WorldWideScience

Sample records for natural moisturizing factors

  1. Understanding natural moisturizing mechanisms: implications for moisturizer technology.

    Science.gov (United States)

    Chandar, Prem; Nole, Greg; Johnson, Anthony W

    2009-07-01

    Dry skin and moisturization are important topics because they impact the lives of many individuals. For most individuals, dry skin is not a notable concern and can be adequately managed with current moisturizing products. However, dry skin can affect the quality of life of some individuals because of the challenges of either harsh environmental conditions or impaired stratum corneum (SC) dry skin protection processes resulting from various common skin diseases. Dry skin protection processes of the SC, such as the development of natural moisturizing factor (NMF), are complex, carefully balanced, and easily perturbed. We discuss the importance of the filaggrin-NMF system and the composition of NMF in both healthy and dry skin, and also reveal new insights that suggest the properties required for a new generation of moisturizing technologies.

  2. Effect of allergens and irritants on levels of natural moisturizing factor and corneocyte morphology

    NARCIS (Netherlands)

    Koppes, Sjors A.; Ljubojević Hadžavdić, Suzana; Jakasa, Ivone; Franceschi, Nika; Riethmüller, Christoph; Jurakić Tončic, Ružica; Marinovic, Branka; Raj, Nidhin; Rawlings, Anthony V.; Voegeli, Rainer; Lane, Majella E.; Haftek, Marek; Frings-Dresen, Monique H. W.; Rustemeyer, Thomas; Kezic, Sanja

    2017-01-01

    The irritant sodium lauryl sulfate (SLS) is known to cause a decrease in the stratum corneum level of natural moisturizing factor (NMF), which in itself is associated with changes in corneocyte surface topography. To explore this phenomenon in allergic contact dermatitis. Patch testing was performed

  3. Natural moisturizing factor components in the stratum corneum as biomarkers of filaggrin genotype: evaluation of minimally invasive methods

    NARCIS (Netherlands)

    Kezic, S.; Kammeyer, A.; Calkoen, F.; Fluhr, J. W.; Bos, J. D.

    2009-01-01

    Background The carriers of loss-of-function mutations in the filaggrin gene (FLG) have reduced levels of natural moisturizing factor (NMF) in the stratum corneum. The concentration of NMF components which are formed by filaggrin protein breakdown in the stratum corneum might therefore be useful as a

  4. Effects of Moisture Content on the Foundry Properties of Yola Natural Sand

    Directory of Open Access Journals (Sweden)

    Paul Aondona IHOM

    2012-08-01

    Full Text Available The effect of moisture content of Yola natural sand has been studied. The moisture content was varied from 1 to 9%. The effect of the moisture content on the green compression strength, green permeability and bulk density was investigated. Particle size distribution of the natural sand, the grain fineness number, average grain size, grain shape and the clay content of the natural sand were also studied. 5% moisture gave the optimum green compression strength of 118.6KN/m2. The dry compression strength increased with moisture content, an optimum value of 4000KN/m2 was obtained at 9% moisture. The Yola natural sand had a grain fineness number of 88.05AFS, average grain size of 335.78 microns and a clay content of 26%. A sand mixture containing 5% moisture was prepared and used to produce a test casting with aluminium scraps, the test casting was sound.

  5. Adjustments of microwave-based measurements on coal moisture using natural radioactivity techniques

    Energy Technology Data Exchange (ETDEWEB)

    Prieto-Fernandez, I.; Luengo-Garcia, J.C.; Alonso-Hidalgo, M.; Folgueras-Diaz, B. [University of Oviedo, Gijon (Spain)

    2006-01-07

    The use of nonconventional on-line measurements of moisture and ash content in coal is presented. The background research is briefly reviewed. The possibilities of adjusting microwave-based moisture measurements using natural radioactive techniques, and vice versa, are proposed. The results obtained from the simultaneous analysis of moisture and ash content as well as the correlation improvements are shown.

  6. Natural moisturizing factors (NMF) in the stratum corneum (SC). I. Effects of lipid extraction and soaking.

    Science.gov (United States)

    Robinson, Marisa; Visscher, Marty; Laruffa, Angela; Wickett, Randy

    2010-01-01

    Natural moisturizing factor (NMF) is essential for appropriate stratum corneum hydration, barrier homeostasis, desquamation, and plasticity. It is formed from filaggrin proteolysis to small, hygroscopic molecules including amino acids. We hypothesized that common lipid extraction and soaking in water would alter the level of NMF in the upper SC and its biophysical properties. A novel method of measuring and quantifying the amino acid components of NMF is presented. Adhesive tapes were used to collect samples of the stratum corneum (SC) and were extracted with 6mM perchloric acid for analysis by reverse-phase HPLC. HPLC results were standardized to the amount of protein removed by the tapes. An increase in NMF was found with increased SC depth. Also, the combination of extraction and soaking was found to increase NMF loss relative to control or to extraction or soaking alone. Our results indicate that common skin care practices significantly influence the water binding materials in the upper SC. The findings have implications for the evaluation and formulation of skin care products.

  7. Nature's moisture harvesters: a comparative review

    International Nuclear Information System (INIS)

    Malik, F T; Clement, R M; Krawszik, W; Gethin, D T; Parker, A R

    2014-01-01

    Nature has adapted different methods for surviving dry, arid, xeric conditions. It is the focus of this comparative review to pull together the relevant information gleaned from the literature that could be utilized to design moisture harvesting devices informed by biomimetics. Most water harvesting devices in current use are not informed by nature and those that do are usually based on a biomimetic principle that has been based on one species only. This review draws on the published literature to establish a list of species (animals (vertebrates/invertebrates) and plants) whose habitat is in mainly dry or arid regions and that are known to harvest airborne moisture. Key findings have been outlined and review comments and discussion set out. Following this, surface feature convergences have been identified, namely hexagonal microstructures, groove-like and cone-like geometries. This has been coupled with direction of water flow that is driven by surface energy. As far as the authors are aware, this convergent evolution has not been brought together in this manner before. In the future this information could be translated into an engineered device for collecting water from airborne sources. (topical review)

  8. Effect of moisture on natural fibre reinforced plastics | Ogakwu | West ...

    African Journals Online (AJOL)

    In this research, the rate of moisture absorption of the composites reinforced with natural fibres – Ukam plant fibres (chochlostermum placoni) were studied and determined.Composite cubes and plates of different sizes were prepared, then immersed in water for 24 hours at room temperature in order to determine the extent ...

  9. Spatial variation and driving factors of soil moisture at multi-scales: a case study in Loess Plateau of China

    Science.gov (United States)

    Zhao, W.; Zhang, X.; Liu, Y.; Fang, X.

    2017-12-01

    Currently, the ecological restoration of the Loess Plateau has led to significant achievements such as increases in vegetation coverage, decreases in soil erosion, and enhancement of ecosystem services. Soil moisture shortages, however, commonly occur as a result of limited rainfall and strong evaporation in this semiarid region of China. Since soil moisture is critical in regulating plant growth in these semiarid regions, it is crucial to identify the spatial variation and factors affecting soil moisture at multi-scales in the Loess Plateau of China. In the last several years, extensive studies on soil moisture have been carried out by our research group at the plot, small watershed, watershed, and regional scale in the Loess Plateau, providing some information for vegetation restoration in the region. The main research results are as follows: (1) the highest soil moisture content was in the 0-0.1 m layer with a large coefficient of variation; (2) in the 0-0.1m layer, soil moisture content was negatively correlated with relative elevation, slope and vegetation cover, the correlations among slope, aspect and soil moisture increased with depth increased; (3) as for the deep soil moisture content, the higher spatial variation of deep SMC occurred at 1.2-1.4 m and 4.8-5.0m; (4) the deep soil moisture content in native grassland and farmland were significant higher than that of introduced vegetation; (5) at regional scale, the soil water content under different precipitation zones increased following the increase of precipitation, while, the influencing factors of deep SMC at watershed scale varied with land management types; (6) in the areas with multi-year precipitation of 370 - 440mm, natural grass is more suitable for restoration, and this should be treated as the key areas in vegetation restoration; (7) appropriate planting density and species selection should be taken into account for introduced vegetation management; (8) it is imperative to take the local

  10. Effects of natural and synthetic soil conditioners on soil moisture ...

    African Journals Online (AJOL)

    The efficacy of a natural soil conditioner, Coco-Peat (C-P), and synthetic soil conditioners, Terawet (T-200) and Teraflow (T-F), in improving soil moisture content were examined on five Ghanaian soil series (Akroso, Akuse, Amo, Hake and Oyarifa). In general, the water retention of T-200 and C-P treated soils were similar ...

  11. Root uptake of 137Cs by natural and semi-natural grasses as a function of texture and moisture of soils

    International Nuclear Information System (INIS)

    Grytsyuk, N.; Arapis, G.; Davydchuk, V.

    2006-01-01

    This work studies the dependence of 137 Cs root uptake on the structure of landscape, especially on texture and moisture of soils, under natural conditions, on abandoned radiopolluted lands in Northern Ukraine. Researches were carried out on a wide range of landscape conditions, at various levels of 137 Cs contamination (from 20 up to 5000 kBq m -2 ), with different types of soils (approx. 20 soil varieties), which differ in texture, granulometric composition, degrees of gleyization and water regime, and anthropogenic transformation. The results showed that transfer factor (TF) values of 137 Cs differ 50 times for the natural grassy coenoses and 8 times for the semi-natural ones. The lowest 137 Cs TF values were measured in the herbages of dry meadows at automorphous loamy soils, while the highest were observed in wetland meadows at organic soils. Finally, the correlation between 137 Cs TF values and granulometric composition of soil was determined for both automorphic and hydromorphic mineral soils

  12. Factors influencing moisture analysis in the 3013 destructive examination surveillance program

    Energy Technology Data Exchange (ETDEWEB)

    Scogin, J. H. [Savannah River Site (SRS), Aiken, SC (United States). Savannah River National Lab. (SRNL)

    2017-10-24

    Thermogravimetric analysis of a solid sample with mass spectrometry (TGA-MS) of the evolved gas is used in the destructive examination (DE) portion of the Integrated Surveillance Program to quantify the moisture content of the material stored in a 3013 container. As with any measurement determined from a small sample, the collection, storage, transportation, and handling of the sample can affect its ability to represent the properties of the bulk material. During the course of the DE program, questions have periodically arisen concerning the ability of the moisture sample to reflect reliably the actual moisture content of the entire material stored in the 3013 container. Most concerns are related to the ability to collect a representative sample and to preserve the moisture content of the sample between collection and analysis. Recent delays in analysis caused by maintenance issues with the TGA-MS instrument presented a unique opportunity to document and quantify the effects various factors have on the TGA-MS moisture measurement. This report will use recent data to document the effects that current sample collection and handling practices have on the TGA-MS moisture measurement. Some suggestions will be made which could improve the current sample collection and handling practices for the TGA-MS moisture measurement so that the analytical results more accurately reflect the moisture content of the material stored in the 3013 container.

  13. Factors influencing moisture analysis in the 3013 destructive examination surveillance program

    International Nuclear Information System (INIS)

    Scogin, J. H.

    2017-01-01

    Thermogravimetric analysis of a solid sample with mass spectrometry (TGA-MS) of the evolved gas is used in the destructive examination (DE) portion of the Integrated Surveillance Program to quantify the moisture content of the material stored in a 3013 container. As with any measurement determined from a small sample, the collection, storage, transportation, and handling of the sample can affect its ability to represent the properties of the bulk material. During the course of the DE program, questions have periodically arisen concerning the ability of the moisture sample to reflect reliably the actual moisture content of the entire material stored in the 3013 container. Most concerns are related to the ability to collect a representative sample and to preserve the moisture content of the sample between collection and analysis. Recent delays in analysis caused by maintenance issues with the TGA-MS instrument presented a unique opportunity to document and quantify the effects various factors have on the TGA-MS moisture measurement. This report will use recent data to document the effects that current sample collection and handling practices have on the TGA-MS moisture measurement. Some suggestions will be made which could improve the current sample collection and handling practices for the TGA-MS moisture measurement so that the analytical results more accurately reflect the moisture content of the material stored in the 3013 container.

  14. Skin moisturization mechanisms: new data.

    Science.gov (United States)

    Bonté, F

    2011-05-01

    The main function of the skin is to protect the body against exogenous substances and excessive water loss. The skin barrier is located in the outermost layer of the skin, called the stratum corneum, which is composed of corneocytes, originating from the keratinocytes differentiation process, embedded in organized complex lipid domains. Moisturizing of the skin is recognized as the first anti-aging skin care. Skin moisturization is essential for its appearance, protection, complexion, softness and the reinforcement of its barrier properties against deleterious and exogenous environmental factors. The intrinsic water binding capacity of skin is not only due to the complex natural moisturizing factor present in corneocytes, but also to hyaluronic acid and a regulated water transport within the skin. Recent data shows that the water movements between the cells at the different levels of the epidermis are due to dedicated water and glycerol transport proteins named aquaporins. Their role in the skin moisturization is completed by corneodesmosomes and tight junctions. Water and pH are now shown to be of prime importance in the regulation of the epidermal enzymes linked to corneocytes desquamation and lipid synthesis. Furthermore, the level of moisturization of the skin is important in its protection against repeated exposure to various irritant agents or phenomena such as very frequent washing with strong tensioactive materials. Copyright © 2011 Elsevier Masson SAS. All rights reserved.

  15. Moisture management properties of plain knitted fabrics made of natural and regenerated cellulose fibres

    Directory of Open Access Journals (Sweden)

    Novaković Milada S.

    2015-01-01

    Full Text Available Moisture management is a complicated process which is known to be influenced by a variety of fabric characteristics such as fibre nature (hydrophilic or hydrophobic, porosity and thickness. There are different aspects of the moisture management properties of textile materials since water transport in textile materials can be in the form of liquid and vapour. The ability of textile materials to transfer water vapour allows the human body to keep thermal balance due to evaporation. With stronger physical activity of a person when the body produces a large amount of heat, the skin perspiration increases (in order to regulate the body temperature and liquid sweat should be taken from the skin, otherwise it will worsen the sense of comfort. The aim of this research was to investigate the factors influencing moisture management properties of plain knitted fabrics at the three scale levels, i.e. microscopic (fibre type, mesoscopic (yarn geometry and macroscopic (fabric porosity levels. Plain knitted fabrics were produced from the two-assembled hemp, cotton and viscose yarns under controlled conditions so as to be comparable in basic construction characteristics, but varying in yarns geometry. Evaporative resistance test reflecting vapour transport and water distribution test reflecting liquid transport in the knitted fabrics were conducted. To determine the statistical importance of the results, analysis of variance (ANOVA was applied. As a consequence of the geometry and deformation behaviour of the fibres used and spinning techniques applied, the yarns differed in both packing density and surface geometry, thus determining the pore distribution. Due to loose structure of the cotton yarn, the cotton knitted fabric was characterised by the lowest free open surface (macroporosity exhibiting the lowest both water vapour and liquid permeability. Although having the highest macroporosity, the water vapour and liquid transport capability of the hemp knitted

  16. Comparison of Skin Moisturizer: Consumer-Based Brand Equity (CBBE Factors in Clusters Based on Consumer Ethnocentrism

    Directory of Open Access Journals (Sweden)

    Yossy Hanna Garlina

    2014-09-01

    Full Text Available This research aims to analyze relevant factors contributing to the four dimensions of consumer-based brand equity in skin moisturizer industry. It is then followed by the clustering of female consumers of skin moisturizer based on ethnocentrism and differentiating each cluster’s consumer-based brand equity dimensions towards a domestic skin moisturizer brand Mustika Ratu, skin moisturizer. Research used descriptive survey method analysis. Primary data was obtained through questionnaire distribution to 70 female respondents for factor analysis and 120 female respondents for cluster analysis and one way analysis of variance (ANOVA. This research employed factor analysis to obtain relevant factors contributing to the five dimensions of consumer-based brand equity in skin moisturizer industry. Cluster analysis and one way analysis of variance (ANOVA were to see the difference of consumer-based brand equity between highly ethnocentric consumer and low ethnocentric consumer towards the same skin moisturizer domestic brand, Mustika Ratu skin moisturizer. Research found in all individual dimension analysis, all variable means and individual means show distinct difference between the high ethnocentric consumer and the low ethnocentric consumer. The low ethnocentric consumer cluster tends to be lower in mean score of Brand Loyalty, Perceived Quality, Brand Awareness, Brand Association, and Overall Brand Equity than the high ethnocentric consumer cluster. Research concludes consumer ethnocentrism is positively correlated with preferences towards domestic products and negatively correlated with foreign-made product preference. It is, then, highly ethnocentric consumers have positive perception towards domestic product.

  17. Temporal changes of spatial soil moisture patterns: controlling factors explained with a multidisciplinary approach

    Science.gov (United States)

    Martini, Edoardo; Wollschläger, Ute; Kögler, Simon; Behrens, Thorsten; Dietrich, Peter; Reinstorf, Frido; Schmidt, Karsten; Weiler, Markus; Werban, Ulrike; Zacharias, Steffen

    2016-04-01

    Characterizing the spatial patterns of soil moisture is critical for hydrological and meteorological models, as soil moisture is a key variable that controls matter and energy fluxes and soil-vegetation-atmosphere exchange processes. Deriving detailed process understanding at the hillslope scale is not trivial, because of the temporal variability of local soil moisture dynamics. Nevertheless, it remains a challenge to provide adequate information on the temporal variability of soil moisture and its controlling factors. Recent advances in wireless sensor technology allow monitoring of soil moisture dynamics with high temporal resolution at varying scales. In addition, mobile geophysical methods such as electromagnetic induction (EMI) have been widely used for mapping soil water content at the field scale with high spatial resolution, as being related to soil apparent electrical conductivity (ECa). The objective of this study was to characterize the spatial and temporal pattern of soil moisture at the hillslope scale and to infer the controlling hydrological processes, integrating well established and innovative sensing techniques, as well as new statistical methods. We combined soil hydrological and pedological expertise with geophysical measurements and methods from digital soil mapping for designing a wireless soil moisture monitoring network. For a hillslope site within the Schäfertal catchment (Central Germany), soil water dynamics were observed during 14 months, and soil ECa was mapped on seven occasions whithin this period of time using an EM38-DD device. Using the Spearman rank correlation coefficient, we described the temporal persistence of a dry and a wet characteristic state of soil moisture as well as the switching mechanisms, inferring the local properties that control the observed spatial patterns and the hydrological processes driving the transitions. Based on this, we evaluated the use of EMI for mapping the spatial pattern of soil moisture under

  18. Confounding factors in determining causal soil moisture-precipitation feedback

    Science.gov (United States)

    Tuttle, Samuel E.; Salvucci, Guido D.

    2017-07-01

    Identification of causal links in the land-atmosphere system is important for construction and testing of land surface and general circulation models. However, the land and atmosphere are highly coupled and linked by a vast number of complex, interdependent processes. Statistical methods, such as Granger causality, can help to identify feedbacks from observational data, independent of the different parameterizations of physical processes and spatiotemporal resolution effects that influence feedbacks in models. However, statistical causal identification methods can easily be misapplied, leading to erroneous conclusions about feedback strength and sign. Here, we discuss three factors that must be accounted for in determination of causal soil moisture-precipitation feedback in observations and model output: seasonal and interannual variability, precipitation persistence, and endogeneity. The effect of neglecting these factors is demonstrated in simulated and observational data. The results show that long-timescale variability and precipitation persistence can have a substantial effect on detected soil moisture-precipitation feedback strength, while endogeneity has a smaller effect that is often masked by measurement error and thus is more likely to be an issue when analyzing model data or highly accurate observational data.

  19. The influence of natural and artificial precipitation on the moisture status of a black soil from the Marchfeld area, as determined by the neutron moisture meter

    International Nuclear Information System (INIS)

    Haunold, F.; Roetzer, H.; Storchschnabel, G.; Blochberger, K.

    1980-01-01

    Changes in the moisture status of a Chernozem in the Marchfeld were measured throughout a vegetation period using a neutron moisture meter from Berthold. Increasing the strength of the irradiation source from 30 to 100 mCi and changing the analog to digital recording, greatly improved the precision of measurement. The installation of the measuring tubes was possible only in soils free of stones. Measurements were made down to 140 cm depth. The field was planted with cabbage. One part of the field received normal rain only, one part received 40 mm of artificial precipitation when the moisture content of the soil in 40 cm depth dropped below 50 % of the water holding capacity. The third part received 3 times that amount of water. The changes in water status of the soil as a consequence of natural and artificial rain were very well recorded by the instrument. Therefore this method is very suitable for the measurement and control of the moisture status of the soil, in order to make proper decisions for the exact time of artificial irrigation. (author)

  20. Effects of moisture barrier and initial moisture content on the storage ...

    African Journals Online (AJOL)

    The two factors examined were moisture barrier at three levels namely: thick lining, thin lining and non-lining. The other factor included initial moisture content of the produce, namely, turgid and partially wilted. Partial wilting of the produce was achieved by exposing freshly harvested materials at ambient temperature to dry ...

  1. Sensitivity Analysis of b-factor in Microwave Emission Model for Soil Moisture Retrieval: A Case Study for SMAP Mission

    Directory of Open Access Journals (Sweden)

    Dugwon Seo

    2010-05-01

    Full Text Available Sensitivity analysis is critically needed to better understand the microwave emission model for soil moisture retrieval using passive microwave remote sensing data. The vegetation b-factor along with vegetation water content and surface characteristics has significant impact in model prediction. This study evaluates the sensitivity of the b-factor, which is function of vegetation type. The analysis is carried out using Passive and Active L and S-band airborne sensor (PALS and measured field soil moisture from Southern Great Plains experiment (SGP99. The results show that the relative sensitivity of the b-factor is 86% in wet soil condition and 88% in high vegetated condition compared to the sensitivity of the soil moisture. Apparently, the b-factor is found to be more sensitive than the vegetation water content, surface roughness and surface temperature; therefore, the effect of the b-factor is fairly large to the microwave emission in certain conditions. Understanding the dependence of the b-factor on the soil and vegetation is important in studying the soil moisture retrieval algorithm, which can lead to potential improvements in model development for the Soil Moisture Active-Passive (SMAP mission.

  2. Stratum corneum molecular mobility in the presence of natural moisturizers.

    Science.gov (United States)

    Björklund, Sebastian; Andersson, Jenny Marie; Pham, Quoc Dat; Nowacka, Agnieszka; Topgaard, Daniel; Sparr, Emma

    2014-07-07

    The outermost layer of the skin, the stratum corneum (SC), is a lipid-protein membrane that experiences considerable osmotic stress from a dry and cold climate. The natural moisturizing factor (NMF) comprises small and polar substances, which like osmolytes can protect living systems from osmotic stress. NMF is commonly claimed to increase the water content in the SC and thereby protect the skin from dryness. In this work we challenge this proposed mechanism, and explore the influence of NMF on the lipid and protein components in the SC. We employ natural-abundance (13)C solid-state NMR methods to investigate how the SC molecular components are influenced by urea, glycerol, pyrrolidone carboxylic acid (PCA), and urocanic acid (UCA), all of which are naturally present in the SC as NMF compounds. Experiments are performed with intact SC, isolated corneocytes and model lipids. The combination of NMR experiments provides molecularly resolved qualitative information on the dynamics of different SC lipid and protein components. We obtain completely novel molecular information on the interaction of these NMF compounds with the SC lipids and proteins. We show that urea and glycerol, which are also common ingredients in skin care products, increase the molecular mobility of both SC lipids and proteins at moderate relative humidity where the SC components are considerably more rigid in the absence of these compounds. This effect cannot be attributed to increased SC water content. PCA has no detectable effect on SC molecular mobility under the conditions investigated. It is finally shown that the more apolar compound, UCA, specifically influences the mobility of the SC lipid regions. The present results show that the NMF components act to retain the fluidity of the SC molecular components under dehydrating conditions in such a way that the SC properties remain largely unchanged as compared to more hydrated SC. These findings provide a new molecular insight into how small

  3. Moisture migration in concrete. Final report. Technical report C-75-1

    International Nuclear Information System (INIS)

    McDonald, J.E.

    1975-05-01

    In an effort to obtain information regarding the nature of moisture movement and rate of moisture loss in a prestressed concrete reactor vessel (PCRV), an experimental study of moisture migration in a pie-shaped specimen representing the flow path through a cylindrical wall of a PCRV was initiated. After casting of the test specimen, temperature distribution, shrinkage, and moisture distribution were monitored for approximately 510 days. After this initial monitoring, a temperature difference of 80 0 F was applied to the specimen, and the above-mentioned measurements were continued for an additional test period of one year. Results indicate that moisture migration in thick sections of concrete, such as a PCRV, is a slow process and is not likely to be a significant factor with temperature differences of 80 0 F or less. 15 references. (auth)

  4. Spatial variability and its main controlling factors of the permafrost soil-moisture on the northern-slope of Bayan Har Mountains in Qinghai-Tibet Plateau

    Science.gov (United States)

    Cao, W.; Sheng, Y.

    2017-12-01

    The soil moisture movement is an important carrier of material cycle and energy flow among the various geo-spheres in the cold regions. It is very critical to protect the alpine ecology and hydrologic cycle in Qinghai-Tibet Plateau. Especially, it becomes one of the key problems to reveal the spatial-temporal variability of soil moisture movement and its main influence factors in earth system science. Thus, this research takes the north slope of Bayan Har Mountains in Qinghai-Tibet Plateau as a case study. The present study firstly investigates the change of permafrost moisture in different slope positions and depths. Based on this investigation, this article attempts to investigate the spatial variability of permafrost moisture and identifies the key influence factors in different terrain conditions. The method of classification and regression tree (CART) is adopted to identify the main controlling factors influencing the soil moisture movement. And the relationships between soil moisture and environmental factors are revealed by the use of the method of canonical correspondence analysis (CCA). The results show that: 1) the change of the soil moisture on the permafrost slope is divided into 4 stages, including the freezing stability phase, the rapid thawing phase, the thawing stability phase and the fast freezing phase; 2) this greatly enhances the horizontal flow in the freezing period due to the terrain slope and the freezing-thawing process. Vertical migration is the mainly form of the soil moisture movement. It leads to that the soil-moisture content in the up-slope is higher than that in the down-slope. On the contrary, the soil-moisture content in the up-slope is lower than that in the down-slope during the melting period; 3) the main environmental factors which affect the slope-permafrost soil-moisture are elevation, soil texture, soil temperature and vegetation coverage. But there are differences in the impact factors of the soil moisture in different

  5. MOISTURE-BUFFERING CHARACTERISTICS OF BUILDING MATERIALS

    Directory of Open Access Journals (Sweden)

    Young Cheol Choi

    2016-05-01

    Full Text Available The humidity level of indoor air is an important factor influencing the air quality and energy consumption of buildings, as well as the durability of building components. Indoor humidity levels depend on several factors, such as moisture sources, air flow, and the adsorption/desorption properties of materials. The moisture-buffering characteristics of building materials that are in contact with indoor air may help moderate the variations of indoor humidity, especially in the summer and winter. In this study, the moisture adsorption/desorption properties of building materials were investigated experimentally and numerically. These properties can be used to characterize the ability of building materials to exchange moisture with the indoor environment. This study indicates that a building material surface resistivity was the main factor creating variations of moisture buffering.

  6. Moisture relations and physical properties of wood

    Science.gov (United States)

    Samuel V. Glass; Samuel L. Zelinka

    2010-01-01

    Wood, like many natural materials, is hygroscopic; it takes on moisture from the surrounding environment. Moisture exchange between wood and air depends on the relative humidity and temperature of the air and the current amount of water in the wood. This moisture relationship has an important influence on wood properties and performance. Many of the challenges of using...

  7. Equilibrium moisture content of wood at different temperature/moisture conditions in the cladding of wooden constructions and in the relation to their reliability and service life

    Directory of Open Access Journals (Sweden)

    Zdeňka Havířová

    2010-01-01

    Full Text Available One of the natural properties of wood and wood-based materials is their soaking capacity (hy­gro­sco­pi­ci­ty. The moisture content of wood and building constructions of wood and wood based materials significantly influences the service life and reliability of these constructions and buildings. The equilibrium weight moisture content of built-in wood corresponding to temperature/moisture conditions inside the cladding has therefore a decisive influence on the basic requirements placed on building constructions. The wood in wooden frame cladding changes its moisture content depending on temperature and moisture conditions of the environment it is built into. The water vapor condensation doesn’t necessarily have to occur right in the wooden framework of the cladding for the equilibrium moisture content to rise over the level permissible for the reliable function of a given construction. In spite of the fact that the common heat-technical assessment cannot be considered fully capable of detecting the effects of these factors on the functional reliability of wood-based constructions and buildings, an extension has been proposed of the present method of design an assessment of building constructions according to the ČSN 73 0540 standard regarding the interpretation of equilibrium moisture content in relation to the temperature/moisture conditions and their time behavior inside a construction.

  8. Moisture Buffer Effect and its Impact on Indoor Environment

    DEFF Research Database (Denmark)

    Zhang, Mingjie; Qin, Menghao; Chen, Zhi

    2017-01-01

    The moisture buffer effect of building materials may have great influence on indoor hygrothermal environment. In order to characterize the moisture buffering ability of materials, the basic concept of moisture buffer value (MBV) is adopted. Firstly, a theoretical correction factor is introduced...... in this paper. The moisture uptake/release by hygroscopic materials can be calculated with the factor and the basic MBV. Furthermore, the validation of the correction factor is carried out. The impact of moisture buffering on indoor environment is assessed by using numerical simulations. The results show...

  9. Interactions between toxic chemicals and natural environmental factors--a meta-analysis and case studies.

    Science.gov (United States)

    Laskowski, Ryszard; Bednarska, Agnieszka J; Kramarz, Paulina E; Loureiro, Susana; Scheil, Volker; Kudłek, Joanna; Holmstrup, Martin

    2010-08-15

    The paper addresses problems arising from effects of natural environmental factors on toxicity of pollutants to organisms. Most studies on interactions between toxicants and natural factors, including those completed in the EU project NoMiracle (Novel Methods for Integrated Risk Assessment of Cumulative Stressors in Europe) described herein, showed that effects of toxic chemicals on organisms can differ vastly depending purely on external conditions. We compiled data from 61 studies on effects of temperature, moisture and dissolved oxygen on toxicity of a range of chemicals representing pesticides, polycyclic aromatic hydrocarbons, plant protection products of bacterial origin and trace metals. In 62.3% cases significant interactions (pnatural factors and chemicals were found, reaching 100% for the effect of dissolved oxygen on toxicity of waterborne chemicals. The meta-analysis of the 61 studies showed that the null hypothesis assuming no interactions between toxic chemicals and natural environmental factors should be rejected at p=2.7 x 10(-82) (truncated product method probability). In a few cases of more complex experimental designs, also second-order interactions were found, indicating that natural factors can modify interactions among chemicals. Such data emphasize the necessity of including information on natural factors and their variation in time and across geographic regions in ecological risk assessment. This can be done only if appropriate ecotoxicological test designs are used, in which test organisms are exposed to toxicants at a range of environmental conditions. We advocate designing such tests for the second-tier ecological risk assessment procedures. Copyright 2010 Elsevier B.V. All rights reserved.

  10. Short Communications Sand moisture as a factor determining depth ...

    African Journals Online (AJOL)

    1993-11-05

    Nov 5, 1993 ... The depths to which the animals burrow are, at least partly. determined by the moisture gradient in the sand. They are, however, incapable of burrowing into totally dry sand. Animals alter their position in the sand in response to changes in moisture content so as to ensure exposure to suitable conditions.

  11. Multiscale soil moisture estimates using static and roving cosmic-ray soil moisture sensors

    Science.gov (United States)

    McJannet, David; Hawdon, Aaron; Baker, Brett; Renzullo, Luigi; Searle, Ross

    2017-12-01

    Soil moisture plays a critical role in land surface processes and as such there has been a recent increase in the number and resolution of satellite soil moisture observations and the development of land surface process models with ever increasing resolution. Despite these developments, validation and calibration of these products has been limited because of a lack of observations on corresponding scales. A recently developed mobile soil moisture monitoring platform, known as the rover, offers opportunities to overcome this scale issue. This paper describes methods, results and testing of soil moisture estimates produced using rover surveys on a range of scales that are commensurate with model and satellite retrievals. Our investigation involved static cosmic-ray neutron sensors and rover surveys across both broad (36 × 36 km at 9 km resolution) and intensive (10 × 10 km at 1 km resolution) scales in a cropping district in the Mallee region of Victoria, Australia. We describe approaches for converting rover survey neutron counts to soil moisture and discuss the factors controlling soil moisture variability. We use independent gravimetric and modelled soil moisture estimates collected across both space and time to validate rover soil moisture products. Measurements revealed that temporal patterns in soil moisture were preserved through time and regression modelling approaches were utilised to produce time series of property-scale soil moisture which may also have applications in calibration and validation studies or local farm management. Intensive-scale rover surveys produced reliable soil moisture estimates at 1 km resolution while broad-scale surveys produced soil moisture estimates at 9 km resolution. We conclude that the multiscale soil moisture products produced in this study are well suited to future analysis of satellite soil moisture retrievals and finer-scale soil moisture models.

  12. Moisture relationships in composting processes

    NARCIS (Netherlands)

    Richard, T.L.; Veeken, A.H.M.

    2002-01-01

    Moisture is a key environmental factor that affects many aspects of the composting process. Biodegradation kinetics are affected by moisture through changes in oxygen diffusion, water potential and water activity, and microbial growth rates. These relationships are made more complex by the dynamic

  13. Understanding the bias between moisture content by oven drying and water content by Karl Fischer titration at moisture equilibrium

    Science.gov (United States)

    Multiple causes of the difference between equilibrium moisture and water content have been found. The errors or biases were traced to the oven drying procedure to determine moisture content. The present paper explains the nature of the biases in oven drying and how it is possible to suppress one ...

  14. Drought Risk Assessment based on Natural and Social Factors

    Science.gov (United States)

    Huang, Jing; Wang, Huimin; Han, Dawei

    2015-04-01

    In many parts of the world, drought hazard is becoming more frequent and severe due to climate change and human activities. It is crucial to monitor and assess drought conditions, especially for decision making support in agriculture sector. The vegetation index (VI) decreases, and the land surface temperature (LST) increases when the vegetation is under drought stress. Therefore both of these remotely sensed indices are widely used in drought monitoring and assessment. Temperature-Vegetation Dryness Index (TVDI) is obtained by establishing the feature space of the normalized difference vegetation index (NDVI) and LST, which reflects agriculture dry situation by inverting soil moisture. However, these indices only concern the natural hazard-causing factors. Our society is a complex large-scale system with various natural and social elements. The drought risk is the joint consequence of hazard-causing factors and hazard-affected bodies. For example, as the population increases, the exposure of the hazard-affected bodies also tends to increase. The high GDP enhances the response ability of government, and the irrigation and water conservancy reduces the vulnerability. Such characteristics of hazard-affected bodies should be coupled with natural factors. In this study, the 16-day moderate-resolution imaging spectroradiometer (MODIS) NDVI and LST data are combined to establish NDVI-Ts space according to different land use types in Yunnan Province, China. And then, TVDIs are calculated through dry and wet edges modeled as a linear fit to data for each land cover type. Next, the efforts are turned to establish an integrated drought assessment index of social factors and TVDI through ascertaining attribute weight based on rough sets theory. Thus, the new CDI (comprehensive drought index) recorded during spring of 2010 and the spatial variations in drought are analyzed and compared with TVDI dataset. Moreover, actual drought risk situation in the study area is given to

  15. Use of Soil Moisture Variability in Artificial Neural Network Retrieval of Soil Moisture

    Directory of Open Access Journals (Sweden)

    Bert Veenendaal

    2009-12-01

    Full Text Available Passive microwave remote sensing is one of the most promising techniques for soil moisture retrieval. However, the inversion of soil moisture from brightness temperature observations is not straightforward, as it is influenced by numerous factors such as surface roughness, vegetation cover, and soil texture. Moreover, the relationship between brightness temperature, soil moisture and the factors mentioned above is highly non-linear and ill-posed. Consequently, Artificial Neural Networks (ANNs have been used to retrieve soil moisture from microwave data, but with limited success when dealing with data different to that from the training period. In this study, an ANN is tested for its ability to predict soil moisture at 1 km resolution on different dates following training at the same site for a specific date. A novel approach that utilizes information on the variability of soil moisture, in terms of its mean and standard deviation for a (sub region of spatial dimension up to 40 km, is used to improve the current retrieval accuracy of the ANN method. A comparison between the ANN with and without the use of the variability information showed that this enhancement enables the ANN to achieve an average Root Mean Square Error (RMSE of around 5.1% v/v when using the variability information, as compared to around 7.5% v/v without it. The accuracy of the soil moisture retrieval was further improved by the division of the target site into smaller regions down to 4 km in size, with the spatial variability of soil moisture calculated from within the smaller region used in the ANN. With the combination of an ANN architecture of a single hidden layer of 20 neurons and the dual-polarized brightness temperatures as input, the proposed use of variability and sub-region methodology achieves an average retrieval accuracy of 3.7% v/v. Although this accuracy is not the lowest as comparing to the research in this field, the main contribution is the ability of ANN in

  16. Drying and control of moisture content and dimensional changes

    Science.gov (United States)

    Richard Bergman

    2010-01-01

    The discussion in this chapter is concerned with moisture content determination, recommended moisture content values, drying methods, methods of calculating dimensional changes, design factors affecting such changes in structures, and moisture content control during transit, storage, and construction. Data on green moisture content, fiber saturation point, shrinkage,...

  17. Determination of moisture content and natural radioactivity in soils using gamma spectroscopy

    Energy Technology Data Exchange (ETDEWEB)

    Abdel-Hady, E E [Department of Physics, Faculty of Science, Qater University (Qatar); El-Sayed, A M.A.; Alaa, H B [Department of Physics, Faculty of Science, El-Minia University, Minia (Egypt)

    1997-12-31

    The gamma-ray transmission method has been used to study the soil-water properties in the laboratory as well as in the field. The present measurements were performed using gamma-ray spectroscopy system based on a 5 x 5 cm Nal (T 1) scintillation detector and combined sources ({sup 137} Cs and {sup 241} Am). The two sources are placed in a suitable lead collimator to obtain a pin beam of 1 mm diameter. Suitable samples of clay and sandy soils obtained from the local field were prepared to determine the water content and the soil bulk densities by the combined method for different moisture stages. From the results obtained, it is clear that the soil density at both stages (saturated and after drainage) remains the same. this is because the soil particles do not rearrange during the wetting and drying process. The full results will be presented in the text. Natural radioactivity of the investigated samples was also studied using gamma-ray spectrometer having HPGe detector. Qualitative and quantitative analysis of natural gamma radiations revealed the presence of {sup 40} K, {sup 214} Bi, {sup 208} TI and {sup 228} Ac in meaningful concentrations. 3 figs.

  18. Moisture management, energy density and fuel quality in forest fuel supply chains

    Energy Technology Data Exchange (ETDEWEB)

    Tahvanainen, T. [Joensuu Science Park Ltd., Joensuu (Finland); Sikanen, L. [Joensuu Univ. (Finland); Roser, D. [Finnish Forest Research Inst., Joensuu (Finland)

    2009-07-01

    This presentation provided tools for reducing the moisture content (MC) in wood chips, as moisture is one of the main quality factors for woody biomass, along with energy density and cleanness. The amount of water in solid wood fuels has a considerable effect on transportation efficiency, combustion efficiency and emissions. Under favourable storage conditions, MC can be decreased from typical fresh cut 50-55 per cent to 20-30 per cent in relatively short periods of storing by natural or artificial drying. Minor modifications can boost natural drying in fuel wood supply chains. This natural drying effect can have significant effects on the total energy efficiency and emissions of supply chains. The effect of improved packing density on transportation phase was discussed along with the need to control chip purity and size distribution. A procedure developed at the University of Joensuu and in the Finnish Forest Research Institute was used to estimate transportation costs and emissions according to transportation fleet and MC of the transported fuel. tabs., figs.

  19. Relation between seasonally detrended shortwave infrared reflectance data and land surface moisture in semi-arid Sahel

    DEFF Research Database (Denmark)

    Olsen, Jørgen Lundegaard; Ceccato, Pietro; Proud, Simon Richard

    2013-01-01

    in vegetation moisture status, and is compared to detrended time series of the Normalized Difference Vegetation Index (NDVI). It was found that when plant available water is low, the SIWSI anomalies increase over time, while the NDVI anomalies decrease over time, but less systematically. Therefore SIWSI may......In the Sudano-Sahelian areas of Africa droughts can have serious impacts on natural resources, and therefore land surface moisture is an important factor. Insufficient conventional sites for monitoring land surface moisture make the use of Earth Observation data for this purpose a key issue...... Second Generation (MSG) satellite. We focused on responses in surface reflectance to soil- and surface moisture for bare soil and early to mid- growing season. A method for implementing detrended time series of the Shortwave Infrared Water Stress Index (SIWSI) is examined for detecting variations...

  20. Sand moisture as a factor determining depth of burrowing in the ...

    African Journals Online (AJOL)

    Tylos granulatus, a sandy-beach isopod, prefers an environmental moisture range exceeding 3,4% but less than 13%. The depths to which the animals burrow are, at least partly, determined by the moisture gradient in the sand. They are, however, incapable of burrowing into lotally dry sand. Animals alter their position in ...

  1. [Sap flow characteristics of Quercus liaotungensis in response to sapwood area and soil moisture in the loess hilly region, China].

    Science.gov (United States)

    Lyu, Jin Lin; He, Qiu Yue; Yan, Mei Jie; Li, Guo Qing; Du, Sheng

    2018-03-01

    To examine the characteristics of sap flow in Quercus liaotungensis and their response to environmental factors under different soil moisture conditions, Granier-type thermal dissipation probes were used to measure xylem sap flow of trees with different sapwood area in a natural Q. liaotungensis forest in the loess hilly region. Solar radiation, air temperature, relative air humidity, precipitation, and soil moisture were monitored during the study period. The results showed that sap flux of Q. liaotungensis reached daily peaks earlier than solar radiation and vapor pressure deficit. The diurnal dynamics of sap flux showed a similar pattern to those of the environmental factors. Trees had larger sap flux during the period with higher soil moisture. Under the same soil moisture conditions, trees with larger diameter and sapwood areas had significantly higher sap flux than those with smaller diameter and sapwood areas. Sap flux could be fitted with vapor pressure deficit, solar radiation, and the integrated index of the two factors using exponential saturation function. Differences in the fitted curves and parameters suggested that sap flux tended to reach saturation faster under higher soil moisture. Furthermore, trees in the smaller diameter class were more sensitive to the changes of soil moisture. The ratio of daily sap flux per unit vapor pressure deficit under lower soil moisture condition to that under higher soil moisture condition was linearly correlated to sapwood area. The regressive slope in smaller diameter class was larger than that in bigger diameter class, which further indicated the higher sensitivity of trees with smaller diameter class to soil moisture. These results indicated that wider sapwood of larger diameter class provided a buffer against drought stress.

  2. Design of Moisture Content Detection System

    Science.gov (United States)

    Wang, W. C.; Wang, L.

    In this paper, a method for measuring the moisture content of grain was presented based on single chip microcomputer and capacitive sensor. The working principle of measuring moisture content is introduced and a concentric cylinder type of capacitive sensor is designed, the signal processing circuits of system are described in details. System is tested in practice and discussions are made on the various factors affecting the capacitive measuring of grain moisture based on the practical experiments, experiment results showed that the system has high measuring accuracy and good controlling capacity.

  3. A Literature Review on the Study of Moisture in Polymers

    Energy Technology Data Exchange (ETDEWEB)

    Trautschold, Olivia Carol [Los Alamos National Lab. (LANL), Los Alamos, NM (United States)

    2016-05-25

    This literature review covers the main chemical and physical interactions between moisture and the polymer matrix. Fickian versus Non-Fickian diffusion behaviors are discussed in approximating the characteristics of moisture sorption. Also, bound water and free water sorbed in polymers are distinguished. Methods to distinguish between bound and free water include differential scanning calorimetry, infrared spectroscopy, and time-domain nuclear magnetic resonance spectroscopy. The difference between moisture sorption and water sorption is considered, as well as the difficulties associated with preventing moisture sorption. Furthermore, specific examples of how moisture sorption influences polymers include natural fiber-polymer composites, starch-based biodegradable thermoplastics, and thermoset polyurethane and epoxies.

  4. Analysis of surface soil moisture patterns in agricultural landscapes using Empirical Orthogonal Functions

    Directory of Open Access Journals (Sweden)

    W. Korres

    2010-05-01

    Full Text Available Soil moisture is one of the fundamental variables in hydrology, meteorology and agriculture. Nevertheless, its spatio-temporal patterns in agriculturally used landscapes that are affected by multiple natural (rainfall, soil, topography etc. and agronomic (fertilisation, soil management etc. factors are often not well known. The aim of this study is to determine the dominant factors governing the spatio-temporal patterns of surface soil moisture in a grassland and an arable test site that are located within the Rur catchment in Western Germany. Surface soil moisture (0–6 cm was measured in an approx. 50×50 m grid during 14 and 17 measurement campaigns (May 2007 to November 2008 in both test sites. To analyse the spatio-temporal patterns of surface soil moisture, an Empirical Orthogonal Function (EOF analysis was applied and the results were correlated with parameters derived from topography, soil, vegetation and land management to link the patterns to related factors and processes. For the grassland test site, the analysis resulted in one significant spatial structure (first EOF, which explained 57.5% of the spatial variability connected to soil properties and topography. The statistical weight of the first spatial EOF is stronger on wet days. The highest temporal variability can be found in locations with a high percentage of soil organic carbon (SOC. For the arable test site, the analysis resulted in two significant spatial structures, the first EOF, which explained 38.4% of the spatial variability, and showed a highly significant correlation to soil properties, namely soil texture and soil stone content. The second EOF, which explained 28.3% of the spatial variability, is linked to differences in land management. The soil moisture in the arable test site varied more strongly during dry and wet periods at locations with low porosity. The method applied is capable of identifying the dominant parameters controlling spatio-temporal patterns of

  5. Australian Soil Moisture Field Experiments in Support of Soil Moisture Satellite Observations

    Science.gov (United States)

    Kim, Edward; Walker, Jeff; Rudiger, Christopher; Panciera, Rocco

    2010-01-01

    Large-scale field campaigns provide the critical fink between our understanding retrieval algorithms developed at the point scale, and algorithms suitable for satellite applications at vastly larger pixel scales. Retrievals of land parameters must deal with the substantial sub-pixel heterogeneity that is present in most regions. This is particularly the case for soil moisture remote sensing, because of the long microwave wavelengths (L-band) that are optimal. Yet, airborne L-band imagers have generally been large, heavy, and required heavy-lift aircraft resources that are expensive and difficult to schedule. Indeed, US soil moisture campaigns, have been constrained by these factors, and European campaigns have used non-imagers due to instrument and aircraft size constraints. Despite these factors, these campaigns established that large-scale soil moisture remote sensing was possible, laying the groundwork for satellite missions. Starting in 2005, a series of airborne field campaigns have been conducted in Australia: to improve our understanding of soil moisture remote sensing at large scales over heterogeneous areas. These field data have been used to test and refine retrieval algorithms for soil moisture satellite missions, and most recently with the launch of the European Space Agency's Soil Moisture Ocean Salinity (SMOS) mission, to provide validation measurements over a multi-pixel area. The campaigns to date have included a preparatory campaign in 2005, two National Airborne Field Experiments (NAFE), (2005 and 2006), two campaigns to the Simpson Desert (2008 and 2009), and one Australian Airborne Cal/val Experiment for SMOS (AACES), just concluded in the austral spring of 2010. The primary airborne sensor for each campaign has been the Polarimetric L-band Microwave Radiometer (PLMR), a 6-beam pushbroom imager that is small enough to be compatible with light aircraft, greatly facilitating the execution of the series of campaigns, and a key to their success. An

  6. Moisture Sorption in Porous Materials

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2007-01-01

    pressure and weight data can be "translated" to pore geometry by known physical relationships. In this context, analytical descriptions are important which can relate moisture condensation in pore structures to ambient vapor pressure. Such a description, the extended BET-relation, is presented...... physical parameters, the so-called BET-parameters: The heat property factor, C, and the pore surface, SBET (derived from the so-called uni-molecular moisture content uBET). A software ‘SORP07’ has been developed to handle any calculations made in the paper. For readers who have a special interest...... in the subject considered this software is available on request to the author. Keywords: Porous materials, moisture, adsorption, desorption, BET-parameters....

  7. Galvanic Cell Type Sensor for Soil Moisture Analysis.

    Science.gov (United States)

    Gaikwad, Pramod; Devendrachari, Mruthyunjayachari Chattanahalli; Thimmappa, Ravikumar; Paswan, Bhuneshwar; Raja Kottaichamy, Alagar; Makri Nimbegondi Kotresh, Harish; Thotiyl, Musthafa Ottakam

    2015-07-21

    Here we report the first potentiometric sensor for soil moisture analysis by bringing in the concept of Galvanic cells wherein the redox energies of Al and conducting polyaniline are exploited to design a battery type sensor. The sensor consists of only simple architectural components, and as such they are inexpensive and lightweight, making it suitable for on-site analysis. The sensing mechanism is proved to be identical to a battery type discharge reaction wherein polyaniline redox energy changes from the conducting to the nonconducting state with a resulting voltage shift in the presence of soil moisture. Unlike the state of the art soil moisture sensors, a signal derived from the proposed moisture sensor is probe size independent, as it is potentiometric in nature and, hence, can be fabricated in any shape or size and can provide a consistent output signal under the strong aberration conditions often encountered in soil moisture analysis. The sensor is regenerable by treating with 1 M HCl and can be used for multiple analysis with little read out hysteresis. Further, a portable sensor is fabricated which can provide warning signals to the end user when the moisture levels in the soil go below critically low levels, thereby functioning as a smart device. As the sensor is inexpensive, portable, and potentiometric, it opens up avenues for developing effective and energy efficient irrigation strategies, understanding the heat and water transfer at the atmosphere-land interface, understanding soil mechanics, forecasting the risk of natural calamities, and so on.

  8. Effects of Natural and Synthetic Soil Conditioners on Soil Moisture ...

    African Journals Online (AJOL)

    USER

    The field investigation was a 4 × 5 factorial pot-experiment with maize as the test crop. ... The soil samples were air-dried to about 20% (v v–1) moisture content, pounded and passed through a 2- ..... properties of gel-amended container media.

  9. Moisture parameters and fungal communities associated with gypsum drywall in buildings.

    Science.gov (United States)

    Dedesko, Sandra; Siegel, Jeffrey A

    2015-12-08

    Uncontrolled excess moisture in buildings is a common problem that can lead to changes in fungal communities. In buildings, moisture parameters can be classified by location and include assessments of moisture in the air, at a surface, or within a material. These parameters are not equivalent in dynamic indoor environments, which makes moisture-induced fungal growth in buildings a complex occurrence. In order to determine the circumstances that lead to such growth, it is essential to have a thorough understanding of in situ moisture measurement, the influence of building factors on moisture parameters, and the levels of these moisture parameters that lead to indoor fungal growth. Currently, there are disagreements in the literature on this topic. A literature review was conducted specifically on moisture-induced fungal growth on gypsum drywall. This review revealed that there is no consistent measurement approach used to characterize moisture in laboratory and field studies, with relative humidity measurements being most common. Additionally, many studies identify a critical moisture value, below which fungal growth will not occur. The values defined by relative humidity encompassed the largest range, while those defined by moisture content exhibited the highest variation. Critical values defined by equilibrium relative humidity were most consistent, and this is likely due to equilibrium relative humidity being the most relevant moisture parameter to microbial growth, since it is a reasonable measure of moisture available at surfaces, where fungi often proliferate. Several sources concur that surface moisture, particularly liquid water, is the prominent factor influencing microbial changes and that moisture in the air and within a material are of lesser importance. However, even if surface moisture is assessed, a single critical moisture level to prevent fungal growth cannot be defined, due to a number of factors, including variations in fungal genera and

  10. Surface Soil Moisture Memory Estimated from Models and SMAP Observations

    Science.gov (United States)

    He, Q.; Mccoll, K. A.; Li, C.; Lu, H.; Akbar, R.; Pan, M.; Entekhabi, D.

    2017-12-01

    Soil moisture memory(SMM), which is loosely defined as the time taken by soil to forget an anomaly, has been proved to be important in land-atmosphere interaction. There are many metrics to calculate the SMM timescale, for example, the timescale based on the time-series autocorrelation, the timescale ignoring the soil moisture time series and the timescale which only considers soil moisture increment. Recently, a new timescale based on `Water Cycle Fraction' (Kaighin et al., 2017), in which the impact of precipitation on soil moisture memory is considered, has been put up but not been fully evaluated in global. In this study, we compared the surface SMM derived from SMAP observations with that from land surface model simulations (i.e., the SMAP Nature Run (NR) provided by the Goddard Earth Observing System, version 5) (Rolf et al., 2014). Three timescale metrics were used to quantify the surface SMM as: T0 based on the soil moisture time series autocorrelation, deT0 based on the detrending soil moisture time series autocorrelation, and tHalf based on the Water Cycle Fraction. The comparisons indicate that: (1) there are big gaps between the T0 derived from SMAP and that from NR (2) the gaps get small for deT0 case, in which the seasonality of surface soil moisture was removed with a moving average filter; (3) the tHalf estimated from SMAP is much closer to that from NR. The results demonstrate that surface SMM can vary dramatically among different metrics, while the memory derived from land surface model differs from the one from SMAP observation. tHalf, with considering the impact of precipitation, may be a good choice to quantify surface SMM and have high potential in studies related to land atmosphere interactions. References McColl. K.A., S.H. Alemohammad, R. Akbar, A.G. Konings, S. Yueh, D. Entekhabi. The Global Distribution and Dynamics of Surface Soil Moisture, Nature Geoscience, 2017 Reichle. R., L. Qing, D.L. Gabrielle, A. Joe. The "SMAP_Nature_v03" Data

  11. Changes in Soil Carbon and Moisture over the Six Year after Thinning of a Natural Oak Forest

    Science.gov (United States)

    Kim, S.; Han, S. H.; Li, G.; Chang, H.; Kim, H. J.; Son, Y.

    2017-12-01

    The objective of this study was to assess the effects of thinning on soil carbon (C) in a natural oak forest in central Korea. The study forest received three different thinning treatments consisting of un-thinned control (UTC) and two thinning intensities (15% and 30% basal area reductions) in March in 2010. Precipitation near the study forest maintained the normal level from 2010 to 2013 (average 1,400 mm year-1), but abnormally decreased from 2014 to 2016 (average 800 mm year-1). To measure total soil C stock and soil moisture conditions, soils were collected from 0-10, 10-20, and 20-30 cm depths in June, 2010, 2013, and 2016, respectively. Soil microbial biomass C and C-cycling enzymes (β-glucosidase, cellobiohydrolase, β-xylosidase, phenol oxidase, and peroxidase) at 0-10 cm depth were determined in June, 2016. Total soil C stock at 0-30 cm depth increased throughout the study period, whereas soil moisture decreased at all depths from 2013 to 2016. Both thinning treatments had higher total soil C stock at 0-30 cm depth and moisture at 10-20 and 20-30 cm depths than the UTC in 2013 and 2016, whereas the treatments showed no effects in 2010. Microbial biomass C at 0-10 cm depth in 2016 also increased because of the thinning treatments, which was positively correlated to total soil C stock. However, any effects of thinning on C-cycling enzymes were not significant. Our results indicate that thinning could contribute to relieving the impacts of decreasing precipitation by enhancing the storage of soil moisture. Furthermore, the change in total soil C stock under thinning might result from the stimulation of microbial potential for retaining organic C as a form of biomass. This study was supported by the Ministry of Environment (2014001810002) and the National Institute of Forest Science of Korea (FM0101-2009-01).

  12. Moisture Transfer in Ventilated Facade Structures

    Directory of Open Access Journals (Sweden)

    Olshevskyi Vyacheslav

    2016-01-01

    Full Text Available This article discusses the phenomenon of moisture transfer in the designs of ventilated facades (VF. The main ways of moisture transfer are defined. The negative factors connected with moisture accumulation and excessive moistening of insulation are given. The physical processes occurring in the gap of the building envelope due to saturation of air with water vapor are described. The dependence of the intensity of the mass transfer on the air velocity in the layer is considered. Much attention is paid to the selection of the optimum design of the facade, namely a system with or without grooved lines. The dependence of velocity and temperature on the width of the ventilated gap is established empirically for the constructions with open and closed grooves. Expediency of a design without grooves to effectively remove moisture is determined.

  13. Role of extrinsic arbuscular mycorrhizal fungi in heavy metal-contaminated wetlands with various soil moisture levels.

    Science.gov (United States)

    Zheng, S; Wang, C; Shen, Z; Quan, Y; Liu, X

    2015-01-01

    This study presents an efficient heavy metal (HM) control method in HM-contaminated wetlands with varied soil moisture levels through the introduction of extrinsic arbuscular mycorrhizal fungi (AMF) into natural wetland soil containing indigenous AMF species. A pot culture experiment was designed to determine the effect of two soil water contents (5-8% and 25-30%), five extrinsic AMF inoculants (Glomus mosseae, G. clarum, G. claroideum, G. etunicatum, and G. intraradices), and HM contamination on root colonization, plant growth, and element uptake of common reed (Phragmites australis (Cav.) Trin. ex Steudel) plantlets in wetland soils. This study showed the prevalence of mycorrhizae in the roots of all P. australis plantlets, regardless of extrinsic AMF inoculations, varied soil moisture or HM levels. It seems that different extrinsic AMF inoculations effectively lowered HM concentrations in the aboveground tissues of P. australis at two soil moisture levels. However, metal species, metal concentrations, and soil moisture should also be very important factors influencing the elemental uptake performance of plants in wetland ecosystems. Besides, the soil moisture level significantly influenced plant growth (including height, and shoot and root dry weight (DW)), and extrinsic AMF inoculations differently affected shoot DW.

  14. A biomimic thermal fabric with high moisture permeability

    Directory of Open Access Journals (Sweden)

    Fan Jie

    2013-01-01

    Full Text Available Moisture comfort is an essential factor for functional property of thermal cloth, especially for thick thermal cloth, since thick cloth may hinder effective moisture permeation, and high moisture concentration in the micro-climate between skin and fabric would cause cold feeling. Here, we report a biomimic thermal fabric with excellent warm retention and moisture management properties. In this fabric, the warp yarn system constructs many tree-shaped channel nets in the thickness direction of the fabric. Experimental result indicates that the special hierarchic configuration of warp yarns endows the biomimic thermal fabric with a better warm retention and water vapor management properties compared with the traditional fabrics.

  15. Moisture Distribution in Broccoli: Measurements by MRI Hot Air Drying Experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    ABSTRACT The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments

  16. Moisture distribution in broccoli: measurements by MRI hot air drying experiments

    NARCIS (Netherlands)

    Jin, X.; Sman, van der R.G.M.; Gerkema, E.; Vergeldt, F.J.; As, van H.; Boxtel, van A.J.B.

    2011-01-01

    The internal moisture distribution that arise in food products during drying, is a key factor for the retention of quality attributes. To reveal the course of moisture content in a product, internal moisture profiles in broccoli florets are measured by MRI imaging during drying experiments with

  17. Equilibrium moisture content of wood at different temperature/moisture conditions in the cladding of wooden constructions and in the relation to their reliability and service life

    OpenAIRE

    Zdeňka Havířová; Pavel Kubů

    2010-01-01

    One of the natural properties of wood and wood-based materials is their soaking capacity (hy­gro­sco­pi­ci­ty). The moisture content of wood and building constructions of wood and wood based materials significantly influences the service life and reliability of these constructions and buildings. The equilibrium weight moisture content of built-in wood corresponding to temperature/moisture conditions inside the cladding has therefore a decisive influence on the basic requirements placed on bui...

  18. Highly Efficient Moisture-Triggered Nanogenerator Based on Graphene Quantum Dots.

    Science.gov (United States)

    Huang, Yaxin; Cheng, Huhu; Shi, Gaoquan; Qu, Liangti

    2017-11-08

    A high-performance moisture triggered nanogenerator is fabricated by using graphene quantum dots (GQDs) as the active material. GQDs are prepared by direct oxidation and etching of natural graphite powder, which have small sizes of 2-5 nm and abundant oxygen-containing functional groups. After the treatment by electrochemical polarization, the GQDs-based moisture triggered nanogenerator can deliver a high voltage up to 0.27 V under 70% relative humidity variation, and a power density of 1.86 mW cm -2 with an optimized load resistor. The latter value is much higher than the moisture-electric power generators reported previously. The GQD moisture triggered nanogenerator is promising for self-power electronics and miniature sensors.

  19. The influence of ventilation on moisture conditions in facades with wooden cladding

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Brandt, Erik

    2009-01-01

    A ventilated cavity behind the cladding of timber frame walls is often considered good building practice that facilitates the removal of moisture from the construction. However, moisture will only be removed from the construction by ventilating it with dry air, whereas ventilating with humid air...... might add moisture to the construction. Full-size wall elements with wooden cladding placed in a test building were exposed to natural climate on the outside and to a humid indoor climate on the inside. Temperature and moisture conditions inside the wall elements and climate parameters were monitored...

  20. The importance of moisture in hybrid lead halide perovskite thin film fabrication

    NARCIS (Netherlands)

    Eperon, G.E.; Habisreutinger, S.N.; Leijtens, T.; Bruijnaers, B.J.; van Franeker, J.J.; deQuilettes, D.W.; Pathak, S.; Sutton, R.J.; Grancini, G.; Ginger, D.S.; Janssen, R.A.J.; Petrozza, A.; Snaith, H.J.

    2015-01-01

    Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood

  1. Use of midlatitude soil moisture and meteorological observations to validate soil moisture simulations with biosphere and bucket models

    Science.gov (United States)

    Robock, Alan; Vinnikov, Konstantin YA.; Schlosser, C. Adam; Speranskaya, Nina A.; Xue, Yongkang

    1995-01-01

    Soil moisture observations in sites with natural vegetation were made for several decades in the former Soviet Union at hundreds of stations. In this paper, the authors use data from six of these stations from different climatic regimes, along with ancillary meteorological and actinometric data, to demonstrate a method to validate soil moisture simulations with biosphere and bucket models. Some early and current general circulation models (GCMs) use bucket models for soil hydrology calculations. More recently, the Simple Biosphere Model (SiB) was developed to incorporate the effects of vegetation on fluxes of moisture, momentum, and energy at the earth's surface into soil hydrology models. Until now, the bucket and SiB have been verified by comparison with actual soil moisture data only on a limited basis. In this study, a Simplified SiB (SSiB) soil hydrology model and a 15-cm bucket model are forced by observed meteorological and actinometric data every 3 h for 6-yr simulations at the six stations. The model calculations of soil moisture are compared to observations of soil moisture, literally 'ground truth,' snow cover, surface albedo, and net radiation, and with each other. For three of the stations, the SSiB and 15-cm bucket models produce good simulations of seasonal cycles and interannual variations of soil moisture. For the other three stations, there are large errors in the simulations by both models. Inconsistencies in specification of field capacity may be partly responsible. There is no evidence that the SSiB simulations are superior in simulating soil moisture variations. In fact, the models are quite similar since SSiB implicitly has a bucket embedded in it. One of the main differences between the models is in the treatment of runoff due to melting snow in the spring -- SSiB incorrectly puts all the snowmelt into runoff. While producing similar soil moisture simulations, the models produce very different surface latent and sensible heat fluxes, which

  2. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs.

    Science.gov (United States)

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-04-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, 'potential water retention capacity' (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer's grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  3. Assessment of initial soil moisture conditions for event-based rainfall-runoff modelling

    OpenAIRE

    Tramblay, Yves; Bouvier, Christophe; Martin, C.; Didon-Lescot, J. F.; Todorovik, D.; Domergue, J. M.

    2010-01-01

    Flash floods are the most destructive natural hazards that occur in the Mediterranean region. Rainfall-runoff models can be very useful for flash flood forecasting and prediction. Event-based models are very popular for operational purposes, but there is a need to reduce the uncertainties related to the initial moisture conditions estimation prior to a flood event. This paper aims to compare several soil moisture indicators: local Time Domain Reflectometry (TDR) measurements of soil moisture,...

  4. An integrated GIS application system for soil moisture data assimilation

    Science.gov (United States)

    Wang, Di; Shen, Runping; Huang, Xiaolong; Shi, Chunxiang

    2014-11-01

    The gaps in knowledge and existing challenges in precisely describing the land surface process make it critical to represent the massive soil moisture data visually and mine the data for further research.This article introduces a comprehensive soil moisture assimilation data analysis system, which is instructed by tools of C#, IDL, ArcSDE, Visual Studio 2008 and SQL Server 2005. The system provides integrated service, management of efficient graphics visualization and analysis of land surface data assimilation. The system is not only able to improve the efficiency of data assimilation management, but also comprehensively integrate the data processing and analysis tools into GIS development environment. So analyzing the soil moisture assimilation data and accomplishing GIS spatial analysis can be realized in the same system. This system provides basic GIS map functions, massive data process and soil moisture products analysis etc. Besides,it takes full advantage of a spatial data engine called ArcSDE to effeciently manage, retrieve and store all kinds of data. In the system, characteristics of temporal and spatial pattern of soil moiture will be plotted. By analyzing the soil moisture impact factors, it is possible to acquire the correlation coefficients between soil moisture value and its every single impact factor. Daily and monthly comparative analysis of soil moisture products among observations, simulation results and assimilations can be made in this system to display the different trends of these products. Furthermore, soil moisture map production function is realized for business application.

  5. Effects of heat-moisture treatment reaction conditions on the physicochemical and structural properties of maize starch: moisture and length of heating.

    Science.gov (United States)

    Sui, Zhongquan; Yao, Tianming; Zhao, Yue; Ye, Xiaoting; Kong, Xiangli; Ai, Lianzhong

    2015-04-15

    Changes in the properties of normal maize starch (NMS) and waxy maize starch (WMS) after heat-moisture treatment (HMT) under various reaction conditions were investigated. NMS and WMS were adjusted to moisture levels of 20%, 25% and 30% and heated at 100 °C for 2, 4, 8 and 16 h. The results showed that moisture content was the most important factor in determining pasting properties for NMS, whereas the heating length was more important for WMS. Swelling power decreased in NMS but increased in WMS, and while the solubility index decreased for both samples, the changes were largely determined by moisture content. The gelatinisation temperatures of both samples increased with increasing moisture content but remained unchanged with increasing heating length. The Fourier transform infrared (FT-IR) absorbance ratio was affected to different extents by the moisture levels but remained constant with increasing the heating length. The X-ray intensities increased but relative crystallinity decreased to a greater extent with increasing moisture content. This study showed that the levels of moisture content and length of heating had significant impacts on the structural and physicochemical properties of normal and waxy maize starches but to different extents. Copyright © 2014 Elsevier Ltd. All rights reserved.

  6. Analysis of soil moisture memory from observations in Europe

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-08-01

    Soil moisture is known to show distinctive persistence characteristics compared to other quantities in the climate system. As soil moisture is governing land-atmosphere feedbacks to a large extent, its persistence can provide potential to improve seasonal climate predictions. So far, many modeling studies have investigated the nature of soil moisture memory, with consistent, but model-dependent results. This study investigates soil moisture memory in long-term observational records based on data from five stations across Europe. We investigate spatial and seasonal variations in soil moisture memory and identify their main climatic drivers. Also, we test an existing framework and introduce an extension thereof to approximate soil moisture memory and evaluate the contributions of its driving processes. At the analyzed five sites, we identify the variability of initial soil moisture divided by that of the accumulated forcing over the considered time frame as a main driver of soil moisture memory that reflects the impact of the precipitation regime and of soil and vegetation characteristics. Another important driver is found to be the correlation of initial soil moisture with subsequent forcing that captures forcing memory as it propagates to the soil and also land-atmosphere interactions. Thereby, the role of precipitation is found to be dominant for the forcing. In contrast to results from previous modeling studies, the runoff and evapotranspiration sensitivities to soil moisture are found to have only a minor influence on soil moisture persistence at the analyzed sites. For the central European sites, the seasonal cycles of soil moisture memory display a maximum in late summer and a minimum in spring. An opposite seasonal cycle is found at the analyzed site in Italy. High soil moisture memory is shown to last up to 40 days in some seasons at most sites. Extremely dry or wet states of the soil tend to increase soil moisture memory, suggesting enhanced prediction

  7. Propagation of soil moisture memory to runoff and evapotranspiration

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-10-01

    As a key variable of the land-climate system soil moisture is a main driver of runoff and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence) characteristics. Also for runoff many studies report distinct low frequency variations that represent a memory. Using data from over 100 near-natural catchments located across Europe we investigate in this study the connection between soil moisture memory and the respective memory of runoff and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalized by precipitation) and evapotranspiration (normalized by radiation) on soil moisture are fitted using runoff observations. The model therefore allows to compute memory of soil moisture, runoff and evapotranspiration on catchment scale. We find considerable memory in soil moisture and runoff in many parts of the continent, and evapotranspiration also displays some memory on a monthly time scale in some catchments. We show that the memory of runoff and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of runoff and evapotranspiration to soil moisture. Furthermore we find that the coupling strengths of runoff and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  8. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    Science.gov (United States)

    Razak, Okine Abdul; Masaaki, Hanada; Yimamu, Aibibula; Meiji, Okamoto

    2012-01-01

    The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF) is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC), which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27) with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively), and their silages (n = 81). These were from a vegetable source (Daikon, Raphanus sativus), a root tuber source (potato pulp), a fruit source (apple pomace) and a cereal source (brewer’s grain), respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3). Silage effluent decreased (p<0.01), with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76) between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship. PMID:25049587

  9. Potential Water Retention Capacity as a Factor in Silage Effluent Control: Experiments with High Moisture By-product Feedstuffs

    Directory of Open Access Journals (Sweden)

    Okine Abdul Razak

    2012-04-01

    Full Text Available The role of moisture absorptive capacity of pre-silage material and its relationship with silage effluent in high moisture by-product feedstuffs (HMBF is assessed. The term water retention capacity which is sometimes used in explaining the rate of effluent control in ensilage may be inadequate, since it accounts exclusively for the capacity of an absorbent incorporated into a pre-silage material prior to ensiling, without consideration to how much the pre-silage material can release. A new terminology, ‘potential water retention capacity’ (PWRC, which attempts to address this shortcoming, is proposed. Data were pooled from a series of experiments conducted separately over a period of five years using laboratory silos with four categories of agro by-products (n = 27 with differing moisture contents (highest 96.9%, lowest 78.1% in fresh matter, respectively, and their silages (n = 81. These were from a vegetable source (Daikon, Raphanus sativus, a root tuber source (potato pulp, a fruit source (apple pomace and a cereal source (brewer’s grain, respectively. The pre-silage materials were adjusted with dry in-silo absorbents consisting wheat straw, wheat or rice bran, beet pulp and bean stalks. The pooled mean for the moisture contents of all pre-silage materials was 78.3% (±10.3. Silage effluent decreased (p<0.01, with increase in PWRC of pre-silage material. The theoretical moisture content and PWRC of pre-silage material necessary to stem effluent flow completely in HMBF silage was 69.1% and 82.9 g/100 g in fresh matter, respectively. The high correlation (r = 0.76 between PWRC of ensiled material and silage effluent indicated that the latter is an important factor in silage-effluent relationship.

  10. Predicting moisture state of timber members in a continuously varying climate

    DEFF Research Database (Denmark)

    Svensson, Staffan; Turk, Goran; Hozjan, Tomaz

    2011-01-01

    A prerequisite for a sensible estimate of moisture induced stresses in timber members is an accurate prediction of the members’ moisture states during their service life. There are, however, an infinite number of possible moisture states for an arbitrary timber member in a natural varying climate...... the realizations were made, are based on a fully coupled transport model including a model for the influential sorption hysteresis of wood. A format containing required information suitable for assessing the “moisture” action on timber members is proposed. In addition it is illustrated how a model of high...

  11. Dependence of Soil Respiration on Soil Temperature and Soil Moisture in Successional Forests in Southern China

    Institute of Scientific and Technical Information of China (English)

    Xu-Li Tang; Guo-Yi Zhou; Shu-Guang Liu; De-Qiang Zhang; Shi-Zhong Liu; Jiong Li; Cun-Yu Zhou

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (± SD) soil respiration rate in the DNR forests was (9.0±4.6) Mg CO2-C/hm2 per year, ranging from (6.1±3.2) Mg CO2-C/hm2 per year in early successional forests to (10.7±4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  12. Dependence of soil respiration on soil temperature and soil moisture in successional forests in Southern China

    Science.gov (United States)

    Tang, X.-L.; Zhou, G.-Y.; Liu, S.-G.; Zhang, D.-Q.; Liu, S.-Z.; Li, Ji; Zhou, C.-Y.

    2006-01-01

    The spatial and temporal variations in soil respiration and its relationship with biophysical factors in forests near the Tropic of Cancer remain highly uncertain. To contribute towards an improvement of actual estimates, soil respiration rates, soil temperature, and soil moisture were measured in three successional subtropical forests at the Dinghushan Nature Reserve (DNR) in southern China from March 2003 to February 2005. The overall objective of the present study was to analyze the temporal variations of soil respiration and its biophysical dependence in these forests. The relationships between biophysical factors and soil respiration rates were compared in successional forests to test the hypothesis that these forests responded similarly to biophysical factors. The seasonality of soil respiration coincided with the seasonal climate pattern, with high respiration rates in the hot humid season (April-September) and with low rates in the cool dry season (October-March). Soil respiration measured at these forests showed a clear increasing trend with the progressive succession. Annual mean (±SD) soil respiration rate in the DNR forests was (9.0 ± 4.6) Mg CO2-C/hm2per year, ranging from (6.1 ± 3.2) Mg CO2-C/hm2per year in early successional forests to (10.7 ± 4.9) Mg CO2-C/hm2 per year in advanced successional forests. Soil respiration was correlated with both soil temperature and moisture. The T/M model, where the two biophysical variables are driving factors, accounted for 74%-82% of soil respiration variation in DNR forests. Temperature sensitivity decreased along progressive succession stages, suggesting that advanced-successional forests have a good ability to adjust to temperature. In contrast, moisture increased with progressive succession processes. This increase is caused, in part, by abundant respirators in advanced-successional forest, where more soil moisture is needed to maintain their activities.

  13. Moisture conditions in buildings

    DEFF Research Database (Denmark)

    Rode, Carsten

    2012-01-01

    Growth of mould requires the presence of moisture at a certain high level. In a heated indoor environment such moisture levels occur only if there is a reason for the moisture supply. Such moisture can come from the use of the building, because of malfunctioning constructions, or it can be the re......Growth of mould requires the presence of moisture at a certain high level. In a heated indoor environment such moisture levels occur only if there is a reason for the moisture supply. Such moisture can come from the use of the building, because of malfunctioning constructions, or it can...

  14. A neutron moisture system on nickel mineral transport rubber belt

    International Nuclear Information System (INIS)

    Jia Wenbao; Su Tongling; Zhang Xiaomin

    2000-01-01

    A method of density-thickness joint compensation was developed to make the on-line measurement of moisture for moving irregular mineral materials. At the same time, the materials' thickness, as a weighted factor, was chosen to modify the prompt moisture in a fixed time and improve the accuracy of measuring moisture. The experimental data show that the measurement accuracy is better than 5% for a thickness of > 2 cm and a moisture of > 6%. The system has been running on the spot for about three months, with a result accorded with that by the stoving-weighing method

  15. CPAC moisture study: Phase 1 report on the study of optical spectra calibration for moisture

    International Nuclear Information System (INIS)

    Veltkamp, D.

    1993-01-01

    This report discusses work done to investigate the feasibility of using optical spectroscopic methods, combined with multivariate Partial Least Squares (PLS) calibration modeling, to quantitatively predict the moisture content of the crust material in Hanford's waste tank materials. Experiments were conducted with BY-104 simulant material for the 400--1100 nm (VIS), 1100--2500 (NIR), and 400-4000 cm -1 (IR) optical regions. The test data indicated that the NIR optical region, with a single PLS calibration factor, provided the highest accuracy response (better than 0.5 wt %) over a 0--25 wt % moisture range. Issues relating to the preparation of moisture samples with the BY-104 materials and the potential implementation within hot cell and waste tanks are also discussed. The investigation of potential material interferences, including physical and chemical properties, and the scaled demonstration of fiber optic and camera types of applications with simulated waste tanks are outlined as future work tasks

  16. A new method of determining moisture gradient in wood

    Science.gov (United States)

    Zhiyong Cai

    2008-01-01

    Moisture gradient in wood and wood composites is one of most important factors that affects both physical stability and mechanical performance. This paper describes a method for measuring moisture gradient in lumber and engineering wood composites as it varies across material thickness. This innovative method employs a collimated radiation beam (x rays or [gamma] rays...

  17. Estimating soil moisture using the Danish polarimetric SAR

    DEFF Research Database (Denmark)

    Jiankang, Ji; Thomsen, A.; Skriver, Henning

    1995-01-01

    The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness a...... of surface parameters with the bilinear model, the correlation coefficient between the estimated and measured soil moisture, as well as rms height, is about 0.77. To improve the result, the local incidence angles need to be taken into account......The results of applying data from the Danish polarimetric SAR (EMISAR) to estimate soil moisture for bare fields are presented. Fully calibrated C-band SAR images for hh, vv and cross polarizations have been used in this study. The measured surface roughness data showed that classical roughness...... autocorrelation functions (Gaussian and Exponential) were not able to fit natural surfaces well. A Gauss-Exp hybrid model which agreed better with the measured data has been proposed. Theoretical surface scattering models (POM, IEM), as well as an empirical model for retrieval of soil moisture and surface rms...

  18. Soil moisture in sessile oak forest gaps

    Science.gov (United States)

    Zagyvainé Kiss, Katalin Anita; Vastag, Viktor; Gribovszki, Zoltán; Kalicz, Péter

    2015-04-01

    By social demands are being promoted the aspects of the natural forest management. In forestry the concept of continuous forest has been an accepted principle also in Hungary since the last decades. The first step from even-aged stand to continuous forest can be the forest regeneration based on gap cutting, so small openings are formed in a forest due to forestry interventions. This new stand structure modifies the hydrological conditions for the regrowth. Without canopy and due to the decreasing amounts of forest litter the interception is less significant so higher amount of precipitation reaching the soil. This research focuses on soil moisture patterns caused by gaps. The spatio-temporal variability of soil water content is measured in gaps and in surrounding sessile oak (Quercus petraea) forest stand. Soil moisture was determined with manual soil moisture meter which use Time-Domain Reflectometry (TDR) technology. The three different sizes gaps (G1: 10m, G2: 20m, G3: 30m) was opened next to Sopron on the Dalos Hill in Hungary. First, it was determined that there is difference in soil moisture between forest stand and gaps. Second, it was defined that how the gap size influences the soil moisture content. To explore the short term variability of soil moisture, two 24-hour (in growing season) and a 48-hour (in dormant season) field campaign were also performed in case of the medium-sized G2 gap along two/four transects. Subdaily changes of soil moisture were performed. The measured soil moisture pattern was compared with the radiation pattern. It was found that the non-illuminated areas were wetter and in the dormant season the subdaily changes cease. According to our measurements, in the gap there is more available water than under the forest stand due to the less evaporation and interception loss. Acknowledgements: The research was supported by TÁMOP-4.2.2.A-11/1/KONV-2012-0004 and AGRARKLIMA.2 VKSZ_12-1-2013-0034.

  19. Opto-thermal moisture content and moisture depth profile measurements in organic materials

    NARCIS (Netherlands)

    Xiao, P.; Guo, X.; Cui, Y.Y.; Imhof, R.; Bicanic, D.D.

    2004-01-01

    Opto-thermal transient emission radiometry(OTTER) is a infrared remote sensing technique, which has been successfully used in in vivo skin moisture content and skin moisture depth profiling measurements.In present paper, we extend this moisture content measurement capability to analyze the moisture

  20. Evaluation of Assimilated SMOS Soil Moisture Data for US Cropland Soil Moisture Monitoring

    Science.gov (United States)

    Yang, Zhengwei; Sherstha, Ranjay; Crow, Wade; Bolten, John; Mladenova, Iva; Yu, Genong; Di, Liping

    2016-01-01

    Remotely sensed soil moisture data can provide timely, objective and quantitative crop soil moisture information with broad geospatial coverage and sufficiently high resolution observations collected throughout the growing season. This paper evaluates the feasibility of using the assimilated ESA Soil Moisture Ocean Salinity (SMOS)Mission L-band passive microwave data for operational US cropland soil surface moisture monitoring. The assimilated SMOS soil moisture data are first categorized to match with the United States Department of Agriculture (USDA)National Agricultural Statistics Service (NASS) survey based weekly soil moisture observation data, which are ordinal. The categorized assimilated SMOS soil moisture data are compared with NASSs survey-based weekly soil moisture data for consistency and robustness using visual assessment and rank correlation. Preliminary results indicate that the assimilated SMOS soil moisture data highly co-vary with NASS field observations across a large geographic area. Therefore, SMOS data have great potential for US operational cropland soil moisture monitoring.

  1. A comparison of two methods for estimating conifer live foliar moisture content

    Science.gov (United States)

    W. Matt Jolly; Ann M. Hadlow

    2012-01-01

    Foliar moisture content is an important factor regulating how wildland fires ignite in and spread through live fuels but moisture content determination methods are rarely standardised between studies. One such difference lies between the uses of rapid moisture analysers or drying ovens. Both of these methods are commonly used in live fuel research but they have never...

  2. Soil-moisture transport in arid site vadose zones

    International Nuclear Information System (INIS)

    Isaacson, R.E.; Brownell, L.E.; Nelson, R.W.; Roetman, E.L.

    1974-01-01

    Soil-moisture transport processes in the arid soils of the United States Atomic Energy Commission's Hanford site are being evaluated. The depth of penetration of meteoric precipitation has been determined by profiling fall-out tritium at two locations where the water table is about 90 m below ground surface. In situ temperatures and water potentials were measured with temperature transducers and thermocouple psychrometers at the same location to obtain thermodynamic data for identifying the factors influencing soil-moisture transport. Neutron probes are being used to monitor soil-moisture changes in two lysimeters, three metres in diameter by 20 metres deep. The lysimeters are also equipped to measure pressure, temperature and relative humidity as a function of depth and time. Theoretical models based on conservation of momentum expressions are being developed to analyse non-isothermal soil-moisture transport processes. Future work will be concerned with combining the theoretical and experimental work and determining the amount of rainfall required to cause migration of soil-moisture to the water table. (author)

  3. Free-Tropospheric Moisture Convergence and Tropical Convective Regimes

    Science.gov (United States)

    Masunaga, H.

    2014-12-01

    It is known that quiescent periods with only shallow cumuli prevalent are frequently observed even in the deep Tropics, which is considered from the climatological perspectives as an area harboring vigorous deep convection. It is argued in this work that the free-tropospheric (FT) moisture convergence is a crucial factor for separating the stable maintenance of isolated shallow cumuli in the quiescent periods from the self-sustaining growth of organized convective systems in the dynamic periods over tropical oceans. The analysis is based on a variety of satellite measurements including Aqua AIRS T and q soundings and QuikSCAT surface wind, composited with reference to the time before or after the occurrence of precipitating clouds detected by TRMM PR. The FT moisture convergence and updraft moisture flux at cloud base are then derived from this dataset under large-scale moisture budget constraint (see Figure). Free-tropospheric precipitation efficiency (FTPE), or the ratio of precipitation to updraft moisture flux at cloud base, is introduced as a measure of convective intensity (rather than the population) over the large-scale domain. The following hypothesis is discussed in light of the analysis results. Isolated shallow cumuli would stay shallow when large-scale FT moisture is diverging (although moisture is weakly converging when integrated over the whole troposphere) since an increase in cumulus population would be counteracted by an additional moisture divergence in the FT. When large-scale FT convergence is positive, in contrast, developing clouds would induce a more moisture input and allow an unstable growth to a highly organized convective system. Zero FT moisture convergence may serve as the neutrality separating the negative feedback acting in the quiescent regime from the positive feedback instrumental for the dynamic regime.

  4. Development of a moisture scheme for the explicit numerical simulation of moist convection

    CSIR Research Space (South Africa)

    Bopape, Mary-Jane M

    2010-09-01

    Full Text Available .kashan.co.za] Development of a moisture scheme for the explicit numerical simulation of moist convection M BOPAPE, F ENGELBRECHT, D RANDALL AND W LANDMAN CSIR Natural Resources and the Environment, PO Box 395, Pretoria, 0001, South Africa Email: mbopape... sigma coordinate model that incorporates moisture effects, so that it can simulate convective clouds and precipitation. moisture terms equivalent to those of the miller and pearce (1974) model are incorporated in the equation set used: ; (1) ; (2...

  5. Spatio-temporal Root Zone Soil Moisture Estimation for Indo - Gangetic Basin from Satellite Derived (AMSR-2 and SMOS) Surface Soil Moisture

    Science.gov (United States)

    Sure, A.; Dikshit, O.

    2017-12-01

    Root zone soil moisture (RZSM) is an important element in hydrology and agriculture. The estimation of RZSM provides insight in selecting the appropriate crops for specific soil conditions (soil type, bulk density, etc.). RZSM governs various vadose zone phenomena and subsequently affects the groundwater processes. With various satellite sensors dedicated to estimating surface soil moisture at different spatial and temporal resolutions, estimation of soil moisture at root zone level for Indo - Gangetic basin which inherits complex heterogeneous environment, is quite challenging. This study aims at estimating RZSM and understand its variation at the level of Indo - Gangetic basin with changing land use/land cover, topography, crop cycles, soil properties, temperature and precipitation patterns using two satellite derived soil moisture datasets operating at distinct frequencies with different principles of acquisition. Two surface soil moisture datasets are derived from AMSR-2 (6.9 GHz - `C' Band) and SMOS (1.4 GHz - `L' band) passive microwave sensors with coarse spatial resolution. The Soil Water Index (SWI), accounting for soil moisture from the surface, is derived by considering a theoretical two-layered water balance model and contributes in ascertaining soil moisture at the vadose zone. This index is evaluated against the widely used modelled soil moisture dataset of GLDAS - NOAH, version 2.1. This research enhances the domain of utilising the modelled soil moisture dataset, wherever the ground dataset is unavailable. The coupling between the surface soil moisture and RZSM is analysed for two years (2015-16), by defining a parameter T, the characteristic time length. The study demonstrates that deriving an optimal value of T for estimating SWI at a certain location is a function of various factors such as land, meteorological, and agricultural characteristics.

  6. Non-destructive radio-frequency and microwave measurement of moisture content in agricultural commodities

    International Nuclear Information System (INIS)

    Nelson, S.O.

    1994-01-01

    The importance of moisture content in agricultural commodities, the usefulness of the dielectric properties of such products for sensing moisture content by radiofrequency and microwave measurements, and factors affecting these properties are briefly discussed. Recent developments in the understanding of principles for online moisture sensing and the sensing of individual kernel, seed, nut and fruit moisture contents by radiofrequency and microwave techniques are reviewed. A brief discussion is included on aspects of practical application

  7. In-situ determination of moisture in road pavement by nuclear methods

    International Nuclear Information System (INIS)

    Gray, G.W.; Sowerby, B.D.; Youdale, G.P.

    1981-04-01

    The use of neutron moisture probes to determine moisture in compacted pavement layers has been studied on samples representative of those used by the New South Wales Department of Main Roads for roadway construction. The aim of this work was to measure the average moisture content of the upper layer (15-20 cm thick) with minimum interference from moisture in underlying layers. Sub-surface probes using high (α-Be) and low (α-Li) energy neutron sources were examined; conventional α-Be sources in specially designed compact probes should result in an error due to base moisture and density variations of less than 0.4 wt % moisture. As this error is probably less than those due to sampling and geometry variations in the field, such a probe should be sufficiently accurate for DMR requirements. If less sensitivity to base moisture is required, the α-Li source will reduce this sensitivity by a factor of about 1.4

  8. Validation of soil moisture ocean salinity (SMOS) satellite soil moisture products

    Science.gov (United States)

    The surface soil moisture state controls the partitioning of precipitation into infiltration and runoff. High-resolution observations of soil moisture will lead to improved flood forecasts, especially for intermediate to large watersheds where most flood damage occurs. Soil moisture is also key in d...

  9. Propagation of soil moisture memory to streamflow and evapotranspiration in Europe

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2013-10-01

    As a key variable of the land-climate system soil moisture is a main driver of streamflow and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence) characteristics. Many studies also report distinct low frequency variations for streamflow, which are likely related to soil moisture memory. Using data from over 100 near-natural catchments located across Europe, we investigate in this study the connection between soil moisture memory and the respective memory of streamflow and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalised by precipitation) and evapotranspiration (normalised by radiation) on soil moisture are fitted using streamflow observations. The model therefore allows us to compute the memory characteristics of soil moisture, streamflow and evapotranspiration on the catchment scale. We find considerable memory in soil moisture and streamflow in many parts of the continent, and evapotranspiration also displays some memory at monthly time scale in some catchments. We show that the memory of streamflow and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of streamflow and evapotranspiration to soil moisture. Furthermore, we find that the coupling strengths of streamflow and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe, we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  10. Propagation of soil moisture memory to streamflow and evapotranspiration in Europe

    Directory of Open Access Journals (Sweden)

    R. Orth

    2013-10-01

    Full Text Available As a key variable of the land-climate system soil moisture is a main driver of streamflow and evapotranspiration under certain conditions. Soil moisture furthermore exhibits outstanding memory (persistence characteristics. Many studies also report distinct low frequency variations for streamflow, which are likely related to soil moisture memory. Using data from over 100 near-natural catchments located across Europe, we investigate in this study the connection between soil moisture memory and the respective memory of streamflow and evapotranspiration on different time scales. For this purpose we use a simple water balance model in which dependencies of runoff (normalised by precipitation and evapotranspiration (normalised by radiation on soil moisture are fitted using streamflow observations. The model therefore allows us to compute the memory characteristics of soil moisture, streamflow and evapotranspiration on the catchment scale. We find considerable memory in soil moisture and streamflow in many parts of the continent, and evapotranspiration also displays some memory at monthly time scale in some catchments. We show that the memory of streamflow and evapotranspiration jointly depend on soil moisture memory and on the strength of the coupling of streamflow and evapotranspiration to soil moisture. Furthermore, we find that the coupling strengths of streamflow and evapotranspiration to soil moisture depend on the shape of the fitted dependencies and on the variance of the meteorological forcing. To better interpret the magnitude of the respective memories across Europe, we finally provide a new perspective on hydrological memory by relating it to the mean duration required to recover from anomalies exceeding a certain threshold.

  11. Theoretical analysis of moisture transport in wood as an open porous hygroscopic material

    DEFF Research Database (Denmark)

    Hozjan, Tomaz; Svensson, Staffan

    2010-01-01

    Moisture transport in an open porous hygroscopic material such as wood is a complex system of coupled processes. For seasoned wood in natural climate three fully coupled processes active in the moisture transport are readily identified: (1) diffusion of vapor in pores; (2) phase change from one...... state to another, also called moisture sorption; and (3) diffusion of bound water in wood tissue (in the cell wall). A mathematical model for predicting moisture transport in wood for a given condition must at least consider the dominating active processes simultaneously to be considered accurate...... of the three processes on the outcome of the coupled model. Least significant is the bound water diffusion. Based on the results from the sensitivity analyses, a simplified model for moisture transport in wood is proposed....

  12. A study of soil moisture variability for landmine detection by the neutron technique

    Directory of Open Access Journals (Sweden)

    Avdić Senada

    2007-01-01

    Full Text Available This paper is focused on the space and temporal variability of soil moisture experimental data acquired at a few locations near landmine fields in the Tuzla Canton, as well as on the quantification of the statistical nature of soil moisture data on a small spatial scale. Measurements of soil water content at the surface were performed by an electro-magnetic sensor over 1 25, and 100 m2 grids, at intervals of 0.2, 0.5, and 1 m, respectively. The sampling of soil moisture at different spatial resolutions and over different grid sizes has been investigated in order to achieve the quantification of the statistical nature of soil moisture distribution. The statistical characterization of spatial variability was performed through variogram and correlogram analysis of measurement results. The temporal variability of the said samples was examined over a two-season period. For both sampling periods, the spatial correlation length is about 1 to 2 m, respectively, or less. Thus, sampling should be done on a larger spatial scale, in order to capture the variability of the investigated areas. Since the characteristics of many landmine sensors depend on soil moisture, the results of this study could form a useful data base for multisensor landmine detection systems with a promising performance.

  13. MoisturEC: a new R program for moisture content estimation from electrical conductivity data

    Science.gov (United States)

    Terry, Neil; Day-Lewis, Frederick D.; Werkema, Dale D.; Lane, John W.

    2018-01-01

    Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data‐analysis tools are needed to “translate” geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user‐friendly tools are required to fully capitalize on the potential of geophysical information for soil‐moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two‐ and three‐dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach.

  14. The method of predicting the process of condensation of moisture and hydrate formation in the gas pipeline

    OpenAIRE

    Хвостова, Олена Вікторівна

    2014-01-01

    The problem of ensuring the required value of one of the natural gas quality indicators during its transportation to the consumer - moisture content is considered in the paper. The method for predicting possible moisture condensation and hydrate formation processes in gas pipelines considering mixing gas flows with different moisture content was developed.Predicting the moisture condensation and hydrate formation in gas pipelines is an actual task since a timely prevention of these processes ...

  15. Measurement of log moisture content and density by gamma and neutron backscatter

    International Nuclear Information System (INIS)

    Barry, B.J.

    2002-01-01

    Measurement of the moisture content and green density of wood was investigated using scattering of gamma rays and neutrons. Both of these processes are dependent on density but neutrons are particularly sensitive to the hydrogen content, which changes with moisture content. A material mimicking the green density and moisture content of real wood was successfully used in a laboratory study to establish the feasibility of measuring these within the range found in standing trees. A later field trial indicated that the technique needed more development to take account of the natural variability of real trees. (author). 3 refs., 11 figs., 1 table

  16. Evaluation of a Soil Moisture Data Assimilation System Over West Africa

    Science.gov (United States)

    Bolten, J. D.; Crow, W.; Zhan, X.; Jackson, T.; Reynolds, C.

    2009-05-01

    A crucial requirement of global crop yield forecasts by the U.S. Department of Agriculture (USDA) International Production Assessment Division (IPAD) is the regional characterization of surface and sub-surface soil moisture. However, due to the spatial heterogeneity and dynamic nature of precipitation events and resulting soil moisture, accurate estimation of regional land surface-atmosphere interactions based sparse ground measurements is difficult. IPAD estimates global soil moisture using daily estimates of minimum and maximum temperature and precipitation applied to a modified Palmer two-layer soil moisture model which calculates the daily amount of soil moisture withdrawn by evapotranspiration and replenished by precipitation. We attempt to improve upon the existing system by applying an Ensemble Kalman filter (EnKF) data assimilation system to integrate surface soil moisture retrievals from the NASA Advanced Microwave Scanning Radiometer (AMSR-E) into the USDA soil moisture model. This work aims at evaluating the utility of merging satellite-retrieved soil moisture estimates with the IPAD two-layer soil moisture model used within the DBMS. We present a quantitative analysis of the assimilated soil moisture product over West Africa (9°N- 20°N; 20°W-20°E). This region contains many key agricultural areas and has a high agro- meteorological gradient from desert and semi-arid vegetation in the North, to grassland, trees and crops in the South, thus providing an ideal location for evaluating the assimilated soil moisture product over multiple land cover types and conditions. A data denial experimental approach is utilized to isolate the added utility of integrating remotely-sensed soil moisture by comparing assimilated soil moisture results obtained using (relatively) low-quality precipitation products obtained from real-time satellite imagery to baseline model runs forced with higher quality rainfall. An analysis of root-zone anomalies for each model

  17. On-line moisture analysis

    International Nuclear Information System (INIS)

    Cutmore, N.G.; Mijak, D.G

    2002-01-01

    Measurement of the moisture content of iron ore has become a key issue for controlling moisture additions for dust suppression. In most cases moisture content is still determined by manual or automatic sampling of the ore stream, followed by conventional laboratory analysis by oven drying. Although this procedure enables the moisture content to be routinely monitored, it is too slow for control purposes. This has generated renewed interest in on-line techniques for the accurate and rapid measurement of moisture in iron ore on conveyors. Microwave transmission techniques have emerged over the past 40 years as the dominant technology for on-line measurement of moisture in bulk materials, including iron ores. Alternative technologies have their limitations. Infra-red analysers are used in a variety of process industries, but rely on the measurement of absorption by moisture in a very thin surface layer. Consequently such probes may be compromised by particle size effects and biased presentation of the bulk material. Nuclear-based analysers measure the total hydrogen content in the sample and do not differentiate between free and combined moisture. Such analysers may also be sensitive to material presentation and elemental composition. Very low frequency electromagnetic probes, such as capacitance or conductance probes, operate in the frequency region where the DC conductivity dominates much of the response, which is a function not only of moisture content but also of ionic composition and chemistry. These problems are overcome using microwave transmission techniques, which also have the following advantages, as a true bulk moisture analysis is obtained, because a high percentage of the bulk material is analysed; the moisture estimate is mostly insensitive to any biased presentation of moisture, for example due to stratification of bulk material with different moisture content and because no physical contact is made between the sensor and the bulk material. This is

  18. A study of soil moisture variability for landmine detection by the neutron technique

    OpenAIRE

    Avdić Senada

    2007-01-01

    This paper is focused on the space and temporal variability of soil moisture experimental data acquired at a few locations near landmine fields in the Tuzla Canton, as well as on the quantification of the statistical nature of soil moisture data on a small spatial scale. Measurements of soil water content at the surface were performed by an electro-magnetic sensor over 1 25, and 100 m2 grids, at intervals of 0.2, 0.5, and 1 m, respectively. The sampling of soil moisture at different spatial r...

  19. MoisturEC: A New R Program for Moisture Content Estimation from Electrical Conductivity Data.

    Science.gov (United States)

    Terry, Neil; Day-Lewis, Frederick D; Werkema, Dale; Lane, John W

    2018-03-06

    Noninvasive geophysical estimation of soil moisture has potential to improve understanding of flow in the unsaturated zone for problems involving agricultural management, aquifer recharge, and optimization of landfill design and operations. In principle, several geophysical techniques (e.g., electrical resistivity, electromagnetic induction, and nuclear magnetic resonance) offer insight into soil moisture, but data-analysis tools are needed to "translate" geophysical results into estimates of soil moisture, consistent with (1) the uncertainty of this translation and (2) direct measurements of moisture. Although geostatistical frameworks exist for this purpose, straightforward and user-friendly tools are required to fully capitalize on the potential of geophysical information for soil-moisture estimation. Here, we present MoisturEC, a simple R program with a graphical user interface to convert measurements or images of electrical conductivity (EC) to soil moisture. Input includes EC values, point moisture estimates, and definition of either Archie parameters (based on experimental or literature values) or empirical data of moisture vs. EC. The program produces two- and three-dimensional images of moisture based on available EC and direct measurements of moisture, interpolating between measurement locations using a Tikhonov regularization approach. Published 2018. This article is a U.S. Government work and is in the public domain in the USA.

  20. Acceptability and efficacy of an emollient containing ceramide-precursor lipids and moisturizing factors for atopic dermatitis in pediatric patients.

    Science.gov (United States)

    Hon, Kam Lun; Pong, Nga Hin; Wang, Shuxin Susan; Lee, Vivian W; Luk, Nai Ming; Leung, Ting Fan

    2013-03-01

    Atopic eczema or dermatitis (AD) is associated with atopy and is characterized by reduced skin hydration and an impaired skin barrier in the epidermis. We investigated the patient acceptability and efficacy of an emollient containing ceramide-precursor lipids and moisturizing factors (LMF) in AD. Consecutive AD patients were recruited. Swabs and cultures were obtained from the right antecubital fossa and the worst-affected eczematous area, and disease severity [according to the SCORing Atopic Dermatitis (SCORAD) Index], skin hydration, and transepidermal water loss (TEWL) were measured prior to and after 2 weeks' use of the LMF moisturizer. The general acceptability of treatment was documented as being 'very good', 'good', 'fair', or 'poor'. Twenty-four AD patients [mean age 13.8 (standard deviation 5.7) years] were recruited. Two thirds of the patients reported very good or good acceptability of the LMF moisturizer, whereas one third reported fair or poor acceptability. There were no inter-group differences in the pre-use clinical parameters of age, objective SCORAD score, pruritus score, sleep disturbance score, skin hydration, TEWL, topical corticosteroid use, oral antihistamine use, or acceptability of previously used proprietary emollients. However, patients in the fair/poor acceptability group were more likely to have Staphylococcus aureus colonization and to be female (odds ratio 13, 95 % confidence interval 1.7-99.4; p = 0.021). Following use of the LMF moisturizer, the objective SCORAD score, pruritus score, and sleep disturbance score were lower in the very good/good acceptability group than in the fair/poor acceptability group. The mean objective SCORAD score improved (from 31.5 to 25.7; p = 0.039) and skin hydration improved [from 30.7 arbitrary units (a.u.) to 36.0 a.u.; p = 0.021] in the very good/good acceptability group. When the data were analyzed for the strength of the agreement of the rating of acceptability, the κ values were 0.338 (fair) for

  1. Measurement of moisture depth distribution in composite materials using positron lifetime technique

    International Nuclear Information System (INIS)

    Singh, J.J.; Holt, W.H.; Mock, W. Jr.; Mall, G.H.

    1980-01-01

    Fiber-reinforced resin matrix composites reportedly suffer significant degradation in their mechanical properties when exposed to hot, moist, environments for extended periods. Moisture weakens the fiber matrix bond as well as the matrix shear strength. An important factor in determining the extent of degradation is the depth distribution of moisture in the resin matrix. Despite the importance of measuring moisture distribution and its effects on composite material properties, not enough data are available on suitable nondestructive techniques for detecting and measuring moisture diffusion in organic composite materials. This paper addresses itself to the problem of measuring the moisture content of such materials, with special emphasis on its depth distribution, using positron lifetime technique

  2. The Contribution of Soil Moisture Information to Forecast Skill: Two Studies

    Science.gov (United States)

    Koster, Randal

    2010-01-01

    This talk briefly describes two recent studies on the impact of soil moisture information on hydrological and meteorological prediction. While the studies utilize soil moisture derived from the integration of large-scale land surface models with observations-based meteorological data, the results directly illustrate the potential usefulness of satellite-derived soil moisture information (e.g., from SMOS and SMAP) for applications in prediction. The first study, the GEWEX- and ClIVAR-sponsored GLACE-2 project, quantifies the contribution of realistic soil moisture initialization to skill in subseasonal forecasts of precipitation and air temperature (out to two months). The multi-model study shows that soil moisture information does indeed contribute skill to the forecasts, particularly for air temperature, and particularly when the initial local soil moisture anomaly is large. Furthermore, the skill contributions tend to be larger where the soil moisture initialization is more accurate, as measured by the density of the observational network contributing to the initialization. The second study focuses on streamflow prediction. The relative contributions of snow and soil moisture initialization to skill in streamflow prediction at seasonal lead, in the absence of knowledge of meteorological anomalies during the forecast period, were quantified with several land surface models using uniquely designed numerical experiments and naturalized streamflow data covering mUltiple decades over the western United States. In several basins, accurate soil moisture initialization is found to contribute significant levels of predictive skill. Depending on the date of forecast issue, the contributions can be significant out to leads of six months. Both studies suggest that improvements in soil moisture initialization would lead to increases in predictive skill. The relevance of SMOS and SMAP satellite-based soil moisture information to prediction are discussed in the context of these

  3. On-line moisture analysis

    CERN Document Server

    Cutmore, N G

    2002-01-01

    Measurement of the moisture content of iron ore has become a key issue for controlling moisture additions for dust suppression. In most cases moisture content is still determined by manual or automatic sampling of the ore stream, followed by conventional laboratory analysis by oven drying. Although this procedure enables the moisture content to be routinely monitored, it is too slow for control purposes. This has generated renewed interest in on-line techniques for the accurate and rapid measurement of moisture in iron ore on conveyors. Microwave transmission techniques have emerged over the past 40 years as the dominant technology for on-line measurement of moisture in bulk materials, including iron ores. Alternative technologies have their limitations. Infra-red analysers are used in a variety of process industries, but rely on the measurement of absorption by moisture in a very thin surface layer. Consequently such probes may be compromised by particle size effects and biased presentation of the bulk mater...

  4. Measured moisture in buildings and adverse health effects: a review.

    Science.gov (United States)

    Mendell, Mark J; Macher, Janet M; Kumagai, Kazukiyo

    2018-04-23

    It has not yet been possible to quantify dose-related health risks attributable to indoor dampness or mold (D/M), to support the setting of health-related limits for D/M. An overlooked target for assessing D/M is moisture in building materials, the critical factor allowing microbial growth. A search for studies of quantified building moisture and occupant health effects identified three eligible studies. Two studies assessed associations between measured wall moisture content and respiratory health in the UK. Both reported dose-related increases in asthma exacerbation with higher measured moisture, with one study reporting an adjusted odds ratio (OR) of 7.0 for night-time asthma symptoms with higher bedroom moisture. The third study assessed relationships between infrared camera-determined wall moisture and atopic dermatitis in South Korea, reporting an adjusted OR of 14.5 for water-damaged homes and moderate or severe atopic dermatitis. Measuring building moisture has, despite extremely limited available findings, potential promise for detecting unhealthy D/M in homes and merits more research attention. Further research to validate these findings should include measured "water activity," which directly assesses moisture availability for microbial growth. Ultimately, evidence-based, health-related thresholds for building moisture, across specific materials and measurement devices, could better guide assessment and remediation of D/M in buildings. This article is protected by copyright. All rights reserved. This article is protected by copyright. All rights reserved.

  5. Analyzing and Visualizing Precipitation and Soil Moisture in ArcGIS

    Science.gov (United States)

    Yang, Wenli; Pham, Long; Zhao, Peisheng; Kempler, Steve; Wei, Jennifer

    2016-01-01

    Precipitation and soil moisture are among the most important parameters in many land GIS (Geographic Information System) research and applications. These data are available globally from NASA GES DISC (Goddard Earth Science Data and Information Services Center) in GIS-ready format at 10-kilometer spatial resolution and 24-hour or less temporal resolutions. In this presentation, well demonstrate how rainfall and soil moisture data are used in ArcGIS to analyze and visualize spatiotemporal patterns of droughts and their impacts on natural vegetation and agriculture in different parts of the world.

  6. Geographical and meteorological factors associated with isolation of Listeria species in New York State produce production and natural environments.

    Science.gov (United States)

    Chapin, Travis K; Nightingale, Kendra K; Worobo, Randy W; Wiedmann, Martin; Strawn, Laura K

    2014-11-01

    Listeria species have been isolated from diverse environments, often at considerable prevalence, and are known to persist in food processing facilities. The presence of Listeria spp. has been suggested to be a marker for Listeria monocytogenes contamination. Therefore, a study was conducted to (i) determine the prevalence and diversity of Listeria spp. in produce production and natural environments and (ii) identify geographical and/or meteorological factors that affect the isolation of Listeria spp. in these environments. These data were also used to evaluate Listeria spp. as index organisms for L. monocytogenes in produce production environments. Environmental samples collected from produce production (n = 588) and natural (n = 734) environments in New York State were microbiologically analyzed to detect and isolate Listeria spp. The prevalence of Listeria spp. was approximately 33 and 34% for samples obtained from natural environments and produce production, respectively. Co-isolation of L. monocytogenes and at least one other species of Listeria in a given sample was recorded for 3 and 9% of samples from natural environments and produce production, respectively. Soil moisture and proximity to water and pastures were highly associated with isolation of Listeria spp. in produce production environments, while elevation, study site, and proximity to pastures were highly associated with isolation of Listeria spp. in natural environments, as determined by randomForest models. These data show that Listeria spp. were prevalent in both agricultural and nonagricultural environments and that geographical and meteorological factors associated with isolation of Listeria spp. were considerably different between the two environments.

  7. Barrier function and natural moisturizing factor levels after cumulative exposure to a fruit-derived organic acid and a detergent: different outcomes in atopic and healthy skin and relevance for occupational contact dermatitis in the food industry.

    Science.gov (United States)

    Angelova-Fischer, Irena; Hoek, Anne-Karin; Dapic, Irena; Jakasa, Ivone; Kezic, Sanja; Fischer, Tobias W; Zillikens, Detlef

    2015-12-01

    Fruit-derived organic compounds and detergents are relevant exposure factors for occupational contact dermatitis in the food industry. Although individuals with atopic dermatitis (AD) are at risk for development of occupational contact dermatitis, there have been no controlled studies on the effects of repeated exposure to multiple irritants, relevant for the food industry, in atopic skin. The aim of the study was to investigate the outcomes of repeated exposure to a fruit-derived organic acid and a detergent in AD compared to healthy volunteers. The volunteers were exposed to 2.0% acetic acid (AcA) and/or 0.5% sodium lauryl sulfate (SLS) in controlled tandem repeated irritation test. The outcomes were assessed by measurements of erythema, transepidermal water loss (TEWL) and natural moisturizing factor (NMF) levels. In the AD volunteers, repeated AcA exposure led to barrier disruption and significant TEWL increase; no significant differences after the same exposure in the healthy controls were found. Repeated exposure to SLS and the irritant tandems enhanced the reactions and resulted in a significantly higher increase in TEWL in the AD compared to the control group. Cumulative irritant exposure reduced the NMF levels in both groups. Differences in the severity of irritant-induced barrier impairment in atopic individuals contribute to the risk for occupational contact dermatitis in result of multiple exposures to food-derived irritants and detergents. © 2015 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  8. Meteorological factors associated with abundance of airborne fungal spores over natural vegetation

    Science.gov (United States)

    Crandall, Sharifa G.; Gilbert, Gregory S.

    2017-08-01

    The abundance of airborne fungal spores in agricultural and urban settings increases with greater air temperature, relative humidity, or precipitation. The same meteorological factors that affect temporal patterns in spore abundance in managed environments also vary spatially across natural habitats in association with differences in vegetation structure. Here we investigated how temporal and spatial variation in aerial spore abundance is affected by abiotic (weather) and biotic (vegetation) factors as a foundation for predicting how fungi may respond to changes in weather and land-use patterns. We measured the phenology of airborne fungal spores across a mosaic of naturally occurring vegetation types at different time scales to describe (1) how spore abundance changes over time, (2) which local meteorological variables are good predictors for airborne spore density, and (3) whether spore abundance differs across vegetation types. Using an air volumetric vacuum sampler, we collected spore samples at 3-h intervals over a 120-h period in a mixed-evergreen forest and coastal prairie to measure diurnal, nocturnal, and total airborne spore abundance across vegetation types. Spore samples were also collected at weekly and monthly intervals in mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types from 12 field sites across two years. We found greater airborne spore densities during the wetter winter months compared to the drier summer months. Mean total spore abundance in the mixed-evergreen forest was twice than in the coastal prairie, but there were no significant differences in total airborne spore abundance among mixed-evergreen forest, redwood forest, and maritime chaparral vegetation types. Weekly and monthly peaks in airborne spore abundance corresponded with rain events and peaks in soil moisture. Overall, temporal patterns in meteorological factors were much more important in determining airborne fungal spore abundance than the

  9. The effect of changing ambient humidity on moisture condition in timber elements

    DEFF Research Database (Denmark)

    Hozjan, Tomaẑ; Turk, Goran; Srpĉiĉ, Stanislav

    2012-01-01

    a fully coupled transport model including a model for the influential sorption hysteresis of wood is used. The coupled model accounts for both vapor transport in pores and bound water transport in wood tissue. Moisture state history influences relationship between moisture state of wood and air humidity......This paper deals with the effect of the changing ambient humidity on moisture conditions in timber elements. The naturally varying humidity is possible to model as a relative combination of different harmonic cycles, with different periods and amplitudes. For the determination of the moisture field......, it must therefore be taken into account. In order to include history dependency, a hysteresis model is used here. Results from numerical calculations for timber specimen exposed to combined daily and annually cyclic variation of outside humidity are presented. Copyright © (2012) by WCTE 2012 Committee....

  10. The influence of temperature and moisture contents regimes on the aerobic microbial activity of a biosolids composting blend.

    Science.gov (United States)

    Liang, C; Das, K C; McClendon, R W

    2003-01-01

    To understand the relationships between temperature, moisture content, and microbial activity during the composting of biosolids (municipal wastewater treatment sludge), well-controlled incubation experiments were conducted using a 2-factor factorial design with six temperatures (22, 29, 36, 43, 50, and 57 degrees C) and five moisture contents (30, 40, 50, 60, and 70%). The microbial activity was measured as O2 uptake rate (mg g(-1) h(-1)) using a computer controlled respirometer. In this study, moisture content proved to be a dominant factor impacting aerobic microbial activity of the composting blend. Fifty percent moisture content appeared to be the minimal requirement for obtaining activities greater than 1.0 mg g(-1) h(-1). Temperature was also documented to be an important factor for biosolids composting. However, its effect was less influential than moisture content. Particularly, the enhancement of composting activities induced by temperature increment could be realized by increasing moisture content alone.

  11. Analysis and optimal design of moisture sensor for rice grain moisture measurement

    Science.gov (United States)

    Jain, Sweety; Mishra, Pankaj Kumar; Thakare, Vandana Vikas

    2018-04-01

    The analysis and design of a microstrip sensor for accurate determination of moisture content (MC) in rice grains based on oven drying technique, this technique is easy, fast and less time-consuming to other techniques. The sensor is designed with low insertion loss, reflection coefficient and maximum gain is -35dB and 5.88dB at 2.68GHz as well as discussed all the parameters such as axial ratio, maximum gain, smith chart etc, which is helpful for analysis the moisture measurement. The variation in percentage of moisture measurement with magnitude and phase of transmission coefficient is investigated at selected frequencies. The microstrip moisture sensor consists of one layer: substrate FR4, thickness 1.638 is simulated by computer simulated technology microwave studio (CST MWS). It is concluded that the proposed sensor is suitable for development as a complete sensor and to estimate the optimum moisture content of rice grains with accurately, sensitivity, compact, versatile and suitable for determining the moisture content of other crops and agriculture products.

  12. Moisture transport in coated wood

    NARCIS (Netherlands)

    Meel, P.A. van; Erich, S.J.F.; Huinink, H.P.; Kopinga, K.; Jong, J. DE; Adan, O.C.G.

    2011-01-01

    Moisture accumulation inside wood causes favorable conditions for decay. Application of a coating alters the moisture sorption of wood and prevents accumulation of moisture. This paper presents the results of a nuclear magnetic resonance (NMR) study on the influence of a coating on the moisture

  13. MoisturEC: an R application for geostatistical estimation of moisture content from electrical conductivity data

    Science.gov (United States)

    Terry, N.; Day-Lewis, F. D.; Werkema, D. D.; Lane, J. W., Jr.

    2017-12-01

    Soil moisture is a critical parameter for agriculture, water supply, and management of landfills. Whereas direct data (as from TDR or soil moisture probes) provide localized point scale information, it is often more desirable to produce 2D and/or 3D estimates of soil moisture from noninvasive measurements. To this end, geophysical methods for indirectly assessing soil moisture have great potential, yet are limited in terms of quantitative interpretation due to uncertainty in petrophysical transformations and inherent limitations in resolution. Simple tools to produce soil moisture estimates from geophysical data are lacking. We present a new standalone program, MoisturEC, for estimating moisture content distributions from electrical conductivity data. The program uses an indicator kriging method within a geostatistical framework to incorporate hard data (as from moisture probes) and soft data (as from electrical resistivity imaging or electromagnetic induction) to produce estimates of moisture content and uncertainty. The program features data visualization and output options as well as a module for calibrating electrical conductivity with moisture content to improve estimates. The user-friendly program is written in R - a widely used, cross-platform, open source programming language that lends itself to further development and customization. We demonstrate use of the program with a numerical experiment as well as a controlled field irrigation experiment. Results produced from the combined geostatistical framework of MoisturEC show improved estimates of moisture content compared to those generated from individual datasets. This application provides a convenient and efficient means for integrating various data types and has broad utility to soil moisture monitoring in landfills, agriculture, and other problems.

  14. RESEARCH OF MOISTURE MIGRATION DURING PARTIAL FREEZING OF GROUND BEEF

    Directory of Open Access Journals (Sweden)

    V. M. Stefanovskiy

    2016-01-01

    Full Text Available The concept of «ideal product» is proposed for the study of mass transfer during partial freezing of food products by freezing plate. The ideal product is a product, in which number of factors affecting the «real product» (meat are excluded. These factors include chemical composition of meat, quality grade of raw material (NOR, DFD, PSE, cryoscopic temperature that determines the degree of water transformation into ice, the phenomenon of osmosis, rate of freezing, etc. By using the concept of «ideal product» and its implementation in a physical experiment, it is proved that the “piston effect” causing the migration of moisture is due to frozen crust formation during partial freezing of the body. During partial freezing of the product by freezing plate, «ideal» and «real» food environment is transformed from closed system into open one with inflow of moisture to unfrozen part of the body. In the «ideal product», there is an expulsion of unfrozen moisture from freezing front, so the water appears on the body surface. Thus, the displacement of moisture increases by the same law, according to which the thickness (weight of frozen layer increases. During partial freezing of ground meat, moisture does not appear on the surface of the product, but hydrates the unfrozen part of meat. The reason of this phenomenon is the expulsion of water during formation of frozen crust and water-binding capacity of meat.

  15. Hydrologic responses to restored wildfire regimes revealed by soil moisture-vegetation relationships

    Science.gov (United States)

    Boisramé, Gabrielle; Thompson, Sally; Stephens, Scott

    2018-02-01

    Many forested mountain watersheds worldwide evolved with frequent fire, which Twentieth Century fire suppression activities eliminated, resulting in unnaturally dense forests with high water demand. Restoration of pre-suppression forest composition and structure through a variety of management activities could improve forest resilience and water yields. This study explores the potential for "managed wildfire", whereby naturally ignited fires are allowed to burn, to alter the water balance. Interest in this type of managed wildfire is increasing, yet its long-term effects on water balance are uncertain. We use soil moisture as a spatially-distributed hydrologic indicator to assess the influence of vegetation, fire history and landscape position on water availability in the Illilouette Creek Basin in Yosemite National Park. Over 6000 manual surface soil moisture measurements were made over a period of three years, and supplemented with continuous soil moisture measurements over the top 1m of soil in three sites. Random forest and linear mixed effects models showed a dominant effect of vegetation type and history of vegetation change on measured soil moisture. Contemporary and historical vegetation maps were used to upscale the soil moisture observations to the basin and infer soil moisture under fire-suppressed conditions. Little change in basin-averaged soil moisture was inferred due to managed wildfire, but the results indicated that large localized increases in soil moisture had occurred, which could have important impacts on local ecology or downstream flows.

  16. Dendrochronological analysis of white oak growth patterns across a topographic moisture gradient in southern Ohio

    Science.gov (United States)

    Alexander K. Anning; Darrin L. Rubino; Elaine K. Sutherland; Brian C. McCarthy

    2013-01-01

    Moisture availability is a key factor that influences white oak (Quercus alba L.) growth and wood production. In unglaciated eastern North America, available soil moisture varies greatly along topographic and edaphic gradients. This study was aimed at determining the effects of soil moisture variability and macroclimate on white oak growth in mixed-oak forests of...

  17. Topsoil moisture mapping using geostatistical techniques under different Mediterranean climatic conditions.

    Science.gov (United States)

    Martínez-Murillo, J F; Hueso-González, P; Ruiz-Sinoga, J D

    2017-10-01

    Soil mapping has been considered as an important factor in the widening of Soil Science and giving response to many different environmental questions. Geostatistical techniques, through kriging and co-kriging techniques, have made possible to improve the understanding of eco-geomorphologic variables, e.g., soil moisture. This study is focused on mapping of topsoil moisture using geostatistical techniques under different Mediterranean climatic conditions (humid, dry and semiarid) in three small watersheds and considering topography and soil properties as key factors. A Digital Elevation Model (DEM) with a resolution of 1×1m was derived from a topographical survey as well as soils were sampled to analyzed soil properties controlling topsoil moisture, which was measured during 4-years. Afterwards, some topography attributes were derived from the DEM, the soil properties analyzed in laboratory, and the topsoil moisture was modeled for the entire watersheds applying three geostatistical techniques: i) ordinary kriging; ii) co-kriging considering as co-variate topography attributes; and iii) co-kriging ta considering as co-variates topography attributes and gravel content. The results indicated topsoil moisture was more accurately mapped in the dry and semiarid watersheds when co-kriging procedure was performed. The study is a contribution to improve the efficiency and accuracy of studies about the Mediterranean eco-geomorphologic system and soil hydrology in field conditions. Copyright © 2017 Elsevier B.V. All rights reserved.

  18. Physically plausible prescription of land surface model soil moisture

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Thiery, Wim; Seneviratne, Sonia

    2016-04-01

    Land surface hydrology is an important control of surface weather and climate, especially under extreme dry or wet conditions where it can amplify heat waves or floods, respectively. Prescribing soil moisture in land surface models is a valuable technique to investigate this link between hydrology and climate. It has been used for example to assess the influence of soil moisture on temperature variability, mean and extremes (Seneviratne et al. 2006, 2013, Lorenz et al., 2015). However, perturbing the soil moisture content artificially can lead to a violation of the energy and water balances. Here we present a new method for prescribing soil moisture which ensures water and energy balance closure by using only water from runoff and a reservoir term. If water is available, the method prevents soil moisture decrease below climatological values. Results from simulations with the Community Land Model (CLM) indicate that our new method allows to avoid soil moisture deficits in many regions of the world. We show the influence of the irrigation-supported soil moisture content on mean and extreme temperatures and contrast our findings with that of earlier studies. Additionally, we will assess how long into the 21st century the new method will be able to maintain present-day climatological soil moisture levels for different regions. Lorenz, R., Argüeso, D., Donat, M.G., Pitman, A.J., den Hurk, B.V., Berg, A., Lawrence, D.M., Chéruy, F., Ducharne, A., Hagemann, S. and Meier, A., 2015. Influence of land-atmosphere feedbacks on temperature and precipitation extremes in the GLACE-CMIP5 ensemble. Journal of Geophysical Research: Atmospheres. Seneviratne, S.I., Lüthi, D., Litschi, M. and Schär, C., 2006. Land-atmosphere coupling and climate change in Europe. Nature, 443(7108), pp.205-209. Seneviratne, S.I., Wilhelm, M., Stanelle, T., Hurk, B., Hagemann, S., Berg, A., Cheruy, F., Higgins, M.E., Meier, A., Brovkin, V. and Claussen, M., 2013. Impact of soil moisture

  19. Moisture Transport in Wood

    DEFF Research Database (Denmark)

    Astrup, Thomas; Hansen, Kurt Kielsgaard; Hoffmeyer, Preben

    2005-01-01

    Modelling of moisture transport in wood is of great importance as most mechanical and physical properties of wood depend on moisture content. Moisture transport in porous materials is often described by Ficks second law, but several observations indicate that this does not apply very well to wood....... Recently at the Technical University of Denmark, Department of Civil Engineering, a new model for moisture transport in wood has been developed. The model divides the transport into two phases, namely water vapour in the cell lumens and bound water in the cell walls....

  20. Moisture in Crawl Spaces

    Science.gov (United States)

    Anton TenWolde; Samuel V. Glass

    2013-01-01

    Crawl space foundations can be designed and built to avoid moisture problems. In this article we provide a brief overview of crawl spaces with emphasis on the physics of moisture. We review trends that have been observed in the research literature and summarize cur-rent recommendations for moisture control in crawl spaces.

  1. Building-related symptoms among U.S. office workers and risks factors for moisture and contamination: Preliminary analyses of U.S. EPA BASE Data

    Energy Technology Data Exchange (ETDEWEB)

    Mendell, Mark J.; Cozen, Myrna

    2002-09-01

    The authors assessed relationships between health symptoms in office workers and risk factors related to moisture and contamination, using data collected from a representative sample of U.S. office buildings in the U.S. EPA BASE study. Methods: Analyses assessed associations between three types of weekly, workrelated symptoms-lower respiratory, mucous membrane, and neurologic-and risk factors for moisture or contamination in these office buildings. Multivariate logistic regression models were used to estimate the strength of associations for these risk factors as odds ratios (ORs) adjusted for personal-level potential confounding variables related to demographics, health, job, and workspace. A number of risk factors were associated (e.g., 95% confidence limits excluded 1.0) significantly with small to moderate increases in one or more symptom outcomes. Significantly elevated ORs for mucous membrane symptoms were associated with the following risk factors: presence of humidification system in good condition versus none (OR = 1.4); air handler inspection annually versus daily (OR = 1.6); current water damage in the building (OR = 1.2); and less than daily vacuuming in study space (OR = 1.2). Significantly elevated ORs for lower respiratory symptoms were associated with: air handler inspection annually versus daily (OR = 2.0); air handler inspection less than daily but at least semi-annually (OR=1.6); less than daily cleaning of offices (1.7); and less than daily vacuuming of the study space (OR = 1.4). Only two statistically significant risk factors for neurologic symptoms were identified: presence of any humidification system versus none (OR = 1.3); and less than daily vacuuming of the study space (OR = 1.3). Dirty cooling coils, dirty or poorly draining drain pans, and standing water near outdoor air intakes, evaluated by inspection, were not identified as risk factors in these analyses, despite predictions based on previous findings elsewhere, except that very

  2. Moisture measurements in building materials with microwaves; Rakennusmateriaalien kosteusmittauksia mikroaalloilla

    Energy Technology Data Exchange (ETDEWEB)

    Kaeaeriaeinen, H.; Rudolph, M.; Schaurich, D.; Wiggenhauser, H. [VTT Building Technology, Espoo (Finland). Construction and Facility Management

    1998-12-01

    moisture content determined by weighing. Both measurements were made at the same time. The results of the microwave measurement were then plotted against the gravimetrically determined moisture content. This report also includes some moisture measurements which were made in the course of an ongoing research project of BAM in two historical buildings in Berlin. These measurements were compared to earlier measurements of the same object. The microwave method produced measurement uncertainties between 0 and 2 % by volume for all the materials studied in this report. In some measurements and materials the differences were so small that they could be neglected. In other measurements disturbances resulted in bigger errors. The accuracy of the results can be improved by eliminating some of the uncertainty factors. Special parameters for the quality of the material and the aggregate size were introduced in the moisture calculations. When these factors were determined for each material, it was possible to obtain comparable results for the microwave and weighing measurements. This report also covers the basic theory of microwave transmission measurements of building materials, and includes a description of the measurement principle and equipment and a photo of the setup. (orig.) 26 refs.

  3. Reconstructions of Soil Moisture for the Upper Colorado River Basin Using Tree-Ring Chronologies

    Science.gov (United States)

    Tootle, G.; Anderson, S.; Grissino-Mayer, H.

    2012-12-01

    Soil moisture is an important factor in the global hydrologic cycle, but existing reconstructions of historic soil moisture are limited. Tree-ring chronologies (TRCs) were used to reconstruct annual soil moisture in the Upper Colorado River Basin (UCRB). Gridded soil moisture data were spatially regionalized using principal components analysis and k-nearest neighbor techniques. Moisture sensitive tree-ring chronologies in and adjacent to the UCRB were correlated with regional soil moisture and tested for temporal stability. TRCs that were positively correlated and stable for the calibration period were retained. Stepwise linear regression was applied to identify the best predictor combinations for each soil moisture region. The regressions explained 42-78% of the variability in soil moisture data. We performed reconstructions for individual soil moisture grid cells to enhance understanding of the disparity in reconstructive skill across the regions. Reconstructions that used chronologies based on ponderosa pines (Pinus ponderosa) and pinyon pines (Pinus edulis) explained increased variance in the datasets. Reconstructed soil moisture was standardized and compared with standardized reconstructed streamflow and snow water equivalent from the same region. Soil moisture reconstructions were highly correlated with streamflow and snow water equivalent reconstructions, indicating reconstructions of soil moisture in the UCRB using TRCs successfully represent hydrologic trends, including the identification of periods of prolonged drought.

  4. Buffer moisture protection system

    International Nuclear Information System (INIS)

    Ritola, J.; Peura, J.

    2013-11-01

    With the present knowledge, bentonite blocks have to be protected from the air relative humidity and from any moisture leakages in the environment that might cause swelling of the bentonite blocks during the 'open' installation phase before backfilling. The purpose of this work was to design the structural reference solution both for the bottom of the deposition hole and for the buffer moisture protection and dewatering system with their integrated equipment needed in the deposition hole. This report describes the Posiva's reference solution for the buffer moisture protection system and the bottom plate on basis of the demands and functional requirements set by long-term safety. The reference solution with structural details has been developed in research work made 2010-2011. The structural solution of the moisture protection system has not yet been tested in practice. On the bottom of the deposition hole a copper plate which protects the lowest bentonite block from the gathered water is installed straight to machined and even rock surface. The moisture protection sheet made of EPDM rubber is attached to the copper plate with an inflatable seal. The upper part of the moisture protection sheet is fixed to the collar structures of the lid which protects the deposition hole in the disposal tunnel. The main function of the moisture protection sheet is to protect bentonite blocks from the leaking water and from the influence of the air humidity at their installation stage. The leaking water is controlled by the dewatering and alarm system which has been integrated into the moisture protection liner. (orig.)

  5. Characterization of seeds with different moisture content by photoacoustic microscopy

    Energy Technology Data Exchange (ETDEWEB)

    Dominguez Pacheco, Arturo; Hernandez Aguilar, Claudia; Marinez Ortiz, Efrain [Instituto Politecnico Nacional, Sepi-Esime, Zacatenco. Unidad Profesional ' Adolfo Lopez Mateos' . Col. Lindavista. Mexico D.F., CP 07738 (Mexico); Cruz-Orea, Alfredo; Ayala-Maycotte, Esther, E-mail: fartur@hotmail.co [Departamento de Fisica, CINVESTAV - IPN, A. P. 14-740, Mexico D.F., C.P. 07360 (Mexico)

    2010-03-01

    Photoacoustic (PA) technique has important applications for material characterization and nondestructive evaluation of opaque solid materials. PA microscopy allows the acquisition of information of samples with inhomogeneous structures as agricultural seeds. A determining factor for seed safe storage is their moisture content. Seeds stored at high moisture content exhibit increased respiration, heating, and fungal invasion resulting in poor seed vigor and viability. Low moisture content, in the seed to be stored, is the best prevention for these problems. In this study, Photoacoustic Microscopy (PAM) was used to characterize seeds with different moisture content. In the PAM experimental setup the photoacoustic cell and its sensor, an electret microphone, are mounted on an x-y stage of mobile axes, with spatial resolution of 70 {mu}m. The excitation light source is a fiber coupled laser diode, at 650 nm wavelength, modulated in intensity at 1 Hz of frequency, by the reference oscillator of a lock-in amplifier. By using a microscope objective the laser beam was focused on the seed surface. The resolution was enough to obtain differences in the obtained images, which are dependent on the moisture content. This method, to study differences in the seed moisture content, is nondestructive and could be useful for a sustainable Agriculture.

  6. Variability of Moisture Retention and Hydrophobicity Among Biochars

    Science.gov (United States)

    This research identifies factors and mechanisms that control changes in moisture retention when biochars produced from different feedstocks and under different heat treatment temperatures are mixed with fine sand. While substantial experimental research has been conducted on the ...

  7. Investigation on Moisture and Indoor Environment in Eight Danish Houses

    DEFF Research Database (Denmark)

    Jensen, Kasper Risgaard; Jensen, Rasmus Lund; Nørgaard, Jesper

    2011-01-01

    then need to be ventilated actively either by natural or mechanical ventilation. Increased focus on energy reduction together with requirements for e.g. thermal comfort indoors may lead to reduced indoor air quality and moisture problems which in turn may cause mould problems. This paper describes...... an investigation of the indoor air quality, relative humidity and air change rate in eight Danish houses. The houses were selected as they are all having recurrent problems with condensation on the windows. The houses were built between 1930 and 2007. Some of them have been only slightly renovated where others......, to indoor air quality in terms of CO2 concentration, and to the use of the house in terms of the level of the relative humidity and indoor moisture excess. Furthermore, the moisture production in the houses was estimated and compared to values provided in the literature. A better indoor air quality...

  8. Microcomputerized neutron moisture gauge

    International Nuclear Information System (INIS)

    Liu Shengkang; Mei Yu

    1987-01-01

    A microcomputerized neutron moisture gauge is introduced. This gauge consists of a neutron moisture sensor and instruments. It is developed from the neutron moisture gauge for concrete mixer. A TECH-81 single card microcomputer is used for count, computation and display. It has the function of computing compensated quantity of sand. It can acquire the data from several neutron sensors by the multichanneling sampling, therefore it can measure moisture values of sand in several hoppers simultaneously. The precision of the static state calibration curve is 0.24% wt. The error limits of the dynamic state check is < 0.50% wt

  9. Effect of Initial Moisture on the Adsorption and Desorption Equilibrium Moisture Contents of Polished Rice

    OpenAIRE

    Murata, Satoshi; Amaratunga, K.S.P.; Tanaka, Fumihiko; Hori, Yoshiaki; 村田, 敏; 田中, 史彦; 堀, 善昭

    1993-01-01

    The moisture adsorption and desorption properties for polished rice have been measured using a dynamic ventilatory method. Air temperatures of 10,20,30 and 40℃, relative humidities of 50,60,70,80 and 90%, and five levels of initial moisture contents ranging approximately from 8% to 19% d.b. were used to obtain moisture content data. The value of equilibrium moisture content for each initial moisture content at the range of air condition was determined by a method of nonlinear least squares. R...

  10. Moisture content measurement in paddy

    Science.gov (United States)

    Klomklao, P.; Kuntinugunetanon, S.; Wongkokua, W.

    2017-09-01

    Moisture content is an important quantity for agriculture product, especially in paddy. In principle, the moisture content can be measured by a gravimetric method which is a direct method. However, the gravimetric method is time-consuming. There are indirect methods such as resistance and capacitance methods. In this work, we developed an indirect method based on a 555 integrated circuit timer. The moisture content sensor was capacitive parallel plates using the dielectric constant property of the moisture. The instrument generated the output frequency that depended on the capacitance of the sensor. We fitted a linear relation between periods and moisture contents. The measurement results have a standard uncertainty of 1.23 % of the moisture content in the range of 14 % to 20 %.

  11. Portable neutron moisture gage for the moisture determination of structure parts

    International Nuclear Information System (INIS)

    Harnisch, M.

    1985-01-01

    For determining the moisture of structure parts during building or before repairing a portable neutron moisture gage consisting of a neutron probe and pulse analyzer has been developed. The measuring process, calibration, and prerequisites of application are briefly discussed

  12. Experimental evidence and modelling of drought induced alternative stable soil moisture states

    Science.gov (United States)

    Robinson, David; Jones, Scott; Lebron, Inma; Reinsch, Sabine; Dominguez, Maria; Smith, Andrew; Marshal, Miles; Emmett, Bridget

    2017-04-01

    The theory of alternative stable states in ecosystems is well established in ecology; however, evidence from manipulation experiments supporting the theory is limited. Developing the evidence base is important because it has profound implications for ecosystem management. Here we show evidence of the existence of alternative stable soil moisture states induced by drought in an upland wet heath. We used a long-term (15 yrs) climate change manipulation experiment with moderate sustained drought, which reduced the ability of the soil to retain soil moisture by degrading the soil structure, reducing moisture retention. Moreover, natural intense droughts superimposed themselves on the experiment, causing an unexpected additional alternative soil moisture state to develop, both for the drought manipulation and control plots; this impaired the soil from rewetting in winter. Our results show the coexistence of three stable states. Using modelling with the Hydrus 1D software package we are able to show the circumstances under which shifts in soil moisture states are likely to occur. Given the new understanding it presents a challenge of how to incorporate feedbacks, particularly related to soil structure, into soil flow and transport models?

  13. Aspect-related Vegetation Differences Amplify Soil Moisture Variability in Semiarid Landscapes

    Science.gov (United States)

    Yetemen, O.; Srivastava, A.; Kumari, N.; Saco, P. M.

    2017-12-01

    Soil moisture variability (SMV) in semiarid landscapes is affected by vegetation, soil texture, climate, aspect, and topography. The heterogeneity in vegetation cover that results from the effects of microclimate, terrain attributes (slope gradient, aspect, drainage area etc.), soil properties, and spatial variability in precipitation have been reported to act as the dominant factors modulating SMV in semiarid ecosystems. However, the role of hillslope aspect in SMV, though reported in many field studies, has not received the same degree of attention probably due to the lack of extensive large datasets. Numerical simulations can then be used to elucidate the contribution of aspect-driven vegetation patterns to this variability. In this work, we perform a sensitivity analysis to study on variables driving SMV using the CHILD landscape evolution model equipped with a spatially-distributed solar-radiation component that couples vegetation dynamics and surface hydrology. To explore how aspect-driven vegetation heterogeneity contributes to the SMV, CHILD was run using a range of parameters selected to reflect different scenarios (from uniform to heterogeneous vegetation cover). Throughout the simulations, the spatial distribution of soil moisture and vegetation cover are computed to estimate the corresponding coefficients of variation. Under the uniform spatial precipitation forcing and uniform soil properties, the factors affecting the spatial distribution of solar insolation are found to play a key role in the SMV through the emergence of aspect-driven vegetation patterns. Hence, factors such as catchment gradient, aspect, and latitude, define water stress and vegetation growth, and in turn affect the available soil moisture content. Interestingly, changes in soil properties (porosity, root depth, and pore-size distribution) over the domain are not as effective as the other factors. These findings show that the factors associated to aspect-related vegetation

  14. Experimental assessment of factors mediating the naturalization of a globally invasive tree on sandy coastal plains: a case study from Brazil

    Science.gov (United States)

    Zimmermann, Thalita G.; Andrade, Antonio C. S.; Richardson, David M.

    2016-01-01

    As all naturalized species are potential invaders, it is important to better understand the determinants of naturalization of alien plants. This study sought to identify traits that enable the alien tree Casuarina equisetifolia to overcome barriers to survival and reproductive and to become naturalized on sandy coastal plains. Restinga vegetation in Brazil was used as a model system to conceptualize and quantify key stressors (high temperature, solar radiation, drought and salinity) which can limit the initial establishment of the plants. Experiments were conducted to evaluate the effects of these environmental factors on seed persistence in the soil (field), germination (laboratory), survival, growth, phenotypic plasticity and phenotypic integration (greenhouse). Results show that the expected viability of the seeds in the soil was 50 months. Seeds germinated in a similar way in constant and alternating temperatures (20–40 °C), except at 40 °C. Low light, and water and salt stresses reduced germination, but seeds recovered germination when stress diminished. Young plants did not tolerate water stress (<2 % of soil moisture) or deep shade. Growth was greater in sunny than in shady conditions. Although a low degree of phenotypic plasticity is important in habitats with multiple stress factors, this species exhibited high germination plasticity, although young plants showed low plasticity. The positive effect of phenotypic integration on plastic expression in the shade shows that in stressful environments traits that show greater phenotypic plasticity values may have significant phenotypic correlations with other characters, which is an important factor in the evolutionary ecology of this invasive species. Long-term seed persistence in the soil, broad germination requirements (temperature and light conditions) and the capacity to survive in a wide range of light intensity favours its naturalization. However, C. equisetifolia did not tolerate water stress and

  15. Wood moisture monitoring during log house thermal insulation mounting

    Directory of Open Access Journals (Sweden)

    Pavla Kotásková

    2011-01-01

    Full Text Available The current designs of thermal insulation for buildings concentrate on the achievement of the required heat transmission coefficient. However, another factor that cannot be neglected is the assessment of the possible water vapour condensation inside the construction. The aim of the study was to find out whether the designed modification of the cladding structure of an existing log house will or will not lead to a risk of possible water vapour condensation in the walls after an additional thermal insulation mounting. The condensation could result in the increase in moisture of the walls and consequently the constructional timber, which would lead to the reduction of the timber construction strength, wood degradation by biotic factors – wood-destroying insects, mildew or wood-destroying fungi. The main task was to compare the theoretically established values of moisture of the constructional timber with the values measured inside the construction using a specific example of a thermal insulated log house. Three versions of thermal insulation were explored to find the solution of a log house reconstruction which would be the optimum for living purposes. Two versions deal with the cladding structure with the insulation from the interior, the third version deals with an external insulation.In a calculation model the results can be affected to a great degree by input values (boundary conditions. This especially concerns the factor of vapour barrier diffusion resistance, which is entered in accordance with the producer’s specifications; however, its real value can be lower as it depends on the perfectness and correctness of the technological procedure. That is why the study also includes thermal technical calculations of all designed insulation versions in the most unfavourable situation, which includes the degradation of the vapour barrier down to 10% efficiency, i.e. the reduction of the diffusion resistance factor to 10% of the original value

  16. Effect of Temperature and Moisture on the Development of Concealed Damage in Raw Almonds (Prunus dulcis).

    Science.gov (United States)

    Rogel-Castillo, Cristian; Zuskov, David; Chan, Bronte Lee; Lee, Jihyun; Huang, Guangwei; Mitchell, Alyson E

    2015-09-23

    Concealed damage (CD) is a brown discoloration of nutmeat that appears only after kernels are treated with moderate heat (e.g., roasting). Identifying factors that promote CD in almonds is of significant interest to the nut industry. Herein, the effect of temperature (35 and 45 °C) and moisture (almonds (Prunus dulcis var. Nonpareil) was studied using HS-SPME-GC/MS. A CIE LCh colorimetric method was developed to identify raw almonds with CD. A significant increase in CD was demonstrated in almonds exposed to moisture (8% kernel moisture content) at 45 °C as compared to 35 °C. Elevated levels of volatiles related to lipid peroxidation and amino acid degradation were observed in almonds with CD. These results suggest that postharvest moisture exposure resulting in an internal kernel moisture ≥ 8% is a key factor in the development of CD in raw almonds and that CD is accelerated by temperature.

  17. Sweet cherry softening accompanied with moisture migration and loss during low-temperature storage.

    Science.gov (United States)

    Zhu, Danshi; Liang, Jieyu; Liu, He; Cao, Xuehui; Ge, Yonghong; Li, Jianrong

    2017-12-18

    Hardness is one of the important qualities influencing consumer appeal and marketing of fresh sweet cherry (Prunus avium L.). Moisture loss is one of the main causative factors of cherry softening. In this work, moisture loss and softening process of sweet cherry during postharvest storage at 0 and 4 °C were studied. In addition, low-field 1 H nuclear magnetic resonance (LF-NMR) was used to analyze water distribution and migration in sweet cherry during storage at 4 °C. Moisture content correlated significantly (p Contents of cytoplasmic (p content increased gradually, and then internal damage occurred. Sweet cherry softening closely correlated with moisture loss during low-temperature storage. LF-NMR is a useful technique to investigate moisture migration of fruits and vegetables. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  18. Field and laboratory calibration of neutron probes for soil moisture measurements on a deep loess chernozem soil

    International Nuclear Information System (INIS)

    Schaecke, B.; Schaecke, E.

    1979-01-01

    In the case of a varying profile structure it is necessary to use different calibration curves and adequate correction factors, respectively. The bulk density of the soil had the greatest influence on the calibration. An increase in bulk density by 0.2 g/cm 3 at a clay content of 18% resulted in an apparent increase in the values of moisture measurements by 1.5 to 2.0% of the volume of water. In naturally stratified soil the humus content of the chernozem horizon, being 3% higher than that of the underlying loess horizon, was found to influence the measuring results obtained by the probe. The calibration curves determined for chernozem and loess horizons in the laboratory agreed well with those obtained in the field. The measured values read from the probe and the gravimetrically determined values of the soil moisture were of great significance in all measured depths of the profile. (author)

  19. Soil Moisture Active Passive (SMAP) Mission Level 4 Surface and Root Zone Soil Moisture (L4_SM) Product Specification Document

    Science.gov (United States)

    Reichle, Rolf H.; Ardizzone, Joseph V.; Kim, Gi-Kong; Lucchesi, Robert A.; Smith, Edmond B.; Weiss, Barry H.

    2015-01-01

    This is the Product Specification Document (PSD) for Level 4 Surface and Root Zone Soil Moisture (L4_SM) data for the Science Data System (SDS) of the Soil Moisture Active Passive (SMAP) project. The L4_SM data product provides estimates of land surface conditions based on the assimilation of SMAP observations into a customized version of the NASA Goddard Earth Observing System, Version 5 (GEOS-5) land data assimilation system (LDAS). This document applies to any standard L4_SM data product generated by the SMAP Project. The Soil Moisture Active Passive (SMAP) mission will enhance the accuracy and the resolution of space-based measurements of terrestrial soil moisture and freeze-thaw state. SMAP data products will have a noteworthy impact on multiple relevant and current Earth Science endeavors. These include: Understanding of the processes that link the terrestrial water, the energy and the carbon cycles, Estimations of global water and energy fluxes over the land surfaces, Quantification of the net carbon flux in boreal landscapes Forecast skill of both weather and climate, Predictions and monitoring of natural disasters including floods, landslides and droughts, and Predictions of agricultural productivity. To provide these data, the SMAP mission will deploy a satellite observatory in a near polar, sun synchronous orbit. The observatory will house an L-band radiometer that operates at 1.40 GHz and an L-band radar that operates at 1.26 GHz. The instruments will share a rotating reflector antenna with a 6 meter aperture that scans over a 1000 km swath.

  20. UV-protection of Natural and Synthetic Fabrics by Surface Treatment under the effect of Gamma Irradiation

    International Nuclear Information System (INIS)

    El-Naggar, AW.M.; Zohdy, M.H.; Ali, N.M.

    2008-01-01

    Synthetic and natural fabrics were surface coated with gamma radiation curable novel formulations. These formulations were based on naturally occurring Alum individually and in binary mixture with ZnO beside different functional oligomers and monomers. The physical properties of the treated fabrics were evaluated in terms of ultraviolet protection, moisture regain, and water absorption. Also, the effect of coating formulations on the crystallinity was investigated by X-ray diffraction (XRD). The results of ultraviolet protection factor (UPF) showed that the formulation containing 30% of Alum caused a significant UPF values (50+) according to standard rating over untreated fabrics. When ZnO was incorporated in the formulation, the UPF factor was increased by two folds. A decrease in the moisture regain and water absorption of fabrics was featured with ZnO, however, in case of Alum a decrease followed by an increase was observed. In conclusion, these novel coats could be taken as an nontoxic alternative UV-resist finishing agents for fabrics

  1. Controlling moisture content of wood samples using a modified soil-pan decay method

    Science.gov (United States)

    Jerrold E. Winandy; Simon F. Curling; Patricia K. Lebow

    2005-01-01

    In wood, the threshold level below which decay cannot occur varies with species or type of wood product and other factors such as temperature, humidity, and propensity of exposure or service-use to allow rain-induced wetting and subsequent drying. The ability to control wood moisture content (MC) during laboratory decay testing could allow research on the moisture...

  2. Inversion of Farmland Soil Moisture in Large Region Based on Modified Vegetation Index

    Science.gov (United States)

    Wang, J. X.; Yu, B. S.; Zhang, G. Z.; Zhao, G. C.; He, S. D.; Luo, W. R.; Zhang, C. C.

    2018-04-01

    Soil moisture is an important parameter for agricultural production. Efficient and accurate monitoring of soil moisture is an important link to ensure the safety of agricultural production. Remote sensing technology has been widely used in agricultural moisture monitoring because of its timeliness, cyclicality, dynamic tracking of changes in things, easy access to data, and extensive monitoring. Vegetation index and surface temperature are important parameters for moisture monitoring. Based on NDVI, this paper introduces land surface temperature and average temperature for optimization. This article takes the soil moisture in winter wheat growing area in Henan Province as the research object, dividing Henan Province into three main regions producing winter wheat and dividing the growth period of winter wheat into the early, middle and late stages on the basis of phenological characteristics and regional characteristics. Introducing appropriate correction factor during the corresponding growth period of winter wheat, correcting the vegetation index in the corresponding area, this paper establishes regression models of soil moisture on NDVI and soil moisture on modified NDVI based on correlation analysis and compare models. It shows that modified NDVI is more suitable as a indicator of soil moisture because of the better correlation between soil moisture and modified NDVI and the higher prediction accuracy of the regression model of soil moisture on modified NDVI. The research in this paper has certain reference value for winter wheat farmland management and decision-making.

  3. 7 CFR 52.3185 - Moisture limits.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Moisture limits. 52.3185 Section 52.3185 Agriculture... United States Standards for Grades of Dried Prunes Moisture, Uniformity of Size, Defects § 52.3185 Moisture limits. Dried prunes shall not exceed the moisture limits for the applicable grades and kind and...

  4. 7 CFR 868.258 - Moisture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Moisture. 868.258 Section 868.258 Agriculture... Governing Application of Standards § 868.258 Moisture. Water content in brown rice for processing as... purpose of this paragraph, “approved device” shall include the Motomco Moisture Meter and any other...

  5. Errors in the calculation of sub-soil moisture probe by equivalent moisture content technique

    International Nuclear Information System (INIS)

    Lakshmipathy, A.V.; Gangadharan, P.

    1982-01-01

    The size of the soil sample required to obtain the saturation response, with a neutron moisture probe is quite large and this poses practical problems of handling and mixing large amounts of samples for absolute laboratory calibration. Hydrogenous materials are used as a substitute for water in the equivalent moisture content technique, for calibration of soil moisture probes. In this it is assumed that only hydrogen of the bulk sample is responsible for the slowing down of fast neutrons and the slow neutron countrate is correlated to equivalent water content by considering the hydrogen density of sample. It is observed that the higher atomic number elements present in water equivalent media also affect the response of the soil moisture probe. Hence calculations, as well as experiments, were undertaken to know the order of error introduced by this technique. The thermal and slow neutron flux distribution around the BF 3 counter of a sub-soil moisture probe is calculated using three group diffusion theory. The response of the probe corresponding to different equivalent moisture content of hydrogenous media, is calculated taking into consideration the effective length of BF 3 counter. Soil with hydrogenous media such as polyethylene, sugar and water are considered for calculation, to verify the suitability of these materials as substitute for water during calibration of soil moisture probe. Experiments were conducted, to verify the theoretically calculated values. (author)

  6. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    KAUST Repository

    Singh, Gurjeet

    2016-05-05

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA’s Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected at two nested scale extents (0.5 km and 3 km) to understand the trend of soil moisture variability across these scales. This ground-based soil moisture sampling was conducted in the 500 km2 Rana watershed situated in eastern India. The study area is characterized as sub-humid, sub-tropical climate with average annual rainfall of about 1456 mm. Three 3x3 km square grids were sampled intensively once a day at 49 locations each, at a spacing of 0.5 km. These intensive sampling locations were selected on the basis of different topography, soil properties and vegetation characteristics. In addition, measurements were also made at 9 locations around each intensive sampling grid at 3 km spacing to cover a 9x9 km square grid. Intensive fine scale soil moisture sampling as well as coarser scale samplings were made using both impedance probes and gravimetric analyses in the study watershed. The ground-based soil moisture samplings were conducted during the day, concurrent with the SMAP descending overpass. Analysis of soil moisture spatial variability in terms of areal mean soil moisture and the statistics of higher-order moments, i.e., the standard deviation, and the coefficient of variation are presented. Results showed that the standard deviation and coefficient of variation of measured soil moisture decreased with extent scale by increasing mean soil moisture. © (2016) COPYRIGHT Society of Photo-Optical Instrumentation Engineers (SPIE). Downloading of the abstract is permitted for personal use only.

  7. Moisture accumulation in a building envelope

    Energy Technology Data Exchange (ETDEWEB)

    Forest, T.W.; Checkwitch, K.

    1988-09-01

    In a large number of cases, the failure of a building envelope can be traced to the accumulation of moisture. In a cold winter climate, characteristic of the Canadian prairies, moisture is deposited in the structure by the movement of warm, moist air through the envelope. Tests on the moisture accumulation in a building envelope were initiated in a test house at an Alberta research facility during the 1987/88 heating season. The indoor moisture generation rate was measured and compared with the value inferred from the measured air infiltration rate. With the flue open, the moisture generation rate was approximately 5.5 kg/d of which 0.7 kg/d entered the building envelope; the remainder was exhausted through the flue. With the flue blocked, the moisture generation rate decreased to 3.4 kg/d, while the amount of moisture migrating through the envelope increased to 4.0 kg/d. The moisture accumulation in wall panels located on the north and south face of the test house was also monitored. Moisture was allowed to enter the wall cavity via a hole in the drywall. The fiberglass insulation remained dry throughout the test period. The moisture content of the exterior sheathing of the north panel increased to a maximum of 18% wt in the vicinity of the hole, but quickly dried when the ambient temperatures increased towards the end of the season. The south panel showed very little moisture accumlation due to the effects of solar radiation. 14 refs., 9 figs.

  8. Moisture-induced solid state instabilities in α-chymotrypsin and their reduction through chemical glycosylation

    Directory of Open Access Journals (Sweden)

    Solá Ricardo J

    2010-08-01

    Full Text Available Abstract Background Protein instability remains the main factor limiting the development of protein therapeutics. The fragile nature (structurally and chemically of proteins makes them susceptible to detrimental events during processing, storage, and delivery. To overcome this, proteins are often formulated in the solid-state which combines superior stability properties with reduced operational costs. Nevertheless, solid protein pharmaceuticals can also suffer from instability problems due to moisture sorption. Chemical protein glycosylation has evolved into an important tool to overcome several instability issues associated with proteins. Herein, we employed chemical glycosylation to stabilize a solid-state protein formulation against moisture-induced deterioration in the lyophilized state. Results First, we investigated the consequences of moisture sorption on the stability and structural conformation of the model enzyme α-chymotrypsin (α-CT under controlled humidity conditions. Results showed that α-CT aggregates and inactivates as a function of increased relative humidity (RH. Furthermore, α-CT loses its native secondary and tertiary structure rapidly at increasing RH. In addition, H/D exchange studies revealed that α-CT structural dynamics increased at increasing RH. The magnitude of the structural changes in tendency parallels the solid-state instability data (i.e., formation of buffer-insoluble aggregates, inactivation, and loss of native conformation upon reconstitution. To determine if these moisture-induced instability issues could be ameliorated by chemical glycosylation we proceeded to modify our model protein with chemically activated glycans of differing lengths (lactose and dextran (10 kDa. The various glycoconjugates showed a marked decrease in aggregation and an increase in residual activity after incubation. These stabilization effects were found to be independent of the glycan size. Conclusion Water sorption leads to

  9. Tools for Performance Simulation of Heat, Air and Moisture Conditions of Whole Buildings

    DEFF Research Database (Denmark)

    Woloszyn, Monika; Rode, Carsten

    2008-01-01

    Humidity of indoor air is an important factor influencing the air quality and energy consumption of buildings as well as durability of building components. Indoor humidity depends on several factors, such as moisture sources, air change, sorption in materials and possible condensation. Since all...... and moisture transfer processes that take place in “whole buildings” by considering all relevant parts of its constituents. It is believed that full understanding of these processes for the whole building is absolutely crucial for future energy optimization of buildings, as this cannot take place without...

  10. Prediction of moisture transfer parameters for convective drying of shrimp at different pretreatments

    Directory of Open Access Journals (Sweden)

    Marcus Vinicius da COSTA

    2018-04-01

    Full Text Available Abstract By the analytical model proposed by Dincer and Dost, the mass transfer parameters (moisture transfer coefficient and moisture diffusivity of shrimp samples were determined. Three sets of drying experiments were performed with three samples of shrimp: without boiling (WB, boiled in salt solution (SB and boiled in salt solution and subjected to liquid smoking process (SBS. The experiments were performed under controlled conditions of drying air at temperature of 60°C and velocity of 1.5 m/s. Experimental dimensionless moisture content data were used to calculate the drying coefficients and lag factors, which were then incorporated into the analytical model for slab and cylinder shapes. The results showed an adequate fit between the experimental data and the values predicted from the correlation. The boiling is the most recommended pretreatment, because provided a shorter drying time, with high values of moisture transfer coefficient and moisture diffusivity.

  11. Optimisasi Suhu Pemanasan dan Kadar Air pada Produksi Pati Talas Kimpul Termodifikasi dengan Teknik Heat Moisture Treatment (HMT (Optimization of Heating Temperature and Moisture Content on the Production of Modified Cocoyam Starch Using Heat Moisture Treatment (HMT Technique

    Directory of Open Access Journals (Sweden)

    I Nengah Kencana Putra

    2016-12-01

    Full Text Available One of the physically starch modification technique is heat-moisture treatment (HMT. This technique can increase the resistance of starch to heat, mechanical treatment, and acid during processing.  This research aimed to find out the influence of heating temperature and moisture content in the modification process of cocoyam starch  with HMT techniques on the characteristic of product, and then to determine the optimum heating temperature and moisture content in the process. The research was designed with a complete randomized design (CRD with two factors factorial experiment.  The first factor was temperature of the heating consists of 3 levels namely 100 °C, 110 °C, and 120 °C. The second factor was the moisture content of starch which consists of 4 levels, namely 15 %, 20 %, 25 %, and 30 %. The results showed that the heating temperature and moisture content significantly affected water content, amylose content and swelling power of modified cocoyam starch product, but the treatment had no significant effect on the solubility of the product. HMT process was able to change the type of cocoyam starch from type B to type C. The optimum heating temperature and water content on modified cocoyam starch production process was 110 °C and 30 % respectively. Such treatment resulted in a modified cocoyam starch with moisture content of 6.50 %, 50,14 % amylose content, swelling power of 7.90, 0.0009% solubility, paste clarity of 96.310 % T, and was classified as a type C starch.   ABSTRAK Salah satu teknik modifikasi pati secara fisik adalah teknik Heat Moisture Treatment (HMT. Teknik ini dapat meningkatkan ketahanan pati terhadap panas, perlakuan mekanik, dan asam selama pengolahan. Penelitian ini bertujuan untuk mengetahui pengaruh suhu dan kadar air pada proses modifikasi pati talas kimpul dengan teknik HMT terhadap karakteristik produk, dan selanjutnya menentukan suhu dan kadar air yang optimal dalam proses tersebut. Penelitian ini dirancang

  12. Moisture Dynamics in Building Envelopes

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele

    2003-01-01

    The overall scope of this Thesis "Moisture dynamics in building envelopes" has been to characterise how the various porous insulation materials investigated performed hygrothermally under conditions similar to those in a typical building envelope. As a result of the changing temperature...... part of the Thesis consists of a theory and literature review on the moisture storage and transport processes (Chapter 2), on the non-Fickian moisture transport (Chapter 3)and on the methods for determining the moisture properties (Chapter 4). In the second part, the conducted experimental work...

  13. Moisture dynamics in building envelopes

    Energy Technology Data Exchange (ETDEWEB)

    Peuhkuri, R.

    2003-07-01

    The overall scope of this Thesis 'Moisture dynamics in building envelopes' has been to characterise how the various porous insulation materials investigated performed hygro thermally under conditions similar to those in a typical building envelope. As a result of the changing temperature and moisture conditions in the exterior weather and indoor climate the materials dynamically absorb and release moisture. The complexity of the impact of these conditions on the resulting moisture transport and content of the materials has been studied in this Thesis with controlled laboratory tests. (au)

  14. Extreme fire events are related to previous-year surface moisture conditions in permafrost-underlain larch forests of Siberia

    International Nuclear Information System (INIS)

    Forkel, Matthias; Beer, Christian; Thonicke, Kirsten; Cramer, Wolfgang; Bartalev, Sergey; Schmullius, Christiane

    2012-01-01

    Wildfires are a natural and important element in the functioning of boreal forests. However, in some years, fires with extreme spread and severity occur. Such severe fires can degrade the forest, affect human values, emit huge amounts of carbon and aerosols and alter the land surface albedo. Usually, wind, slope and dry air conditions have been recognized as factors determining fire spread. Here we identify surface moisture as an additional important driving factor for the evolution of extreme fire events in the Baikal region. An area of 127 000 km 2 burned in this region in 2003, a large part of it in regions underlain by permafrost. Analyses of satellite data for 2002–2009 indicate that previous-summer surface moisture is a better predictor for burned area than precipitation anomalies or fire weather indices for larch forests with continuous permafrost. Our analysis advances the understanding of complex interactions between the atmosphere, vegetation and soil, and how coupled mechanisms can lead to extreme events. These findings emphasize the importance of a mechanistic coupling of soil thermodynamics, hydrology, vegetation functioning, and fire activity in Earth system models for projecting climate change impacts over the next century. (letter)

  15. Compact polarimetric synthetic aperture radar for monitoring soil moisture condition

    Science.gov (United States)

    Merzouki, A.; McNairn, H.; Powers, J.; Friesen, M.

    2017-12-01

    Coarse resolution soil moisture maps are currently operationally delivered by ESA's SMOS and NASA's SMAP passive microwaves sensors. Despite this evolution, operational soil moisture monitoring at the field scale remains challenging. A number of factors contribute to this challenge including the complexity of the retrieval that requires advanced SAR systems with enhanced temporal revisit capabilities. Since the launch of RADARSAT-2 in 2007, Agriculture and Agri-Food Canada (AAFC) has been evaluating the accuracy of these data for estimating surface soil moisture. Thus, a hybrid (multi-angle/multi-polarization) retrieval approach was found well suited for the planned RADARSAT Constellation Mission (RCM) considering the more frequent relook expected with the three satellite configuration. The purpose of this study is to evaluate the capability of C-band CP data to estimate soil moisture over agricultural fields, in anticipation of the launch of RCM. In this research we introduce a new CP approach based on the IEM and simulated RCM CP mode intensities from RADARSAT-2 images acquired at different dates. The accuracy of soil moisture retrieval from the proposed multi-polarization and hybrid methods will be contrasted with that from a more conventional quad-pol approach, and validated against in situ measurements by pooling data collected over AAFC test sites in Ontario, Manitoba and Saskatchewan, Canada.

  16. 7 CFR 868.207 - Moisture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Moisture. 868.207 Section 868.207 Agriculture... Application of Standards § 868.207 Moisture. Water content in rough rice as determined by an approved device..., “approved device” shall include the Motomco Moisture Meter and any other equipment that is approved by the...

  17. Soil sample moisture content as a function of time during oven drying for gamma-ray spectroscopic measurements

    International Nuclear Information System (INIS)

    Benke, R.R.; Kearfott, K.J.

    1999-01-01

    In routine gamma-ray spectroscopic analysis of collected soil samples, procedure often calls to remove soil moisture by oven drying overnight at a temperature of 100 deg. C . Oven drying not only minimizes the gamma-ray self-attenuation of soil samples due to the absence of water during the gamma-ray spectroscopic analysis, but also allows for a straightforward calculation of the specific activity of radionuclides in soil, historically based on the sample dry weight. Because radon exhalation is strongly dependent on moisture , knowledge of the oven-drying time dependence of the soil moisture content, combined with radon exhalation measurements during oven drying and at room temperature for varying soil moisture contents, would allow conclusions to be made on how the oven-drying radon exhalation rate depends on soil moisture content. Determinations of the oven-drying radon exhalation from soil samples allow corrections to be made for the immediate laboratory gamma-ray spectroscopy of radionuclides in the natural uranium decay chain. This paper presents the results of soil moisture content measurements during oven drying and suggests useful empirical fits to the moisture data

  18. Soil moisture spatio-temporal behavior of Pinus pinaster stands on sandy flatlands of central Spain.

    Energy Technology Data Exchange (ETDEWEB)

    Gomez-Sanz, V.; Garcia-Vinas, J. I.

    2011-07-01

    Pinus pinaster stands in the center of the Iberian Peninsula frequently grow in a unique hydrological system characterized by a variable groundwater table near the soil surface and highly permeable soils (arenosols). Over the last few decades, this superficial aquifer has been overused as a water resource, especially for irrigated crops. Overuse has reached a critical level and has caused various environmental impacts and a water sustainability crisis wherein rainfall variability does not allow for a sufficient level of aquifer recharge by natural means. Within this changing scenario, soil water significantly affects the spatio-temporal ecological response, necessitating more extensive characterization of the complex soil-tree water relationship. The primary goal of the present work was to evaluate the influence of root zone soil moisture on the observed spatial response of Pinus pinaster stands. Volumetric soil moisture content was measured at eleven forest sites, using time-domain reflectometry (TDR), over a two-year observation period. The results demonstrate that the combined effect of groundwater table proximity and dune morphology associated with this area are the main factors driving very different water availability conditions among the monitored hydrological response units, which modulate maritime pine installation and development. Topographically lower areas are more heterogeneous in terms of soil moisture behavior. In these areas, the conifer forests that are connected to the water table may be the most sensitive to land use changes within current environmental change scenarios. Consequently, in these pine ecosystems, the combined influences of geomorphology and water table proximity on variations in root zone soil moisture are essential and must be considered to develop adequate adaptive management models. (Author) 25 refs.

  19. The Importance of Moisture in Hybrid Lead Halide Perovskite Thin Film Fabrication.

    Science.gov (United States)

    Eperon, Giles E; Habisreutinger, Severin N; Leijtens, Tomas; Bruijnaers, Bardo J; van Franeker, Jacobus J; deQuilettes, Dane W; Pathak, Sandeep; Sutton, Rebecca J; Grancini, Giulia; Ginger, David S; Janssen, Rene A J; Petrozza, Annamaria; Snaith, Henry J

    2015-09-22

    Moisture, in the form of ambient humidity, has a significant impact on methylammonium lead halide perovskite films. In particular, due to the hygroscopic nature of the methylammonium component, moisture plays a significant role during film formation. This issue has so far not been well understood and neither has the impact of moisture on the physical properties of resultant films. Herein, we carry out a comprehensive and well-controlled study of the effect of moisture exposure on methylammonium lead halide perovskite film formation and properties. We find that films formed in higher humidity atmospheres have a less continuous morphology but significantly improved photoluminescence, and that film formation is faster. In photovoltaic devices, we find that exposure to moisture, either in the precursor solution or in the atmosphere during formation, results in significantly improved open-circuit voltages and hence overall device performance. We then find that by post-treating dry films with moisture exposure, we can enhance photovoltaic performance and photoluminescence in a similar way. The enhanced photoluminescence and open-circuit voltage imply that the material quality is improved in films that have been exposed to moisture. We determine that this improvement stems from a reduction in trap density in the films, which we postulate to be due to the partial solvation of the methylammonium component and "self-healing" of the perovskite lattice. This work highlights the importance of controlled moisture exposure when fabricating high-performance perovskite devices and provides guidelines for the optimum environment for fabrication. Moreover, we note that often an unintentional water exposure is likely responsible for the high performance of solar cells produced in some laboratories, whereas careful synthesis and fabrication in a dry environment will lead to lower-performing devices.

  20. Soil moisture variability across different scales in an Indian watershed for satellite soil moisture product validation

    KAUST Repository

    Singh, Gurjeet; Panda, Rabindra K.; Mohanty, Binayak P.; Jana, Raghavendra Belur

    2016-01-01

    Strategic ground-based sampling of soil moisture across multiple scales is necessary to validate remotely sensed quantities such as NASA’s Soil Moisture Active Passive (SMAP) product. In the present study, in-situ soil moisture data were collected

  1. Effects of Recent Regional Soil Moisture Variability on Global Net Ecosystem CO2 Exchange

    Science.gov (United States)

    Jones, L. A.; Madani, N.; Kimball, J. S.; Reichle, R. H.; Colliander, A.

    2017-12-01

    Soil moisture exerts a major regional control on the inter-annual variability of the global land sink for atmospheric CO2. In semi-arid regions, annual biomass production is closely coupled to variability in soil moisture availability, while in cold-season-affected regions, summer drought offsets the effects of advancing spring phenology. Availability of satellite solar-induced fluorescence (SIF) observations and improvements in atmospheric inversions has led to unprecedented ability to monitor atmospheric sink strength. However, discrepancies still exist between such top-down estimates as atmospheric inversion and bottom-up process and satellite driven models, indicating that relative strength, mechanisms, and interaction of driving factors remain poorly understood. We use soil moisture fields informed by Soil Moisture Active Passive Mission (SMAP) observations to compare recent (2015-2017) and historic (2000-2014) variability in net ecosystem land-atmosphere CO2 exchange (NEE). The operational SMAP Level 4 Carbon (L4C) product relates ground-based flux tower measurements to other bottom-up and global top-down estimates to underlying soil moisture and other driving conditions using data-assimilation-based SMAP Level 4 Soil Moisture (L4SM). Droughts in coastal Brazil, South Africa, Eastern Africa, and an anomalous wet period in Eastern Australia were observed by L4C. A seasonal seesaw pattern of below-normal sink strength at high latitudes relative to slightly above-normal sink strength for mid-latitudes was also observed. Whereas SMAP-based soil moisture is relatively informative for short-term temporal variability, soil moisture biases that vary in space and with season constrain the ability of the L4C estimates to accurately resolve NEE. Such biases might be caused by irrigation and plant-accessible ground-water. Nevertheless, SMAP L4C daily NEE estimates connect top-down estimates to variability of effective driving factors for accurate estimates of regional

  2. Comparison of time domain reflectometry, capacitance methods and neutron scattering in soil moisture measurements

    International Nuclear Information System (INIS)

    Khorasani, A.; Mousavi Shalmani, M. A.; Piervali Bieranvand, N.

    2011-01-01

    An accurate, precise, fast and ease as well as the ability for measurements in depth are the characteristics that are desirable in measuring soil moisture methods. To compare methods (time domain reflectometry and capacitance) with neutron scattering for soil water monitoring, an experiment was carried out in a randomized complete block design (Split Split plot) on tomato with three replications on the experimental field of International Atomic Energy Agency (Seibersdorf-Austria). The treatment instruments for the soil moisture monitoring (main factor) consist of neutron gauge, Diviner 2000, time domain reflectometer and an EnviroScan and different irrigation systems (first sub factor) consist of trickle and furrow irrigations and different depths of soil (second sub factor) consist of 0-20, 20-40 and 40-60 cm. The results showed that for the neutron gauge and time domain reflectometer the amount of soil moisture in both of trickle and furrow irrigations were the same, but the significant differences were recorded in Diviner 2000 and EnviroScan measurements. The results of this study showed that the neutron gauge is an acceptable and reliable means with the modern technology, with a precision of ±2 mm in 450 mm soil water to a depth of 1.5 meter and can be considered as the most practical method for measuring soil moisture profiles and irrigation planning program. The time domain reflectometer method in most mineral soils, without the need for calibration, with an accuracy ±0.01m 3 m -3 has a good performance in soil moisture and electrical conductivity measurements. The Diviner 2000 and EnviroScan are not well suitable for the above conditions for several reasons such as much higher soil moisture and a large error measurement and also its sensitivity to the soil gap and to the small change in the soil moisture in comparison with the neutron gauge and the time domain reflectometer methods.

  3. Characterization of Soil Moisture Level for Rice and Maize Crops using GSM Shield and Arduino Microcontroller

    Science.gov (United States)

    Gines, G. A.; Bea, J. G.; Palaoag, T. D.

    2018-03-01

    Soil serves a medium for plants growth. One factor that affects soil moisture is drought. Drought has been a major cause of agricultural disaster. Agricultural drought is said to occur when soil moisture is insufficient to meet crop water requirements, resulting in yield losses. In this research, it aimed to characterize soil moisture level for Rice and Maize Crops using Arduino and applying fuzzy logic. System architecture for soil moisture sensor and water pump were the basis in developing the equipment. The data gathered was characterized by applying fuzzy logic. Based on the results, applying fuzzy logic in validating the characterization of soil moisture level for Rice and Maize crops is accurate as attested by the experts. This will help the farmers in monitoring the soil moisture level of the Rice and Maize crops.

  4. Fast qualification using thermal shock combined with moisture absorption

    NARCIS (Netherlands)

    Ma, X.S.; Zhang, G.Q.; Jansen, K.M.B.; Driel, van W.D.; Sluis, van der O.; Ernst, L.J.; Regard, C.; Gautier, C.; Fremont, H.

    2009-01-01

    Time to market is becoming one of the most important factors because of the fierce market competition. However, traditional reliability and interface toughness characterization tests take very long time. For example, moisture sensitivity level assessment (MSL1) will take 168 hours pre conditioning

  5. Surface moisture estimation in urban areas

    Science.gov (United States)

    Jiang, Yitong

    Surface moisture is an important parameter because it modifies urban microclimate and surface layer meteorology. The primary objectives of this paper are: 1) to analyze the impact of surface roughness from buildings on surface moisture in urban areas; and 2) to quantify the impact of surface roughness resulting from urban trees on surface moisture. To achieve the objectives, two hypotheses were tested: 1) the distribution of surface moisture is associated with the structural complexity of buildings in urban areas; and 2) The distribution and change of surface moisture is associated with the distribution and vigor of urban trees. The study area is Indianapolis, Indiana, USA. In the part of the morphology of urban trees, Warren Township was selected due to the limitation of tree inventory data. To test the hypotheses, the research design was made to extract the aerodynamic parameters, such as frontal areas, roughness length and displacement height of buildings and trees from Terrestrial and Airborne LiDAR data, then to input the aerodynamic parameters into the urban surface energy balance model. The methodology was developed for comparing the impact of aerodynamic parameters from LiDAR data with the parameters that were derived empirically from land use and land cover data. The analytical procedures are discussed below: 1) to capture the spatial and temporal variation of surface moisture, daily and hourly Land Surface Temperature (LST) were downscaled from 4 km to 1 km, and 960 m to 30 m, respectively, by regression between LST and various components that impact LST; 2) to estimate surface moisture, namely soil moisture and evapotranspiration (ET), land surfaces were classified into soil, vegetation, and impervious surfaces, using Linear Spectral Mixture Analysis (LSMA); 3) aerodynamic parameters of buildings and trees were extracted from Airborne and Terrestrial LiDAR data; 4) the Temperature-Vegetation-Index (TVX) method, and the Two-Source-Energy-Balance (TSEB

  6. Quick Preparation of Moisture-Saturated Carbon Fiber-Reinforced Plastics and Their Accelerated Ageing Tests Using Heat and Moisture

    Directory of Open Access Journals (Sweden)

    Masao Kunioka

    2016-06-01

    Full Text Available A quick method involving the control of heat and water vapor pressure for preparing moisture-saturated carbon fiber-reinforced plastics (CFRP, 8 unidirectional prepreg layers, 1.5 mm thickness, epoxy resin has been developed. The moisture-saturated CFRP sample was obtained at 120 °C and 0.2 MPa water vapor in 72 h by this method using a sterilizer (autoclave. The bending strength and viscoelastic properties measured by a dynamic mechanical analysis (DMA remained unchanged during repetitive saturation and drying steps. No degradation and molecular structural change occurred. Furthermore an accelerated ageing test with two ageing factors, i.e., heat and moisture was developed and performed at 140–160 °C and 0.36–0.62 MPa water vapor pressure by using a sealed pressure-proof stainless steel vessel (autoclave. The bending strength of the sample decreased from 1107 to 319 MPa at 160 °C and 0.63 MPa water vapor pressure in 9 days. Degraded samples were analyzed by DMA. The degree of degradation for samples was analyzed by DMA. CFRP and degraded CFRP samples were analyzed by using a surface and interfacial cutting analysis system (SAICAS and an electron probe micro-analyzer (EPMA equipped in a scanning electron microscope.

  7. Pore-scale investigation on the response of heterotrophic respiration to moisture conditions in heterogeneous soils

    Energy Technology Data Exchange (ETDEWEB)

    Yan, Zhifeng; Liu, Chongxuan; Todd-Brown, Katherine E.; Liu, Yuanyuan; Bond-Lamberty, Ben; Bailey, Vanessa L.

    2016-11-15

    The relationship between microbial respiration rate and soil moisture content is an important property for understanding and predicting soil organic carbon degradation, CO2 production and emission, and their subsequent effects on climate change. This paper reports a pore-scale modeling study to investigate the response of heterotrophic respiration to moisture conditions in soils and to evaluate various factors that affect this response. X-ray computed tomography was used to derive soil pore structures, which were then used for pore-scale model investigation. The pore-scale results were then averaged to calculate the effective respiration rates as a function of water content in soils. The calculated effective respiration rate first increases and then decreases with increasing soil water content, showing a maximum respiration rate at water saturation degree of 0.75 that is consistent with field and laboratory observations. The relationship between the respiration rate and moisture content is affected by various factors, including pore-scale organic carbon bioavailability, the rate of oxygen delivery, soil pore structure and physical heterogeneity, soil clay content, and microbial drought resistivity. Simulations also illustrates that a larger fraction of CO2 produced from microbial respiration can be accumulated inside soil cores under higher saturation conditions, implying that CO2 flux measured on the top of soil cores may underestimate or overestimate true soil respiration rates under dynamic moisture conditions. Overall, this study provides mechanistic insights into the soil respiration response to the change in moisture conditions, and reveals a complex relationship between heterotrophic microbial respiration rate and moisture content in soils that is affected by various hydrological, geochemical, and biophysical factors.

  8. Innovative Natural Ingredients-Based Multiple Emulsions: The Effect on Human Skin Moisture, Sebum Content, Pore Size and Pigmentation

    Directory of Open Access Journals (Sweden)

    Ugne Cizauskaite

    2018-06-01

    Full Text Available The increased interest in natural cosmetics has resulted in a higher market demand for preservative-free products based on herbal ingredients. An innovative W/O/W type emulsions containing herbal extracts were prepared directly; its cation form was induced by an ethanolic rosemary extract and stabilized using weak herbal gels. Due to the wide phytochemical composition of herbal extracts and the presence of alcohol in the emulsion system, which can cause skin irritation, sensitization or dryness when applied topically, the safety of the investigated drug delivery system is necessary. The aim of our study was to estimate the potential of W/O/W emulsions based on natural ingredients for skin irritation and phototoxicity using reconstructed 3D epidermis models in vitro and to evaluate in vivo its effect on human skin moisture, sebum content and pigmentation by biomedical examination using a dermatoscopic camera and corneometer. According to the results obtained after in vitro cell viability test the investigated emulsion was neither irritant nor phototoxic to human skin keratinocytes. W/O/W emulsion did not cause skin dryness in vivo, despite the fact that it contained ethanol. We can conclude that the emulsion is safe for use as a leave-on product due to the positive effect on human skin characteristics or as a semisolid pharmaceutical base where active compounds could be encapsulated.

  9. Measurement of soil moisture using gypsum blocks

    DEFF Research Database (Denmark)

    Friis Dela, B.

    the building. Consequently, measuring the moisture of the surrounding soil is of great importance for detecting the source of moisture in a building. Up till now, information has been needed to carry out individual calibrations for the different types of gypsum blocks available on the market and to account......For the past 50 years, gypsum blocks have been used to determine soil moisture content. This report describes a method for calibrating gypsum blocks for soil moisture measurements. Moisture conditions inside a building are strongly influenced by the moisture conditions in the soil surrounding...

  10. The effect of soil moisture anomalies on maize yield in Germany

    Science.gov (United States)

    Peichl, Michael; Thober, Stephan; Meyer, Volker; Samaniego, Luis

    2018-03-01

    Crop models routinely use meteorological variations to estimate crop yield. Soil moisture, however, is the primary source of water for plant growth. The aim of this study is to investigate the intraseasonal predictability of soil moisture to estimate silage maize yield in Germany. We also evaluate how approaches considering soil moisture perform compare to those using only meteorological variables. Silage maize is one of the most widely cultivated crops in Germany because it is used as a main biomass supplier for energy production in the course of the German Energiewende (energy transition). Reduced form fixed effect panel models are employed to investigate the relationships in this study. These models are estimated for each month of the growing season to gain insights into the time-varying effects of soil moisture and meteorological variables. Temperature, precipitation, and potential evapotranspiration are used as meteorological variables. Soil moisture is transformed into anomalies which provide a measure for the interannual variation within each month. The main result of this study is that soil moisture anomalies have predictive skills which vary in magnitude and direction depending on the month. For instance, dry soil moisture anomalies in August and September reduce silage maize yield more than 10 %, other factors being equal. In contrast, dry anomalies in May increase crop yield up to 7 % because absolute soil water content is higher in May compared to August due to its seasonality. With respect to the meteorological terms, models using both temperature and precipitation have higher predictability than models using only one meteorological variable. Also, models employing only temperature exhibit elevated effects.

  11. Probing bias reduction to improve comparability of lint cotton water and moisture contents at moisture equilibrium

    Science.gov (United States)

    The Karl Fischer Titration (KFT) reference method is specific for water in lint cotton and was designed for samples conditioned to moisture equilibrium, thus limiting its biases. There is a standard method for moisture content – weight loss – by oven drying (OD), just not for equilibrium moisture c...

  12. A novel shredder for municipal solid waste (MSW): influence of feed moisture on breakage performance.

    Science.gov (United States)

    Luo, Siyi; Xiao, Bo; Xiao, Lei

    2010-08-01

    A novel MSW shredder was presented but many aspects of the shredder have not been fully characterized. The feed moisture is an important factor that influences crushing performance. This paper focuses on the effect of feed moisture. The breakage of municipal solid waste (MSW) at several moisture levels (0%, 10%, 20%, 40% and 60%) was conducted with a laboratory shredder to investigate the effect of feed moisture on product size distribution and specific energy consumption under two different hydraulic pressures (40 and 60 kg/cm(2)). The results showed definite effects of feed moisture on the product size distribution and specific energy consumption: there is a tendency for the fine production in products to decrease with increasing amounts of water content in the feed; with the increasing feed moisture, specific energy shows an increasing trend; the specific energy and product size distribution under lower hydraulic pressure is more sensitive to the feed moisture than it is under higher hydraulic pressure. (c) 2010. Published by Elsevier Ltd. All rights reserved.

  13. Monitoring soil moisture dynamics via ground-penetrating radar survey of agriculture fields after irrigation

    Science.gov (United States)

    Muro, G.

    2015-12-01

    It is possible to examine the quality of ground-penetrating radar (GPR) as a measure of soil moisture content in the shallow vadose zone, where roots are most abundant and water conservation best management practices are critical in active agricultural fields. By analyzing temporal samplings of 100 Mhz reflection profiles and common-midpoint (CMP) soundings over a full growing season, the variability of vertical soil moisture distribution directly after irrigation events are characterized throughout the lifecycle of a production crop. Reflection profiles produce high-resolution travel time data and summed results of CMP sounding data provide sampling depth estimates for the weak, but coherent reflections amid strong point scatterers. The high ratio of clay in the soil limits the resolution of downward propagation of infiltrating moisture after irrigation; synthetic data analysis compared against soil moisture lysimeter logs throughout the profile allow identification of the discrete soil moisture content variation in the measured GPR data. The nature of short duration irrigation events, evapotranspiration, and drainage behavior in relation to root depths observed in the GPR temporal data allow further examination and comparison with the variable saturation model HYDRUS-1D. After retrieving soil hydraulic properties derived from laboratory measured soil samples and simplified assumptions about boundary conditions, the project aims to achieve good agreement between simulated and measured soil moisture profiles without the need for excessive model calibration for GPR-derived soil moisture estimates in an agricultural setting.

  14. An overview of the measurements of soil moisture and modeling of moisture flux in FIFE

    Science.gov (United States)

    Wang, J. R.

    1992-01-01

    Measurements of soil moisture and calculations of moisture transfer in the soil medium and at the air-soil interface were performed over a 15-km by 15-km test site during FIFE in 1987 and 1989. The measurements included intensive soil moisture sampling at the ground level and surveys at aircraft altitudes by several passive and active microwave sensors as well as a gamma radiation device.

  15. Active condensation of the atmospheric moisture as a self-irrigation mechanism for the ground-covering plants

    Directory of Open Access Journals (Sweden)

    Karpun Yuriy Nikolaevich

    2015-12-01

    Full Text Available Studies conducted at the Subtropical Botanical Garden of Kuban (Utch-Dere, Sochi pretty much allow to explain the abnormally high drought resistance of Liriope graminifolia Lour. and Ophiopogon japonicus Ker.-Gawl., plants that naturally grow mostly in sufficient humidity. Quite low temperatures of the leaves’ surface allow to effectively condense the atmospheric moisture and to direct it along the leaf blade to the ground. The accumulation of condensation water leads to self-irrigation, a mechanism that ensures survival of plants in case of insufficient natural precipitation in the form of rain or fog. Combined with xeromorphic leaves with a thick cuticle and thick branch roots with fusiform bulb-shaped swellings, allowing to store water, makes the named plants extremely resistant to stress factors such as prolonged summer droughts accompanied by high daytime temperatures.

  16. A review of the methods available for estimating soil moisture and its implications for water resource management

    Science.gov (United States)

    Dobriyal, Pariva; Qureshi, Ashi; Badola, Ruchi; Hussain, Syed Ainul

    2012-08-01

    SummaryThe maintenance of elevated soil moisture is an important ecosystem service of the natural ecosystems. Understanding the patterns of soil moisture distribution is useful to a wide range of agencies concerned with the weather and climate, soil conservation, agricultural production and landscape management. However, the great heterogeneity in the spatial and temporal distribution of soil moisture and the lack of standard methods to estimate this property limit its quantification and use in research. This literature based review aims to (i) compile the available knowledge on the methods used to estimate soil moisture at the landscape level, (ii) compare and evaluate the available methods on the basis of common parameters such as resource efficiency, accuracy of results and spatial coverage and (iii) identify the method that will be most useful for forested landscapes in developing countries. On the basis of the strengths and weaknesses of each of the methods reviewed we conclude that the direct method (gravimetric method) is accurate and inexpensive but is destructive, slow and time consuming and does not allow replications thereby having limited spatial coverage. The suitability of indirect methods depends on the cost, accuracy, response time, effort involved in installation, management and durability of the equipment. Our review concludes that measurements of soil moisture using the Time Domain Reflectometry (TDR) and Ground Penetrating Radar (GPR) methods are instantaneously obtained and accurate. GPR may be used over larger areas (up to 500 × 500 m a day) but is not cost-effective and difficult to use in forested landscapes in comparison to TDR. This review will be helpful to researchers, foresters, natural resource managers and agricultural scientists in selecting the appropriate method for estimation of soil moisture keeping in view the time and resources available to them and to generate information for efficient allocation of water resources and

  17. Compact RFID Enabled Moisture Sensor

    Directory of Open Access Journals (Sweden)

    U. H. Khan

    2016-09-01

    Full Text Available This research proposes a novel, low-cost RFID tag sensor antenna implemented using commercially available Kodak photo-paper. The aim of this paper is to investigate the possibility of stable, RFID centric communication under varying moisture levels. Variation in the frequency response of the RFID tag in presence of moisture is used to detect different moisture levels. Combination of unique jaw shaped contours and T-matching network is used for impedance matching which results in compact size and minimal ink consumption. Proposed tag is 1.4 × 9.4 cm2 in size and shows optimum results for various moisture levels upto 45% in FCC band with a bore sight read range of 12.1 m.

  18. Neutron moisture monitoring (NMM) and moisture contents in the Green River, Utah, UMTRA disposal cell

    International Nuclear Information System (INIS)

    1992-06-01

    This report provides the basis for the US Department of Energy's (DOE) request to discontinue neutron moisture monitoring (NMM) at the Green River, Utah, Uranium Mill Tailings Remedial Action (UMTRA) disposal cell and decommission the neutron access holes. After 3 years of monitoring the disposal cell, the DOE has determined that the NMM method is not suitable for determining changes in moisture content in the disposal cell. Existing tailings moisture contents in the disposal cell result in a low seepage flux. The combination of a low seepage flux and geochemical retardation by foundation materials underneath the disposal cell ensures that the proposed US Environmental Protection Agency (EPA) groundwater protection standards will not be exceeded within the design life of the disposal cell. To assess the effectiveness of the NMM method for monitoring moisture contents In the disposal cell at Green River, the DOE subsequently conducted a field study and a review of historical and new literature. The literature review allowed the DOE to identify performance criteria for the NMM method. Findings of these studies suggest that: The NMM method is not sensitive to the low moisture contents found in the disposal cell.; there is an insufficient range of moisture contents in the disposal cell to develop a field calibration curve relating moisture content to neutron counts; it is not possible to collect NMM data from the disposal cell that meet data quality objectives for precision and accuracy developed from performance criteria described in the literature

  19. Experimental assessment of factors mediating the naturalization of a globally invasive tree on sandy coastal plains: a case study from Brazil.

    Science.gov (United States)

    Zimmermann, Thalita G; Andrade, Antonio C S; Richardson, David M

    2016-01-01

    As all naturalized species are potential invaders, it is important to better understand the determinants of naturalization of alien plants. This study sought to identify traits that enable the alien tree Casuarina equisetifolia to overcome barriers to survival and reproductive and to become naturalized on sandy coastal plains. Restinga vegetation in Brazil was used as a model system to conceptualize and quantify key stressors (high temperature, solar radiation, drought and salinity) which can limit the initial establishment of the plants. Experiments were conducted to evaluate the effects of these environmental factors on seed persistence in the soil (field), germination (laboratory), survival, growth, phenotypic plasticity and phenotypic integration (greenhouse). Results show that the expected viability of the seeds in the soil was 50 months. Seeds germinated in a similar way in constant and alternating temperatures (20-40 °C), except at 40 °C. Low light, and water and salt stresses reduced germination, but seeds recovered germination when stress diminished. Young plants did not tolerate water stress (<2 % of soil moisture) or deep shade. Growth was greater in sunny than in shady conditions. Although a low degree of phenotypic plasticity is important in habitats with multiple stress factors, this species exhibited high germination plasticity, although young plants showed low plasticity. The positive effect of phenotypic integration on plastic expression in the shade shows that in stressful environments traits that show greater phenotypic plasticity values may have significant phenotypic correlations with other characters, which is an important factor in the evolutionary ecology of this invasive species. Long-term seed persistence in the soil, broad germination requirements (temperature and light conditions) and the capacity to survive in a wide range of light intensity favours its naturalization. However, C. equisetifolia did not tolerate water stress and

  20. On-irrigator pasture soil moisture sensor

    International Nuclear Information System (INIS)

    Tan, Adrian Eng-Choon; Richards, Sean; Platt, Ian; Woodhead, Ian

    2017-01-01

    In this paper, we presented the development of a proximal soil moisture sensor that measured the soil moisture content of dairy pasture directly from the boom of an irrigator. The proposed sensor was capable of soil moisture measurements at an accuracy of  ±5% volumetric moisture content, and at meter scale ground area resolutions. The sensor adopted techniques from the ultra-wideband radar to enable measurements of ground reflection at resolutions that are smaller than the antenna beamwidth of the sensor. An experimental prototype was developed for field measurements. Extensive field measurements using the developed prototype were conducted on grass pasture at different ground conditions to validate the accuracy of the sensor in performing soil moisture measurements. (paper)

  1. Moisture measurement in the iron and steel industry: experience with nuclear moisture measurements in coke, and studies of infrared moisture measurement of iron ore mixtures

    International Nuclear Information System (INIS)

    Beumer, J.A.; Wouters, M.

    1976-01-01

    In the heavy iron-making industry there are several processes for which it is necessary to measure on-line the moisture content of certain process materials, especially in the field of iron ore preparation and blast furnace practice. Two examples are given. (1) Experience with nuclear moisture-measurements in coke covers a period of ten years in which eight measuring systems have been installed in the weighing hoppers of blast furnaces. The standard deviation is about 0.7% moisture in the range 0 to 15% moisture. The way the method is used, the safety measures and the difficulties encountered, especially the effect on recalibration of neutron-absorbing materials in photomultipliers are described. (2) The application of infrared absorption to the study of moisture measurment or iron ore mixtures is described. With an ore mixture for pellets manufacture, a rather dark ore mixture, problems have arisen concerning the sensitivity. The reference and measuring wavelengths now in use are 2.51 and 2.95 μm. In this case the absorption of the energy is rather high. The results may be improved by using quartz optics instead of the normal Pyrex ones, as the cut-off wavelength of Pyrex is about 3 μm. Variations due to colour and specific surface have been studied. As the accuracy required is +- 0.1% moisture in the range 8 to 12% moisture, these variations need to be eliminated. (author)

  2. Soil Moisture Anomaly as Predictor of Crop Yield Deviation in Germany

    Science.gov (United States)

    Peichl, Michael; Thober, Stephan; Schwarze, Reimund; Meyer, Volker; Samaniego, Luis

    2016-04-01

    Natural hazards, such as droughts, have the potential to drastically diminish crop yield in rain-fed agriculture. For example, the drought in 2003 caused direct losses of 1.5 billion EUR only in Germany (COPA-COGECA 2003). Predicting crop yields allows to economize the mitigation of risks of weather extremes. Economic approaches for quantifying agricultural impacts of natural hazards mainly rely on temperature and related concepts. For instance extreme heat over the growing season is considered as best predictor of corn yield (Auffhammer and Schlenker 2014). However, those measures are only able to provide a proxy for the available water content in the root zone that ultimately determines plant growth and eventually crop yield. The aim of this paper is to analyse whether soil moisture has a causal effect on crop yield that can be exploited in improving adaptation measures. For this purpose, reduced form fixed effect panel models are developed with yield as dependent variable for both winter wheat and silo maize crops. The explanatory variables used are soil moisture anomalies, precipitation and temperature. The latter two are included to estimate the current state of the water balance. On the contrary, soil moisture provides an integrated signal over several months. It is also the primary source of water supply for plant growth. For each crop a single model is estimated for every month within the growing period to study the variation of the effects over time. Yield data is available for Germany as a whole on the level of administrative districts from 1990 to 2010. Station data by the German Weather Service are obtained for precipitation and temperature and are aggregated to the same spatial units. Simulated soil moisture computed by the mesoscale Hydrologic Model (mHM, www.ufz.de/mhm) is transformed into Soil Moisture Index (SMI), which represents the monthly soil water quantile and hence accounts directly for the water content available to plants. The results

  3. High Energy Moisture Characteristics: Linking Between Soil Physical Processes and Structure Stability

    Science.gov (United States)

    Water storage and flow in soils is usually complicated by the intricate nature of and changes in soil pore size distribution (PSD) due to modifications in soil structure following changes in agricultural management. The paper presents the Soil High Energy Moisture Characteristic (Soil-HEMC) method f...

  4. Theoretical study of soil water balance and process of soil moisture evaporation

    Directory of Open Access Journals (Sweden)

    Yu. A. Savel'ev

    2017-01-01

    Full Text Available Nearly a half of all grain production in the Russian Federation is grown in dry regions. But crop production efficiency there depends on amount of moisture, available to plants. However deficit of soil moisture is caused not only by a lack of an atmospheric precipitation, but also inefficient water saving: losses reach 70 percent. With respect thereto it is important to reveal the factors influencing intensity of soil moisture evaporation and to develop methods of decrease in unproductive moisture losses due to evaporation. The authors researched soil water balance theoretically and determined the functional dependences of moisture loss on evaporation. Intensity of moisture evaporation depends on physicomechanical characteristics of the soil, a consistence of its surface and weather conditions. To decrease losses of moisture for evaporation it is necessary, first, to improve quality of crumbling of the soil and therefore to reduce the evaporating surface of the soil. Secondly - to create the protective mulching layer which will allow to enhance albedo of the soil and to reduce its temperature that together will reduce unproductive evaporative water losses and will increase its inflow in case of condensation from air vapors. The most widespread types of soil cultivation are considered: disk plowing and stubble mulch plowing. Agricultural background «no tillage» was chosen as a control. Subsoil mulching tillage has an essential advantage in a storage of soil moisture. So, storage of soil moisture after a disking and in control (without tillage decreased respectively by 24.9 and 19.8 mm while at the mulching tillage this indicator revised down by only 15.6 mm. The mulching layer has lower heat conductivity that provides decrease in unproductive evaporative water losses.

  5. Development of a neutron moisture gauge

    International Nuclear Information System (INIS)

    Prasad, A.S.

    1979-01-01

    A neutron moisture gauge fabricated for measuring the moisture content of coke is described. It has an americium-beryllium source placed beside a boron coated neutron counter which is a slow neutron detector. The fast neutrons emitted by the radioactive source are slowed down by the hydrogen nuclei present in the material either as bound hydrogen or as a hydrogen of the water. Measure of the slowed down i.e. thermal neutrons (their density) is proportional to the total hydrogen content of the material. The instrument is installed as an ''on-line'' measuring device to estimate the moisture content of coke at the weighing hopper feeding the skip car. The accuracy of measurement is dependent on the moisture content, i.e. higher accuracy is obtained for higher moisture content. At low moisture content, the effect of the bound hydrogen other than that of the water on low moisture readings is pronounced. Effect of bulk density on the accuracy of measurement is not very significant as long as the coke size is constant. The error is in the range of +- 1.1%. (M.G.B.)

  6. Hydropedological parameters limiting soil moisture regime floodplain ecosystems of south Moravia

    Directory of Open Access Journals (Sweden)

    Ladislav Kubík

    2005-01-01

    Full Text Available Soil moisture regime of floodplain ecosystems in southern Moravia is considerably influenced and greatly changed by human activities. It can be changed negatively by water management engineering or positively by landscape revitalizations. The paper deals with problems of hydropedological characteristics (hydrolimits limiting soil moisture regime and solves effect of hydrological factors on soil moisture regime in the floodplain ecosystems. Attention is paid especially to water retention curves and to hydrolimits – wilting point and field capacity. They can be acquired either directly by slow laboratory assessment, derivation from the water retention curves or indirectly by calculation using pedotransfer functions (PTF. This indirect assessment uses hydrolimit dependency on better available soil physical parameters namely soil granularity, bulk density and humus content. The aim is to calculate PTF for wilting point and field capacity and to compare them with measured values. The paper documents suitableness utilization of PTF for the region of interest. The results of correlation and regression analysis for soil moisture and groundwater table are furthermore presented.

  7. Multilayer moisture barrier

    Science.gov (United States)

    Pankow, Joel W; Jorgensen, Gary J; Terwilliger, Kent M; Glick, Stephen H; Isomaki, Nora; Harkonen, Kari; Turkulainen, Tommy

    2015-04-21

    A moisture barrier, device or product having a moisture barrier or a method of fabricating a moisture barrier having at least a polymer layer, and interfacial layer, and a barrier layer. The polymer layer may be fabricated from any suitable polymer including, but not limited to, fluoropolymers such as polyethylene terephthalate (PET) or polyethylene naphthalate (PEN), or ethylene-tetrafluoroethylene (ETFE). The interfacial layer may be formed by atomic layer deposition (ALD). In embodiments featuring an ALD interfacial layer, the deposited interfacial substance may be, but is not limited to, Al.sub.2O.sub.3, AlSiO.sub.x, TiO.sub.2, and an Al.sub.2O.sub.3/TiO.sub.2 laminate. The barrier layer associated with the interfacial layer may be deposited by plasma enhanced chemical vapor deposition (PECVD). The barrier layer may be a SiO.sub.xN.sub.y film.

  8. Moisture buffer capacity of cement-lime plasters with enhanced thermal storage capacity

    Science.gov (United States)

    Fořt, Jan; Pavlíková, Milena; Pavlík, Zbyšek

    2017-07-01

    Indoor air temperature and relative humidity represent important parameters for health and working efficiency of buildings occupants. Beside the moderation of temperature, investigation of hygric properties of building materials with connection to indoor relative humidity variation became recognized as a relevant factor for energy efficient building maintenance. The moisture buffer value introduced in the Nordtest protocol can be used for estimation of moisture buffer capacity of building materials or their multi-layered systems. In this paper, both the ideal and real moisture buffer values are examined on the basis of simulation of diurnal relative humidity fluctuations in plasters with incorporated PCM admixture. Retrieved data points to a complex effect of the tested plasters on possible moderation of buildings interior climate.

  9. DYNAMICS MODEL OF MOISTURE IN PAPER INSULATION-TRANSFORMER OIL SYSTEM IN NON-STATIONARY THERMAL MODES OF THE POWER TRANSFORMER

    Directory of Open Access Journals (Sweden)

    V.V. Vasilevskij

    2016-06-01

    Full Text Available Introduction. An important problem in power transformers resource prognosis is the formation of moisture dynamics trends of transformer insulation. Purpose. Increasing the accuracy of power transformer insulation resource assessment based on accounting of moisture dynamics in interrelation with temperature dynamics. Working out of moisture dynamics model in paper insulation-transformer oil system in conjunction with thermodynamic model, load model and technical maintenance model. Methodology. The mathematical models used for describe the moisture dynamics are grounded on nonlinear differential equations. Interrelation moisture dynamics model with thermodynamic, load and technical maintenance models described by UML model. For confirming the adequacy of model used computer simulation. Results. We have implemented the model of moisture dynamics in power transformers insulation in interrelation with other models, which describe the state of power transformer in operation. The proposed model allows us to form detailed trends of moisture dynamics in power transformers insulation basing on monitoring data or power transformers operational factors simulation results. We have performed computer simulation of moisture exchange processes and calculation of transformer insulation resource for different moisture trends. Originality. The offered model takes into account moisture dynamics in power transformers insulation under the influence of changes of the power transformers thermal mode and operational factors. Practical value. The offered model can be used in power transformers monitoring systems for automation of resource assessment of oil-immersed power transformers paper insulation at different phase of lifecycle. Model also can be used for assessment of projected economic efficiency of power transformers exploitation in projected operating conditions.

  10. Contributions of Precipitation and Soil Moisture Observations to the Skill of Soil Moisture Estimates in a Land Data Assimilation System

    Science.gov (United States)

    Reichle, Rolf H.; Liu, Qing; Bindlish, Rajat; Cosh, Michael H.; Crow, Wade T.; deJeu, Richard; DeLannoy, Gabrielle J. M.; Huffman, George J.; Jackson, Thomas J.

    2011-01-01

    The contributions of precipitation and soil moisture observations to the skill of soil moisture estimates from a land data assimilation system are assessed. Relative to baseline estimates from the Modern Era Retrospective-analysis for Research and Applications (MERRA), the study investigates soil moisture skill derived from (i) model forcing corrections based on large-scale, gauge- and satellite-based precipitation observations and (ii) assimilation of surface soil moisture retrievals from the Advanced Microwave Scanning Radiometer for the Earth Observing System (AMSR-E). Soil moisture skill is measured against in situ observations in the continental United States at 44 single-profile sites within the Soil Climate Analysis Network (SCAN) for which skillful AMSR-E retrievals are available and at four CalVal watersheds with high-quality distributed sensor networks that measure soil moisture at the scale of land model and satellite estimates. The average skill (in terms of the anomaly time series correlation coefficient R) of AMSR-E retrievals is R=0.39 versus SCAN and R=0.53 versus CalVal measurements. The skill of MERRA surface and root-zone soil moisture is R=0.42 and R=0.46, respectively, versus SCAN measurements, and MERRA surface moisture skill is R=0.56 versus CalVal measurements. Adding information from either precipitation observations or soil moisture retrievals increases surface soil moisture skill levels by IDDeltaR=0.06-0.08, and root zone soil moisture skill levels by DeltaR=0.05-0.07. Adding information from both sources increases surface soil moisture skill levels by DeltaR=0.13, and root zone soil moisture skill by DeltaR=0.11, demonstrating that precipitation corrections and assimilation of satellite soil moisture retrievals contribute similar and largely independent amounts of information.

  11. Absolute moisture sensing for cotton bales

    Science.gov (United States)

    With the recent prevalence of moisture restoration systems in cotton gins, more and more gins are putting moisture back into the bales immediately before the packaging operation. There are two main reasons for this recent trend, the first is that it has been found that added moisture at the bale pre...

  12. Operational Mapping of Soil Moisture Using Synthetic Aperture Radar Data: Application to the Touch Basin (France

    Directory of Open Access Journals (Sweden)

    Jean François Desprats

    2007-10-01

    Full Text Available Soil moisture is a key parameter in different environmental applications, suchas hydrology and natural risk assessment. In this paper, surface soil moisture mappingwas carried out over a basin in France using satellite synthetic aperture radar (SARimages acquired in 2006 and 2007 by C-band (5.3 GHz sensors. The comparisonbetween soil moisture estimated from SAR data and in situ measurements shows goodagreement, with a mapping accuracy better than 3%. This result shows that themonitoring of soil moisture from SAR images is possible in operational phase. Moreover,moistures simulated by the operational Météo-France ISBA soil-vegetation-atmospheretransfer model in the SIM-Safran-ISBA-Modcou chain were compared to radar moistureestimates to validate its pertinence. The difference between ISBA simulations and radarestimates fluctuates between 0.4 and 10% (RMSE. The comparison between ISBA andgravimetric measurements of the 12 March 2007 shows a RMSE of about 6%. Generally,these results are very encouraging. Results show also that the soil moisture estimatedfrom SAR images is not correlated with the textural units defined in the European Soil Geographical Database (SGDBE at 1:1000000 scale. However, dependence was observed between texture maps and ISBA moisture. This dependence is induced by the use of the texture map as an input parameter in the ISBA model. Even if this parameter is very important for soil moisture estimations, radar results shown that the textural map scale at 1:1000000 is not appropriate to differentiate moistures zones.

  13. Polymer Composite Rebars under Moisture and Mechanical Loading

    Science.gov (United States)

    Adam, Mohamed Ibrahim

    Fiber reinforced polymer (FRP) composites have been increasingly used by the civil engineering construction industry in the past few years. Glass fiber reinforced polymer (GFRP) is one of the most commonly used FRP materials in applications such as a profile member or reinforcing rebars. Lightweight, high strength and excellent corrosion resistance are just a few among the many appealing properties of GFRP rebars. Use of GFRP has been focused on extending the service life of civil engineering structures acting as reinforcement instead of steel. FRP composites also provide opportunities for repair and retrofit of existing structures to extend their service life or to increase their load bearing capacity. However, the higher initial cost of GFRP rebar compared to steel is a current barrier in their widespread usage. Recent advancements in processes such as pultrusion have helped in reducing the cost of the FRP rebar. In addition, a higher initial raw material cost can be offset by the lower lifecycle cost of GFRP rebar compared to steel rebar. These factors are helping in increasing the acceptance of GFRP rebars in construction industry. Availability of technical data on GFRP, especially for long-term performance and under practical loading conditions faced in a real-life application, can help in increasing their acceptance. Although there have been numerous studies to characterize the properties of GFRP in terms of strength, corrosion, fatigue, chemical and physical aging, and natural weathering, most of these studies were limited to material characterization and were not intended for civil engineering applications. For this reason, and to encourage the increased use of GFRP rebars in concrete structures, GFRP rebar has been an important research topic in recent years. Of particular interest are their long-term durability and their susceptibility to degradation that might be initiated by moisture, temperature, and corrosive chemical environments. This is because

  14. Affecting factors analysis of soil moisture for arid mining area based on TM images

    Energy Technology Data Exchange (ETDEWEB)

    Bian, Zheng-fu; Lei, Shao-gang; Chang, Lu-qun; Zhang, Ri-chen [Jiangsu Key Laboratory of Resources and Environmental Informatics Engineering, Xuzhou (China)

    2009-04-15

    The model for calculating soil moisture (SM) in terms of thermal inertia using thematic mapper (TM) image and MODIS image was developed. There was a remarkable difference between two sets of average SM calculated by limited field sampling points taken from two different sampling sites, mined site and unmined site, and there were not a distinct difference between two sets of average SM calculated by the model using TM image. Domain factors affecting the SM were analyzed. The SM is in inverse proportion to the elevation and in direct proportion to the vegetation index. Coal mining resulted in a change of soil infiltration capacity. The vertical filtration index increased at the mined site, thereafter, the condition to supply ground water changed,the soil surface transpiration increased and SM changed. A drop of ground water level caused by mining can affect plant growth. When the plant root is extends downwards to reach the zone of capillary zone, ground water will be available for plant growth. 18 refs., 2 figs., 5 tabs.

  15. Nondestructive NMR technique for moisture determination in radioactive materials

    International Nuclear Information System (INIS)

    Aumeier, S.; Gerald, R.E. II; Growney, E.; Nunez, L.; Kaminski, M.

    1998-01-01

    This progress report focuses on experimental and computational studies used to evaluate nuclear magnetic resonance (NMR) spectroscopy and magnetic resonance imaging (MRI) for detecting, quantifying, and monitoring hydrogen and other magnetically active nuclei ( 3 H, 3 He, 239 Pu, 241 Pu) in Spent nuclear fuels and packaging materials. The detection of moisture by using a toroid cavity NMR imager has been demonstrated in SiO 2 and UO 2 systems. The total moisture was quantified by means of 1 H NMR detection of H 2 O with a sensitivity of 100 ppm. In addition, an MRI technique that was used to determine the moisture distribution also enabled investigators to discriminate between bulk and stationary water sorbed on the particles. This imaging feature is unavailable in any other nondestructive assay (NDA) technique. Following the initial success of this program, the NMR detector volume was scaled up from the original design by a factor of 2000. The capacity of this detector exceeds the size specified by DOE-STD-3013-96

  16. Uncertainty Assessment of Space-Borne Passive Soil Moisture Retrievals

    Science.gov (United States)

    Quets, Jan; De Lannoy, Gabrielle; Reichle, Rolf; Cosh, Michael; van der Schalie, Robin; Wigneron, Jean-Pierre

    2017-01-01

    The uncertainty associated with passive soil moisture retrieval is hard to quantify, and known to be underlain by various, diverse, and complex causes. Factors affecting space-borne retrieved soil moisture estimation include: (i) the optimization or inversion method applied to the radiative transfer model (RTM), such as e.g. the Single Channel Algorithm (SCA), or the Land Parameter Retrieval Model (LPRM), (ii) the selection of the observed brightness temperatures (Tbs), e.g. polarization and incidence angle, (iii) the definition of the cost function and the impact of prior information in it, and (iv) the RTM parameterization (e.g. parameterizations officially used by the SMOS L2 and SMAP L2 retrieval products, ECMWF-based SMOS assimilation product, SMAP L4 assimilation product, and perturbations from those configurations). This study aims at disentangling the relative importance of the above-mentioned sources of uncertainty, by carrying out soil moisture retrieval experiments, using SMOS Tb observations in different settings, of which some are mentioned above. The ensemble uncertainties are evaluated at 11 reference CalVal sites, over a time period of more than 5 years. These experimental retrievals were inter-compared, and further confronted with in situ soil moisture measurements and operational SMOS L2 retrievals, using commonly used skill metrics to quantify the temporal uncertainty in the retrievals.

  17. Interior moisture design loads for residences

    Science.gov (United States)

    Anton TenWolde; Iain S. Walker

    2001-01-01

    This paper outlines a methodology to obtain design values for indoor boundary conditions for moisture design calculations for residences. This is part of a larger effort by ASHRAE Standard Project Committee 160P, Design Criteria for Moisture Control in Buildings, to formulate criteria for moisture design loads, analysis techniques, and material and building performance...

  18. The Utility of Using a Near-Infrared (NIR) Camera to Measure Beach Surface Moisture

    Science.gov (United States)

    Nelson, S.; Schmutz, P. P.

    2017-12-01

    Surface moisture content is an important factor that must be considered when studying aeolian sediment transport in a beach environment. A few different instruments and procedures are available for measuring surface moisture content (i.e. moisture probes, LiDAR, and gravimetric moisture data from surface scrapings); however, these methods can be inaccurate, costly, and inapplicable, particularly in the field. Near-infrared (NIR) spectral band imagery is another technique used to obtain moisture data. NIR imagery has been predominately used through remote sensing and has yet to be used for ground-based measurements. Dry sand reflects infrared radiation given off by the sun and wet sand absorbs IR radiation. All things considered, this study assesses the utility of measuring surface moisture content of beach sand with a modified NIR camera. A traditional point and shoot digital camera was internally modified with the placement of a visible light-blocking filter. Images were taken of three different types of beach sand at controlled moisture content values, with sunlight as the source of infrared radiation. A technique was established through trial and error by comparing resultant histogram values using Adobe Photoshop with the various moisture conditions. The resultant IR absorption histogram values were calibrated to actual gravimetric moisture content from surface scrapings of the samples. Overall, the results illustrate that the NIR spectrum modified camera does not provide the ability to adequately measure beach surface moisture content. However, there were noted differences in IR absorption histogram values among the different sediment types. Sediment with darker quartz mineralogy provided larger variations in histogram values, but the technique is not sensitive enough to accurately represent low moisture percentages, which are of most importance when studying aeolian sediment transport.

  19. Influence of soil moisture content on surface albedo and soil thermal ...

    Indian Academy of Sciences (India)

    Half hourly data of soil moisture content, soil temperature, solar irradiance, and reflectance are measured ... and the influence of solar elevation angle and cloud cover are also investigated. .... ters are important factors in climate modelling and.

  20. Effectiveness of modified 1-hour air-oven moisture methods for determining popcorn moisture

    Science.gov (United States)

    Two of the most commonly used approved grain moisture air-oven reference methods are the air oven method ASAE S352.2, which requires long heating time (72-h) for unground samples, and the AACC 44-15.02 air-oven method, which dries a ground sample for 1 hr, but there is specific moisture measurement ...

  1. Detecting the honeycomb sandwich composite material's moisture impregnating defects by using infrared thermography technique

    International Nuclear Information System (INIS)

    Kwon, Koo Ahn; Choi, Man Yong; Park, Jeong Hak; Choi, Won Jae; Park, Hee Sang

    2017-01-01

    Many composite materials are used in the aerospace industry because of their excellent mechanical properties. However, the nature of aviation exposes these materials to high temperature and high moisture conditions depending on climate, location, and altitude. Therefore, the molecular arrangement chemical properties, and mechanical properties of composite materials can be changed under these conditions. As a result, surface disruptions and cracks can be created. Consequently, moisture-impregnating defects can be induced due to the crack and delamination of composite materials as they are repeatedly exposed to moisture absorption moisture release, fatigue environment, temperature changes, and fluid pressure changes. This study evaluates the possibility of detecting the moisture-impregnating defects of CFRP and GFRP honeycomb structure sandwich composite materials, which are the composite materials in the aircraft structure, by using an active infrared thermography technology among non-destructive testing methods. In all experiments, it was possible to distinguish the area and a number of CFRP composite materials more clearly than those of GFRP composite material. The highest detection rate was observed in the heating duration of 50 mHz and the low detection rate was at the heating duration of over 500 mHz. The reflection method showed a higher detection rate than the transmission method

  2. Digital radioisotope moisture-density meter

    International Nuclear Information System (INIS)

    Bychvarov, N.; Vankov, I.; Dimitrov, L.

    1982-01-01

    The primary information from the detectors of a combined radioisotope moisture-density meter is obtained as pulses, their counting rate being functionally dependent on the humidity per unit volume and the wet density. However, most practical cases demand information on the moisture per unit weight and the mass density of the dry skeleton. The paper describes how the proposed electronic circuit processes the input primary information to obtain the moisture in weight % and the mass density of the dry skeleton in g/cm 3 . (authors)

  3. Modeling soil moisture memory in savanna ecosystems

    Science.gov (United States)

    Gou, S.; Miller, G. R.

    2011-12-01

    Antecedent soil conditions create an ecosystem's "memory" of past rainfall events. Such soil moisture memory effects may be observed over a range of timescales, from daily to yearly, and lead to feedbacks between hydrological and ecosystem processes. In this study, we modeled the soil moisture memory effect on savanna ecosystems in California, Arizona, and Africa, using a system dynamics model created to simulate the ecohydrological processes at the plot-scale. The model was carefully calibrated using soil moisture and evapotranspiration data collected at three study sites. The model was then used to simulate scenarios with various initial soil moisture conditions and antecedent precipitation regimes, in order to study the soil moisture memory effects on the evapotranspiration of understory and overstory species. Based on the model results, soil texture and antecedent precipitation regime impact the redistribution of water within soil layers, potentially causing deeper soil layers to influence the ecosystem for a longer time. Of all the study areas modeled, soil moisture memory of California savanna ecosystem site is replenished and dries out most rapidly. Thus soil moisture memory could not maintain the high rate evapotranspiration for more than a few days without incoming rainfall event. On the contrary, soil moisture memory of Arizona savanna ecosystem site lasts the longest time. The plants with different root depths respond to different memory effects; shallow-rooted species mainly respond to the soil moisture memory in the shallow soil. The growing season of grass is largely depended on the soil moisture memory of the top 25cm soil layer. Grass transpiration is sensitive to the antecedent precipitation events within daily to weekly timescale. Deep-rooted plants have different responses since these species can access to the deeper soil moisture memory with longer time duration Soil moisture memory does not have obvious impacts on the phenology of woody plants

  4. Evaluation of a novel very high sun-protection-factor moisturizer in adults with rosacea-prone sensitive skin

    Directory of Open Access Journals (Sweden)

    Grivet-Seyve M

    2017-06-01

    Full Text Available Mathieu Grivet-Seyve,1 Francine Santoro,2 Nadège Lachmann2 1Galderma Research and Development, Sophia Antipolis, France; 2Galderma Research and Development, Egerkingen, Switzerland Background/objective: Rosacea-prone sensitive skin requires high sun-protection factor (SPF moisturizers. This study evaluated Daylong Extreme SPF 50+ lotion, a novel cream containing five ultraviolet filters, two emollients, and three skin conditioners.Subjects and methods: This was an open-label, single-center study. On day 1, before treatment, subjects answered a questionnaire on their skin conditions and sunscreen habits, and both subjects and dermatologist evaluated skin status. Subjects applied the product once daily in the morning to the face for 21 days, and after approximately 3–5 minutes they assessed tolerability and short-term cosmetic acceptability in a questionnaire and daily diary. On day 22, the dermatologist and subjects evaluated skin status for long-term tolerance and cosmetic acceptability.Results: The study enrolled 44 individuals (mean age 58.8 years, 91% female. At baseline, most subjects (39 of 44 showed erythema, and ~30% showed dryness and scaling. Dermatologists noted four cases of pustules and one case of papules. After 21 days’ treatment with the product, the dermatologist reported significantly less erythema, dryness and scaling, three cases of pustules and two cases of papules. At baseline, ~75% of subjects noted a feeling of dryness, >50% reported tension, and nearly 25% reported tickling. After using the product for 21 days, subjects reported significantly less tension, dryness, and tickling. Some subjects noted itching and burning before and after using the product. One subject noted papules during treatment. Most subjects said that the product was pleasant, did not irritate the skin or cause stinging/burning, was easy to apply, quickly absorbed, and nongreasy, improved skin moisturization, helped prevent sun-provoked facial

  5. Feasibility analysis of using inverse modeling for estimating natural groundwater recharge from a large-scale soil moisture monitoring network

    Science.gov (United States)

    Wang, Tiejun; Franz, Trenton E.; Yue, Weifeng; Szilagyi, Jozsef; Zlotnik, Vitaly A.; You, Jinsheng; Chen, Xunhong; Shulski, Martha D.; Young, Aaron

    2016-02-01

    Despite the importance of groundwater recharge (GR), its accurate estimation still remains one of the most challenging tasks in the field of hydrology. In this study, with the help of inverse modeling, long-term (6 years) soil moisture data at 34 sites from the Automated Weather Data Network (AWDN) were used to estimate the spatial distribution of GR across Nebraska, USA, where significant spatial variability exists in soil properties and precipitation (P). To ensure the generality of this study and its potential broad applications, data from public domains and literature were used to parameterize the standard Hydrus-1D model. Although observed soil moisture differed significantly across the AWDN sites mainly due to the variations in P and soil properties, the simulations were able to capture the dynamics of observed soil moisture under different climatic and soil conditions. The inferred mean annual GR from the calibrated models varied over three orders of magnitude across the study area. To assess the uncertainties of the approach, estimates of GR and actual evapotranspiration (ETa) from the calibrated models were compared to the GR and ETa obtained from other techniques in the study area (e.g., remote sensing, tracers, and regional water balance). Comparison clearly demonstrated the feasibility of inverse modeling and large-scale (>104 km2) soil moisture monitoring networks for estimating GR. In addition, the model results were used to further examine the impacts of climate and soil on GR. The data showed that both P and soil properties had significant impacts on GR in the study area with coarser soils generating higher GR; however, different relationships between GR and P emerged at the AWDN sites, defined by local climatic and soil conditions. In general, positive correlations existed between annual GR and P for the sites with coarser-textured soils or under wetter climatic conditions. With the rapidly expanding soil moisture monitoring networks around the

  6. The sensitivity of soil respiration to soil temperature, moisture, and carbon supply at the global scale.

    Science.gov (United States)

    Hursh, Andrew; Ballantyne, Ashley; Cooper, Leila; Maneta, Marco; Kimball, John; Watts, Jennifer

    2017-05-01

    Soil respiration (Rs) is a major pathway by which fixed carbon in the biosphere is returned to the atmosphere, yet there are limits to our ability to predict respiration rates using environmental drivers at the global scale. While temperature, moisture, carbon supply, and other site characteristics are known to regulate soil respiration rates at plot scales within certain biomes, quantitative frameworks for evaluating the relative importance of these factors across different biomes and at the global scale require tests of the relationships between field estimates and global climatic data. This study evaluates the factors driving Rs at the global scale by linking global datasets of soil moisture, soil temperature, primary productivity, and soil carbon estimates with observations of annual Rs from the Global Soil Respiration Database (SRDB). We find that calibrating models with parabolic soil moisture functions can improve predictive power over similar models with asymptotic functions of mean annual precipitation. Soil temperature is comparable with previously reported air temperature observations used in predicting Rs and is the dominant driver of Rs in global models; however, within certain biomes soil moisture and soil carbon emerge as dominant predictors of Rs. We identify regions where typical temperature-driven responses are further mediated by soil moisture, precipitation, and carbon supply and regions in which environmental controls on high Rs values are difficult to ascertain due to limited field data. Because soil moisture integrates temperature and precipitation dynamics, it can more directly constrain the heterotrophic component of Rs, but global-scale models tend to smooth its spatial heterogeneity by aggregating factors that increase moisture variability within and across biomes. We compare statistical and mechanistic models that provide independent estimates of global Rs ranging from 83 to 108 Pg yr -1 , but also highlight regions of uncertainty

  7. Role of soil moisture versus recent climate change for the 2010 heat wave in western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia I.

    2016-03-01

    The severe 2010 heat wave in western Russia was found to be influenced by anthropogenic climate change. Additionally, soil moisture-temperature feedbacks were deemed important for the buildup of the exceptionally high temperatures. We quantify the relative role of both factors by applying the probabilistic event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. The dry 2010 soil moisture alone has increased the risk of a severe heat wave in western Russia sixfold, while climate change from 1960 to 2000 has approximately tripled it. The combined effect of climate change and 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed a necessary basis for the extreme heat wave.

  8. Preliminary Evaluation of the SMAP Radiometer Soil Moisture Product over China Using In Situ Data

    Directory of Open Access Journals (Sweden)

    Yayong Sun

    2017-03-01

    Full Text Available The Soil Moisture Active Passive (SMAP satellite makes coincident global measurements of soil moisture using an L-band radar instrument and an L-band radiometer. It is crucial to evaluate the errors in the newest L-band SMAP satellite-derived soil moisture products, before they are routinely used in scientific research and applications. This study represents the first evaluation of the SMAP radiometer soil moisture product over China. In this paper, a preliminary evaluation was performed using sparse in situ measurements from 655 China Meteorological Administration (CMA monitoring stations between 1 April 2015 and 31 August 2016. The SMAP radiometer-derived soil moisture product was evaluated against two schemes of original soil moisture and the soil moisture anomaly in different geographical zones and land cover types. Four performance metrics, i.e., bias, root mean square error (RMSE, unbiased root mean square error (ubRMSE, and the correlation coefficient (R, were used in the accuracy evaluation. The results indicated that the SMAP radiometer-derived soil moisture product agreed relatively well with the in situ measurements, with ubRMSE values of 0.058 cm3·cm−3 and 0.039 cm3·cm−3 based on original data and anomaly data, respectively. The values of the SMAP radiometer-based soil moisture product were overestimated in wet areas, especially in the Southwest China, South China, Southeast China, East China, and Central China zones. The accuracies over croplands and in Northeast China were the worst. Soil moisture, surface roughness, and vegetation are crucial factors contributing to the error in the soil moisture product. Moreover, radio frequency interference contributes to the overestimation over the northern portion of the East China zone. This study provides guidelines for the application of the SMAP-derived soil moisture product in China and acts as a reference for improving the retrieval algorithm.

  9. SMOS validation of soil moisture and ocen salinity (SMOS) soil moisture over watershed networks in the U.S.

    Science.gov (United States)

    Estimation of soil moisture at large scale has been performed using several satellite-based passive microwave sensors and a variety of retrieval methods. The most recent source of soil moisture is the European Space Agency Soil Moisture and Ocean Salinity (SMOS) mission. A thorough validation must b...

  10. Effects of Harvesting Systems and Bole Moisture Loss on Weight Scaling of Douglas-Fir Sawlogs (Pseudotsuga Menziesii var. glauca Franco

    Directory of Open Access Journals (Sweden)

    Jarred D. Saralecos

    2014-09-01

    Full Text Available Characterizing the moisture loss from felled trees is essential for determining weight-to-volume (W-V relationships in softwood sawlogs. Several factors affect moisture loss, but research to quantify the effects of bole size and harvest method is limited. This study was designed to test whether bole size, harvest method, environmental factors, and the associated changes in stem moisture content of felled Douglas-fir (Pseudotsuga menziesii var. glauca Franco affected the weight-to-volume relationship of sawlogs. Thirty trees in three size classes (12.7–25.4 cm, 25.5–38.1 cm, 38.2–50.8 cm were felled and treated with one of two harvesting processing methods. Moisture content was sampled every two days for four weeks. Results showed 6% greater moisture loss in the crowns of stems that retained limbs after felling compared to stems with limbs removed after harvesting. Additionally, moisture loss rate increased as stem size decreased. The smallest size class lost 58% moisture content compared to 34% in the largest size class throughout the study duration. These stem moisture content changes showed a 17% reduction in average sawlog weight within the largest size class, shifting current W-V relationships from 2.33 tons m−3 to 1.94 tons m−3 during the third seasonal quarter for northern Idaho Douglas-fir and potentially altering relationships year-round.

  11. Thermodynamic analysis on heavy metals partitioning impacted by moisture during the MSW incineration

    International Nuclear Information System (INIS)

    Zhang Yanguo; Li Qinghai; Jia Jinyan; Meng Aihong

    2012-01-01

    Highlights: ► Partitioning of HMs affected by moisture was investigated by thermodynamic analysis. ► Increase in moisture and in temperature was opposite impact on HMs contribution. ► The extent of temperature decreased by increase in moisture determines the impact. - Abstract: A thermodynamic calculation was carried out to predict the behavior and speciation of heavy metals (HMs), Pb, Zn, Cu, and Cd, during municipal solid waste (MSW) incineration with the different moisture levels. The calculation was based on the minimization of the total Gibbs free energy of the multi-components and multi-phases closed system reaching chemical equilibrium. The calculation also indicated the reaction directions and tendencies of HMs components. The impacts of chlorine additives (No PVC, 1%PVC, and 5%PVC) and moisture on the behavior of HMs were investigated at different temperature levels in the system (750 °C, 950 °C, and 1150 °C). Furthermore, because the incineration temperature falls down with the increase in moisture in waste, the co-influence of moisture and temperature in combusting MSW on the HMs was also studied with the given chlorine (as 1%PVC + 0.5%NaCl). The results showed that in the non-chlorine system, the impact of the moisture on Pb, Zn, and Cu was not significant, and the ratio of compound transformation was less than 10%, except the Cd compounds at 950 °C and 1150 °C. In the system with low chlorine (as 1%PVC) at constant temperature, the chlorides of HMs (Cd, Pb, Zn, and Cu) transferred to oxides, and when the content of chlorine rose up (as 5%PVC), the ratio of the chlorides of HMs (Cd, Pb, Zn, and Cu) transferring to oxides fell down noticeably. When the moisture varied together with the temperature, the Zn and Cu compounds transferred from chlorides to oxides with increase in moisture as well as decrease in temperature. At the temperature of 700–1000 °C, the impact of temperature on Pb and Cd was little and the moisture was the main factor

  12. A Compound Sensor for Simultaneous Measurement of Packing Density and Moisture Content of Silage.

    Science.gov (United States)

    Meng, Delun; Meng, Fanjia; Sun, Wei; Deng, Shuang

    2017-12-28

    Packing density and moisture content are important factors in investigating the ensiling quality. Low packing density is a major cause of loss of sugar content. The moisture content also plays a determinant role in biomass degradation. To comprehensively evaluate the ensiling quality, this study focused on developing a compound sensor. In it, moisture electrodes and strain gauges were embedded into an ASABE Standard small cone for the simultaneous measurements of the penetration resistance (PR) and moisture content (MC) of silage. In order to evaluate the performance of the designed sensor and the theoretical analysis being used, relevant calibration and validation tests were conducted. The determination coefficients are 0.996 and 0.992 for PR calibration and 0.934 for MC calibration. The validation indicated that this measurement technique could determine the packing density and moisture content of the silage simultaneously and eliminate the influence of the friction between the penetration shaft and silage. In this study, we not only design a compound sensor but also provide an alternative way to investigate the ensiling quality which would be useful for further silage research.

  13. Soil moisture memory at sub-monthly time scales

    Science.gov (United States)

    Mccoll, K. A.; Entekhabi, D.

    2017-12-01

    For soil moisture-climate feedbacks to occur, the soil moisture storage must have `memory' of past atmospheric anomalies. Quantifying soil moisture memory is, therefore, essential for mapping and characterizing land-atmosphere interactions globally. Most previous studies estimate soil moisture memory using metrics based on the autocorrelation function of the soil moisture time series (e.g., the e-folding autocorrelation time scale). This approach was first justified by Delworth and Manabe (1988) on the assumption that monthly soil moisture time series can be modelled as red noise. While this is a reasonable model for monthly soil moisture averages, at sub-monthly scales, the model is insufficient due to the highly non-Gaussian behavior of the precipitation forcing. Recent studies have shown that significant soil moisture-climate feedbacks appear to occur at sub-monthly time scales. Therefore, alternative metrics are required for defining and estimating soil moisture memory at these shorter time scales. In this study, we introduce metrics, based on the positive and negative increments of the soil moisture time series, that can be used to estimate soil moisture memory at sub-monthly time scales. The positive increments metric corresponds to a rapid drainage time scale. The negative increments metric represents a slower drying time scale that is most relevant to the study of land-atmosphere interactions. We show that autocorrelation-based metrics mix the two time scales, confounding physical interpretation. The new metrics are used to estimate soil moisture memory at sub-monthly scales from in-situ and satellite observations of soil moisture. Reference: Delworth, Thomas L., and Syukuro Manabe. "The Influence of Potential Evaporation on the Variabilities of Simulated Soil Wetness and Climate." Journal of Climate 1, no. 5 (May 1, 1988): 523-47. doi:10.1175/1520-0442(1988)0012.0.CO;2.

  14. Effect of land-use practice on soil moisture variability for soils covered with dense forest vegetation of Puerto Rico

    Science.gov (United States)

    Tsegaye, T.; Coleman, T.; Senwo, Z.; Shaffer, D.; Zou, X.

    1998-01-01

    Little is known about the landuse management effect on soil moisture and soil pH distribution on a landscape covered with dense tropical forest vegetation. This study was conducted at three locations where the history of the landuse management is different. Soil moisture was measured using a 6-cm three-rod Time Domain Reflectometery (TDR) probe. Disturbed soil samples were taken from the top 5-cm at the up, mid, and foothill landscape position from the same spots where soil moisture was measured. The results showed that soil moisture varies with landscape position and depth at all three locations. Soil pH and moisture variability were found to be affected by the change in landuse management and landscape position. Soil moisture distribution usually expected to be relatively higher in the foothill (P3) area of these forests than the uphill (P1) position. However, our results indicated that in the Luquillo and Guanica site the surface soil moisture was significantly higher for P1 than P3 position. These suggest that the surface and subsurface drainage in these two sites may have been poor due to the nature of soil formation and type.

  15. Karakteristik Fisikokimia Mie Kering Berbasis Pati Ubi Jalar Varietas Lokal Dengan Menggunakan Metode Heat Moisture Treatment

    Directory of Open Access Journals (Sweden)

    Zaidiyah Zaidiyah

    2015-10-01

    Full Text Available The effects of heat moisture treatment (110°C and pretreatment on the physicochemical properties of sweet potato dried-noodles starch based were investigated. Completely randomized design was performed which arranged by two-factor. The first factor is noodles consist of native starch and treated starch (heat moisture treatment. The second factor is a type of sweet potato local varieties which consists of three levels: orange, purple and cream flesh color, respectively. Native starch and treated starch treatment showed significant effect on water content, protein and carbohydrate/fiber. Water absorption and cooking loss of dried noodle is highly different between native (non-HMT and treated starch (HMT.

  16. Vegetation-induced turbulence influencing evapotranspiration-soil moisture coupling: Implications for semiarid regions

    Science.gov (United States)

    Haghighi, E.; Kirchner, J. W.; Entekhabi, D.

    2016-12-01

    The relationship between soil moisture and evapotranspiration (ET) fluxes is an important component of land-atmosphere interactions controlling hydrology-climate feedback processes. Important as this relationship is, it remains empirical and physical mechanisms governing its dynamics are insufficiently studied. This is particularly of importance for semiarid regions (currently comprising about half of the Earth's land surface) where the shallow surface soil layer is the primary source of ET and direct evaporation from bare soil is likely a large component of the total flux. Hence, ET-soil moisture coupling in these regions is hypothesized to be strongly influenced by soil evaporation and associated mechanisms. Motivated by recent progress in mechanistic modeling of localized heat and mass exchange rates from bare soil surfaces covered by cylindrical bluff-body elements, we developed a physically based ET model explicitly incorporating coupled impacts of soil moisture and vegetation-induced turbulence in the near-surface region. Model predictions of ET and its partitioning were in good agreement with measured data and suggest that the strength and nature of ET-soil moisture interactions in sparsely vegetated areas are strongly influenced by aerodynamic (rather than radiative) forcing namely wind speed and near-surface turbulence generation as a function of vegetation type and cover fraction. The results demonstrated that the relationship between ET and soil moisture varies from a nonlinear function (the dual regime behavior) to a single moisture-limited regime (linear relationship) by increasing wind velocity and enhancing turbulence generation in the near-surface region (small-scale woody vegetation species of low cover fraction). Potential benefits of this study for improving accuracy and predictive capabilities of remote sensing techniques when applied to semiarid environments will also be discussed.

  17. Soil moisture trends in the Czech Republic between 1961 and 2012

    Czech Academy of Sciences Publication Activity Database

    Trnka, Miroslav; Brázdil, Rudolf; Možný, Martin; Štěpánek, Petr; Dobrovolný, Petr; Zahradníček, Pavel; Balek, J.; Semerádová, Daniela; Dubrovský, Martin; Hlavinka, Petr; Eitzinger, Josef; Wardlow, B.; Svoboda, M.; Hayes, M.; Žalud, Zdeněk

    2015-01-01

    Roč. 35, č. 13 (2015), s. 3733-3747 ISSN 0899-8418 Institutional support: RVO:67985939 Keywords : soil moisture * drought assessment * drought climatology * water balance * climate dice * observed climate change Subject RIV: EH - Ecology, Behaviour Impact factor: 3.609, year: 2015

  18. Event-scale soil moisture dynamics in open evergreen woodlands of southwest Spain

    Science.gov (United States)

    Lozano-Parra, F. J.; Schnabel, S.; Gómez-Gutiérrez, Á.

    2012-04-01

    Rangelands with a disperse tree cover occupy large areas in the southwestern part of the Iberian Pensinsula and are also found in other parts of the Mediterranean. In these grazed, savannah-like ecosystems water constitutes an important limiting factor for vegetation growth because of the strong summer dry period, being annual potential evapotranspiration nearly twice the annual rainfall amount. Previous studies by other authors have found lower values of soil water content below the tree canopy as compared to the open spaces, covered only by herbaceous vegetation. The differences of soil moisture between tree covered and open areas vary along the year, commonly being highest during autumn, low when water content is close to saturation and the inverse during summer. Our studies indicate that the spatial variation of soil moisture is more complex. The main objective of this study is to analyze soil moisture dynamics at the event scale below tree canopies (Quercus ilex) and in the open spaces. Because soils are commonly very shallow (Cambisols) and a high concentration of grass roots is found in the upper five centimetres, soil moisture measurements were carried out at 5, 10, 15 and 30 cm depth. The study area is located in Extremadura. Soil moisture is measured continuously with a time resolution of 30 minutes using capacitive sensors and rainfall is registered in 5-minute intervals. Data from the hydrological year 2010-11 are presented here. The main factors which produced variations in soil moisture in the upper 5 cm were amount and duration of the rainfall event. Rainfall intensity was also significantly related with an increase of the water content. At greater depth (30 cm) soil moisture was more related with antecedent rainfall, as for example the amount of precipitation registered 30 and 45 days prior to the event. Maximum increases produced by a rainstorm were approximately 0.20 m3m-3 in grasslands and 0.17 m3m-3 below tree canopy. However, in the uppermost

  19. CPAC optical moisture monitoring: Characterization of composition and physical effects on moisture determination Task 2A report

    International Nuclear Information System (INIS)

    Veltkamp, D.J.

    1994-01-01

    The impact of particle size and chemical composition variations on determination of tank simulant moisture from near infrared (NIR) optical spectra are presented. This work shows particle size and chemical variations will impact moisture predictions from NIR spectra. However, the prediction errors can be minimized if calibration models are built with samples containing these variations as interferents. Prior work showed the NIR spectral region (1100 to 2500 nm) could be used to predict moisture content of BY-104 tank simulant with a standard error less of approximately 0.5 wt%. Particle size will increase moisture prediction error if calibration-models do not include the same particle size ranges as unknown samples. A combined particle size model with 0-420 x10 -6 m, 420-841 x 10 -6 m, and 841 x 10 -6 m-2 mm diameter particles predicted 0.59, 0.34 nd 0.23 wt% errors respectively for samples containing only these size ranges and 0.80 wt% error for a samples with all particle size ranges. Chemical composition would also increase moisture prediction error if calibration model samples chemically differ from unknown samples. For a BY-104 simulant, increases in NaOH, NaAlO 2 , Na 2 SiO 3 , and Na 3 PO 4 produced moisture predictions that were lower than the actual moisture levels while increases in FE(NO 3 ) 3 , Ca(NO 3 ) 2 , and Mg (NO 3 ) 2 resulted in a higher than actual moisture prediction. Systematic changes in the NIR spectra could be observed for these families of materials. When all of the composition variations were included in a single model, the model had a moisture prediction error of 1.41 wt% as compared to a 2.96 wt% error without model changes. This work shows a calibration model based on a single set of tightly controlled experimental conditions will tend to have somewhat larger prediction errors when applied to samples collected with variations outside of such conditions

  20. Dimensional stability of natural fibers

    Energy Technology Data Exchange (ETDEWEB)

    Driscoll, Mark S. [Ultraviolet Light/Electron Beam (UV/EB) Technology Center, State University of New York College of Environmental Science and Forestry (SUNY-ESF), 1 Forestry Drive, Syracuse, NY 13210 (United States); Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J. [Ultraviolet Light/Electron Beam (UV/EB) Technology Center, State University of New York College of Environmental Science and Forestry (SUNY-ESF), 1 Forestry Drive, Syracuse, NY 13210 and Sustainable Construction Management and Engineering, SUNY-ESF (United States); Larsen, L. Scott [New York State Energy Research and Development Authority (NYSERDA), 17 Columbia Circle, Albany, NY 12203 (United States)

    2013-04-19

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  1. Dimensional stability of natural fibers

    International Nuclear Information System (INIS)

    Driscoll, Mark S.; Smith, Jennifer L.; Woods, Sean; Tiss, Kenneth J.; Larsen, L. Scott

    2013-01-01

    One of the main problems associated with the use of natural fibers as reinforcing agents in composites is their uptake of moisture. Many natural fibers are lignocellulosic, which causes them to swell and shrink as the amount of available moisture changes. Swelling and shrinking can cause composites to prematurely fail. This paper presents the results of a preliminary study that considers the use of two different low molecular weight monomers, hydroxyethyl methacrylate (HEMA) and hydroxyethyl acrylate (HEA), polymerized by electron beam ionizing radiation, to dimensionally stabilize natural fibers. Eight different treatments consisting of varying amounts of monomer, encapsulating agent, and cross-linkers, were evaluated for their ability to dimensionally stabilize sisal fiber. Results indicate that both polymerized HEA and HEMA can reduce the swelling of sisal fiber. The effectiveness of HEA and HEMA can be further enhanced with the use of a cross-linker (SR 454). The use of hydroxylated monomers to dimensionally stabilize natural fibers may play an important role in reducing delamination and improving fiber-resin adhesion in composites.

  2. On the contribution of atmospheric moisture to dew formation

    Science.gov (United States)

    Garratt, J. R.; Segal, M.

    1988-09-01

    The relative contributions of dewfall (a flux of water vapour from air to surface) and distillation (a flux of water vapour from soil to canopy) to dew formation on closed canopy and bare soil surfaces are assessed, and the dependence of dew amount upon wind speed, absolute temperature, atmospheric stability, relative humidity, soil characteristics and cloudiness, all of which are significant factors, is evaluated. Some of these evaluations provide refinements to similar ones given in Monteith (1961). High dewfall rates are usually ≲0.06 mm hr-1 over canopy or bare soil, though upon a canopy under soil-saturated and air-saturated conditions, rates of dew formation may reach 0.07 0.09 mm hr-1 with contributions from distillation. Various sets of observations are reanalyzed to illustrate the importance of the horizontal advection of moisture in the nocturnal boundary layer (NBL) to observed high rates of dew formation arising from the atmospheric contribution of water vapour (dewfall). These locally observed high dewfall rates must be the result of small-scale or mesoscale horizontal advection of moisture in the NBL, since the humidity changes within the typically shallow NBL required to balance the loss of water at the surface are not observed. Over extensive areas of uniform surface (horizontal scales ≫10 km), such continuously high dewfall rates could only be balanced by a local supply of atmospheric moisture since advection of moisture would necessarily be small.

  3. Nematode survival in relation to soil moisture

    NARCIS (Netherlands)

    Simons, W.R.

    1973-01-01

    Established nematode populations are very persistent in the soil. It is known that they need sufficient soil moisture for movement, feeding and reproduction (fig. 5), and that there are adverse soil moisture conditions which they cannot survive. The influence of soil moisture on survival

  4. Thresholds and interactive effects of soil moisture on the temperature response of soil respiration

    DEFF Research Database (Denmark)

    Lellei-Kovács, Eszter; Kovács-Láng, Edit; Botta-Dukát, Zoltán

    2011-01-01

    efflux is soil temperature, while soil moisture has less, although significant effect on soil respiration. Clear thresholds for moisture effects on temperature sensitivity were identified at 0.6, 4.0 and 7.0vol% by almost each model, which relate well to other known limits for biological activity......Ecosystem carbon exchange is poorly understood in low-productivity, semiarid habitats. Here we studied the controls of soil temperature and moisture on soil respiration in climate change field experiment in a sandy forest-steppe. Soil CO2 efflux was measured monthly from April to November in 2003......–2008 on plots receiving either rain exclusion or nocturnal warming, or serving as ambient control. Based on this dataset, we developed and compared empirical models of temperature and moisture effects on soil respiration. Results suggest that in this semiarid ecosystem the main controlling factor for soil CO2...

  5. Local Versus Remote Contributions of Soil Moisture to Near-Surface Temperature Variability

    Science.gov (United States)

    Koster, R.; Schubert, S.; Wang, H.; Chang, Y.

    2018-01-01

    Soil moisture variations have a straightforward impact on overlying air temperatures, wetter soils can induce higher evaporative cooling of the soil and thus, locally, cooler temperatures overall. Not known, however, is the degree to which soil moisture variations can affect remote air temperatures through their impact on the atmospheric circulation. In this talk we describe a two-pronged analysis that addresses this question. In the first segment, an extensive ensemble of NASA/GSFC GEOS-5 atmospheric model simulations is analyzed statistically to isolate and quantify the contributions of various soil moisture states, both local and remote, to the variability of air temperature at a given local site. In the second segment, the relevance of the derived statistical relationships is evaluated by applying them to observations-based data. Results from the second segment suggest that the GEOS-5-based relationships do, at least to first order, hold in nature and thus may provide some skill to forecasts of air temperature at subseasonal time scales, at least in certain regions.

  6. Assessment of SMOS Soil Moisture Retrieval Parameters Using Tau-Omega Algorithms for Soil Moisture Deficit Estimation

    Science.gov (United States)

    Srivastava, Prashant K.; Han, Dawei; Rico-Ramirez, Miguel A.; O'Neill, Peggy; Islam, Tanvir; Gupta, Manika

    2014-01-01

    Soil Moisture and Ocean Salinity (SMOS) is the latest mission which provides flow of coarse resolution soil moisture data for land applications. However, the efficient retrieval of soil moisture for hydrological applications depends on optimally choosing the soil and vegetation parameters. The first stage of this work involves the evaluation of SMOS Level 2 products and then several approaches for soil moisture retrieval from SMOS brightness temperature are performed to estimate Soil Moisture Deficit (SMD). The most widely applied algorithm i.e. Single channel algorithm (SCA), based on tau-omega is used in this study for the soil moisture retrieval. In tau-omega, the soil moisture is retrieved using the Horizontal (H) polarisation following Hallikainen dielectric model, roughness parameters, Fresnel's equation and estimated Vegetation Optical Depth (tau). The roughness parameters are empirically calibrated using the numerical optimization techniques. Further to explore the improvement in retrieval models, modifications have been incorporated in the algorithms with respect to the sources of the parameters, which include effective temperatures derived from the European Center for Medium-Range Weather Forecasts (ECMWF) downscaled using the Weather Research and Forecasting (WRF)-NOAH Land Surface Model and Moderate Resolution Imaging Spectroradiometer (MODIS) land surface temperature (LST) while the s is derived from MODIS Leaf Area Index (LAI). All the evaluations are performed against SMD, which is estimated using the Probability Distributed Model following a careful calibration and validation integrated with sensitivity and uncertainty analysis. The performance obtained after all those changes indicate that SCA-H using WRF-NOAH LSM downscaled ECMWF LST produces an improved performance for SMD estimation at a catchment scale.

  7. 7 CFR 868.307 - Moisture.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Moisture. 868.307 Section 868.307 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... Application of Standards § 868.307 Moisture. Water content in milled rice as determined by an FGIS approved...

  8. Space-time modeling of soil moisture

    Science.gov (United States)

    Chen, Zijuan; Mohanty, Binayak P.; Rodriguez-Iturbe, Ignacio

    2017-11-01

    A physically derived space-time mathematical representation of the soil moisture field is carried out via the soil moisture balance equation driven by stochastic rainfall forcing. The model incorporates spatial diffusion and in its original version, it is shown to be unable to reproduce the relative fast decay in the spatial correlation functions observed in empirical data. This decay resulting from variations in local topography as well as in local soil and vegetation conditions is well reproduced via a jitter process acting multiplicatively over the space-time soil moisture field. The jitter is a multiplicative noise acting on the soil moisture dynamics with the objective to deflate its correlation structure at small spatial scales which are not embedded in the probabilistic structure of the rainfall process that drives the dynamics. These scales of order of several meters to several hundred meters are of great importance in ecohydrologic dynamics. Properties of space-time correlation functions and spectral densities of the model with jitter are explored analytically, and the influence of the jitter parameters, reflecting variabilities of soil moisture at different spatial and temporal scales, is investigated. A case study fitting the derived model to a soil moisture dataset is presented in detail.

  9. Effect of moisture content on some physical and mechanical properties of juvenile rubberwood (Hevea brasiliensis Muell. Arg.

    Directory of Open Access Journals (Sweden)

    Buhnnum Kyokong

    2003-05-01

    Full Text Available Moisture content of rubberwood is an important factor influencing its physical and mechanical behaviours. This research aimed at quantifying effect of moisture content on physical and mechanical properties of juvenile rubberwood core. The specimens at various moisture contents were tested in compression and shear parallel to grain. Information was gathered to determine shrinkage, density and specific gravity of specimens. The equilibrium moisture content determined from desorption experiment, was well described by the Hailwood-Horrobin solution theory. Moisture content of 23+4% best represented the value of apparent fiber saturation point, Mp, determined from physical and mechanical properties data. Above Mp, values of all physical and mechanical properties examined were fairly constant. Maximum volumetric shrinkage from moisture content above Mp to an oven-dry condition was 8.2+1.8%. Specific gravity and density were 0.55+0.03 and 614+30 kg/m3 at 12% moisture content. Below Mp, ultimate compressive stress (UCS parallel to grain, ultimate shear stress parallel to grain, modulus of elasticity (MOE for compression parallel to grain, and shear modulus parallel to grain increased exponentially with decreasing moisture content. Shear strain at fracture and work to fracture of shear parallel to grain were found to increase as moisture content decreased below Mp and attained the maximum values at 20% and 12% moisture content, respectively. The values decreased with further lowering of the level of moisture content. Ultimate compressive stress (UCS parallel to grain was closely correlated with specific gravity and was more sensitive to changes in moisture content at higher specific gravity level.

  10. Optical transparency of paper as a function of moisture content with applications to moisture measurement.

    Science.gov (United States)

    Forughi, A F; Green, S I; Stoeber, B

    2016-02-01

    Accurate measurement of the moisture content of paper is essential in papermaking and is also important in some paper-based microfluidic devices. Traditional measurement techniques provide very limited spatiotemporal resolution and working range. This article presents a novel method for moisture content measurement whose operating principle is the strong correlation between the optical transparency of paper and its moisture content. Spectrographic and microscopic measurement techniques were employed to characterize the relation of moisture content and relative transparency of four types of paper: hardwood chemi-thermomechanical pulp paper, Northern bleached softwood kraft paper, unbleached softwood kraft paper, and General Electric(®) Whatman™ grade 1 chromatography paper. It was found that for all paper types, the paper transparency increased monotonically with the moisture content (as the ratio of the mass-of-water to the mass-of-dry-paper increased from 0% to 120%). This significant increase in relative transparency occurred due to the refractive index matching role of water in wet paper. It is further shown that mechanical loading of the paper has little impact on the relative transparency, for loadings that would be typical on a paper machine. The results of two transient water absorption experiments are presented that show the utility and accuracy of the technique.

  11. Radon emanation and soil moisture effects on airborne gamma-ray measurements

    International Nuclear Information System (INIS)

    Grasty, R.L.

    1997-01-01

    A theoretical model is developed to explain variations in airborne gamma-ray measurements over a calibration range near Ottawa, Ontario. The gamma-ray flux from potassium and the thorium decay series showed an expected decrease with increasing soil moisture. However, the gamma-ray flux from the uranium decay series was highest in the spring when the ground was water-saturated and even covered with snow. These results are explained through the build-up of radon and its associated gamma-ray-emitting decay products in the clay soil of the calibration range with increasing soil moisture. Similar results were found from airborne measurements over other clay soils. However, measurements over sandy soils showed that the count rates from all three radio elements increased with decreasing soil moisture. This difference between soil types was attributed to the lower radon emanation of the more coarse-grained sandy soils compared to finer-grained clay soils. The theoretical and experimental results demonstrate that any estimate of the natural gamma-ray field caused by radium in the ground must take into consideration the radon emanation coefficient of the soil. The radon diffusion coefficient of the soil must also be considered since it depends strongly on soil moisture. This has significant implications for the assessment of outdoor radiation doses using laboratory analyses of soil samples and the use of ground and airborne gamma-ray measurements for radon potential mapping

  12. Moisture variation inferred from a nebkha profile correlates with vegetation changes in the southwestern Mu Us Desert of China over one century.

    Science.gov (United States)

    Li, Jinchang; Zhao, Yanfang; Han, Liuyan; Zhang, Guoming; Liu, Rentao

    2017-11-15

    We inferred moisture variations from the early 1930s to the early 2010s in the southwestern Mu Us Desert of China using Rb/Sr ratio, chemical index of alteration (CIA), and organic matter (OM) content in a nebkha profile. Our results showed that the variations in moisture may have been the main factor that controlled vegetation recovery or degradation, and we believe that gradual vegetation recovery was notable throughout the study area during the past 80years, despite two notable degradation stages during the mid-1950s and the mid-1980s. The Rb/Sr ratio, CIA, and OM content revealed that moisture levels increased during the study period, though with large interannual variations. During the early stage of nebkha formation, the moisture variations were controlled by unusually low precipitation. Thereafter, the precipitation, pan evaporation and temperature determined together moisture variations, but the key factor determining moisture variations was different during different periods. The moisture variations trend revealed in this study may not be restricted to this region as it was similar with the adjacent Mongolian Plateau. Copyright © 2017 Elsevier B.V. All rights reserved.

  13. Spatio-temporal soil moisture variability in Southwest Germany observed with a new monitoring network within the COPS domain

    Energy Technology Data Exchange (ETDEWEB)

    Krauss, Liane; Kottmeier, Christoph [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Meteorology and Climate Research; Hauck, Christian [Karlsruhe Institute of Technology (KIT), Karlsruhe (Germany). Inst. for Meteorology and Climate Research; Fribourg Univ. (Switzerland). Dept. of Geosciences

    2010-12-15

    Within the 'Convective and Orographically-induced Precipitation Study' (COPS) 2007 in Southwest Germany and Northeast France a soil moisture monitoring network was installed. The aim of the network is to identify the interaction between the temporal and spatial variability of the soil moisture field and its influence on the energy balance and the moisture availability in the planetary boundary layer. The network is comprised of a large number of newly developed low-cost soil moisture sensors based on the frequency-domain reflectometry method (FDR). In total 47 soil moisture stations within the COPS domain were each equipped with two to four sensors simultaneously measuring vertical profiles of soil moisture and soil temperature down to 50 cm depth. This contribution describes the soil moisture network, its installation procedure and the calibration of the sensor output signal. Furthermore we discuss the soil texture distribution within the study area and present first analyses of the spatio-temporal soil moisture variability during a 13 month period from June 2007 till June 2008 based on regional differences and site specific properties (altitude and soil texture). Results show that the altitude plays a key role for the overall soil moisture pattern relative to the area mean due to the direct linkage to precipitation patterns. Soil texture controls the vertical soil moisture gradient relative to the near surface soil moisture, as their properties control water storage and drainage characteristics. Both factors significantly influence regional soil moisture patterns in Southwest Germany. (orig.)

  14. 7 CFR 51.2561 - Average moisture content.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 2 2010-01-01 2010-01-01 false Average moisture content. 51.2561 Section 51.2561... STANDARDS) United States Standards for Grades of Shelled Pistachio Nuts § 51.2561 Average moisture content. (a) Determining average moisture content of the lot is not a requirement of the grades, except when...

  15. Growing season soil moisture following restoration treatments of varying intensity in semi-arid ponderosa pine forests

    Science.gov (United States)

    O'Donnell, F. C.; Springer, A. E.; Sankey, T.; Masek Lopez, S.

    2014-12-01

    Forest restoration projects are being planned for large areas of overgrown semi-arid ponderosa pine forests of the Southwestern US. Restoration involves the thinning of smaller trees and prescribed or managed fire to reduce tree density, restore a more natural fire regime, and decrease the risk of catastrophic wildfire. The stated goals of these projects generally reduced plant water stress and improvements in hydrologic function. However, little is known about how to design restoration treatments to best meet these goals. As part of a larger project on snow cover, soil moisture, and groundwater recharge, we measured soil moisture, an indicator of plant water status, in four pairs of control and restored sites near Flagstaff, Arizona. The restoration strategies used at the sites range in both amount of open space created and degree of clustering of the remaining trees. We measured soil moisture using 30 cm vertical time domain reflectometry probes installed on 100 m transects at 5 m intervals so it would be possible to analyze the spatial pattern of soil moisture. Soil moisture was higher and more spatially variable in the restored sites than the control sites with differences in spatial pattern among the restoration types. Soil moisture monitoring will continue until the first snow fall, at which point measurements of snow depth and snow water equivalent will be made at the same locations.

  16. A simple model for retrieving bare soil moisture from radar-scattering coefficients

    International Nuclear Information System (INIS)

    Chen, K.S.; Yen, S.K.; Huang, W.P.

    1995-01-01

    A simple algorithm based on a rough surface scattering model was developed to invert the bare soil moisture content from active microwave remote sensing data. In the algorithm development, a frequency mixing model was used to relate soil moisture to the dielectric constant. In particular, the Integral Equation Model (IEM) was used over a wide range of surface roughness and radar frequencies. To derive the algorithm, a sensitivity analysis was performed using a Monte Carlo simulation to study the effects of surface parameters, including height variance, correlation length, and dielectric constant. Because radar return is inherently dependent on both moisture content and surface roughness, the purpose of the sensitivity testing was to select the proper radar parameters so as to optimally decouple these two factors, in an attempt to minimize the effects of one while the other was observed. As a result, the optimal radar parameter ranges can be chosen for the purpose of soil moisture content inversion. One thousand samples were then generated with the IEM model followed by multivariate linear regression analysis to obtain an empirical soil moisture model. Numerical comparisons were made to illustrate the inversion performance using experimental measurements. Results indicate that the present algorithm is simple and accurate, and can be a useful tool for the remote sensing of bare soil surfaces. (author)

  17. Moisture Management for High R-Value Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Schumacher, C. [Building Science Corporation, Somerville, MA (United States); Lukachko, A. [Building Science Corporation, Somerville, MA (United States)

    2013-11-01

    This report explains the moisture-related concerns for high R-value wall assemblies and discusses past Building America research work that informs this study. In this project, hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones. The modeling program assessed the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage; the report presents results of the study.

  18. Moisture effects on temperature sensitivity of CO2 exchange in a subarctic heath ecosystem

    DEFF Research Database (Denmark)

    Illeris, Lotte; Christensen, TR; Mastepanov, M

    2004-01-01

    Carbon fluxes between natural ecosystems and the atmosphere have received increased attention in recent years due to the impact they have on climate. In order to investigate independently how soil moisture and temperature control carbon fluxes into and out of a dry subarctic dwarf shrub dominated...

  19. Moisture monitoring and control system engineering study

    International Nuclear Information System (INIS)

    Carpenter, K.E.; Fadeff, J.G.

    1995-01-01

    During the past 50 years, a wide variety of chemical compounds have been placed in the 149 single-shell tanks (SSTS) on the Hanford Site. A concern relating to chemical stability, chemical control, and safe storage of the waste is the potential for propagating reactions as a result of ferrocyanide-oxidizer and organic-oxidizer concentrations in the SSTS. Propagating reactions in fuel-nitrate mixtures are precluded if the amounts of fuel and moisture present in the waste are within specified limits. Because most credible ignition sources occur near the waste surface, the main emphasis of this study is toward monitoring and controlling moisture in the top 14 cm (5.5 in.) of waste. The purpose of this engineering study is to recommend a moisture monitoring and control system for use in SSTs containing sludge and saltcake. This study includes recommendations for: (1) monitoring and controlling moisture in SSTs; (2) the fundamental design criteria for a moisture monitoring and control system; and (3) criteria for the deployment of a moisture monitoring and control system in hanford Site SSTs. To support system recommendations, technical bases for selecting and using a moisture monitoring and control system are presented. Key functional requirements and a conceptual design are included to enhance system development and establish design criteria

  20. Effect of atopic skin stressors on natural moisturizing factors and cytokines in healthy adult epidermis

    DEFF Research Database (Denmark)

    Engebretsen, K A; Kezic, S; Jakasa, I

    2018-01-01

    : To explore the effect of selected exogenous skin stressors on NMF and skin cytokines levels in healthy adult epidermis. MATERIAL AND METHODS: 40 healthy volunteers (18-49 years) were exposed to hard, soft, and chlorinated water, 0.5% SLS, house dust mite, cat allergen, staphylococcal enterotoxin B (SEB...... of various skin cytokines in healthy individuals. Our data highlight environmental factors that might play a role in AD pathophysiology, but needs confirmation in AD patients. This article is protected by copyright. All rights reserved....

  1. Soil moisture trends in the Czech Republic between 1961 and 2012

    Czech Academy of Sciences Publication Activity Database

    Trnka, M.; Brázdil, R.; Možný, M.; Štepánek, P.; Dobrovolný, P.; Zahradníček, P.; Balek, J.; Semerádová, D.; Dubrovský, Martin; Hlavinka, P.; Eitzinger, J.; Wardlow, B.; Svoboda, M.; Hayes, M.; Žalud, Z.

    2015-01-01

    Roč. 35, č. 13 (2015), s. 3733-3747 ISSN 0899-8418 Institutional support: RVO:68378289 Keywords : soil moisture * drought assessment * drought climatology * water balance * climate dice * observed climate change * Czech Republic Subject RIV: DG - Athmosphere Sciences, Meteorology Impact factor: 3.609, year: 2015

  2. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Science.gov (United States)

    Lai, Liming; Zhao, Xuechun; Jiang, Lianhe; Wang, Yongji; Luo, Liangguo; Zheng, Yuanrun; Chen, Xi; Rimmington, Glyn M

    2012-01-01

    The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2) absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2) emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  3. Examining the relationship between intermediate-scale soil moisture and terrestrial evaporation within a semi-arid grassland

    KAUST Repository

    Jana, Raghavendra B.

    2016-09-30

    present, while SEBS model estimates displayed a disconnect from the soil moisture distribution in summers with long dry spells. Importantly, no single evaporation model matched the statistical distribution of the measured soil moisture for the entire period, highlighting the challenges in effectively capturing evaporative flux response within changing landscapes. One of the outcomes of this work is that the analysis points to the feasibility of using intermediate scale soil moisture measurements to evaluate gridded estimates of evaporation, exploiting the independent, yet physically linked nature of these hydrological variables.

  4. Adverse moisture events predict seasonal abundance of Lyme disease vector ticks (Ixodes scapularis)

    Science.gov (United States)

    Berger, Kathryn A.; Ginsberg, Howard S.; Dugas, Katherine D.; Hamel, Lutz H.; Mather, Thomas N.

    2014-01-01

    Background: Lyme borreliosis (LB) is the most commonly reported vector-borne disease in north temperate regions worldwide, affecting an estimated 300,000 people annually in the United States alone. The incidence of LB is correlated with human exposure to its vector, the blacklegged tick (Ixodes scapularis). To date, attempts to model tick encounter risk based on environmental parameters have been equivocal. Previous studies have not considered (1) the differences between relative humidity (RH) in leaf litter and at weather stations, (2) the RH threshold that affects nymphal blacklegged tick survival, and (3) the time required below the threshold to induce mortality. We clarify the association between environmental moisture and tick survival by presenting a significant relationship between the total number of tick adverse moisture events (TAMEs - calculated as microclimatic periods below a RH threshold) and tick abundance each year.Methods: We used a 14-year continuous statewide tick surveillance database and corresponding weather data from Rhode Island (RI), USA, to assess the effects of TAMEs on nymphal populations of I. scapularis. These TAMEs were defined as extended periods of time (>8 h below 82% RH in leaf litter). We fit a sigmoid curve comparing weather station data to those collected by loggers placed in tick habitats to estimate RH experienced by nymphal ticks, and compiled the number of historical TAMEs during the 14-year record.Results: The total number of TAMEs in June of each year was negatively related to total seasonal nymphal tick densities, suggesting that sub-threshold humidity episodes >8 h in duration naturally lowered nymphal blacklegged tick abundance. Furthermore, TAMEs were positively related to the ratio of tick abundance early in the season when compared to late season, suggesting that lower than average tick abundance for a given year resulted from tick mortality and not from other factors.Conclusions: Our results clarify the mechanism

  5. The Influence of Soil Moisture and Wind on Rainfall Distribution and Intensity in Florida

    Science.gov (United States)

    Baker, R. David; Lynn, Barry H.; Boone, Aaron; Tao, Wei-Kuo

    1998-01-01

    Land surface processes play a key role in water and energy budgets of the hydrological cycle. For example, the distribution of soil moisture will affect sensible and latent heat fluxes, which in turn may dramatically influence the location and intensity of precipitation. However, mean wind conditions also strongly influence the distribution of precipitation. The relative importance of soil moisture and wind on rainfall location and intensity remains uncertain. Here, we examine the influence of soil moisture distribution and wind distribution on precipitation in the Florida peninsula using the 3-D Goddard Cumulus Ensemble (GCE) cloud model Coupled with the Parameterization for Land-Atmosphere-Cloud Exchange (PLACE) land surface model. This study utilizes data collected on 27 July 1991 in central Florida during the Convection and Precipitation Electrification Experiment (CaPE). The idealized numerical experiments consider a block of land (the Florida peninsula) bordered on the east and on the west by ocean. The initial soil moisture distribution is derived from an offline PLACE simulation, and the initial environmental wind profile is determined from the CaPE sounding network. Using the factor separation technique, the precise contribution of soil moisture and wind to rainfall distribution and intensity is determined.

  6. Quality Assurance of Rice and Paddy Moisture Measurements in Thailand

    Science.gov (United States)

    Sinhaneti, T.; Keawprasert, T.; Puuntharo, P.; Triarun, W.

    2017-10-01

    A bilateral comparison in moisture measurement between the National Institute of Metrology Thailand (NIMT) and the Central Bureau of Weights and Measures (CBWM) was organized for quality assuring of rice and paddy moisture measurement in Thailand. The bilateral comparison was conducted by using the same batch of sample and moisture meter as transfer device. It consisted of two parts: moisture measurement in rice and in paddy. A rice moisture meter belonging to CBWM and rice standards prepared at the nominal moisture content of 10 %, 12 %, 14 % and 16 % at NIMT, were used for rice moisture comparison, while a paddy moisture meter belonging to NIMT and paddy standards prepared at the nominal moisture content of 12 %, 14 %, 16 % and 18 % at CBWM, were used for paddy moisture comparison. Both laboratories measured the moisture content of a sample by using the standard method in ISO 712 and used that sample to calibrate a moisture meter by means of the method based on ISO 7700-1. Since the moisture content of the sample can change during the comparison, correction values in moisture content between the standard value and the reading value from the moisture meter are used as calibration results for the comparison evaluation. For the rice moisture comparison, differences in the correction value measured by the two laboratories vary from 0.18 % to 0.46 %, with their combined comparison uncertainty of 0.37 % (k= 2). The main contribution to the difference comes from the standard values from both laboratories differing from 0.27 % to 0.53 %, as the rice standard was found to drift in moisture content less than 0.05 %. Similarly to the rice moisture comparison, differences in the correction value for the paddy moisture measurement range from 0.08 % to 0.56 % with the combined comparison uncertainty of 0.38 % (k = 2), whereas the stability in moisture content of the paddy sample at NIMT was found to be within 0.12 %.

  7. Soil microbial community responses to antibiotic-contaminated manure under different soil moisture regimes.

    Science.gov (United States)

    Reichel, Rüdiger; Radl, Viviane; Rosendahl, Ingrid; Albert, Andreas; Amelung, Wulf; Schloter, Michael; Thiele-Bruhn, Sören

    2014-01-01

    Sulfadiazine (SDZ) is an antibiotic frequently administered to livestock, and it alters microbial communities when entering soils with animal manure, but understanding the interactions of these effects to the prevailing climatic regime has eluded researchers. A climatic factor that strongly controls microbial activity is soil moisture. Here, we hypothesized that the effects of SDZ on soil microbial communities will be modulated depending on the soil moisture conditions. To test this hypothesis, we performed a 49-day fully controlled climate chamber pot experiments with soil grown with Dactylis glomerata (L.). Manure-amended pots without or with SDZ contamination were incubated under a dynamic moisture regime (DMR) with repeated drying and rewetting changes of >20 % maximum water holding capacity (WHCmax) in comparison to a control moisture regime (CMR) at an average soil moisture of 38 % WHCmax. We then monitored changes in SDZ concentration as well as in the phenotypic phospholipid fatty acid and genotypic 16S rRNA gene fragment patterns of the microbial community after 7, 20, 27, 34, and 49 days of incubation. The results showed that strongly changing water supply made SDZ accessible to mild extraction in the short term. As a result, and despite rather small SDZ effects on community structures, the PLFA-derived microbial biomass was suppressed in the SDZ-contaminated DMR soils relative to the CMR ones, indicating that dynamic moisture changes accelerate the susceptibility of the soil microbial community to antibiotics.

  8. Large-area Soil Moisture Surveys Using a Cosmic-ray Rover: Approaches and Results from Australia

    Science.gov (United States)

    Hawdon, A. A.; McJannet, D. L.; Renzullo, L. J.; Baker, B.; Searle, R.

    2017-12-01

    Recent improvements in satellite instrumentation has increased the resolution and frequency of soil moisture observations, and this in turn has supported the development of higher resolution land surface process models. Calibration and validation of these products is restricted by the mismatch of scales between remotely sensed and contemporary ground based observations. Although the cosmic ray neutron soil moisture probe can provide estimates soil moisture at a scale useful for the calibration and validation purposes, it is spatially limited to a single, fixed location. This scaling issue has been addressed with the development of mobile soil moisture monitoring systems that utilizes the cosmic ray neutron method, typically referred to as a `rover'. This manuscript describes a project designed to develop approaches for undertaking rover surveys to produce soil moisture estimates at scales comparable to satellite observations and land surface process models. A custom designed, trailer-mounted rover was used to conduct repeat surveys at two scales in the Mallee region of Victoria, Australia. A broad scale survey was conducted at 36 x 36 km covering an area of a standard SMAP pixel and an intensive scale survey was conducted over a 10 x 10 km portion of the broad scale survey, which is at a scale equivalent to that used for national water balance modelling. We will describe the design of the rover, the methods used for converting neutron counts into soil moisture and discuss factors controlling soil moisture variability. We found that the intensive scale rover surveys produced reliable soil moisture estimates at 1 km resolution and the broad scale at 9 km resolution. We conclude that these products are well suited for future analysis of satellite soil moisture retrievals and finer scale soil moisture models.

  9. Simple grain moisture content determination from microwave measurements

    International Nuclear Information System (INIS)

    Kraszewski, A.W.; Trabelsi, S.; Nelson, S.O.

    1998-01-01

    Moisture content of wheat, Triticum aestivum L., is expressed as a function of the ratio of microwave attenuation and phase shift, measured at 16.8 GHz, and grain temperature. Validation of the calibration equation indicated that moisture content was obtained with an uncertainty less than +/- 0.45% moisture at the 95% confidence level, independent of density variation, at temperatures from -1 degree C to 42 degrees C, and moisture contents from 10% to 19%. Moisture determination does not depend on the layer thickness of the wheat norits bulk density. No differences between two wheat cultivars were observed in the measurement data

  10. Heat and Moisture transport of socks

    Science.gov (United States)

    Komárková, P.; Glombíková, V.; Havelka, A.

    2017-10-01

    Investigating the liquid moisture transport and thermal properties is essential for understanding physiological comfort of clothes. This study reports on an experimental investigation of moisture management transport and thermal transport on the physiological comfort of commercially available socks. There are subjective evaluation and objective measurements. Subjective evaluation of the physiological comfort of socks is based on individual sensory perception of probands during and after physical exertion. Objective measurements were performed according to standardized methods using Moisture Management tester for measuring the humidity parameters and C-term TCi analyzer for thermal conductivity and thermal effusivity. The obtained values of liquid moisture transport and thermal properties were related to the material composition and structure of the tested socks. In summary, these results show that objective measurement corresponds with probands feelings.

  11. Moisture sorption isotherms of dehydrated whey proteins

    Directory of Open Access Journals (Sweden)

    Suzana Rimac Brnčić

    2010-03-01

    Full Text Available Moisture sorption isotherms describe the relation between the moisture content of the dry material (food and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as monolayer value of two commercial powdered whey protein isolates before and after tribomechanical micronisation and enzymatic hydrolysis, respectively. At the same time it was necessary to evaluate the best moisture sorption isotherm equation to fit the experimental data. The equilibrium moisture contents in investigated samples were determined using standard gravimetric method at 20 °C. The range of water activities was 0.11 to 0.75. The monolayer moisture content was estimated from sorption data using Brunauer-Emmett-Teller (BET and Guggenheim-Anderson-de Boer (GAB models. The results have shown that tribomechanically treated whey protein isolates as well as protein hydrolizates had lower monolayer moisture content values as well as higher corresponding water activity. Therefore, in spite of the fact that they have lower moisture content, they can be storage at higher relative humidity compared to untreated samples. BET model gave better fit to experimental sorption data for a water activity range from 0.11-0.54, while GAB model gave the closest fit for a water activity to 0.75.

  12. Moisture Management for High R-Value Walls

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R.; Schumacher, C.; Lukachko, A.

    2013-11-01

    The following report explains the moisture-related concerns for High R-value wall assemblies and discusses past Building America research work that informs this study. Hygrothermal simulations were prepared for several common approaches to High R-value wall construction in six cities (Houston, Atlanta, Seattle, St. Louis, Chicago, and International Falls) representing a range of climate zones (2, 3, 4C, 4, 5A, and 7, respectively). The simulations are informed by experience gained from past research in this area and validated by field measurement and forensic experience. The modeling program was developed to assess the moisture durability of the wall assemblies based on three primary sources of moisture: construction moisture, air leakage condensation, and bulk water leakage. The peak annual moisture content of the wood based exterior sheathing was used to comparatively analyze the response to the moisture loads for each of the walls in each given city. Walls which experienced sheathing moisture contents between 20% and 28% were identified as risky, whereas those exceeding 28% were identified as very high risk. All of the wall assemblies perform well under idealized conditions. However, only the walls with exterior insulation, or cavity insulation which provides a hygrothermal function similar to exterior insulation, perform adequately when exposed to moisture loads. Walls with only cavity insulation are particularly susceptible to air leakage condensation. None of the walls performed well when a precipitation based bulk water leak was introduced to the backside of the sheathing, emphasizing the importance of proper flashing details.

  13. Investigating soil moisture-climate interactions with prescribed soil moisture experiments: an assessment with the Community Earth System Model (version 1.2)

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia I.

    2017-04-01

    Land surface hydrology is an important control of surface weather and climate. A valuable technique to investigate this link is the prescription of soil moisture in land surface models, which leads to a decoupling of the atmosphere and land processes. Diverse approaches to prescribe soil moisture, as well as different prescribed soil moisture conditions have been used in previous studies. Here, we compare and assess four methodologies to prescribe soil moisture and investigate the impact of two different estimates of the climatological seasonal cycle used to prescribe soil moisture. Our analysis shows that, though in appearance similar, the different approaches require substantially different long-term moisture inputs and lead to different temperature signals. The smallest influence on temperature and the water balance is found when prescribing the median seasonal cycle of deep soil liquid water, whereas the strongest signal is found when prescribing soil liquid and soil ice using the mean seasonal cycle. These results indicate that induced net water-balance perturbations in experiments investigating soil moisture-climate coupling are important contributors to the climate response, in addition to the intended impact of the decoupling. These results help to guide the set-up of future experiments prescribing soil moisture, as for instance planned within the Land Surface, Snow and Soil Moisture Model Intercomparison Project (LS3MIP).

  14. Skin acceptability of a cosmetic moisturizer formulation in female subjects with sensitive skin

    Directory of Open Access Journals (Sweden)

    Nisbet SJ

    2018-04-01

    Full Text Available Stephanie J Nisbet Skin Health Medical Affairs, GSK Consumer Healthcare, Weybridge, Surrey, UK Purpose: This 3-week, open-label, noncomparative clinical study evaluated the skin acceptability of a cosmetic moisturizer in subjects with sensitive skin, by monitoring adverse events (AEs and cutaneous discomfort related to normal usage.Materials and methods: Female subjects aged between 18–60 years, with Fitzpatrick phototype classification I–IV and sensitive skin, verified by a positive reaction on the stinging test at screening, were included. Subjects applied the moisturizer to their face and body twice daily for 21±2 days at home and recorded study product usage and feelings of cutaneous discomfort (eg, dryness, prickling, stinging, and itching in a diary; any AEs were reported to the clinic. At study end, skin acceptability of the moisturizer was investigator-assessed based on the nature of AEs and subjects’ self-reported feelings of discomfort, and by clinical evaluation of skin reactions in the area of moisturizer application (appearance of erythema, formation of edema, and skin desquamation; scored according to an adapted Draize and Kligman scale. Only subjects with a treatment compliance of ≥80% were included in the final analysis.Results: In total, 35 subjects initiated and completed the study; all were compliant to the minimum study product usage. Per investigator clinical dermatological assessment at study end, none of the 35 subjects had skin reactions in the area of moisturizer application and there were no reported AEs. One subject reported sensations of mild prickling and itching immediately after applying the moisturizer (not classified as AEs, which spontaneously remitted after complete absorption of the product and were noted only in exposed areas. These events were considered by the investigator as being possibly/probably related to the use of study product; however, no clinical signs of skin reaction were observed in

  15. Study on the optimal moisture adding rate of brown rice during germination by using segmented moisture conditioning method.

    Science.gov (United States)

    Cao, Yinping; Jia, Fuguo; Han, Yanlong; Liu, Yang; Zhang, Qiang

    2015-10-01

    The aim of this study was to find out the optimal moisture adding rate of brown rice during the process of germination. The process of water addition in brown rice could be divided into three stages according to different water absorption speeds in soaking process. Water was added with three different speeds in three stages to get the optimal water adding rate in the whole process of germination. Thus, the technology of segmented moisture conditioning which is a method of adding water gradually was put forward. Germinated brown rice was produced by using segmented moisture conditioning method to reduce the loss of water-soluble nutrients and was beneficial to the accumulation of gamma aminobutyric acid. The effects of once moisture adding amount in three stages on the gamma aminobutyric acid content in germinated brown rice and germination rate of brown rice were investigated by using response surface methodology. The optimum process parameters were obtained as follows: once moisture adding amount of stage I with 1.06 %/h, once moisture adding amount of stage II with 1.42 %/h and once moisture adding amount of stage III with 1.31 %/h. The germination rate under the optimum parameters was 91.33 %, which was 7.45 % higher than that of germinated brown rice produced by soaking method (84.97 %). The content of gamma aminobutyric acid in germinated brown rice under the optimum parameters was 29.03 mg/100 g, which was more than two times higher than that of germinated brown rice produced by soaking method (12.81 mg/100 g). The technology of segmented moisture conditioning has potential applications for studying many other cereals.

  16. Influences of gas stream conditions on efficiency of tritiated moisture collection with P2O5-desiccant and isotope effect

    International Nuclear Information System (INIS)

    Kotoh, Kenji; Miura, Katsuya; Kashio, Yousuke; Nishikawa, Masabumi

    1991-01-01

    A method was proposed previously for collection and measurement of tritiated moisture in gas stream using P 2 O 5 -desiccant. Influences of the gas humidity, the gas flow rate and the distance between gas nozzle and P 2 O 5 -desiccant layer surface on the moisture collection efficiency have been examined through experiments, and the isotope effect on the collection has been investigated. The collection efficiency is the ratio of collected to supplied moisture, and the moisture supplying rate is in proportion to the humidity and flow rate of feed gas. The experiments show that; the collection efficiency dose not depend on the gas humidity, but is affected by the gas flow rate and by the nozzle-layer distance. The effects of the flow rate and the nozzle position are related to the mass transfer distance from the bulk of gas stream to the desiccant layer surface in the collection cell. The moisture collecting rate is promoted by the approach of the gas stream to the layer surface. An expression of effective separation factor has been derived to explain the isotope effect on the moisture collection. Experimental data distribution of the separation factor have been reasonably simulated by the analysis. (author)

  17. Thermal–moisture dynamics of embankments with asphalt pavement in permafrost regions of central Tibetan Plateau

    Energy Technology Data Exchange (ETDEWEB)

    Wen, Zhi; Zhang, Mingli; Ma, Wei; Wu, Qingbai; Niu, Fujun; Yu, Qihao; Fan, Zhaosheng; Sun, Zhizhong

    2014-09-01

    Subsurface moisture content is one of the critical factors that control the thermal dynamics of embankments. However, information on the subsurface moisture movement and distribution in embankments is still limited. To better understand the coupled water and heat transport within embankments, subsurface temperature and moisture of an asphalt pavement highway were extensively measured from 2009 to 2011. Collected data indicate that pure heat conduction is the overall main mechanism of heat transport in the embankment and heat convection plays a relatively unimportant role in heat transport. The results also indicate that subsurface moisture and temperature dynamics in the asphalt layer is strongly related to the rainfall events, while the subsurface moisture content below the road base course maintains relatively constant. Rainfall in summer leads to rapid cooling of the subsurface soil. Our results suggest that frequent and small rainfall events favour the thermal stability of the embankment due to the loss of latent heat of water evaporation. Moisture migration during freezing still occurred in the gravel fill and the water infiltrated into the active layer during thawing period. Freezing-induced water migration may result in the increase in water content of the embankment and the decrease in compactness of gravel fill.

  18. Reduction of cyanogenic glycosides by extrusion - influence of temperature and moisture content of the processed material

    Directory of Open Access Journals (Sweden)

    Čolović Dušica S.

    2015-01-01

    Full Text Available Тhe paper presents results of the investigation of the influence of extrusion temperature and moisture content of treated material on the reduction of cyanogenic glycosides (CGs in linseed-based co-extrudate. CGs are the major limitation of the effective usage of linseed in animal nutrition. Hence, some technological process must be applied for detoxification of linseed before its application as a nutrient. Extrusion process has demonstrated several advantages in reducing the present CGs, since it combines the influences of heating, shearing, high pressure, mixing, etc. According to obtained results, the increase in both temperature and moisture content of the starting mixture decreased the content of CGs in the processed material. HCN content, as a measurement of GCs presence, ranged from 25.42 mg/kg, recorded at the moisture content of 11.5%, to 126 mg/kg, detected at the lowest moisture content of 7%. It seems that moisture content and temperature had the impact on HCN content of equal importance. However, the influence of extrusion parameters other than temperature and moisture content could not be neglected. Therefore, the impact of individual factors has to be tested together. [Projekat Ministarstva nauke Republike Srbije, br. III 46012

  19. Soil Moisture (SMAP) and Vapor Pressure Deficit Controls on Evaporative Fraction over the Continental U.S.

    Science.gov (United States)

    Salvucci, G.; Rigden, A. J.; Gianotti, D.; Entekhabi, D.

    2017-12-01

    We analyze the control over evapotranspiration (ET) imposed by soil moisture limitations and stomatal closure due to vapor pressure deficit (VPD) across the United States using estimates of satellite-derived soil moisture from SMAP and a meteorological, data-driven ET estimate over a two year period at over 1000 locations. The ET data are developed independent of soil moisture using the emergent relationship between the diurnal cycle of the relative humidity profile and ET based on ETRHEQ (Salvucci and Gentine (2013), PNAS, 110(16): 6287-6291, Rigden and Salvucci, 2015, WRR, 51(4): 2951-2973; Rigden and Salvucci, 2017, GCB, 23(3) 1140-1151). The key advantage of using this approach to estimate ET is that no measurements of surface limiting factors (soil moisture, leaf area, canopy conductance) are required; instead, ET is estimated from only meteorological data. The combination of these two independent datasets allows for a unique spatial analysis of the control on ET imposed by the availability of soil moisture vs. VPD. Spatial patterns of limitations are inferred by fitting the ETRHEQ-inferred surface conductance to a weighted sum of a Jarvis type stomatal conductance model and bare soil evaporation conductance model, with separate moisture-dependent evaporation efficiency relations for bare soil and vegetation. Spatial patterns are visualized by mapping the optimal curve fitting coefficients and by conducting sensitivity analyses of the resulting fitted model across the Unites States. Results indicate regional variations in rate-limiting factors, and suggest that in some areas the VPD effect on stomatal closure is strong enough to induce a decrease in ET under projected climate change, despite an increase in atmospheric drying (and thus evaporative demand).

  20. Effective moisture diffusivity, moisture sorption, thermo-physical properties and infrared drying kinetics of germinated paddy

    Directory of Open Access Journals (Sweden)

    Supawan Tirawanichakul

    2014-02-01

    Full Text Available Temperature and relative humidity (RH dependence of moisture sorption phenomena for agricultural products provide valuable information related to the thermodynamics of the system. So the equilibrium moisture contents (EMC, effective moisture diffusivity (Deff and thermo-physical properties in terms of void fraction, specific heat capacity, and the apparent density of germinated non-waxy Suphanburi 1 paddy were evaluated. Five commonly cited EMC equations were fitted to the experimental data among temperatures of 40-60°C correlating with RH of 0-90%. The results showed that the modified GAB equation was the best function for describing experimental results while those evaluated thermo-physical properties depended on moisture content. To determine drying kinetics model, the simulated values using Midilli et al. (2002 model and Page’s model was the best fitting to exact drying kinetics values for infrared (IR and hot air (HA drying, respectively. Finally, the Deff value of paddy dried with IR and HA sources were also evaluated and the calculated Deff value of both HA and IR drying was in order of 10-9 m2/s.

  1. Detecting the honeycomb sandwich composite material's moisture impregnating defects by using infrared thermography technique

    Energy Technology Data Exchange (ETDEWEB)

    Kwon, Koo Ahn; Choi, Man Yong; Park, Jeong Hak; Choi, Won Jae [Safety Measurement Center, Korea Research Institute of Standards and Science, Daejeon (Korea, Republic of); Park, Hee Sang [R and D, Korea Research Institute of Smart Material and Structures System Association, Daejeon (Korea, Republic of)

    2017-04-15

    Many composite materials are used in the aerospace industry because of their excellent mechanical properties. However, the nature of aviation exposes these materials to high temperature and high moisture conditions depending on climate, location, and altitude. Therefore, the molecular arrangement chemical properties, and mechanical properties of composite materials can be changed under these conditions. As a result, surface disruptions and cracks can be created. Consequently, moisture-impregnating defects can be induced due to the crack and delamination of composite materials as they are repeatedly exposed to moisture absorption moisture release, fatigue environment, temperature changes, and fluid pressure changes. This study evaluates the possibility of detecting the moisture-impregnating defects of CFRP and GFRP honeycomb structure sandwich composite materials, which are the composite materials in the aircraft structure, by using an active infrared thermography technology among non-destructive testing methods. In all experiments, it was possible to distinguish the area and a number of CFRP composite materials more clearly than those of GFRP composite material. The highest detection rate was observed in the heating duration of 50 mHz and the low detection rate was at the heating duration of over 500 mHz. The reflection method showed a higher detection rate than the transmission method.

  2. Field performance of three real-time moisture sensors in sandy loam and clay loam soils

    Science.gov (United States)

    The study was conducted to evaluate HydraProbe (HyP), Campbell Time Domain Reflectometry (TDR) and Watermarks (WM) moisture sensors for their ability to estimate water content based on calibrated neutron probe measurements. The three sensors were in-situ tested under natural weather conditions over ...

  3. New method measures moisture and true dry mass

    International Nuclear Information System (INIS)

    Frank, H.

    The moisture content of wood can be determined by measuring the nuclear magnetic resonance of free water hydrogen atoms in wood. Nanassy studied NMR curves for six types of wood and obtained the calibration curve by reducing the moisture content in steps by 4% moisture down to ca. 1% moisture and then by gradually wetting the wood. The initial material was fresh wood. For each step he measured the intensity of the free water hydrogen signal. If the sample weight is known the dry matter content (dry weight) and moisture content of the sample can be derived from the measured NMR signal. (J.P.)

  4. Structure of the urban moisture field

    International Nuclear Information System (INIS)

    Sisterson, D.L.; Dirks, R.A.

    1975-01-01

    In the 26 July 1974 case study in St. Louis as a part of Project METROMEX, aircraft and surface network stations were used to determine specific humidity and potential temperature patterns near the surface and at two levels within the mixing layer. From the data acquired at these three levels, three-dimensional analyses of the moisture fields in the mixing layer were constructed. The mesoscale dry regions observed throughout the mixing layer correspond to the more impervious surfaces of the urban area. From energy budget considerations, latent heat fluxes are small over these impervious surfaces owing to the large runoff of precipitation and the lack of moisture retention capabilities. Hence, urbanization obviously alters the local energy budget. Surface boundary layer conditions are determined by heat and moisture fluxes. A new internal boundary layer within the city is formed after the breakdown of the radiation inversion in order to compensate for the alteration of sensible heat and latent heat energies. Hence, isolated semistagnant urban air is replenished by moisture only as quickly as evapotranspiration from impervious surfaces will allow. The city surface, therefore, is not a sink of moisture, but rather a reduced source relative to rural areas

  5. Digital neutron moisture meter for moisture determination in the cokes and building materials

    International Nuclear Information System (INIS)

    Chibovski, R.; Igel'ski, A.; Kiyanya, K.; Kiyanya, S.; Mnikh, Eh.; Sledzevski, R.; Verba, V.

    1979-01-01

    Description is given of the digital neutron moisture gage for measuring water content in coke or in dry building materials. The device can work independently with indication of the results to personnel carrying out control operation and adjustment of the process or as a part of an automated control system with supplying the results of measurements in a form of analogous signals or electric pulses in the preselected code. The moisture gage described consists of two units: measuring probes with containers and the desk with power supply and the system for digital processing of a radiometric signal. The measuring probe consists of the asotopic fast neutrons source; helium proportional counter of slow neutrons and a pulse amplifier. The probe is mounted in the bunker with the material measured and is located inside the protective tube made of the weare-resistant material. To obtain high accuracy of measurements and to obtain the measuring instrument's reading immediately in the units of moisture measurement, the digizal converter circuit for radiometric signals processing is used. The The digital converter circuit cited, can be applied to any calibration dependence of linear type with initial value. The block diagram of the device is given. The device described permits to measure the moisture content in the metallurgy coks and in the building materials in one minute and with the error not more than 0.5% [ru

  6. Toxicity interaction between chlorpyrifos, mancozeb and soil moisture to the terrestrial isopod Porcellionides pruinosus.

    Science.gov (United States)

    Morgado, Rui G; Gomes, Pedro A D; Ferreira, Nuno G C; Cardoso, Diogo N; Santos, Miguel J G; Soares, Amadeu M V M; Loureiro, Susana

    2016-02-01

    A main source of uncertainty currently associated with environmental risk assessment of chemicals is the poor understanding of the influence of environmental factors on the toxicity of xenobiotics. Aiming to reduce this uncertainty, here we evaluate the joint-effects of two pesticides (chlorpyrifos and mancozeb) on the terrestrial isopod Porcellionides pruinosus under different soil moisture regimes. A full factorial design, including three treatments of each pesticide and an untreated control, were performed under different soil moisture regimes: 25%, 50%, and 75% WHC. Our results showed that soil moisture had no effects on isopods survival, at the levels assessed in this experiment, neither regarding single pesticides nor mixture treatments. Additivity was always the most parsimonious result when both pesticides were present. Oppositely, both feeding activity and biomass change showed a higher sensitivity to soil moisture, with isopods generally showing worse performance when exposed to pesticides and dry or moist conditions. Most of the significant differences between soil moisture regimes were found in single pesticide treatments, yet different responses to mixtures could still be distinguished depending on the soil moisture assessed. This study shows that while soil moisture has the potential to influence the effects of the pesticide mixture itself, such effects might become less important in a context of complex combinations of stressors, as the major contribution comes from its individual interaction with each pesticide. Finally, the implications of our results are discussed in light of the current state of environmental risk assessment procedures and some future perspectives are advanced. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. An analytical method for determining the temperature dependent moisture diffusivities of pumpkin seeds during drying process

    Energy Technology Data Exchange (ETDEWEB)

    Can, Ahmet [Department of Mechanical Engineering, University of Trakya, 22030 Edirne (Turkey)

    2007-02-15

    This paper presents an analytical method, which determines the moisture diffusion coefficients for the natural and forced convection hot air drying of pumpkin seeds and their temperature dependence. In order to obtain scientific data, the pumpkin seed drying process was investigated under both natural and forced hot air convection regimes. This paper presents the experimental results in which the drying air was heated by solar energy. (author)

  8. Passive microwave remote sensing of soil moisture

    International Nuclear Information System (INIS)

    Jackson, T.J.; Schmugge, T.J.

    1986-01-01

    Microwave remote sensing provides a unique capability for direct observation of soil moisture. Remote measurements from space afford the possibility of obtaining frequent, global sampling of soil moisture over a large fraction of the Earth's land surface. Microwave measurements have the benefit of being largely unaffected by cloud cover and variable surface solar illumination, but accurate soil moisture estimates are limited to regions that have either bare soil or low to moderate amounts of vegetation cover. A particular advantage of passive microwave sensors is that in the absence of significant vegetation cover soil moisture is the dominant effect on the received signal. The spatial resolutions of passive microwave soil moisture sensors currently considered for space operation are in the range 10–20 km. The most useful frequency range for soil moisture sensing is 1–5 GHz. System design considerations include optimum choice of frequencies, polarizations, and scanning configurations, based on trade-offs between requirements for high vegetation penetration capability, freedom from electromagnetic interference, manageable antenna size and complexity, and the requirement that a sufficient number of information channels be available to correct for perturbing geophysical effects. This paper outlines the basic principles of the passive microwave technique for soil moisture sensing, and reviews briefly the status of current retrieval methods. Particularly promising are methods for optimally assimilating passive microwave data into hydrologic models. Further studies are needed to investigate the effects on microwave observations of within-footprint spatial heterogeneity of vegetation cover and subsurface soil characteristics, and to assess the limitations imposed by heterogeneity on the retrievability of large-scale soil moisture information from remote observations

  9. Soil moisture content with global warming

    International Nuclear Information System (INIS)

    Vinnikov, K.Ya.

    1990-01-01

    The potential greenhouse-gas-induced changes in soil moisture, particularly the desiccation of the Northern Hemisphere contents in summer, are discussed. To check the conclusions based on climate models the authors have used long-term measurements of contemporary soil moisture in the USSR and reconstructions of soil moisture for the last two epochs that were warmer than the present, namely, the Holocene optimum, 5,000-6,000 years ago, and the last interglacial, about 125,000 years ago. The analysis shows that there is a considerable disagreement between the model results and the empirical data

  10. Theoretical Analysis and Experimental Study of Subgrade Moisture Variation and Underground Antidrainage Technique under Groundwater Fluctuations

    Directory of Open Access Journals (Sweden)

    Liu Jie

    2013-01-01

    Full Text Available Groundwater is a main natural factor impacting the subgrade structure, and it plays a significant role in the stability of the subgrade. In this paper, the analytical solution of the subgrade moisture variations considering groundwater fluctuations is derived based on Richards’ equation. Laboratory subgrade model is built, and three working cases are performed in the model to study the capillary action of groundwater at different water tables. Two types of antidrainage materials are employed in the subgrade model, and their anti-drainage effects are discussed. Moreover, numerical calculation is conducted on the basis of subgrade model, and the calculate results are compared with the experimental measurements. The study results are shown. The agreement between the numerical and the experimental results is good. Capillary action is obvious when the groundwater table is rising. As the groundwater table is falling, the moisture decreases in the position of the subgrade near the water table and has no variations in the subgrade where far above the table. The anti-drainage effect of the sand cushion is associated with its thickness and material properties. New waterproofing and drainage material can prevent groundwater entering the subgrade effectively, and its anti-drainage effect is good.

  11. Neutron moisture measurement in materials

    International Nuclear Information System (INIS)

    Thony, J.L.

    1985-01-01

    This method is generally used for soil moisture determination but also for moisture in building materials. After a review of neutron interaction with matter (elastic and inelastic scattering, radiative capture and absorption with emission of charged particles) and of the equipment (source, detector and counting), gravimetric and chemical calibration are described and accuracy of measurement is discussed. 5 refs [fr

  12. Propagation of soil moisture memory into the climate system

    Science.gov (United States)

    Orth, R.; Seneviratne, S. I.

    2012-04-01

    Soil moisture is known for its integrative behaviour and resulting memory characteristics. Associated anomalies can persist for weeks or even months into the future, making initial soil moisture an important potential component in weather forecasting. This is particularly crucial given the role of soil moisture for land-atmosphere interactions and its impacts on the water and energy balances on continents. We present here an analysis of the characteristics of soil moisture memory and of its propagation into runoff and evapotranspiration in Europe, based on available measurements from several sites across the continent and expanding a previous analysis focused on soil moisture [1]. We identify the main drivers of soil moisture memory at the analysed sites, as well as their role for the propagation of soil moisture persistence into runoff and evapotranspiration memory characteristics. We focus on temporal and spatial variations in these relationships and identify seasonal and latitudinal differences in the persistence of soil moisture, evapotranspiration and runoff. Finally, we assess the role of these persistence characteristics for the development of agricultural and hydrological droughts. [1] Orth and Seneviratne: Analysis of soil moisture memory from observations in Europe; submitted to J. Geophysical Research.

  13. 40 CFR 75.37 - Missing data procedures for moisture.

    Science.gov (United States)

    2010-07-01

    ... 40 Protection of Environment 16 2010-07-01 2010-07-01 false Missing data procedures for moisture... data procedures for moisture. (a) The owner or operator of a unit with a continuous moisture monitoring system shall substitute for missing moisture data using the procedures of this section. (b) Where no...

  14. Sources of Sahelian-Sudan moisture: Insights from a moisture-tracing atmospheric model

    Science.gov (United States)

    Salih, Abubakr A. M.; Zhang, Qiong; Pausata, Francesco S. R.; Tjernström, Michael

    2016-07-01

    The summer rainfall across Sahelian-Sudan is one of the main sources of water for agriculture, human, and animal needs. However, the rainfall is characterized by large interannual variability, which has attracted extensive scientific efforts to understand it. This study attempts to identify the source regions that contribute to the Sahelian-Sudan moisture budget during July through September. We have used an atmospheric general circulation model with an embedded moisture-tracing module (Community Atmosphere Model version 3), forced by observed (1979-2013) sea-surface temperatures. The result suggests that about 40% of the moisture comes with the moisture flow associated with the seasonal migration of the Intertropical Convergence Zone (ITCZ) and originates from Guinea Coast, central Africa, and the Western Sahel. The Mediterranean Sea, Arabian Peninsula, and South Indian Ocean regions account for 10.2%, 8.1%, and 6.4%, respectively. Local evaporation and the rest of the globe supply the region with 20.3% and 13.2%, respectively. We also compared the result from this study to a previous analysis that used the Lagrangian model FLEXPART forced by ERA-Interim. The two approaches differ when comparing individual regions, but are in better agreement when neighboring regions of similar atmospheric flow features are grouped together. Interannual variability with the rainfall over the region is highly correlated with contributions from regions that are associated with the ITCZ movement, which is in turn linked to the Atlantic Multidecadal Oscillation. Our result is expected to provide insights for the effort on seasonal forecasting of the rainy season over Sahelian Sudan.

  15. Automated general temperature correction method for dielectric soil moisture sensors

    Science.gov (United States)

    Kapilaratne, R. G. C. Jeewantinie; Lu, Minjiao

    2017-08-01

    An effective temperature correction method for dielectric sensors is important to ensure the accuracy of soil water content (SWC) measurements of local to regional-scale soil moisture monitoring networks. These networks are extensively using highly temperature sensitive dielectric sensors due to their low cost, ease of use and less power consumption. Yet there is no general temperature correction method for dielectric sensors, instead sensor or site dependent correction algorithms are employed. Such methods become ineffective at soil moisture monitoring networks with different sensor setups and those that cover diverse climatic conditions and soil types. This study attempted to develop a general temperature correction method for dielectric sensors which can be commonly used regardless of the differences in sensor type, climatic conditions and soil type without rainfall data. In this work an automated general temperature correction method was developed by adopting previously developed temperature correction algorithms using time domain reflectometry (TDR) measurements to ThetaProbe ML2X, Stevens Hydra probe II and Decagon Devices EC-TM sensor measurements. The rainy day effects removal procedure from SWC data was automated by incorporating a statistical inference technique with temperature correction algorithms. The temperature correction method was evaluated using 34 stations from the International Soil Moisture Monitoring Network and another nine stations from a local soil moisture monitoring network in Mongolia. Soil moisture monitoring networks used in this study cover four major climates and six major soil types. Results indicated that the automated temperature correction algorithms developed in this study can eliminate temperature effects from dielectric sensor measurements successfully even without on-site rainfall data. Furthermore, it has been found that actual daily average of SWC has been changed due to temperature effects of dielectric sensors with a

  16. Soil Moisture Retrieval and Spatiotemporal Pattern Analysis Using Sentinel-1 Data of Dahra, Senegal

    Directory of Open Access Journals (Sweden)

    Zhiqu Liu

    2017-11-01

    Full Text Available The spatiotemporal pattern of soil moisture is of great significance for the understanding of the water exchange between the land surface and the atmosphere. The two-satellite constellation of the Sentinel-1 mission provides C-band synthetic aperture radar (SAR observations with high spatial and temporal resolutions, which are suitable for soil moisture monitoring. In this paper, we aim to assess the capability of pattern analysis based on the soil moisture retrieved from Sentinel-1 time-series data of Dahra in Senegal. The look-up table (LUT method is used in the retrieval with the backscattering coefficients that are simulated by the advanced integrated equation Model (AIEM for the soil layer and the Michigan microwave canopy scattering (MIMICS model for the vegetation layer. The temporal trend of Sentinel-1A soil moisture is evaluated by the ground measurements from the site at Dahra, with an unbiased root-mean-squared deviation (ubRMSD of 0.053 m3/m3, a mean average deviation (MAD of 0.034 m3/m3, and an R value of 0.62. The spatial variation is also compared with the existing microwave products at a coarse scale, which confirms the reliability of the Sentinel-1A soil moisture. The spatiotemporal patterns are analyzed by empirical orthogonal functions (EOF, and the geophysical factors that are affecting soil moisture are discussed. The first four EOFs of soil moisture explain 77.2% of the variance in total and the primary EOF explains 66.2%, which shows the dominant pattern at the study site. Soil texture and the normalized difference vegetation index are more closely correlated with the primary pattern than the topography and temperature in the study area. The investigation confirms the potential for soil moisture retrieval and spatiotemporal pattern analysis using Sentinel-1 images.

  17. Guidelines on the prevention of built-in moisture

    DEFF Research Database (Denmark)

    Hansen, Ernst Jan de Place; Møller, Eva B.

    2014-01-01

    As a result of built-in-moisture, a number of buildings in Denmark were attacked by moulds even before the users moved in. Therefore, the Danish Building Regulations have since 2008 stipulated that building structures and materials must not, on moving in, have a moisture content that is liable...... the execution phase and the building’s capacity to withstand moisture. It also specifies how moisture should be dealt with in the general quality assurance system of the building industry. The Danish guideline is compared with similar guidelines and tools in other Nordic countries. The education of moisture...... specialists is emphasised and it is questioned whether a voluntary guideline will have the desired effect....

  18. Numerical Investigations of Moisture Distribution in a Selected Anisotropic Soil Medium

    Science.gov (United States)

    Iwanek, M.

    2018-01-01

    The moisture of soil profile changes both in time and space and depends on many factors. Changes of the quantity of water in soil can be determined on the basis of in situ measurements, but numerical methods are increasingly used for this purpose. The quality of the results obtained using pertinent software packages depends on appropriate description and parameterization of soil medium. Thus, the issue of providing for the soil anisotropy phenomenon gains a big importance. Although anisotropy can be taken into account in many numerical models, isotopic soil is often assumed in the research process. However, this assumption can be a reason for incorrect results in the simulations of water changes in soil medium. In this article, results of numerical simulations of moisture distribution in the selected soil profile were presented. The calculations were conducted assuming isotropic and anisotropic conditions. Empirical verification of the results obtained in the numerical investigations indicated statistical essential discrepancies for the both analyzed conditions. However, better fitting measured and calculated moisture values was obtained for the case of providing for anisotropy in the simulation model.

  19. Moisture Buffer Value of Building Materials

    DEFF Research Database (Denmark)

    Rode, Carsten; Peuhkuri, Ruut; Time, Berit

    2007-01-01

    When building materials are in contact with indoor air they have some effect to moderate the variations of indoor humidity in occupied buildings. But so far there has been a lack of a standardized quantity to characterize the moisture buffering capability of materials. It has been the objective o...... is a test protocol which expresses how materials should be tested for determination of their Moisture Buffer Value. Finally, the paper presents some of the results of a Round Robin Test on various typical building materials that has been carried out in the project....... of a recent Nordic project to define such a quantity, and to declare it in the form of a NORDTEST method. The Moisture Buffer Value is the figure that has been developed in the project as a way to appraise the moisture buffer effect of materials, and the value is described in the paper. Also explained...

  20. Moisture-driven fracture in solid wood

    DEFF Research Database (Denmark)

    Larsen, Finn; Ormarsson, Sigurdur; Olesen, John Forbes

    2011-01-01

    Moisture-induced fractures in solid timber create considerable problems for both building industries and sawmills. Cracks caused by kiln-drying of solid timber are extremely difficult to predict. This paper reports on experiments concerned with methods of reducing cracks in wood and with the crac......Moisture-induced fractures in solid timber create considerable problems for both building industries and sawmills. Cracks caused by kiln-drying of solid timber are extremely difficult to predict. This paper reports on experiments concerned with methods of reducing cracks in wood...... process, suggesting that sealing the ends of timber logs while in the green moisture state could considerably reduce the development of end-cracks. The initial moisture content and the shrinkage properties of the wood varied markedly from pith to bark. The importance of taking material inhomogeneities...... into account when modelling crack propagation in solid wood is emphasized. © 2011 Taylor & Francis....

  1. Evaluation of a novel very high sun-protection-factor moisturizer in adults with rosacea-prone sensitive skin.

    Science.gov (United States)

    Grivet-Seyve, Mathieu; Santoro, Francine; Lachmann, Nadège

    2017-01-01

    Rosacea-prone sensitive skin requires high sun-protection factor (SPF) moisturizers. This study evaluated Daylong Extreme SPF 50+ lotion, a novel cream containing five ultraviolet filters, two emollients, and three skin conditioners. This was an open-label, single-center study. On day 1, before treatment, subjects answered a questionnaire on their skin conditions and sunscreen habits, and both subjects and dermatologist evaluated skin status. Subjects applied the product once daily in the morning to the face for 21 days, and after approximately 3-5 minutes they assessed tolerability and short-term cosmetic acceptability in a questionnaire and daily diary. On day 22, the dermatologist and subjects evaluated skin status for long-term tolerance and cosmetic acceptability. The study enrolled 44 individuals (mean age 58.8 years, 91% female). At baseline, most subjects (39 of 44) showed erythema, and ~30% showed dryness and scaling. Dermatologists noted four cases of pustules and one case of papules. After 21 days' treatment with the product, the dermatologist reported significantly less erythema, dryness and scaling, three cases of pustules and two cases of papules. At baseline, ~75% of subjects noted a feeling of dryness, >50% reported tension, and nearly 25% reported tickling. After using the product for 21 days, subjects reported significantly less tension, dryness, and tickling. Some subjects noted itching and burning before and after using the product. One subject noted papules during treatment. Most subjects said that the product was pleasant, did not irritate the skin or cause stinging/burning, was easy to apply, quickly absorbed, and nongreasy, improved skin moisturization, helped prevent sun-provoked facial redness, did not worsen rosacea, and was easily incorporated into their skincare regimen. Half would switch to the product, and 80% of subjects would buy and recommend the product. The product was well tolerated in rosacea-prone subjects, producing objective

  2. Moisture sorption of Thai red curry powder

    Directory of Open Access Journals (Sweden)

    Sudathip Inchuen

    2009-12-01

    Full Text Available Moisture sorption study was conducted on Thai red curry powder prepared by two different drying methods, viz. microwave and hot-air drying. Moisture sorption isotherms of the red curry powder at 30 C and water activity in the range of 0.113-0.970 were determined by a static gravimetric method. The isotherms exhibited Type III behaviour. The moisture sorption data were fitted to several sorption models and a non-linear regression analysis method was used to evaluate the constants of the sorption equations. The fit was evaluated using the coefficient of determination (R2, the reduced chi-square (2 and the root mean square error (RMSE. The GAB model followed by the Lewiski-3 model gave the best fit to the experimental data. The monolayer moisture content, taken as the safe minimum moisture level in the red curry powder, was determined using the BET equation and was found to range between 0.080 - 0.085 gram water per gram dry matter.

  3. Efficiency of utilization of heat of moisture from exhaust gases of heat HRSG of CCGT

    Directory of Open Access Journals (Sweden)

    Galashov Nikolay

    2017-01-01

    Full Text Available The paper discusses the technology of utilizing the heat of exhaust gas moisture from heat recovery steam gases (HRSG of combined-cycle gas turbine (CCGT. Particular attention focused on the influence of the excess air factor on the trapping of the moisture of the exhaust gases, as in the HRSG of the CCGT its value varies over a wider range than in the steam boilers of the TPP. For the research, has been developed a mathematical model that allows to determine the volumes of combustion products and the amount of water vapor produced according to a given composition of the burned gas and determine the amount of moisture that will be obtained as a result of condensation at a given temperature of the flue gases at the outlet of the condensation heat exchanger (CHE. To calculate the efficiency of the HRSG taking into account the heat of condensation of moisture in the CHE an equation is derived.

  4. On-line measurement of moisture content of powdered food using microwave free-space transmission technique

    International Nuclear Information System (INIS)

    Kim, Ki Bok; Park, Seong Un; Kim, Ji Yeon; Kim, Jong Heon; Lee, ChanJoo

    2006-01-01

    The moisture content of food is not only the most important quality factor but also one of the essential parameters affecting their physical and chemical properties related to storage, capability of processing and quality control. The moisture measurement technique using microwave is very attractive because that method has merits of rapid and accurate measurement in the wider range of moisture content, simple implementation and inexpensive compared with other methods. In this study, microwave free-space transmission technique was applied to measure the moisture content of powdered food. The on-line measurement system consisting of microwave system with 2.5 GHz, 7.0 GHz and 10.5 GHz, conveying device to move the food samples, inlet and outlet of the food samples, guide plate to control the thickness of the food samples, temperature sensing nit, taco-meter and central processing unit having analog to digital convert and microprocessor was constructed and its performance was evaluated.

  5. COSMOS: the COsmic-ray Soil Moisture Observing System

    Directory of Open Access Journals (Sweden)

    M. Zreda

    2012-11-01

    Full Text Available The newly-developed cosmic-ray method for measuring area-average soil moisture at the hectometer horizontal scale is being implemented in the COsmic-ray Soil Moisture Observing System (or the COSMOS. The stationary cosmic-ray soil moisture probe measures the neutrons that are generated by cosmic rays within air and soil and other materials, moderated by mainly hydrogen atoms located primarily in soil water, and emitted to the atmosphere where they mix instantaneously at a scale of hundreds of meters and whose density is inversely correlated with soil moisture. The COSMOS has already deployed more than 50 of the eventual 500 cosmic-ray probes, distributed mainly in the USA, each generating a time series of average soil moisture over its horizontal footprint, with similar networks coming into existence around the world. This paper is written to serve a community need to better understand this novel method and the COSMOS project. We describe the cosmic-ray soil moisture measurement method, the instrument and its calibration, the design, data processing and dissemination used in the COSMOS project, and give example time series of soil moisture obtained from COSMOS probes.

  6. A côr em relação ao teor de umidade de algumas séries de solos Color in relation to moisture level of some soil series

    Directory of Open Access Journals (Sweden)

    Arnaldo Guido de Souza Coelho

    1964-01-01

    Full Text Available A identificação e a classificação dos solos em séries são baseadas em várias características, das quais uma é a côr. Esta é condicionada por um grupo de fatôres, destacando-se o relacionado ao teor de umidade do solo. Para observar e estabelecer os limites de variação da côr do solo com a umidade, os autores, empregando o sistema Munsell, trabalharam com amostras naturais e preparadas das principais séries monotípicas que ocorrem na Estação Experimental do Instituto Agronômico, em Campinas. As séries monotípicas de drenagem imperfeita é que mostraram sofrer maior influência da umidade na sua côr. A côr das amostras preparadas (TFSA não se mostrou representativa das séries. A variação da umidade atua de forma mais rápida e signifieativa sôbre o «valor», exceto para as terras-roxas, onde o «croma» se mostra mais sensível. A componente da côr menos influenciada pela variação da umidade é o «colorido». Na determinação da côr das séries analisadas, os autores também verificaram a influência de outros fatôres, como: luz ambiente, hora da determinação, estado da tabela padrão e exposição da amostra ao ar.Several soil properties are used for identification and classification of soil series, of which color is one of great importance. It depends upon a group of factors as color is particularly sensible to the influence of soil moisture. At the Central Experiment Station in Campinas a study of color was made by employing natural and prepared samples of soil series ranging from dry soil to soil with highest moisture content, whereby the Munsell Soil Color Charts were used for color determination. As for prepared (air-dried and sieved samples, they may not be given representative colors as of the natural soil samples. Their variation in color is beyond that found in the field. Series of the imperfect group up to the very poorly drained showed the greatest moisture-level influence in the color of natural

  7. Origin and fate of atmospheric moisture over continents

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.; Schaefli, B.; Steele-Dunne, S.C.

    2010-01-01

    There has been a long debate on the extent to which precipitation relies on terrestrial evaporation (moisture recycling). In the past, most research focused on moisture recycling within a certain region only. This study makes use of new definitions of moisture recycling to study the complete process

  8. Implementation of sorption hysteresis in multi-Fickian moisture transport

    DEFF Research Database (Denmark)

    Frandsen, Henrik Lund; Svensson, Staffan

    2007-01-01

    In the cellular structure of wood, bound-water diffusion and water-vapor diffusion interact via sorption in a complex moisture-transportation system. At low relative humidities, moisture transport may be modeled by a Fickian diffusion equation with a good approximation. At higher relative......-35% in moisture content. Hence, for a precise moisture content computation, sorption hysteresis must be taken into account. The present paper explains the relation between sorption hysteresis and multi-Fickian moisture transport, and clarifies how models for the two phenomena are coupled. To illustrate...

  9. Examining the relationship between intermediate-scale soil moisture and terrestrial evaporation within a semi-arid grassland

    Directory of Open Access Journals (Sweden)

    R. B. Jana

    2016-09-01

    temperatures were present, while SEBS model estimates displayed a disconnect from the soil moisture distribution in summers with long dry spells. Importantly, no single evaporation model matched the statistical distribution of the measured soil moisture for the entire period, highlighting the challenges in effectively capturing evaporative flux response within changing landscapes. One of the outcomes of this work is that the analysis points to the feasibility of using intermediate-scale soil moisture measurements to evaluate gridded estimates of evaporation, exploiting the independent, yet physically linked nature of these hydrological variables.

  10. Quantitative identification of moisture sources over the Tibetan Plateau and the relationship between thermal forcing and moisture transport

    Science.gov (United States)

    Pan, Chen; Zhu, Bin; Gao, Jinhui; Kang, Hanqing; Zhu, Tong

    2018-02-01

    Despite the importance of the Tibetan Plateau (TP) to the surrounding water cycle, the moisture sources of the TP remain uncertain. In this study, the moisture sources of the TP are quantitatively identified based on a 33-year simulation with a horizontal resolution of 1.9° × 2.5° using the Community Atmosphere Model version 5.1 (CAM5.1), in which atmospheric water tracer technology is incorporated. Results demonstrate that the major moisture sources differ over the southern TP (STP) and northern TP (NTP). During the winter, Africa, the TP, and India are the dominant source regions, contributing nearly half of the water vapour over the STP. During the summer, the tropical Indian Ocean (TIO) supplies 28.5 ± 3.6% of the water vapour over the STP and becomes the dominant source region. The dominant moisture source regions of the water vapour over the NTP are Africa (19.0 ± 2.8%) during the winter and the TP (25.8 ± 2.4%) during the summer. The overall relative contribution of each source region to the precipitation is similar to the contribution to the water vapour over the TP. Like most models, CAM5.1 generally overestimates the precipitation over the TP, yielding uncertainty in the absolute contributions to the precipitation. Composite analyses exhibit significant variations in the TIO-supplied moisture transport and precipitation over the STP during the summer alongside anomalous TP heating. This relationship between moisture transport from the TIO and the TP heating primarily involves the dynamic change in the TIO-supplied moisture flux, which further controls the variation in the TIO-contributed precipitation over the STP.

  11. Moisture sorption isotherms and thermodynamic properties of bovine leather

    Science.gov (United States)

    Fakhfakh, Rihab; Mihoubi, Daoued; Kechaou, Nabil

    2018-04-01

    This study was aimed at the determination of bovine leather moisture sorption characteristics using a static gravimetric method at 30, 40, 50, 60 and 70 °C. The curves exhibit type II behaviour according to the BET classification. The sorption isotherms fitting by seven equations shows that GAB model is able to reproduce the equilibrium moisture content evolution with water activity for moisture range varying from 0.02 to 0.83 kg/kg d.b (0.9898 thermodynamic properties such as isosteric heat of sorption, sorption entropy, spreading pressure, net integral enthalpy and entropy. Net isosteric heat of sorption and differential entropy were evaluated through direct use of moisture isotherms by applying the Clausius-Clapeyron equation and used to investigate the enthalpy-entropy compensation theory. Both sorption enthalpy and entropy for desorption increase to a maximum with increasing moisture content, and then decrease sharply with rising moisture content. Adsorption enthalpy decreases with increasing moisture content. Whereas, adsorption entropy increases smoothly with increasing moisture content to a maximum of 6.29 J/K.mol. Spreading pressure increases with rising water activity. The net integral enthalpy seemed to decrease and then increase to become asymptotic. The net integral entropy decreased with moisture content increase.

  12. Moisture effects on carbon and nitrogen emission from burning of wildland biomass

    Directory of Open Access Journals (Sweden)

    L.-W. A. Chen

    2010-07-01

    Full Text Available Carbon (C and nitrogen (N released from biomass burning have multiple effects on the Earth's biogeochemical cycle, climate change, and ecosystem. These effects depend on the relative abundances of C and N species emitted, which vary with fuel type and combustion conditions. This study systematically investigates the emission characteristics of biomass burning under different fuel moisture contents, through controlled burning experiments with biomass and soil samples collected from a typical alpine forest in North America. Fuel moisture in general lowers combustion efficiency, shortens flaming phase, and introduces prolonged smoldering before ignition. It increases emission factors of incompletely oxidized C and N species, such as carbon monoxide (CO and ammonia (NH3. Substantial particulate carbon and nitrogen (up to 4 times C in CO and 75% of N in NH3 were also generated from high-moisture fuels, maily associated with the pre-flame smoldering. This smoldering process emits particles that are larger and contain lower elemental carbon fractions than soot agglomerates commonly observed in flaming smoke. Hydrogen (H/C ratio and optical properties of particulate matter from the high-moisture fuels show their resemblance to plant cellulous and brown carbon, respectively. These findings have implications for modeling biomass burning emissions and impacts.

  13. Exploiting Soil Moisture, Precipitation, and Streamflow Observations to Evaluate Soil Moisture/Runoff Coupling in Land Surface Models

    Science.gov (United States)

    Crow, W. T.; Chen, F.; Reichle, R. H.; Xia, Y.; Liu, Q.

    2018-05-01

    Accurate partitioning of precipitation into infiltration and runoff is a fundamental objective of land surface models tasked with characterizing the surface water and energy balance. Temporal variability in this partitioning is due, in part, to changes in prestorm soil moisture, which determine soil infiltration capacity and unsaturated storage. Utilizing the National Aeronautics and Space Administration Soil Moisture Active Passive Level-4 soil moisture product in combination with streamflow and precipitation observations, we demonstrate that land surface models (LSMs) generally underestimate the strength of the positive rank correlation between prestorm soil moisture and event runoff coefficients (i.e., the fraction of rainfall accumulation volume converted into stormflow runoff during a storm event). Underestimation is largest for LSMs employing an infiltration-excess approach for stormflow runoff generation. More accurate coupling strength is found in LSMs that explicitly represent subsurface stormflow or saturation-excess runoff generation processes.

  14. Remote sensing estimation of vegetation moisture for the prediction of fire hazard

    NARCIS (Netherlands)

    Maffei, C.; Menenti, M.

    2013-01-01

    Various factors contribute to forest fire hazard, and among them vegetation moisture is the one that dictates susceptibility to fire ignition and propagation. The scientific community has developed a number of spectral indexes based on remote sensing measurements in the optical domain for the

  15. The Effect of Temperature on Moisture Transport in Concrete.

    Science.gov (United States)

    Wang, Yao; Xi, Yunping

    2017-08-09

    Most concrete structures and buildings are under temperature and moisture variations simultaneously. Thus, the moisture transport in concrete is driven by the moisture gradient as well as the temperature gradient. This paper presents an experimental approach for determining the effect of different temperature gradients on moisture distribution profiles in concrete. The effect of elevated temperatures under isothermal conditions on the moisture transport was also evaluated, and found not to be significant. The non-isothermal tests show that the temperature gradient accelerates the moisture transport in concrete. The part of increased moisture transfer due to the temperature gradient can be quantified by a coupling parameter D HT , which can be determined by the present test data. The test results indicated that D HT is not a constant but increases linearly with the temperature variation. A material model was developed for D HT based on the experimental results obtained in this study.

  16. Moisture ingress into electronics enclosures under isothermal conditions

    DEFF Research Database (Denmark)

    Staliulionis, Zygimantas; Jabbaribehnam, Mirmasoud; Hattel, Jesper Henri

    2016-01-01

    loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based......The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture...

  17. Moisture sorption isotherms of dehydrated whey proteins

    OpenAIRE

    Suzana Rimac Brnčić; Vesna Lelas; Zoran Herceg; Marija Badanjak

    2010-01-01

    Moisture sorption isotherms describe the relation between the moisture content of the dry material (food) and relative humidity of the surrounding environment. The data obtained are important in modelling of drying process conditions, packaging and shelf-life stability of food that will provide maximum retaining of aroma, colour and texture as well as nutritive and biological value. The objective of this research was to establish the equilibrium moisture content and water activity, as well as...

  18. Moisture Conditions in Passive House Wall Constructions

    OpenAIRE

    Gullbrekken, Lars; Geving, Stig; Time, Berit; Andresen, Inger

    2015-01-01

    Buildings for the future, i.e zero emission buildings and passive houses, will need well insulated building envelopes, which includes increased insulation thicknesses for roof, wall and floor constructions. Increased insulation thicknesses may cause an increase in moisture levels and thereby increased risk of mold growth. There is need for increased knowledge about moisture levels in wood constructions of well insulated houses, to ensure robust and moisture safe solutions. Monitoring of w...

  19. Experiments on moisture form of concrete and adhesion of paints

    International Nuclear Information System (INIS)

    Kita, Daizo; Sumino, Masahiro

    1975-01-01

    It is necessary for radiation-resisting paints to adhere tightly to concrete in order to exhibit superior effects. As adhesion of paints to concrete is greatly affected by moisture content of concrete, this content is checked severely in the field. However, it may be considered that adhesion will be affected by the form of the moisture in the concrete also. Therefore, experiments were conducted with mortar to investigate the interrelations between pF-moisture content, moisture form and adhesion of paint. The following results were obtained: 1) Adhesion of paint becomes stronger as moisture content falls. 2) Adhesion strength of paint rises sharply until moisture content falls to a pF-value of 5.5 after which the strength is increased gradually until moisture content reaches pF of 7.0. 3) The pF-moisture content of 5.5 varies greatly depending on the mix proportions of mortar, but the form of moisture in such cases remains fixed and unchanged. (auth.)

  20. Microwave bale moisture sensing: Field trial

    Science.gov (United States)

    A microwave moisture measurement technique was developed for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This research conducted a field trial to test the sensor in a commercial...

  1. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    International Nuclear Information System (INIS)

    Lee, Youn Suk; Park, Insik; Choi, Hong Yeol

    2014-01-01

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability

  2. Preparation and Properties of Moisture-absorbing Film Impregnated with Polyacrylic Acid Partial Sodium Salt Material

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Youn Suk; Park, Insik [Yonsei University, Wonju (Korea, Republic of); Choi, Hong Yeol [CJ Cheiljedang, Seoul (Korea, Republic of)

    2014-08-15

    Moisture is a major factor causing the deteriorative physical change, microbial growth, and chemical reaction of the products. In this study, the moisture absorbing composite films have been prepared with moisture absorbing material of polyacrylic acid partial sodium salt (PAPSS) impregnated on LLDPE polymer for the functional packaging applications. The results showed that PAPSS impregnated film illustrated uniformly dispersed PAPSS particles in the LLDPE polymer matrix. The transparency of the PAPSS impregnated film decreased slightly at higher PAPSS concentrations. An increase in the PAPSS content for moisture-absorbing films showed a similar decrease in tensile strength, percent elongation at break, and tear strength. Their values of films impregnated with PAPSS of 0.5, 1, and 2% showed no significant difference. Meanwhile, 4% PAPSS films significantly decreased the values of mechanical properties compared to the films impregnated with different PAPSS levels. Values of the oxygen permeability and water vapor permeability for PAPSS impregnated films decreased significantly with greater PAPSS. The results indicate that 4% PAPSS impregnated in LLDPE films had high affinity of moisture absorbencies compared to the other films. The mathematical equation that best described the moisture sorption isotherm of each film sample was the GAB equation at 25 .deg. C. The crystallization and melting temperatures of PAPSS films were influenced by the addition of PAPSS material, but showed good thermal stability.

  3. State of the Art in Large-Scale Soil Moisture Monitoring

    Science.gov (United States)

    Ochsner, Tyson E.; Cosh, Michael Harold; Cuenca, Richard H.; Dorigo, Wouter; Draper, Clara S.; Hagimoto, Yutaka; Kerr, Yan H.; Larson, Kristine M.; Njoku, Eni Gerald; Small, Eric E.; hide

    2013-01-01

    Soil moisture is an essential climate variable influencing land atmosphere interactions, an essential hydrologic variable impacting rainfall runoff processes, an essential ecological variable regulating net ecosystem exchange, and an essential agricultural variable constraining food security. Large-scale soil moisture monitoring has advanced in recent years creating opportunities to transform scientific understanding of soil moisture and related processes. These advances are being driven by researchers from a broad range of disciplines, but this complicates collaboration and communication. For some applications, the science required to utilize large-scale soil moisture data is poorly developed. In this review, we describe the state of the art in large-scale soil moisture monitoring and identify some critical needs for research to optimize the use of increasingly available soil moisture data. We review representative examples of 1) emerging in situ and proximal sensing techniques, 2) dedicated soil moisture remote sensing missions, 3) soil moisture monitoring networks, and 4) applications of large-scale soil moisture measurements. Significant near-term progress seems possible in the use of large-scale soil moisture data for drought monitoring. Assimilation of soil moisture data for meteorological or hydrologic forecasting also shows promise, but significant challenges related to model structures and model errors remain. Little progress has been made yet in the use of large-scale soil moisture observations within the context of ecological or agricultural modeling. Opportunities abound to advance the science and practice of large-scale soil moisture monitoring for the sake of improved Earth system monitoring, modeling, and forecasting.

  4. Moisture Metrics Project

    Energy Technology Data Exchange (ETDEWEB)

    Schuchmann, Mark

    2011-08-31

    the goal of this project was to determine the optimum moisture levels for biomass processing for pellets commercially, by correlating data taken from numerous points in the process, and across several different feedstock materials produced and harvested using a variety of different management practices. This was to be done by correlating energy consumption and material through put rates with the moisture content of incoming biomass ( corn & wheat stubble, native grasses, weeds, & grass straws), and the quality of the final pellet product.This project disseminated the data through a public website, and answering questions form universities across Missouri that are engaged in biomass conversion technologies. Student interns from a local university were employed to help collect data, which enabled them to learn firsthand about biomass processing.

  5. Evaluating ESA CCI Soil Moisture in East Africa

    Science.gov (United States)

    McNally, Amy; Shukla, Shraddhanand; Arsenault, Kristi R.; Wang, Shugong; Peters-Lidard, Christa D.; Verdin, James P.

    2016-01-01

    To assess growing season conditions where ground based observations are limited or unavailable, food security and agricultural drought monitoring analysts rely on publicly available remotely sensed rainfall and vegetation greenness. There are also remotely sensed soil moisture observations from missions like the European Space Agency (ESA) Soil Moisture and Ocean Salinity (SMOS) and NASAs Soil Moisture Active Passive (SMAP), however these time series are still too short to conduct studies that demonstrate the utility of these data for operational applications, or to provide historical context for extreme wet or dry events. To promote the use of remotely sensed soil moisture in agricultural drought and food security monitoring, we use East Africa as a case study to evaluate the quality of a 30+ year time series of merged active-passive microwave soil moisture from the ESA Climate Change Initiative (CCI-SM). Compared to the Normalized Difference Vegetation index (NDVI) and modeled soil moisture products, we found substantial spatial and temporal gaps in the early part of the CCI-SM record, with adequate data coverage beginning in 1992. From this point forward, growing season CCI-SM anomalies were well correlated (R greater than 0.5) with modeled, seasonal soil moisture, and in some regions, NDVI. We use correlation analysis and qualitative comparisons at seasonal time scales to show that remotely sensed soil moisture can add information to a convergence of evidence framework that traditionally relies on rainfall and NDVI in moderately vegetated regions.

  6. Coupling rainfall observations and satellite soil moisture for predicting event soil loss in Central Italy

    Science.gov (United States)

    Todisco, Francesca; Brocca, Luca; Termite, Loris Francesco; Wagner, Wolfgang

    2015-04-01

    The accuracy of water soil loss prediction depends on the ability of the model to account for effects of the physical phenomena causing the output and the accuracy by which the parameters have been determined. The process based models require considerable effort to obtain appropriate parameter values and their failure to produce better results than achieved using the USLE/RUSLE model, encourages the use of the USLE/RUSLE model in roles of which it was not designed. In particular it is widely used in watershed models even at the event temporal scale. At hillslope scale, spatial variability in soil and vegetation result in spatial variations in soil moisture and consequently in runoff within the area for which soil loss estimation is required, so the modeling approach required to produce those estimates needs to be sensitive to those spatial variations in runoff. Some models include explicit consideration of runoff in determining the erosive stresses but this increases the uncertainty of the prediction due to the difficulty in parameterising the models also because the direct measures of surface runoff are rare. The same remarks are effective also for the USLE/RUSLE models including direct consideration of runoff in the erosivity factor (i.e. USLE-M by Kinnell and Risse, 1998, and USLE-MM by Bagarello et al., 2008). Moreover actually most of the rainfall-runoff models are based on the knowledge of the pre-event soil moisture that is a fundamental variable in the rainfall-runoff transformation. In addiction soil moisture is a readily available datum being possible to have easily direct pre-event measures of soil moisture using in situ sensors or satellite observations at larger spatial scale; it is also possible to derive the antecedent water content with soil moisture simulation models. The attempt made in the study is to use the pre-event soil moisture to account for the spatial variation in runoff within the area for which the soil loss estimates are required. More

  7. development and testing of a capacitive digital soil moisture metre

    African Journals Online (AJOL)

    user

    soil moisture meter using the NE555 timer and micro controller as a major electronic component ... relationship between the moisture content process and the digital soil moisture meter. ..... the moisture contents showing that the infiltration of.

  8. Role of Soil Moisture vs. Recent Climate Change for the 2010 Heat Wave in Western Russia

    Science.gov (United States)

    Hauser, Mathias; Orth, René; Seneviratne, Sonia

    2016-04-01

    Extreme event attribution statements are often conditional on increased greenhouse gas concentrations or a particular ocean state, but not on other physical factors of the climate system. Here we extend the classical framework and assess the influence of soil moisture on a heat wave to obtain a physical attribution statement. In particular, we test the role of soil-moisture-temperature feedbacks which have been shown to be generally relevant for the build-up of exceptionally high temperatures. As a case study we investigate the severe 2010 heat wave in western Russia, which was previously found to be influenced by anthropogenic climate change. We quantify the relative role of climate change and that of soil moisture-temperature feedbacks with the event attribution framework and analyze ensemble simulations to distinguish the effect of climate change and the 2010 soil moisture conditions for annual maximum temperatures. We find that climate change from 1960 to 2000 alone has approximately tripled the risk of a severe heat wave in western Russia. The combined effect of climate change and the dry 2010 soil moisture yields a 13 times higher heat wave risk. We conclude that internal climate variability causing the dry 2010 soil moisture conditions formed the basis for this extreme heatwave.

  9. Long-term 4D Geoelectrical Imaging of Moisture Dynamics in an Active Landslide

    Science.gov (United States)

    Uhlemann, S.; Chambers, J. E.; Wilkinson, P. B.; Maurer, H.; Meldrum, P.; Gunn, D.; Smith, A.; Dijkstra, T.

    2016-12-01

    Landslides are a major natural hazard, endangering communities and infrastructure worldwide. Mitigating landslide risk relies on understanding causes and triggering processes, which are often linked to moisture dynamics in slopes causing material softening and elevated pore water pressures. Geoelectrical monitoring is frequently applied to study landslide hydrology. However, its sensitivity to sensor movements has been a challenge for long-term studies on actively failing slopes. Although 2D data acquisition has previously been favoured, it provides limited resolution and relatively poor representation of important 3D landslide structures. We present a novel methodology to incorporate electrode movements into a time-lapse 3D inversion workflow, resulting in a virtually artefact-free time-series of resistivity models. Using temperature correction and laboratory hydro-geophysical relationships, resistivity models are translated into models of moisture content. The data span more than three years, enabling imaging of processes pre- and post landslide reactivation. In the two years before reactivation, the models showed surficial wetting and drying, drainage pathways, and deeper groundwater dynamics. During reactivation, exceptionally high moisture contents were imaged throughout the slope, which was confirmed by independent measurements. Preferential flow was imaged that stabilized parts of the landslide by diverting moisture, and thus dissipating pore pressures, from the slip surface. The results highlight that moisture levels obtained from resistivity monitoring may provide a better activity threshold than rainfall intensity. Based on this work, pro-active remediation measures could be designed and effective early-warning systems implemented. Eventually, resistivity monitoring that can account for moving electrodes may provide a new means for pro-active mitigation of landslide risk, especially for communities and critical infrastructure.

  10. Determining seed moisture in Quercus

    Science.gov (United States)

    F. T. Bonner

    1974-01-01

    The air-oven method with drying times 7 to 8 hours shorter than those now prescribed in the ISTA rules proved adequate for determining moisture contents in acorns of several North American oaks. Schedules of 8 hours at 105°C for Quercus muehlenbergii and 9 hours at 105°C for Q.shumardii and Q.nigra gave moisture contents within three percentage points of those obtained...

  11. [Discuss on effect of physical environmental factors on nature of Chinese materia medica].

    Science.gov (United States)

    Tang, Shihuan; Yang, Hongjun; Huang, Luqi

    2010-01-01

    Nature of Chinese materia medica is the nucleus in the theory of Chinese material medica, according to the recognition of Traditional Chinese Medicine, which is the character of the drug related on curative effect. Nature and efficacy of a drug is through the medical material, then, physical environment, including the temperature, humidity, atmospheric water, wind, topography, soil, micro-organism, and so on, influence the growth and development of the medical meterial. In this paper, we researched the explanation on nature of Chinese materia medica in the medical books of past dynasties, combined with the modem research, analyzed the relationship between generative reception and physical environmental factors, and discussed the effect of physical environmental factors on nature of Chinese materia medica. We indicated that the formation of Chinese materia medical nature is that the drug receptive the change of physical environmental factors, and resulted by the synthetic action of the factors, such as climate, soil, biology, topography, etc.

  12. 46 CFR 154.1715 - Moisture control.

    Science.gov (United States)

    2010-10-01

    ... 46 Shipping 5 2010-10-01 2010-10-01 false Moisture control. 154.1715 Section 154.1715 Shipping COAST GUARD, DEPARTMENT OF HOMELAND SECURITY (CONTINUED) CERTAIN BULK DANGEROUS CARGOES SAFETY STANDARDS... § 154.1715 Moisture control. When a vessel is carrying sulfur dioxide, the master shall ensure that: (a...

  13. NOAA Soil Moisture Products System (SMOPS) Daily Blended Products

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The Soil Moisture Operational Products System (SMOPS) combines soil moisture retrievals from multiple satellite sensors to provide a global soil moisture map with...

  14. Association between Aquilaria distribution, geographic characteristics, edaphic factors and water availability in natural tropical rainforest

    International Nuclear Information System (INIS)

    Shyful Azizi Abdul Rahman; Khairuddin Abdul Rahim; Ahsanulkhaliqin Abdul Wahab; Mohd Fajri Osman; Chong Saw Peng

    2006-01-01

    Oud or gaharu is a fragrant resin produced from Aquilaria trees as a response to injury, wounding and/or a fungal infection. Proliferation of Aquilaria under plantation system is essential to ensure continuous supply of gaharu. Even though the plantation of Aquilaria is aggressively conducted nowadays, there are still lack of details information and knowledge in terms of plant agronomy and oleoresin production. Understanding of plant, soil, water and environment relationship in natural habitat is important in order to provide guidelines and strategies for growers to adopt new agroforestry approaches that can lead to the best management practices for Aquilaria plantation. A study on soil physical and chemical characteristics, topographic condition, soil moisture and climate has been carried out to investigate the plant distribution pattern and resin production potential of 178 stand of Aquilaria in MINT Tech-Park tertiary forest and Gunung Tebu Forest Reserve. Result show that Aquilaria distributions concentrate at slope areas of gradient between 10 degrees to 15 degrees, the soil type is the stony low fertility sandy loam to sandy clay and this area receives a high density of rainfall which is more than 2500 mm/year. For the potential of resin production analysis, slope with high gradient show a significant potential of resin production probably due to the plant stress condition factors

  15. Importance of moisture determination in studies of infiltration and surface runoff for long periods

    Directory of Open Access Journals (Sweden)

    Fabian Fulginiti

    2011-08-01

    Full Text Available The determination of the natural soil moisture is essential to solve problems related to irrigation water requirements, environmental considerations, and determination of surplus water. For the determination of runoff one can adopt models that consider exclusively the infiltration as a loss or one could use computational models of infiltration to model the infiltrated water. Models based on the infiltration calculation consider well the interaction between infiltration - runoff processes and provide additional information on the phenomenon of infiltration which establishes the existing conditions of moisture in the soil before the occurrence of a new event (simulation for long periods. These models require solving Richards’s equation and for this purpose it is necessary to determine the relation between the soil moisture - suction and hydraulic conductivity - suction which require the determination of the hydraulic properties that can be obtained by measuring the water content by moisture profiles. The aim of this study was the verification of these moisture curves in loessic soils in the south of the city of Cordoba, Argentina. To do this, measurements were done and compared with results of infiltration models based on the determined hydraulic functions. The measurements were done using three probes installed at different depths. The results showed that the values obtained with NETRAIN adequately represent the behavior of wetting and drying conditions of the studied soil.The determination of these curves provided a basis for future studies that include the advancement of agricultural chemicals in the soil and its potential capacity to pollute groundwater, fundamental issue to define environmental management policies.

  16. [Effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash].

    Science.gov (United States)

    Du, She-ni; Bai, Gang-shuan; Liang, Yin-li

    2011-04-01

    A pot experiment with artificial shading was conducted to study the effects of soil moisture content and light intensity on the plant growth and leaf physiological characteristics of squash variety "Jingyingyihao". Under all test soil moisture conditions, 30% shading promoted the growth of "Jingyingyihao", with the highest yield at 70% - 80% soil relative moisture contents. 70% shading inhibited plant growth severely, only flowering and not bearing fruits, no economic yield produced. In all treatments, there was a similar water consumption trend, i. e., both the daily and the total water consumption decreased with increasing shading and decreasing soil moisture content. Among all treatments, 30% shading and 70% - 80% soil relative moisture contents had the highest water use efficiency (2.36 kg mm(-1) hm(-2)) and water output rate (1.57 kg mm(-1) hm(-2)). The net photosynthetic rate, transpiration rate, stomatal conductance, and chlorophyll content of squash leaves decreased with increasing shading, whereas the intercellular CO2 concentration was in adverse. The leaf protective enzyme activity and proline content decreased with increasing shading, and the leaf MAD content decreased in the order of 70% shading, natural radiation, and 30% shading. Under the three light intensities, the change characteristics of squash leaf photosynthesis, protective enzyme activity, and proline and MAD contents differed with the increase of soil relative moisture content.

  17. Soil respiration in different agricultural and natural ecosystems in an arid region.

    Directory of Open Access Journals (Sweden)

    Liming Lai

    Full Text Available The variation of different ecosystems on the terrestrial carbon balance is predicted to be large. We investigated a typical arid region with widespread saline/alkaline soils, and evaluated soil respiration of different agricultural and natural ecosystems. Soil respiration for five ecosystems together with soil temperature, soil moisture, soil pH, soil electric conductivity and soil organic carbon content were investigated in the field. Comparing with the natural ecosystems, the mean seasonal soil respiration rates of the agricultural ecosystems were 96%-386% higher and agricultural ecosystems exhibited lower CO(2 absorption by the saline/alkaline soil. Soil temperature and moisture together explained 48%, 86%, 84%, 54% and 54% of the seasonal variations of soil respiration in the five ecosystems, respectively. There was a significant negative relationship between soil respiration and soil electrical conductivity, but a weak correlation between soil respiration and soil pH or soil organic carbon content. Our results showed that soil CO(2 emissions were significantly different among different agricultural and natural ecosystems, although we caution that this was an observational, not manipulative, study. Temperature at the soil surface and electric conductivity were the main driving factors of soil respiration across the five ecosystems. Care should be taken when converting native vegetation into cropland from the point of view of greenhouse gas emissions.

  18. The study of high precision neutron moisture gauge

    International Nuclear Information System (INIS)

    Liu Shengkang; Bao Guanxiong; Sang Hai; Zhu Yuzhen

    1993-01-01

    The principle, structure and calibration experiment of the high precision neutron moisture gauge (insertion type) are described. The gauge has been appraised. The precision of the measuring moisture of coke is lower than 0.5%, and the range of the measuring moisture is 2%-12%. The economic benefit of the gauge application is good

  19. Measuring spatial and temporal variation in surface moisture on a coastal beach with a near-infrared terrestrial laser scanner

    Science.gov (United States)

    Smit, Yvonne; Ruessink, Gerben; Brakenhoff, Laura B.; Donker, Jasper J. A.

    2018-04-01

    Wind-alone predictions of aeolian sand deposition on the most seaward coastal dune ridge often exceed measured deposition substantially. Surface moisture is a major factor limiting aeolian transport on sandy beaches, but existing measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content. Here, we present a new method for detecting surface moisture at high temporal and spatial resolution using a near-infrared terrestrial laser scanner (TLS), the RIEGL VZ-400. Because this TLS operates at a wavelength (1550 nm) near a water absorption band, TLS reflectance is an accurate parameter to measure surface moisture over its full range. Five days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric surface moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0%-25%), with a correlation-coefficient squared of 0.85 and a root-mean-square error of 2.7%. This relation holds between 20 and 60 m from the TLS. Within this distance the TLS typically produces O (106-107) data points, which we averaged into surface moisture maps with a 1 × 1 m resolution. This grid size largely removes small reflectance disturbances induced by, for example, footprints or tire tracks, while retaining larger scale moisture trends.

  20. CFD modelling of moisture interactions between air and constructions

    DEFF Research Database (Denmark)

    Mortensen, Lone Hedegaard; Woloszyn, Monika; Hohota, Raluca

    2005-01-01

    There is a strong demand for accurate moisture modelling since moisture poses a risk for both the constructions and the indoor climate. Thus, in this investigation there is special focus on moisture modelling. The paper describes a new model based on a CFD tool that is enhanced to include both...... detailed modelling of airflows in rooms and heat and moisture transfer in walls by applying them as fluid walls. In a 3D configuration the impact of different boundary conditions are investigated and the results are discussed. The changes of boundary conditions that are studied are velocity, moisture...

  1. High moisture airtight storage of barley and triticale: Effect of moisture level and grain processing on nitrogen and phosphorus solubility

    DEFF Research Database (Denmark)

    Ton Nu, Mai Anh; Blaabjerg, Karoline; Labouriau, Rodrigo

    2015-01-01

    The aim of this study was to evaluate the effect of storage time, grain processing (whole vs. rolled) and the combination of phytase, xylanase, β-glucanase and protease on nitrogen (N) and phosphorus (P) solubility during high moisture airtight (HMA) storage of barley and triticale at various...... moisture levels (20, 23, 26 and 29% moisture) and to compare HMA storage of cereals with dry storage for 49 days. Dry stored barley and triticale (10 and 13% moisture, respectively) were kept in 10 L plastic buckets for 0 and 49 days. HMA stored cereals were kept in airtight bags (400 g per bag) at 15 °C......) in HMA storage at 29% moisture to a greater extent compared with dry storage (P levels increased P solubility (rolled barley, whole and rolled triticale) and N solubility (whole and rolled triticale) linearly and decreased Phytate P:Total P (rolled barley) linearly...

  2. Diagnosing the Sensitivity of Local Land-Atmosphere Coupling via the Soil Moisture-Boundary Layer Interaction

    Science.gov (United States)

    Santanello, Joseph A., Jr.; Peters-Lidard, Christa D.; Kumar, Sujay V.

    2011-01-01

    The inherent coupled nature of earth s energy and water cycles places significant importance on the proper representation and diagnosis of land atmosphere (LA) interactions in hydrometeorological prediction models. However, the precise nature of the soil moisture precipitation relationship at the local scale is largely determined by a series of nonlinear processes and feedbacks that are difficult to quantify. To quantify the strength of the local LA coupling (LoCo), this process chain must be considered both in full and as individual components through their relationships and sensitivities. To address this, recent modeling and diagnostic studies have been extended to 1) quantify the processes governing LoCo utilizing the thermodynamic properties of mixing diagrams, and 2) diagnose the sensitivity of coupled systems, including clouds and moist processes, to perturbations in soil moisture. This work employs NASA s Land Information System (LIS) coupled to the Weather Research and Forecasting (WRF) mesoscale model and simulations performed over the U.S. Southern Great Plains. The behavior of different planetary boundary layers (PBL) and land surface scheme couplings in LIS WRF are examined in the context of the evolution of thermodynamic quantities that link the surface soil moisture condition to the PBL regime, clouds, and precipitation. Specifically, the tendency toward saturation in the PBL is quantified by the lifting condensation level (LCL) deficit and addressed as a function of time and space. The sensitivity of the LCL deficit to the soil moisture condition is indicative of the strength of LoCo, where both positive and negative feedbacks can be identified. Overall, this methodology can be applied to any model or observations and is a crucial step toward improved evaluation and quantification of LoCo within models, particularly given the advent of next-generation satellite measurements of PBL and land surface properties along with advances in data assimilation

  3. Dampness and Moisture Problems in Norwegian Homes

    Directory of Open Access Journals (Sweden)

    Rune Becher

    2017-10-01

    Full Text Available The occurrence of dampness and mold in the indoor environment is associated with respiratory-related disease outcomes. Thus, it is pertinent to know the magnitude of such indoor environment problems to be able to estimate the potential health impact in the population. In the present study, the moisture damage in 10,112 Norwegian dwellings was recorded based on building inspection reports. The levels of moisture damage were graded based on a condition class (CC, where CC0 is immaculate and CC1 acceptable (actions not required, while CC2 and CC3 indicate increased levels of damage that requires action. Of the 10,112 dwellings investigated, 3125 had verified moisture or mold damage. This amounts to 31% of the surveyed dwellings. Of these, 27% had CC2 as the worst grade, whereas 4% had CC3 as the worst grade level. The room types and building structures most prone to moisture damage were (in rank order crawl spaces, basements, un-insulated attics, cooling rooms, and bathrooms. The high proportion of homes with moisture damage indicate a possible risk for respiratory diseases in a relatively large number of individuals, even if only the more extensive moisture damages and those located in rooms where occupants spend the majority of their time would have a significant influence on adverse health effects.

  4. Correlation between laser-induced breakdown spectroscopy signal and moisture content

    International Nuclear Information System (INIS)

    Liu, Yuan; Gigant, Lionel; Baudelet, Matthieu; Richardson, Martin

    2012-01-01

    The possibility of using Laser-Induced Breakdown Spectroscopy (LIBS) for measuring the moisture content of fresh food samples is studied. The normalized line emission of oxygen is highly correlated with the moisture content of the sample, cheese in our case, and can be used as a moisture marker in situations where oxygen interference from the matrix is not a critical issue. The linear correlation between the oxygen signal and the moisture content in the sample shows great potential for using LIBS as an alternative spectroscopic method for moisture monitoring. - Highlights: ► Quantitative moisture measurement by LIBS. ► Use of matrix effects and normalization for physical information on the sample. ► Use of signal from oxygen and CN radical in air background for moisture measurement.

  5. Efficiency of utilization of heat of moisture from exhaust gases of heat HRSG of CCGT

    OpenAIRE

    Galashov Nikolay; Tsibulskiy Svyatoslav; Mel’nikov Denis; Kiselev Alexandr; Gabdullina Al’bina

    2017-01-01

    The paper discusses the technology of utilizing the heat of exhaust gas moisture from heat recovery steam gases (HRSG) of combined-cycle gas turbine (CCGT). Particular attention focused on the influence of the excess air factor on the trapping of the moisture of the exhaust gases, as in the HRSG of the CCGT its value varies over a wider range than in the steam boilers of the TPP. For the research, has been developed a mathematical model that allows to determine the volumes of combustion produ...

  6. Irrigation scheduling using soil moisture sensors

    Science.gov (United States)

    Soil moisture sensors were evaluated and used for irrigation scheduling in humid region. Soil moisture sensors were installed in soil at depths of 15cm, 30cm, and 61cm belowground. Soil volumetric water content was automatically measured by the sensors in a time interval of an hour during the crop g...

  7. Finally It Is Possible To Measure Area-Average Soil Moisture!

    Science.gov (United States)

    Shuttleworth, W. J.; Zreda, M. G.; Zeng, X.; Zweck, C.; Franz, T. E.; Rosolem, R.

    2011-12-01

    When a hitherto impossible measurement becomes possible, there are transformational changes in understanding. Measuring soil moisture using cosmic rays sounds like 1950s science fiction. But the non-invasive measurement of soil moisture at a horizontal scale of ~700m and depths of 15-70 cm is now feasible, by counting cosmic-ray neutrons that are generated within soil, moderated mainly by the hydrogen atoms, and emitted back to the atmosphere. The number of neutrons counted is sensitive to water content changes, only weakly sensitive to soil chemistry, and their intensity is inversely correlated with the hydrogen (i.e., water) content of the soil. Neither the basis of this measurement method nor the sensor technology used is new, they have been around for decades. However, the systematic understanding of cosmic-ray interactions at the ground-atmosphere interface and resulting knowledge of the source "footprint" of above ground neutron detectors and recognition of their limited of sensitivity to soil type in selected neutron energy bands is new, as is the low power electronics used for remote signal conditioning, counting and data capture. The measurement with a portable neutron detector placed above the ground takes minutes to hours, permitting high-resolution, long-term monitoring of undisturbed soil moisture. The large footprint makes the method suitable for weather and short-term climate forecast initialization and satellite validation, while the measurement depth makes the probe ideal for studying plant/soil/atmosphere interactions. Inclusion of a second detector that is sensitive to neutrons with lower energy shows promise as a means for detecting snow cover. This talk briefly overviews evidence that soil moisture status can potentially influence weather and seasonal climate and describe the COsmic-ray Soil Moisture Observing System (COSMOS), which observing program will install initially a network of 50 probes (to provide a proof of concept) and subsequently

  8. Moisture separator reheaters for nuclear power plants

    International Nuclear Information System (INIS)

    Miyoshi, Michizo; Yonemura, Katsutoshi

    1974-01-01

    In the light water reactor plants using BWRS or PWRS, the pressure and temperature of steam at the inlet of turbines are low, and the steam is moist, as compared with the case of thermal power plants. Therefore, moisture separator/reheaters are used between high and low pressure turbines. The steam from a high pressure turbine enters a manifold, and goes zigzag through vertical plate separator elements, its moisture is removed from the steam. Then, after being reheated with the steam bled from the high pressure turbine and directly from a reactor, the steam is fed into a low pressure turbine. The development and test made on the components of a moisture separaotr/reheater and the overall model experiment are described together with the mechanism of moisture separation and reheating. (Mori, K.)

  9. Natural recovery of different areas of a deserted quarry in South China

    Institute of Scientific and Technical Information of China (English)

    DUAN Wenjun; REN Hai; FU Shenglei; WANG Jun; YANG Long; ZHANG Jinping

    2008-01-01

    A quarry is a surface mining operated place, which produces enormous quantities of gravel, limestone, and other materials for industrial and construction applications. Restoration and revegetation of deserted quarries are becoming increasingly important. Three areas of a typical quarry in South China: terrace for crushed materials (terrace), spoiled mound, and remaining side slope, were investigated, to compare the existing plant species and to study the relationship between environmental factors and revegetation. The plant species composition of these three areas was found to differ significantly after eight years of natural recovery. The typical plant communities found over them were composed of gramineous herbs, fems, and shrubs. Soil organic matter, soil moisture, and soil bulk density were considered to be the major determining factors for vegetation succession. There existed abiotic and biotic thresholds during quarrying restoration. Suggestions had been presented that could have accelerated the process of natural recovery in quarries.

  10. Do we need soil moisture measurements in the vegetation - environment studies in wetlands?

    Czech Academy of Sciences Publication Activity Database

    Hájek, Michal; Hájková, Petra; Kočí, M.; Jiroušek, M.; Mikulášková, E.; Kintrová, K.

    2013-01-01

    Roč. 24, č. 1 (2013), s. 127-137 ISSN 1100-9233 R&D Projects: GA ČR GA206/08/0389 Institutional support: RVO:67985939 Keywords : wetlands * soil moisture * water level Subject RIV: EF - Botanics Impact factor: 3.372, year: 2013

  11. The global distribution and dynamics of surface soil moisture

    Science.gov (United States)

    McColl, Kaighin A.; Alemohammad, Seyed Hamed; Akbar, Ruzbeh; Konings, Alexandra G.; Yueh, Simon; Entekhabi, Dara

    2017-01-01

    Surface soil moisture has a direct impact on food security, human health and ecosystem function. It also plays a key role in the climate system, and the development and persistence of extreme weather events such as droughts, floods and heatwaves. However, sparse and uneven observations have made it difficult to quantify the global distribution and dynamics of surface soil moisture. Here we introduce a metric of soil moisture memory and use a full year of global observations from NASA's Soil Moisture Active Passive mission to show that surface soil moisture--a storage believed to make up less than 0.001% of the global freshwater budget by volume, and equivalent to an, on average, 8-mm thin layer of water covering all land surfaces--plays a significant role in the water cycle. Specifically, we find that surface soil moisture retains a median 14% of precipitation falling on land after three days. Furthermore, the retained fraction of the surface soil moisture storage after three days is highest over arid regions, and in regions where drainage to groundwater storage is lowest. We conclude that lower groundwater storage in these regions is due not only to lower precipitation, but also to the complex partitioning of the water cycle by the surface soil moisture storage layer at the land surface.

  12. Moisture content analysis of covered uranium mill tailings

    International Nuclear Information System (INIS)

    Mayer, D.W.; Beedlow, P.A.; Cadwell, L.L.

    1981-12-01

    The use of vegetation and rock covers to stabilize uranium mill tailings cover systems is being investigated by Pacific Northwest Laboratory. A modeling study of moisture movement through the tailings and cover layers was initiated to determine the effect of the stabilizing techniques. The cover system was simulated under climatic conditions occurring at Grand Junction, Colorado. The cover consisted of a layer of wet clay/gravel mix followed by a capillary barrier of washed rock and a surface layer of fill soil. Vegetation and rock were used to stabilize the surface layer. The simulation yielded moisture content and moisture storage values for the tailings and cover system along with information about moisture losses due to evaporation, transpiration, and drainage. The study demonstrates that different surface stabilization treatments lead to different degrees of moisture retention in the covered tailings pile. The evapotranspiration from vegetation can result in a relatively stable moisture content. Rock covers, however, may cause drainage to occur because they reduce evaporation and lead to a subsequent increase in moisture content. It is important to consider these effects when designing a surface stabilization treatment. Drainage may contribute to a groundwater pollution problem. A surface treatment that allows the cover system to dry out can increase the risk of atmospheric contamination through elevated radon emission rates

  13. Relative importance of natural and anthropogenic factors influencing karst rocky desertification

    Science.gov (United States)

    Xu, Erqi; Zhang, Hongqi

    2017-04-01

    As the most severe ecological issue in southwest China, karst rocky desertification (KRD) has both threatened and constrained regional sustainable development. Comprehensively understanding the relationship between the evolution of KRD and relevant driving data would provide more information to combat KRD in such complex karst environments. Past studies have been limited in quantifying the relative importance of driving factors influencing fine-scale KRD evolution, and have also lacked insight into their interactive impacts. To address these issues, we have used geographical information system techniques and a geographical detector model to explore the spatial consistency of driving factors and their interactions in relation to the evolution of KRD. Changshun County in China was selected as a representative area for the study. Nine relevant driving factors, including both natural and anthropogenic factors, were studied in regard to their relationships with KRD transformation between 2000 and 2010. Our results demonstrate the relative importance of driving data in influencing the improvement and deterioration of KRD. Lithology, soil type and road influence are identified as the leading factors. Interestingly, to our study at least, there is no significant difference between the impacts of natural and anthropogenic factors influencing KRD improvement, and even natural factors have a higher impact on KRD deterioration. Factors were found to enhance the influence of each other for KRD transformation. In particular, the results show a non-linearly enhanced effect between driving factors, which significantly aggravates KRD. New information found in our study helps to effectively control and restore areas afflicted by KRD.

  14. Moisture distribution in sludges based on different testing methods

    Institute of Scientific and Technical Information of China (English)

    Wenyi Deng; Xiaodong Li; Jianhua Yan; Fei Wang; Yong Chi; Kefa Cen

    2011-01-01

    Moisture distributions in municipal sewage sludge, printing and dyeing sludge and paper mill sludge were experimentally studied based on four different methods, i.e., drying test, thermogravimetric-differential thermal analysis (TG-DTA) test, thermogravimetricdifferential scanning calorimetry (TG-DSC) test and water activity test. The results indicated that the moistures in the mechanically dewatered sludges were interstitial water, surface water and bound water. The interstitial water accounted for more than 50% wet basis (wb) of the total moisture content. The bond strength of sludge moisture increased with decreasing moisture content, especially when the moisture content was lower than 50% wb. Furthermore, the comparison among the four different testing methods was presented.The drying test was advantaged by its ability to quantify free water, interstitial water, surface water and bound water; while TG-DSC test, TG-DTA test and water activity test were capable of determining the bond strength of moisture in sludge. It was found that the results from TG-DSC and TG-DTA test are more persuasive than water activity test.

  15. Moisture dependence of positron annihilation rates in molecular substances

    International Nuclear Information System (INIS)

    Singh, J.J.; Holt, W.H.

    1982-01-01

    Positron annihilation rates have been studied in polymers and graphite-polymer composites as a function of their moisture content. The annihilation rates have been found to increase linearly with increasing moisture content in epoxies and polyamides, whereas no definite trends have been observed in polyimides. These experimental results have been used as the basis for the calculation of moisture content of several polymeric test specimens. For example, the directly measured moisture content of a Kevlar specimen was 45.5 + or - 5.0% of saturation value, whereas the moisture content on the basis of the decrease in positron lifetime was calculated to be 46.5 + or - 3.5%. Similarly, the directly measured moisture content of a graphite-epoxy composite (55 v/o fiber) was 19.2 + or - 0.6% of saturation value as opposed to a calculated value of 16.0 + or - 5.0%

  16. Skin Barrier Restoration and Moisturization Using Horse Oil-Loaded Dissolving Microneedle Patches.

    Science.gov (United States)

    Lee, Chisong; Eom, Younghyon Andrew; Yang, Huisuk; Jang, Mingyu; Jung, Sang Uk; Park, Ye Oak; Lee, Si Eun; Jung, Hyungil

    2018-01-01

    Horse oil (HO) has skin barrier restoration and skin-moisturizing effects. Although cream formulations have been used widely and safely, their limited penetration through the stratum corneum is a major obstacle to maximizing the cosmetic efficacy of HO. Therefore, we aimed to encapsulate HO in a cosmetic dissolving microneedle (DMN) for efficient transdermal delivery. To overcome these limitations of skin permeation, HO-loaded DMN (HO-DMN) patches were developed and evaluated for their efficacy and safety using in vitro and clinical studies. Despite the lipophilic nature of HO, the HO-DMN patches had a sharp shape and uniform array, with an average length and tip diameter of 388.36 ± 16.73 and 38.54 ± 5.29 µm, respectively. The mechanical strength of the HO-DMN patches was sufficient (fracture force of 0.29 ± 0.01 N), and they could successfully penetrate pig skin. During the 4-week clinical evaluation, HO-DMN patches caused significant improvements in skin and dermal density, skin elasticity, and moisturization. Additionally, a brief safety assessment showed that the HO-DMN patches induced negligible adverse events. The HO-DMNs are efficient, safe, and convenient for wide use in cosmetic applications for skin barrier restoration and moisturization. © 2018 S. Karger AG, Basel.

  17. Response of bacteria in wastewater sludge to moisture loss by evaporation and effect of moisture content on bacterial inactivation by ionizing radiation

    International Nuclear Information System (INIS)

    Ward, R.L.; Yeager, J.G.; Ashley, C.S.

    1981-01-01

    Two studies were carried out to determine the influence of moisture content on the survival of bacteria in raw wastewater sludge. The first study involved the effect of water loss by evaporation on the bacterial population. The second used these dewatered samples to measure the effects of moisture content on the inactivation of bacteria in sludge by ionizing radiation. Both studies involved survival measurements of six representative fecally associated bacteria grown separately in sterilized sludge as well as survival data on bacteria indigenous to sludge. Growth of bacteria was stimulated in sludge during the initial phase of moisture removal by evaporation, but the reduction of moisture content below about 50% by weight caused a proportional decrease in bacterial numbers. The rates of inactivation of bacteria by ionizing radiation in sludge were usually modified to some degree by variations in moisture content. Most bacteria were found to be somewhat protected from ionizing radiation at reduced moisture levels

  18. Correlation between laser-induced breakdown spectroscopy signal and moisture content

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Yuan [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Gigant, Lionel [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Universite Bordeaux 1, 351 cours de la Liberation 33405 Talence Cedex (France); Baudelet, Matthieu, E-mail: baudelet@creol.ucf.edu [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States); Richardson, Martin [Townes Laser Institute, CREOL - The College of Optics and Photonics, University of Central Florida, 4000 Central Florida Boulevard, Orlando, FL 32816 (United States)

    2012-07-15

    The possibility of using Laser-Induced Breakdown Spectroscopy (LIBS) for measuring the moisture content of fresh food samples is studied. The normalized line emission of oxygen is highly correlated with the moisture content of the sample, cheese in our case, and can be used as a moisture marker in situations where oxygen interference from the matrix is not a critical issue. The linear correlation between the oxygen signal and the moisture content in the sample shows great potential for using LIBS as an alternative spectroscopic method for moisture monitoring. - Highlights: Black-Right-Pointing-Pointer Quantitative moisture measurement by LIBS. Black-Right-Pointing-Pointer Use of matrix effects and normalization for physical information on the sample. Black-Right-Pointing-Pointer Use of signal from oxygen and CN radical in air background for moisture measurement.

  19. Effect of Drying Moisture Exposed Almonds on the Development of the Quality Defect Concealed Damage.

    Science.gov (United States)

    Rogel-Castillo, Cristian; Luo, Kathleen; Huang, Guangwei; Mitchell, Alyson E

    2017-10-11

    Concealed damage (CD), is a term used by the nut industry to describe a brown discoloration of kernel nutmeat that becomes visible after moderate heat treatments (e.g., roasting). CD can result in consumer rejection and product loss. Postharvest exposure of almonds to moisture (e.g., rain) is a key factor in the development of CD as it promotes hydrolysis of proteins, carbohydrates, and lipids. The effect of drying moisture-exposed almonds between 45 to 95 °C, prior to roasting was evaluated as a method for controlling CD in roasted almonds. Additionally, moisture-exposed almonds dried at 55 and 75 °C were stored under accelerated shelf life conditions (45 °C/80% RH) and evaluated for headspace volatiles. Results indicate that drying temperatures below 65 °C decreases brown discoloration of nutmeat up to 40% while drying temperatures above 75 °C produce significant increases in brown discoloration and volatiles related to lipid oxidation, and nonsignificant increases in Amadori compounds. Results also demonstrate that raw almonds exposed to moisture and dried at 55 °C prior to roasting, reduce the visual sign of CD and maintain headspace volatiles profiles similar to almonds without moisture damage during accelerated storage.

  20. CPC Soil Moisture

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — The monthly data set consists of a file containing 1/2 degree monthly averaged soil moisture water height equivalents for the globe from 1948 onwards. Values are...

  1. [Bare Soil Moisture Inversion Model Based on Visible-Shortwave Infrared Reflectance].

    Science.gov (United States)

    Zheng, Xiao-po; Sun, Yue-jun; Qin, Qi-ming; Ren, Hua-zhong; Gao, Zhong-ling; Wu, Ling; Meng, Qing-ye; Wang, Jin-liang; Wang, Jian-hua

    2015-08-01

    Soil is the loose solum of land surface that can support plants. It consists of minerals, organics, atmosphere, moisture, microbes, et al. Among its complex compositions, soil moisture varies greatly. Therefore, the fast and accurate inversion of soil moisture by using remote sensing is very crucial. In order to reduce the influence of soil type on the retrieval of soil moisture, this paper proposed a normalized spectral slope and absorption index named NSSAI to estimate soil moisture. The modeling of the new index contains several key steps: Firstly, soil samples with different moisture level were artificially prepared, and soil reflectance spectra was consequently measured using spectroradiometer produced by ASD Company. Secondly, the moisture absorption spectral feature located at shortwave wavelengths and the spectral slope of visible wavelengths were calculated after analyzing the regular spectral feature change patterns of different soil at different moisture conditions. Then advantages of the two features at reducing soil types' effects was synthesized to build the NSSAI. Thirdly, a linear relationship between NSSAI and soil moisture was established. The result showed that NSSAI worked better (correlation coefficient is 0.93) than most of other traditional methods in soil moisture extraction. It can weaken the influences caused by soil types at different moisture levels and improve the bare soil moisture inversion accuracy.

  2. Use a microwave oven to determine the moisture content of sunflower

    International Nuclear Information System (INIS)

    Backer, L.F.; Walz, A.W.

    1987-01-01

    Much of the sunflower crop in the major producing areas of the United States requires artificial drying because of late crop maturity. Plant growth regulators permit earlier harvest by accelerating the maturation rate of the plant; research indicates that use of the growth regulator would result in approximately 10-14 days earlier maturation. Effectiveness of the chemical is dependent on timely application at relatively high moisture contents (50 to 55 percent). A rapid means of determining seed moisture content is required so the chemical can be applied at the proper growth stage . Additionally, sunflower is often harvested at moisture contents of more than 17 percent. Most electronic moisture meters are not calibrated for moisture contents this high and the accuracy of most moisture meters decreases with increasing moisture content. A recent study has shown that a conventional microwave oven can successfully be used to very rapidly determine the moisture content of high moisture sunflower seeds to indicate proper growth stage for the application of plant growth regulators. The microwave oven could also be used with reasonable accuracy to check harvest moisture content down to about 15 percent. At lower moisture contents, it would be advisable to use a calibrated electronic moisture meter

  3. To the vibrational over wetting and liquefaction effects in moistured soils

    International Nuclear Information System (INIS)

    Karimov, F.H.; Oripov, G.O.; Saidov, R.M.; Tojibekov, M.

    2003-01-01

    There is a lot of evidence of the dynamical effects in soils when they become wetted or during or after the earthquakes or explosions. There are some quantitative estimates for the vibrational wetting and liquefaction of soils under consideration. For the models in the present research the moistured sands and weak soils like losses are accepted. The first model is focusing on soil fractures sliding down under the action of vibrations, tightening of a hard phase, squeezing water phase out and thus bringing to soil liquefaction. The second is based on soil fractures plunging at the action of vibrations into the aquatic background. This mechanism seems to be more effective for the high degree moistured soils. The third mechanism is based on capillary phenomena in moistured porous medium. When inertia forces are large enough the resultant force, consisting of sliding down gravity component and inertia forces, overcomes friction and fracture becomes unstable. Both vibrations amplitude and frequency are the stability controlling factors, playing an important role in the vibrational wetting and liquefaction effects through porous water phase squeezing out or capillary lifting phenomena leading to the wetting or liquefaction of the medium. (author)

  4. Microwave moisture sensing of wet bales

    Science.gov (United States)

    Sensing of moisture in very wet lint bales is unique due to the fact that moisture distribution is typically non-uniform and can in some instances be highly localized. This issue is even further complicated by the use of a sensor that reads only a portion of the bale and/or with a sensor that provid...

  5. Logging effects on soil moisture losses

    Science.gov (United States)

    Robert R. Ziemer

    1978-01-01

    Abstract - The depletion of soil moisture within the surface 15 feet by an isolated mature sugar pine and an adjacent uncut forest in the California Sierra Nevada was measured by the neutron method every 2 weeks for 5 consecutive summers. Soil moisture recharge was measured periodically during the intervening winters. Groundwater fluctuations within the surface 50...

  6. Inflammatory potential in relation to the microbial content of settled dust samples collected from moisture domaged and reference schools: results of HITEA study.

    NARCIS (Netherlands)

    Huttunen, K.; Tirkkonen, J.; Täubel, M.; Krop, E.; Mikkonen, S.; Pekkanen, J.; Heederik, D.; Zock, J.P.; Hyvärinen, A.; Hirvonen, M.R.

    2016-01-01

    Aiming to identify factors causing the adverse health effects associated with moisture-damaged indoor environments, we analyzed immunotoxicological potential of settled dust from moisture-damaged and reference schools in relation to their microbiological composition. Mouse RAW264.7 macrophages were

  7. Moisture ingress into electronics enclosures under isothermal conditions

    International Nuclear Information System (INIS)

    Staliulionis, Ž.; Jabbari, M.; Hattel, J. H.

    2016-01-01

    The number of electronics used in outdoor environment is constantly growing. The humidity causes about 19 % of all electronics failures and, especially, moisture increases these problems due to the ongoing process of miniaturization and lower power consumption of electronic components. Moisture loads are still not understood well by design engineers, therefore this field has become one of the bottlenecks in the electronics system design. The objective of this paper is to model moisture ingress into an electronics enclosure under isothermal conditions. The moisture diffusion model is based on a 1D quasi-steady state (QSS) approximation for Fick’s second law. This QSS approach is also described with an electrical analogy which gives a fast tool in modelling of the moisture response. The same QSS method is applied to ambient water vapour variations. The obtained results are compared to an analytical solution and very good agreement is found.

  8. On the influence of moisture and load variations on the strength behavior of wood

    DEFF Research Database (Denmark)

    Nielsen, Lauge Fuglsang

    2005-01-01

    Abstract: It is demonstrated in this paper that the influence of moisture- and load variations on lifetime and residual strength (re-cycle strength) of wood can be considered by theories previously developed by the author. The common, controlling factor is creep, which can be modified very easily...... by introducing a special moisture dependent relaxation time in the well-known Power-Law creep expression. Because basic failure mechanisms in wood are invariant with respect to loading modes, it is suggested that a number of methods used in design of wood structures can be generalized/simplified to apply...

  9. Non-isothermal Moisture Transport Through Insulation Materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2008-01-01

    An experimental investigation was conducted in order to draw some conclusions on the magnitude of moisture transport due to temperature gradient on a range of porous light-weight building materials. A special constructed non-isothermal set-up allowed the creation of a temperature gradient of 10K...... and given humidity gradient over the sample. The resulting moisture ux as well as the hygrothermal states around and within the material were monitored. The hypothesis of relative humidity being a driving force for non-isothermal moisture transport already in the hygroscopic range could not be confirmed....... On the contrary, indications exist that the temperature gradient itself is driving the moisture from the warm side towards the cold side. An attempt to identify and quantify the single contributions of the different transport forms involved is also presented. The diferent results gave, however, diverging...

  10. Comparisons of Satellite Soil Moisture, an Energy Balance Model Driven by LST Data and Point Measurements

    Science.gov (United States)

    Laiolo, Paola; Gabellani, Simone; Rudari, Roberto; Boni, Giorgio; Puca, Silvia

    2013-04-01

    Soil moisture plays a fundamental role in the partitioning of mass and energy fluxes between land surface and atmosphere, thereby influencing climate and weather, and it is important in determining the rainfall-runoff response of catchments; moreover, in hydrological modelling and flood forecasting, a correct definition of moisture conditions is a key factor for accurate predictions. Different sources of information for the estimation of the soil moisture state are currently available: satellite data, point measurements and model predictions. All are affected by intrinsic uncertainty. Among different satellite sensors that can be used for soil moisture estimation three major groups can be distinguished: passive microwave sensors (e.g., SSMI), active sensors (e.g. SAR, Scatterometers), and optical sensors (e.g. Spectroradiometers). The last two families, mainly because of their temporal and spatial resolution seem the most suitable for hydrological applications In this work soil moisture point measurements from 10 sensors in the Italian territory are compared of with the satellite products both from the HSAF project SM-OBS-2, derived from the ASCAT scatterometer, and from ACHAB, an operative energy balance model that assimilate LST data derived from MSG and furnishes daily an evaporative fraction index related to soil moisture content for all the Italian region. Distributed comparison of the ACHAB and SM-OBS-2 on the whole Italian territory are performed too.

  11. Moisture dependence of positron annihilation rates in molecular substances

    International Nuclear Information System (INIS)

    Singh, J.J.; Holt, W.H.; Mock, W. Jr.

    1982-01-01

    Positron annihilation rates have been studied in polymers and graphite-polymer composites as a function of their moisture content. The annihilation rates have been found to increase linearly with increasing moisture content in epoxies and polyamides, whereas no definite trends have been observed in the polymides. These experimental results have been used as the basis for the calculation of moisture content of several polymeric test specimens. For example, the directly measured moisture content of a Kevlar/epoxy specimen (55 v/o fiber) was 45.5 +- 5.0% of saturation value, whereas the moisture content on the basis of the decrease in positron lifetime was calculated to be 46.5 +- 3.5%. Similarly, the directly measured moisture content of a graphite/epoxy composite (55 v/o fiber) was 19.2 +- 0.6% of saturation value as opposed to a calculated value of 16.0 +- 5.0%. (orig.)

  12. Effect of moisture absorption on damping and dynamic stiffness of carbon fiber/epoxy composites

    Energy Technology Data Exchange (ETDEWEB)

    Zai, Behzad Ahmed; Park, M. K.; Mehboob, Hassan; Ali, Rashid [Myongji University, Yongin (Korea, Republic of); Choi, H. S. [Korean Air Daejeon (Korea, Republic of)

    2009-11-15

    In this paper, the damping and dynamic stiffness of UHN125C carbon fiber/epoxy composite beam was experimentally measured. The effect of fiber orientation angle and stacking sequences on damping, resonance frequency, and dynamic stiffness was discussed with a focus on the effect of moisture absorption. Dried specimens were immersed in distilled water for a certain period to absorb water for 8, 16, and 24 d, respectively, and the moisture content absorbed in the specimen was measured. Furthermore, using the impact hammer technique, the measurements of dynamic responses were conducted on a cantilever beam specimen with one end clamped by bolts and metal plates. The damping properties in terms of loss factor were approximated by half-power bandwidth technique. The dynamic stiffness was evaluated using resonance frequency as a function of moisture content. The damping increased with the increase of moisture content: however, the dynamic stiffness reduced with the reduction of resonance frequency. The results of the dynamic stiffness were aided by measuring the dynamic strain using DBU-120A strain-indicating software. The increment in the dynamic strain strengthened the results obtained for dynamic stiffness

  13. The Sources of Moisture in the Sand Dunes – The Example of the Western Sahara Dune Field

    Directory of Open Access Journals (Sweden)

    Żmudzka Elwira

    2014-09-01

    Full Text Available Climatic and meteorological conditions may limit the aeolian transport within barchans. An explanation of that issue was the main goal of the investigation held in Western Sahara dune fields located around Tarfaya and Laâyoune. Particular attention was paid to the factors causing the moisture content rising of the sand dune surface layer, which could influence the wind threshold shear velocity in the aeolian transport. The wetted surface layer of sand, when receiving moisture from precipitation or suspensions, reduces the aeolian transport, even in case of wind velocity above 4-5 m s-1. Fog and dew condensation does not affect the moisture of deeper sand layers, what occurs after rainfall.

  14. An application of the perpendicular moisture index for the prediction of fire hazard

    NARCIS (Netherlands)

    Maffei, C.; Menenti, M.

    2014-01-01

    Various factors contribute to forest fire hazard, and among them vegetation moisture is the one that dictates susceptibility to fire ignition and propagation. The scientific community has developed a number of spectral indices based on remote sensing measurements in the optical domain for the

  15. Surface Moisture Measurement System Operation and Maintenance Manual

    International Nuclear Information System (INIS)

    Ritter, G.A.; Pearce, K.L.; Stokes, T.L.

    1995-12-01

    This operations and maintenance manual addresses deployment, equipment and field hazards, operating instructions, calibration verification, removal, maintenance, and other pertinent information necessary to safely operate and store the Surface Moisture Measurement System (SMMS) and Liquid Observation Well Moisture Measurement System (LOWMMS). These systems were developed primarily in support of Tank Waste Remediation System (TWRS) Safety Programs for moisture measurement in organic and ferrocyanide watch list tanks

  16. Cone penetrometer moisture probe acceptance test report

    International Nuclear Information System (INIS)

    Barnes, G.A.

    1996-01-01

    This Acceptance Test Report (ATR) documents the results of WHC-SD-WM-ATP-146 (Prototype Cone Penetrometer Moisture Probe Acceptance Test Procedure) and WHC-SD-WM-ATP-145 (Cone Penetrometer Moisture Probe Acceptance Test Procedure). The master copy of WHC-SD-WM-ATP-145 can be found in Appendix A and the master copy of WHC-SD-WM-ATP-146 can be found in Appendix B. Also included with this report is a matrix showing design criteria of the cone penetrometer moisture probe and the verification method used (Appendix C)

  17. Impacts of single and recurrent wildfires on topsoil moisture regime

    Science.gov (United States)

    González-Pelayo, Oscar; Malvar, Maruxa; van den Elsen, Erik; Hosseini, Mohammadreza; Coelho, Celeste; Ritsema, Coen; Bautista, Susana; Keizer, Jacob

    2017-04-01

    The increasing fire recurrence on forest in the Mediterranean basin is well-established by future climate scenarios due to land use changes and climate predictions. By this, shifts on mature pine woodlands to shrub rangelands are of major importance on forest ecosystems buffer functions, since historical patterns of established vegetation help to recover from fire disturbances. This fact, together with the predicted expansion of the drought periods, will affect feedback processes of vegetation patterns since water availability on these seasons are driven by post-fire local soil properties. Although fire impacts of soil properties and water availability has been widely studied using the fire severity as the main factor, little research is developed on post-fire soil moisture patterns, including the fire recurrence as a key explanatory variable. The following research investigated, in pine woodlands of north central Portugal, the short-term consequences (one year after a fire) of wildfire recurrence on the surface soil moisture content (SMC) and on effective soil water (SWEFF, parameter that includes actual daily soil moisture, soil field capacity-FC and permanent wilting point-PWP). The study set-up includes analyses at two fire recurrence scenarios (1x- and 4x-burnt since 1975), at a patch level (shrub patch/interpatch) and at two soil depths (2.5 and 7.5 cm) in a nested approach. Understanding how fire recurrence affects water in soil over space and time is the main goal of this research. The use of soil moisture sensors in a nested approach, the rainfall features and analyses on basic soil properties as soil organic matter, texture, bulk density, pF curves, soil water repellency and soil surface components will establish which factors has the largest role in controlling soil moisture behavior. Main results displayed, in a seasonal and yearly basis, no differences on SMC as increasing fire recurrence (1x- vs 4x-burnt) neither between patch/interpatch microsites at

  18. Microwave radiometric measurements of soil moisture in Italy

    Directory of Open Access Journals (Sweden)

    G. Macelloni

    2003-01-01

    Full Text Available Within the framework of the MAP and RAPHAEL projects, airborne experimental campaigns were carried out by the IFAC group in 1999 and 2000, using a multifrequency microwave radiometer at L, C and X bands (1.4, 6.8 and 10 GHz. The aim of the experiments was to collect soil moisture and vegetation biomass information on agricultural areas to give reliable inputs to the hydrological models. It is well known that microwave emission from soil, mainly at L-band (1.4 GHz, is very well correlated to its moisture content. Two experimental areas in Italy were selected for this project: one was the Toce Valley, Domodossola, in 1999, and the other, the agricultural area of Cerbaia, close to Florence, where flights were performed in 2000. Measurements were carried out on bare soils, corn and wheat fields in different growth stages and on meadows. Ground data of soil moisture (SMC were collected by other research teams involved in the experiments. From the analysis of the data sets, it has been confirmed that L-band is well related to the SMC of a rather deep soil layer, whereas C-band is sensitive to the surface SMC and is more affected by the presence of surface roughness and vegetation, especially at high incidence angles. An algorithm for the retrieval of soil moisture, based on the sensitivity to moisture of the brightness temperature at C-band, has been tested using the collected data set. The results of the algorithm, which is able to correct for the effect of vegetation by means of the polarisation index at X-band, have been compared with soil moisture data measured on the ground. Finally, the sensitivity of emission at different frequencies to the soil moisture profile was investigated. Experimental data sets were interpreted by using the Integral Equation Model (IEM and the outputs of the model were used to train an artificial neural network to reproduce the soil moisture content at different depths. Keywords: microwave radiometry, soil moisture

  19. Automated Quality Control of in Situ Soil Moisture from the North American Soil Moisture Database Using NLDAS-2 Products

    Science.gov (United States)

    Ek, M. B.; Xia, Y.; Ford, T.; Wu, Y.; Quiring, S. M.

    2015-12-01

    The North American Soil Moisture Database (NASMD) was initiated in 2011 to provide support for developing climate forecasting tools, calibrating land surface models and validating satellite-derived soil moisture algorithms. The NASMD has collected data from over 30 soil moisture observation networks providing millions of in situ soil moisture observations in all 50 states as well as Canada and Mexico. It is recognized that the quality of measured soil moisture in NASMD is highly variable due to the diversity of climatological conditions, land cover, soil texture, and topographies of the stations and differences in measurement devices (e.g., sensors) and installation. It is also recognized that error, inaccuracy and imprecision in the data set can have significant impacts on practical operations and scientific studies. Therefore, developing an appropriate quality control procedure is essential to ensure the data is of the best quality. In this study, an automated quality control approach is developed using the North American Land Data Assimilation System phase 2 (NLDAS-2) Noah soil porosity, soil temperature, and fraction of liquid and total soil moisture to flag erroneous and/or spurious measurements. Overall results show that this approach is able to flag unreasonable values when the soil is partially frozen. A validation example using NLDAS-2 multiple model soil moisture products at the 20 cm soil layer showed that the quality control procedure had a significant positive impact in Alabama, North Carolina, and West Texas. It had a greater impact in colder regions, particularly during spring and autumn. Over 433 NASMD stations have been quality controlled using the methodology proposed in this study, and the algorithm will be implemented to control data quality from the other ~1,200 NASMD stations in the near future.

  20. Moisture damage and asthma: a birth cohort study.

    Science.gov (United States)

    Karvonen, Anne M; Hyvärinen, Anne; Korppi, Matti; Haverinen-Shaughnessy, Ulla; Renz, Harald; Pfefferle, Petra I; Remes, Sami; Genuneit, Jon; Pekkanen, Juha

    2015-03-01

    Excess moisture and visible mold are associated with increased risk of asthma. Only a few studies have performed detailed home visits to characterize the extent and location of moisture damage and mold growth. Structured home inspections were performed in a birth cohort study when the children were 5 months old (on average). Children (N = 398) were followed up to the age of 6 years. Specific immunoglobulin E concentrations were determined at 6 years. Moisture damage and mold at an early age in the child's main living areas (but not in bathrooms or other interior spaces) were associated with the risk of developing physician-diagnosed asthma ever, persistent asthma, and respiratory symptoms during the first 6 years. Associations with asthma ever were strongest for moisture damage with visible mold in the child's bedroom (adjusted odds ratio: 4.82 [95% confidence interval: 1.29-18.02]) and in the living room (adjusted odds ratio: 7.51 [95% confidence interval: 1.49-37.83]). Associations with asthma ever were stronger in the earlier part of the follow-up and among atopic children. No consistent associations were found between moisture damage with or without visible mold and atopic sensitization. Moisture damage and mold in early infancy in the child's main living areas were associated with asthma development. Atopic children may be more susceptible to the effects of moisture damage and mold. Copyright © 2015 by the American Academy of Pediatrics.

  1. Time to ignition is influenced by both moisture content and soluble carbohydrates in live Douglas fir and Lodgepole pine needles

    Science.gov (United States)

    Matt Jolly; Sara McAllister; Mark Finney; Ann Hadlow

    2010-01-01

    Living plants are often the primary fuels burning in wildland fire but little is known about the factors that govern their ignition behavior. Moisture content has long been hypothesized to determine the characteristics of fires spreading in live fuels but moisture content alone fails to explain observed differences in the ignition of various species at different times...

  2. Analysis of Moisture Evaporation from Underwear Designed for Fire-Fighters

    Directory of Open Access Journals (Sweden)

    Elena Onofrei

    2015-03-01

    Full Text Available In this study we analysed the effect of moisture on the thermal protective performance of fire-fighter clothing in case of routine fire-fighting conditions. In the first stage of this research we investigated simultaneous heat and moisture transfer through a single-layer fabric, used as underwear for fire-fighters, at different moisture conditions. In the second stage of the study, the underwear in dry and wet state was tested together with protective clothing systems for fire-fighter consisting of three or four layers. It was found that during the evaporation of the moisture, a temperature plateau appeared during which temperatures hardly rose. The energy consumption used for the phase change of moisture located in the assembly dominated the heat transfer process as long as there was moisture present. As soon as all water had evaporated, the temperatures approached the temperatures measured for dry samples. The moisture within the clothing assembly did not lead to increased temperatures compared with the measurements with dry samples. This research has confirmed that moisture can positively affect the thermal protection of a clothing system.

  3. Frequency, moisture content, and temperature dependent dielectric properties of potato starch related to drying with radio-frequency/microwave energy.

    Science.gov (United States)

    Zhu, Zhuozhuo; Guo, Wenchuan

    2017-08-24

    To develop advanced drying methods using radio-frequency (RF) or microwave (MW) energy, dielectric properties of potato starch were determined using an open-ended coaxial-line probe and network analyzer at frequencies between 20 and 4,500 MHz, moisture contents between 15.1% and 43.1% wet basis (w.b.), and temperatures between 25 and 75 °C. The results showed that both dielectric constant (ε') and loss factor (ε″) were dependent on frequency, moisture content, and temperature. ε' decreased with increasing frequency at a given moisture content or temperature. At low moisture contents (≤25.4% w.b.) or low temperatures (≤45 °C), ε″ increased with increasing frequency. However, ε″ changed from decrease to increase with increasing frequency at high moisture contents or temperatures. At low temperatures (25-35 °C), both ε' and ε″ increased with increasing moisture content. At low moisture contents (15.1-19.5% w.b.), they increased with increasing temperature. The change trends of ε' and ε″ were different and dependent on temperature and moisture content at their high levels. The penetration depth (d p ) decreased with increasing frequency. RF treatments may provide potential large-scale industrial drying application for potato starch. This research offers useful information on dielectric properties of potato starch related to drying with electromagnetic energy.

  4. Tensile creep and recovery of Norway spruce influenced by temperature and moisture

    DEFF Research Database (Denmark)

    Engelund, Emil Tang; Salmén, Lennart

    2012-01-01

    of these two climatic factors on TDMB of wood. It was found that the mechanical response of wood tissue is the sum of responses from both tracheids and middle lamella, with only the previous being reversible. The effect of moisture and temperature differed in that the latter affected the elastic and time...

  5. Collective impacts of soil moisture and orography on deep convective thunderstorms

    Science.gov (United States)

    Imamovic, Adel; Schlemmer, Linda; Schär, Christoph

    2017-04-01

    Thunderstorm activity in many land regions peaks in summer, when surface heat fluxes and the atmospheric moisture content reach an annual maximum. Studies using satellite and ground-based observations have shown that the timing and vigor of summer thunderstorms are influenced by the presence of triggering mechanisms such as soil-moisture heterogeneity or orography. In the current process-based study we aim to dissect the combined impact of soil-moisture and orography on moist convection by using convection-resolving climate simulations with idealized landsurface and orographic conditions. First we systematically investigate the sensitivity of moist convection in absence of orography to a mesoscale soil-moisture anomaly, i.e. a region with drier or moister soil. Consistent with previous studies, a high sensitivity of total rain to soil-moisture anomalies over flat terrain is found. The total rain in the presence of a dry soil-moisture anomaly increases linearly if the soil-moisture anomaly is dried: an anomaly that is 50 % dryer than the reference case with a homogeneous soil-moisture distribution produces up to 40 % more rain. The amplitude of this negative response to the dry soil-moisture anomaly cannot be reproduced by either drying or moistening the soil in the whole domain, even when using unrealistic soil-moisture values. A moist soil anomaly showed little impact on total rain. The triggering effects of the soil-moisture anomalies can be reproduced by an isolated mountain of 250 m height. In order to test to what extent the impact of the soil-moisture anomaly and the mountain are additive, the soil-moisture perturbation method is applied to soil-moisture over the isolated mountain. A 250 m high mountain with drier (moister) soil than its surrounding is found to enhance (suppress) rain amounts. However, the sensitivity of rain amount to the soil-moisture anomaly decreases with the mountain height: A 500 m high mountain is already sufficient to eliminate the

  6. Moisture Durability Assessment of Selected Well-insulated Wall Assemblies

    Energy Technology Data Exchange (ETDEWEB)

    Pallin, Simon B. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Boudreaux, Philip R. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Kehrer, Manfred [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Hun, Diana E. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Jackson, Roderick K. [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States); Desjarlais, Andre Omer [Oak Ridge National Lab. (ORNL), Oak Ridge, TN (United States)

    2015-12-01

    This report presents the results from studying the hygrothermal performance of two well-insulated wall assemblies, both complying with and exceeding international building codes (IECC 2015 2014, IRC 2015). The hygrothermal performance of walls is affected by a large number of influential parameters (e.g., outdoor and indoor climates, workmanship, material properties). This study was based on a probabilistic risk assessment in which a number of these influential parameters were simulated with their natural variability. The purpose of this approach was to generate simulation results based on laboratory chamber measurements that represent a variety of performances and thus better mimic realistic conditions. In total, laboratory measurements and 6,000 simulations were completed for five different US climate zones. A mold growth indicator (MGI) was used to estimate the risk of mold which potentially can cause moisture durability problems in the selected wall assemblies. Analyzing the possible impact on the indoor climate due to mold was not part of this study. The following conclusions can be reached from analyzing the simulation results. In a hot-humid climate, a higher R-value increases the importance of the airtightness because interior wall materials are at lower temperatures. In a cold climate, indoor humidity levels increase with increased airtightness. Air leakage must be considered in a hygrothermal risk assessment, since air efficiently brings moisture into buildings from either the interior or exterior environment. The sensitivity analysis of this study identifies mitigation strategies. Again, it is important to remark that MGI is an indicator of mold, not an indicator of indoor air quality and that mold is the most conservative indicator for moisture durability issues.

  7. Global characterization of surface soil moisture drydowns

    Science.gov (United States)

    McColl, Kaighin A.; Wang, Wei; Peng, Bin; Akbar, Ruzbeh; Short Gianotti, Daniel J.; Lu, Hui; Pan, Ming; Entekhabi, Dara

    2017-04-01

    Loss terms in the land water budget (including drainage, runoff, and evapotranspiration) are encoded in the shape of soil moisture "drydowns": the soil moisture time series directly following a precipitation event, during which the infiltration input is zero. The rate at which drydowns occur—here characterized by the exponential decay time scale τ—is directly related to the shape of the loss function and is a key characteristic of global weather and climate models. In this study, we use 1 year of surface soil moisture observations from NASA's Soil Moisture Active Passive mission to characterize τ globally. Consistent with physical reasoning, the observations show that τ is lower in regions with sandier soils, and in regions that are more arid. To our knowledge, these are the first global estimates of τ—based on observations alone—at scales relevant to weather and climate models.

  8. Can plant-natural enemy communication withstand disruption by biotic and abiotic factors?

    Science.gov (United States)

    Clavijo McCormick, Andrea

    2016-12-01

    The attraction of natural enemies towards herbivore-induced plant volatiles is a well-documented phenomenon. However, the majority of published studies are carried under optimal water and nutrient regimes and with just one herbivore. But what happens when additional levels of ecological complexity are added? Does the presence of a second herbivore, microorganisms, and abiotic stress interfere with plant-natural enemy communication? or is communication stable enough to withstand disruption by additional biotic and abiotic factors?Investigating the effects of these additional levels of ecological complexity is key to understanding the stability of tritrophic interactions in natural ecosystems and may aid to forecast the impact of environmental disturbances on these, especially in climate change scenarios, which are often associated with modifications in plant and arthropod species distribution and increased levels of abiotic stress.This review explores the literature on natural enemy attraction to herbivore-induced volatiles when, besides herbivory, plants are challenged by additional biotic and abiotic factors.The aim of this review was to establish the impact of different biotic and abiotic factors on plant-natural enemy communication and to highlight critical aspects to guide future research efforts.

  9. Molecular Sensors for Moisture Detection by Moessbauer Spectroscopy

    International Nuclear Information System (INIS)

    Renz, F.; Souza, P. A. de; Klingelhoefer, G.; Goodwin, H. A.

    2002-01-01

    A parameter of importance in various industrial and commercial applications is sensitivity to moisture. A new class of molecular sensors which enable the qualitative and quantitative determination of air moisture (high selectivity and sensitivity) by application of Moessbauer spectroscopy as the probe technique has been investigated. The electronic properties of the iron-containing sensor depend upon the presence of moisture which is taken up by it and this process is accompanied by a change in electronic spin ground state which can be detected by Moessbauer spectroscopy. The sensor is suitable for in-field and industrial application using the recently developed Moessbauer spectrometer MIMOS II. Possible suitability for the detection of moisture in extraterrestrial environments is considered.

  10. On-line determination of moisture in coal and coke

    International Nuclear Information System (INIS)

    Cutmore, N.G.; Sowerby, B.D.

    1987-01-01

    The CSIRO Division of Mineral Engineering is developing various techniques for the on-line determination of moisture in coal and coke, and some instruments are now commercially available. These techniques permit accurate and rapid determination of moisture in materials directly on conveyor belts or in bins. The most promising techniques for direct on-belt measurement of moisture in coal are capacitance and microwave transmission. A non-contacting under-belt capacitance and gamma-ray backscatter technique has determined moisture in coal to better than 0.5 wt% in field tests. CSIRO is developing a fast neutron and gamma-ray transmission technique, which is proving very accurate in laboratory tests. This technique overcomes many of the limitations of thermal neutrons moisture gauges

  11. Initializing numerical weather prediction models with satellite-derived surface soil moisture: Data assimilation experiments with ECMWF's Integrated Forecast System and the TMI soil moisture data set

    Science.gov (United States)

    Drusch, M.

    2007-02-01

    Satellite-derived surface soil moisture data sets are readily available and have been used successfully in hydrological applications. In many operational numerical weather prediction systems the initial soil moisture conditions are analyzed from the modeled background and 2 m temperature and relative humidity. This approach has proven its efficiency to improve surface latent and sensible heat fluxes and consequently the forecast on large geographical domains. However, since soil moisture is not always related to screen level variables, model errors and uncertainties in the forcing data can accumulate in root zone soil moisture. Remotely sensed surface soil moisture is directly linked to the model's uppermost soil layer and therefore is a stronger constraint for the soil moisture analysis. For this study, three data assimilation experiments with the Integrated Forecast System (IFS) of the European Centre for Medium-Range Weather Forecasts (ECMWF) have been performed for the 2-month period of June and July 2002: a control run based on the operational soil moisture analysis, an open loop run with freely evolving soil moisture, and an experimental run incorporating TMI (TRMM Microwave Imager) derived soil moisture over the southern United States. In this experimental run the satellite-derived soil moisture product is introduced through a nudging scheme using 6-hourly increments. Apart from the soil moisture analysis, the system setup reflects the operational forecast configuration including the atmospheric 4D-Var analysis. Soil moisture analyzed in the nudging experiment is the most accurate estimate when compared against in situ observations from the Oklahoma Mesonet. The corresponding forecast for 2 m temperature and relative humidity is almost as accurate as in the control experiment. Furthermore, it is shown that the soil moisture analysis influences local weather parameters including the planetary boundary layer height and cloud coverage.

  12. Development of the neutron technology for measuring the moisture content in China

    International Nuclear Information System (INIS)

    Zhao Jingwu; Liu Shengkang; Zhang Zhiping

    2011-01-01

    According to measuring mode (in-hopper, surface, sampling neutron moisture gauge), the development and application of neutron moisture gauge in china were introduced, which include the following course from only measuring moisture content of soil to monitoring moisture content of farmland and saving water for irrigating farmland, from measuring moisture content of pellet to coke and coal material, from only measuring moisture content to computerized neutron moisture gauges with density compensation and o f high precision. (authors)

  13. Crop yield monitoring in the Sahel using root zone soil moisture anomalies derived from SMOS soil moisture data assimilation

    Science.gov (United States)

    Gibon, François; Pellarin, Thierry; Alhassane, Agali; Traoré, Seydou; Baron, Christian

    2017-04-01

    West Africa is greatly vulnerable, especially in terms of food sustainability. Mainly based on rainfed agriculture, the high variability of the rainy season strongly impacts the crop production driven by the soil water availability in the soil. To monitor this water availability, classical methods are based on daily precipitation measurements. However, the raingauge network suffers from the poor network density in Africa (1/10000km2). Alternatively, real-time satellite-derived precipitations can be used, but they are known to suffer from large uncertainties which produce significant error on crop yield estimations. The present study proposes to use root soil moisture rather than precipitation to evaluate crop yield variations. First, a local analysis of the spatiotemporal impact of water deficit on millet crop production in Niger was done, from in-situ soil moisture measurements (AMMA-CATCH/OZCAR (French Critical Zone exploration network)) and in-situ millet yield survey. Crop yield measurements were obtained for 10 villages located in the Niamey region from 2005 to 2012. The mean production (over 8 years) is 690 kg/ha, and ranges from 381 to 872 kg/ha during this period. Various statistical relationships based on soil moisture estimates were tested, and the most promising one (R>0.9) linked the 30-cm soil moisture anomalies from mid-August to mid-September (grain filling period) to the crop yield anomalies. Based on this local study, it was proposed to derive regional statistical relationships using 30-cm soil moisture maps over West Africa. The selected approach was to use a simple hydrological model, the Antecedent Precipitation Index (API), forced by real-time satellite-based precipitation (CMORPH, PERSIANN, TRMM3B42). To reduce uncertainties related to the quality of real-time rainfall satellite products, SMOS soil moisture measurements were assimilated into the API model through a Particular Filter algorithm. Then, obtained soil moisture anomalies were

  14. Moisture related test protocols for HVS testing

    CSIR Research Space (South Africa)

    Denneman, E

    2008-10-01

    Full Text Available outcomes of HVS tests where the moisture condition of the pavement or specific layers in the pavement is under investigation for a specific test. Practical guidance is then provided on the potential systems (how to manage the moisture – hardware) as well...

  15. Microwave moisture meter for in-shell almonds.

    Science.gov (United States)

    Determining almond kernel moisture content while still in the shell is important for both almond growers and processors. A dielectric method was developed for almond kernel moisture determination from dielectric measurements on in-shell almonds at a single microwave frequency. A sample holder was fi...

  16. Measuring the spatial variation in surface moisture on a coastal beach with an infra-red terrestrial laser scanner

    Science.gov (United States)

    Smit, Yvonne; Donker, Jasper; Ruessink, Gerben

    2016-04-01

    Coastal sand dunes provide essential protection against marine flooding. Consequently, dune erosion during severe storms has been studied intensively, resulting in well-developed erosion models for use in scientific and applied projects. Nowadays there is growing awareness that similarly advanced knowledge on dune recovery and growth is needed to predict future dune development. For this reason, aeolian sand transport from the beach into the dunes has to be investigated thoroughly. Surface moisture is a major factor limiting aeolian transport on sandy beaches. By increasing the velocity threshold for sediment entrainment, pick-up rates reduce and the fetch length increases. Conventional measurement techniques cannot adequately characterize the spatial and temporal distribution of surface moisture content required to study the effects on aeolian transport. Here we present a new method for detecting surface moisture at high temporal and spatial resolution using the RIEGL VZ-400 terrestrial laser scanner (TLS). Because this TLS operates at a wavelength near a water absorption band (1550 nm), TLS reflectance is an accurate parameter to measure surface soil moisture over its full range. Three days of intensive laser scanning were performed on a Dutch beach to illustrate the applicability of the TLS. Gravimetric soil moisture samples were used to calibrate the relation between reflectance and surface moisture. Results reveal a robust negative relation for the full range of possible surface moisture contents (0% - 25%). This relation holds to about 80 m from the TLS. Within this distance the TLS typically produces O(106-107) data points, which we averaged into soil moisture maps with a 0.25x0.25 m resolution. This grid size largely removes small moisture disturbances induced by, for example, footprints or tire tracks, while retaining larger scale trends. As the next step in our research, we will analyze the obtained maps to determine which processes affect the spatial and

  17. Coal Moisture Estimation in Power Plant Mills

    DEFF Research Database (Denmark)

    Andersen, Palle; Bendtsen, Jan Dimon; Pedersen, Tom S.

    2009-01-01

    Knowledge of moisture content in raw coal feed to a power plant coal mill is of importance for efficient operation of the mill. The moisture is commonly measured approximately once a day using offline chemical analysis methods; however, it would be advantageous for the dynamic operation...... of the plant if an on-line estimate were available. In this paper we such propose an on-line estimator (an extended Kalman filter) that uses only existing measurements. The scheme is tested on actual coal mill data collected during a one-month operating period, and it is found that the daily measured moisture...

  18. Influence of Airflow on Laboratory Storage of High Moisture Corn Stover

    Energy Technology Data Exchange (ETDEWEB)

    Lynn M. Wendt; Ian J. Bonner; Amber N. Hoover; Rachel M. Emerson; William A. Smith

    2014-04-01

    Storing high moisture biomass for bioenergy use is a reality in many areas of the country where wet harvest conditions and environmental factors prevent dry storage from being feasible. Aerobic storage of high moisture biomass leads to microbial degradation and self-heating, but oxygen limitation can aid in material preservation. To understand the influence of oxygen presence on high moisture biomass (50 %, wet basis), three airflow rates were tested on corn stover stored in laboratory reactors. Temperature, carbon dioxide production, dry matter loss, chemical composition, fungal abundance, pH, and organic acids were used to monitor the effects of airflow on storage conditions. The results of this work indicate that oxygen availability impacts both the duration of self-heating and the severity of dry matter loss. High airflow systems experienced the greatest initial rates of loss but a shortened microbially active period that limited total dry matter loss (19 %). Intermediate airflow had improved preservation in short-term storage compared to high airflow systems but accumulated the greatest dry matter loss over time (up to 27 %) as a result of an extended microbially active period. Low airflow systems displayed the best performance with the lowest rates of loss and total loss (10 %) in storage at 50 days. Total structural sugar levels of the stored material were preserved, although glucan enrichment and xylan loss were documented in the high and intermediate flow conditions. By understanding the role of oxygen availability on biomass storage performance, the requirements for high moisture storage solutions may begin to be experimentally defined.

  19. The Passive Microwave Remote Sensing of Soil Moisture: the Effect of Tilled Row Structure

    Science.gov (United States)

    Wang, J. R.; Newton, R. W.; Rouse, J. W.

    1979-01-01

    The tilled rowstructure is known to be one of the important factors affecting the observations of the microwave emission from a natural surface. Measurements of this effect were carried out with both I and X band radiometers mounted on a mobile truck on a bare 40 m x 45 m row tilled field. The soil moisture content during the measurements ranged from approximately 10 percent to approximately 30 percent by dry weight. The results of these measurements showed that the variations of the antenna temperatures with incident angle theta changed with the azimuthal angle a measured from the row direction. A numerical calculation based on a composite surface roughness was made and found to predict the observed features within the model's limit of accuracy. It was concluded that the difference between the horizontally and vertically polarized temperatures was due to the change in the local angle of field emission within the antenna field of view caused by the large scale row structure.

  20. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, B.

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  1. Estimation of Moisture Content in Coal in Coal Mills

    DEFF Research Database (Denmark)

    Odgaard, Peter Fogh; Mataji, Babak

    2006-01-01

    the moisture content of the coal is proposed based on a simple dynamic energy model of a coal mill, which pulverizes and dries the coal before it is burned in the boiler. An optimal unknown input observer is designed to estimate the moisture content based on an energy balance model. The designed moisture...

  2. Precipitation patterns and moisture fluxes in a sandy, tropical environment with a shallow water table

    Science.gov (United States)

    Minihane, M. R.; Freyberg, D. L.

    2011-08-01

    Identifying the dominant mechanisms controlling recharge in shallow sandy soils in tropical climates has received relatively little attention. Given the expansion of coastal fill using marine sands and the growth of coastal populations throughout the tropics, there is a need to better understand the nature of water balances in these settings. We use time series of field observations at a coastal landfill in Singapore coupled with numerical modeling using the Richards' equation to examine the impact of precipitation patterns on soil moisture dynamics, including percolation past the root zone and recharge, in such an environment. A threshold in total precipitation event depth, much more so than peak precipitation intensity, is the strongest event control on recharge. However, shallow antecedent moisture, and therefore the timing between events along with the seasonal depth to water table, also play significant roles in determining recharge amounts. For example, at our field site, precipitation events of less than 3 mm per event yield little to no direct recharge, but for larger events, moisture content changes below the root zone are linearly correlated to the product of the average antecedent moisture content and the total event precipitation. Therefore, water resources planners need to consider identifying threshold precipitation volumes, along with the multiple time scales that capture variability in event antecedent conditions and storm frequency in assessing the role of recharge in coastal water balances in tropical settings.

  3. Revealing Invisible Water: Moisture Recycling as an Ecosystem Service.

    Science.gov (United States)

    Keys, Patrick W; Wang-Erlandsson, Lan; Gordon, Line J

    2016-01-01

    An ecosystem service is a benefit derived by humanity that can be traced back to an ecological process. Although ecosystem services related to surface water have been thoroughly described, the relationship between atmospheric water and ecosystem services has been mostly neglected, and perhaps misunderstood. Recent advances in land-atmosphere modeling have revealed the importance of terrestrial ecosystems for moisture recycling. In this paper, we analyze the extent to which vegetation sustains the supply of atmospheric moisture and precipitation for downwind beneficiaries, globally. We simulate land-surface evaporation with a global hydrology model and track changes to moisture recycling using an atmospheric moisture budget model, and we define vegetation-regulated moisture recycling as the difference in moisture recycling between current vegetation and a hypothetical desert world. Our results show that nearly a fifth of annual average precipitation falling on land is from vegetation-regulated moisture recycling, but the global variability is large, with many places receiving nearly half their precipitation from this ecosystem service. The largest potential impacts for changes to this ecosystem service are land-use changes across temperate regions in North America and Russia. Likewise, in semi-arid regions reliant on rainfed agricultural production, land-use change that even modestly reduces evaporation and subsequent precipitation, could significantly affect human well-being. We also present a regional case study in the Mato Grosso region of Brazil, where we identify the specific moisture recycling ecosystem services associated with the vegetation in Mato Grosso. We find that Mato Grosso vegetation regulates some internal precipitation, with a diffuse region of benefit downwind, primarily to the south and east, including the La Plata River basin and the megacities of Sao Paulo and Rio de Janeiro. We synthesize our global and regional results into a generalized

  4. Drought monitoring with soil moisture active passive (SMAP) measurements

    Science.gov (United States)

    Mishra, Ashok; Vu, Tue; Veettil, Anoop Valiya; Entekhabi, Dara

    2017-09-01

    Recent launch of space-borne systems to estimate surface soil moisture may expand the capability to map soil moisture deficit and drought with global coverage. In this study, we use Soil Moisture Active Passive (SMAP) soil moisture geophysical retrieval products from passive L-band radiometer to evaluate its applicability to forming agricultural drought indices. Agricultural drought is quantified using the Soil Water Deficit Index (SWDI) based on SMAP and soil properties (field capacity and available water content) information. The soil properties are computed using pedo-transfer function with soil characteristics derived from Harmonized World Soil Database. The SMAP soil moisture product needs to be rescaled to be compatible with the soil parameters derived from the in situ stations. In most locations, the rescaled SMAP information captured the dynamics of in situ soil moisture well and shows the expected lag between accumulations of precipitation and delayed increased in surface soil moisture. However, the SMAP soil moisture itself does not reveal the drought information. Therefore, the SMAP based SWDI (SMAP_SWDI) was computed to improve agriculture drought monitoring by using the latest soil moisture retrieval satellite technology. The formulation of SWDI does not depend on longer data and it will overcome the limited (short) length of SMAP data for agricultural drought studies. The SMAP_SWDI is further compared with in situ Atmospheric Water Deficit (AWD) Index. The comparison shows close agreement between SMAP_SWDI and AWD in drought monitoring over Contiguous United States (CONUS), especially in terms of drought characteristics. The SMAP_SWDI was used to construct drought maps for CONUS and compared with well-known drought indices, such as, AWD, Palmer Z-Index, sc-PDSI and SPEI. Overall the SMAP_SWDI is an effective agricultural drought indicator and it provides continuity and introduces new spatial mapping capability for drought monitoring. As an

  5. A soil moisture-rainfall feedback mechanism. 1. Theory and observations

    International Nuclear Information System (INIS)

    Eltahir, E.A.B.

    1998-01-01

    This paper presents a hypothesis regarding the fundamental role of soil moisture conditions in land-atmosphere interactions. We propose that wet soil moisture conditions over any large region should be associated with relatively large boundary layer moist static energy, which favors the occurrence of more rainfall. Since soil moisture conditions themselves reflect past occurrence of rainfall, the proposed hypothesis implies a positive feedback mechanism between soil moisture and rainfall. This mechanism is based on considerations of the energy balance at the land-atmosphere boundary, in contrast to similar mechanisms that were proposed in the past and that were based on the concepts of water balance and precipitation recycling. The control of soil moisture on surface albedo and Bowen ratio is the fundamental basis of the proposed soil moisture-rainfall feedback mechanism. The water content in the upper soil layer affects these two important properties of the land surface such that both variables decrease with any increase in the water content of the top soil layer. The direct effect of soil moisture on surface albedo implies that wet soil moisture conditions enhance net solar radiation. The direct effect of soil moisture on Bowen ratio dictates that wet soil moisture conditions would tend to enhance net terrestrial radiation at the surface through cooling of surface temperature, reduction of upwards emissions of terrestrial radiation, and simultaneous increase in atmospheric water vapor content and downwards flux of terrestrial radiation. Thus, under wet soil moisture conditions, both components of net radiation are enhanced, resulting in a larger total flux of heat from the surface into the boundary layer. This total flux represents the sum of the corresponding sensible and latent heat fluxes. Simultaneously, cooling of surface temperature should be associated with a smaller sensible heat flux and a smaller depth of the boundary layer

  6. Integrated Heat Air & Moisture Modeling and control

    NARCIS (Netherlands)

    Schijndel, van A.W.M.

    2007-01-01

    The paper presents a recently developed Heat Air & Moisture Laboratory in SimuLink. The simulation laboratory facilitates the integration of the following models: (1) a whole building model; (2) Heating Venting and Air-Conditioning and primary systems; (3) 2D indoor airflow, 3D Heat Air & Moisture

  7. Microwave bale moisture sensing: Field trial continued

    Science.gov (United States)

    A microwave moisture measurement technique was developed at the USDA, ARS Cotton Production and Processing Research Unit for moisture sensing of cotton bales after the bale press. The technique measures the propagation delay of a microwave signal that is transmitted through the cotton bale. This res...

  8. Lodgepole pine site index in relation to synoptic measures of climate, soil moisture and soil nutrients.

    Science.gov (United States)

    G. Geoff Wang; Shongming Huang; Robert A. Monserud; Ryan J. Klos

    2004-01-01

    Lodgepole pine site index was examined in relation to synoptic measures of topography, soil moisture, and soil nutrients in Alberta. Data came from 214 lodgepole pine-dominated stands sampled as a part of the provincial permanent sample plot program. Spatial location (elevation, latitude, and longitude) and natural subregions (NSRs) were topographic variables that...

  9. NASA's Soil Moisture Active and Passive (SMAP) Mission

    Science.gov (United States)

    Kellogg, Kent; Njoku, Eni; Thurman, Sam; Edelstein, Wendy; Jai, Ben; Spencer, Mike; Chen, Gun-Shing; Entekhabi, Dara; O'Neill, Peggy; Piepmeier, Jeffrey; hide

    2010-01-01

    The Soil Moisture Active-Passive (SMAP) Mission is one of the first Earth observation satellites being formulated by NASA in response to the 2007 National Research Council s Decadal Survey. SMAP will make global measurements of soil moisture at the Earth's land surface and its freeze-thaw state. These measurements will allow significantly improved estimates of water, energy and carbon transfers between the land and atmosphere. Soil moisture measurements are also of great importance in assessing flooding and monitoring drought. Knowledge gained from SMAP observations can help mitigate these natural hazards, resulting in potentially great economic and social benefits. SMAP observations of soil moisture and freeze/thaw timing over the boreal latitudes will also reduce a major uncertainty in quantifying the global carbon balance and help to resolve an apparent missing carbon sink over land. The SMAP mission concept will utilize an L-band radar and radiometer sharing a rotating 6-meter mesh reflector antenna flying in a 680 km polar orbit with an 8-day exact ground track repeat aboard a 3-axis stabilized spacecraft to provide high-resolution and high-accuracy global maps of soil moisture and freeze/thaw state every two to three days. In addition, the SMAP project will use these surface observations with advanced modeling and data assimilation to provide estimates of deeper root-zone soil moisture and net ecosystem exchange of carbon. SMAP recently completed its Phase A Mission Concept Study Phase for NASA and transitioned into Phase B (Formulation and Detailed Design). A number of significant accomplishments occurred during this initial phase of mission development. The SMAP project held several open meetings to solicit community feedback on possible science algorithms, prepared preliminary draft Algorithm Theoretical Basis Documents (ATBDs) for each mission science product, and established a prototype algorithm testbed to enable testing and evaluation of the

  10. An introduction to NH-A neutron earth base moisture gage

    International Nuclear Information System (INIS)

    Zhu Huaian; Jiang Yulan; Yin Xilin; Yu Peiying; Luo Pinjie

    1988-01-01

    NH-A neutron earth base moisture gage is an accurate instrument which can measure earth moisture rapidly and non-destructively and display moisture results immediately. The deviation is estimated at ±0.012g/cm

  11. Using high-resolution soil moisture modelling to assess the uncertainty of microwave remotely sensed soil moisture products at the correct spatial and temporal support

    NARCIS (Netherlands)

    Wanders, N.; Karssenberg, D.; Bierkens, M. F. P.; Van Dam, J. C.; De Jong, S. M.

    Soil moisture is a key variable in the hydrological cycle and important in hydrological modelling. When assimilating soil moisture into flood forecasting models, the improvement of forecasting skills depends on the ability to accurately estimate the spatial and temporal patterns of soil moisture

  12. Use of Ultrasonic Technology for Soil Moisture Measurement

    Science.gov (United States)

    Choi, J.; Metzl, R.; Aggarwal, M. D.; Belisle, W.; Coleman, T.

    1997-01-01

    In an effort to improve existing soil moisture measurement techniques or find new techniques using physics principles, a new technique is presented in this paper using ultrasonic techniques. It has been found that ultrasonic velocity changes as the moisture content changes. Preliminary values of velocities are 676.1 m/s in dry soil and 356.8 m/s in 100% moist soils. Intermediate values can be calibrated to give exact values for the moisture content in an unknown sample.

  13. Calibration of quantitative neutron radiography method for moisture measurement

    International Nuclear Information System (INIS)

    Nemec, T.; Jeraj, R.

    1999-01-01

    Quantitative measurements of moisture and hydrogenous matter in building materials by neutron radiography (NR) are regularly performed at TRIGA Mark II research of 'Jozef Stefan' Institute in Ljubljana. Calibration of quantitative method is performed using standard brick samples with known moisture content and also with a secondary standard, plexiglas step wedge. In general, the contribution of scattered neutrons to the neutron image is not determined explicitly what introduces an error to the measured signal. Influence of scattered neutrons is significant in regions with high gradients of moisture concentrations, where the build up of scattered neutrons causes distortion of the moisture concentration profile. In this paper detailed analysis of validity of our calibration method for different geometrical parameters is presented. The error in the measured hydrogen concentration is evaluated by an experiment and compared with results obtained by Monte Carlo calculation with computer code MCNP 4B. Optimal conditions are determined for quantitative moisture measurements in order to minimize the error due to scattered neutrons. The method is tested on concrete samples with high moisture content.(author)

  14. A simplified model of saltcake moisture distribution. Letter report

    International Nuclear Information System (INIS)

    Simmons, C.S.

    1995-09-01

    This letter report describes the formulation of a simplified model for finding the moisture distribution in a saltcake waste profile that has been stabilized by pumping out the drainable interstitial liquid. The model is based on assuming that capillarity mainly governs the distribution of moisture in the porous saltcake waste. A stead upward flow of moisture driven by evaporation from the waste surface is conceptualized to occur for isothermal conditions. To obtain hydraulic parameters for unsaturated conditions, the model is calibrated or matched to the relative saturation distribution as measured by neutron probe scans. The model is demonstrated on Tanks 104-BY and 105-TX as examples. A value of the model is that it identifies the key physical parameters that control the surface moisture content in a waste profile. Moreover, the model can be used to estimate the brine application rate at the waste surface that would raise the moisture content there to a safe level. Thus, the model can be applied to help design a strategy for correcting the moisture conditions in a saltcake waste tank

  15. Study on dew condensation of noncombustible insulation materials : Part 5. Prediction method of rate of moisture content

    OpenAIRE

    権藤, 尚; 三原, 邦彰; 荒井, 良延; 鉾井, 修一; 小椋, 大輔

    2011-01-01

    Summaries of technical papers of Annual Meeting Architectural Institute of Japan. D-2, Environmental engineering II, Heat, moisture, thermal comfort, natural energy, air flow, ventilation, smoke exhaustion, computational fluid dynamics, indoor air quality heating, cooling and air-conditioning heat and cold sources, piping systems application of building services

  16. Moisture transport over the brick/mortar interface

    NARCIS (Netherlands)

    Brocken, H.J.P.; Pel, L.

    1995-01-01

    The moisture transport in brick, mortar that was cured separately, and combined brick/mortar samples was studied using NMR. The experimental results show that the mortar is less permeable if it is cured bonded to the brick instead of cured separately. Models of the moisture transport are usually

  17. Combined effects of soil moisture and carbaryl to earthworms and plants: Simulation of flood and drought scenarios

    Energy Technology Data Exchange (ETDEWEB)

    Lima, Maria P.R.; Soares, Amadeu M.V.M. [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal); Loureiro, Susana, E-mail: sloureiro@ua.pt [Department of Biology and CESAM, University of Aveiro, 3810-193 Aveiro (Portugal)

    2011-07-15

    Studying tolerance limits in organisms exposed to climatic variations is key to understanding effects on behaviour and physiology. The presence of pollutants may influence these tolerance limits, by altering the toxicity or bioavailability of the chemical. In this work, the plant species Brassica rapa and Triticum aestivum and the earthworm Eisenia andrei were exposed to different levels of soil moisture and carbaryl, as natural and chemical stressors, respectively. Both stress factors were tested individually, as well as in combination. Acute and chronic tests were performed and results were discussed in order to evaluate the responses of organisms to the combination of stressors. When possible, data was fitted to widely employed models for describing chemical mixture responses. Synergistic interactions were observed in earthworms exposed to carbaryl and drought conditions, while antagonistic interactions were more representative for plants, especially in relation to biomass loss under flood-simulation conditions. - Highlights: > Climate variations may cause changes on chemicals' toxicity or bioavailability. > Earthworms and plants are exposed simultaneously to carbaryl and flood and drought conditions. > The IA model and possible deviations were used to evaluate combination exposures. > Synergism was observed for earthworms exposed to carbaryl and drought conditions. > Antagonistic interactions were observed for plants, in flood conditions and carbaryl. - Soil moisture can play an important role in carbaryl toxicity towards plants and earthworms.

  18. Combined effects of soil moisture and carbaryl to earthworms and plants: Simulation of flood and drought scenarios

    International Nuclear Information System (INIS)

    Lima, Maria P.R.; Soares, Amadeu M.V.M.; Loureiro, Susana

    2011-01-01

    Studying tolerance limits in organisms exposed to climatic variations is key to understanding effects on behaviour and physiology. The presence of pollutants may influence these tolerance limits, by altering the toxicity or bioavailability of the chemical. In this work, the plant species Brassica rapa and Triticum aestivum and the earthworm Eisenia andrei were exposed to different levels of soil moisture and carbaryl, as natural and chemical stressors, respectively. Both stress factors were tested individually, as well as in combination. Acute and chronic tests were performed and results were discussed in order to evaluate the responses of organisms to the combination of stressors. When possible, data was fitted to widely employed models for describing chemical mixture responses. Synergistic interactions were observed in earthworms exposed to carbaryl and drought conditions, while antagonistic interactions were more representative for plants, especially in relation to biomass loss under flood-simulation conditions. - Highlights: → Climate variations may cause changes on chemicals' toxicity or bioavailability. → Earthworms and plants are exposed simultaneously to carbaryl and flood and drought conditions. → The IA model and possible deviations were used to evaluate combination exposures. → Synergism was observed for earthworms exposed to carbaryl and drought conditions. → Antagonistic interactions were observed for plants, in flood conditions and carbaryl. - Soil moisture can play an important role in carbaryl toxicity towards plants and earthworms.

  19. Influence of moisture content on radon diffusion in soil

    International Nuclear Information System (INIS)

    Singh, M.; Ramola, R.C.; Singh, S.; Virk, H.S.

    1990-01-01

    Radon diffusion from soil has been studied as a function of the moisture content of the soil. A few simple experiments showed that up to a certain moisture content the radon diffusion increased with increasing moisture. A sharp rise in radon concentration occurred as the moisture was increased from the completely dry state to 13% water by weight. The radon flux was measured for columns of dry, moist and water saturated soil. The highest flux came from the column filled with moist soil. Water saturated soil gave the lowest flux because of the much lower diffusion coefficient of radon through water. (author)

  20. Soil moisture effects during bioventing in fuel-contaminated arid soils

    International Nuclear Information System (INIS)

    Zwick, T.C.; Leeson, A.; Hinchee, R.E.; Hoeppel, R.E.; Bowling, L.

    1995-01-01

    This study evaluated the effects of soil moisture addition on microbial activity during bioventing of dry, sandy soils at the Marine Corps Air Ground Combat Center (MCAGCC), Twentynine Palms, California. Soils at the site have been contaminated to a depth of approximately 80 ft (24 m) with gasoline, JP-5 jet fuel, and diesel fuel. Based on the low soil moisture measured at the site (2 to 3% by weight), it was determined that soil moisture may be limiting biodegradation. To evaluate the effect that moisture addition had on microbial activity under field conditions, a subsurface drip irrigation system was installed above the fuel hydrocarbon plume. Irrigation water was obtained from two monitoring wells on the site, where groundwater was approximately 192 ft (59 m) below ground surface. Advancement of the wetting front was monitored. In situ respiration rates increased significantly after moisture addition. The results of this study provide evidence for the potential applicability of moisture addition in conjunction with bioventing for site remediation in arid environments. Further work is planned to investigate optimization of moisture addition

  1. 24 CFR 3285.204 - Ground moisture control.

    Science.gov (United States)

    2010-04-01

    ... 24 Housing and Urban Development 5 2010-04-01 2010-04-01 false Ground moisture control. 3285.204 Section 3285.204 Housing and Urban Development Regulations Relating to Housing and Urban Development... moisture control. (a) Vapor retarder. If the space under the home is to be enclosed with skirting or other...

  2. Use of passive microwave remote sensing to monitor soil moisture

    International Nuclear Information System (INIS)

    Wigneron, J.P.; Schmugge, T.; Chanzy, A.; Calvet, J.C.; Kerr, Y.

    1998-01-01

    Surface soil moisture is a key variable to describe the water and energy exchanges at the land surface/atmosphere interface. However, soil moisture is highly variable both spatially and temporally. Passive microwave remotely sensed data have great potential for providing estimates of soil moisture with good temporal repetition (on a daily basis) and at regional scale (∼ 10 km). This paper reviews the various methods for remote sensing of soil moisture from microwave radiometric systems. Potential applications from both airborne and spatial observations are discussed in the fields of agronomy, hydrology and meteorology. Emphasis in this paper is given to relatively new aspects of microwave techniques and of temporal soil moisture information analysis. In particular, the aperture synthesis technique allows us now to a address the soil moisture information needs on a global basis, from space instruments. (author) [fr

  3. Diagnosing MJO Destabilization and Propagation with the Moisture and MSE Budgets

    Science.gov (United States)

    Maloney, Eric; Wolding, Brandon

    2015-04-01

    Novel diagnostics obtained as an extension of empirical orthogonal function analysis are used as a composting basis to gain insight into MJO dynamics through examination of reanalysis moisture and moist static energy budgets. The net effect of vertical moisture advection and cloud processes was found to be a modest positive feedback to column moisture anomalies during both enhanced and suppressed phases of the MJO. This positive feedback is regionally strengthened by anomalous surface fluxes of latent heat. The modulation of horizontal synoptic scale eddy mixing acts as a negative feedback to column moisture anomalies, while anomalous winds acting against the mean state moisture gradient aid in eastward propagation. These processes act in a systematic fashion across the Indian Ocean and oceanic regions of the Maritime Continent. The ability to approximately close the MSE budget serves an important role in constraining the moisture budget, whose residual is several times larger than the total and horizontal advective moisture tendencies. Comparison with TRMM precipitation anomalies suggests that the moisture budget residual results from an underestimation by ERAi of variations in both total precipitation and vertical moisture advection associated with the MJO. The results of this study support the concept of the MJO as a moisture-mode. This analysis is extended to examine the impact of boundary layer convergence driven by MJO SST anomalies on the vertically-integrated moisture budget. Results from a coupled version of the SP-CAM suggest that SST-driven moisture convergence anomalies are of a sufficient amplitude to be important for MJO propagation and destabilization, and may help explain why coupled models produce better simulations of the MJO than uncoupled models.

  4. Optimization on Measurement Method for Neutron Moisture Meter

    International Nuclear Information System (INIS)

    Gong Yalin; Wu Zhiqiang; Li Yanfeng; Wang Wei; Song Qingfeng; Liu Hui; Wei Xiaoyun; Zhao Zhonghua

    2010-01-01

    When the water in the measured material is nonuniformity, the measured results of the neutron moisture meter in the field may have errors, so the measured errors of the moisture meter associated with the water nonuniformity in material were simulated by Monte Carlo method. A new measurement method of moisture meter named 'transmission plus scatter' was put forward. The experiment results show that the new measurement method can reduce the error even if the water in the material is nonuniformity. (authors)

  5. Effects of disintegration-promoting agent, lubricants and moisture treatment on optimized fast disintegrating tablets.

    Science.gov (United States)

    Late, Sameer G; Yu, Yi-Ying; Banga, Ajay K

    2009-01-05

    Effects of calcium silicate (disintegration-promoting agent) and various lubricants on an optimized beta-cyclodextrin-based fast-disintegrating tablet formulation were investigated. Effects of moisture treatment were also evaluated at 75, 85 and 95% relative humidities. A two factor, three levels (3(2)) full factorial design was used to optimize concentrations of calcium silicate and lubricant. Magnesium stearate, being commonly used lubricant, was used to optimize lubricant concentration in optimization study. Other lubricants were evaluated at an obtained optimum concentration. Desiccator with saturated salt solutions was used to analyze effects of moisture treatments. Results of multiple linear regression analysis revealed that concentration of calcium silicate had no effect; however concentration of lubricant was found to be important for tablet disintegration and hardness. An optimized value of 1.5% of magnesium stearate gave disintegration time of 23.4 s and hardness of 1.42 kg. At an optimized concentration, glycerol dibehenate and L-leucine significantly affected disintegration time, while talc and stearic acid had no significant effect. Tablet hardness was significantly affected with L-leucine, while other lubricants had no significant effect. Hardness was not affected at 75% moisture treatment. Moisture treatment at 85 and 95% increased hardness of the tablets; however at the same time it negatively affected the disintegration time.

  6. Laboratory evaluation of long-term anti-icing performance and moisture susceptibility of chloride-based asphalt mixture

    Directory of Open Access Journals (Sweden)

    Mulian Zheng

    2016-03-01

    Full Text Available The objective of this research is to investigate the long-term anti-icing performance and moisture susceptibility of chloride-based asphalt mixture. Two experiments (the natural and accelerated dissolving-out methods were conducted on the Marshall samples and their salt releasing amount were determined based on the density measurement of the aqueous solution with a hydrometer. In addition, the impact of anti-icing agents (MFL on the mixture water stability was also investigated. Results show that a similar tendency in both methods was observed and the salt dissolution history was generally divided into three phases. Most notably, compared with the natural dissolving-out experiment the accelerated test was more effective and time-saving. Moreover, asphalt concrete with MFL performed poorer water damage resistance than the conventional asphalt concrete and the residual stability of the former declined more dramatically than the later. Finally, based on the 60 °C dissolving-out experiment, a model to predict the effective working time of the anti-icing asphalt pavement was proposed subsequently. Keywords: Asphalt mixture, Chloride, Long-term anti-icing performance, Moisture susceptibility

  7. A Novel Bias Correction Method for Soil Moisture and Ocean Salinity (SMOS Soil Moisture: Retrieval Ensembles

    Directory of Open Access Journals (Sweden)

    Ju Hyoung Lee

    2015-12-01

    Full Text Available Bias correction is a very important pre-processing step in satellite data assimilation analysis, as data assimilation itself cannot circumvent satellite biases. We introduce a retrieval algorithm-specific and spatially heterogeneous Instantaneous Field of View (IFOV bias correction method for Soil Moisture and Ocean Salinity (SMOS soil moisture. To the best of our knowledge, this is the first paper to present the probabilistic presentation of SMOS soil moisture using retrieval ensembles. We illustrate that retrieval ensembles effectively mitigated the overestimation problem of SMOS soil moisture arising from brightness temperature errors over West Africa in a computationally efficient way (ensemble size: 12, no time-integration. In contrast, the existing method of Cumulative Distribution Function (CDF matching considerably increased the SMOS biases, due to the limitations of relying on the imperfect reference data. From the validation at two semi-arid sites, Benin (moderately wet and vegetated area and Niger (dry and sandy bare soils, it was shown that the SMOS errors arising from rain and vegetation attenuation were appropriately corrected by ensemble approaches. In Benin, the Root Mean Square Errors (RMSEs decreased from 0.1248 m3/m3 for CDF matching to 0.0678 m3/m3 for the proposed ensemble approach. In Niger, the RMSEs decreased from 0.14 m3/m3 for CDF matching to 0.045 m3/m3 for the ensemble approach.

  8. an intermediate moisture meat

    African Journals Online (AJOL)

    STORAGESEVER

    2008-07-04

    Jul 4, 2008 ... traditional SM muscle without compromising quality. ... technique is intermediate moisture food processing. ... Traditionally, most tsire suya producers use ..... quality of Chinese purebred and European X Chinese crossbred ...

  9. DETERMINATION OF MOISTURE DIFFUSION COEFFICIENT OF LARCH BOARD WITH FINITE DIFFERENCE METHOD

    Directory of Open Access Journals (Sweden)

    Qiaofang Zhou

    2011-04-01

    Full Text Available This paper deals with the moisture diffusion coefficient of Dahurian Larch (Larix gmelinii Rupr. by use of the Finite Difference Method (FDM. To obtain moisture distributions the dimensional boards of Dahurian Larch were dried, from which test samples were cut and sliced evenly into 9 pieces in different drying periods, so that moisture distributions at different locations and times across the thickness of Dahurian Larch were obtained with a weighing method. With these experimental data, FDM was used to solve Fick’s one-dimensional unsteady-state diffusion equation, and the moisture diffusion coefficient across the thickness at specified time was obtained. Results indicated that the moisture diffusion coefficient decreased from the surface to the center of the Dahurian Larch wood, and it decreased with decreasing moisture content at constant wood temperature; as the wood temperature increased, the moisture diffusion coefficient increased, and the effect of the wood temperature on the moisture diffusion coefficient was more significant than that of moisture content. Moisture diffusion coefficients were different for the two experiments due to differing diffusivity of the specimens.

  10. Effect of aeration rate, moisture content and composting period on availability of copper and lead during pig manure composting.

    Science.gov (United States)

    Shen, Yujun; Zhao, Lixin; Meng, Haibo; Hou, Yueqing; Zhou, Haibin; Wang, Fei; Cheng, Hongsheng; Liu, Hongbin

    2016-06-01

    Pollution by heavy metals, such as copper and lead, has become a limiting factor for the land application of faecal manures, such as pig manure. This study was conducted to investigate the influence of composting process parameters, including aeration rate, moisture content and composting period, on the distribution of heavy metal species during composting, and to select an optimal parameter for copper and lead inactivation. Results showed that the distribution ratios of exchangeable fractions of copper and lead had a bigger decrease under conditions of aeration rate, 0.1 m(3) min(-1) m(-3), an initial moisture content of 65% and composting period of 50 days. Suboptimal composting process conditions could lead to increased availability of heavy metals. Statistical analysis indicated that the aeration rate was the main factor affecting copper and lead inactivation, while the effects of moisture content and composting period were not significant. The rates of reduction of copper-exchangeable fractions and lead-exchangeable fractions were positively correlated with increased pH. The optimal parameters for reducing heavy metal bioavailability during pig manure composting were aeration rate, 0.1 m(3) min(-1) m(-3), initial moisture content, 65%, and composting period, 20 days. © The Author(s) 2016.

  11. Defining Drought Characteristics for Natural Resource Management

    Science.gov (United States)

    Ojima, D. S.; Senay, G. B.; McNeeley, S.; Morisette, J. T.

    2016-12-01

    In the north central region of the US, on-going drought studies are investigating factors determining how drought impacts various ecosystem services and challenge natural resource management decisions. The effort reported here stems from research sponsored by the USGS North Central Climate Science Center, to deal with ecosystem response to drought with the goal to see if there are indicators of drought emerging from the ecosystem interactions with various weather patterns, soil moisture dynamics, and the structural aspects of the ecosystem in question. The North Central domain covers a region from the headwaters of the Missouri River Basin to the northern Great Plains. Using spatial and temporal analysis of remote sensing products and mechanistic daily time-step ecosystem model simulations across the northern Great Plains and northern Rockies, analysis of recent drought conditions over the region will be provided. Drought characteristics will be analyzed related to resource management targets, such as water supply, landscape productivity, or habitat needs for key species. Analysis of ecosystem and landscape patterns of drought relative to net primary productivity, surface temperatures, soil moisture content, evaporation, transpiration, and water use efficiency from 2000 through 2014 will be analyzed for different drought and non-drought events. Comparisons between satellite-derived ET and NPP of different Great Plains ecosystems related to simulated ET and NPP will be presented. These comparisons provide indications of the role that soil moisture dynamics, groundwater recharge and rooting depth of different ecosystems have on determining the sensitivity to water stress due to seasonal warming and reduced precipitation across the region. In addition, indications that average annual rainfall levels over certain ecosystems may result in reduced production due to higher rates of water demand under the observed warmer temperatures and the prolonged warming in the spring

  12. Visualization of soil-moisture change in response to precipitation within two rain gardens in Ohio

    Science.gov (United States)

    Dumouchelle, Denise H.; Darner, Robert A.

    2014-01-01

    Stormwater runoff in urban areas is increasingly being managed by means of a variety of treaments that reduce or delay runoff and promote more natural infiltration. One such treatment is a rain garden, which is built to detain runoff and allow for water infiltration and uptake by plants.Water flow into or out of a rain garden can be readily monitored with a variety of tools; however, observing the movement of water within the rain garden is less straightforward. Soil-moisture probes in combination with an automated interpolation procedure were used to document the infiltration of water into two rain gardens in Ohio. Animations show changes in soil moisture in the rain gardens during two precipitation events. At both sites, the animations demonstrate underutilization of the rain gardens.

  13. Equilibrium moisture content of OSB panels made from Eucalyptus urophylla clones

    Directory of Open Access Journals (Sweden)

    Lourival Marin Mendes

    2014-12-01

    Full Text Available This work aimed to verify the efficiency of Nelson's equation to estimate equilibrium moisture content of this material and provide a model for determination of moisture content of panels based on air relative moisture content, as well as to evaluate the effect of some processing variables on the equilibrium moisture content of OSB (Oriented Strand Board panels. The 25 x 25 mm samples were put in an acclimation room where they were kept at 30ºC and had their mass determined after stabilization at the relative air moisture contents of 40, 50, 60, 70, 80 and 90%. By the results obtained it was possible to conclude that: Nelson's equation tended to underestimate moisture values of the panel; the polynomial model adjusted based on the relative moisture of the air presented great potential to be used; although different behavior may be observed for the isotherms of treatments, there was no significant effect of the variables panel density, wood basic density, mat type and pressure temperature on mean equilibrium moisture content in desorption 1, adsorption and desorption 2.

  14. Assessment of the SMAP Passive Soil Moisture Product

    Science.gov (United States)

    Chan, Steven K.; Bindlish, Rajat; O'Neill, Peggy E.; Njoku, Eni; Jackson, Tom; Colliander, Andreas; Chen, Fan; Burgin, Mariko; Dunbar, Scott; Piepmeier, Jeffrey; hide

    2016-01-01

    The National Aeronautics and Space Administration (NASA) Soil Moisture Active Passive (SMAP) satellite mission was launched on January 31, 2015. The observatory was developed to provide global mapping of high-resolution soil moisture and freeze-thaw state every two to three days using an L-band (active) radar and an L-band (passive) radiometer. After an irrecoverable hardware failure of the radar on July 7, 2015, the radiometer-only soil moisture product became the only operational Level 2 soil moisture product for SMAP. The product provides soil moisture estimates posted on a 36 kilometer Earth-fixed grid produced using brightness temperature observations from descending passes. Within months after the commissioning of the SMAP radiometer, the product was assessed to have attained preliminary (beta) science quality, and data were released to the public for evaluation in September 2015. The product is available from the NASA Distributed Active Archive Center at the National Snow and Ice Data Center. This paper provides a summary of the Level 2 Passive Soil Moisture Product (L2_SM_P) and its validation against in situ ground measurements collected from different data sources. Initial in situ comparisons conducted between March 31, 2015 and October 26, 2015, at a limited number of core validation sites (CVSs) and several hundred sparse network points, indicate that the V-pol Single Channel Algorithm (SCA-V) currently delivers the best performance among algorithms considered for L2_SM_P, based on several metrics. The accuracy of the soil moisture retrievals averaged over the CVSs was 0.038 cubic meter per cubic meter unbiased root-mean-square difference (ubRMSD), which approaches the SMAP mission requirement of 0.040 cubic meter per cubic meter.

  15. Effect of soil moisture on sulphur accumulation in overground plant organs and their harm in emmission conditions

    Energy Technology Data Exchange (ETDEWEB)

    Navara, J; Horvath, I; Hauskrecht, I

    1972-01-01

    The effect of different soil moisture on sulphur accumulation in the overground organs of Fagopyrum esculentum, moench in immission conditions is dealt with in this paper. The results obtained have shown that even under equal soil conditions, equal nutrient supply and age evenness of the analyzed material the total sulphur content of leaves grown in immission conditions (sulphur oxides, hydrogen sulphide, carbon disulphide, etc.) at equal soil moisture was essentially higher when compared with unirrigated plants and corresponded also to the degree of harm and crop reduction of the experimental plants. Therefore it is necessary when utilizing sulphur content of indicating plants, which serves for a large-area diagnosis of vegetation harm with immissions, to take into consideration, in addition to other factors (soil, nutrition, age of plants), the soil moisture as well.

  16. Degradation of [14C]isofenphos in soil in the laboratory under different soil pH's, temperatures, and moistures

    International Nuclear Information System (INIS)

    Abou-Assaf, N.; Coats, J.R.

    1987-01-01

    The effects of three soil pH's, three soil temperatures, and three soil moistures on [ 14 C]isofenphos degradation were investigated. All three factors interacted strongly and significantly affected the persistence of isofenphos as well as the formation of the degradation products (p less than 1%). Isofenphos degradation was greatest at the higher temperatures 35 0 C greater than 25 0 C greater than 15 0 C (except under alkaline pH's), medium moisture 25% greater than 30% greater than 15%, and in both alkaline (pH = 8) and acidic soils (pH = 6) compared with neutral soil (pH = 7). Isofenphos oxon formation was greatest at higher temperatures 35 0 C compared with 25 0 C and 15 0 C, in acidic soil greater than neutral soil greater than alkaline soil, and under high moisture (30%) compared with the 15% and 22.5% moistures. The formation of soil-bound residues was greatest at higher temperatures 35 0 C greater than 25 0 C greater than 15 0 C, higher moisture 30% compared with 15% and 22.5%, and in alkaline soil compared with neutral and acidic soils

  17. Use of digital images to estimate soil moisture

    Directory of Open Access Journals (Sweden)

    João F. C. dos Santos

    Full Text Available ABSTRACT The objective of this study was to analyze the relation between the moisture and the spectral response of the soil to generate prediction models. Samples with different moisture contents were prepared and photographed. The photographs were taken under homogeneous light condition and with previous correction for the white balance of the digital photograph camera. The images were processed for extraction of the median values in the Red, Green and Blue bands of the RGB color space; Hue, Saturation and Value of the HSV color space; and values of the digital numbers of a panchromatic image obtained from the RGB bands. The moisture of the samples was determined with the thermogravimetric method. Regression models were evaluated for each image type: RGB, HSV and panchromatic. It was observed the darkening of the soil with the increase of moisture. For each type of soil, a model with best fit was observed and to use these models for prediction purposes, it is necessary to choose the model with best fit in advance, according to the soil characteristics. Soil moisture estimation as a function of its spectral response by digital image processing proves promising.

  18. Genesis of natural cokes: Some Indian examples

    Energy Technology Data Exchange (ETDEWEB)

    Singh, Ashok K.; Sharma, Mamta [Central Institute of Mining and Fuel Research, Dhanbad, PIN-828108 (India); Singh, Mahendra P. [Banaras Hindu University, Varanasi, PIN-221005 (India)

    2008-06-13

    In Indian coalfields huge amounts of natural coke have been produced due to magmatic intrusions. Jharia Coalfield in eastern part of India alone contains approximately 2000 Mt of baked coking coal as a consequence of these intrusions in the form of discordant and concordant bodies. This paper is an effort to investigate the effect of carbonization in two intrusion affected coal seams of Ena (seam XIII) and Alkusa (seam XIV) collieries of Jharia Coalfield. Natural coke is derived from coking coal under in-situ conditions due to intense magmatic induced heat and overburden pressure. Natural coke is characterized by the presence of low volatile matter and high ash contents and organic constituents showing isotropy and anisotropy. Through physical, petrographic and chemical properties of natural coke or 'jhama' as determined by various methods it has been established that the reactives in the unaltered coals (vitrinite, liptinite, pseudovitrinite, reactive semifusinite, etc.) are < 25.0 vol.%, moisture < 2.5%, volatile matter < 15.0% and hydrogen < 4.0%. The temperatures attained in the coal seams have been deciphered using some standard models, which indicate that a temperature {proportional_to} 1000 C was attained. This produced huge amount of anisotropic and deposited carbons. An attempt has been made to understand the factors that influence the genesis of natural coke and heat altered maceral products in coals in Indian coalfields. (author)

  19. Package selection for moisture protection for solid, oral drug products.

    Science.gov (United States)

    Waterman, Kenneth C; MacDonald, Bruce C

    2010-11-01

    This review describes how best to select the appropriate packaging options for solid, oral drug products based on both chemical and physical stability, with respect to moisture protection. This process combines an accounting for the initial moisture content of dosage form components, moisture transfer into (out of) packaging based on a moisture vapor transfer rate (MVTR), and equilibration between drug products and desiccants based on their moisture sorption isotherms to provide an estimate of the instantaneous relative humidity (RH) within the packaging. This time-based RH is calculationally combined with a moisture-sensitive Arrhenius equation (determined using the accelerated stability assessment program, ASAP) to predict the drug product's chemical stability over time as a function of storage conditions and packaging options. While physical stability of dosage forms with respect to moisture has been less well documented, a process is recommended based on the threshold RH at which changes (e.g., dosage form dissolution, tablet hardness, drug form) become problematic. The overall process described allows packaging to be determined for a drug product scientifically, with the effect of any changes to storage conditions or packaging to be explicitly accounted for. © 2010 Wiley-Liss, Inc. and the American Pharmacists Association

  20. Engineering properties of sunflower seed: Effect of dehulling and moisture content

    Directory of Open Access Journals (Sweden)

    Mudasir Ahmad Malik

    2016-12-01

    Full Text Available The study diagnosed engineering properties on varying moisture content of sunflower seed and kernel from 7.6 to 25% (wet basis. On increasing moisture, dimensional values increased for both seed and kernel. Bulk density, true density and porosity were found higher for kernel as compared to seed at each moisture content. On increasing the moisture content from 7.6 to 25%, true density, porosity and thousand kernel weight increased. Coefficient of static friction on plywood was found maximum for kernel at 25% moisture content, while it was minimum for seed on glass at 7.6% moisture content. The angle of repose was maximum for kernel as compared to seed. Initial cracking force, average rupture force and average rupture energy for seed and kernel decreased with an increase in the moisture content. The kernel was found to be more resistant to initial cracking than seed.

  1. Use of moisture probes in building materials industry

    International Nuclear Information System (INIS)

    Hanke, L.

    A neutron probe to be built in the production line was developed for monitoring moisture content of bulk materials and suspensions of all types in the building material industry. The probe is dust- and external moisture-protected. The probe measuring capacity is about 100 l, the mean measurement error is +- 0.008 g water per 1 cm 3 , which for fine sand represents an error of +- 0.3%. The probe is connected via a cable to a measuring instrument showing an electrical value proportional to the measured material moisture content. (Z.M.)

  2. Assimilating satellite soil moisture into rainfall-runoff modelling: towards a systematic study

    Science.gov (United States)

    Massari, Christian; Tarpanelli, Angelica; Brocca, Luca; Moramarco, Tommaso

    2015-04-01

    Soil moisture is the main factor for the repartition of the mass and energy fluxes between the land surface and the atmosphere thus playing a fundamental role in the hydrological cycle. Indeed, soil moisture represents the initial condition of rainfall-runoff modelling that determines the flood response of a catchment. Different initial soil moisture conditions can discriminate between catastrophic and minor effects of a given rainfall event. Therefore, improving the estimation of initial soil moisture conditions will reduce uncertainties in early warning flood forecasting models addressing the mitigation of flood hazard. In recent years, satellite soil moisture products have become available with fine spatial-temporal resolution and a good accuracy. Therefore, a number of studies have been published in which the impact of the assimilation of satellite soil moisture data into rainfall-runoff modelling is investigated. Unfortunately, data assimilation involves a series of assumptions and choices that significantly affect the final result. Given a satellite soil moisture observation, a rainfall-runoff model and a data assimilation technique, an improvement or a deterioration of discharge predictions can be obtained depending on the choices made in the data assimilation procedure. Consequently, large discrepancies have been obtained in the studies published so far likely due to the differences in the implementation of the data assimilation technique. On this basis, a comprehensive and robust procedure for the assimilation of satellite soil moisture data into rainfall-runoff modelling is developed here and applied to six subcatchment of the Upper Tiber River Basin for which high-quality hydrometeorological hourly observations are available in the period 1989-2013. The satellite soil moisture product used in this study is obtained from the Advanced SCATterometer (ASCAT) onboard Metop-A satellite and it is available since 2007. The MISDc ("Modello Idrologico Semi

  3. Using lamb waves tomonitor moisture absorption thermally fatigues composite laminates

    Energy Technology Data Exchange (ETDEWEB)

    Lee, Jae Sun; Cho, Youn Ho [School of Mechanical Engineering, Pusan National University, Busan (Korea, Republic of)

    2016-06-15

    Nondestructive evaluation for material health monitoring is important in aerospace industries. Composite laminates are exposed to heat cyclic loading and humid environment depending on flight conditions. Cyclic heat loading and moisture absorption may lead to material degradation such as matrix breaking, debonding, and delamination. In this paper, the moisture absorption ratio was investigated by measuring the Lamb wave velocity. The composite laminates were manufactured and subjected to different thermal aging cycles and moisture absorption. For various conditions of these cycles, not only changes in weight and also ultrasonic wave velocity were measured, and the Lamb wave velocity at various levels of moisture on a carbon-epoxy plate was investigated. Results from the experiment show a linear correlation between moisture absorption ratio and Lamb wave velocity at different thermal fatigue stages. The presented method can be applied as an alternative solution in the online monitoring of composite laminate moisture levels in commercial flights.

  4. Qualitative and quantitative assessment of interior moisture buffering by enclosures

    DEFF Research Database (Denmark)

    Janssen, Hans; Roels, Staf

    2009-01-01

    The significance of interior humidity in attaining sustainable, durable, healthy and comfortable buildings is increasingly recognised. Given their significant interaction, interior humidity appraisals need a qualitative and/or quantitative assessment of interior moisture buffering. While the effe......The significance of interior humidity in attaining sustainable, durable, healthy and comfortable buildings is increasingly recognised. Given their significant interaction, interior humidity appraisals need a qualitative and/or quantitative assessment of interior moisture buffering. While...... the effective moisture penetration depth and effective capacitance models allow quantified assessment, their reliance on the ‘moisture penetration depth’ necessitates comprehensive material properties and hampers their application to multi-dimensional interior objects. On the other hand, while various recently...... an alternative basis for quantitative evaluation of interior moisture buffering by the effective moisture penetration depth and effective capacitance models. The presented methodology uses simple and fast measurements only and can also be applied to multimaterial and/or multidimensional interior elements....

  5. Moisture availability limits subalpine tree establishment.

    Science.gov (United States)

    Andrus, Robert A; Harvey, Brian J; Rodman, Kyle C; Hart, Sarah J; Veblen, Thomas T

    2018-03-01

    In the absence of broad-scale disturbance, many temperate coniferous forests experience successful seedling establishment only when abundant seed production coincides with favorable climate. Identifying the frequency of past establishment events and the climate conditions favorable for seedling establishment is essential to understanding how climate warming could affect the frequency of future tree establishment events and therefore future forest composition or even persistence of a forest cover. In the southern Rocky Mountains, USA, research on the sensitivity of establishment of Engelmann spruce (Picea engelmannii) and subalpine fir (Abies lasiocarpa)-two widely distributed, co-occurring conifers in North America-to climate variability has focused on the alpine treeline ecotone, leaving uncertainty about the sensitivity of these species across much of their elevation distribution. We compared annual germination dates for >450 Engelmann spruce and >500 subalpine fir seedlings collected across a complex topographic-moisture gradient to climate variability in the Colorado Front Range. We found that Engelmann spruce and subalpine fir established episodically with strong synchrony in establishment events across the study area. Broad-scale establishment events occurred in years of high soil moisture availability, which were characterized by above-average snowpack and/or cool and wet summer climatic conditions. In the recent half of the study period (1975-2010), a decrease in the number of fir and spruce establishment events across their distribution coincided with declining snowpack and a multi-decadal trend of rising summer temperature and increasing moisture deficits. Counter to expected and observed increases in tree establishment with climate warming in maritime subalpine forests, our results show that recruitment declines will likely occur across the core of moisture-limited subalpine tree ranges as warming drives increased moisture deficits. © 2018 by the

  6. Use of satellite and modeled soil moisture data for predicting event soil loss at plot scale

    Science.gov (United States)

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-09-01

    The potential of coupling soil moisture and a Universal Soil Loss Equation-based (USLE-based) model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e., the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the USLE enhances the capability of the model to account for variations in event soil losses, the soil moisture being an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to ~ 0.35 and a root mean square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  7. Use of satellite and modelled soil moisture data for predicting event soil loss at plot scale

    Science.gov (United States)

    Todisco, F.; Brocca, L.; Termite, L. F.; Wagner, W.

    2015-03-01

    The potential of coupling soil moisture and a~USLE-based model for event soil loss estimation at plot scale is carefully investigated at the Masse area, in Central Italy. The derived model, named Soil Moisture for Erosion (SM4E), is applied by considering the unavailability of in situ soil moisture measurements, by using the data predicted by a soil water balance model (SWBM) and derived from satellite sensors, i.e. the Advanced SCATterometer (ASCAT). The soil loss estimation accuracy is validated using in situ measurements in which event observations at plot scale are available for the period 2008-2013. The results showed that including soil moisture observations in the event rainfall-runoff erosivity factor of the RUSLE/USLE, enhances the capability of the model to account for variations in event soil losses, being the soil moisture an effective alternative to the estimated runoff, in the prediction of the event soil loss at Masse. The agreement between observed and estimated soil losses (through SM4E) is fairly satisfactory with a determination coefficient (log-scale) equal to of ~ 0.35 and a root-mean-square error (RMSE) of ~ 2.8 Mg ha-1. These results are particularly significant for the operational estimation of soil losses. Indeed, currently, soil moisture is a relatively simple measurement at the field scale and remote sensing data are also widely available on a global scale. Through satellite data, there is the potential of applying the SM4E model for large-scale monitoring and quantification of the soil erosion process.

  8. Early age exposure to moisture damage and systemic inflammation at the age of 6 years.

    Science.gov (United States)

    Karvonen, A M; Tischer, C; Kirjavainen, P V; Roponen, M; Hyvärinen, A; Illi, S; Mustonen, K; Pfefferle, P I; Renz, H; Remes, S; Schaub, B; von Mutius, E; Pekkanen, J

    2018-05-01

    Cross-sectional studies have shown that exposure to indoor moisture damage and mold may be associated with subclinical inflammation. Our aim was to determine whether early age exposure to moisture damage or mold is prospectively associated with subclinical systemic inflammation or with immune responsiveness in later childhood. Home inspections were performed in children's homes in the first year of life. At age 6 years, subclinical systemic inflammation was measured by serum C-reactive protein (CRP) and blood leukocytes and immune responsiveness by ex vivo production of interleukin 1-beta (IL-1β), IL-6, and tumor necrosis factor alpha (TNF-α) in whole blood cultures without stimulation or after 24 hours stimulation with phorbol 12-myristate 13-acetate and ionomycin (PI), lipopolysaccharide (LPS), or peptidoglycan (PPG) in 251-270 children. Moisture damage in child's main living areas in infancy was not significantly associated with elevated levels of CRP or leukocytes at 6 years. In contrast, there was some suggestion for an effect on immune responsiveness, as moisture damage with visible mold was positively associated with LPS-stimulated production of TNF-α and minor moisture damage was inversely associated with PI-stimulated IL-1β. While early life exposure to mold damage may have some influence on later immune responsiveness, it does not seem to increase subclinical systemic inflammation in later life. © 2018 National Institute for Health and Welfare, Finland Indoor Air published by John Wiley & Sons Ltd.

  9. EDITORIAL: Microwave Moisture Measurements

    Science.gov (United States)

    Kaatze, Udo; Kupfer, Klaus; Hübner, Christof

    2007-04-01

    Microwave moisture measurements refer to a methodology by which the water content of materials is non-invasively determined using electromagnetic fields of radio and microwave frequencies. Being the omnipresent liquid on our planet, water occurs as a component in most materials and often exercises a significant influence on their properties. Precise measurements of the water content are thus extremely useful in pure sciences, particularly in biochemistry and biophysics. They are likewise important in many agricultural, technical and industrial fields. Applications are broad and diverse, and include the quality assessment of foodstuffs, the determination of water content in paper, cardboard and textile production, the monitoring of moisture in sands, gravels, soils and constructions, as well as the measurement of water admixtures to coal and crude oil in reservoirs and in pipelines. Microwave moisture measurements and evaluations require insights in various disciplines, such as materials science, dielectrics, the physical chemistry of water, electrodynamics and microwave techniques. The cooperation of experts from the different fields of science is thus necessary for the efficient development of this complex discipline. In order to advance cooperation the Workshop on Electromagnetic Wave Interaction with Water and Moist Substances was held in 1993 in Atlanta. It initiated a series of international conferences, of which the last one was held in 2005 in Weimar. The meeting brought together 130 scientists and engineers from all over the world. This special issue presents a collection of some selected papers that were given at the event. The papers cover most topics of the conference, featuring dielectric properties of aqueous materials, electromagnetic wave interactions, measurement methods and sensors, and various applications. The special issue is dedicated to Dr Andrzej W Kraszewski, who died in July 2006 after a distinguished career of 48 years in the research of

  10. Autoradiographic study on moisture distribution in pearl-barley and in rice grain

    International Nuclear Information System (INIS)

    Sakharov, Eh.V.; Koz'mina, E.P.; Troitskaya, E.Ya

    1975-01-01

    The dependence of some structural details of the pearl-barley and rice endosperm on the internal moisture distribution is found. The general scheme of the study is shown. The curves of the local moisture distribution in the pearly-barley and rice kernel are plotted according to the radiography data. Moisture distribution over the whole section of the rice kernel is relatively constant at 85 deg C after ten minutes of moisture. Whereas moisture of pearl-barley kernel is only approaching the center of kernel by the time the moisture content increases to 1.5-2%. The slow moisture transfer in the pearl-barley kernel makes the cooking period three times longer as that of the rice

  11. 30 CFR 27.41 - Test to determine resistance to moisture.

    Science.gov (United States)

    2010-07-01

    ... 30 Mineral Resources 1 2010-07-01 2010-07-01 false Test to determine resistance to moisture. 27.41... determine resistance to moisture. Components, subassemblies, or assemblies, the normal functioning of which might be affected by moisture, shall be tested in atmospheres of high relative humidity (80 percent or...

  12. Creating soil moisture maps based on radar satellite imagery

    Science.gov (United States)

    Hnatushenko, Volodymyr; Garkusha, Igor; Vasyliev, Volodymyr

    2017-10-01

    The presented work is related to a study of mapping soil moisture basing on radar data from Sentinel-1 and a test of adequacy of the models constructed on the basis of data obtained from alternative sources. Radar signals are reflected from the ground differently, depending on its properties. In radar images obtained, for example, in the C band of the electromagnetic spectrum, soils saturated with moisture usually appear in dark tones. Although, at first glance, the problem of constructing moisture maps basing on radar data seems intuitively clear, its implementation on the basis of the Sentinel-1 data on an industrial scale and in the public domain is not yet available. In the process of mapping, for verification of the results, measurements of soil moisture obtained from logs of the network of climate stations NOAA US Climate Reference Network (USCRN) were used. This network covers almost the entire territory of the United States. The passive microwave radiometers of Aqua and SMAP satellites data are used for comparing processing. In addition, other supplementary cartographic materials were used, such as maps of soil types and ready moisture maps. The paper presents a comparison of the effect of the use of certain methods of roughening the quality of radar data on the result of mapping moisture. Regression models were constructed showing dependence of backscatter coefficient values Sigma0 for calibrated radar data of different spatial resolution obtained at different times on soil moisture values. The obtained soil moisture maps of the territories of research, as well as the conceptual solutions about automation of operations of constructing such digital maps, are presented. The comparative assessment of the time required for processing a given set of radar scenes with the developed tools and with the ESA SNAP product was carried out.

  13. Moisture assessment by fast and non-destructive in situ measurements

    DEFF Research Database (Denmark)

    Hansen, Kurt Kielsgaard; Møller, Eva B.; Hansen, Ernst Jan de Place

    2014-01-01

    moisture content, which is not revealed by this inspection. The moisture content may become a problem for the buyers. This problem might have been avoided if the moisture content of the Building materials was measured on inspection. This is easily done in wood-based materials but for example in concrete...... to use, easily applicable and suitable for most porous building materials. Furthermore, the measurements must be reliable at the high end of the hygroscopic area and describe absolute moisture content or corresponding relative humidity. The existing methods for moisture measuring cannot meet...... on measurements of the relative humidity of the air in a small hood placed tightly and sealed to the surface of the construction. Results with aerated concrete covered with acrylic paint are presented....

  14. Complementary effects of surface water and groundwater on soil moisture dynamics in a degraded coastal floodplain forest

    Science.gov (United States)

    Kaplan, D.; Muñoz-Carpena, R.

    2011-02-01

    SummaryRestoration of degraded floodplain forests requires a robust understanding of surface water, groundwater, and vadose zone hydrology. Soil moisture is of particular importance for seed germination and seedling survival, but is difficult to monitor and often overlooked in wetland restoration studies. This research hypothesizes that the complex effects of surface water and shallow groundwater on the soil moisture dynamics of floodplain wetlands are spatially complementary. To test this hypothesis, 31 long-term (4-year) hydrological time series were collected in the floodplain of the Loxahatchee River (Florida, USA), where watershed modifications have led to reduced freshwater flow, altered hydroperiod and salinity, and a degraded ecosystem. Dynamic factor analysis (DFA), a time series dimension reduction technique, was applied to model temporal and spatial variation in 12 soil moisture time series as linear combinations of common trends (representing shared, but unexplained, variability) and explanatory variables (selected from 19 additional candidate hydrological time series). The resulting dynamic factor models yielded good predictions of observed soil moisture series (overall coefficient of efficiency = 0.90) by identifying surface water elevation, groundwater elevation, and net recharge (cumulative rainfall-cumulative evapotranspiration) as important explanatory variables. Strong and complementary linear relationships were found between floodplain elevation and surface water effects (slope = 0.72, R2 = 0.86, p < 0.001), and between elevation and groundwater effects (slope = -0.71, R2 = 0.71, p = 0.001), while the effect of net recharge was homogenous across the experimental transect (slope = 0.03, R2 = 0.05, p = 0.242). This study provides a quantitative insight into the spatial structure of groundwater and surface water effects on soil moisture that will be useful for refining monitoring plans and developing ecosystem restoration and management scenarios

  15. Development of density and moisture gauge by nuclear techniques

    International Nuclear Information System (INIS)

    Mangelaviraj, V.; Karasuddhi, P.; Banchornthevakal, V.; Punyachaiya, S.

    1981-08-01

    A combined soil moisture/density gauge using nuclear technique was developed. Simultaneous density and moisture measurements can take place by means of gamma and neutron sources which are attached to the moisture probe. Backscattered gamma radiation giving information on density is detected by a G.M. counter while slow neutron radiation containing moisture information is detected by a boron-lined proportional counter. The instrument makes use of a 30 mCi americium 241-beryllium neutron source and a 10 mCi cesium 137 gamma source. The instrument was calibrated using soil and sand filled in a 200 litre-barrel in laboratory and field work which was carried out to check the correctness of the calibration curves. (author)

  16. Using Remotely Sensed Fluorescence and Soil Moisture to Better Understand the Seasonal Cycle of Tropical Grasslands

    Science.gov (United States)

    Smith, Dakota Carlysle

    Seasonal grasslands account for a large area of Earth's land cover. Annual and seasonal changes in these grasslands have profound impacts on Earth's carbon, energy, and water cycles. In tropical grasslands, growth is commonly water-limited and the landscape oscillates between highly productive and unproductive. As the monsoon begins, soils moisten providing dry grasses the water necessary to photosynthesize. However, along with the rain come clouds that obscure satellite products that are commonly used to study productivity in these areas. To navigate this issue, we used solar induced fluorescence (SIF) products from OCO-2 along with soil moisture products from the Soil Moisture Active Passive satellite (SMAP) to "see through" the clouds to monitor grassland productivity. To get a broader understanding of the vegetation dynamics, we used the Simple Biosphere Model (SiB4) to simulate the seasonal cycles of vegetation. In conjunction with SiB4, the remotely sensed SIF and soil moisture observations were utilized to paint a clearer picture of seasonal productivity in tropical grasslands. The remotely sensed data is not available for every place at one time or at every time for one place. Thus, the study was focused on a large area from 15° E to 35° W and from 8°S to 20°N in the African Sahel. Instead of studying productivity relative to time, we studied it relative to soil moisture. Through this investigation we found soil moisture thresholds for the emergence of grassland growth, near linear grassland growth, and maturity of grassland growth. We also found that SiB4 overestimates SIF by about a factor of two for nearly every value of soil moisture. On the whole, SiB4 does a surprisingly good job of predicting the response of seasonal growth in tropical grasslands to soil moisture. Future work will continue to integrate remotely sensed SIF & soil moisture with SiB4 to add to our growing knowledge of carbon, water, and energy cycling in tropical grasslands.

  17. Demonstration of a Porous Tube Hydroponic System to Control Plant Moisture and Growth

    Science.gov (United States)

    Dreschel, T. W.; Hall, C. R.; Foster, T. E.

    2003-01-01

    Accurate remote detection of plant health indicators such as moisture, plant pigment concentrations, photosynthetic flux, and other biochemicals in canopies is a major goal in plant research. Influencing factors include complex interactions between wavelength dependent absorbing and scattering features from backgrounds as well as canopy biochemical and biophysical constituents. Accurately controlling these factors in outdoor field studies is difficult. Early testing of a porous tube plant culture system has indicated that plant biomass production, biomass partitioning, and leaf moisture of plants can be controlled by precisely managing the root water potential. Managing nutrient solution chemistry can also control plant pigments, biochemical concentrations, plant biomass production, and photosynthetic rates. A test bed was developed which utilized the porous tube technology with the intent of evaluating remote sensing systems, spectral analyses procedures, gas-exchange, and fluorescence measurements for their ability to detect small differences in plant water status. Spectral analysis was able to detect small differences in the mean leaf water content between the treatments. However these small differences were not detectable in the gas-exchange or fluorescence measurements.

  18. Moisture dependence of radon transport in concrete : Measurements and modeling

    NARCIS (Netherlands)

    Cozmuta, [No Value; van der Graaf, ER; de Meijer, RJ

    2003-01-01

    The moisture dependence of the radon-release rate of concrete was measured under well controlled conditions. It was found that the radon-release rate almost linearly increases up to moisture contents of 50 to 60%. At 70 to 80% a maximum was found and for higher moisture contents the radon-release

  19. Evaluation of natural factors in town planning and strategic programming of development local community

    Directory of Open Access Journals (Sweden)

    Lješević Milutin

    2009-01-01

    Full Text Available The natural components are very important aspect of human life and work. The nature is place is place wherever to happened majority of human activity, working vacation and survival, although are some areas is technicality and desecrating to denaturalization. Because of that, it is necessary to study all valid of natural factors, when to programs new contents which are in function of human living, work or holiday. We can find great differences in exploration of some natural factors depending of level in programming of development (general or detail urban planning and strategic programming or local community or projecting. .

  20. Congo Basin precipitation: Assessing seasonality, regional interactions, and sources of moisture

    Science.gov (United States)

    Dyer, Ellen L. E.; Jones, Dylan B. A.; Nusbaumer, Jesse; Li, Harry; Collins, Owen; Vettoretti, Guido; Noone, David

    2017-07-01

    Precipitation in the Congo Basin was examined using a version of the National Center for Atmospheric Research Community Earth System Model (CESM) with water tagging capability. Using regionally defined water tracers, or tags, the moisture contribution from different source regions to Congo Basin precipitation was investigated. We found that the Indian Ocean and evaporation from the Congo Basin were the dominant moisture sources and that the Atlantic Ocean was a comparatively small source of moisture. In both rainy seasons the southwestern Indian Ocean contributed about 21% of the moisture, while the recycling ratio for moisture from the Congo Basin was about 25%. Near the surface, a great deal of moisture is transported from the Atlantic into the Congo Basin, but much of this moisture is recirculated back over the Atlantic in the lower troposphere. Although the southwestern Indian Ocean is a major source of Indian Ocean moisture, it is not associated with the bulk of the variability in precipitation over the Congo Basin. In wet years, more of the precipitation in the Congo Basin is derived from Indian Ocean moisture, but the spatial distribution of the dominant sources is shifted, reflecting changes in the midtropospheric circulation over the Indian Ocean. During wet years there is increased transport of moisture from the equatorial and eastern Indian Ocean. Our results suggest that reliably capturing the linkages between the large-scale circulation patterns over the Indian Ocean and the local circulation over the Congo Basin is critical for future projections of Congo Basin precipitation.

  1. Quantitation of 24-Hour Moisturization by Electrical Measurements of Skin Hydration.

    Science.gov (United States)

    Wickett, R Randall; Damjanovic, Bronson

    The purpose of this study was to quantify the effects of several moisturizers on hydration of the stratum corneum by measuring their effect on electrical conductance over a 24-hour period. Double-blind, randomized controlled trial. Twenty-five healthy female volunteers aged 18 to 65 years with dry skin on the lower legs and no other known dermatologic pathology participated in the study. Additional exclusion criteria were pregnant or taking anti-inflammatory steroids. The study was carried out in a clinical research facility in Winnipeg, Manitoba, Canada. Subjects underwent a 3-day conditioning period using a natural soap bar on the lower legs and no application of moisturizer to the skin. Participants then came to the test site and equilibrated for at least 30 minutes under controlled conditions of temperature and humidity. After baseline hydration measurements on test sites on the lower legs of each subject, a single application of each of 5 test products at a dose of 2 mg/cm was made. Skin hydration was assessed by electrical conductance measurements with a specialized probe. The probe was briefly placed on the skin surface with light pressure, and the measurement recorded in units of microsiemens (μS). Conductance was measured at 2, 4, 6, 8, and 24 hours after product applications. Although all but 1 of the test products increased conductance at 2 hours, only 2 moisturizers containing high levels of glycerin (products C and E) maintained increased conductance relative to baseline at 24 hours, +37.8 (P skin conductance for at least 24 hours after a single application.

  2. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However, uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and the procedures utilized to analyse the problems.

  3. Moisture Durability with Vapor-Permeable Insulating Sheathing

    Energy Technology Data Exchange (ETDEWEB)

    Lepage, R. [Building Science Corporation, Somerville, MA (United States); Lstiburek, J. [Building Science Corporation, Somerville, MA (United States)

    2013-09-01

    Exterior sheathing insulation is an effective strategy in increasing the overall R-value of wall assemblies; other benefits include decreasing the effects of thermal bridging and increasing the moisture durability of the built assembly. Vapor-permeable exterior insulation, such as mineral board or expanded polystyrene foam, are one such product that may be used to achieve these benefits. However,uncertainty exists on the effects of inward driven moisture and the interaction of increased sheathing temperatures on the moisture durability of the edifice. To address these concerns, Building Science Corporation (BSC) conducted a series of hygrothermal models for cities representing a range of different climate zones. This report describes the research project, key research questions, and theprocedures utilized to analyse the problems.

  4. Evaluation of Moisture Buffer Effects by Performing Whole-Building Simulations

    DEFF Research Database (Denmark)

    Rode, Carsten; Mendes, Nathan; K., Grau

    2004-01-01

    The humidity of rooms and the moisture conditions of materials in the enclosure of buildings depend much on each other because of the moisture exchange that takes place over the interior surfaces. These moisture influences also depend strongly on the thermal conditions of indoor spaces...... and enclosure elements of buildings. In turn, the moisture and humidity conditions have significant impact on how buildings are operated. In hot, humid climates, it may be desirable to keep the ventilation rates low in order to avoid too high indoor humidity, while in cold climates, ventilation can be used...

  5. Fate of {sup 14}C-labeled dissolved organic matter in paddy and upland soils in responding to moisture

    Energy Technology Data Exchange (ETDEWEB)

    Chen, Xiangbi [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100 (China); Wang, Aihua [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Li, Yang; Hu, Lening; Zheng, Hua; He, Xunyang [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100 (China); Ge, Tida; Wu, Jinshui [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Kuzyakov, Yakov [Department of Soil Science of Temperate Ecosystems, Department of Agricultural Soil Science, University of Göttingen, 37077 Göttingen (Germany); Su, Yirong, E-mail: yrsu@isa.ac.cn [Key Laboratory of Agro-ecological Processes in Subtropical Region, Institute of Subtropical Agriculture, The Chinese Academy of Sciences, Changsha 410125 (China); Huanjiang Observation and Research Station for Karst Ecosystems, Huanjiang 547100 (China)

    2014-08-01

    Soil organic matter (SOM) content in paddy soils is higher than that in upland soils in tropical and subtropical China. The dissolved organic matter (DOM) concentration, however, is lower in paddy soils. We hypothesize that soil moisture strongly controls the fate of DOM, and thereby leads to differences between the two agricultural soils under contrasting management regimens. A 100-day incubation experiment was conducted to trace the fate and biodegradability of DOM in paddy and upland soils under three moisture levels: 45%, 75%, and 105% of the water holding capacity (WHC). {sup 14}C labeled DOM, extracted from the {sup 14}C labeled rice plant material, was incubated in paddy and upland soils, and the mineralization to {sup 14}CO{sub 2} and incorporation into microbial biomass were analyzed. Labile and refractory components of the initial {sup 14}C labeled DOM and their respective half-lives were calculated by a double exponential model. During incubation, the mineralization of the initial {sup 14}C labeled DOM in the paddy soils was more affected by moisture than in the upland soils. The amount of {sup 14}C incorporated into the microbial biomass (2.4–11.0% of the initial DOM-{sup 14}C activity) was less affected by moisture in the paddy soils than in the upland soils. At any of the moisture levels, 1) the mineralization of DOM to {sup 14}CO{sub 2} within 100 days was 1.2–2.1-fold higher in the paddy soils (41.9–60.0% of the initial DOM-{sup 14}C activity) than in the upland soils (28.7–35.7%), 2) {sup 14}C activity remaining in solution was significantly lower in the paddy soils than in the upland soils, and 3) {sup 14}C activity remaining in the same agricultural soil solution was not significantly different among the three moisture levels after 20 days. Therefore, moisture strongly controls DOM fate, but moisture was not the key factor in determining the lower DOM in the paddy soils than in the upland soils. The UV absorbance of DOM at 280 nm

  6. Isotopic composition of atmospheric moisture from pan water evaporation measurements.

    Science.gov (United States)

    Devi, Pooja; Jain, Ashok Kumar; Rao, M Someshwer; Kumar, Bhishm

    2015-01-01

    A continuous and reliable time series data of the stable isotopic composition of atmospheric moisture is an important requirement for the wider applicability of isotope mass balance methods in atmospheric and water balance studies. This requires routine sampling of atmospheric moisture by an appropriate technique and analysis of moisture for its isotopic composition. We have, therefore, used a much simpler method based on an isotope mass balance approach to derive the isotopic composition of atmospheric moisture using a class-A drying evaporation pan. We have carried out the study by collecting water samples from a class-A drying evaporation pan and also by collecting atmospheric moisture using the cryogenic trap method at the National Institute of Hydrology, Roorkee, India, during a pre-monsoon period. We compared the isotopic composition of atmospheric moisture obtained by using the class-A drying evaporation pan method with the cryogenic trap method. The results obtained from the evaporation pan water compare well with the cryogenic based method. Thus, the study establishes a cost-effective means of maintaining time series data of the isotopic composition of atmospheric moisture at meteorological observatories. The conclusions drawn in the present study are based on experiments conducted at Roorkee, India, and may be examined at other regions for its general applicability.

  7. Soil moisture mapping at Bubnow Wetland using L-band radiometer (ELBARA III)

    Science.gov (United States)

    Łukowski, Mateusz; Schwank, Mike; Szlązak, Radosław; Wiesmann, Andreas; Marczewski, Wojciech; Usowicz, Bogusław; Usowicz, Jerzy; Rojek, Edyta; Werner, Charles

    2016-04-01

    The study of soil moisture is a scientific challenge. Not only because of large diversity of soils and differences in their water content, but also due to the difficulty of measuring, especially in large scale. On this field of interest several methods to determine the content of water in soil exists. The basic and referential is gravimetric method, which is accurate, but suitable only for small spatial scales and time-consuming. Indirect methods are faster, but need to be validated, for example those based on dielectric properties of materials (e.g. time domain reflectometry - TDR) or made from distance (remote), like brightness temperature measurements. Remote sensing of soil moisture can be performed locally (from towers, drones, planes etc.) or globally (satellites). These techniques can complement and help to verify different models and assumptions. In our studies, we applied spatial statistics to local soil moisture mapping using ELBARA III (ESA L-band radiometer, 1.4 GHz) mounted on tower (6.5 meter height). Our measurements were carried out in natural Bubnow Wetland, near Polesie National Park (Eastern Poland), during spring time. This test-site had been selected because it is representative for one of the biggest wetlands in Europe (1400 km2), called "Western Polesie", localized in Ukraine, Poland and Belarus. We have investigated Bubnow for almost decade, using meteorological and soil moisture stations, conducting campaigns of hand-held measurements and collecting soil samples. Now, due to the possibility of rotation at different incidence angles (as in previous ELBARA systems) and the new azimuth tracking capabilities, we obtained brightness temperature data not only at different distances from the tower, but also around it, in footprints containing different vegetation and soil types. During experiment we collected data at area about 450 m2 by rotating ELBARA's antenna 5-175° in horizontal and 30-70° in vertical plane. This type of approach allows

  8. 19 CFR 151.23 - Allowance for moisture in raw sugar.

    Science.gov (United States)

    2010-04-01

    ... 19 Customs Duties 2 2010-04-01 2010-04-01 false Allowance for moisture in raw sugar. 151.23...; DEPARTMENT OF THE TREASURY (CONTINUED) EXAMINATION, SAMPLING, AND TESTING OF MERCHANDISE Sugars, Sirups, and Molasses § 151.23 Allowance for moisture in raw sugar. Inasmuch as the absorption of sea water or moisture...

  9. Retrieval of canopy moisture content for dynamic fire risk assessment using simulated MODIS bands

    Science.gov (United States)

    Maffei, Carmine; Leone, Antonio P.; Meoli, Giuseppe; Calabrò, Gaetano; Menenti, Massimo

    2007-10-01

    Forest fires are one of the major environmental hazards in Mediterranean Europe. Biomass burning reduces carbon fixation in terrestrial vegetation, while soil erosion increases in burned areas. For these reasons, more sophisticated prevention tools are needed by local authorities to forecast fire danger, allowing a sound allocation of intervention resources. Various factors contribute to the quantification of fire hazard, and among them vegetation moisture is the one that dictates vegetation susceptibility to fire ignition and propagation. Many authors have demonstrated the role of remote sensing in the assessment of vegetation equivalent water thickness (EWT), which is defined as the weight of liquid water per unit of leaf surface. However, fire models rely on the fuel moisture content (FMC) as a measure of vegetation moisture. FMC is defined as the ratio of the weight of the liquid water in a leaf over the weight of dry matter, and its retrieval from remote sensing measurements might be problematic, since it is calculated from two biophysical properties that independently affect vegetation reflectance spectrum. The aim of this research is to evaluate the potential of the Moderate Resolution Imaging Spectrometer (MODIS) in retrieving both EWT and FMC from top of the canopy reflectance. The PROSPECT radiative transfer code was used to simulate leaf reflectance and transmittance as a function of leaf properties, and the SAILH model was adopted to simulate the top of the canopy reflectance. A number of moisture spectral indexes have been calculated, based on MODIS bands, and their performance in predicting EWT and FMC has been evaluated. Results showed that traditional moisture spectral indexes can accurately predict EWT but not FMC. However, it has been found that it is possible to take advantage of the multiple MODIS short-wave infrared (SWIR) channels to improve the retrieval accuracy of FMC (r2 = 0.73). The effects of canopy structural properties on MODIS

  10. Determination of Soil Moisture Content using Laboratory Experimental and Field Electrical Resistivity Values

    Science.gov (United States)

    Hazreek, Z. A. M.; Rosli, S.; Fauziah, A.; Wijeyesekera, D. C.; Ashraf, M. I. M.; Faizal, T. B. M.; Kamarudin, A. F.; Rais, Y.; Dan, M. F. Md; Azhar, A. T. S.; Hafiz, Z. M.

    2018-04-01

    The efficiency of civil engineering structure require comprehensive geotechnical data obtained from site investigation. In the past, conventional site investigation was heavily related to drilling techniques thus suffer from several limitations such as time consuming, expensive and limited data collection. Consequently, this study presents determination of soil moisture content using laboratory experimental and field electrical resistivity values (ERV). Field and laboratory electrical resistivity (ER) test were performed using ABEM SAS4000 and Nilsson400 soil resistance meter. Soil sample used for resistivity test was tested for characterization test specifically on particle size distribution and moisture content test according to BS1377 (1990). Field ER data was processed using RES2DINV software while laboratory ER data was analyzed using SPSS and Excel software. Correlation of ERV and moisture content shows some medium relationship due to its r = 0.506. Moreover, coefficient of determination, R2 analyzed has demonstrate that the statistical correlation obtain was very good due to its R2 value of 0.9382. In order to determine soil moisture content based on statistical correlation (w = 110.68ρ-0.347), correction factor, C was established through laboratory and field ERV given as 19.27. Finally, this study has shown that soil basic geotechnical properties with particular reference to water content was applicably determined using integration of laboratory and field ERV data analysis thus able to compliment conventional approach due to its economic, fast and wider data coverage.

  11. Experimental study of dynamic effects in moisture transfer in building materials

    DEFF Research Database (Denmark)

    Janssen, Hans; Scheffler, Gregor Albrecht; Plagge, Rudolf

    2016-01-01

    transfer in building materials, similar to moisture transfer in soils, is not free of dynamic effects. The findings imply that the widely accepted static theory for moisture storage in porous media is not generally valid and should be corrected for the occurrences of dynamic effects. Considering......In relation to moisture storage in porous materials, it is often assumed that the process dynamics do not affect the moisture retention. There is mounting evidence though that this notion is incorrect: various studies demonstrate that the moisture retention is influenced by the (de)saturation rates...... of the moisture transfer processes involved. The available evidence primarily stems from imbibition and drainage experiments on soils however, and compared to many other porous media, these tests consider rather permeable materials with relatively dominant liquid transport at comparatively large (de...

  12. Use of soil moisture sensors for irrigation scheduling

    Science.gov (United States)

    Various types of soil moisture sensing devices have been developed and are commercially available for water management applications. Each type of soil moisture sensors has its advantages and shortcomings in terms of accuracy, reliability, and cost. Resistive and capacitive based sensors, and time-d...

  13. Moisture corrections in neutron coincidence counting of PuO2

    International Nuclear Information System (INIS)

    Stewart, J.E.; Menlove, H.O.

    1987-01-01

    Passive neutron coincidence counting is capable of 1% assay accuracy for pure, well-characterized PuO 2 samples that contain plutonium masses from a few tens of grams to several kilograms. Moisture in the sample can significantly bias the assay high by changing the (α,n) neutron production, the sample multiplication, and the detection efficiency. Monte Carlo calculations and an analytical model of coincidence counting have been used to quantify the individual and cumulative effects of moisture biases for two PuO 2 sample sizes and a range of moisture levels from 0 to 9 wt %. Results of the calculations suggest a simple correction procedure for moisture bias that is effective from 0 to 3 wt % H 2 O. The procedure requires that the moisture level in the sample be known before the coincidence measurement

  14. Natural composites: Strength, packing ability and moisture sorption of cellulose fibres, and the related performance of composites

    DEFF Research Database (Denmark)

    Lilholt, Hans; Madsen, Bo

    2012-01-01

    Biobased materials are becoming of increasing interest as potential structural materials for the future. A useful concept in this context is the fibre reinforcement of materials by stiff and strong fibres. The bio-resources can contribute with cellulose fibres and (bio) polymers from hemicelluloses...... in stiffness, on the packing ability of cellulose fibres and the related maximum fibre volume fraction in composites, on the moisture sorption of cellulose fibres and the related mass increase and (large) hygral strains induced, and on the mechanical performance of composites....

  15. Year-round estimation of soil moisture content using temporally variable soil hydraulic parameters

    Czech Academy of Sciences Publication Activity Database

    Šípek, Václav; Tesař, Miroslav

    2017-01-01

    Roč. 31, č. 6 (2017), s. 1438-1452 ISSN 0885-6087 R&D Projects: GA ČR GA16-05665S Institutional support: RVO:67985874 Keywords : hydrological modelling * pore-size distribution * saturated hydraulic conductivity * seasonal variability * soil hydraulic parameters * soil moisture Subject RIV: DA - Hydrology ; Limnology OBOR OECD: Hydrology Impact factor: 3.014, year: 2016

  16. Assessing the effect of soil use changes on soil moisture regimes in mountain regions. (Catalan Pre-Pyrenees NE Spain)

    International Nuclear Information System (INIS)

    Loaiza Usuga, Juan Carlos; Jarauta Bragulat, Eusebio; Porta Casanellas, Jaume; Poch Claret, Rosa Maria

    2010-01-01

    Soil moisture regimes under different land uses were observed and modeled in a representative forest basin in the Catalonian Pre-Pyrenees, more specifically in the Ribera Salada catchment (222.5 km2). The vegetation cover in the catchment consists of pasture, tillage and forest. A number of representative plots for each of these land cover types were intensely monitored during the study period. The annual precipitation fluctuates between 516 and 753 mm, while the soil moisture content oscillates between 14 and 26% in the middle and low lying areas of the basin, and between 21 and 48% in shady zones near the river bed, and in the higher parts of the basin. Soil moisture and rainfall are controlled firstly by altitude, with the existence of two climatic types in the basin (sub-Mediterranean and sub-alpine), and further, by land use. Two models were applied to the estimated water moisture regimes: the Jarauta Simulation Newhall model (JSM) and the Newhall simulation model (NSM) were found to be able to predict the soil moisture regimes in the basin in the different combinations of local abiotic and biotic factors. The JSM results are more precise than the results obtained using another frequently used method, more specifically the Newhall Simulation Model (NSM), which has been developed to simulate soil moisture regimes. NSM was found to overestimate wet soil moisture regimes. The results show the importance of the moisture control section size and Available Water Capacity (AWC) of the profile, in the moisture section control state and variability. The mountain soils are dominated by rustic and occasionally xeric regimes. Land use changes leading to an increase in forest areas would imply drier soil conditions and therefore drier soil water regimes. These effects are most evident in degraded shallow and stony soils with low AWC.

  17. Moisture buffering capacity of highly absorbing materials

    Energy Technology Data Exchange (ETDEWEB)

    Cerolini, S.; D' Orazio, M.; Stazi, A. [Department of Architecture, Construction and Structures (DACS), Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy); Di Perna, C. [Department of Energetics, Faculty of Engineering, Polytechnic University of Marche, Via Brecce Bianche, 60100 Ancona (Italy)

    2009-02-15

    This research investigates the possibility to use highly absorbing materials to dampen indoor RH% variations. The practical MBV of sodium polyacrylate, cellulose-based material, perlite and gypsum is evaluated for a daily cyclic exposure that alternates high (75%) and low (33%) RH% levels for 8 h and 16 h, respectively. The adjustment velocity to RH% variations and the presence of hysteretic phenomena are also presented. The cellulose-based material proves to be the most suitable for moisture buffering applications. Starting from this material's properties, the effect of thickness, vapour resistance factor ({mu}) and mass surface exchange coefficient (Z{sub v}) on sorption capacity is evaluated by the use of a numerical model. (author)

  18. Trace moisture emissions from heated metal surfaces in hydrogen service

    International Nuclear Information System (INIS)

    Funke, Hans H.; Yao Jianlong; Raynor, Mark W.

    2004-01-01

    The formation of trace moisture by exposure of dry heated surfaces of 316 L stainless-steel, Restek Silcosteel registered , and nickel 1/8 in. outer diameter line segments to purified Ar and H 2 was studied using atmospheric pressure ionization mass spectrometry at flow rates of 2 slpm. Prior to H 2 exposure, adsorbed moisture was removed by heating incrementally to 500 deg. C in an argon matrix, where the Restek Silcosteel registered material released a maximum of 50 ppb moisture at 300 deg. C and moisture spikes from the Ni and stainless-steel surfaces reached several 100 ppb. Upon exposure to H 2 , persistent low ppb moisture emissions due to the reduction of surface oxide species were observed at temperatures as low as 100 deg. C. Spikes at 300-500 deg. C ranged from ∼100 ppb for the stainless-steel lines to 400 ppb for the Restek Silcosteel registered material. The observed moisture emissions have to be considered as a potential contamination source for high-purity processes utilizing H 2 purge at elevated temperatures

  19. Water activity reduction of intermediate moisture yellowstrip trevally (Selaroides leptolepis

    Directory of Open Access Journals (Sweden)

    Phomajun, P.

    2005-05-01

    Full Text Available Water activity reduction of intermediate moisture yellowstrip trevally was studied. The optimal time (8, 12, 16, 20 hrs. for curing marinade was investigated. The effects of different humectants (glycerol, sorbitol, lactitol, glucose syrup at 50% w/w of curing ingredients were compared. Results showed that moisture content and water activity of cured yellowstrip trevally decreased as curing time increased (p0.05. However, the hardness of intermediate moisture Yellowstrip trevally, determined by texture analyzer, decreased. Hardness, shear force, L a b value of sample added with various humectants were lower than those of the control (p0.05. The glycerol-added samples had the highest overall acceptability score and were higher than control, whereas the glucose syrup-added samples had the lowest score. Moisture content of the samples with the addition of various humectants was higher than that of the control (18.28 %. The samples added with glycerol retained the highest moisture (24.94%. The adsorption isotherm studies showed that the equilibrium moisture of sample added with glycerol was higher than that added with lactitol.

  20. Comparing soil moisture memory in satellite observations and models

    Science.gov (United States)

    Stacke, Tobias; Hagemann, Stefan; Loew, Alexander

    2013-04-01

    A major obstacle to a correct parametrization of soil processes in large scale global land surface models is the lack of long term soil moisture observations for large parts of the globe. Currently, a compilation of soil moisture data derived from a range of satellites is released by the ESA Climate Change Initiative (ECV_SM). Comprising the period from 1978 until 2010, it provides the opportunity to compute climatological relevant statistics on a quasi-global scale and to compare these to the output of climate models. Our study is focused on the investigation of soil moisture memory in satellite observations and models. As a proxy for memory we compute the autocorrelation length (ACL) of the available satellite data and the uppermost soil layer of the models. Additional to the ECV_SM data, AMSR-E soil moisture is used as observational estimate. Simulated soil moisture fields are taken from ERA-Interim reanalysis and generated with the land surface model JSBACH, which was driven with quasi-observational meteorological forcing data. The satellite data show ACLs between one week and one month for the greater part of the land surface while the models simulate a longer memory of up to two months. Some pattern are similar in models and observations, e.g. a longer memory in the Sahel Zone and the Arabian Peninsula, but the models are not able to reproduce regions with a very short ACL of just a few days. If the long term seasonality is subtracted from the data the memory is strongly shortened, indicating the importance of seasonal variations for the memory in most regions. Furthermore, we analyze the change of soil moisture memory in the different soil layers of the models to investigate to which extent the surface soil moisture includes information about the whole soil column. A first analysis reveals that the ACL is increasing for deeper layers. However, its increase is stronger in the soil moisture anomaly than in its absolute values and the first even exceeds the

  1. Exploring Protective factors among homeless youth: the role of natural mentors.

    Science.gov (United States)

    Dang, Michelle T; Conger, Katherine J; Breslau, Joshua; Miller, Elizabeth

    2014-08-01

    This study explored the presence and characteristics of natural mentors among 197 homeless youth and the association between natural mentoring relationships and youth functioning. Few studies have explored protective factors in the lives of homeless youth and how these may buffer against poor health outcomes. Relationships with natural mentors have been shown to have protective effects on adolescent functioning among the general adolescent population, and, thus, warrant further investigation with homeless youth. Results from this study revealed that 73.6% of homeless youth have natural mentoring relationships, split between kin and non-kin relationships. Having a natural mentor was associated with higher satisfaction with social support and fewer risky sexual behaviors. Findings suggest that natural mentors may play a protective role in the lives of homeless youth and should be considered an important source of social support that may enhance youth resilience.

  2. Length and time scales of atmospheric moisture recycling

    NARCIS (Netherlands)

    Van der Ent, R.J.; Savenije, H.H.G.

    2011-01-01

    It is difficult to quantify the degree to which terrestrial evaporation supports the occurrence of precipitation within a certain study region (i.e. regional moisture recycling) due to the scale- and shape-dependence of regional moisture recycling ratios. In this paper we present a novel approach to

  3. 7 CFR 801.6 - Tolerances for moisture meters.

    Science.gov (United States)

    2010-01-01

    ... 7 Agriculture 7 2010-01-01 2010-01-01 false Tolerances for moisture meters. 801.6 Section 801.6 Agriculture Regulations of the Department of Agriculture (Continued) GRAIN INSPECTION, PACKERS AND STOCKYARD... FOR GRAIN INSPECTION EQUIPMENT § 801.6 Tolerances for moisture meters. (a) The maintenance tolerances...

  4. Quasi-geostrophic dynamics in the presence of moisture gradients

    OpenAIRE

    Monteiro, Joy M.; Sukhatme, Jai

    2016-01-01

    The derivation of a quasi-geostrophic (QG) system from the rotating shallow water equations on a midlatitude beta-plane coupled with moisture is presented. Condensation is prescribed to occur whenever the moisture at a point exceeds a prescribed saturation value. It is seen that a slow condensation time scale is required to obtain a consistent set of equations at leading order. Further, since the advecting wind fields are geostrophic, changes in moisture (and hence, precipitation) occur only ...

  5. Tracing changes in atmospheric moisture supply to the drying Southwest China

    Directory of Open Access Journals (Sweden)

    C. Zhang

    2017-09-01

    Full Text Available Precipitation over Southwest China (SWC significantly decreased during 1979–2013. The months from July to September (JAS contributed the most to the decrease in precipitation. By tracing moisture sources of JAS precipitation over the SWC region, it is found that most moisture originates in regions from the northern Indian Ocean to SWC and from South China Sea to SWC. The major moisture contributing area is divided into an extended west region, SWC, and an extended east region. The extended west region is mainly influenced by the South Asian summer monsoon (SASM and the westerlies, while the extended east region is mainly influenced by the East Asian summer monsoon (EASM. The extended west, SWC, and extended east regions contribute 48.2, 15.5, and 24.5 % of the moisture for the SWC precipitation, respectively. Moisture supply from the extended west region decreased at a rate of −7.9 mm month−1 decade−1, whereas that from the extended east increased at a rate of 1.4 mm month−1 decade−1, resulting in an overall decrease in moisture supply. Further analysis reveals that the decline of JAS precipitation is mainly caused by change in the seasonal-mean component rather than the transient component of the moisture transport over the SWC region. In addition, the dynamic processes (i.e., changes in wind rather than the thermodynamic processes (i.e., changes in specific humidity are dominant in affecting the seasonal-mean moisture transport. A prevailing easterly anomaly of moisture transport that weakened moisture supply from the Indian Ocean is to a large extent responsible for the precipitation decrease over the SWC region.

  6. Moisture dependence of positron lifetime in Kevlar-49

    Science.gov (United States)

    Singh, Jag J.; Holt, William H.; Mock, Willis, Jr.

    1984-01-01

    Because of filamentary character of Kevlar-49 aramid fibers, there is some concern about the moisture uptake and its effect on plastic composites reinforced with Kevlar-49 fibers. As part of continuing studies of positron lifetime in polymers, we have measured positron lifetime spectra in Kevlar-49 fibers as a function of their moisture content. The long lifetime component intensities are rather low, being only of the order of 2-3 percent. The measured values of long component lifetimes at various moisture levels in the specimens are as follows: 2072 +/- 173 ps (dry); 2013 +/- 193 ps (20.7 percent saturation); 1665 +/- 85 ps (25.7 percent saturation); 1745 +/- 257 ps (32.1 percent saturation); and 1772 +/- 217 ps (100 percent saturation). It is apparent that the long component lifetime at first decreases and then increases as the specimen moisture content increases. These results have been compared with those inferred from Epon-815 and Epon-815/K-49 composite data.

  7. Increase of Steam Moisture in the BWR-Facility KKP 1

    International Nuclear Information System (INIS)

    Noack, Volker

    2002-01-01

    Main steam moisture in a BWR facility is determined by steam quality at core outlet and efficiency of steam separators and steam dryers. Transport of water with steam is accompanied by transport of radionuclides out of RPV resulting in enhanced radiation level in the main steam system. A remarkable increase of main steam moisture started at KKP 1 in 1997. In the following years increase of steam outlet moisture started at lower and lower core mass flow rates. Dose rate in main steam system increased simultaneously. Core mass flow rate and thus thermal power had to be reduced during stretch out operation to keep the main steam moisture below the specified boundary of 0.2 %. This boundary also guarantees, that radiological exposure remains far below approved values. The increase of main steam moisture corresponds with the application of low leakage core loading. Low leakage core loading results in enhanced steam generation in the center and in reduced steam generation in the outer zones of the core. It can be shown, that the uneven steam generation in the core became stronger over the years. Therefore, steam quality at inlet of the outer steam separators was getting lower. This resulted in higher carry over of water in this steam separators and steam dryers, thus explaining the increasing main steam moisture. KKP 1 started in 2000 with spectral shift operation. As one should expect, this resulted in reduced steam moisture. It remains the question of steam moisture in case of stretch out operation. Countermeasures are briefly discussed. (authors)

  8. Natural zeolites in diet or litter of broilers.

    Science.gov (United States)

    Schneider, A F; Almeida, D S De; Yuri, F M; Zimmermann, O F; Gerber, M W; Gewehr, C E

    2016-04-01

    This study aims to analyse the influence of adding natural zeolites (clinoptilolite) to the diet or litter of broilers and their effects on growth performance, carcass yield and litter quality. Three consecutive flocks of broilers were raised on the same sawdust litter, from d 1 to d 42 of age, and distributed in three treatments (control with no added zeolites, addition of 5 g/kg zeolite to diet and addition of 100 g/kg zeolites to litter). The addition of zeolites to the diet or litter did not affect growth performance or carcass yield. The addition of zeolites to the diet did not influence moisture content of the litter, ammonia volatilisation was reduced only in the first flock and pH of litter was reduced in the second and third flock. However, the addition of zeolites to the litter reduced moisture content, litter pH and ammonia volatilisation in all flocks analysed. The addition of 5 g/kg zeolite to the diet in three consecutive flocks was not effective in maintaining litter quality, whereas the addition of 100 g/kg natural zeolites to sawdust litter reduced litter moisture and ammonia volatilisation in three consecutive flocks raised on the same litter.

  9. Combined Radar-Radiometer Surface Soil Moisture and Roughness Estimation

    Science.gov (United States)

    Akbar, Ruzbeh; Cosh, Michael H.; O'Neill, Peggy E.; Entekhabi, Dara; Moghaddam, Mahta

    2017-01-01

    A robust physics-based combined radar-radiometer, or Active-Passive, surface soil moisture and roughness estimation methodology is presented. Soil moisture and roughness retrieval is performed via optimization, i.e., minimization, of a joint objective function which constrains similar resolution radar and radiometer observations simultaneously. A data-driven and noise-dependent regularization term has also been developed to automatically regularize and balance corresponding radar and radiometer contributions to achieve optimal soil moisture retrievals. It is shown that in order to compensate for measurement and observation noise, as well as forward model inaccuracies, in combined radar-radiometer estimation surface roughness can be considered a free parameter. Extensive Monte-Carlo numerical simulations and assessment using field data have been performed to both evaluate the algorithms performance and to demonstrate soil moisture estimation. Unbiased root mean squared errors (RMSE) range from 0.18 to 0.03 cm3cm3 for two different land cover types of corn and soybean. In summary, in the context of soil moisture retrieval, the importance of consistent forward emission and scattering development is discussed and presented.

  10. Parametrization of the increase of the aeolian erosion threshold wind friction velocity due to soil moisture for arid and semi-arid areas

    Directory of Open Access Journals (Sweden)

    F. Fécan

    1999-01-01

    Full Text Available Large-scale simulation of the soil-derived dust emission in semi-arid regions needs to account for the influence of the soil moisture on the wind erosion threshold. Soil water retention consists of molecular adsorption on the soil grain surface and capillary forces between the grain. Interparticle capillary forces (characterized by the moisture tension are the main factor responsible for the increase of the wind erosion threshold observed when the soil moisture increases. When the soil moisture content is close to but smaller than the maximum amount of adsorbed water, w' (depending on the soil texture, these capillary forces are considered as not strong enough to significantly increase the erosion threshold. An expression of the moisture tension as a function of soil moisture and w' is derived from retention curves. From this expression, a parametrization of the ratio of the wet to dry erosion thresholds has been developed as a function of soil moisture and soil texture. The coefficients of this parametrization have been determined by using experimental data from the literature. An empirical relationship between w' and soil clay content has been established. The erosion threshold ratios simulated for different soil textures were found to be in good agreement with the experimental data.Key words. Atmospheric composition and structure (Aerosols and particles · Hydrology (soil moisture

  11. Time series modeling of soil moisture dynamics on a steep mountainous hillside

    Science.gov (United States)

    Kim, Sanghyun

    2016-05-01

    The response of soil moisture to rainfall events along hillslope transects is an important hydrologic process and a critical component of interactions between soil vegetation and the atmosphere. In this context, the research described in this article addresses the spatial distribution of soil moisture as a function of topography. In order to characterize the temporal variation in soil moisture on a steep mountainous hillside, a transfer function, including a model for noise, was introduced. Soil moisture time series with similar rainfall amounts, but different wetness gradients were measured in the spring and fall. Water flux near the soil moisture sensors was modeled and mathematical expressions were developed to provide a basis for input-output modeling of rainfall and soil moisture using hydrological processes such as infiltration, exfiltration and downslope lateral flow. The characteristics of soil moisture response can be expressed in terms of model structure. A seasonal comparison of models reveals differences in soil moisture response to rainfall, possibly associated with eco-hydrological process and evapotranspiration. Modeling results along the hillslope indicate that the spatial structure of the soil moisture response patterns mainly appears in deeper layers. Similarities between topographic attributes and stochastic model structures are spatially organized. The impact of temporal and spatial discretization scales on parameter expression is addressed in the context of modeling results that link rainfall events and soil moisture.

  12. Temperature and moisture effects on greenhouse gas emissions from deep active-layer boreal soils

    Science.gov (United States)

    Bond-Lamberty, Ben; Smith, A. Peyton; Bailey, Vanessa

    2016-12-01

    Rapid climatic changes, rising air temperatures, and increased fires are expected to drive permafrost degradation and alter soil carbon (C) cycling in many high-latitude ecosystems. How these soils will respond to changes in their temperature, moisture, and overlying vegetation is uncertain but critical to understand given the large soil C stocks in these regions. We used a laboratory experiment to examine how temperature and moisture control CO2 and CH4 emissions from mineral soils sampled from the bottom of the annual active layer, i.e., directly above permafrost, in an Alaskan boreal forest. Gas emissions from 30 cores, subjected to two temperatures and either field moisture conditions or experimental drought, were tracked over a 100-day incubation; we also measured a variety of physical and chemical characteristics of the cores. Gravimetric water content was 0.31 ± 0.12 (unitless) at the beginning of the incubation; cores at field moisture were unchanged at the end, but drought cores had declined to 0.06 ± 0.04. Daily CO2 fluxes were positively correlated with incubation chamber temperature, core water content, and percent soil nitrogen. They also had a temperature sensitivity (Q10) of 1.3 and 1.9 for the field moisture and drought treatments, respectively. Daily CH4 emissions were most strongly correlated with percent nitrogen, but neither temperature nor water content was a significant first-order predictor of CH4 fluxes. The cumulative production of C from CO2 was over 6 orders of magnitude higher than that from CH4; cumulative CO2 was correlated with incubation temperature and moisture treatment, with drought cores producing 52-73 % lower C. Cumulative CH4 production was unaffected by any treatment. These results suggest that deep active-layer soils may be sensitive to changes in soil moisture under aerobic conditions, a critical factor as discontinuous permafrost thaws in interior Alaska. Deep but unfrozen high-latitude soils have been shown to be

  13. Influence of Inherent Moisture Content on the Deformation ...

    African Journals Online (AJOL)

    Influence of Inherent Moisture Content on the Deformation. Properties of Coconut Tissues During Mechanical Oil. Expression. *J. J. Mpagalile1 and B. Clarke2. 1Department of ... The study confirmed that moisture content has an important role in the deformation of coconut ..... A micro penetration technique for mechanical.

  14. The interactive effects of temperature and moisture on nitrogen fixation in two temperate-arctic mosses

    DEFF Research Database (Denmark)

    Rousk, Kathrin; Pedersen, Pia Agerlund; Dyrnum, Kristine

    2017-01-01

    fixation in mosses under controlled conditions have rarely been investigated separately, rendering the interactive effects of the two climatic factors on N2 fixation unknown. Here, we tested the interactive effects of temperature and moisture on N2 fixation in the two most dominant moss species...

  15. Variation of moisture content of some varnished woods in indoor climatic conditions

    Directory of Open Access Journals (Sweden)

    Kemal Üçüncü

    2017-11-01

    Full Text Available In this study, moisture change of varnished wood of black poplar (Populus nigra and yellow pine (Pinus silvestris L. used in indoor climate conditions with central heating in Trabzon (Turkey were investigated. 300 mm length wood specimens, with cross section of 12.5 mm in tangential and in radial and with the square sections of 25mm and 50 mm, were obtained from two species grown in Kanuni Campus of the Karadeniz Technical University. In this research, un-varnished wood samples were also used for reference. The wood moisture content was determined by the weighing method, the wood equilibrium moisture content by the Hailwood-Horrobin equation, and the relative humidity in the indoor climatic conditions by humid air thermodynamic principles. As a result; it was observed that the moisture content of varnished wood samples has a strong relationship with equilibrium moisture content, temperature and relative humidity. It was found that the moisture content of varnished woods was higher than the moisture content of un-varnished woods in the same climatic conditions. It was observed that the difference between the monthly average moisture content was lower in varnished woods in proportion to un-varnished woods. According to these results, it can be indicated that it would be more appropriate to select higher moisture content in the drying of wood than the equilibrium moisture content. Such an application would also reduce drying costs. Further, it can be recommended to use varnished wood in various applications because the low change range of average moisture content can affect the swelling or shrinking of wood.

  16. Estimating Regional Scale Hydroclimatic Risk Conditions from the Soil Moisture Active-Passive (SMAP Satellite

    Directory of Open Access Journals (Sweden)

    Catherine Champagne

    2018-04-01

    Full Text Available Satellite soil moisture is a critical variable for identifying susceptibility to hydroclimatic risks such as drought, dryness, and excess moisture. Satellite soil moisture data from the Soil Moisture Active/Passive (SMAP mission was used to evaluate the sensitivity to hydroclimatic risk events in Canada. The SMAP soil moisture data sets in general capture relative moisture trends with the best estimates from the passive-only derived soil moisture and little difference between the data at different spatial resolutions. In general, SMAP data sets overestimated the magnitude of moisture at the wet extremes of wetting events. A soil moisture difference from average (SMDA was calculated from SMAP and historical Soil Moisture and Ocean Salinity (SMOS data showed a relatively good delineation of hydroclimatic risk events, although caution must be taken due to the large variability in the data within risk categories. Satellite soil moisture data sets are more sensitive to short term water shortages than longer term water deficits. This was not improved by adding “memory” to satellite soil moisture indices to improve the sensitivity of the data to drought, and there is a large variability in satellite soil moisture values with the same drought severity rating.

  17. The soil microbiome at the Gi-FACE experiment responds to a moisture gradient but not to CO2 enrichment.

    Science.gov (United States)

    de Menezes, Alexandre B; Müller, Christoph; Clipson, Nicholas; Doyle, Evelyn

    2016-09-01

    The soil bacterial community at the Giessen free-air CO2 enrichment (Gi-FACE) experiment was analysed by tag sequencing of the 16S rRNA gene. No substantial effects of CO2 levels on bacterial community composition were detected. However, the soil moisture gradient at Gi-FACE had a significant effect on bacterial community composition. Different groups within the Acidobacteria and Verrucomicrobia phyla were affected differently by soil moisture content. These results suggest that modest increases in atmospheric CO2 may cause only minor changes in soil bacterial community composition and indicate that the functional responses of the soil community to CO2 enrichment previously reported at Gi-FACE are due to factors other than changes in bacterial community composition. The effects of the moisture gradient revealed new information about the relationships between poorly known Acidobacteria and Verrucomicrobia and soil moisture content. This study contrasts with the relatively small number of other temperate grassland free-air CO2 enrichment microbiome studies in the use of moderate CO2 enrichment and the resulting minor changes in the soil microbiome. Thus, it will facilitate the development of further climate change mitigation studies. In addition, the moisture gradient found at Gi-FACE contributes new knowledge in soil microbial ecology, particularly regarding the abundance and moisture relationships of the soil Verrucomicrobia.

  18. Alp Rose stem cells, olive oil squalene and a natural alkyl polyglucoside emulsifier: Are they appropriate ingredients of skin moisturizers - in vivo efficacy on normal and sodium lauryl sulfate - irritated skin?.

    Science.gov (United States)

    Filipović, Mila; Gledović, Ana; Lukić, Milica; Tasić-Kostov, Marija; Isailović, Tanja; Pantelić, Ivana; Vuleta, Gordana; Savić, Snežana

    2016-11-01

    Since skin moisturization may be achieved by both actives and chosen carrier, plant stem cells, squalene and natural alkyl polyglucoside emulsifier may be potential components of contemporary cosmetic products. The aim of the study was in vivo evaluation of the skin irritation potential and the efficacy of Alpine Rose stem cells incorporated into li-posomes and olive oil squalene as ingredients of moisturizing creams, with respect to the novel emulsifier used for creams’ stabilization. With the employment of noninvasive skin biophysical measurements, skin hydration (EC), transepi-dermal water loss (TEWL), erythema index (EI) and viscoelas-ticity were measured on 76 healthy volunteers. In the first phase, skin irritation after a 24-hour occlusion and the long-term efficacy of creams (a 21-day study) on healthy skin were evaluated. Phase II of the study focused on the cream efficacy assessment after a 6-day treatment of sodium lauryl sulfate-irritated skin. After a 24-hour occlusion, there were no significant changes in the EI for any tested sample. In the second phase of the study, the EI was not significantly altered for the cream containing squalene, while the application of all active samples resulted in a significant reduction of TEWL. In both phases of the study an EC increase was recorded, espe-cially for the squalene-containing cream. Due to the lack of skin irritation and skin barrier impairment along with the marked hydration effect, it could be said that the in-vestigated actives incorporated into alkyl polyglucoside emulsi-fier-stabilized creams may be safely applied as ingredients for "tailor-made" cosmetic moisturizers intended for normal and dry skin care, whereas olive oil squalene could be used for the treatment of irritated or sensitive skin as well. [Projekat Ministarstva nauke Republike Srbije, br. TR34031

  19. Alp Rose stem cells, olive oil squalene and a natural alkyl polyglucoside emulsifier: Are they appropriate ingredients of skin moisturizers - in vivo efficacy on normal and sodium lauryl sulfate - irritated skin?

    Directory of Open Access Journals (Sweden)

    Filipović Mila

    2016-01-01

    Full Text Available Background/Aim. Since skin moisturization may be achieved by both actives and chosen carrier, plant stem cells, squalene and natural alkyl polyglucoside emulsifier may be potential components of contemporary cosmetic products. The aim of the study was in vivo evaluation of the skin irritation potential and the efficacy of Alpine Rose stem cells incorporated into li-posomes and olive oil squalene as ingredients of moisturizing creams, with respect to the novel emulsifier used for creams’ stabilization. Methods. With the employment of noninvasive skin biophysical measurements, skin hydration (EC, transepi-dermal water loss (TEWL, erythema index (EI and viscoelas-ticity were measured on 76 healthy volunteers. In the first phase, skin irritation after a 24-hour occlusion and the long-term efficacy of creams (a 21-day study on healthy skin were evaluated. Phase II of the study focused on the cream efficacy assessment after a 6-day treatment of sodium lauryl sulfate-irritated skin. Results. After a 24-hour occlusion, there were no significant changes in the EI for any tested sample. In the second phase of the study, the EI was not significantly altered for the cream containing squalene, while the application of all active samples resulted in a significant reduction of TEWL. In both phases of the study an EC increase was recorded, espe-cially for the squalene-containing cream. Conclusion. Due to the lack of skin irritation and skin barrier impairment along with the marked hydration effect, it could be said that the in-vestigated actives incorporated into alkyl polyglucoside emulsi-fier-stabilized creams may be safely applied as ingredients for "tailor-made" cosmetic moisturizers intended for normal and dry skin care, whereas olive oil squalene could be used for the treatment of irritated or sensitive skin as well. [Projekat Ministarstva nauke Republike Srbije, br. TR34031

  20. Effect of moisture content on strength of CCA-treated lumber

    Science.gov (United States)

    Jerrold E. Winandy

    1995-01-01

    Recent studies on the effects of chromated copper arsenate (CCA) treatment on lumber design properties have primarily evaluated the effects of such treatment at or near 12% moisture content and at failure times of 1 to 10 min. The influence of various moisture contents and faster loading rates is unknown. This report discusses the influence of moisture content and its...

  1. Effects of moisture content on some physical properties of red ...

    African Journals Online (AJOL)

    The physical properties of red pepper seed were evaluated as a function of moisture content. The average length, width and thickness were 4.46, 3.66 and 0.79 mm, respectively, at 7.27% d.b. moisture content. In the moisture range of 7.27 to 20.69% dry basis (d.b.), studies on rewetted red pepper seed showed that the ...

  2. McMaster Mesonet soil moisture dataset: description and spatio-temporal variability analysis

    Directory of Open Access Journals (Sweden)

    K. C. Kornelsen

    2013-04-01

    Full Text Available This paper introduces and describes the hourly, high-resolution soil moisture dataset continuously recorded by the McMaster Mesonet located in the Hamilton-Halton Watershed in Southern Ontario, Canada. The McMaster Mesonet consists of a network of time domain reflectometer (TDR probes collecting hourly soil moisture data at six depths between 10 cm and 100 cm at nine locations per site, spread across four sites in the 1250 km2 watershed. The sites for the soil moisture arrays are designed to further improve understanding of soil moisture dynamics in a seasonal climate and to capture soil moisture transitions in areas that have different topography, soil and land cover. The McMaster Mesonet soil moisture constitutes a unique database in Canada because of its high spatio-temporal resolution. In order to provide some insight into the dominant processes at the McMaster Mesonet sites, a spatio-temporal and temporal stability analysis were conducted to identify spatio-temporal patterns in the data and to suggest some physical interpretation of soil moisture variability. It was found that the seasonal climate of the Great Lakes Basin causes a transition in soil moisture patterns at seasonal timescales. During winter and early spring months, and at the meadow sites, soil moisture distribution is governed by topographic redistribution, whereas following efflorescence in the spring and summer, soil moisture spatial distribution at the forested site was also controlled by vegetation canopy. Analysis of short-term temporal stability revealed that the relative difference between sites was maintained unless there was significant rainfall (> 20 mm or wet conditions a priori. Following a disturbance in the spatial soil moisture distribution due to wetting, the relative soil moisture pattern re-emerged in 18 to 24 h. Access to the McMaster Mesonet data can be provided by visiting www.hydrology.mcmaster.ca/mesonet.

  3. Factors that impact interdisciplinary natural science research collaboration in academia

    DEFF Research Database (Denmark)

    Maglaughlin, Kelly L.; Sonnenwald, Diane H.

    2005-01-01

    to provide a more comprehensive understanding of interdisciplinary scientific research collaboration within the natural sciences in academia. Data analysis confirmed factors previously identified in various literatures and yielded new factors. A total of twenty factors were identified, and classified......Interdisciplinary collaboration occurs when people with different educational and research backgrounds bring complementary skills to bear on a problem or task. The strength of interdisciplinary scientific research collaboration is its capacity to bring together diverse scientific knowledge...... to address complex problems and questions. However, interdisciplinary scientific research can be difficult to initiate and sustain. We do not yet fully understand factors that impact interdisciplinary scientific research collaboration. This study synthesizes empirical data from two empirical studies...

  4. The modulation of oceanic moisture transport by the hemispheric annular modes

    Directory of Open Access Journals (Sweden)

    Raquel eNieto

    2014-07-01

    Full Text Available Leaving aside the contribution made by recycling, it is the main oceanic moisture sources that are responsible for most of the precipitation that falls on the continents. The transport of moisture from these sources can be affected by large-scale variability according to the hemispheric annular modes. The influence of the two dominant modes of extratropical winter climate: the Northern and the Southern Annular Modes (NAM and SAM are herein investigated to assess how they affect the transport of moisture from the major oceanic moisture sources. A Lagrangian model was used, together with ERA-Interim reanalysis data (1979-2012, and differences between the composites of the six strongest higher and lower events observed for both phases of the two modes for the period were analysed. The method is able to reproduce the general pattern of known variations for both annular patterns. Lower values of the NAM Index are associated with the displacement of the storm track towards tropical latitudes. Thus, moisture transport is enhanced from the Northern Pacific towards the northeastern basin and from the Northern Atlantic and Mediterranean towards southern Europe. On the other hand, during higher values of NAM, moisture transport is favoured from the Northern Pacific towards eastern Asia, and moisture transport is enhanced from the Northern Atlantic towards the Caribbean Sea. In the Southern Hemisphere, during higher values of SAM more moisture is transported from the Atlantic and Indian oceanic sources southwards and eastwards than during the opposite phase. In this SAM phase it is also noted by an enhancement of moisture transport from the Coral Sea and Southern Pacific sources towards the Indian Ocean/West Pacific Warm Pool. Southeastern South America received more moisture from the Pacific and Atlantic sources during years with a lower SAM, episodes which also favoured the influx of moisture from the Southern Atlantic towards Africa, causing monsoon

  5. AN ACTIVE-PASSIVE COMBINED ALGORITHM FOR HIGH SPATIAL RESOLUTION RETRIEVAL OF SOIL MOISTURE FROM SATELLITE SENSORS (Invited)

    Science.gov (United States)

    Lakshmi, V.; Mladenova, I. E.; Narayan, U.

    2009-12-01

    Soil moisture is known to be an essential factor in controlling the partitioning of rainfall into surface runoff and infiltration and solar energy into latent and sensible heat fluxes. Remote sensing has long proven its capability to obtain soil moisture in near real-time. However, at the present time we have the Advanced Scanning Microwave Radiometer (AMSR-E) on board NASA’s AQUA platform is the only satellite sensor that supplies a soil moisture product. AMSR-E coarse spatial resolution (~ 50 km at 6.9 GHz) strongly limits its applicability for small scale studies. A very promising technique for spatial disaggregation by combining radar and radiometer observations has been demonstrated by the authors using a methodology is based on the assumption that any change in measured brightness temperature and backscatter from one to the next time step is due primarily to change in soil wetness. The approach uses radiometric estimates of soil moisture at a lower resolution to compute the sensitivity of radar to soil moisture at the lower resolution. This estimate of sensitivity is then disaggregated using vegetation water content, vegetation type and soil texture information, which are the variables on which determine the radar sensitivity to soil moisture and are generally available at a scale of radar observation. This change detection algorithm is applied to several locations. We have used aircraft observed active and passive data over Walnut Creek watershed in Central Iowa in 2002; the Little Washita Watershed in Oklahoma in 2003 and the Murrumbidgee Catchment in southeastern Australia for 2006. All of these locations have different soils and land cover conditions which leads to a rigorous test of the disaggregation algorithm. Furthermore, we compare the derived high spatial resolution soil moisture to in-situ sampling and ground observation networks

  6. Radar for Measuring Soil Moisture Under Vegetation

    Science.gov (United States)

    Moghaddam, Mahta; Moller, Delwyn; Rodriguez, Ernesto; Rahmat-Samii, Yahya

    2004-01-01

    A two-frequency, polarimetric, spaceborne synthetic-aperture radar (SAR) system has been proposed for measuring the moisture content of soil as a function of depth, even in the presence of overlying vegetation. These measurements are needed because data on soil moisture under vegetation canopies are not available now and are necessary for completing mathematical models of global energy and water balance with major implications for global variations in weather and climate.

  7. Effective Factors on Urinary Incontinence in Natural Menopausal Women

    OpenAIRE

    Shohani; V Carson; Sayehmiri; Shohani

    2015-01-01

    Background Urinary tract infections and urinary incontinence are common urogenital problems affecting 7 - 10% of menopausal women. Objectives The primary objective of this study was to quantify effective factors on urinary incontinence in a cohort of menopausal women. Patients and Methods A sample of 150 menopausal women (natural menopause for at least 12 months) were recruited fro...

  8. The Raam regional soil moisture monitoring network in the Netherlands

    Directory of Open Access Journals (Sweden)

    H.-J. F. Benninga

    2018-01-01

    Full Text Available We have established a soil moisture profile monitoring network in the Raam region in the Netherlands. This region faces water shortages during summers and excess of water during winters and after extreme precipitation events. Water management can benefit from reliable information on the soil water availability and water storing capacity in the unsaturated zone. In situ measurements provide a direct source of information on which water managers can base their decisions. Moreover, these measurements are commonly used as a reference for the calibration and validation of soil moisture content products derived from earth observations or obtained by model simulations. Distributed over the Raam region, we have equipped 14 agricultural fields and 1 natural grass field with soil moisture and soil temperature monitoring instrumentation, consisting of Decagon 5TM sensors installed at depths of 5, 10, 20, 40 and 80 cm. In total, 12 stations are located within the Raam catchment (catchment area of 223 km2, and 5 of these stations are located within the closed sub-catchment Hooge Raam (catchment area of 41 km2. Soil-specific calibration functions that have been developed for the 5TM sensors under laboratory conditions lead to an accuracy of 0.02 m3 m−3. The first set of measurements has been retrieved for the period 5 April 2016–4 April 2017. In this paper, we describe the Raam monitoring network and instrumentation, the soil-specific calibration of the sensors, the first year of measurements, and additional measurements (soil temperature, phreatic groundwater levels and meteorological data and information (elevation, soil physical characteristics, land cover and a geohydrological model available for performing scientific research. The data are available at https://doi.org/10.4121/uuid:dc364e97-d44a-403f-82a7-121902deeb56.

  9. The Raam regional soil moisture monitoring network in the Netherlands

    Science.gov (United States)

    Benninga, Harm-Jan F.; Carranza, Coleen D. U.; Pezij, Michiel; van Santen, Pim; van der Ploeg, Martine J.; Augustijn, Denie C. M.; van der Velde, Rogier

    2018-01-01

    We have established a soil moisture profile monitoring network in the Raam region in the Netherlands. This region faces water shortages during summers and excess of water during winters and after extreme precipitation events. Water management can benefit from reliable information on the soil water availability and water storing capacity in the unsaturated zone. In situ measurements provide a direct source of information on which water managers can base their decisions. Moreover, these measurements are commonly used as a reference for the calibration and validation of soil moisture content products derived from earth observations or obtained by model simulations. Distributed over the Raam region, we have equipped 14 agricultural fields and 1 natural grass field with soil moisture and soil temperature monitoring instrumentation, consisting of Decagon 5TM sensors installed at depths of 5, 10, 20, 40 and 80 cm. In total, 12 stations are located within the Raam catchment (catchment area of 223 km2), and 5 of these stations are located within the closed sub-catchment Hooge Raam (catchment area of 41 km2). Soil-specific calibration functions that have been developed for the 5TM sensors under laboratory conditions lead to an accuracy of 0.02 m3 m-3. The first set of measurements has been retrieved for the period 5 April 2016-4 April 2017. In this paper, we describe the Raam monitoring network and instrumentation, the soil-specific calibration of the sensors, the first year of measurements, and additional measurements (soil temperature, phreatic groundwater levels and meteorological data) and information (elevation, soil physical characteristics, land cover and a geohydrological model) available for performing scientific research. The data are available at https://doi.org/10.4121/uuid:dc364e97-d44a-403f-82a7-121902deeb56.

  10. Analysis of volatile phase transport in soils using natural radon gas as a tracer

    International Nuclear Information System (INIS)

    Chen, C.; Thomas, D.M.

    1992-01-01

    We have conducted a field study of soil gas transport processes using radon gas as a naturally occurring tracer. The experiment monitored soil gas radon activity, soil moisture, and soil temperature at three depths in the shallow soil column; barometric pressure, rainfall and wind speed were monitored at the soil surface. Linear and multiple regression analysis of the data sets has shown that the gas phase radon activities under natural environmental conditions are influenced by soil moisture content, barometric pressure variations, soil temperature and soil structure. The effect of wind speed on subsurface radon activities under our field conditions has not been demonstrated

  11. Optimum moisture levels for biodegradation of mortality composting envelope materials.

    Science.gov (United States)

    Ahn, H K; Richard, T L; Glanville, T D

    2008-01-01

    Moisture affects the physical and biological properties of compost and other solid-state fermentation matrices. Aerobic microbial systems experience different respiration rates (oxygen uptake and CO2 evolution) as a function of moisture content and material type. In this study the microbial respiration rates of 12 mortality composting envelope materials were measured by a pressure sensor method at six different moisture levels. A wide range of respiration (1.6-94.2mg O2/g VS-day) rates were observed for different materials, with alfalfa hay, silage, oat straw, and turkey litter having the highest values. These four envelope materials may be particularly suitable for improving internal temperature and pathogen destruction rates for disease-related mortality composting. Optimum moisture content was determined based on measurements across a range that spans the maximum respiration rate. The optimum moisture content of each material was observed near water holding capacity, which ranged from near 60% to over 80% on a wet basis for all materials except a highly stabilized soil compost blend (optimum around 25% w.b.). The implications of the results for moisture management and process control strategies during mortality composting are discussed.

  12. Divergent surface and total soil moisture projections under global warming

    Science.gov (United States)

    Berg, Alexis; Sheffield, Justin; Milly, Paul C.D.

    2017-01-01

    Land aridity has been projected to increase with global warming. Such projections are mostly based on off-line aridity and drought metrics applied to climate model outputs but also are supported by climate-model projections of decreased surface soil moisture. Here we comprehensively analyze soil moisture projections from the Coupled Model Intercomparison Project phase 5, including surface, total, and layer-by-layer soil moisture. We identify a robust vertical gradient of projected mean soil moisture changes, with more negative changes near the surface. Some regions of the northern middle to high latitudes exhibit negative annual surface changes but positive total changes. We interpret this behavior in the context of seasonal changes in the surface water budget. This vertical pattern implies that the extensive drying predicted by off-line drought metrics, while consistent with the projected decline in surface soil moisture, will tend to overestimate (negatively) changes in total soil water availability.

  13. PENGARUH ISOTERM SORPSI AIR TERHADAP STABILITAS BERAS UBI [Effect of Moisture Sorption Isotherm to Stability of “Sweet Potato Rice”

    Directory of Open Access Journals (Sweden)

    Sri Widowati1*

    2010-12-01

    Full Text Available “Sweet Potato Rice” stability as a dry food product was determined by water activity (aw and equilibrium moisture content (Me. This relationship is known as moisture sorption isotherm. This research were aimed 1 to study moisture sorption isotherm of “Sweet Potato Rice” from sweet potato flour (Cangkuang variety and native/heat moisture treatment (HMT starch which was stored at the range of aw:0.06 - 0.96 and 28oC; 2 to determine an appropriate model for describing product moisture sorption isotherm and 3 to predict “Sweet Potato Rice” shelf of life. Experimental design used was a random complete design with two factor, namely: 1 sweet potato starch: native and HMT, and 2 packaging material: polyethylene (PE and polypropylene (PP.The result showed that the moisture sorption isotherm profiles were sigmoid. Smith equation was the best model which described moisture sorption isotherm with R2= 0,991-0,993 for adsorption and R2= 0,964-0,971 for desorption. Shelf life test showed that “Sweet Potato Rice” from Cangkuang flour and modified starch had longer shelf life (5.67 months when packed in PP bag and 2.3 months when packed in PE bag; while shelf life artificial sweet potato made from Cangkuang flour and native starch was 4.24 months when packed in PP bag and 1.72 months when packed in PE bag.

  14. Determination of moisture in bagasse by neutron reflection

    International Nuclear Information System (INIS)

    Diaz Rizo, O.; Suarez, J.C.

    1990-01-01

    For the first time in Cuba organic samples were analyzed by neutron reflection method. The feasibility of this method to determinate the moisture grade in sugar cane bagasse is fixed. From 0 to 50w% moisture grade with 2-3% relative accuracy can be determinated using 10m. measuring time. 7 refs

  15. Does lactobionic acid affect the colloidal structure and skin moisturizing potential of the alkyl polyglucoside-based emulsion systems?

    Science.gov (United States)

    Tasic-Kostov, M Z; Reichl, S; Lukic, M Z; Jaksic, I N; Savic, S D

    2011-11-01

    Moisturizing creams are the most prescribed products in dermatology, essential in maintaining healthy skin as well as in the topical treatment of some diseases. The irritation potential of commonly used emulsifiers and moisturizing ingredients, but also their mutual interactions, could affect the functionality and safety of those dermopharmaceutics. The aim of this study was to promote moisturizing alkyl polyglucoside (APG)-based emulsion as vehicle for lactobionic acid (LA), advantageous representative of the alphahydroxyacids (AHAs)-multifunctional moisturizers, assessing the safety for use (in vitro acute skin irritation test using cytotoxicity assay compared with in vivo data obtained using skin bioengineering methods) and in vivo moisturizing capacity (bioengineering of the skin). In order to investigate possible interactions between APG mild natural emulsifier-based emulsion and LA, a deeper insight into the colloidal structure of the placebo and the emulsion with LA was given using polarization and transmission electron microscopy, rheology, thermal and texture analysis. This study showed that APG-based emulsions could be promoted as safe cosmetic/dermopharmaceutical vehicles and carriers for extremely acidic and hygroscopic AHA class of actives (specifically LA); prospective safety for human use of both APG and LA with the correlation between in vivo and in vitro findings was shown. However, it was revealed that LA strongly influenced the colloidal structure of the emulsion based on APGs and promoted the formation of lamellar structures which reflects onto the mode of water distribution within the cream. The advantageous skin hydrating potential of LA-containing emulsion vs. placebo was unlikely to be achieved, pointing that emulsions stabilized by lamellar liquid crystalline structures probably are not satisfying carriers for highly hygroscopic actives in order to reach the full moisturizing potential. Safe and effective use on dry skin is presumed.

  16. Soil moisture estimation using reflected solar and emitted thermal infrared radiation

    Science.gov (United States)

    Jackson, R. D.; Cihlar, J.; Estes, J. E.; Heilman, J. L.; Kahle, A.; Kanemasu, E. T.; Millard, J.; Price, J. C.; Wiegand, C. L.

    1978-01-01

    Classical methods of measuring soil moisture such as gravimetric sampling and the use of neutron moisture probes are useful for cases where a point measurement is sufficient to approximate the water content of a small surrounding area. However, there is an increasing need for rapid and repetitive estimations of soil moisture over large areas. Remote sensing techniques potentially have the capability of meeting this need. The use of reflected-solar and emitted thermal-infrared radiation, measured remotely, to estimate soil moisture is examined.

  17. Moisture Content Monitoring of a Timber Footbridge

    Directory of Open Access Journals (Sweden)

    Niclas Björngrim

    2016-03-01

    Full Text Available Construction of modern timber bridges has greatly increased during the last 20 years in Sweden. Wood as a construction material has several advantageous properties, e.g., it is renewable, sustainable, and aesthetically pleasing, but it is also susceptible to deterioration. To protect wood from deterioration and ensure the service life, the wood is either treated or somehow covered. This work evaluates a technology to monitor the moisture content in wood constructions. Monitoring the moisture content is important both to verify the constructive protection and for finding areas with elevated levels of moisture which might lead to a microbiological attack of the wood. In this work, a timber bridge was studied. The structure was equipped with six wireless sensors that measured the moisture content of the wood and the relative humidity every hour. Data for 744 days of the bridge are presented in this paper. Results show that the technology used to monitor the bridge generally works; however, there were issues due to communication problems and malfunction of sensors. This technology is promising for monitoring the state of wood constructions, but a more reliable sensor technology is warranted continuous remote monitoring of wood bridges over long periods of time.

  18. Effects of fuel properties on the natural downward smoldering of piled biomass powder: Experimental investigation

    International Nuclear Information System (INIS)

    He, Fang; Yi, Weiming; Li, Yongjun; Zha, Jianwen; Luo, Bin

    2014-01-01

    To validate the modeling of one-dimensional biomass smoldering and combustion, the effects of fuel type, moisture content and particle size on the natural downward smoldering of biomass powder have been investigated experimentally. A cylindrical reactor (inner size Φ26 cm × 22 cm) was constructed, and corn stalk, pine trunk, pyrolysis char and activated char from corn stalk were prepared as powders. The smoldering characteristics were examined for each of the four materials and for different moisture contents and particle sizes. The results revealed the following: 1) The maximum temperature in the fuel bed is only slightly affected by the fuel type and particle size. It increases gradually for original biomass and decreases slowly for chars with the development of the process. 2) The propagation velocity of the char oxidation front is significantly affected by the carbon density and ash content and nearly unaffected by moisture content and particle size. 3) The propagation velocity of the drying front is significantly affected by the moisture content, decreasing from over 10 times the propagation velocity of char oxidation front to about 3 times as the moisture content increased from 3 to 21%. - Highlights: • Natural downward smoldering of four materials, different moisture contents, and different particle sizes were investigated. • Propagation velocity of the char oxidation front differs significantly from that of the drying front. • Carbon density and ash content of fuel significantly affect propagation velocity of the char oxidation front

  19. Moisture buffer capacity of different insulation materials

    DEFF Research Database (Denmark)

    Peuhkuri, Ruut Hannele; Rode, Carsten; Hansen, Kurt Kielsgaard

    2004-01-01

    . In the isothermal tests the material samples were exposed to the same change in the relative humidity of the ambient air on both sides, while the samples were exposed to variations in relative humidity only on the cold side in the non-isothermal tests. The results of these rather different measurement principles...... lead to more durable constructions. In this paper, a large range of very different thermal insulation materials have been tested in specially constructed laboratory facilities to determine their moisture buffer capacity. Both isothermal and nonisothermal experimental set-ups have been used...... are discussed, and different ways are presented how to determine the moisture buffer capacity of the materials using partly standard material parameters and partly parameters determined from the actual measurements. The results so far show that the determination of moisture buffer capacity is very sensitive...

  20. Moisture Forecast Bias Correction in GEOS DAS

    Science.gov (United States)

    Dee, D.

    1999-01-01

    Data assimilation methods rely on numerous assumptions about the errors involved in measuring and forecasting atmospheric fields. One of the more disturbing of these is that short-term model forecasts are assumed to be unbiased. In case of atmospheric moisture, for example, observational evidence shows that the systematic component of errors in forecasts and analyses is often of the same order of magnitude as the random component. we have implemented a sequential algorithm for estimating forecast moisture bias from rawinsonde data in the Goddard Earth Observing System Data Assimilation System (GEOS DAS). The algorithm is designed to remove the systematic component of analysis errors and can be easily incorporated in an existing statistical data assimilation system. We will present results of initial experiments that show a significant reduction of bias in the GEOS DAS moisture analyses.