of natural radionuclides in soils and beach sands of Abana-Çatalzeytin (Kastamonu)

    Energy Technology Data Exchange (ETDEWEB)

    Kurnaz, Aslı, E-mail: akurnaz@kastamonu.edu.tr; Özcan, Murat, E-mail: murat-ozcan@kastamonu.edu.tr; Çetiner, M. Atıf, E-mail: macetiner@kastamonu.edu.tr [Kastamonu University, Arts and Sciences Faculty, Department of Physics, Kastamonu (Turkey)

    2016-03-25

    A gamma spectrometric study of distribution of natural radionuclides in soil and beach sand samples collected from the terrestrial and coastal environment of Abana and Çatalzeytin counties of Kastamonu Province in Turkey was performed with the aim of estimating the radiation hazard of the tourist area and the concentrations of {sup 238}U, {sup 232}Th and {sup 40}K were determined. The activity concentrations of {sup 238}U, {sup 232}Th and {sup 40}K were determined in the ranges 14.95–56.0, 46.5–99.4 and 357.5–871.3 Bqkg{sup −1} for soil samples and the mean concentrations were ascertained as 42.34, 71.24 and 624.18 Bqkg{sup −1}, respectively. In sand samples, {sup 238}U, {sup 232}Th and {sup 40}K contents were varied in the ranges of 13.35-41.6, 30.9-53.4 and 275.5-601.3 Bqkg{sup −1} and the mean concentrations were ascertained as 20.57, 45.05 and 411.71 Bqkg{sup −1}, respectively. The mean annual effective doses were calculated as 113.08 and 69.16 µSvy{sup −1} for the soil and sand samples, respectively.

  20. Natural and artificial radionuclides in forest and bog soils: tracers for migration processes and soil development

    International Nuclear Information System (INIS)

    Schleich, N.; Degering, D.; Unterricker, S.

    2000-01-01

    Radionuclide distributions in undisturbed forest and bog soils, mostly situated in Saxony, Germany (Erzgebirge), were studied. Low concentrations of naturally-occurring U and Th decay series nuclides, including 210 Pb, and artificial radioisotopes ( 125 Sb, 134 Cs, 137 Cs, 241 Am) were determined using low-level γ-spectrometry. In addition, the activities of 238 Pu and 239,240 Pu were determined by radiochemical separation and α-spectrometry. 14 C and excess 210 Pb dating methods were used to date the sampled bog profiles. The different radionuclides show characteristic depth distributions in the forest and bog soil horizons, which were sub-sampled as thin slices. 125 Sb, 241 Am, 238 Pu and 239,240 Pu are strongly fixed in soil organic matter. In spruce forest soils, the influence of soil horizons with distinct properties dominates the vertical time-dependent distribution. In ombrotrophic bogs, the peak positions correlated with the year of maximum input of each nuclide. The Sb, Am and Pu ''time markers'' and the 14 C and 210 Pb dating results correspond very well. Although Cs seems to be relatively mobile in organic as well as mineral forest soil horizons, it is enriched in the organic material. In ombrotrophic bogs, Cs is very mobile in the peat deposit. In Sphagnum peat, Cs is translocated continuously towards the growing apices of the Sphagnum mosses, where it is accumulated. (orig.)

  1. Temporal Dynamics of Soil Microbial Communities below the Seedbed under Two Contrasting Tillage Regimes

    OpenAIRE

    Florine Degrune; Florine Degrune; Nicolas Theodorakopoulos; Gilles Colinet; Marie-Pierre Hiel; Marie-Pierre Hiel; Bernard Bodson; Bernard Taminiau; Georges Daube; Micheline Vandenbol; Martin Hartmann

    2017-01-01

    Agricultural productivity relies on a wide range of ecosystem services provided by the soil biota. Plowing is a fundamental component of conventional farming, but long-term detrimental effects such as soil erosion and loss of soil organic matter have been recognized. Moving towards more sustainable management practices such as reduced tillage or crop residue retention can reduce these detrimental effects, but will also influence structure and function of the soil microbiota with direct conseq...

  2. Akkermansia muciniphila induces gut microbiota remodelling and controls islet autoimmunity in NOD mice.

    Science.gov (United States)

    Hänninen, Arno; Toivonen, Raine; Pöysti, Sakari; Belzer, Clara; Plovier, Hubert; Ouwerkerk, Janneke P; Emani, Rohini; Cani, Patrice D; De Vos, Willem M

    2017-12-21

    Intestinal microbiota is implicated in the pathogenesis of autoimmune type 1 diabetes in humans and in non-obese diabetic (NOD) mice, but evidence on its causality and on the role of individual microbiota members is limited. We investigated if different diabetes incidence in two NOD colonies was due to microbiota differences and aimed to identify individual microbiota members with potential significance. We profiled intestinal microbiota between two NOD mouse colonies showing high or low diabetes incidence by 16S ribosomal RNA gene sequencing and colonised the high-incidence colony with the microbiota of the low-incidence colony. Based on unaltered incidence, we identified a few taxa which were not effectively transferred and thereafter, transferred experimentally one of these to test its potential significance. Although the high-incidence colony adopted most microbial taxa present in the low-incidence colony, diabetes incidence remained unaltered. Among the few taxa which were not transferred, Akkermansia muciniphila was identified. As A. muciniphila abundancy is inversely correlated to the risk of developing type 1 diabetes-related autoantibodies, we transferred A. muciniphila experimentally to the high-incidence colony. A. muciniphila transfer promoted mucus production and increased expression of antimicrobial peptide Reg3γ , outcompeted Ruminococcus torques from the microbiota, lowered serum endotoxin levels and islet toll-like receptor expression, promoted regulatory immunity and delayed diabetes development. Transfer of the whole microbiota may not reduce diabetes incidence despite a major change in gut microbiota, but single symbionts such as A. muciniphila with beneficial metabolic and immune signalling effects may reduce diabetes incidence when administered as a probiotic. © Article author(s) (or their employer(s) unless otherwise stated in the text of the article) 2017. All rights reserved. No commercial use is permitted unless otherwise expressly

  3. Long-term effects on luminal and mucosal microbiota and commonly acquired taxa in faecal microbiota transplantation for recurrent Clostridium difficile infection

    NARCIS (Netherlands)

    Jalanka, Jonna; Mattila, Eero; Jouhten, Hanne; Hartman, Jorn; Vos, de Willem M.; Arkkila, Perttu; Satokari, Reetta

    2016-01-01

    Background: Faecal microbiota transplantation (FMT) is an effective treatment for recurrent Clostridium difficile infection (rCDI). It restores the disrupted intestinal microbiota and subsequently suppresses C. difficile. The long-term stability of the intestinal microbiota and the recovery of

  4. Soil "ecosystem" services and natural capital: Critical appraisal of research on uncertain ground

    Directory of Open Access Journals (Sweden)

    Philippe C. Baveye

    2016-06-01

    Full Text Available Over the last few years, considerable attention has been devoted in the scientific literature and in the media to the concept of ecosystem services of soils. The monetary valuation of these services, demanded by many governments and international agencies, is often depicted as a necessary condition for the preservation of the natural capital that soils represent. This focus on soil services is framed in the context of a general interest in ecosystem services that allegedly started in 1997, and took off in earnest after 2005. The careful analysis of the literature proposed in this article shows that, in fact, interest in the multifunctionality of soils emerged already in the mid-60s, at a time when hundreds of researchers worldwide were trying, and largely failing, to figure out how to put price tags meaningfully on nature's services. Soil scientists, since, have tried to better understand various functions/services of soils, as well as their possible relation with key soil characteristics, like biodiversity. They have also tried to make progress on the challenging quantification of soil functions/services. However, researchers have shown very little interest in monetary valuation, undoubtedly in part because it is not clear what economic and financial markets might do with prices of soil functions/services, even if we could somehow come up with such numbers, and because there is no assurance at all, based on neoclassical economic theory, that markets would manage soil resources optimally. Instead of monetary valuation, focus in the literature has been put on decision-making methods, like Multi-Criteria Decision Analysis (MCDA and Bayesian Belief Networks (BBN, which do not require the systematic monetization of soil functions/services and easily accommodate deliberative approaches involving a variety of stakeholders. A prerequisite to progress in such public deliberations is that participants be very cognizant of the extreme relevance of soils

  5. Abundance and diversity of CO2-fixing bacteria in grassland soils close to natural carbon dioxide springs.

    Science.gov (United States)

    Videmsek, Urska; Hagn, Alexandra; Suhadolc, Marjetka; Radl, Viviane; Knicker, Heike; Schloter, Michael; Vodnik, Dominik

    2009-07-01

    Gaseous conditions at natural CO2 springs (mofettes) affect many processes in these unique ecosystems. While the response of plants to extreme and fluctuating CO2 concentrations ([CO2]) is relatively well documented, little is known on microbial life in mofette soil. Therefore, it was the aim of this study to investigate the abundance and diversity of CO2-fixing bacteria in grassland soils in different distances to a natural carbon dioxide spring. Samples of the same soil type were collected from the Stavesinci mofette, a natural CO2 spring which is known for very pure CO2 emissions, at different distances from the CO2 releasing vents, at locations that clearly differed in soil CO2 efflux (from 12.5 to over 200 micromol CO2 m(-2) s(-1) yearly average). Bulk and rhizospheric soil samples were included into analyses. The microbial response was followed by a molecular analysis of cbbL genes, encoding for the large subunit of RubisCO, a carboxylase which is of crucial importance for C assimilation in chemolitoautotrophic microbes. In all samples analyzed, the "red-like" type of cbbL genes could be detected. In contrast, the "green-like" type of cbbL could not be measured by the applied technique. Surprisingly, a reduction of "red-like" cbbL genes copies was observed in bulk soil and rhizosphere samples from the sites with the highest CO2 concentrations. Furthermore, the diversity pattern of "red-like" cbbL genes changed depending on the CO(2) regime. This indicates that only a part of the autotrophic CO2-fixing microbes could adapt to the very high CO2 concentrations and adverse life conditions that are governed by mofette gaseous regime.

  6. Role of intestinal microbiota and metabolites on gut homeostasis and human diseases.

    Science.gov (United States)

    Lin, Lan; Zhang, Jianqiong

    2017-01-06

    A vast diversity of microbes colonizes in the human gastrointestinal tract, referred to intestinal microbiota. Microbiota and products thereof are indispensable for shaping the development and function of host innate immune system, thereby exerting multifaceted impacts in gut health. This paper reviews the effects on immunity of gut microbe-derived nucleic acids, and gut microbial metabolites, as well as the involvement of commensals in the gut homeostasis. We focus on the recent findings with an intention to illuminate the mechanisms by which the microbiota and products thereof are interacting with host immunity, as well as to scrutinize imbalanced gut microbiota (dysbiosis) which lead to autoimmune disorders including inflammatory bowel disease (IBD), Type 1 diabetes (T1D) and systemic immune syndromes such as rheumatoid arthritis (RA). In addition to their well-recognized benefits in the gut such as occupation of ecological niches and competition with pathogens, commensal bacteria have been shown to strengthen the gut barrier and to exert immunomodulatory actions within the gut and beyond. It has been realized that impaired intestinal microbiota not only contribute to gut diseases but also are inextricably linked to metabolic disorders and even brain dysfunction. A better understanding of the mutual interactions of the microbiota and host immune system, would shed light on our endeavors of disease prevention and broaden the path to our discovery of immune intervention targets for disease treatment.

  7. Soil bacterial and fungal community responses to nitrogen addition across soil depth and microhabitat in an arid shrubland

    Science.gov (United States)

    Mueller, Rebecca C.; Belnap, Jayne; Kuske, Cheryl R.

    2015-01-01

    Arid shrublands are stressful environments, typified by alkaline soils low in organic matter, with biologically-limiting extremes in water availability, temperature, and UV radiation. The widely-spaced plants and interspace biological soil crusts in these regions provide soil nutrients in a localized fashion, creating a mosaic pattern of plant- or crust-associated microhabitats with distinct nutrient composition. With sporadic and limited rainfall, nutrients are primarily retained in the shallow surface soil, patterning biological activity. We examined soil bacterial and fungal community responses to simulated nitrogen (N) deposition in an arid Larrea tridentata-Ambrosia dumosa field experiment in southern Nevada, USA, using high-throughput sequencing of ribosomal RNA genes. To examine potential interactions among the N application, microhabitat and soil depth, we sampled soils associated with shrub canopies and interspace biological crusts at two soil depths (0–0.5 or 0–10 cm) across the N-amendment gradient (0, 7, and 15 kg ha−1 yr−1). We hypothesized that localized compositional differences in soil microbiota would constrain the impacts of N addition to a microhabitat distribution that would reflect highly localized geochemical conditions and microbial community composition. The richness and community composition of both bacterial and fungal communities differed significantly by microhabitat and with soil depth in each microhabitat. Only bacterial communities exhibited significant responses to the N addition. Community composition correlated with microhabitat and depth differences in soil geochemical features. Given the distinct roles of soil bacteria and fungi in major nutrient cycles, the resilience of fungi and sensitivity of bacteria to N amendments suggests that increased N input predicted for many arid ecosystems could shift nutrient cycling toward pathways driven primarily by fungal communities.

  8. Determination of soil screening levels for natural radionuclides in Minas Gerais state, Brazil

    International Nuclear Information System (INIS)

    Peixoto, Claudia Marques; Jacomino, Vanusa Maria Feliciano; Balaine, Fernando; Taddei, Maria Helena

    2013-01-01

    Soil screening levels express the levels of contaminant concentration in the soil, which guide the actions to be taken following investigation to confirm contamination. The list of toxic substances or elements under Brazilian legislation includes organics, volatile organics and metals but does not consider radioactive elements. Radioactive elements are all potentially carcinogenic and therefore need to be subject to legal control. The National Nuclear Energy Commission, the federal agency currently responsible for legislation regarding the control of Naturally-Occurring Radioactive Material (NORM) facilities does not establish guiding values for intervention in terms of soil activity concentration in the case of contamination with radioactive elements. In mining, the processing and treating of ores such as cassiterite, uranium, phosphate, niobium, and rare earths contribute to the generation of large amounts of NORM residues. Obviously, the improper disposal of these materials may lead to situations that result in soil and groundwater contamination and unnecessary exposure of the population in general. In order to establish guiding values for soil quality for natural radionuclides in the state of Minas Gerais, the study area included the entire state, which has unique characteristics related to the lithology, genesis, and morphology of the soils. These characteristics have tremendous influence on the petrogeochemistry of elements and radionuclides. A total of 110 soil samples were collected and analyzed in order to determine the activity concentration of U, Th, 226Ra, 228Ra e 210Pb. In general, it was possible to verify that the activity concentrations of U are higher than those of Th. This fact can be explained by the intense weathering that most of the state's soil has undergone and the chemical and geochemical characteristics of the two elements. The values obtained up to the present are higher than the reference values for soil quality adopted in other parts of

  9. Classification and Use of Natural and Anthropogenic Soils by Indigenous Communities of the Upper Amazon Region of Colombia.

    Science.gov (United States)

    Peña-Venegas, C P; Stomph, T J; Verschoor, G; Echeverri, J A; Struik, P C

    Outsiders often oversimplify Amazon soil use by assuming that abundantly available natural soils are poorly suited to agriculture and that sporadic anthropogenic soils are agriculturally productive. Local perceptions about the potentials and limitations of soils probably differ, but information on these perceptions is scarce. We therefore examined how four indigenous communities in the Middle Caquetá River region in the Colombian Amazon classify and use natural and anthropogenic soils. The study was framed in ethnopedology: local classifications, preferences, rankings, and soil uses were recorded through interviews and field observations. These communities recognized nine soils varying in suitability for agriculture. They identified anthropogenic soils as most suitable for agriculture, but only one group used them predominantly for their swiddens. As these communities did not perceive soil nutrient status as limiting, they did not base crop-site selection on soil fertility or on the interplay between soil quality and performance of manioc genetic resources.

  10. Natural Arabidopsis brx loss-of-function alleles confer root adaptation to acidic soil.

    Science.gov (United States)

    Gujas, Bojan; Alonso-Blanco, Carlos; Hardtke, Christian S

    2012-10-23

    Soil acidification is a major agricultural problem that negatively affects crop yield. Root systems counteract detrimental passive proton influx from acidic soil through increased proton pumping into the apoplast, which is presumably also required for cell elongation and stimulated by auxin. Here, we found an unexpected impact of extracellular pH on auxin activity and cell proliferation rate in the root meristem of two Arabidopsis mutants with impaired auxin perception, axr3 and brx. Surprisingly, neutral to slightly alkaline media rescued their severely reduced root (meristem) growth by stimulating auxin signaling, independent of auxin uptake. The finding that proton pumps are hyperactive in brx roots could explain this phenomenon and is consistent with more robust growth and increased fitness of brx mutants on overly acidic media or soil. Interestingly, the original brx allele was isolated from a natural stock center accession collected from acidic soil. Our discovery of a novel brx allele in accessions recently collected from another acidic sampling site demonstrates the existence of independently maintained brx loss-of-function alleles in nature and supports the notion that they are advantageous in acidic soil pH conditions, a finding that might be exploited for crop breeding. Copyright © 2012 Elsevier Ltd. All rights reserved.

  11. Intestinal Microbiota in Premature Children — the Modern State of the Problem (Literature Analysis

    Directory of Open Access Journals (Sweden)

    I. A. Belyaeva

    2015-01-01

    Full Text Available The problem of intestinal microbiota influencing the health of early aged children has become especially relevant over the past few years. On one hand, this is due to the significant worsening of the human environment ecology, on the other — due to the high prevalence of digestive disorders in children, especially premature ones. The introduction of modern high-informative molecular-genetic research methods (PCR-amplification with gene sequenation made it possible to reveal the primary stage of human colonization by bacteria even at the stage of fetal ontogenesis and to thoroughly decode the microbiota structure in newborns and first-year babies. It is established, that the mothers microbiota has a direct effect on the quantity and quality of the child’s microbiota. The mother’s microbiota depends not only on her possessing inflammatory, but also metabolic diseases (obesity. There is also a direct correlation between the children’s microbiota and the wway they were born (microbiota is better in cases of natural birth, and these differences are prevalent after a number of months after birth. One of the main factors affecting microbiota after birth from the very first day is nutrition. Most studies earnestly confirm the role of breastfeeding in contributing to an optimal microbiocenosis in the child. Antibacterial therapy, being received by either the mother or the child has a negative effect on the colonization of the intestines by symbiont microbes. The negative impacts on the micro flora are especially significant for premature children especially those born with a very low and extremely low body mass. The ontogenesis of these children is most severed by malicious factors (infections followed by the necessity of a massive antibacterial therapy, hypoxia, surgical birth, forced artificial feeding in connection with a general immaturity, including not yet fully-fledged body defense systems. Directive microbiota correction in premature

  12. Intestinal Microbiota: Facts and Fiction

    Czech Academy of Sciences Publication Activity Database

    Kverka, Miloslav; Tlaskalová-Hogenová, H.

    2017-01-01

    Roč. 35, 1-2 (2017), s. 139-147 ISSN 0257-2753 R&D Projects: GA ČR(CZ) GAP303/12/0535 Institutional support: RVO:68378041 Keywords : dysbiosis * gnotobiotic animals * gut microbiota Subject RIV: FR - Pharmacology ; Medidal Chemistry OBOR OECD: Microbiology Impact factor: 2.203, year: 2016

  13. Microbiota intestinal en la salud y la enfermedad

    OpenAIRE

    M.E. Icaza-Chávez

    2013-01-01

    La microbiota intestinal es la comunidad de microorganismos vivos residentes en el tubo digestivo. Muchos grupos de investigadores a nivel mundial trabajan descifrando el genoma de la microbiota. Las técnicas modernas de estudio de la microbiota nos han acercado al conocimiento de un número importante de bacterias que no son cultivables, y de la relación entre los microorganismos que nos habitan y nuestra homeostasis. La microbiota es indispensable para el correcto crecimiento corporal, el de...

  14. The gut microbiota, obesity and insulin resistance.

    Science.gov (United States)

    Shen, Jian; Obin, Martin S; Zhao, Liping

    2013-02-01

    The human gut is densely populated by commensal and symbiotic microbes (the "gut microbiota"), with the majority of the constituent microorganisms being bacteria. Accumulating evidence indicates that the gut microbiota plays a significant role in the development of obesity, obesity-associated inflammation and insulin resistance. In this review we discuss molecular and cell biological mechanisms by which the microbiota participate in host functions that impact the development and maintenance of the obese state, including host ingestive behavior, energy harvest, energy expenditure and fat storage. We additionally explore the diverse signaling pathways that regulate gut permeability and bacterial translocation to the host and how these are altered in the obese state to promote the systemic inflammation ("metabolic endotoxemia") that is a hallmark of obesity and its complications. Fundamental to our discussions is the concept of "crosstalk", i.e., the biochemical exchange between host and microbiota that maintains the metabolic health of the superorganism and whose dysregulation is a hallmark of the obese state. Differences in community composition, functional genes and metabolic activities of the gut microbiota appear to distinguish lean vs obese individuals, suggesting that gut 'dysbiosis' contributes to the development of obesity and/or its complications. The current challenge is to determine the relative importance of obesity-associated compositional and functional changes in the microbiota and to identify the relevant taxa and functional gene modules that promote leanness and metabolic health. As diet appears to play a predominant role in shaping the microbiota and promoting obesity-associated dysbiosis, parallel initiatives are required to elucidate dietary patterns and diet components (e.g., prebiotics, probiotics) that promote healthy gut microbiota. How the microbiota promotes human health and disease is a rich area of investigation that is likely to generate

  15. A study of the aptitude of soils under natural conditions to retain radiostrontium

    International Nuclear Information System (INIS)

    Bovard, P.; Grauby, A.

    1960-01-01

    Independently of the theoretical study of the propagation of radioactivity in the soil as a result of submersions or of radioactive rain, the authors have studied directly and practically how this radioactivity can vary in the actual soil. To this end a simple, rapid method has been perfected; it makes it possible to maintain for each soil sample the natural parameters (structure, humidity, etc.) without introducing boundary effects. In the laboratory, after charging the soil samples, part of the study of the propagation of radioactivity is done by autoradiography; finally, as a practical application, the study of an atomic site illustrates the methods described. (author) [fr

  16. Bacteria Associated to Plants Naturally Selected in a Historical PCB Polluted Soil Show Potential to Sustain Natural Attenuation

    KAUST Repository

    Vergani, Lorenzo; Mapelli, Francesca; Marasco, Ramona; Crotti, Elena; Fusi, Marco; Di Guardo, Antonio; Armiraglio, Stefano; Daffonchio, Daniele; Borin, Sara

    2017-01-01

    The exploitation of the association between plants and microorganisms is a promising approach able to boost natural attenuation processes for soil clean-up in vast polluted areas characterized by mixed chemical contamination. We aimed to explore

  17. Host-microbiota interactions within the fish intestinal ecosystem.

    Science.gov (United States)

    Pérez, T; Balcázar, J L; Ruiz-Zarzuela, I; Halaihel, N; Vendrell, D; de Blas, I; Múzquiz, J L

    2010-07-01

    Teleost fish are in direct contact with the aquatic environment, and are therefore in continual contact with a complex and dynamic microbiota, some of which may have implications for health. Mucosal surfaces represent the main sites in which environmental antigens and intestinal microbiota interact with the host. Thus, the gut-associated lymphoid tissues (GALT) must develop mechanisms to discriminate between pathogenic and commensal microorganisms. Colonization of intestinal mucosal surfaces with a normal microbiota has a positive effect on immune regulatory functions of the gut, and disturbance in these immune regulatory functions by an imbalanced microbiota may contribute to the development of diseases. Significant attention has therefore been recently focused on the role of probiotics in the induction or restoration of a disturbed microbiota to its normal beneficial composition. Given this, this article explores the fascinating relationship between the fish immune system and the bacteria that are present in its intestinal microbiota, focusing on the bacterial effect on the development of certain immune responses.

  18. Effects of dietary poly-β-hydroxybutyrate (PHB) on microbiota composition and the mTOR signaling pathway in the intestines of litopenaeus vannamei.

    Science.gov (United States)

    Duan, Yafei; Zhang, Yue; Dong, Hongbiao; Wang, Yun; Zhang, Jiasong

    2017-12-01

    Poly-β-hydroxybutyrate (PHB) is a natural polymer of the short chain fatty acid β-hydroxybutyrate, which acts as a microbial control agent. The mammalian target of the rapamycin (mTOR) signaling pathway plays a crucial role in intestine inflammation and epithelial morphogenesis. In this study, we examined the composition of intestine microbiota, and mTOR signaling-related gene expression in Pacific white shrimp Litopenaeus vannamei fed diets containing different levels of PHB: 0% (Control), 1% (PHB1), 3% (PHB3), and 5% (PHB5) (w/w) for 35 days. High-throughput sequencing analysis revealed that dietary PHB altered the composition and diversity of intestine microbiota, and that the microbiota diversity decreased with the increasing doses of PHB. Specifically, dietary PHB increased the relative abundance of Proteobacteria and Tenericutes in the PHB1 and PHB5 groups, respectively, and increased that of Gammaproteobacteria in the three PHB groups. Alternatively, PHB decreased Alphaproteobacteria in the PHB3 and PHB5 groups. At the genus level, dietary PHB increased the abundance of beneficial bacteria, such as Bacillus, Lactobacillus, Lactococcus, Clostridium, and Bdellovibrio. The relative mRNA expression levels of the mTOR signaling-related genes TOR, 4E-BP, eIF4E1α, and eIF4E2 all increased in the three PHB treatment groups. These results revealed that dietary PHB supplementation had a beneficial effect on intestine health of L. vannamei by modulating the composition of intestine microbiota and activating mTOR signaling.

  19. A modified R-type bacteriocin specifically targeting Clostridium difficile prevents colonization of mice without affecting gut microbiota diversity.

    Science.gov (United States)

    Gebhart, Dana; Lok, Stephen; Clare, Simon; Tomas, Myreen; Stares, Mark; Scholl, Dean; Donskey, Curtis J; Lawley, Trevor D; Govoni, Gregory R

    2015-03-24

    Clostridium difficile is a leading cause of nosocomial infections worldwide and has become an urgent public health threat requiring immediate attention. Epidemic lineages of the BI/NAP1/027 strain type have emerged and spread through health care systems across the globe over the past decade. Limiting person-to-person transmission and eradicating C. difficile, especially the BI/NAP1/027 strain type, from health care facilities are difficult due to the abundant shedding of spores that are impervious to most interventions. Effective prophylaxis for C. difficile infection (CDI) is lacking. We have genetically modified a contractile R-type bacteriocin ("diffocin") from C. difficile strain CD4 to kill BI/NAP1/027-type strains for this purpose. The natural receptor binding protein (RBP) responsible for diffocin targeting was replaced with a newly discovered RBP identified within a prophage of a BI/NAP1/027-type target strain by genome mining. The resulting modified diffocins (a.k.a. Avidocin-CDs), Av-CD291.1 and Av-CD291.2, were stable and killed all 16 tested BI/NAP1/027-type strains. Av-CD291.2 administered in drinking water survived passage through the mouse gastrointestinal (GI) tract, did not detectably alter the mouse gut microbiota or disrupt natural colonization resistance to C. difficile or the vancomycin-resistant Enterococcus faecium (VREF), and prevented antibiotic-induced colonization of mice inoculated with BI/NAP1/027-type spores. Given the high incidence and virulence of the pathogen, preventing colonization by BI/NAP1/027-type strains and limiting their transmission could significantly reduce the occurrence of the most severe CDIs. This modified diffocin represents a prototype of an Avidocin-CD platform capable of producing targetable, precision anti-C. difficile agents that can prevent and potentially treat CDIs without disrupting protective indigenous microbiota. Treatment and prevention strategies for bacterial diseases rely heavily on traditional

  20. An assessment of the natural radioactivity distribution and radiation hazard in soil samples from Qatar using high-resolution gamma-ray spectrometry

    Science.gov (United States)

    Al-Sulaiti, Huda; Al Mugren, K. S.; Bradley, D. A.; Regan, P. H.; Santawamaitre, T.; Malain, D.; Habib, A.; Nasir, Tabassum; Alkhomashi, N.; Al-Dahan, N.; Al-Dosari, M.; Bukhari, S.

    2017-11-01

    We establish baseline measurements for radioactivity concentration in the soil samples collected from the Qatarian peninsula. The work focused on the naturally occurring and technically enhanced levels of radiation associated with 235,8U and 232Th natural decay chains and the long-lived naturally occurring radionuclide 40K in 129 soil samples collected across the landscape of the State of Qatar. Three radiological distribution maps showing the activity concentrations of 226Ra, 232Th and 40K were constructed. Two soil samples were found to be elevated to the favour of 226Ra concentration and significantly above the average and global values. Notably, these samples were collected from an area within an oil field (NW Dukhan). The mean values of activity concentrations of 226Ra, 232Th and 40K for the full cohort of samples were found to be 17.2±1.6, 6.38±0.26 and 169±5 Bq/kg, respectively. These values lie within the expected range relative to the world average values in soil samples of 30, 35 and 400 Bq/kg, respectively.

  1. Rett Syndrome: A Focus on Gut Microbiota

    Directory of Open Access Journals (Sweden)

    Elisa Borghi

    2017-02-01

    Full Text Available Rett syndrome (RTT is an X-linked neurodevelopmental disorder affecting 1 in 10,000 live female births. Changes in microbiota composition, as observed in other neurological disorders such as autism spectrum disorders, may account for several symptoms typically associated with RTT. We studied the relationship between disease phenotypes and microbiome by analyzing diet, gut microbiota, and short-chain fatty acid (SCFA production. We enrolled eight RTT patients and 10 age- and sex-matched healthy women, all without dietary restrictions. The microbiota was characterized by 16S rRNA gene sequencing, and SCFAs concentration was determined by gas chromatographic analysis. The RTT microbiota showed a lower α diversity, an enrichment in Bacteroidaceae, Clostridium spp., and Sutterella spp., and a slight depletion in Ruminococcaceae. Fecal SCFA concentrations were similar, but RTT samples showed slightly higher concentrations of butyrate and propionate, and significant higher levels in branched-chain fatty acids. Daily caloric intake was similar in the two groups, but macronutrient analysis showed a higher protein content in RTT diets. Microbial function prediction suggested in RTT subjects an increased number of microbial genes encoding for propionate and butyrate, and amino acid metabolism. A full understanding of these critical features could offer new, specific strategies for managing RTT-associated symptoms, such as dietary intervention or pre/probiotic supplementation.

  2. Chemical compositions and sources of organic matter in fine particles of soils and sands from the vicinity of Kuwait city.

    Science.gov (United States)

    Rushdi, Ahmed I; Al-Zarban, Sheikha; Simoneit, Bernd R T

    2006-09-01

    Fine particles in the atmosphere from soil and sand resuspension contain a variety of organic compounds from natural biogenic and anthropogenic matter. Soil and sand samples from various sites near Kuwait city were collected, sieved to retain the fine particles, and extracted with a mixture of dichloromethane and methanol. The extracts were derivatized and analyzed by gas chromatography-mass spectrometry in order to characterize the chemical compositions and sources of the organic components. The major inputs of organic compounds were from both natural biogenic and anthropogenic sources in these samples. Vegetation was the major natural source of organic compounds and included n-alkanols, n-alkanoic acids, n-alkanes, sterols and triterpenoids. Saccharides had high concentrations (31-43%) in the sand dune and seafront samples, indicating sources from decomposed vegation materials and/or the presence of viable microbiota such as bacteria and fungi. Vehicular emission products, leakage of lubricating oils, discarded plastics and emissions from cooking operations were the major anthropogenic inputs in the samples from the urban areas. This input was mainly UCM, n-alkanes, hopanes, plasticizers and cholesterol, respectively.

  3. Radiation monitoring of soil cover of natural uranium in the Issyk-Kul province

    International Nuclear Information System (INIS)

    Djenbaev, B.M.; Toktoeva, T.E.; Kaldibaev, B.K.; Zholbolduev, B.T.

    2015-01-01

    This article presents the current state in the radioecological soil Issyk-Kul province of natural uranium. Found that the background radiation - exposure dose and artificial radionuclides in the soil of the coastal zone of the lake as a whole at the level of the background and the acceptance of lower standards except for natural technogenic and some natural areas. Radioecological this province is mild natural and industrial uranium province.We have previously established 10 experimental plots around Issyk-Kul and the measurement showed that the power of natural background radiation in the gamma radiation of the coastal lake zone is an average of 17 to 25 mR/h in some areas up to 40 mR/h. As the distance from the lake to the side slopes of its level in some places rises to 40 mR/h, especially in some mountainous areas, canyons, which are based on the rocks, granites and their fragments are small, red sand, with a slightly increased radioactivity. For small areas with high natural background radiation can be attributed to the beaches of the coastal zone v. Jenish, v. Ak-Terek, located on the southern shore of Issyk-Kul Lake. The radioactivity of 30 - 60 mR/h, and in areas with a high content of iron in the sand inclusions level exposure dose increases up to 400 mR/h. Small areas of the coastal zone of Issyk-Kul Lake, mostly mud deposits with characteristic brilliance giving high radiation background. These areas include: the beach v.Tosor - 40-50 mR/h, 10 km west of the coast v.Kaji-Sai - 32-40 mR/h, the shore around with. Toru-Aigyr - 30 mR/h, the coast around v.Tamchi - 40-50 mR/h. In general, cities in the Issyk-Kul basin Kara-Kol, Cholpon-Ata and Balykchy radiation situation quite well, the average exposure dose of gamma radiation does not exceed 20 - 22 mR/h, but in some places the use of crushed granite, as filler and construction material, the level of background radiation increases to 40-50 mR/h This indicates that these natural resources, without first

  4. Calculation of the effective dose from natural radioactivity sources in soil using MCNP code

    International Nuclear Information System (INIS)

    Krstic, D.; Nikezic, D.

    2008-01-01

    Full text: Effective dose delivered by photon emitted from natural radioactivity in soil was calculated in this report. Calculations have been done for the most common natural radionuclides in soil as 238 U, 232 Th series and 40 K. A ORNL age-dependent phantom and the Monte Carlo transport code MCNP-4B were employed to calculate the energy deposited in all organs of phantom.The effective dose was calculated according to ICRP74 recommendations. Conversion coefficients of effective dose per air kerma were determined. Results obtained here were compared with other authors

  5. Natural and artificial radionuclides in soils from Parana State, Brazil

    International Nuclear Information System (INIS)

    Schuch, L.A.; Barreto, W.O.; Cardoso, A.

    1994-01-01

    Soil samples from Parana State, Brazil, were collected in 1991 and compared with others collected at some location in March 1977 and at the end of 1983. Pedological analyses were practiced on the samples and 137 Cs and 232 Th, 226 Ra and 40 K activities were determined by gamma-ray spectrometry. A latitude dependence of 137 Cs was found as well. It was impossible to determine the 137 Cs contribution from Chernobyl nuclear accident because of low fallout and intense leaching, erosion and re-suspension in soils of regions with high annual precipitation. Natural radionuclides did not show such effects. (author) 39 refs; 6 tabs

  6. Gastrointestinal Microbiota and Some Children Diseases: A Review

    Directory of Open Access Journals (Sweden)

    Thabata Koester Weber

    2012-01-01

    Full Text Available The bacterial colonization is defined immediately after birth, through direct contact with maternal microbiota and may be influenced during lactation. There is emerging evidence indicating that quantitative and qualitative changes on gut microbiota contribute to alterations in the mucosal activation of immune system leading to intra- or extra-intestinal diseases. A balance between pathogenic and beneficial microbiota throughout childhood and adolescence is important to gastrointestinal health, including protection against pathogens, inhibition of pathogens, nutrient processing (synthesis of vitamin K, stimulation of angiogenesis, and regulation of host fat storage. Probiotics can promote an intentional modulation of intestinal microbiota favoring the health of the host. This paper is a review about modulation of intestinal microbiota on prevention and adjuvant treatment of pediatric gastrointestinal diseases.

  7. Pyrosequencing the canine faecal microbiota: breadth and depth of biodiversity.

    Directory of Open Access Journals (Sweden)

    Daniel Hand

    Full Text Available Mammalian intestinal microbiota remain poorly understood despite decades of interest and investigation by culture-based and other long-established methodologies. Using high-throughput sequencing technology we now report a detailed analysis of canine faecal microbiota. The study group of animals comprised eleven healthy adult miniature Schnauzer dogs of mixed sex and age, some closely related and all housed in kennel and pen accommodation on the same premises with similar feeding and exercise regimes. DNA was extracted from faecal specimens and subjected to PCR amplification of 16S rDNA, followed by sequencing of the 5' region that included variable regions V1 and V2. Barcoded amplicons were sequenced by Roche-454 FLX high-throughput pyrosequencing. Sequences were assigned to taxa using the Ribosomal Database Project Bayesian classifier and revealed dominance of Fusobacterium and Bacteroidetes phyla. Differences between animals in the proportions of different taxa, among 10,000 reads per animal, were clear and not supportive of the concept of a "core microbiota". Despite this variability in prominent genera, littermates were shown to have a more similar faecal microbial composition than unrelated dogs. Diversity of the microbiota was also assessed by assignment of sequence reads into operational taxonomic units (OTUs at the level of 97% sequence identity. The OTU data were then subjected to rarefaction analysis and determination of Chao1 richness estimates. The data indicated that faecal microbiota comprised possibly as many as 500 to 1500 OTUs.

  8. Ability of natural attenuation and phytoremediation using maize (Zea mays L.) to decrease soil contents of polycyclic aromatic hydrocarbons (PAHs) derived from biomass fly ash in comparison with PAHs-spiked soil.

    Science.gov (United States)

    Košnář, Zdeněk; Mercl, Filip; Tlustoš, Pavel

    2018-05-30

    A 120-day pot experiment was conducted to compare the ability of natural attenuation and phytoremediation approaches to remove polycyclic aromatic hydrocarbons (PAHs) from soil amended with PAHs-contaminated biomass fly ash. The PAH removal from ash-treated soil was compared with PAHs-spiked soil. The removal of 16 individual PAHs from soil ranged between 4.8% and 87.8% within the experiment. The natural attenuation approach led to a negligible total PAH removal. The phytoremediation was the most efficient approach for PAH removal, while the highest removal was observed in the case of ash-treated soil. The content of low molecular weight (LMW) PAHs and the total PAHs in this treatment significantly decreased (P <.05) over the whole experiment by 47.6% and 29.4%, respectively. The tested level of PAH soil contamination (~1600 µg PAH/kg soil dry weight) had no adverse effects on maize growth as well on the biomass yield. In addition, the PAHs were detected only in maize roots and their bioaccumulation factors were significantly lower than 1 suggesting negligible PAH uptake from soil by maize roots. The results showed that PAHs of ash origin were similarly susceptible to removal as spiked PAHs. The presence of maize significantly boosted the PAH removal from soil and its aboveground biomass did not represent any environmental risk. Copyright © 2018 Elsevier Inc. All rights reserved.

  9. Ability of TEP1 in intestinal flora to modulate natural resistance of Anopheles dirus.

    Science.gov (United States)

    Wang, Yanyan; Wang, Ying; Zhang, Jingru; Xu, Wenyue; Zhang, Jian; Huang, Fu Sheng

    2013-08-01

    Blocking transmission of malaria is a reliable way to control and eliminate infection. However, in-depth knowledge of the interaction between Plasmodium and mosquito is needed. Studies suggest that innate immunity is the main mechanism inhibiting development of malaria parasites in the mosquito. Recent studies have found that use of antibiotics that inhibit the mosquito gut flora can reduce the immune response of Anopheles gambiae, thereby contributing to the development of malaria parasites. In our study, we used the non susceptible model of Anopheles dirus-Plasmodium yoelii to explore the effect of Anopheles intestinal flora on the natural resistance of A. dirus to P. yoelii. We found that in mosquitoes infected with Plasmodium, the intestinal flora can regulate expression of thioester-containing protein (TEP1) via an RNAi gene-silencing approach. Our results suggest that in the absence of TEP1, the natural microbiota cannot suppress the development of P. yoelii in A. dirus. This suggests that AdTEP1 plays an important role in the resistance of A. dirus to P. yoelii. The intestinal flora may modulate the development of P. yoelii in A. dirus by regulating TEP1 expression. Copyright © 2013 Elsevier Inc. All rights reserved.

  10. Natural radionuclides in soil profiles surrounding the largest coal-fired power plant in Serbia

    OpenAIRE

    Tanić Milan N.; Janković-Mandić Ljiljana J.; Gajić Boško A.; Daković Marko Z.; Dragović Snežana D.; Bačić Goran G.

    2016-01-01

    This study evaluates the influence of the largest Serbian coal-fired power plant on radionuclide concentrations in soil profiles up to 50 cm in depth. Thirty soil profiles were sampled from the plant surroundings (up to 10 km distance) and analyzed using standard methods for soil physicochemical properties and gamma ray spectrometry for specific activities of natural radionuclides (40K, 226Ra and 232Th). Spatial and vertical distribution of radionuclides wa...

  11. Effectiveness of mineral soil to adsorb the natural occurring radioactive material (norm), uranium and thorium

    Energy Technology Data Exchange (ETDEWEB)

    Amir, Muhammad Nur Iman; Ismail, Nurul Izzatiafifi; Wood, Ab. Khalik, E-mail: khalik@salam.uitm.edu.my; Saat, Ahmad; Hamzah, Zaini [Faculty of Applied Sciences, Universiti Teknologi MARA, 40450 Shah Alam, Selangor (Malaysia)

    2015-04-29

    A study has been performed on U-soil and Th-soil adsorption of three types of soil collected from Selangor State of Malaysia which are Saujana Putra, Bukit Changgang and Jenderam Hilir. In this study, natural radionuclide (U and Th) soil adsorption based on batch experiments with various initial concentrations of the radionuclide elements were carried out. Parameters that were set constant include pH at 5;amount of soil used was 5 g each, contact time was 24 hour and different initial concentration for each solution of U and Th which is 5 mg/L, 10 mg/L, 15 mg/L, 20 mg/L, 25 mg/L and 40 mg/L were used. The K{sub d} values for each type of soil were determined in this batch experiments which was based on US-EPA method, in order to estimate adsorption capacity of the soil.The K{sub d} values of Th found higher than Kd values of U for all of the soil samples, and the highest was found on the soil collected from Bukit Changgang. The soil clay content was one of factors to influence the adsorption of both U and Th from dilute initial solution. The U-soil and Th-soil adsorption process for all the soil samples studied are generally obeying unimolecular layer Langmuir isotherm model. From Langmuir isotherm, the maximum adsorption capacity for U was 0.393mg/g and for Th was 1.53 mg/g for the soil that was taken from Bukit Changgang. From the study, it suggested that the soil from Bukit Changgang applicable as potential enhanced barrier for site disposing waste containing U and Th.

  12. The antihyperlipidemic effects of fullerenol nanoparticles via adjusting the gut microbiota in vivo.

    Science.gov (United States)

    Li, Juan; Lei, Runhong; Li, Xin; Xiong, Fengxia; Zhang, Quanyang; Zhou, Yue; Yang, Shengmei; Chang, Yanan; Chen, Kui; Gu, Weihong; Wu, Chongming; Xing, Gengmei

    2018-01-17

    Nanoparticles (NPs) administered orally will meet the gut microbiota, but their impacts on microbiota homeostasis and the consequent physiological relevance remain largely unknown. Here, we describe the modulatory effects and the consequent pharmacological outputs of two orally administered fullerenols NPs (Fol1 C 60 (OH) 7 (O) 8 and Fol113 C 60 (OH) 11 (O) 6 ) on gut microbiota. Administration of Fol1 and Fol113 NPs for 4 weeks largely shifted the overall structure of gut microbiota in mice. The bacteria belonging to putative short-chain fatty acids (SCFAs)-producing genera were markedly increased by both NPs, especially Fol1. Dynamic analysis showed that major SCFAs-producers and key butyrate-producing gene were significantly enriched after treatment for 7-28 days. The fecal contents of SCFAs were consequently increased, which was accompanied by significant decreases of triglycerides and total cholesterol levels in the blood and liver, with Fol1 superior to Fol113. Under cultivation in vitro, fullerenols NPs can be degraded by gut flora and exhibited a similar capacity of inulin to promote SCFA-producing genera. The differential effects of Fol1 and Fol113 NPs on the microbiome may be attributable to their subtly varied surface structures. The two fullerenol NPs remarkably modulate the gut microbiota and selectively enrich SCFA-producing bacteria, which may be an important reason for their anti-hyperlipidemic effect in mice.

  13. Tannins and Bacitracin Differentially Modulate Gut Microbiota of Broiler Chickens

    Directory of Open Access Journals (Sweden)

    Juan María Díaz Carrasco

    2018-01-01

    Full Text Available Antibiotic growth promoters have been used for decades in poultry farming as a tool to maintain bird health and improve growth performance. Global concern about the recurrent emergence and spreading of antimicrobial resistance is challenging the livestock producers to search for alternatives to feed added antibiotics. The use of phytogenic compounds appears as a feasible option due to their ability to emulate the bioactive properties of antibiotics. However, detailed description about the effects of in-feed antibiotics and alternative natural products on chicken intestinal microbiota is lacking. High-throughput sequencing of 16S rRNA gene was used to study composition of cecal microbiota in broiler chickens supplemented with either bacitracin or a blend of chestnut and quebracho tannins over a 30-day grow-out period. Both tannins and bacitracin had a significant impact on diversity of cecal microbiota. Bacitracin consistently decreased Bifidobacterium while other bacterial groups were affected only at certain times. Tannins-fed chickens showed a drastic decrease in genus Bacteroides while certain members of order Clostridiales mainly belonging to the families Ruminococcaceae and Lachnospiraceae were increased. Different members of these groups have been associated with an improvement of intestinal health and feed efficiency in poultry, suggesting that these bacteria could be associated with productive performance of birds.

  14. A Distinctive and Host-Restricted Gut Microbiota in Populations of a Cactophilic Drosophila Species.

    Science.gov (United States)

    Martinson, Vincent G; Carpinteyro-Ponce, Javier; Moran, Nancy A; Markow, Therese A

    2017-12-01

    Almost all animals possess gut microbial communities, but the nature of these communities varies immensely. For example, in social bees and mammals, the composition is relatively constant within species and is dominated by specialist bacteria that do not live elsewhere; in laboratory studies and field surveys of Drosophila melanogaster , however, gut communities consist of bacteria that are ingested with food and that vary widely among individuals and localities. We addressed whether an ecological specialist in its natural habitat has a microbiota dominated by gut specialists or by environmental bacteria. Drosophila nigrospiracula is a species that is endemic to the Sonoran Desert and is restricted to decaying tissues of two giant columnar cacti, Pachycereus pringlei (cardón cactus) and Carnegiea gigantea (saguaro cactus). We found that the D. nigrospiracula microbiota differs strikingly from that of the cactus tissue on which the flies feed. The most abundant bacteria in the flies are rare or completely absent in the cactus tissue and are consistently abundant in flies from different cacti and localities. Several of these fly-associated bacterial groups, such as the bacterial order Orbales and the genera Serpens and Dysgonomonas , have been identified in prior surveys of insects from the orders Hymenoptera, Coleoptera, Lepidoptera, and Diptera, including several Drosophila species. Although the functions of these bacterial groups are mostly unexplored, Orbales species studied in bees are known to break down plant polysaccharides and use the resulting sugars. Thus, these bacterial groups appear to be specialized to the insect gut environment, where they may colonize through direct host-to-host transmission in natural settings. IMPORTANCE Flies in the genus Drosophila have become laboratory models for microbiota research, yet the bacteria commonly used in these experiments are rarely found in wild-caught flies and instead represent bacteria also present in the food

  15. Fate and bioavailability of 14C-pyrene and 14C-lindane in sterile natural and artificial soils and the influence of aging

    International Nuclear Information System (INIS)

    Šmídová, Klára; Hofman, Jakub; Ite, Aniefiok E.; Semple, Kirk T.

    2012-01-01

    Soil organic matter is used to extrapolate the toxicity and bioavailability of organic pollutants between different soils. However, it has been shown that other factors such as microbial activity are crucial. The aim of this study was to investigate if sterilization can reduce differences in the fate and bioavailability of organic pollutants between different soils. Three natural soils with increasing total organic carbon (TOC) content were collected and three artificial soils were prepared to obtain similar TOCs. Soils were sterilized and spiked with 14 C-pyrene and 14 C-lindane. Total 14 C radioactivity, HPCD extractability, and bioaccumulation in Eisenia fetida were measured over 56 days. When compared to non-sterile soils, differences between the natural and artificial soils and the influence of soil-contaminant contact time were generally reduced in the sterile soils (especially with middle TOC). The results indicate the possibility of using sterile soils as “the worst case scenario” in soil ecotoxicity studies. - Highlights: ► Sterile artificial and natural soils with the same TOC content were used. ► The fate and behavior of two 14 C-POPs were studied over 56 days after spiking. ► Sterilization reduced differences between artificial and natural soils. ► There was no effect of time (aging) in POPs bioaccumulation. ► Sterile soils may be used as “the worst case scenario” in POPs availability studies. - Sterilization reduced the differences in POPs fate and bioavailability between artificial and natural soils with the same TOC content and eliminated the influence of soil contact time.

  16. Classification and Use of Natural and Anthropogenic Soils by Indigenous Communities of the Upper Amazon Region of Colombia

    NARCIS (Netherlands)

    Peña-Venegas, C.P.; Stomph, T.J.; Verschoor, G.; Echeverri, J.A.; Struik, P.C.

    2016-01-01

    Outsiders often oversimplify Amazon soil use by assuming that abundantly available natural soils are poorly suited to agriculture and that sporadic anthropogenic soils are agriculturally productive. Local perceptions about the potentials and limitations of soils probably differ, but information

  17. The small intestine microbiota, nutritional modulation and relevance for health

    NARCIS (Netherlands)

    El Aidy, Sahar; van den Bogert, Bartholomeus; Kleerebezem, Michiel

    The intestinal microbiota plays a profound role in human health and extensive research has been dedicated to identify microbiota aberrations that are associated with disease. Most of this work has been targeting the large intestine and fecal microbiota, while the small intestine microbiota may also

  18. Variation in the Gut Microbiota of Termites (Tsaitermes ampliceps) Against Different Diets.

    Science.gov (United States)

    Su, Lijuan; Yang, Lele; Huang, Shi; Li, Yan; Su, Xiaoquan; Wang, Fengqin; Bo, Cunpei; Wang, En Tao; Song, Andong

    2017-01-01

    Termites are well recognized for their thriving on recalcitrant lignocellulosic diets through nutritional symbioses with gut-dwelling microbiota; however, the effects of diet changes on termite gut microbiota are poorly understood, especially for the lower termites. In this study, we employed high-throughput 454 pyrosequencing of 16S V1-V3 amplicons to compare gut microbiotas of Tsaitermes ampliceps fed with lignin-rich and lignin-poor cellulose diets after a 2-week-feeding period. As a result, the majority of bacterial taxa were shared across the treatments with different diets, but their relative abundances were modified. In particular, the relative abundance was reduced for Spirochaetes and it was increased for Proteobacteria and Bacteroides by feeding the lignin-poor diet. The evenness of gut microbiota exhibited a significant difference in response to the diet type (filter paper diets corn stover diets < wood diets), while their richness was constant, which may be related to the lower recalcitrance of this biomass to degradation. These results have important implications for sampling and analysis strategies to probe the lignocellulose degradation features of termite gut microbiota and suggest that the dietary lignocellulose composition could cause shifting rapidly in the termite gut microbiota.

  19. Carbohydrates and the human gut microbiota.

    Science.gov (United States)

    Chassard, Christophe; Lacroix, Christophe

    2013-07-01

    Due to its scale and its important role in maintaining health, the gut microbiota can be considered as a 'new organ' inside the human body. Many complex carbohydrates are degraded and fermented by the human gut microbiota in the large intestine to both yield basic energy salvage and impact gut health through produced metabolites. This review will focus on the gut microbes and microbial mechanisms responsible for polysaccharides degradation and fermentation in the large intestine. Gut microbes and bacterial metabolites impact the host at many levels, including modulation of inflammation, and glucose and lipid metabolisms. A complex relationship occurs in the intestine between the human gut microbiota, diet and the host. Research on carbohydrates and gut microbiota composition and functionality is fast developing and will open opportunities for prevention and treatment of obesity, diabetes and other related metabolic disorders through manipulation of the gut ecosystem.

  20. Mobility and plant availability of radioactive Cs in natural soil in relation to stable Cs, other alkali elements and soil fertility

    International Nuclear Information System (INIS)

    Varskog, P.; Steinnes, E.; Naeumann, R.

    1994-01-01

    The mobility and plant availability of radioactive Cs from the Chernobyl accident in natural soil-plant systems of varying fertility were studied at three sampling locations situated in subalpine areas of central Norway. The soil samples included litter, humus (0-2 cm and 2-5 cm depth), and mineral soil (8-12 cm and 20-30 cm depth), and the plant species studied were Betula nana, Empetrum hermaphroditum and Juncus trifidus. The lichen Cetraria nivalis was also sampled. The sampling took place in the middle of the growth season during the period 1987-1989. The soil and vegetation samples were analysed with respect to total radiocaesium ( 137 Cs and 134 Cs), Rb, stable Cs and exchangeable 137 Cs (in soil only), K, Ca and Mg. (Author)

  1. Monitoring of Natural Soil Radioactivity with Portable Gamma-Ray Spectrometers

    DEFF Research Database (Denmark)

    Bøtter-Jensen, Lars; Løvborg, Leif; Kirkegaard, Peter

    1979-01-01

    Two portable NaI(Tl) spectrometers with four energy windows were used for the recording of gamma-ray counts over soil and rock of differing natural radioactivity. The exposure rates at the field sites were simultaneously measured with a high-pressure argon ionization chamber. Background measureme......Two portable NaI(Tl) spectrometers with four energy windows were used for the recording of gamma-ray counts over soil and rock of differing natural radioactivity. The exposure rates at the field sites were simultaneously measured with a high-pressure argon ionization chamber. Background...... measurements at sea were carried out in order to estimate the non-terrestrial contributions to the instrument readings. Counts recorded in the three high-energy windows of the spectrometers were converted into radiometrically equivalent concentrations of thorium, uranium, and potassium in the ground. Large....... The theoretical exposure rates deducible from the experimental radioelement concentrations at the field sites were in good agreement both with the ionization-chamber readings (corrected for cosmic-ray background) and with the exposure rates measured by total gamma-ray counting. From this and other results...

  2. Intestinal colonisation, microbiota and future probiotics

    NARCIS (Netherlands)

    Salminen, S.; Benno, Y.; Vos, de W.M.

    2006-01-01

    The human intestine is colonized by a large number of microorganisms, collectively termed microbiota, which support a variety of physiological functions. As the major part of the microbiota has not yet been cultured, molecular methods are required to determine microbial composition and the impact of

  3. Limited transport of functionalized multi-walled carbon nanotubes in two natural soils

    International Nuclear Information System (INIS)

    Kasel, Daniela; Bradford, Scott A.; Šimůnek, Jiří; Pütz, Thomas; Vereecken, Harry; Klumpp, Erwin

    2013-01-01

    Column experiments were conducted in undisturbed and in repacked soil columns at water contents close to saturation (85–96%) to investigate the transport and retention of functionalized 14 C-labeled multi-walled carbon nanotubes (MWCNT) in two natural soils. Additionally, a field lysimeter experiment was performed to provide long-term information at a larger scale. In all experiments, no breakthrough of MWCNTs was detectable and more than 85% of the applied radioactivity was recovered in the soil profiles. The retention profiles exhibited a hyper-exponential shape with greater retention near the column or lysimeter inlet and were successfully simulated using a numerical model that accounted for depth-dependent retention. In conclusion, results indicated that the soils acted as a strong sink for MWCNTs. Little transport of MWCNTs is therefore likely to occur in the vadose zone, and this implies limited potential for groundwater contamination in the investigated soils. -- Highlights: •Investigation of undisturbed soil columns and lysimeter. •Transport experiments under water-unsaturated conditions. •Retention profiles were measured and numerically modeled. •Complete retention of MWCNT in undisturbed and repacked soil columns. -- In undisturbed columns and a lysimeter study, complete retention of functionalized multi-walled carbon nanotubes was found in two soils at environmentally relevant conditions

  4. The interplay between the gut immune system and microbiota in health and disease: nutraceutical intervention for restoring intestinal homeostasis.

    Science.gov (United States)

    Magrone, Thea; Jirillo, Emilio

    2013-01-01

    Gut immune system is daily exposed to a plethora of antigens contained in the environment as well as in food. Both secondary lymphoid tissue, such as Peyer's patches, and lymphoid follicles (tertiary lymphoid tissue) are able to respond to antigenic stimuli releasing cytokines or producing antibodies (secretory IgA). Intestinal epithelial cells are in close cooperation with intraepithelial lymphocytes and possess Toll-like receptors on their surface and Nod-like receptors (NLRs) which sense pathogens or pathogen-associated molecular patterns. Intestinal microbiota, mainly composed of Bacteroidetes and Firmicutes, generates tolerogenic response acting on gut dendritic cells and inhibiting the T helper (h)-17 cell anti-inflammatory pathway. This is the case of Bacteroides fragilis which leads to the production of interleukin-10, an anti-inflammatory cytokine, from both T regulatory cells and lamina propria macrophages. Conversely, segmented filamentous bacteria rather induce Th17 cells, thus promoting intestinal inflammation. Intestinal microbiota and its toxic components have been shown to act on both Nod1 and Nod2 receptors and their defective signaling accounts for the development of inflammatory bowel disease (IBD). In IBD a loss of normal tolerance to intestinal microbiota seems to be the main trigger of mucosal damage. In addition, intestinal microbiota thanks to its regulatory function of gut immune response can prevent or retard neoplastic growth. In fact, chronic exposure to environmental microorganisms seems to be associated with low frequency of cancer risk. Major nutraceuticals or functional foods employed in the modulation of intestinal microbiota are represented by prebiotics, probiotics, polyunsaturated fatty acids, amino acids and polyphenols. The cellular and molecular effects performed by these natural products in terms of modulation of the intestinal microbiota and mostly attenuation of the inflammatory pathway are described.

  5. Long-term organic-inorganic fertilization ensures great soil productivity and bacterial diversity after natural-to-agricultural ecosystem conversion.

    Science.gov (United States)

    Xun, Weibing; Xu, Zhihui; Li, Wei; Ren, Yi; Huang, Ting; Ran, Wei; Wang, Boren; Shen, Qirong; Zhang, Ruifu

    2016-09-01

    Natural ecosystems comprise the planet's wild plant and animal resources, but large tracts of land have been converted to agroecosystems to support the demand for agricultural products. This conversion limits the number of plant species and decreases the soil biological diversity. Here we used high-throughput 16S rRNA gene sequencing to evaluate the responses of soil bacterial communities in long-term converted and fertilized red soils (a type of Ferralic Cambisol). We observed that soil bacterial diversity was strongly affected by different types of fertilization management. Oligotrophic bacterial taxa demonstrated large relative abundances in chemically fertilized soil, whereas copiotrophic bacterial taxa were found in large relative abundances in organically fertilized and fallow management soils. Only organic-inorganic fertilization exhibited the same local taxonomic and phylogenetic diversity as that of a natural ecosystem. However, the independent use of organic or inorganic fertilizer reduced local taxonomic and phylogenetic diversity and caused biotic homogenization. This study demonstrated that the homogenization of bacterial communities caused by natural-to-agricultural ecosystem conversion can be mitigated by employing rational organic-inorganic fertilization management.

  6. Specific inulin-type fructan fibers protect against autoimmune diabetes by modulating gut immunity, barrier function, and microbiota homeostasis.

    Science.gov (United States)

    Chen, Kang; Chen, Hao; Faas, Marijke M; de Haan, Bart J; Li, Jiahong; Xiao, Ping; Zhang, Hao; Diana, Julien; de Vos, Paul; Sun, Jia

    2017-08-01

    Dietary fibers capable of modifying gut barrier and microbiota homeostasis affect the progression of type 1 diabetes (T1D). Here, we aim to compare modulatory effects of inulin-type fructans (ITFs), natural soluble dietary fibers with different degrees of fermentability from chicory root, on T1D development in nonobese diabetic mice. Female nonobese diabetic mice were weaned to long- and short-chain ITFs [ITF(l) and ITF(s), 5%] supplemented diet up to 24 weeks. T1D incidence, pancreatic-gut immune responses, gut barrier function, and microbiota composition were analyzed. ITF(l) but not ITF(s) supplementation dampened the incidence of T1D. ITF(l) promoted modulatory T-cell responses, as evidenced by increased CD25 + Foxp3 + CD4 + regulatory T cells, decreased IL17A + CD4 + Th17 cells, and modulated cytokine production profile in the pancreas, spleen, and colon. Furthermore, ITF(l) suppressed NOD like receptor protein 3 caspase-1-p20-IL-1β inflammasome in the colon. Expression of barrier reinforcing tight junction proteins occludin and claudin-2, antimicrobial peptides β-defensin-1, and cathelicidin-related antimicrobial peptide as well as short-chain fatty acid production were enhanced by ITF(l). Next-generation sequencing analysis revealed that ITF(l) enhanced Firmicutes/Bacteroidetes ratio to an antidiabetogenic balance and enriched modulatory Ruminococcaceae and Lactobacilli. Our data demonstrate that ITF(l) but not ITF(s) delays the development of T1D via modulation of gut-pancreatic immunity, barrier function, and microbiota homeostasis. © 2017 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  7. Culturable Bacterial Microbiota of the Stomach of Helicobacter pylori Positive and Negative Gastric Disease Patients

    Directory of Open Access Journals (Sweden)

    Yalda Khosravi

    2014-01-01

    Full Text Available Human stomach is the only known natural habitat of Helicobacter pylori (Hp, a major bacterial pathogen that causes different gastroduodenal diseases. Despite this, the impact of Hp on the diversity and the composition of the gastric microbiota has been poorly studied. In this study, we have analyzed the culturable gastric microbiota of 215 Malaysian patients, including 131 Hp positive and 84 Hp negative individuals that were affected by different gastric diseases. Non-Hp bacteria isolated from biopsy samples were identified by matrix assisted laser desorption ionization-time of flight mass spectrometry based biotyping and 16SrRNA sequencing. The presence of Hp did not significantly modify the diversity of the gastric microbiota. However, correlation was observed between the isolation of Streptococci and peptic ulcer disease. In addition, as a first report, Burkholderia pseudomallei was also isolated from the gastric samples of the local population. This study suggested that there may be geographical variations in the diversity of the human gastric microbiome. Geographically linked diversity in the gastric microbiome and possible interactions between Hp and other bacterial species from stomach microbiota in pathogenesis are proposed for further investigations.

  8. The role of adaptive immunity as an ecological filter on the gut microbiota in zebrafish.

    Science.gov (United States)

    Stagaman, Keaton; Burns, Adam R; Guillemin, Karen; Bohannan, Brendan Jm

    2017-07-01

    All animals live in intimate association with communities of microbes, collectively referred to as their microbiota. Certain host traits can influence which microbial taxa comprise the microbiota. One potentially important trait in vertebrate animals is the adaptive immune system, which has been hypothesized to act as an ecological filter, promoting the presence of some microbial taxa over others. Here we surveyed the intestinal microbiota of 68 wild-type zebrafish, with functional adaptive immunity, and 61 rag1 - zebrafish, lacking functional B- and T-cell receptors, to test the role of adaptive immunity as an ecological filter on the intestinal microbiota. In addition, we tested the robustness of adaptive immunity's filtering effects to host-host interaction by comparing the microbiota of fish populations segregated by genotype to those containing both genotypes. The presence of adaptive immunity individualized the gut microbiota and decreased the contributions of neutral processes to gut microbiota assembly. Although mixing genotypes led to increased phylogenetic diversity in each, there was no significant effect of adaptive immunity on gut microbiota composition in either housing condition. Interestingly, the most robust effect on microbiota composition was co-housing within a tank. In all, these results suggest that adaptive immunity has a role as an ecological filter of the zebrafish gut microbiota, but it can be overwhelmed by other factors, including transmission of microbes among hosts.

  9. The microbiota continuum along the female reproductive tract and its relation to uterine-related diseases.

    Science.gov (United States)

    Chen, Chen; Song, Xiaolei; Wei, Weixia; Zhong, Huanzi; Dai, Juanjuan; Lan, Zhou; Li, Fei; Yu, Xinlei; Feng, Qiang; Wang, Zirong; Xie, Hailiang; Chen, Xiaomin; Zeng, Chunwei; Wen, Bo; Zeng, Liping; Du, Hui; Tang, Huiru; Xu, Changlu; Xia, Yan; Xia, Huihua; Yang, Huanming; Wang, Jian; Wang, Jun; Madsen, Lise; Brix, Susanne; Kristiansen, Karsten; Xu, Xun; Li, Junhua; Wu, Ruifang; Jia, Huijue

    2017-10-17

    Reports on bacteria detected in maternal fluids during pregnancy are typically associated with adverse consequences, and whether the female reproductive tract harbours distinct microbial communities beyond the vagina has been a matter of debate. Here we systematically sample the microbiota within the female reproductive tract in 110 women of reproductive age, and examine the nature of colonisation by 16S rRNA gene amplicon sequencing and cultivation. We find distinct microbial communities in cervical canal, uterus, fallopian tubes and peritoneal fluid, differing from that of the vagina. The results reflect a microbiota continuum along the female reproductive tract, indicative of a non-sterile environment. We also identify microbial taxa and potential functions that correlate with the menstrual cycle or are over-represented in subjects with adenomyosis or infertility due to endometriosis. The study provides insight into the nature of the vagino-uterine microbiome, and suggests that surveying the vaginal or cervical microbiota might be useful for detection of common diseases in the upper reproductive tract.Whether the female reproductive tract harbours distinct microbiomes beyond the vagina has been a matter of debate. Here, the authors show a subject-specific continuity in microbial communities at six sites along the female reproductive tract, indicative of a non-sterile environment.

  10. Soil and geomorphological parameters to characterize natural environmental and human induced changes within the Guadarrama Range (Central Spain)

    Science.gov (United States)

    Schmid, Thomas; Inclán-Cuartas, Rosa M.; Santolaria-Canales, Edmundo; Saa, Antonio; Rodríguez-Rastrero, Manuel; Tanarro-Garcia, Luis M.; Luque, Esperanza; Pelayo, Marta; Ubeda, Jose; Tarquis, Ana; Diaz-Puente, Javier; De Marcos, Javier; Rodriguez-Alonso, Javier; Hernandez, Carlos; Palacios, David; Gallardo-Díaz, Juan; Fidel González-Rouco, J.

    2016-04-01

    Mediterranean mountain ecosystems are often complex and remarkably diverse and are seen as important sources of biological diversity. They play a key role in the water and sediment cycle for lowland regions as well as preventing and mitigating natural hazards especially those related to drought such as fire risk. However, these ecosystems are fragile and vulnerable to changes due to their particular and extreme climatic and biogeographic conditions. Some of the main pressures on mountain biodiversity are caused by changes in land use practices, infrastructure and urban development, unsustainable tourism, overexploitation of natural resources, fragmentation of habitats, particularly when located close to large population centers, as well as by pressures related toclimate change. The objective of this work is to select soil and geomorphological parameters in order to characterize natural environmental and human induced changes within the newly created National Park of the Sierra de Guadarrama in Central Spain, where the presence of the Madrid metropolitan area is the main factor of impact. This is carried out within the framework of the Guadarrama Monitoring Network (GuMNet) of the Campus de ExcelenciaInternacionalMoncloa, where long-term monitoring of the atmosphere, soil and bedrock are priority. This network has a total of ten stations located to the NW of Madrid and in this case, three stations have been selected to represent different ecosystems that include: 1) an alluvial plain in a lowland pasture area (La Herreria at 920 m a.s.l.), 2) mid mountain pine-forested and pasture area (Raso del Pino at 1801 m a.s.l.) and 3) high mountain grassland and rock area (Dos Hermanas at 2225 m a.s.l.). At each station a site geomorphological description, soil profile description and sampling was carried out. In the high mountain area information was obtained for monitoring frost heave activity and downslope soil movement. Basic soil laboratory analyses have been carried out

  11. Pathophysiological role of host microbiota in the development of obesity.

    Science.gov (United States)

    Kobyliak, Nazarii; Virchenko, Oleksandr; Falalyeyeva, Tetyana

    2016-04-23

    Overweight and obesity increase the risk for a number of diseases, namely, cardiovascular diseases, type 2 diabetes, dyslipidemia, premature death, non-alcoholic fatty liver disease as well as different types of cancer. Approximately 1.7 billion people in the world suffer from being overweight, most notably in developed countries. Current research efforts have focused on host and environmental factors that may affect energy balance. It was hypothesized that a microbiota profile specific to an obese host with increased energy-yielding behavior may exist. Consequently, the gut microbiota is becoming of significant research interest in relation to obesity in an attempt to better understand the aetiology of obesity and to develop new methods of its prevention and treatment. Alteration of microbiota composition may stimulate development of obesity and other metabolic diseases via several mechanisms: increasing gut permeability with subsequent metabolic inflammation; increasing energy harvest from the diet; impairing short-chain fatty acids synthesis; and altering bile acids metabolism and FXR/TGR5 signaling. Prebiotics and probiotics have physiologic functions that contribute to the health of gut microbiota, maintenance of a healthy body weight and control of factors associated with obesity through their effects on mechanisms that control food intake, body weight, gut microbiota and inflammatory processes.

  12. Diet strongly influences the gut microbiota of surgeonfishes

    KAUST Repository

    Miyake, Sou

    2015-01-20

    Intestinal tracts are among the most densely populated microbial ecosystems. Gut microbiota and their influence on the host have been well characterized in terrestrial vertebrates but much less so in fish. This is especially true for coral reef fishes, which are among the most abundant groups of vertebrates on earth. Surgeonfishes (family: Acanthuridae) are part of a large and diverse family of reef fish that display a wide range of feeding behaviours, which in turn has a strong impact on the reef ecology. Here, we studied the composition of the gut microbiota of nine surgeonfish and three nonsurgeonfish species from the Red Sea. High-throughput pyrosequencing results showed that members of the phylum Firmicutes, especially of the genus Epulopiscium, were dominant in the gut microbiota of seven surgeonfishes. Even so, there were large inter- and intraspecies differences in the diversity of surgeonfish microbiota. Replicates of the same host species shared only a small number of operational taxonomic units (OTUs), although these accounted for most of the sequences. There was a statistically significant correlation between the phylogeny of the host and their gut microbiota, but the two were not completely congruent. Notably, the gut microbiota of three nonsurgeonfish species clustered with some surgeonfish species. The microbiota of the macro- and microalgavores was distinct, while the microbiota of the others (carnivores, omnivores and detritivores) seemed to be transient and dynamic. Despite some anomalies, both host phylogeny and diet were important drivers for the intestinal microbial community structure of surgeonfishes from the Red Sea. © 2014 John Wiley & Sons Ltd.

  13. Fecal Microbiota Therapy for Clostridium difficile Infection: A Health Technology Assessment.

    Science.gov (United States)

    2016-01-01

    Fecal microbiota therapy is increasingly being used to treat patients with Clostridium difficile infection. This health technology assessment primarily evaluated the effectiveness and cost-effectiveness of fecal microbiota therapy compared with the usual treatment (antibiotic therapy). We performed a literature search using Ovid MEDLINE, Embase, Cochrane Database of Systematic Reviews, Database of Abstracts of Reviews of Effects, CRD Health Technology Assessment Database, Cochrane Central Register of Controlled Trials, and NHS Economic Evaluation Database. For the economic review, we applied economic filters to these search results. We also searched the websites of agencies for other health technology assessments. We conducted a meta-analysis to analyze effectiveness. The quality of the body of evidence for each outcome was examined according to the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) Working Group criteria. Using a step-wise, structural methodology, we determined the overall quality to be high, moderate, low, or very low. We used a survey to examine physicians' perception of patients' lived experience, and a modified grounded theory method to analyze information from the survey. For the review of clinical effectiveness, 16 of 1,173 citations met the inclusion criteria. A meta-analysis of two randomized controlled trials found that fecal microbiota therapy significantly improved diarrhea associated with recurrent C. difficile infection versus treatment with vancomycin (relative risk 3.24, 95% confidence interval [CI] 1.85-5.68) (GRADE: moderate). While fecal microbiota therapy is not associated with a significant decrease in mortality compared with antibiotic therapy (relative risk 0.69, 95% CI 0.14-3.39) (GRADE: low), it is associated with a significant increase in adverse events (e.g., short-term diarrhea, relative risk 30.76, 95% CI 4.46-212.44; abdominal cramping, relative risk 14.81, 95% CI 2.07-105.97) (GRADE: low). For

  14. Effects of Natural and Synthetic Soil Conditioners on Soil Moisture ...

    African Journals Online (AJOL)

    USER

    The field investigation was a 4 × 5 factorial pot-experiment with maize as the test crop. ... The soil samples were air-dried to about 20% (v v–1) moisture content, pounded and passed through a 2- ..... properties of gel-amended container media.

  15. New Insights into the Microbiota of Moth Pests.

    Science.gov (United States)

    Mereghetti, Valeria; Chouaia, Bessem; Montagna, Matteo

    2017-11-18

    In recent years, next generation sequencing (NGS) technologies have helped to improve our understanding of the bacterial communities associated with insects, shedding light on their wide taxonomic and functional diversity. To date, little is known about the microbiota of lepidopterans, which includes some of the most damaging agricultural and forest pests worldwide. Studying their microbiota could help us better understand their ecology and offer insights into developing new pest control strategies. In this paper, we review the literature pertaining to the microbiota of lepidopterans with a focus on pests, and highlight potential recurrent patterns regarding microbiota structure and composition.

  16. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater

    Directory of Open Access Journals (Sweden)

    Sarah M. Hird

    2014-03-01

    Full Text Available Brown-headed Cowbirds (Molothrus ater are the most widespread avian brood parasite in North America, laying their eggs in the nests of approximately 250 host species that raise the cowbird nestlings as their own. It is currently unknown how these heterospecific hosts influence the cowbird gut microbiota relative to other factors, such as the local environment and genetics. We test a Nature Hypothesis (positing the importance of cowbird genetics and a Nurture Hypothesis (where the host parents are most influential to cowbird gut microbiota using the V6 region of 16S rRNA as a microbial fingerprint of the gut from 32 cowbird samples and 16 potential hosts from nine species. We test additional hypotheses regarding the influence of the local environment and age of the birds. We found no evidence for the Nature Hypothesis and little support for the Nurture Hypothesis. Cowbird gut microbiota did not form a clade, but neither did members of the host species. Rather, the physical location, diet and age of the bird, whether cowbird or host, were the most significant categorical variables. Thus, passerine gut microbiota may be most strongly influenced by environmental factors. To put this variation in a broader context, we compared the bird data to a fecal microbiota dataset of 38 mammal species and 22 insect species. Insects were always the most variable; on some axes, we found more variation within cowbirds than across all mammals. Taken together, passerine gut microbiota may be more variable and environmentally determined than other taxonomic groups examined to date.

  17. Sampling locality is more detectable than taxonomy or ecology in the gut microbiota of the brood-parasitic Brown-headed Cowbird (Molothrus ater).

    Science.gov (United States)

    Hird, Sarah M; Carstens, Bryan C; Cardiff, Steven W; Dittmann, Donna L; Brumfield, Robb T

    2014-01-01

    Brown-headed Cowbirds (Molothrus ater) are the most widespread avian brood parasite in North America, laying their eggs in the nests of approximately 250 host species that raise the cowbird nestlings as their own. It is currently unknown how these heterospecific hosts influence the cowbird gut microbiota relative to other factors, such as the local environment and genetics. We test a Nature Hypothesis (positing the importance of cowbird genetics) and a Nurture Hypothesis (where the host parents are most influential to cowbird gut microbiota) using the V6 region of 16S rRNA as a microbial fingerprint of the gut from 32 cowbird samples and 16 potential hosts from nine species. We test additional hypotheses regarding the influence of the local environment and age of the birds. We found no evidence for the Nature Hypothesis and little support for the Nurture Hypothesis. Cowbird gut microbiota did not form a clade, but neither did members of the host species. Rather, the physical location, diet and age of the bird, whether cowbird or host, were the most significant categorical variables. Thus, passerine gut microbiota may be most strongly influenced by environmental factors. To put this variation in a broader context, we compared the bird data to a fecal microbiota dataset of 38 mammal species and 22 insect species. Insects were always the most variable; on some axes, we found more variation within cowbirds than across all mammals. Taken together, passerine gut microbiota may be more variable and environmentally determined than other taxonomic groups examined to date.

  18. Soil Carbon: a Critical natural resource – wide-scale goals, urgent Actions

    DEFF Research Database (Denmark)

    Nziguheba, Generose; Vargas, Rodrigo; Bationo, Andre

    2014-01-01

    Across the world, soil organic carbon (SOC) is decreasing due to changes in land use such as the conversion of natural systems to food or bioenergy production systems. The losses of SOC have impacted crop productivity and other ecosystem services adversely. One of the grand challenges for society...... is to manage soil carbon stocks to optimize the mix of five essential services - provisioning of food, water and energy; maintaining biodiversity; and regulating climate. Scientific research has helped develop an understanding of the general SOC dynamics and characteristics; the influence of soil management...... ecosystem services to optimize efforts and the benefits of SOC. Given that depleting SOC degrades most soil services, we suggest that in the coming decades increases in SOC will concurrently benefit all five of the essential services. The aim of this chapter is to identify and evaluate wide-scale goals...

  19. Streptomyces effect on the bacterial microbiota associated to Crassostrea sikamea oyster.

    Science.gov (United States)

    García Bernal, M; Trabal Fernández, N; Saucedo Lastra, P E; Medina Marrero, R; Mazón-Suástegui, J M

    2017-03-01

    To determine the composition and diversity of the microbiota associated to Crassostrea sikamea treated during 30 days with Streptomyces strains N7 and RL8. DNA was extracted from oysters followed by 16S rRNA gene amplification and pyrosequencing. The highest and lowest species diversity richness was observed in the initial and final control group, whereas Streptomyces-treated oysters exhibited intermediate values. Proteobacteria was the most abundant phylum (81·4-95·1%), followed by Bacteroidetes, Actinobacteria and Firmicutes. The genera Anderseniella, Oceanicola, Roseovarius, Ruegeria, Sulfitobacter, Granulosicoccus and Marinicella encompassed the core microbiota of all experimental groups. The genus Bacteriovorax was detected in all groups except in the final control and the depurated N7, whereas Vibrio remained undetected in all Streptomyces-treated groups. RL8 was the only group that harboured the genus Streptomyces in its microbiota. Principal component analysis showed that Streptomyces strains significantly changed oyster microbiota with respect to the initial and final control. Crassostrea sikamea treated with Streptomyces showed high species diversity and a microbiota composition shift, characterized by keeping the predator genus Bacteriovorax and decreasing the pathogenic Vibrio. This is the first culture-independent study showing the effect of Streptomyces over the oyster microbiota. It also sheds light about the potential use of Streptomyces to improve mollusc health and safety for consumers after the depuration process. © 2016 The Society for Applied Microbiology.

  20. Root colonization with arbuscular mycorrhizal fungi and glomalin-related soil protein (GRSP concentration in hypoxic soils in natural CO2 springs

    Directory of Open Access Journals (Sweden)

    Irena Maček

    2012-03-01

    Full Text Available Changed ratios of soil gases that lead to hypoxia are most often present in waterlogged soils, but can also appear in soils not saturated with water. In natural CO2 springs (mofettes, gases in soil air differ from those in typical soils. In this study, plant roots from the mofette area Stavešinci (Slovenia were sampled in a spatial scale and investigated for AM fungal colonization. AM fungi were found in roots from areas with high geological CO2 concentration, however mycorrhizal intensity was relatively low and no correlation between AM fungal colonization and soil pattern of CO2/O2 concentrations (up to 37% CO2 was found. The relatively high abundance of arbuscules in root cortex indicated existence of functional symbiosis at much higher CO2 concentrations than normally found in soils. In addition, concentration of two different glomalin-related soil protein fractions – EE-GRSP and TG-GRSP – was measured. No significant correlation between any of the fractions and soil gases was found, however the concentration of both fractions was significantly higher in the upper 0–5 cm, compared to the 5–10 cm layer of the soil.