WorldWideScience

Sample records for natural laminar flow

  1. Natural Laminar Flow Flight Experiment

    Science.gov (United States)

    Steers, L. L.

    1981-01-01

    A supercritical airfoil section was designed with favorable pressure gradients on both the upper and lower surfaces. Wind tunnel tests were conducted in the Langley 8 Foot Transonic Pressure Tunnel. The outer wing panels of the F-111 TACT airplane were modified to incorporate partial span test gloves having the natural laminar, flow profile. Instrumentation was installed to provide surface pressure data as well as to determine transition location and boundary layer characteristics. The flight experiment encompassed 19 flights conducted with and without transition fixed at several locations for wing leading edge sweep angles which varied from 10 to 26 at Mach numbers from 0.80 to 0.85 and altitudes of 7620 meters and 9144 meters. Preliminary results indicate that a large portion of the test chord experienced laminar flow.

  2. Flight tests of a supersonic natural laminar flow airfoil

    Science.gov (United States)

    Frederick, M. A.; Banks, D. W.; Garzon, G. A.; Matisheck, J. R.

    2015-06-01

    A flight test campaign of a supersonic natural laminar flow airfoil has been recently completed. The test surface was an 80 inch (203 cm) chord and 40 inch (102 cm) span article mounted on the centerline store location of an F-15B airplane. The test article was designed with a leading edge sweep of effectively 0° to minimize boundary layer crossflow. The test article surface was coated with an insulating material to avoid significant heat transfer to and from the test article structure to maintain a quasi-adiabatic wall. An aircraft-mounted infrared camera system was used to determine boundary layer transition and the extent of laminar flow. The tests were flown up to Mach 2.0 and chord Reynolds numbers in excess of 30 million. The objectives of the tests were to determine the extent of laminar flow at high Reynolds numbers and to determine the sensitivity of the flow to disturbances. Both discrete (trip dots) and 2D disturbances (forward-facing steps) were tested. A series of oblique shocks, of yet unknown origin, appeared on the surface, which generated sufficient crossflow to affect transition. Despite the unwanted crossflow, the airfoil performed well. The results indicate that the sensitivity of the flow to the disturbances, which can translate into manufacturing tolerances, was similar to that of subsonic natural laminar flow wings.

  3. Building a Practical Natural Laminar Flow Design Capability

    Science.gov (United States)

    Campbell, Richard L.; Lynde, Michelle N.

    2017-01-01

    A preliminary natural laminar flow (NLF) design method that has been developed and applied to supersonic and transonic wings with moderate-to-high leading-edge sweeps at flight Reynolds numbers is further extended and evaluated in this paper. The modular design approach uses a knowledge-based design module linked with different flow solvers and boundary layer stability analysis methods to provide a multifidelity capability for NLF analysis and design. An assessment of the effects of different options for stability analysis is included using pressures and geometry from an NLF wing designed for the Common Research Model (CRM). Several extensions to the design module are described, including multiple new approaches to design for controlling attachment line contamination and transition. Finally, a modification to the NLF design algorithm that allows independent control of Tollmien-Schlichting (TS) and cross flow (CF) modes is proposed. A preliminary evaluation of the TS-only option applied to the design of an NLF nacelle for the CRM is performed that includes the use of a low-fidelity stability analysis directly in the design module.

  4. DRE-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fe; Choudhari, Meelan

    2013-01-01

    Nonlinear parabolized stability equations and secondary instability analyses are used to provide a computational assessment of the potential use of the discrete roughness elements (DRE) technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural laminar flow airfoil with a leading-edge sweep angle of 34.6deg, free-stream Mach number of 0.75 and chord Reynolds numbers of 17 x 10(exp 6), 24 x 10(exp 6) and 30 x 10(exp 6) suggest that DRE could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small wavelength stationary crossflow disturbances (i.e., DRE) also suppresses the growth of most amplified traveling crossflow disturbances.

  5. Discrete-Roughness-Element-Enhanced Swept-Wing Natural Laminar Flow at High Reynolds Numbers

    Science.gov (United States)

    Malik, Mujeeb; Liao, Wei; Li, Fei; Choudhari, Meelan

    2015-01-01

    Nonlinear parabolized stability equations and secondary-instability analyses are used to provide a computational assessment of the potential use of the discrete-roughness-element technology for extending swept-wing natural laminar flow at chord Reynolds numbers relevant to transport aircraft. Computations performed for the boundary layer on a natural-laminar-flow airfoil with a leading-edge sweep angle of 34.6 deg, freestream Mach number of 0.75, and chord Reynolds numbers of 17 × 10(exp 6), 24 × 10(exp 6), and 30 × 10(exp 6) suggest that discrete roughness elements could delay laminar-turbulent transition by about 20% when transition is caused by stationary crossflow disturbances. Computations show that the introduction of small-wavelength stationary crossflow disturbances (i.e., discrete roughness element) also suppresses the growth of most amplified traveling crossflow disturbances.

  6. Electro-Magnetic Flow Control to Enable Natural Laminar Flow Wings Project

    Data.gov (United States)

    National Aeronautics and Space Administration — This research team has developed a solid-state electromagnetic device that, when embedded along the leading edge of an aircraft wing, can disrupt laminar air flow on...

  7. Computational Design and Analysis of a Transonic Natural Laminar Flow Wing for a Wind Tunnel Model

    Science.gov (United States)

    Lynde, Michelle N.; Campbell, Richard L.

    2017-01-01

    A natural laminar flow (NLF) wind tunnel model has been designed and analyzed for a wind tunnel test in the National Transonic Facility (NTF) at the NASA Langley Research Center. The NLF design method is built into the CDISC design module and uses a Navier-Stokes flow solver, a boundary layer profile solver, and stability analysis and transition prediction software. The NLF design method alters the pressure distribution to support laminar flow on the upper surface of wings with high sweep and flight Reynolds numbers. The method addresses transition due to attachment line contamination/transition, Gortler vortices, and crossflow and Tollmien-Schlichting modal instabilities. The design method is applied to the wing of the Common Research Model (CRM) at transonic flight conditions. Computational analysis predicts significant extents of laminar flow on the wing upper surface, which results in drag savings. A 5.2 percent scale semispan model of the CRM NLF wing will be built and tested in the NTF. This test will aim to validate the NLF design method, as well as characterize the laminar flow testing capabilities in the wind tunnel facility.

  8. Nacelle/pylon/wing integration on a transport model with a natural laminar flow nacelle

    Science.gov (United States)

    Lamb, M.; Aabeyounis, W. K.; Patterson, J. C., Jr.

    1985-01-01

    Tests were conducted in the Langley 16-Foot Transonic Tunnel at free-stream Mach numbers from 0.70 to 0.82 and angles of attack from -2.5 deg to 4.0 deg to determine if nacelle/pylon/wing integration affects the achievement of natural laminar flow on a long-duct flow-through nacelle for a high-wing transonic transport configuration. In order to fully assess the integration effect on a nacelle designed to achieve laminar flow, the effects of fixed and free nacelle transitions as well as nacelle longitudinal position and pylon contouring were obtained. The results indicate that the ability to achieve laminar flow on the nacelle is not significantly altered by nacelle/pylon/wing integration. The increment in installed drag between free and fixed transition for the nacelles on symmetrical pylons is essentially the calculated differences between turbulent and laminar flow on the nacelles. The installed drag of the contoured pylon is less than that of the symmetrical pylon. The installed drag for the nacelles in a rearward position is greater than that for the nacelles in a forward position.

  9. A Method for the Constrained Design of Natural Laminar Flow Airfoils

    Science.gov (United States)

    Green, Bradford E.; Whitesides, John L.; Campbell, Richard L.; Mineck, Raymond E.

    1996-01-01

    A fully automated iterative design method has been developed by which an airfoil with a substantial amount of natural laminar flow can be designed, while maintaining other aerodynamic and geometric constraints. Drag reductions have been realized using the design method over a range of Mach numbers, Reynolds numbers and airfoil thicknesses. The thrusts of the method are its ability to calculate a target N-Factor distribution that forces the flow to undergo transition at the desired location; the target-pressure-N-Factor relationship that is used to reduce the N-Factors in order to prolong transition; and its ability to design airfoils to meet lift, pitching moment, thickness and leading-edge radius constraints while also being able to meet the natural laminar flow constraint. The method uses several existing CFD codes and can design a new airfoil in only a few days using a Silicon Graphics IRIS workstation.

  10. Natural laminar flow airfoil design considerations for winglets on low-speed airplanes

    Science.gov (United States)

    Vandam, C. P.

    1984-01-01

    Winglet airfoil section characteristics which significantly influence cruise performance and handling qualities of an airplane are discussed. A good winglet design requires an airfoil section with a low cruise drag coefficient, a high maximum lift coefficient, and a gradual and steady movement of the boundary layer transition location with angle of attack. The first design requirement provides a low crossover lift coefficient of airplane drag polars with winglets off and on. The other requirements prevent nonlinear changes in airplane lateral/directional stability and control characteristics. These requirements are considered in the design of a natural laminar flow airfoil section for winglet applications and chord Reynolds number of 1 to 4 million.

  11. Computational wing design in support of an NLF variable sweep transition flight experiment. [Natural Laminar Flow

    Science.gov (United States)

    Waggoner, E. G.; Campbell, R. L.; Phillips, P. S.

    1985-01-01

    A natural laminar flow outer panel wing glove has been designed for a variable sweep fighter aircraft using state-of-the-art computational techniques. Testing of the design will yield wing pressure and boundary-layer data under actual flight conditions and environment. These data will be used to enhance the understanding of the interaction between crossflow and Tollmien-Schlichting disturbances on boundary-layer transition. The outer wing panel was contoured such that a wide range of favorable pressure gradients could be obtained on the wing upper surface. Extensive computations were performed to support the design effort which relied on two- and three-dimensional transonic design and analysis techniques. A detailed description of the design procedure that evolved during this study is presented. Results on intermediate designs at various stages in the design process demonstrate how the various physical and aerodynamic constraints were integrated into the design. Final results of the glove design analyzed as part of the complete aircraft configuration with a full-potential wing/body analysis code indicate that the aerodynamic design objectives were met.

  12. Laminar Flow Analysis

    Science.gov (United States)

    Rogers, David F.

    1992-10-01

    The major thrust of this book is to present a technique of analysis that aids the formulation, understanding, and solution of problems of viscous flow. The intent is to avoid providing a "canned" program to solve a problem, offering instead a way to recognize the underlying physical, mathematical, and modeling concepts inherent in the solutions. The reader must first choose a mathematical model and derive governing equations based on realistic assumptions, or become aware of the limitations and assumptions associated with existing models. An appropriate solution technique is then selected. The solution technique may be either analytical or numerical. Computer-aided analysis algorithms supplement the classical analyses. The book begins by deriving the Navier-Stokes equation for a viscous compressible variable property fluid. The second chapter considers exact solutions of the incompressible hydrodynamic boundary layer equations solved with and without mass transfer at the wall. Forced convection, free convection, and the compressible laminar boundary layer are discussed in the remaining chapters. The text unifies the various topics by tracing a logical progression from simple to complex governing differential equations and boundary conditions. Numerical, parametric, and directed analysis problems are included at the end of each chapter.

  13. Gas flow measurement using laminar flow elements

    Energy Technology Data Exchange (ETDEWEB)

    Weigand, J. [Meriam Instrument, Cleveland, OH (United States)

    1994-12-31

    An instrument that measures gas volumetric flow rate using a capillary tube laminar-flow principle is described. Irs construction, operation, accuracy, and rangeability are presented. Discussion includes integrating the differential-pressure-producing flowmeter with appropriate temperature find pressure devices to produce a digital flowmeter system capable of measuring volumetric and mass flow rates. Typical applications are described.

  14. Measurement of the effect of manufacturing deviations on natural laminar flow for a single engine general aviation airplane

    Science.gov (United States)

    1987-01-01

    Renewed interest in natural laminar flow (NLF) had rekindled designer concern that manufacuring deviations may destroy the effectiveness of NLF for an operational aircraft. Experiments are summarized that attemtped to measure total drag changes associated with three different wing surface conditions on an aircraft typical of current general aviation high performance singles. The speed power technique was first used in an attempt to quantify the changes in total drag. Predicted and measured boundary layer transition locations for three different wing surface conditions were also compared, using two different forms of flow visualization. The three flight test phases included: assessment of an unpainted airframe, flight tests of the same aircraft after painstakingly filling and sanding the wings to design contours, and similar measurement after this aricraft was painted. In each flight phase, transition locations were monitored using with sublimating chemicals or pigmented oil. Two-dimensional drag coefficients were estimated using the Eppler-Somers code and measured with a wake rake in a method very similar to Jones' pitot traverse method. The net change in two-dimensional drag coefficient was approximately 20 counts between the unpainted aircraft and the hand-smoothed aircraft for typical cruise flight conditions.

  15. Developing laminar flow in curved rectangular channels

    NARCIS (Netherlands)

    De Vriend, H.J.

    1978-01-01

    As an intermediate step between earlier investigations on fully developed laminar flow in curved channels of shallow rectancular wet cross-section and the mathematical modeling of turbulent flow in river bends, a mathematical model of developing laminar flow in such channels is investigated. The mos

  16. Numerical Study on the Flow Transition in Laminar Natural Convection Flow in a Square Cavity%封闭腔内层流自然对流换热过渡层数值研究

    Institute of Scientific and Technical Information of China (English)

    黄建春; 李光正; 江立新

    2001-01-01

    对正方形空腔内的层流自然对流换热进行了数值模拟,用SIMPLE算法和乘方格式对该问题(Ra=1×103~1×106)进行了详细的数值计算.根据计算结果,在前人工作的基础上总结出封闭腔内层流自然对流换热的变化规律,提出了导热占主导地位的层流流动和导热与对流共时作用的层流流动的分界点,同时得出了两个区域的平均努塞尔数的计算公式,通过比较,表明其精度较以前的计算公式要高.%The numerical simulations have been undertaken for the benchmark problem of laminar natural convection flow and heat transfer in an enclosed square cavity. The SIMPLE arithmetic and power format are used to solve the conservation equations for laminar flow for a series of Rayleigh numbers reaching values up to 1×106. Some comparisons between the computational data and previous data and the correlations and further analyses are made. Based on the computational results, a new law of laminar natural convection flow and heat transfer is summarized on the basis of previous scholar's works. The flow transition is accurately proposed between the laminar flow predominated by the heat conduct and the laminar flow cooperated by the convection and the heat conduct. The average Nu correlations are made for representing the computational data and they are more precise than the previous correlations.

  17. Boundary Layers in Laminar Vortex Flows.

    Science.gov (United States)

    Baker, Glenn Leslie

    A detailed experimental study of the flow in an intense, laminar, axisymmetric vortex has been conducted in the Purdue Tornado Vortex Simulator. The complicated nature of the flow in the boundary layer of laboratory vortices and presumably on that encountered in full-scale tornadoes has been examined. After completing a number of modifications to the existing facility to improve the quality of the flow in the simulator, hot-film anemometry was employed for making velocity-component and turbulence-intensity measurements of both the free-stream and boundary layer portions of the flow. The measurements represent the first experimental boundary layer investigation of a well-defined vortex flow to appear in the literature. These results were compared with recent theoretical work by Burggraf, Stewartson and Belcher (1971) and with an exact similarity solution for line-sink boundary layers developed by the author. A comparison is also made with the numerical simulation of Wilson (1981) in which the boundary conditions were matched to those of the present experimental investigation. Expressions for the vortex core radius, the maximum tangential velocity and the maximum pressure drop are given in terms of dimensionless modeling parameters. References. Burggraf, O. R., K. Stewartson and R. Belcher, Boundary layer. induced by a potential vortex. Phys. Fluids 14, 1821-1833 (1971). Wilson, T., M. S. thesis, Vortex Boundary Layer Dynamics, Univ. Calif. Davis (1981).

  18. Laminar Entrained Flow Reactor (Fact Sheet)

    Energy Technology Data Exchange (ETDEWEB)

    2014-02-01

    The Laminar Entrained Flow Reactor (LEFR) is a modular, lab scale, single-user reactor for the study of catalytic fast pyrolysis (CFP). This system can be employed to study a variety of reactor conditions for both in situ and ex situ CFP.

  19. A Study of Laminar Backward-Facing Step Flow

    DEFF Research Database (Denmark)

    Davidson, Lars; Nielsen, Peter V.

    The laminar flow for a backwards facing step is studied. This work was initially part of the work presented in. In that work low-Reynolds number effects was studied, and the plan was also to include laminar flow. However, it turned out that when the numerical predictions of the laminar flow (Re...

  20. Laminar Flow in the Ocean Ekman Layer

    Science.gov (United States)

    Woods, J. T. H.

    INTRODUCTION THE EFFECT OF A STABLE DENSITY GRADIENT THE FATAL FLAW FLOW VISUALIZATION THE DISCOVERY OF LAMINAR FLOW FINE STRUCTURE WAVE-INDUCED SHEAR INSTABILITY BILLOW TURBULENCE REVERSE TRANSITION REVISED PARADIGM ONE-DIMENSIONAL MODELLING OF THE UPPER OCEAN DIURNAL VARIATION BUOYANT CONVECTION BILLOW TURBULENCE IN THE DIURNAL THERMOCLINE CONSEQUENCES FOR THE EKMAN CURRENT PROFILE SOLAR RADIATION APPLICATIONS Slippery Seas of Acapulco Pollution Afternoon Effect in Sonar Patchiness Fisheries Climate DISCUSSION CONCLUSION REFERENCES

  1. Steady laminar flow of fractal fluids

    Science.gov (United States)

    Balankin, Alexander S.; Mena, Baltasar; Susarrey, Orlando; Samayoa, Didier

    2017-02-01

    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived.

  2. Insect contamination protection for laminar flow surfaces

    Science.gov (United States)

    Croom, Cynthia C.; Holmes, Bruce J.

    1986-01-01

    The ability of modern aircraft surfaces to achieve laminar flow was well-accepted in recent years. Obtaining the maximum benefit of laminar flow for aircraft drag reduction requires maintaining minimum leading-edge contamination. Previously proposed insect contamination prevention methods have proved impractical due to cost, weight, or inconvenience. Past work has shown that insects will not adhere to water-wetted surfaces, but the large volumes of water required for protection rendered such a system impractical. The results of a flight experiment conducted by NASA to evaluate the performance of a porous leading-edge fluid discharge ice protection system operated as an insect contamination protections system are presented. In addition, these flights explored the environmental and atmospheric conditions most suitable for insect accumulation.

  3. Steady laminar flow of fractal fluids

    Energy Technology Data Exchange (ETDEWEB)

    Balankin, Alexander S., E-mail: abalankin@ipn.mx [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico); Mena, Baltasar [Laboratorio de Ingeniería y Procesos Costeros, Instituto de Ingeniería, Universidad Nacional Autónoma de México, Sisal, Yucatán, 97355 (Mexico); Susarrey, Orlando; Samayoa, Didier [Grupo Mecánica Fractal, ESIME, Instituto Politécnico Nacional, México D.F., 07738 (Mexico)

    2017-02-12

    We study laminar flow of a fractal fluid in a cylindrical tube. A flow of the fractal fluid is mapped into a homogeneous flow in a fractional dimensional space with metric induced by the fractal topology. The equations of motion for an incompressible Stokes flow of the Newtonian fractal fluid are derived. It is found that the radial distribution for the velocity in a steady Poiseuille flow of a fractal fluid is governed by the fractal metric of the flow, whereas the pressure distribution along the flow direction depends on the fractal topology of flow, as well as on the fractal metric. The radial distribution of the fractal fluid velocity in a steady Couette flow between two concentric cylinders is also derived. - Highlights: • Equations of Stokes flow of Newtonian fractal fluid are derived. • Pressure distribution in the Newtonian fractal fluid is derived. • Velocity distribution in Poiseuille flow of fractal fluid is found. • Velocity distribution in a steady Couette flow is established.

  4. Laminar flow resistance in short microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Phares, D.J. [Texas A and M University, College Station, TX (United States). Dept. of Mechanical Engineering; Smedley, G.T.; Zhou, J. [Glaukos Corp., Laguna Hills, CA (United States). Dept. of Research and Development

    2005-06-01

    We have measured the pressure drop for the flow of liquid through a series of short microtubes ranging from 80 to 150 {mu}m in diameter with aspect ratios between L/D = 2 and L/D = 5. These dimensions were selected to resemble lumens of implantable microstents that are under consideration for the treatment of glaucoma. For physiologically relevant pressure drops and flow rates, we have determined that a fully-developed laminar pipe flow may be assumed throughout the microtube when (L/D) > 0.20Re, where Re is the Reynolds number based on the diameter, D, and L is the length of the tube. We have examined flow rates between 0.1 and 10 {mu}L/s, corresponding to Reynolds numbers between 1 and 150. For smooth microtubes, no difference from macroscopic flow is observed for the tube sizes considered. However, flow resistance is found to be sensitive to the relative surface roughness of the tube walls. (author)

  5. Elliptic Length Scales in Laminar, Two-Dimensional Supersonic Flows

    Science.gov (United States)

    2015-06-01

    adiabatic wall flows over compression ramps and flows with shock impingements. The new correlations are derived from existing numerical data and...developed for 2D, laminar adiabatic wall flows over compression ramps and flows with shock impingements. These correlations are derived from existing...characterizing the influence of shocks and compression ramps on flat plate flows is presented. New correlations for laminar compressive interactions on

  6. NASA F-16XL supersonic laminar flow control program overview

    Science.gov (United States)

    Fischer, Michael C.

    1992-01-01

    The viewgraphs and discussion of the NASA supersonic laminar flow control program are provided. Successful application of laminar flow control to a High Speed Civil Transport (HSCT) offers significant benefits in reductions of take-off gross weight, mission fuel burn, cruise drag, structural temperatures, engine size, emissions, and sonic boom. The ultimate economic success of the proposed HSCT may depend on the successful adaption of laminar flow control, which offers the single most significant potential improvements in lift drag ratio (L/D) of all the aerodynamic technologies under consideration. The F-16XL Supersonic Laminar Flow Control (SLFC) Experiment was conceived based on the encouraging results of in-house and NASA supported industry studies to determine if laminar flow control is feasible for the HSCT. The primary objective is to achieve extensive laminar flow (50-60 percent chord) on a highly swept supersonic wing. Data obtained from the flight test will be used to validate existing Euler and Navier Stokes aerodynamic codes and transition prediction boundary layer stability codes. These validated codes and developed design methodology will be delivered to industry for their use in designing supersonic laminar flow control wings. Results from this experiment will establish preliminary suction system design criteria enabling industry to better size the suction system and develop improved estimates of system weight, fuel volume loss due to wing ducting, turbocompressor power requirements, etc. so that benefits and penalties can be more accurately assessed.

  7. Review of hybrid laminar flow control systems

    Science.gov (United States)

    Krishnan, K. S. G.; Bertram, O.; Seibel, O.

    2017-08-01

    The aeronautic community always strived for fuel efficient aircraft and presently, the need for ecofriendly aircraft is even more, especially with the tremendous growth of air traffic and growing environmental concerns. Some of the important drivers for such interests include high fuel prices, less emissions requirements, need for more environment friendly aircraft to lessen the global warming effects. Hybrid laminar flow control (HLFC) technology is promising and offers possibility to achieve these goals. This technology was researched for decades for its application in transport aircraft, and it has achieved a new level of maturity towards integration and safety and maintenance aspects. This paper aims to give an overview of HLFC systems research and associated flight tests in the past years both in the US and in Europe. The review makes it possible to distinguish between the successful approaches and the less successful or outdated approaches in HLFC research. Furthermore, the technology status shall try to produce first estimations regarding the mass, power consumption and performance of HLFC systems as well as estimations regarding maintenance requirements and possible subsystem definitions.

  8. Formation of coherent structures in 3D laminar mixing flows

    Science.gov (United States)

    Speetjens, Michel; Clercx, Herman

    2009-11-01

    Mixing under laminar flow conditions is key to a wide variety of industrial systems of size extending from microns to meters. Examples range from the traditional (and still very relevant) mixing of viscous fluids via compact processing equipment down to emerging micro-fluidics applications. Profound insight into laminar mixing mechanisms is imperative for further advancement of mixing technology (particularly for complex micro-fluidics systems) yet remains limited to date. The present study concentrates on a fundamental transport phenomenon of potential relevance to laminar mixing: the formation of coherent structures in the web of 3D fluid trajectories due to fluid inertia. Such coherent structures geometrically determine the transport properties of the flow and better understanding of their formation and characteristics may offer ways to control and manipulate the mixing properties of laminar flows. The formation of coherent structures and its impact upon 3D transport properties is demonstrated by way of examples.

  9. Laminar flow around corners triggers the formation of biofilm streamers.

    Science.gov (United States)

    Rusconi, Roberto; Lecuyer, Sigolene; Guglielmini, Laura; Stone, Howard A

    2010-09-06

    Bacterial biofilms have an enormous impact on medicine, industry and ecology. These microbial communities are generally considered to adhere to surfaces or interfaces. Nevertheless, suspended filamentous biofilms, or streamers, are frequently observed in natural ecosystems where they play crucial roles by enhancing transport of nutrients and retention of suspended particles. Recent studies in streamside flumes and laboratory flow cells have hypothesized a link with a turbulent flow environment. However, the coupling between the hydrodynamics and complex biofilm structures remains poorly understood. Here, we report the formation of biofilm streamers suspended in the middle plane of curved microchannels under conditions of laminar flow. Experiments with different mutant strains allow us to identify a link between the accumulation of extracellular matrix and the development of these structures. Numerical simulations of the flow in curved channels highlight the presence of a secondary vortical motion in the proximity of the corners, which suggests an underlying hydrodynamic mechanism responsible for the formation of the streamers. Our findings should be relevant to the design of all liquid-carrying systems where biofilms are potentially present and provide new insights on the origins of microbial streamers in natural and industrial environments.

  10. Investigation of Turbulent Laminar Patterns in Poiseuille-Couette flow

    Science.gov (United States)

    Nguyen, Quoc; Papavassiliou, Dimitrios

    2014-11-01

    Laminar-turbulent intermittency has recently been observed in the transitional regime of pipe ... and plane Couette flow .... While many works focus on behavior of these patterns in plane Couette flow, little attention has been paid to Poiseuille flow and transition from Couette to Poiseuille flow. In this study, we investigate behavior of turbulent laminar patterns in Poiseuille-Couette flow, including pure Poiseuille and Couette flows at two limits. Direct Numerical Simulation (DNS) is used to simulate a Poiseuille-Couette channel at a size of 16 πh × 2h × 2 πh (corresponding to a resolution of 512 × 129 × 128 in x, y and z directions), with periodic boundary condition applied in the x and z directions (h is half of the channel height). The Reynolds number is 300, and the flow is at transitional regime in all simulations. Behavior of laminar turbulent patterns as the flow goes from Couette to Poiseuille flow will be presented in details. This would shed some light on the effect of different types of flow on these patterns, as well as how these patterns vary from fully Poiseuille flow to fully Couette flow.

  11. Laminar flow of two miscible fluids in a simple network

    CERN Document Server

    Karst, Casey M; Geddes, John B

    2012-01-01

    When a fluid comprised of multiple phases or constituents flows through a network, non-linear phenomena such as multiple stable equilibrium states and spontaneous oscillations can occur. Such behavior has been observed or predicted in a number of networks including the flow of blood through the microcirculation, the flow of picoliter droplets through microfluidic devices, the flow of magma through lava tubes, and two-phase flow in refrigeration systems. While the existence of non-linear phenomena in a network with many inter-connections containing fluids with complex rheology may seem unsurprising, this paper demonstrates that even simple networks containing Newtonian fluids in laminar flow can demonstrate multiple equilibria. The paper describes a theoretical and experimental investigation of the laminar flow of two miscible Newtonian fluids of different density and viscosity through a simple network. The fluids stratify due to gravity and remain as nearly distinct phases with some mixing occurring only by d...

  12. Water slip flow in superhydrophobic microtubes within laminar flow region

    Institute of Scientific and Technical Information of China (English)

    Zhijia Yu; Xinghua Liu; Guozhu Kuang

    2015-01-01

    The fabrication of superhydrophobic surfaces and the studies on water flow characteristics therein are of great significance to many industrial areas as wel as to science and technology development. Experiments were car-ried out to investigate slip characteristics of water flowing in circular superhydrophobic microtubes within lam-inar flow region. The superhydrophobic microtubes of stainless steel were fabricated with chemical etching–fluorination treatment. An experimental setup was designed to measure the pressure drop as function of water flow rate. For comparison, superhydrophilic tubes were also tested. Poiseuille number Po was found to be smaller for the superhydrophobic microtubes than that for superhydrophilic ones. The pressure drop reduc-tion ranges from 8%to 31%. It decreases with increasing Reynolds number when Re b 900, owing to the transition from Cassie state to Wenzel state. However, it is almost unchanged with further increasing Re after Re N 900. The slip length in superhydrophobic microtubes also exhibits a Reynolds number dependence similarly to the pressure drop reduction. The relation between slip length and Darcy friction factor is theoretically analyzed with consideration of surface roughness effect, which was testified with the experimental results.

  13. Temperature measurement in laminar free convective flow using digital holography.

    Science.gov (United States)

    Hossain, Md Mosarraf; Shakher, Chandra

    2009-04-01

    A method for measurement of temperature in laminar free convection flow of water is presented using digital holographic interferometry. The method is relatively simple and fast because the method uses lensless Fourier transform digital holography, for which the reconstruction algorithm is simple and fast, and also the method does not require use of any extra experimental efforts as in phase shifting. The quantitative unwrapped phase difference is calculated experimentally from two digital holograms recorded in two different states of water--one in the quiescent state, the other in the laminar free convection. Unknown temperature in laminar free convection is measured quantitatively using a known value of temperature in the quiescent state from the unwrapped phase difference, where the equation by Tilton and Taylor describing the variation of refractive index of water with temperature is used to connect the phase with temperature. Experiments are also performed to visualize the turbulent free convection flow.

  14. Optimization of recirculating laminar air flow in operating room air conditioning systems

    Directory of Open Access Journals (Sweden)

    Enver Yalcin

    2016-04-01

    Full Text Available The laminar flow air-conditioning system with 100% fresh air is used in almost all operating rooms without discrimination in Turkey. The laminar flow device which is working with 100% fresh air should be absolutely used in Type 1A operating rooms. However, there is not mandatory to use of 100% fresh air for Type 1B defined as places performed simpler operation. Compared with recirculating laminar flow, energy needs of the laminar flow with 100 % fresh air has been emerged about 40% more than re-circulated air flow. Therefore, when a recirculating laminar flow device is operated instead of laminar flow system with 100% fresh air in the Type 1B operating room, annual energy consumption will be reduced. In this study, in an operating room with recirculating laminar flow, optimal conditions have been investigated in order to obtain laminar flow form by analyzing velocity distributions at various supply velocities by using computational fluid dynamics method (CFD.

  15. Biomimetic structures for fluid drag reduction in laminar and turbulent flows

    Energy Technology Data Exchange (ETDEWEB)

    Jung, Yong Chae; Bhushan, Bharat, E-mail: Bhushan.2@osu.ed [Nanoprobe Laboratory for Bio- and Nanotechnology and Biomimetics (NLB2), Ohio State University, 201 West 19th Avenue, Columbus, OH 43210-1142 (United States)

    2010-01-27

    Biomimetics allows one to mimic nature to develop materials and devices of commercial interest for engineers. Drag reduction in fluid flow is one of the examples found in nature. In this study, nano, micro, and hierarchical structures found in lotus plant surfaces, as well as shark skin replica and a rib patterned surface to simulate shark skin structure were fabricated. Drag reduction efficiency studies on the surfaces were systematically carried out using water flow. An experimental flow channel was used to measure the pressure drop in laminar and turbulent flows, and the trends were explained in terms of the measured and predicted values by using fluid dynamics models. The slip length for various surfaces in laminar flow was also investigated based on the measured pressure drop. For comparison, the pressure drop for various surfaces was also measured using air flow.

  16. Laminar hydromagnetic flows in an inclined heated layer

    Directory of Open Access Journals (Sweden)

    Paolo Falsaperla

    2016-05-01

    Full Text Available In this paper we investigate, analytically, stationary laminar flow solutions of an inclined layer filled with a hydromagnetic fluid heated from below and subject to the gravity field. In particular we describe in a systematic way the many basic solutions associated to the system. This extensive work is the basis to linear instability and nonlinear stability analysis of such motions.

  17. Analytical solution of laminar-laminar stratified two-phase flows with curved interfaces

    Energy Technology Data Exchange (ETDEWEB)

    Brauner, N.; Rovinsky, J.; Maron, D.M. [Tel-Aviv Univ. (Israel)

    1995-09-01

    The present study represents a complete analytical solution for laminar two-phase flows with curved interfaces. The solution of the Navier-Stokes equations for the two-phases in bipolar coordinates provides the `flow monograms` describe the relation between the interface curvature and the insitu flow geometry when given the phases flow rates and viscosity ratios. Energy considerations are employed to construct the `interface monograms`, whereby the characteristic interfacial curvature is determined in terms of the phases insitu holdup, pipe diameter, surface tension, fluids/wall adhesion and gravitation. The two monograms are then combined to construct the system `operational monogram`. The `operational monogram` enables the determination of the interface configuration, the local flow characteristics, such as velocity profiles, wall and interfacial shear stresses distribution as well as the integral characteristics of the two-phase flow: phases insitu holdup and pressure drop.

  18. Transition from laminar to turbulent flow in liquid filled microtubes

    Science.gov (United States)

    Sharp, K. V.; Adrian, R. J.

    2004-05-01

    The transition to turbulent flow is studied for liquids of different polarities in glass microtubes having diameters between 50 and 247 µm. The onset of transition occurs at Reynolds numbers of ~1,800 2,000, as indicated by greater-than-laminar pressure drop and micro-PIV measurements of mean velocity and rms velocity fluctuations at the centerline. Transition at anomalously low values of Reynolds number was never observed. Additionally, the results of more than 1,500 measurements of pressure drop versus flow rate confirm the macroscopic Poiseuille flow result for laminar flow resistance to within -1% systematic and ±2.5% rms random error for Reynolds numbers less than 1,800.

  19. On laminar-turbulent transition in nanofluid flows

    Science.gov (United States)

    Rudyak, V. Ya.; Minakov, A. V.; Guzey, D. V.; Zhigarev, V. A.; Pryazhnikov, M. I.

    2016-09-01

    The paper presents experimental data on the laminar-turbulent transition in the nanofluid flow in the pipe. The transition in the flows of such fluids is shown to have lower Reynolds numbers than in the base fluid. The degree of the flow destabilization increases with an increase in concentration of nanoparticles and a decrease in their size. On the other hand, in the turbulent flow regime, the presence of particles in the flow leads to the suppression of smallscale turbulent fluctuations. The correlation of the measured viscosity coefficient of considered nanofluids is presented.

  20. Numerical Simulation of Laminar Flow Field in a Stirred Tank

    Institute of Scientific and Technical Information of China (English)

    范茏; 王卫京; 杨超; 毛在砂

    2004-01-01

    Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the R.ushton disk turbine. Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime, in particular the laminar flow in baffled tanks.In this paper, the laminar flow field in a baffled tank stirred by a standard R.ushton turbine is simulated with the improved inner-outer iterative method. The non-inertial coordinate system is used for the impeller region, which is in turn used as the boundary conditions for iteration. It is found that the simulation results are in good agreement with previous experiments. In addition, the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data. This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.

  1. LAMINAR FLUID FLOW IN HELICAL ELLIPTICAL PIPE

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    In this paper, using an orthogonal curvilinear coordinate system and solving the complete N-S equations, we analyzed the flow in a helical elliptical duct by the perturbation method. The first-order solutions of the stream function Ψ, axial velocity w and the velocity of secondary flow (u, v) were obtained. The effects of torsion, curvature and the axial pressure gradient on the secondary flow were discussed in detail. The study indicates that the torsion has first-order effect on the secondary flow in a helical elliptical pipe, the secondary flow is dominated by torsion when the axial pressure gradient is small and for increasing gradient the secondary flow is eventually dominated by the effect due to curvature. The fact that the torsion has no effect on fluid flow in a helical pipe with a circular cross section was also confirmed. The most important conclusion is that the flow in a helical elliptical pipe to the first-order can be obtained as a combination of the flow in a toroidal pipe and the flow in a twisted pipe.

  2. Hydrodynamic Fluctuations in Laminar Fluid Flow. II. Fluctuating Squire Equation

    Science.gov (United States)

    Ortiz de Zárate, José M.; Sengers, Jan V.

    2013-02-01

    We use fluctuating hydrodynamics to evaluate the enhancement of thermally excited fluctuations in laminar fluid flow using plane Couette flow as a representative example. In a previous publication (J. Stat. Phys. 144:774, 2011) we derived the energy amplification arising from thermally excited wall-normal fluctuations by solving a fluctuating Orr-Sommerfeld equation. In the present paper we derive the energy amplification arising from wall-normal vorticity fluctuation by solving a fluctuating Squire equation. The thermally excited wall-normal vorticity fluctuations turn out to yield the dominant contribution to the energy amplification. In addition, we show that thermally excited streaks, even in the absence of any externally imposed perturbations, are present in laminar fluid flow.

  3. Laminar flow downregulates Notch activity to promote lymphatic sprouting.

    Science.gov (United States)

    Choi, Dongwon; Park, Eunkyung; Jung, Eunson; Seong, Young Jin; Yoo, Jaehyuk; Lee, Esak; Hong, Mingu; Lee, Sunju; Ishida, Hiroaki; Burford, James; Peti-Peterdi, Janos; Adams, Ralf H; Srikanth, Sonal; Gwack, Yousang; Chen, Christopher S; Vogel, Hans J; Koh, Chester J; Wong, Alex K; Hong, Young-Kwon

    2017-04-03

    The major function of the lymphatic system is to drain interstitial fluid from tissue. Functional drainage causes increased fluid flow that triggers lymphatic expansion, which is conceptually similar to hypoxia-triggered angiogenesis. Here, we have identified a mechanotransduction pathway that translates laminar flow-induced shear stress to activation of lymphatic sprouting. While low-rate laminar flow commonly induces the classic shear stress responses in blood endothelial cells and lymphatic endothelial cells (LECs), only LECs display reduced Notch activity and increased sprouting capacity. In response to flow, the plasma membrane calcium channel ORAI1 mediates calcium influx in LECs and activates calmodulin to facilitate a physical interaction between Krüppel-like factor 2 (KLF2), the major regulator of shear responses, and PROX1, the master regulator of lymphatic development. The PROX1/KLF2 complex upregulates the expression of DTX1 and DTX3L. DTX1 and DTX3L, functioning as a heterodimeric Notch E3 ligase, concertedly downregulate NOTCH1 activity and enhance lymphatic sprouting. Notably, overexpression of the calcium reporter GCaMP3 unexpectedly inhibited lymphatic sprouting, presumably by disturbing calcium signaling. Endothelial-specific knockouts of Orai1 and Klf2 also markedly impaired lymphatic sprouting. Moreover, Dtx3l loss of function led to defective lymphatic sprouting, while Dtx3l gain of function rescued impaired sprouting in Orai1 KO embryos. Together, the data reveal a molecular mechanism underlying laminar flow-induced lymphatic sprouting.

  4. Oblique Laminar-Turbulent Interfaces in Plane Shear Flows

    Science.gov (United States)

    Duguet, Yohann; Schlatter, Philipp

    2013-01-01

    Localized structures such as turbulent stripes and turbulent spots are typical features of transitional wall-bounded flows in the subcritical regime. Based on an assumption for scale separation between large and small scales, we show analytically that the corresponding laminar-turbulent interfaces are always oblique with respect to the mean direction of the flow. In the case of plane Couette flow, the mismatch between the streamwise flow rates near the boundaries of the turbulence patch generates a large-scale flow with a nonzero spanwise component. Advection of the small-scale turbulent fluctuations (streaks) by the corresponding large-scale flow distorts the shape of the turbulence patch and is responsible for its oblique growth. This mechanism can be easily extended to other subcritical flows such as plane Poiseuille flow or Taylor-Couette flow.

  5. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors.

    Science.gov (United States)

    Croze, Ottavio A; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A; Brandt, Luca

    2013-04-06

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design.

  6. Dispersion of swimming algae in laminar and turbulent channel flows: consequences for photobioreactors

    Science.gov (United States)

    Croze, Ottavio A.; Sardina, Gaetano; Ahmed, Mansoor; Bees, Martin A.; Brandt, Luca

    2013-01-01

    Shear flow significantly affects the transport of swimming algae in suspension. For example, viscous and gravitational torques bias bottom-heavy cells to swim towards regions of downwelling fluid (gyrotaxis). It is necessary to understand how such biases affect algal dispersion in natural and industrial flows, especially in view of growing interest in algal photobioreactors. Motivated by this, we here study the dispersion of gyrotactic algae in laminar and turbulent channel flows using direct numerical simulation (DNS) and a previously published analytical swimming dispersion theory. Time-resolved dispersion measures are evaluated as functions of the Péclet and Reynolds numbers in upwelling and downwelling flows. For laminar flows, DNS results are compared with theory using competing descriptions of biased swimming cells in shear flow. Excellent agreement is found for predictions that employ generalized Taylor dispersion. The results highlight peculiarities of gyrotactic swimmer dispersion relative to passive tracers. In laminar downwelling flow the cell distribution drifts in excess of the mean flow, increasing in magnitude with Péclet number. The cell effective axial diffusivity increases and decreases with Péclet number (for tracers it merely increases). In turbulent flows, gyrotactic effects are weaker, but discernable and manifested as non-zero drift. These results should have a significant impact on photobioreactor design. PMID:23407572

  7. Incompressible Laminar Flow Over a Three-Dimensional Rectangular Cavity

    Institute of Scientific and Technical Information of China (English)

    2000-01-01

    This paper investigates unsteady incompressible flow over cavities,Previous research in in compressible cavity-flow has included flow inside and past a 2-dimensional cavity,and flow inside a 3-dimensional cavity,driven by a moving lid.The present research is focused on incompressible flow past a 3-dimensional open shallow cavity.This involves the complex interaction etween the external flow and the re-circulating flow within the cavity.In particular,computation was performed on a 3-dimensonal shallow rectangular cavity with a laminar boundary layer at the cavity and a Reynolds number of 5,000 and 10,000,respectively,A CFD approach,based on the unsteady Navier-Stokes equation for 3-dimensional incompressible flow,was used in the study.Typical results of the computation are presented.Theses results reveal the highly unsteady and complex vortical structures at high Reynolds numbers.

  8. Gyrotactic trapping in laminar and turbulent Kolmogorov flow

    CERN Document Server

    Santamaria, Francesco; Cencini, Massimo; Boffetta, Guido

    2014-01-01

    Phytoplankton patchiness, namely the heterogeneous distribution of microalgae over multiple spatial scales, dramatically impacts marine ecology. A spectacular example of such heterogeneity occurs in thin phytoplankton layers (TPLs), where large numbers of photosynthetic microorganisms are found within a small depth interval. Some species of motile phytoplankton can form TPLs by gyrotactic trapping due to the interplay of their particular swimming style (directed motion biased against gravity) and the transport by a flow with shear along the direction of gravity. Here we consider gyrotactic swimmers in numerical simulations of the Kolmogorov shear flow, both in laminar and turbulent regimes. In the laminar case, we show that the swimmer motion is integrable and the formation of TPLs can be fully characterized by means of dynamical systems tools. We then study the effects of rotational Brownian motion or turbulent fluctuations (appearing when the Reynolds number is large enough) on TPLs. In both cases we show t...

  9. Numerical investigation of direct laminar-turbulent transition in counter-rotating Taylor-Couette flow

    Science.gov (United States)

    Krygier, Michael; Grigoriev, Roman

    2015-11-01

    A direct transition from laminar to turbulent flow has recently been discovered experimentally in the small-gap Taylor-Couette flow with counter-rotating cylinders. The subcritical nature of this transition is a result of relatively small aspect ratio, Γ = 5 . 26 for large Γ the transition is supercritical and involves an intermediate stable state (Coughlin & Marcus, 1996) - interpenetrating spirals (IPS). We investigate this transition numerically to probe the dynamics in regimes inaccessible to experiments for a fixed Reo = - 1000 by varying Rei . The numerics reproduce all the experimentally observed features and confirm the hysteretic nature of the transition. As Rei is increased, the laminar flow transitions to turbulence, with an unstable IPS state mediating the transition, similar to the Tollmien-Schlichting waves in plane Poiseuille flow. As Rei is decreased, turbulent flow transitions to a stable, temporally chaotic IPS state. This IPS state further transitions to either laminar or turbulent flow as Rei is decreased or increased. The stable IPS state is reminiscent of the pre-turbulent chaotic states found numerically in plane Poiseuille flow (Zammert & Eckhardt, 2015), but previously never observed experimentally.

  10. A Redefined Hydraulic Diameter for Laminar Flow.

    Science.gov (United States)

    1986-12-01

    entrance, down the duct, and either into a weighing tank or back into the reservoir, depending on the selector valve setting. A mercury manometer board...station alonq the duct . 28 •S is presented on the mercury manometer board. The weighing tank is used to measure the mass flow of oil for a specific

  11. Surface Runoff in Watershed Modeling—Turbulent or Laminar Flows?

    Directory of Open Access Journals (Sweden)

    Mark E. Grismer

    2016-05-01

    Full Text Available Determination of overland sheet flow depths, velocities and celerities across the hillslope in watershed modeling is important towards estimation of surface storage, travel times to streams and soil detachment rates. It requires careful characterization of the flow processes. Similarly, determination of the temporal variation of hillslope-riparian-stream hydrologic connectivity requires estimation of the shallow subsurface soil hydraulic conductivity and soil-water retention (i.e., drainable porosities parameters. Field rainfall and runoff simulation studies provide considerable information and insight into these processes; in particular, that sheet flows are likely laminar and that shallow hydraulic conductivities and storage can be determined from the plot studies. Here, using a 1 m by 2 m long runoff simulation flume, we found that for overland flow rates per unit width of roughly 30–60 mm2/s and bedslopes of 10%–66% with varying sand roughness depths that all flow depths were predicted by laminar flow equations alone and that equivalent Manning’s n values were depth dependent and quite small relative to those used in watershed modeling studies. Even for overland flow rates greater than those typically measured or modeled and using Manning’s n values of 0.30–0.35, often assumed in physical watershed model applications for relatively smooth surface conditions, the laminar flow velocities were 4–5 times greater, while the laminar flow depths were 4–5 times smaller. This observation suggests that travel times, surface storage volumes and surface shear stresses associated with erosion across the landscape would be poorly predicted using turbulent flow assumptions. Filling the flume with fine sand and conducting runoff studies, we were unable to produce sheet flow, but found that subsurface flows were onflow rate, soil depth and slope dependent and drainable porosities were only soil depth and slope dependent. Moreover, both the sand

  12. Laminar phase flow for an exponentially tapered Josephson oscillator

    DEFF Research Database (Denmark)

    Benabdallah, A.; Caputo, J. G.; Scott, Alwyn C.

    2000-01-01

    Exponential tapering and inhomogeneous current feed were recently proposed as means to improve the performance of a Josephson flux flow oscillator. Extensive numerical results backed up by analysis are presented here that support this claim and demonstrate that exponential tapering reduces...... the small current instability region and leads to a laminar flow regime where the voltage wave form is periodic giving the oscillator minimal spectral width. Tapering also leads to an increased output power. Since exponential tapering is not expected to increase the difficulty of fabricating a flux flow...

  13. NUMERICAL SIMULATION OF LAMINAR SQUARE IMPINGING JET FLOWS

    Institute of Scientific and Technical Information of China (English)

    CHEN Qing-guang; XU Zhong; WU Yu-lin; ZHANG Yong-jian

    2005-01-01

    A theoretical study has been undertaken to determine the flow characteristics associated with a three-dimensional laminar impinging jet issuing from a square pipe nozzle. Interesting flow structures around the jet are detected. The numerical result reveals the existence of four streamwise velocity off-center peaks near the impingement plate, which is different from the rectangular jet impingement. The mechanism of the formation of the off-center velocity peaks and the parameters affecting the flow-field characteristics are discussed by comparison of the computed results with different nozzle-to-plate spacings and Reynolds numbers.

  14. Pulsating laminar pipe flows with sinusoidal mass flux variations

    Science.gov (United States)

    Ünsal, B.; Ray, S.; Durst, F.; Ertunç, Ö.

    2005-11-01

    Combined analytical and experimental investigation of sinusoidal mass flow-controlled, pulsating, laminar and fully developed pipe flow was carried out. The experimental investigation employed a mass flow control unit built at LSTM-Erlangen for the present investigation. For the analytical investigation, the equations describing such flows were normalized to allow for a general solution, depending only on the normalized amplitude mA* of the mass flow pulsation and the normalized frequency F. The analytical and experimental results are presented in this normalized way and it is shown that good agreement between the results of the authors is obtained. A diagram is presented for the condition of flow reversal in terms of the dimensionless frequency F and the mass flow rate amplitude mA*.

  15. Use of laminar flow patterning for miniaturised biochemical assays

    DEFF Research Database (Denmark)

    Regenberg, Birgitte; Krühne, Ulrich; Beyer, M.

    2004-01-01

    Laminar flow in microfluidic chambers was used to construct low (one dimensional) density arrays suitable for miniaturized biochemical assays. By varying the ratio of flows of two guiding streams flanking a sample stream, precise focusing and positioning of the latter was achieved, and reactive...... species carried in the sample stream were deposited on functionalized chip surfaces as discrete 50 mm wide lanes. Using different model systems we have confirmed the method's suitability for qualitative screening and quantification tasks in receptor-ligand assays, recording biotin......-streptavidin interactions, DNA-hybridization and DNA-triplex formation. The system is simple, fast, reproducible, flexible, and has small sample requirements....

  16. Development of a Laminar Flow Bioreactor by Computational Fluid Dynamics

    Directory of Open Access Journals (Sweden)

    Meir Israelowitz

    2012-01-01

    Full Text Available The purpose of this study is to improve the design of a bioreactor for growing bone and other three-dimensional tissues using a computational fluid dynamics (CFD software to simulate flow through a porous scaffold, and to recommend design changes based on the results. Basic requirements for CFD modeling were that the flow in the reactor should be laminar and any flow stagnation should be avoided in order to support cellular growth within the scaffold. We simulated three different designs with different permeability values of the scaffold and tissue. Model simulation addressed flow patterns in combination with pressure distribution within the bioreactor. Pressure build-up and turbulent flow within the reactor was solved by introduction of an integrated bypass system for pressure release. The use of CFD afforded direct feedback to optimize the bioreactor design.

  17. Superhydrophobic drag reduction in laminar flows: a critical review

    Science.gov (United States)

    Lee, Choongyeop; Choi, Chang-Hwan; Kim, Chang-Jin

    2016-12-01

    A gas in between micro- or nanostructures on a submerged superhydrophobic (SHPo) surface allows the liquid on the structures to flow with an effective slip. If large enough, this slippage may entail a drag reduction appreciable for many flow systems. However, the large discrepancies among the slippage levels reported in the literature have led to a widespread misunderstanding on the drag-reducing ability of SHPo surfaces. Today we know that the amount of slip, generally quantified with a slip length, is mainly determined by the structural features of SHPo surfaces, such as the pitch, solid fraction, and pattern type, and further affected by secondary factors, such as the state of the liquid-gas interface. Reviewing the experimental data of laminar flows in the literature comprehensively and comparing them with the theoretical predictions, we provide a global picture of the liquid slip on structured surfaces to assist in rational design of SHPo surfaces for drag reduction. Because the trapped gas, called plastron, vanishes along with its slippage effect in most application conditions, lastly we discuss the recent efforts to prevent its loss. This review is limited to laminar flows, for which the SHPo drag reduction is reasonably well understood.

  18. Aircraft energy efficiency laminar flow control wing design study

    Science.gov (United States)

    Bonner, T. F., Jr.; Pride, J. D., Jr.; Fernald, W. W.

    1977-01-01

    An engineering design study was performed in which laminar flow control (LFC) was integrated into the wing of a commercial passenger transport aircraft. A baseline aircraft configuration was selected and the wing geometry was defined. The LFC system, with suction slots, ducting, and suction pumps was integrated with the wing structure. The use of standard aluminum technology and advanced superplastic formed diffusion bonded titanium technology was evaluated. The results of the design study show that the LFC system can be integrated with the wing structure to provide a structurally and aerodynamically efficient wing for a commercial transport aircraft.

  19. Turbulent-laminar patterns in plane Poiseuille flow

    CERN Document Server

    Tuckerman, Laurette S; Schrobsdorff, Hecke; Schneider, Tobias M; Gibson, John F

    2014-01-01

    Turbulent-laminar banded patterns in plane Poiseuille flow are studied via direct numerical simulations in a tilted and translating computational domain using a parallel version of the pseudospectral code Channelflow. 3D visualizations via the streamwise vorticity of an instantaneous and a time-averaged pattern are presented, as well as 2D visualizations of the average velocity field and the turbulent kinetic energy. Simulations for Reynolds numbers descending from 2300 to 700 show the gradual development from uniform turbulence to a pattern with wavelength 20 half-gaps near Re=1900, to a pattern with wavelength 40 near Re=1300 and finally to laminar flow near Re=800. These transitions are tracked quantitatively via diagnostics using the amplitude and phase of the Fourier transform and its probability distribution. The propagation velocity of the pattern is approximately that of the mean flux and is a decreasing function of Reynolds number. Examination of the time-averaged flow shows that a turbulent band is ...

  20. Natural laminar-to-turbulent transition inside an electrically heated circular tube

    Science.gov (United States)

    Zhang, Ruoling; Le, Jialing

    2016-10-01

    The natural transition flow and convective heat transfer inside an electrically heated circular tube are analyzed. The transition flow is treated as a composition of fully developed laminar and turbulent flows by assuming the fluctuating velocity in radial direction exists as if the flow is fully turbulent. The composite ratios are used to define the composite flow, and they fluctuate in transition flow. The criterion of minimum entropy production is used to derive an equation which can describe how transition evolves. It is pointed out that the fluctuations of the composite ratios govern the transition behavior. One fluctuation function is given to attain agreements with measurements including those obtained in heat transfer and flow experiments.

  1. Laminar Flow Through Circular Tubes with Side Inlets

    Science.gov (United States)

    Abedian, Behrouz; Muhlanger, Eric

    2004-11-01

    We discuss experimental results on steady axisymmetric flow of a Newtonian incompressible fluid through circular pipes with side inlets. Circular tubes with a set of holes along their sidewalls are used in a number of medical procedures as straight catheters to transfer fluid into or out of the human body. For example, because of the small size of the incision required, they are commonly used in peritoneal dialysis. The internal diameter and the diameter of the side holes are often 1 mm and less, and as a result, the fluid flow is laminar in a typical medical procedure. An understanding of the flow inside the catheter tube in terms of its geometric parameters will be key in designing new catheters with optimal clinical performance for specific applications. In the experiments, water is withdrawn from a smooth tube with side holes and the local axial pressure and flow rates through the side holes are measured for different flow conditions. A nondimensionalization of the data shows a power-law behavior in only some cases. Using numerical simulations, it is shown how the interaction of the axial flow with the impinging jets from the side holes can change the overall behavior of the flow for a given suction pressure.

  2. Laminar boundary-layer flow of non-Newtonian fluid

    Science.gov (United States)

    Lin, F. N.; Chern, S. Y.

    1979-01-01

    A solution for the two-dimensional and axisymmetric laminar boundary-layer momentum equation of power-law non-Newtonian fluid is presented. The analysis makes use of the Merk-Chao series solution method originally devised for the flow of Newtonian fluid. The universal functions for the leading term in the series are tabulated for n from 0.2 to 2. Equations governing the universal functions associated with the second and the third terms are provided. The solution together with either Lighthill's formula or Chao's formula constitutes a simple yet general procedure for the calculation of wall shear and surface heat transfer rate. The theory was applied to flows over a circular cylinder and a sphere and the results compared with published data.

  3. Aerodynamic coefficients of stationary dry inclined bridge cables in laminar flow

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos; Ricciardelli, Francesco

    2011-01-01

    conditions, i.e. dry, wet and icy, in laminar and turbulent flow, has been initiated at the new DTU/Force Climatic Wind Tunnel facility in Denmark. This paper covers selected results of the comparative study, i.e. aerodynamic coefficients of dry inclined cables in laminar flow conditions....

  4. Convex Grooves in Staggered Herringbone Mixer Improve Mixing Efficiency of Laminar Flow in Microchannel.

    Science.gov (United States)

    Kwak, Tae Joon; Nam, Young Gyu; Najera, Maria Alejandra; Lee, Sang Woo; Strickler, J Rudi; Chang, Woo-Jin

    2016-01-01

    The liquid streams in a microchannel are hardly mixed to form laminar flow, and the mixing issue is well described by a low Reynolds number scheme. The staggered herringbone mixer (SHM) using repeated patterns of grooves in the microchannel have been proved to be an efficient passive micro-mixer. However, only a negative pattern of the staggered herringbone mixer has been used so far after it was first suggested, to the best of our knowledge. In this study, the mixing efficiencies from negative and positive staggered herringbone mixer patterns as well as from opposite flow directions were tested to investigate the effect of the micro-structure geometry on the surrounding laminar flow. The positive herringbone pattern showed better mixing efficiency than the conventionally used negative pattern. Also, generally used forward flow gives better mixing efficiency than reverse flow. The mixing was completed after two cycles of staggered herringbone mixer with both forward and reverse flow in a positive pattern. The traditional negative pattern showed complete mixing after four and five cycles in forward and reverse flow direction, respectively. The mixing effect in all geometries was numerically simulated, and the results confirmed more efficient mixing in the positive pattern than the negative. The results can further enable the design of a more efficient microfluidic mixer, as well as in depth understanding of the phenomena of positive and negative patterns existing in nature with regards to the surrounding fluids.

  5. Disturbed Laminar Blood Flow Vastly Augments Lipoprotein Retention in the Artery Wall: A Key Mechanism Distinguishing Susceptible From Resistant Sites.

    Science.gov (United States)

    Steffensen, Lasse Bach; Mortensen, Martin Bødtker; Kjolby, Mads; Hagensen, Mette Kallestrup; Oxvig, Claus; Bentzon, Jacob Fog

    2015-09-01

    Atherosclerosis develops initially at branch points and in areas of high vessel curvature. Moreover, experiments in hypercholesterolemic mice have shown that the introduction of disturbed flow in straight, atherosclerosis-resistant arterial segments turns them highly atherosclerosis susceptible. Several biomechanical mechanisms have been proposed, but none has been demonstrated. In the present study, we examined whether a causal link exists between disturbed laminar flow and the ability of the arterial wall to retain lipoproteins. Lipoprotein retention was detected at natural predilection sites of the murine thoracic aorta 18 hours after infusion of fluorescently labeled low-density lipoprotein. To test for causality between blood flow and the ability of these areas to retain lipoproteins, we manipulated blood flow in the straight segment of the common carotid artery using a constrictive collar. Disturbed laminar flow did not affect low-density lipoprotein influx, but increased the ability of the artery wall to bind low-density lipoprotein. Concordantly, disturbed laminar flow led to differential expression of genes associated with phenotypic modulation of vascular smooth muscle cells, increased expression of proteoglycan core proteins associated with lipoprotein retention, and of enzymes responsible for chondroitin sulfate glycosaminoglycan synthesis and sulfation. Blood flow regulates genes associated with vascular smooth muscle cell phenotypic modulation, as well as the expression and post-translational modification of lipoprotein-binding proteoglycan core proteins, and the introduction of disturbed laminar flow vastly augments the ability of a previously resistant, straight arterial segment to retain lipoproteins. © 2015 American Heart Association, Inc.

  6. GASP cloud encounter statistics - Implications for laminar flow control flight

    Science.gov (United States)

    Jasperson, W. H.; Nastrom, G. D.; Davis, R. E.; Holdeman, J. D.

    1984-01-01

    The cloud observation archive from the NASA Global Atmospheric Sampling Program (GASP) is analyzed in order to derive the probability of cloud encounter at altitudes normally flown by commercial airliners, for application to a determination of the feasability of Laminar Flow Control (LFC) on long-range routes. The probability of cloud encounter is found to vary significantly with season. Several meteorological circulation features are apparent in the latitudinal distribution of cloud cover. The cloud encounter data are shown to be consistent with the classical midlatitude cyclone model with more clouds encountered in highs than in lows. Aircraft measurements of route-averaged time-in-clouds fit a gamma probability distribution model which is applied to estimate the probability of extended cloud encounter, and the associated loss of LFC effectiveness along seven high-density routes. The probability is demonstrated to be low.

  7. Pressure drop coefficient of laminar Newtonian flow in axisymmetric diffusers

    Energy Technology Data Exchange (ETDEWEB)

    Rosa, S. [Escola Superior de Tecnologia e Gestao, Instituto Politecnico, Campus de Santa Apolonia, 5301-857 Braganca (Portugal)]. E-mail: srosa@ipb.pt; Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEM, Universidade do Minho, Campus de Azurem, 4800-058 Guimaraes (Portugal)]. E-mail: fpinho@fe.up.pt

    2006-04-15

    The laminar flow of Newtonian fluids in axisymmetric diffusers has been numerically investigated to evaluate the pressure-loss coefficient as a function of Reynolds number, diffusion angle and expansion ratio. The numerical simulations were carried out with a finite-volume based code using non-orthogonal collocated grids and second order accurate differencing schemes to discretize all terms of the transport equations. The calculations were carried out for Reynolds numbers between 2 and 200, diffusion angles from 0 deg. to 90 deg. and expansion ratios of 1.5 and 2 and the data are presented in tabular form and as correlations. A simplified 1D theoretical analysis helped explain the various contributions to the loss coefficient and its difference relative to the reversible pressure variation due to differences between the actual and fully developed friction losses, distortions of the velocity profiles and pressure non-uniformity upstream and downstream of the expansion section.

  8. Laminar flow of micropolar fluid in rectangular microchannels

    Institute of Scientific and Technical Information of China (English)

    Shangjun Ye; Keqin Zhu; Wen Wang

    2006-01-01

    Compared with the classic flow on macroscale, flows in microchannels have some new phenomena such as the friction increase and the flow rate reduction. Papautsky and co-workers explained these phenomena by using a micropolar fluid model where the effects of micro-rotation of fluid molecules were taken into account. But both the curl of velocity vector and the curl of micro-rotation gyration vector were given incorrectly in the Cartesian coordinates and then the micro-rotation gyration vector had only one component in the (z)-direction. Besides, the gradient term of the divergence of micro-rotation gyration vector was missed improperly in the angular moment equation. In this paper. the governing equations for laminar flows of micropolar fluid in rectangular microchannels are reconstructed. The numerical results of velocity profiles and micro-rotation gyrations are obtained by a procedure based on the Chebyshev collocation method. The micropolar effects on velocity and micro-rotation gyration are discussed in detail.

  9. Drag Measurements in Laminar Flows over Superhydrophobic Porous Membranes

    Science.gov (United States)

    Ozsun, Ozgur; Yakhot, Victor; Ekinci, Kamil L.

    2012-02-01

    An anomalous hydrodynamic response has recently been observed in oscillating flows on mesh-like porous superhydrophobic membranes.ootnotetextS. Rajauria, O. Ozsun, J. Lawall, V. Yakhot, and K. L. Ekinci, Phys. Rev. Lett. 107, 174501 (2011) This effect was attributed to a stable Knudsen layer of gas at the solid-liquid interface. In this study, we investigate laminar channel flow over these porous superhydrophobic membranes. We have fabricated surfaces with solid area fraction φs, which can maintain intimate contact with both air and water reservoirs on either side. Typical structures have linear dimensions of 1.5 mm x 15 mm x 1 μm and pore area of 10 μm x 10 μm. The surfaces are enclosed with precisely machined plastic microchannels, where pressure driven flow of DI water is generated. Pressure drop across the microchannels is measured as a function of flow rate. Slip lengths are inferred from the Poiseuille relation as a function of φs and compared to that of similar standard superhydrophobic surfaces, which lack intimate contact with an air reservoir.

  10. Wall functions for numerical modeling of laminar MHD flows

    CERN Document Server

    Widlund, O

    2003-01-01

    general wall function treatment is presented for the numerical modeling of laminar magnetohydrodynamic (MHD) flows. The wall function expressions are derived analytically from the steady-state momentum and electric potential equations, making use only of local variables of the numerical solution. No assumptions are made regarding the orientation of the magnetic field relative to the wall, nor of the magnitude of the Hartmann number, or the wall conductivity. The wall functions are used for defining implicit boundary conditions for velocity and electric potential, and for computing mass flow and electrical currents in near wall-cells. The wall function treatment was validated in a finite volume formulation, and compared with an analytic solution for a fully developed channel flow in a transverse magnetic field. For the case with insulating walls, a uniform 20 x 20 grid, and Hartmann numbers Ha = [10,30,100], the accuracy of pressure drop and wall shear stress predictions was [1.1%,1.6%,0.5%], respectively. Com...

  11. Factors influencing flow steadiness in laminar boundary layer shock interactions

    Science.gov (United States)

    Tumuklu, Ozgur; Levin, Deborah A.; Gimelshein, Sergey F.; Austin, Joanna M.

    2016-11-01

    The Direct Simulation Monte Carlo method has been used to model laminar shock wave boundary interactions of hypersonic flow over a 30/55-deg double-wedge and "tick-shaped" model configurations studied in the Hypervelocity Expansion Tube facility and T-ADFA free-piston shock tunnel, respectively. The impact of thermochemical effects on these interactions by changing the chemical composition from nitrogen to air as well as argon for a stagnation enthalpy of 8.0 MJ/kg flow are investigated using the 2-D wedge model. The simulations are found to reproduce many of the classic features related to Edney Type V strong shock interactions that include the attached, oblique shock formed over the first wedge, the detached bow shock from the second wedge, the separation zone, and the separation and reattachment shocks that cause complex features such as the triple point for both cases. However, results of a reacting air flow case indicate that the size of the separation length, and the movement of the triple point toward to the leading edge is much less than the nitrogen case.

  12. Laminar flow in the entrance region of elliptical ducts

    Science.gov (United States)

    Bhatti, M. S.

    1983-06-01

    A closed-form analytical solution is developed to hitherto unsolved problem of steady laminar flow of a Newtonian fluid in the entrance region of elliptical ducts. The analysis is based on the Karman-Pohlhausen integral method and entails solution of the integrated forms of the mass and the momentum balance equations. According to this analysis, the hydrodynamic entrance length based on 99 percent approach to the fully developed flow is equal to 0.5132 lambda/(l + lambda-squared) where lambda is the aspect ratio. Also, the fully developed incremental pressure defect is found to be 7/6 which is independent of the aspect ratio. In the limit when the flow becomes fully developed, the solution converges to the known exact asymptotic solution. Available, wide-ranging velocity measurements for a circular tube agree with the analytical predictions within 7 percent. Also, available pressure drop measurements near the inlet of a circular tube agree with the analytical predictions within 2 percent.

  13. Direct numerical simulation of laminar-turbulent flow over a flat plate at hypersonic flow speeds

    Science.gov (United States)

    Egorov, I. V.; Novikov, A. V.

    2016-06-01

    A method for direct numerical simulation of a laminar-turbulent flow around bodies at hypersonic flow speeds is proposed. The simulation is performed by solving the full three-dimensional unsteady Navier-Stokes equations. The method of calculation is oriented to application of supercomputers and is based on implicit monotonic approximation schemes and a modified Newton-Raphson method for solving nonlinear difference equations. By this method, the development of three-dimensional perturbations in the boundary layer over a flat plate and in a near-wall flow in a compression corner is studied at the Mach numbers of the free-stream of M = 5.37. In addition to pulsation characteristic, distributions of the mean coefficients of the viscous flow in the transient section of the streamlined surface are obtained, which enables one to determine the beginning of the laminar-turbulent transition and estimate the characteristics of the turbulent flow in the boundary layer.

  14. Natural versus forced convection in laminar starting plumes

    CERN Document Server

    Rogers, Michael C

    2009-01-01

    A starting plume or jet has a well-defined, evolving head that is driven through the surrounding quiescent fluid by a localized flux of either buoyancy or momentum, or both. We studied the scaling and morphology of starting plumes produced by a constant flux of buoyant fluid from a small, submerged outlet. The plumes were laminar and spanned a wide range of plume Richardson numbers Ri. Ri is the dimensionless ratio of the buoyancy forces to inertial effects, and is thus our measurements crossed over the transition between buoyancy-driven plumes and momentum-driven jets. We found that the ascent velocity of the plume, nondimensionalized by Ri, exhibits a power law relationship with Re, the Reynolds number of the injected fluid in the outlet pipe. We also found that as the threshold between buoyancy-driven and momentum-driven flow was crossed, two distinct types of plume head mophologies existed: confined heads, produced in the Ri > 1 regime, and dispersed heads, which are found in the Ri < 1 regime. Head di...

  15. Measurements of laminar and turbulent flow in a curved duct with thin inlet boundary layers

    Science.gov (United States)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.

    1981-01-01

    Laser Doppler velocimetry was used to measure the laminar and turbulent flow in a 90 deg square bend of strong curvature. The boundary layers at the inlet to the bend were approximately 25 percent and 15 percent of the hydraulic diameter for the laminar and turbulent flows, respectively. The development of the pressure driven secondary motion is more rapid for laminar flow: the maximum cross stream component measured was 60 percent of the bulk velocity in contrast to 40 percent for turbulent flow. The streamwise isotachs show that, for laminar flow, large velocities are found progressively nearer to the outer radius of the bend and along the sidewalls. For turbulent flow, the isotachs move towards the inner radius until about 60 deg around the bend where strong secondary motion results in a similar redistribution. Turbulence level and shear stress measurements are also presented.

  16. Mechanical and statistical study of the laminar hole formation in transitional plane Couette flow

    CERN Document Server

    Rolland, Joran

    2015-01-01

    This article is concerned with the numerical study and modelling of two aspects the formation of laminar holes in transitional turbulence of plane Couette flow (PCF). On the one hand, we consider quenches: sudden decreases of the Reynolds number R which force the formation of holes. The Reynolds number is decreased from featureless turbulence to the range of existence of the oblique laminar-turbulent bands [Rg;Rt]. The successive stages of the quench are studied by means of visualisations and measurements of kinetic energy and turbulent fraction. The behaviour of the kinetic energy is explained using a kinetic energy budget: it shows that viscosity causes quasi modal decay until lift-up equals it and creates a new balance. Moreover, the budget confirms that the physical mechanisms at play are independent of the way the quench is performed. On the other hand we consider the natural formation of laminar holes in the bands, near Rg. The Direct Numerical simulations (DNS) show that holes in the turbulent bands pr...

  17. Flux change in viscous laminar flow under oscillating boundary condition

    Science.gov (United States)

    Ueda, R.; Mikada, H.; Goto, T.; Takekawa, J.

    2012-12-01

    The behavior of interstitial fluid is one of major interest in earth sciences in terms of the exploitation of water resources, the initiation of earthquakes, enhanced oil recovery (EOR), etc. Seismic waves are often known to increase the flux of interstitial fluid but the relationship between the flux and propagating seismic waves have not been well investigated in the past, although seismic stimulation has been applied in the oil industry for enhanced oil recovery (EOR). Many observations indicated that seismic waves could stimulate the oil production due to lowering of apparent viscosity coefficient, to the coalescence and/or the dispersion of droplets of a phase in multiphase fluids. However, the detailed mechanism of seismic stimulation has not been fully understood, either. In this study, We attempt to understand the mechanism of the flux change in viscous laminar flow under oscillating boundary condition for the simulation of interstitial flow. Here, we analyze a monophase flow in a pore throat. We first assume a Hagen-Poiseuille flow of incompressible fluid through a pore-throat in a porous medium. We adopt the Lattice Boltzmann method (LBM) in which the motion of fluid is simulated through the variation of velocity distribution function representing the distribution of discrete particle velocities. We use an improved incompressible LBKG model (d2q9i) proposed in Zou et. al. (1995) to accurately accommodate the boundary conditions of pressure and velocity in the Hagen-Poiseuille flow. We also use an half-way bounce back boundary condition as the velocity boundary condition. Also, we assume a uniform pressure (density) difference between inlet and outlet flow, and the density difference could initiate the flow in our simulation. The oscillating boundary condition is given by the body force acting on fluid particles. In this simulation, we found that the flux change is negligible under small amplitude of oscillation in both horizontal and vertical directions

  18. Rheology of sediment transported by a laminar flow

    Science.gov (United States)

    Houssais, M.; Ortiz, C. P.; Durian, D. J.; Jerolmack, D. J.

    2016-12-01

    Understanding the dynamics of fluid-driven sediment transport remains challenging, as it occurs at the interface between a granular material and a fluid flow. Boyer, Guazzelli, and Pouliquen [Phys. Rev. Lett. 107, 188301 (2011)], 10.1103/PhysRevLett.107.188301 proposed a local rheology unifying dense dry-granular and viscous-suspension flows, but it has been validated only for neutrally buoyant particles in a confined and homogeneous system. Here we generalize the Boyer, Guazzelli, and Pouliquen model to account for the weight of a particle by addition of a pressure P0 and test the ability of this model to describe sediment transport in an idealized laboratory river. We subject a bed of settling plastic particles to a laminar-shear flow from above, and use refractive-index-matching to track particles' motion and determine local rheology—from the fluid-granular interface to deep in the granular bed. Data from all experiments collapse onto a single curve of friction μ as a function of the viscous number Iv over the range 3 ×10-5 ≤Iv≤2 , validating the local rheology model. For Iv<3 ×10-5 , however, data do not collapse. Instead of undergoing a jamming transition with μ →μs as expected, particles transition to a creeping regime where we observe a continuous decay of the friction coefficient μ ≤μs as Iv decreases. The rheology of this creep regime cannot be described by the local model, and more work is needed to determine whether a nonlocal rheology model can be modified to account for our findings.

  19. Cloud particle effects on laminar flow and instrumentation for their measurement aboard a NASA LFC aircraft

    Science.gov (United States)

    Davis, R. E.; Fischer, M. C.

    1983-01-01

    Fuel costs account now for approximately 60 percent of the direct operating costs of airlines and future commercial transport will utilize advanced technologies for saving fuel on the basis of drag reduction. Laminar flow control (LFC) represents such an advanced technology. A new laminar flow wing on a reconfigured WB-66 aircraft was tested in the X-21 flight program. The tests confirmed that extensive laminar flow could be achieved at subsonic transport cruise conditions. Factors affecting adversely the maintenance of laminar flow were found to be related to ice particles encountered during the penetration of cirrus clouds or haze. The present investigation is concerned with the effect of ice particles on LFC, taking into account the results obtained in the Leading Edge Flight Test (LEFT) being conducted by NASA. Attention is given to ice particle measurements in the LEFT program.

  20. A short remark on Stewart 1962 variational principle for laminar flow in a uniform duct

    Directory of Open Access Journals (Sweden)

    Liu Hong-Yan

    2016-01-01

    Full Text Available This paper concludes that Stewart 1962 variational principle for laminar flow in a uniform duct is for a differential-difference. Some generalized variational principles are elucidated with or without Stewart’s discrete treatment.

  1. Non - linear laminar flow of fluid into an open bottom well

    Directory of Open Access Journals (Sweden)

    S. K. JAIN

    1982-06-01

    Full Text Available In steady state condition, non - linear laminar flow of fluid into an open
    bottom well just penetrating the semi-infinite porous aquifer is considered. The
    influence of non-linear laminar flow on discharge and its dependance on related
    physical quantities is examined. It is found that an open bottom well actually
    behaves like a hemispherical well, which is an obvious practical phenomenon.

  2. A preliminary design study on an acoustic muffler for the laminar flow transition research apparatus

    Science.gov (United States)

    Abrahamson, A. L.

    1984-01-01

    An acoustic muffler design of a research tool for studying laminar flow and the mechanisms of transition, the Laminar Flow and Transition Research Apparatus (LFTRA) is investigated. Since the presence of acoustic pressure fluctuations is known to affect transition, low background noise levels in the test section of the LFTRA are mandatory. The difficulties and tradeoffs of various muffler design concepts are discussed and the most promising candidates are emphasized.

  3. Numerical simulation of laminar jet-forced flow using lattice Boltzmann method

    Institute of Scientific and Technical Information of China (English)

    Yuan LI; Ya-li DUAN; Yan GUO; Ru-xun LIU

    2009-01-01

    In the paper, a numerical study on symmetrical and asymmetrical laminar jet-forced flows is carried out by using a lattice Boltzmann method (LBM) with a special boundary treatment. The simulation results are in very good agreement with the available numerical prediction. It is shown that the LBM is a competitive method for the laminar jet-forced flow in terms of computational efficiency and stability.

  4. The CAV program for numerical evaluation of laminar natural convection heat transfer in vertical rectangular cavities

    Science.gov (United States)

    Novak, Milos H.; Nowak, Edwin S.

    1993-12-01

    To analyze the laminar natural convection heat transfer and fluid flow distribution in vertical rectangular cavities with or without inner partitions, the personal computer finite difference program entitled CAV is used. The CAV program was tested successfully for slender cavities with aspect ratios as high as R = H/ L = 90 and for the Grashof numbers, based on the cavity height, up to GrH = 3 x10 9. To make the CAV program useful for a number of applications, various types of boundary conditions can also be imposed on the program calculations. Presented are program applications dealing with the 2-D numerical analysis of natural convection heat transfer in very slender window cavities with and without small inner partitions and recommendations are made for window design.

  5. Laminar flow in radial flow cell with small aspect ratios: Numerical and experimental study

    DEFF Research Database (Denmark)

    Detry, J. G.; Deroanne, C.; Sindic, M.

    2009-01-01

    distance from the center. The simulations provided a thorough description of the complex flow pattern encountered close to the inlet section, which were validated for the laminar regime by dye injection. A total of up to four recirculation zones were identified in both numerical and experimental...... investigations. The experimental positions of these recirculation zones corresponded well to the numerical predictions. Based on this work, a map of the flow for the different aspect ratios was developed, which can be particularly interesting for the design of experimental devices involving axisymmetrical flow....

  6. Method and applications of fiber synthesis using laminar flow

    Science.gov (United States)

    Burns, Bradley Justin

    A Laminar Flow Reactor (LFR) using the principles of hydrodynamic focusing was created and used to fabricate functional composite polymer fibers. These fibers had the ability to conduct or serve as a carrier for singlet oxygen-generating molecules. Critical to the process was designing an easy-to-fabricate, inexpensive device and developing a repeatable method that made efficient use of the materials. The initial designs used a planar layout and hydrodynamically focused in only one dimension while later versions switched to a two-fluid concentric design. Modeling was undertaken and verified for the different device layouts. Three types of conductive particles were embedded in the formed polymer: silver, indium tin oxide (ITO) and polyaniline. The polymer was also used as a carrier to two singlet oxygen generating molecules: Methylene Blue (MB) and perylene. Both were effective in killing Bacillus thuringiensis but MB leached from the fiber into the tested cell suspension. Perylene, which is not water soluble, did not leach out and was just as effective as MB. Research that was performed at ITT is also presented. A critical need exists to detect, identify, quantify, locate, and track virus and toxin aerosols to provide early warning during both light and dark conditions. The solution presented is a remote sensing technology using seeding particles. Seeding particles developed during this program provide specific identification of threat cloud content. When introduced to the threat cloud the seeders will bind specifically to the analyte of interest and upon interrogation from a stand off laser source will fluoresce. The fluorescent signal is detected from a distance using a long-range microscope and collection optics that allow detection of low concentrations of threat aerosols.

  7. Lubricant-impregnated surfaces for drag reduction in viscous laminar flow

    Science.gov (United States)

    Solomon, Brian; Khalil, Karim; Varanasi, Kripa; MIT Team

    2013-11-01

    For the first time, we explore the potential of lubricant impregnated surfaces (LIS) in reducing drag. LIS, inspired by the surface of the Nepenthes pitcher plant, have been introduced as a novel way of functionalizing a surface. LIS are characterized by extremely low contact angle hysteresis and have been show to effectively repel various liquids including water, oils, ketchup and blood. Motivated by the slippery nature of such surfaces, we explore the potential of LIS to reduce drag in internal flows. We observe a reduction in drag for LIS surfaces in a viscous laminar drag flow and model the impact of relevant system parameters (lubricant viscosity, working fluid viscosity, solid fraction, depth of texture, etc.).

  8. On the spatial linear growth of gravity-capillary water waves sheared by a laminar air flow

    NARCIS (Netherlands)

    Tsai, Y.S.; Grass, A.J.; Simons, R.R.

    2005-01-01

    The initial growth of mechanically generated small amplitude water waves below a laminar air stream was examined numerically and experimentally in order to explore the primary growth mechanism, that is, the interfacial instability of coupled laminar air and water flows. Measurements of the laminar v

  9. Method and apparatus for detecting laminar flow separation and reattachment

    Science.gov (United States)

    Stack, John P. (Inventor); Mangalam, Sivaramakrishnan M. (Inventor)

    1990-01-01

    The invention is a method and apparatus for simultaneously detecting laminar separation and reattachment of a fluid stream such as an airstream from and to the upper surface of an airfoil by simultaneously sensing and comparing a plurality of output signals. Each signal represents the dynamic shear stress at one of an equal number of sensors spaced along a straight line on the surface of the airfoil that extends parallel to the airstream. The output signals are simultaneously compared to detect the sensors across which a reversal in phase of said output signal occurs, said detected sensors being in the region of laminar separation or reattachment.

  10. Mean flow of turbulent-laminar patterns in plane Couette flow

    CERN Document Server

    Barkley, D; Barkley, Dwight; Tuckerman, Laurette S.

    2007-01-01

    A turbulent-laminar banded pattern in plane Couette flow is studied numerically. This pattern is statistically steady, is oriented obliquely to the streamwise direction, and has a very large wavelength relative to the gap. The mean flow, averaged in time and in the homogeneous direction, is analysed. The flow in the quasi-laminar region is not the linear Couette profile, but results from a non-trivial balance between advection and diffusion. This force balance yields a first approximation to the relationship between the Reynolds number, angle, and wavelength of the pattern. Remarkably, the variation of the mean flow along the pattern wavevector is found to be almost exactly harmonic: the flow can be represented via only three cross-channel profiles as U(x,y,z) = U_0(y) + U_c(y) cos(kz) + U_s(y) sin(kz). A model is formulated which relates the cross-channel profiles of the mean flow and of the Reynolds stress. Regimes computed for a full range of angle and Reynolds number in a tilted rectangular periodic compu...

  11. 层流流动控制技术及应用%Laminar Flow Control Technology and Application

    Institute of Scientific and Technical Information of China (English)

    朱自强; 吴宗成; 丁举春

    2011-01-01

    Friction drag is the major part of the total drag of a transport, so reducing it is essential for improving the performance and reducing the cost of a transport. Since laminar friction drag is much less then the turbulent one, one of the important measures for reducing it is to increase the laminar flow extent, and if possible, to realize a fully laminar flow. For that, three types of laminar flow control technology, i.e., natural laminar flow, fully laminar flow and hybrid laminar flow controls, are formed. In the present paper, drag reducing analysis, the concepts, methods, potential benefits and design methods of laminar flow control technology, and operational maintenance of a laminar flow aircraft (including protection of insect contamination and ice accumulation) are systematically described; Summary of researches of laminar flow control technology during 1930-2000 is briefly introduced and the progress in this field is shown by using examples of X-21A slotted suction flight tests, simulated airlines flight tests of Jetstar HLFC leading edge systems and Boeing 757 HLFC flight tests, and future research is also pointed out.%民机受到的摩阻占其总阻力很大比例,减少摩阻对改善民机性能和降低成本具有重要意义.层流摩阻远小于湍流摩阻,因此扩大层流区,甚至实现全层流流动是减阻的一个重要途径.为此,形成了包括自然层流流动、全层流流动和混合层流流动3种层流流动控制技术.本文从减阻分析,对3种层流流动控制技术的概念、方法、优缺点、可带来的效益,层流流动控制技术的设计方法,层流流动飞机的维护(包括防昆虫和冰粒等污染的措施)等方面作了较为系统的阐述.概要介绍了国外1930-2000年间层流流动控制技术的研究简况,并选择X-21A飞机缝道吸气飞行试验、Jetstar HLFC前缘系统模拟航线飞行的飞行试验、以及Boeing 757 HLFC飞行试验等重要项目为例阐述了层流流动

  12. Numerical Heat Transfer Prediction for Laminar Flow in a Circular Pipe with a 90° Bend

    Science.gov (United States)

    Patro, Pandaba; Rout, Ani; Barik, Ashok

    2017-05-01

    Laminar air flow in a 90° bend has been studied numerically to investigate convective heat transfer, which is of practical relevance to electronic systems and refrigeration piping layout. CFD simulations are performed for Reynolds number in the range 200 to 1000 at different bend radius ratios (5, 10 and 20). The heat transfer characteristics are found to be enhanced in the curved pipe compared to a straight pipe, which are subjected to the same flow rate. The curvature and buoyancy effectively increase heat transfer in viscous laminar flows. The correlation between the flow structure and the heat transfer is found to be strong.

  13. Computation of the Nusselt number asymptotes for laminar forced convection flows in internally finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Ledezma, G.A. [Duke Univ., Durham, NC (United States). Mechanical Engineering Dept.; Campo, A. [Idaho State Univ., Pocatello, ID (United States). Coll. of Engineering

    1999-04-01

    The utilization of internal longitudinal finned tubes has received unparallel attention in the heat transfer literature over the years as a result of its imminent application in high performance compact heat exchangers to enhance the heat transfer between laminar streams of viscous fluids and tube walls. Here, the central goal of this paper is to report a simple approximate way for the prediction of the two asymptotes for the local Nusselt number in laminar forced convection flows inside internal longitudinal finned tubes. The computational attributes of the Method Of Lines (MOL) are propitious for the determination of asymptotic temperature solutions and corresponding heat transfer rates (one for Z {r_arrow} 0 and the other for z {r_arrow} {infinity}). The two local Nusselt number sub-distributions, namely Nu{sub z{r_arrow}0} and Nu{sub z{r_arrow}{infinity}}, blend themselves into an approximate Nusselt number distribution that covers the entire z-domain in a natural way.

  14. A History of Suction-Type Laminar Flow Control with Emphasis on Flight Research

    Science.gov (United States)

    Braslow, Albert L.

    1999-01-01

    Laminar-flow control is an area of aeronautical research that has a long history at NASA's Langley Research Center, Dryden Flight Research Center, their predecessor organizations, and elsewhere. In this monograph, the author, who spent much of his career at Langley working with this research, presents a history of that portion of laminar-flow technology known as active laminar-flow control, which employs suction of a small quantity of air through airplane surfaces. This important technique offers the potential for significant reduction in drag and, thereby, for large increases in range or reductions in fuel usage for aircraft. For transport aircraft, the reductions in fuel consumed as a result of laminar-flow control may equal 30 percent of present consumption. Given such potential, it is obvious that active laminar-flow control with suction is an important technology. In this study, the author covers the early history of the subject and brings the story all the way to the mid-1990s with an emphasis on flight research, much of which has occurred at Dryden. This is an important monograph that not only encapsulates a lot of history in a brief compass but also does so in language that is accessible to non-technical readers. NASA is publishing it in a format that will enable it to reach the wide audience the subject deserves.

  15. Laminar flow and convective transport processes scaling principles and asymptotic analysis

    CERN Document Server

    Brenner, Howard

    1992-01-01

    Laminar Flow and Convective Transport Processes: Scaling Principles and Asymptotic Analysis presents analytic methods for the solution of fluid mechanics and convective transport processes, all in the laminar flow regime. This book brings together the results of almost 30 years of research on the use of nondimensionalization, scaling principles, and asymptotic analysis into a comprehensive form suitable for presentation in a core graduate-level course on fluid mechanics and the convective transport of heat. A considerable amount of material on viscous-dominated flows is covered.A unique feat

  16. Simulation of laminar and turbulent concentric pipe flows with the isogeometric variational multiscale method

    KAUST Repository

    Ghaffari Motlagh, Yousef

    2013-01-01

    We present an application of the residual-based variational multiscale modeling methodology to the computation of laminar and turbulent concentric annular pipe flows. Isogeometric analysis is utilized for higher-order approximation of the solution using Non-Uniform Rational B-Splines (NURBS). The ability of NURBS to exactly represent curved geometries makes NURBS-based isogeometric analysis attractive for the application to the flow through annular channels. We demonstrate the applicability of the methodology to both laminar and turbulent flow regimes. © 2012 Elsevier Ltd.

  17. Heat and mass transfer in two-phase flow - A mathematical model for laminar film flow and its experimental validation

    Science.gov (United States)

    Conder, J. R.; Gunn, D. J.; Shaikh, M. A.

    1982-08-01

    A mathematical model is presented for the vaporisation of liquid from a laminar film flowing down the inside surface of a smooth tube into a countercurrent laminar flow of gas. The partial differential equations that describe temperature and composition distributions are integrated across the tube to give a set of four coupled ordinary differential equations. A numerical method for the solution of the equations is proposed and examined; the method is posed to solve the transient response for heat and mass transfer. A satisfactory solution is found for a range of space and time intervals. The mathematical model has been validated by experimental measurements on a falling film evaporator with evaporation occurring at sub-boiling temperatures from a laminar liquid film into a laminar gas stream. The performance of the evaporator is assessed.

  18. Digital data acquisition and preliminary instrumentation study for the F-16 laminar flow control vehicle

    Science.gov (United States)

    Ostowari, Cyrus

    1992-01-01

    Preliminary studies have shown that maintenance of laminar flow through active boundary-layer control is viable. Current research activity at NASA Langley and NASA Dryden is utilizing the F-16XL-1 research vehicle fitted with a laminar-flow suction glove that is connected to a vacuum manifold in order to create and control laminar flow at supersonic flight speeds. This experimental program has been designed to establish the feasibility of obtaining laminar flow at supersonic speeds with highly swept wing and to provide data for computational fluid dynamics (CFD) code calibration. Flight experiments conducted as supersonic speeds have indicated that it is possible to achieve laminar flow under controlled suction at flight Mach numbers greater than 1. Currently this glove is fitted with a series of pressure belts and flush mounted hot film sensors for the purpose of determining the pressure distributions and the extent of laminar flow region past the stagnation point. The present mode of data acquisition relies on out-dated on board multi-channel FM analogue tape recorder system. At the end of each flight, the analogue data is digitized through a long laborious process and then analyzed. It is proposed to replace this outdated system with an on board state-of-the-art digital data acquisition system capable of a through put rate of up to 1 MegaHertz. The purpose of this study was three-fold: (1) to develop a simple algorithm for acquiring data via 2 analogue-to-digital convertor boards simultaneously (total of 32 channels); (2) to interface hot-film/wire anemometry instrumentation with a PCAT type computer; and (3) to characterize the frequency response of a flush mounted film sensor. A brief description of each of the above tasks along with recommendations are given.

  19. Laminar Flow and Heat Transfer Characteristics in Jackets of Triangular Flow Channels

    Institute of Scientific and Technical Information of China (English)

    王翠华; 刘胜举; 吴剑华; 李雅侠

    2013-01-01

    Laminar flow and heat transfer characteristics of jacketed vessel with triangular flow channels were numerically studied under hydrodynamically and thermally fully developed conditions. Constant heat flux at the heated wall was assumed. The numerical program code in terms of vorticity, stream function, axial velocity com-ponent and energy equations was written based on a finite volume method. Based on the numerical results, the flow and temperature field were given, and the effects of Dean and Prandtl numbers on flow and heat transfer were ex-amined, and the correlations of flow resistance and mean Nusselt number were developed for the jacket. The results show that the structure of secondary flow is steady two vortices in the investigated range of dimensionless curvature ratio and Reynolds number. Two peaks of local Nusselt number increase significantly with Prandtl and Dean num-ber increasing, but the local Nusselt numbers near two ends and at the center of the heated wall increase only slightly. The center and two ends of heated wall are the poor positions for heat transfer in the jacket. Compared with the outer half coil jacket at the same area of heated wall, curvature radius, Reynolds number and Prandtl number, the jacket of triangular flow channel has lower flow resistance and less mean Nusselt number.

  20. Dispersion of swimming algae in laminar and turbulent channel flows: theory and simulations

    CERN Document Server

    Croze, O A; Ahmed, M; Bees, M A; Brandt, L

    2012-01-01

    Algal swimming is often biased by environmental cues, e.g. gravitational and viscous torques drive cells towards downwelling fluid (gyrotaxis). In view of biotechnological applications, it is important to understand how such biased swimming affects cell dispersion in a flow. Here, we study the dispersion of gyrotactic swimming algae in laminar and turbulent channel flows. By direct numerical simulation (DNS) of cell motion within upwelling and downwelling channel flows, we evaluate time-dependent measures of dispersion for increasing values of the flow Peclet (Reynolds) numbers, Pe (Re). Furthermore, we derive an analytical `swimming Taylor-Aris dispersion' theory, using flow-dependent transport parameters given by existing microscopic models. In the laminar regime, DNS results and analytical predictions compare very well, providing the first confirmation that cells' response to flow is best described by the generalized-Taylor-dispersion microscopic model. We predict that cells drift along a channel faster th...

  1. Study on bed load transport for uniform sediment in laminar flow

    Institute of Scientific and Technical Information of China (English)

    2010-01-01

    Previous studies focused on the bed load transport rate for the condition of turbulent flow,while the knowledge of sediment transport in laminar flow is very limited.As an extreme case to reflect the viscous effect on sediment transport,sediment transport in laminar flow is considered in this paper.There are at least two factors affecting the transport rate of sediment under laminar flow conditions: (1) fluid forces;(2) particle to particle interactions.Together,these two factors represent the physical transport system.First,an exposure degree Probability Density Function (PDF) is developed to explore how the transport rate can be associated with characteristics of laminar flow and this factor reflects the particle to particle interactions,and the pickup probability equation in the absence of turbulence is developed based on the stochastic approach which reflects the exposure degree influence.Then,the formulas to calculate the critical shear stress of incipient motion and the bed load transport rate of fine uniform sediment are established.The derivation is made mainly based on Einstein’s bed load theory;we choose Einstein’s equation to model this system because we believe that the probabilistic approach taken is an appropriate way to account for the spatial and temporal variations in the forces causing sediment transport.These formulas have been tested against a wide range of existing laboratory data and compared with other existing empirical or semiempirical methods.The predictions by these newly proposed formulas are very good.

  2. A Numerical Investigation of Controllably Flexible Hydrofoil in Laminar Flows

    Science.gov (United States)

    He, G. Y.; Zhang, X.; Zhang, S. G.; He, G. W.

    Aquatic animals, such as fishes, whales, seals and penguins, are naturally born to be flexible and deformable, which promise their effective locomotion through water. They are able to produce hydrodynamic thrust by active control of their body configurations. That is, the aquatic animals could wiggle their flexible bodies at an appropriate frequency and amplitude suitable to the hydrodynamics surrounding them. However, the mechanism for the active controls has not been adequately understood yet and attracts current research. One obstacle which hinders such investigation is the difficulty in experimental measurements of the flows around the wiggling bodies, and thus numerical simulation is becoming an indispensable alternative. In the paper, an immersed boundary method is developed to simulate the NACA 65-10 hydrofoil. It is observed that a wiggling hydrofoil exhibits a higher thrust while a stationary hydrofoil offers little improvement.

  3. Numerical analysis of laminar and turbulent incompressible flows using the finite element Fluid Dynamics Analysis Package (FIDAP)

    Science.gov (United States)

    Sohn, Jeong L.

    1988-08-01

    The purpose of the study is the evaluation of the numerical accuracy of FIDAP (Fluid Dynamics Analysis Package). Accordingly, four test problems in laminar and turbulent incompressible flows are selected and the computational results of these problems compared with other numerical solutions and/or experimental data. These problems include: (1) 2-D laminar flow inside a wall-driven cavity; (2) 2-D laminar flow over a backward-facing step; (3) 2-D turbulent flow over a backward-facing step; and (4) 2-D turbulent flow through a turn-around duct.

  4. Modelling of laminar flow in the inlet section of rectangular microchannels

    Science.gov (United States)

    Martinelli, Matteo; Viktorov, Vladimir

    2009-02-01

    This paper is a study of laminar flow in rectangular microchannels. The behaviour of compressible and incompressible fluids in microchannels was simulated using CFD software. Numerical data were compared to experimental measurements to test the validity of CFD models. The velocity profile of flow developing inside the channel is described as a function of the Reynolds number Re, varying from 100 to 2000, and the aspect ratio h/w, ranging from 1 to 0.125. The fundamental importance of the entrance length of microchannels is highlighted. Numerical data were applied to define analytical formulae covering the minimum entrance length for fully developed laminar flow of compressible fluids, viscous stress and incremental pressure drop effect during flow development, and the velocity profiles of flow for compressible and incompressible fluids.

  5. Mathematical modeling for laminar flow of power law fluid in porous media

    Energy Technology Data Exchange (ETDEWEB)

    Silva, Renato A.; Mesquita, Maximilian S. [Universidade Federal do Espirito Santo (UFES), Sao Mateus, ES (Brazil). Centro Universitario Norte do Espirito Santo. Dept. de Engenharias e Computacao

    2010-07-01

    In this paper, the macroscopic equations for laminar power-law fluid flow is obtained for a porous medium starting from traditional equations (Navier-Stokes). Then, the volume averaging is applied in traditional transport equations with the power-law fluid model. This procedure leads to macroscopic transport equations set for non-Newtonian fluid. (author)

  6. Asymptotic solutions for laminar flow in a channel with uniformly accelerating rigid porous walls

    Institute of Scientific and Technical Information of China (English)

    2007-01-01

    A theoretical investigation was done for the generalized Berman problem, which arises in steady laminar flow of an incompressible viscous fluid along a channel with accelerating rigid porous walls. The existence of multiple solutions and its conditions were established by taking into account exponentially small terms in matched asymptotic expansion. The correctness of the analytical predictions was verified by numerical results.

  7. Laminar natural convection in vertical tubes with one end open to a large reservoir: A numerical solution

    Energy Technology Data Exchange (ETDEWEB)

    Wu, Y.; Welty, J.R. (Oregon State Univ., Corvallis, OR (United States). Dept. of Mechanical Engineering)

    1994-08-01

    A two-dimensional finite difference computer program in cylindrical coordinates has been developed to solve the case of laminar natural convection in a vertical tube open to large reservoir. Such a device, the open thermosyphon, is used in a number of applications, including the cooling of gas turbines, geothermal energy extraction, and thermosyphon solar water heaters. The objective of this work were to study the nature of fluid flow and the heat transfer rate along the tube wall. A semi-implicit, time marching, finite difference solution procedure was used, satisfying continuity, momentum, and energy equations for incompressible flow. Results show three well-defined flow regimes appearing as functions of the tube length-to-radius (aspect) ratio. Fluid motion in the tube and heat transfer rates became oscillatory at long time intervals. Plots of streamlines and isotherms at selected times for different aspect ratio tubes are also presented to show the transition behavior of fluid motion.

  8. On Laminar Flow of Non-Newtonian Fluids in Porous Media

    KAUST Repository

    Fayed, Hassan E.

    2015-10-20

    Flow of generalized Newtonian fluids in porous media can be modeled as a bundle of capillary tubes or a pore-scale network. In general, both approaches rely on the solution of Hagen–Poiseuille equation using power law to estimate the variations in the fluid viscosity due to the applied shear rate. Despite the effectiveness and simplicity, power law tends to provide unrealistic values for the effective viscosity especially in the limits of zero and infinite shear rates. Here, instead of using power law, Carreau model (bubbles, drops, and particles in non-Newtonian fluids. Taylor & Francis Group, New York, 2007) is used to determine the effective viscosity as a function of the shear strain rate. Carreau model can predict accurately the variation in the viscosity at all shear rates and provide more accurate solution for the flow physics in a single pore. Using the results for a single pore, normalized Fanning friction coefficient has been calculated and plotted as a function of the newly defined Reynolds number based on pressure gradient. For laminar flow, the variation in the friction coefficient with Reynolds number has been plotted and scaled. It is observed that generalized Newtonian fluid flows show Newtonian nature up to a certain Reynolds number. At high Reynolds number, deviation from the Newtonian behavior is observed. The main contribution of this paper is to present a closed-form solution for the flow in a single pore using Carreau model, which allows for fast evaluation of the relationship between flux and pressure gradient in an arbitrary pore diameter. In this way, we believe that our development will open the perspectives for using Carreau models in pore-network simulations at low computational costs to obtain more accurate prediction for generalized Newtonian fluid flows in porous media.

  9. Microfluidic thermodynamics of the shift in thermal stability of DNA duplex in a microchannel laminar flow.

    Science.gov (United States)

    Yamashita, Kenichi; Miyazaki, Masaya; Yamaguchi, Yoshiko; Nakamura, Hiroyuki; Maeda, Hideaki

    2007-06-01

    This paper reports the shift in thermal stability of DNA duplex and its thermodynamics spectroscopically, caused by stretching and orientation of DNA strands in a microchannel laminar flow. For direct spectroscopic measurement of the microchannel, we prepared an in-house temperature-controllable microchannel-type flow cell. The melting curves of DNA oligomers in a microchannel laminar flow were measured. For DNA oligomers with more than 10 base pairs, the melting curve shifted to the high-temperature side with higher flow speed. However, for 8-base-pair DNA oligomers, a change in the melting profile was not observed in batchwise and microchannel flows. We undertook microfluidic thermodynamic analysis to elucidate details of the shift in thermal stability of the DNA duplex in a microchannel laminar flow. Enthalpy-entropy compensation is applicable to the microfluidic thermal stability shift. We studied the relationships between the enthalpy-entropy compensation and DNA strand length or flow speed. Results showed that the enthalpy-entropy compensation was influenced by both DNA strand length and flow speed, and the penalties of enthalpy were 2-12% greater than the benefits of entropy.

  10. A study on the stability of laminar open-channel flow over a sandy rippled bed

    Institute of Scientific and Technical Information of China (English)

    BAI; Yuchuan; XU; Haijue

    2005-01-01

    The bed of a river often features some kinds of bedform, such as sand ripples, dunes, and so on. Even if the bed is smooth initially, disturbances arising from the bed or other external sources will cause the laminar flow in an open channel to become unstable as soon as the flow develops, thereby leading to the formation of sand ripples on the bed. In return, the formation of the sand ripples will modify the instability path of the laminar flow passing over them. The wavy character of the bed will induce further instability of the flow, which is essentially different from that on a smooth bed: the neutral curve will move forward and the critical Reynolds number will decrease. The flow is unstable in response to a wider range of the disturbance wave number, or the laminar flow instability can happen more easily. The propagation speed of the sand ripples also affects the flow instability, since the stability of open channel flow over a movable bed is fundamentally different from that on a rigid bed. These instability effects are discussed in detail in this paper.

  11. Laminar flow in a microchannel with hydrophobic surface patterned microribs oriented parallel to the flow direction

    Science.gov (United States)

    Maynes, D.; Jeffs, K.; Woolford, B.; Webb, B. W.

    2007-09-01

    This paper reports results of an analytical and experimental investigation of the laminar flow in a parallel-plate microchannel with ultrahydrophobic top and bottom walls. The walls are fabricated with microribs and cavities that are oriented parallel to the flow direction. The channel walls are modeled in an idealized fashion, with the shape of the liquid-vapor meniscus approximated as flat. An analytical model of the vapor cavity flow is employed and coupled with a numerical model of the liquid flow by matching the local liquid and vapor phase velocity and shear stress at the interface. The numerical predictions show that the effective slip length and the reduction in the classical friction factor-Reynolds number product increase with increasing relative cavity width, increasing relative cavity depth, and decreasing relative microrib/cavity module length. Comparisons were also made between the zero shear interface model and the liquid-vapor cavity coupled model. The results illustrate that the zero shear interface model underpredicts the overall flow resistance. Further, the deviation between the two models was found to be significantly larger for increasing values of both the relative rib/cavity module width and the cavity fraction. The trends in the frictional pressure drop predictions are in good agreement with experimental measurements made at similar conditions, with greater deviation observed at increasing size of the cavity fraction. Based on the numerical predictions, an expression is proposed in which the friction factor-Reynolds number product may be estimated in terms of the important variables.

  12. Heat Transfer and Fluid Flow of Nanofluids in Laminar Radial Flow Cooling Systems

    Institute of Scientific and Technical Information of China (English)

    Gilles ROY; Samy Joseph PALM; Cong Tam NGUYEN

    2005-01-01

    Nanofluids are considered as interesting alternatives to conventional coolants. It is well known that traditional fluids have limited heat transfer capabilities when compared to common metals. It is therefore quite conceivable that a small amount of extremely fine metallic particles placed in suspension in traditional fluids will considerably increase their heat transfer performances. A numerical investigation into the heat transfer enhancement capabilities of coolants with suspended metallic nanoparticles inside a radial, laminar flow cooling configuration is presented. Temperature dependant nanofluid properties are evaluated from experimental data available in recent literature. Results indicate that considerable heat transfer increases are possible with the use of relatively small volume fractions of nanoparticles. Generally, however, these are accompanied by considerable increases in wall shear-stress. Results also show that predictions obtained with temperature variable nanofluid properties yield greater heat transfer capabilities and lower wall shear stresses when compared to predictions using constant properties.

  13. Numerical prediction of laminar flow and heat transfer in internally finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Rustum, I.M.

    1990-02-01

    An investigation was carried out to provide a detailed analysis of laminar fluid flow and heat transfer in internally finned pipes. Three mathematical models were formulated for this purpose, and shown to be capable of simulating the actual situation of pressure drop and heat transfer in such tubes. Steady, laminar forced convection heat transfer in the thermal entrance region of internally finned tubes was investigated numerically for the case of fully developed hydrodynamics using the H1 and T thermal boundary conditions. Steady, laminar fluid flow in the hydrodynamic entrance region of internally finned tubes was investigated numerically. Results are presented for the smooth tube geometry and sixteen geometries corresponding to various combinations of relative fin heights and number of fins. Steady, laminar mixed convection in the fully developed region of horizontal internally finned tubes was investigated for the case of uniform heat input axially and uniform wall temperature circumferentially. Fluid flow and heat transfer characteristics were found to be dependent on a modified Grashof number, Prandtl number, relative fin height, and number of fins. Internal finning was found to retard the onset of significant free convective effects and to suppress the enhancement in friction factor and Nusselt number compared to smooth tubes. 54 refs., 93 figs., 12 tabs.

  14. Numerical simulation of incompressible turbulent flows in presence of laminar to turbulent transition

    Science.gov (United States)

    Satish, G.; Vashista, G. A.; Majumdar, Sekhar

    2017-04-01

    Most of the widely used popular mathematical models of turbulence use a judicious combination of intuition, empiricism and the governing equations of instantaneous and mean motion-valid strictly for fully developed turbulence without any laminar region. In reality however, any wall bounded or free shear flow may consist of some laminar flow patches which eventually undergo transition over a finite length to grow into fully turbulent flows. Most of the turbulence models used in commercial CFD codes, are unable to predict the dynamics of turbulent flows with laminar patches. However, accurate prediction of transitional flows is often essential to estimate the pressure losses and/or heat transfer in industrial applications. The present paper implements two different transition models in an existing finite volume URANS-based code RANS3D, developed in house and validated against reliable measurement data for flow past flat plates with different free stream turbulence levels and flow past SD7003 aerofoil at a chord-based Reynolds number of 60,000.

  15. Convective Heat-Transfer Characteristics of Laminar Flow Through Smooth- and Rough-Wall Microchannels

    Science.gov (United States)

    Natrajan, V. K.; Christensen, K. T.

    2009-11-01

    The convective heat-transfer behavior of laminar flow through smooth- and rough-wall microchannels is investigated by performing non-intrusive measurements of fluid temperature using a microscale adaptation of two-color laser-induced fluorescent thermometry for flow through a heated copper microchannel testbed of hydraulic diameter Dh=600,μm. These measurements, in concert with pressure-drop measurements, are performed for a smooth-wall case and two different rough-wall cases with roughness that is reminiscent of the surface irregularities one might encounter due to imperfect fabrication methods. Pressure-drop measurements reveal the onset of transition above Recr=1800 for the smooth-wall case and deviation from laminar behavior at progressively lower Re with increasing surface roughness. The local Nusselt number (Nu) for smooth-wall flow over the range 200flow.

  16. Sedimentary microbial oxygen demand for laminar flow over a sediment bed of finite length.

    Science.gov (United States)

    Higashino, Makoto; Stefan, Heinz G

    2005-09-01

    Dead organic material accumulated on the bed of a lake, reservoir or wetland often provides the substrate for substantial microbial activity as well as chemical processes that withdraw dissolved oxygen (DO) from the water column. A model to estimate the actual DO profile and the "sedimentary oxygen demand (SOD)" must specify the rate of microbial or chemical activity in the sediment as well as the diffusive supply of DO from the water column through the diffusive boundary layer into the sediment. Most previous experimental and field studies have considered this problem with the assumptions that the diffusive boundary layer is (a) turbulent and (b) fully developed. These assumptions require that (a) the flow velocity above the sediment bed is fast enough to produce turbulent mixing in the boundary layer, and (b) the sediment bed is long. In this paper a model for laminar flow and SOD over a sediment bed of finite length is presented and the results are compared with those for turbulent flow. Laminar flow near a sediment bed is encountered in quiescent water bodies such as lakes, reservoirs, river backwaters, wetlands and ponds under calm wind conditions. The diffusive oxygen transfer through the laminar diffusive boundary layer above the sediment surface can restrict the microbial or chemical oxygen uptake inside the sediment significantly. The developing laminar diffusive boundary layer above the sediment/water interface is modeled based on the analogy with heat transfer, and DO uptake inside the sediment is modeled by Michaelis-Menten microbial growth kinetics. The model predicts that the rate of SOD at the beginning of the reactive sediment bed is solely dependent on microbial density in the sediment regardless of flow velocity and type. The rate of SOD, and the DO penetration depth into the sediment decrease in stream-wise direction over the length of the sediment bed, as the diffusive boundary layer above the sediment/water interface thickens. With increasing

  17. Searching for the fastest dynamo: laminar ABC flows.

    Science.gov (United States)

    Alexakis, Alexandros

    2011-08-01

    The growth rate of the dynamo instability as a function of the magnetic Reynolds number R(M) is investigated by means of numerical simulations for the family of the Arnold-Beltrami-Childress (ABC) flows and for two different forcing scales. For the ABC flows that are driven at the largest available length scale, it is found that, as the magnetic Reynolds number is increased: (a) The flow that results first in a dynamo is the 2 1/2-dimensional flow for which A=B and C=0 (and all permutations). (b) The second type of flow that results in a dynamo is the one for which A=B≃2C/5 (and permutations). (c) The most symmetric flow, A=B=C, is the third type of flow that results in a dynamo. (d) As R(M) is increased, the A=B=C flow stops being a dynamo and transitions from a local maximum to a third-order saddle point. (e) At larger R(M), the A=B=C flow reestablishes itself as a dynamo but remains a saddle point. (f) At the largest examined R(M), the growth rate of the 2 1/2-dimensional flows starts to decay, the A=B=C flow comes close to a local maximum again, and the flow A=B≃2C/5 (and permutations) results in the fastest dynamo with growth rate γ≃0.12 at the largest examined R(M). For the ABC flows that are driven at the second largest available length scale, it is found that (a) the 2 1/2-dimensional flows A=B,C=0 (and permutations) are again the first flows that result in a dynamo with a decreased onset. (b) The most symmetric flow, A=B=C, is the second type of flow that results in a dynamo. It is, and it remains, a local maximum. (c) At larger R(M), the flow A=B≃2C/5 (and permutations) appears as the third type of flow that results in a dynamo. As R(M) is increased, it becomes the flow with the largest growth rate. The growth rates appear to have some correlation with the Lyapunov exponents, but constructive refolding of the field lines appears equally important in determining the fastest dynamo flow.

  18. A Two Element Laminar Flow Airfoil Optimized for Cruise. M.S. Thesis

    Science.gov (United States)

    Steen, Gregory Glen

    1994-01-01

    Numerical and experimental results are presented for a new two-element, fixed-geometry natural laminar flow airfoil optimized for cruise Reynolds numbers on the order of three million. The airfoil design consists of a primary element and an independent secondary element with a primary to secondary chord ratio of three to one. The airfoil was designed to improve the cruise lift-to-drag ratio while maintaining an appropriate landing capability when compared to conventional airfoils. The airfoil was numerically developed utilizing the NASA Langley Multi-Component Airfoil Analysis computer code running on a personal computer. Numerical results show a nearly 11.75 percent decrease in overall wing drag with no increase in stall speed at sailplane cruise conditions when compared to a wing based on an efficient single element airfoil. Section surface pressure, wake survey, transition location, and flow visualization results were obtained in the Texas A&M University Low Speed Wind Tunnel. Comparisons between the numerical and experimental data, the effects of the relative position and angle of the two elements, and Reynolds number variations from 8 x 10(exp 5) to 3 x 10(exp 6) for the optimum geometry case are presented.

  19. Study on double-shaft mixing paddle undergoing planetary motion in the laminar flow mixing system

    Directory of Open Access Journals (Sweden)

    Jiaqi Zhang

    2015-06-01

    Full Text Available This article has studied the impact of double-shaft mixing paddle undergoing planetary motion on laminar flow mixing system using flow field visualization experiment and computational fluid dynamics simulation. Digital image processing was conducted to analyze the mixing efficiency of mixing paddle in co-rotating and counter-rotating modes. It was found that the double-shaft mixing paddle undergoing planetary motion would not produce the isolated mixing regions in the laminar flow mixing system, and its mixing efficiency in counter-rotating modes was higher than that in co-rotating modes, especially at low rotating speed. According to the tracer trajectory experiment, it was found that the path line of the tracer in the flow field in co-rotating modes was distributed in the opposite direction to the path line in counter-rotating modes. Planetary motion of mixing paddle had stretching, shearing, and folding effects on the trajectory of the tracer. By means of computational fluid dynamics simulation, it was found that axial flows and tangential flows produced in co-rotating and counter-rotating modes have similar flow velocity but opposite flow directions. It is deduced from the distribution rule of axial flow, radial flow, and tangential flow in the flow field that axial flow is the main reason for causing different mixing efficiencies between co-rotating and counter-rotating modes.

  20. Transitions in a magnetized quasi-laminar spherical Couette Flow

    CERN Document Server

    Kaprzyk, C; Seilmayer, M; Stefani, F

    2016-01-01

    First results of a new spherical Couette experiment are presented. The liquid metal flow in a spherical shell is exposed to a homogeneous axial magnetic field. For a Reynolds number Re=1000, we study the effect of increasing Hartmann number Ha. The resulting flow structures are inspected by ultrasound Doppler velocimetry. With a weak applied magnetic field, we observe an equatorially anti-symmetric jet instability with azimuthal wave number m=3. As the magnetic field strength increases, this instability vanishes. When the field is increased further, an equatorially symmetric return flow instability arises. Our observations are shown to be in good agreement with linear stability analysis and non-linear flow simulations.

  1. Laminar Natural Convection of Newtonian and Non – Newtonian Fluids Inside Triangular Enclosure

    Directory of Open Access Journals (Sweden)

    Ala?a Abbas Muhadi

    2007-01-01

    Full Text Available In the present work, steady two – dimensional laminar natural convection heat transfer of Newtonian and non-Newtonian fluids inside isosceles triangular enclosure has been analyzed numerically for a wide range of the modified Rayleigh numbers of (103 ≤ Ra ≤ 105, with non-dimensional parameter (NE of Prandtl – Eyring model ranging from (0 to 10, and modified Prandtl number take in the range (Pr* =1,10, and 100. Two types of boundary conditions have been considered. The first, when the inclined walls are heated with different uniform temperatures and the lower wall is insulated. The second, when the bottom wall is heated by applying a uniform heat flux while the inclined walls at the constant cold temperature. Also, the non-Newtonian fluids under consideration were assumed to obey the Prandtl – Eyring model..The results are presented in terms of isotherms and streamlines to show the behavior of the fluid flow and temperature fields. In addition, some graphics are presented the relation between average Nusselt number and the various parameters. The results show the effect of non – dimensional parameter (NE on the velocity and temperature profiles. They also show that the average Nusselt number is a strong function of modified Rayleigh number, modified Prandtl number, non-dimensional parameter, and the boundary conditions. Four different correlations have been made to show the dependence of the average Nusselt number on the non-dimensional parameter, the modified Rayleigh and Prandtl numbers.

  2. Laminar-Turbulent Transition: The change of the flow state temperature with the Reynolds number

    CERN Document Server

    Chekmarev, Sergei F

    2014-01-01

    Using the previously developed model to describe laminar/turbulent states of a viscous fluid flow, which treats the flow as a collection of coherent structures of various size (Chekmarev, Chaos, 2013, 013144), the statistical temperature of the flow state is determined as a function of the Reynolds number. It is shown that at small Reynolds numbers, associated with laminar states, the temperature is positive, while at large Reynolds numbers, associated with turbulent states, it is negative. At intermediate Reynolds numbers, the temperature changes from positive to negative as the size of the coherent structures increases, similar to what was predicted by Onsager for a system of parallel point-vortices in an inviscid fluid. It is also shown that in the range of intermediate Reynolds numbers the temperature exhibits a power-law divergence characteristic of second-order phase transitions.

  3. Special Course on Stability and Transition of Laminar Flow

    Science.gov (United States)

    1984-06-01

    to stabilize the flow, and flows with convex velocity profiles thus appeared to be stable. In a review of 30 years of effort, Noether (1921) wrote... Noether , F. 1921 Das Turbulenzproblem, ZAMM, Vol. 1, pp. 125-138. Obremskl, H.T., Morkovln, M.V. and Landahl, M.T. 1969

  4. THEORETICAL ANALYSIS ON HYDRAULIC TRANSIENT RESULTED BY SUDDEN INCREASE OF INLET PRESSURE FOR LAMINAR PIPELINE FLOW

    Institute of Scientific and Technical Information of China (English)

    邓松圣; 周绍骑; 廖振方; 邱正阳; 曾顺鹏

    2004-01-01

    Hydraulic transient,which is resulted from sudden increase of inlet pressure for laminar pipeline flow,is studied.The partial differential equation,initial and boundary conditions for transient pressure were constructed,and the theoretical solution was obtained by variable-separation method.The partial differential equation,initial and boundary conditions for flow rate were obtained in accordance with the constraint correlation between flow rate and pressure while the transient flow rate distribution was also solved by variable-separation method.The theoretical solution conforms to numerical solution obtained by method of characteristics(MOC)very well.

  5. Interaction theory of hypersonic laminar near-wake flow behind an adiabatic circular cylinder

    Science.gov (United States)

    Hinman, W. Schuyler; Johansen, C. T.

    2016-11-01

    The separation and shock wave formation on the aft-body of a hypersonic adiabatic circular cylinder were studied numerically using the open source software OpenFOAM. The simulations of laminar flow were performed over a range of Reynolds numbers (8× 10^3 free-stream Mach number of 5.9. Off-body viscous forces were isolated by controlling the wall boundary condition. It was observed that the off-body viscous forces play a dominant role compared to the boundary layer in displacement of the interaction onset in response to a change in Reynolds number. A modified free-interaction equation and correlation parameter has been presented which accounts for wall curvature effects on the interaction. The free-interaction equation was manipulated to isolate the contribution of the viscous-inviscid interaction to the overall pressure rise and shock formation. Using these equations coupled with high-quality simulation data, the underlying mechanisms resulting in Reynolds number dependence of the lip-shock formation were investigated. A constant value for the interaction parameter representing the part of the pressure rise due to viscous-inviscid interaction has been observed at separation over a wide range of Reynolds numbers. The effect of curvature has been shown to be the primary contributor to the Reynolds number dependence of the free-interaction mechanism at separation. The observations in this work have been discussed here to create a thorough analysis of the Reynolds number-dependent nature of the lip-shock.

  6. Aerodynamic coefficients of stationary dry inclined bridge cables in laminar flow

    DEFF Research Database (Denmark)

    Matteoni, Giulia; Georgakis, Christos; Ricciardelli, Francesco

    2011-01-01

    Stay cables are the most flexible elements of cable-stayed bridges. When exposed to wind loading, they often undergo large amplitude vibrations, thus motivating serious design concerns. In most cases, vibrations are observed in the presence of water rivulets or ice accretions, which lead...... to an effective change in the cable cross section, and its aerodynamic properties. On the other hand, divergent, self-excited vibrations have been observed in the field also for dry, inclined stay cables, in warm temperatures. The need for reliable design guidelines for inclined stay cables has motivated...... conditions, i.e. dry, wet and icy, in laminar and turbulent flow, has been initiated at the new DTU/Force Climatic Wind Tunnel facility in Denmark. This paper covers selected results of the comparative study, i.e. aerodynamic coefficients of dry inclined cables in laminar flow conditions....

  7. Experimental Investigation of a Synthetic Jet Array in a Laminar Channel Flow

    Directory of Open Access Journals (Sweden)

    Trávníček Z.

    2013-04-01

    Full Text Available The paper deals with an impinging synthetic jet, namely on the case of a synthetic jet array interacting with a laminar channel flow. This arrangement can be useful in many micro-scale applications, such as cooling of micro-electronics. The flow regime in micro-scale is usually laminar with very small Reynolds numbers; therefore synthetic jet array can be used for the profile disturbance and heat transfer enhancement. The paper focuses on the low Reynolds number (in order 102. The working fluid is water and a piezoceramic transducer is used as a moving membrane in the synthetic jet actuator. Experiments are performed with four experimental methods (tin ion visualization, hot wire anemometry in constant temperature mode, laser Doppler vibrometry and particle image velocimetry in three laboratories (at the Eindhoven University of Technology, Netherlands, at the Institute of Thermodynamics CAS, v.v.i. and Technical University of Liberec, both Czech Republic.

  8. Physical quantity synergy in laminar flow field of convective heat transfer and analysis of heat transfer enhancement

    Institute of Scientific and Technical Information of China (English)

    LIU Wei; LIU ZhiChun; GUO ZengYuan

    2009-01-01

    Based on the principle of field synergy for heat transfer enhancement, the concept of physical quantity synergy in the laminar flow field is proposed in the present study according to the physical mechanism of convective heat transfer between fluid and tube wall. The synergy regulation among physical quantities of fluid particle is revealed by establishing formulas reflecting the relation between synergy angles and heat transfer enhancement. The physical nature of enhancing heat transfer and reducing flow resistance, which is directly associated with synergy angles α,βγ,φ, θ and ψ, is also explained. Be-sides, the principle of synergy among physical quantities is numerically verified by the calculation of heat transfer and flow in a thin cylinder-interpolated tube, which may guide the optimum design for better heat transfer unit and high-efficiency heat exchanger.

  9. Convective heat transfer for incompressible laminar gas flow in micropassage with constant wall temperature

    Institute of Scientific and Technical Information of China (English)

    安刚; 李俊明; 王补宣

    2001-01-01

    Theoretical investigations have been performed on the convective heat transfer for incompressible laminar flow of gases through microtube and parallel-plates micropassages with constant wall temperature. Considering the change in thermal conductivity and viscosity of gas in wall adjacent region from the kinetic theory, mathematical models are built for both of the micropassages. The dimensionless temperature distribution and the corresponding heat transfer characteristics are simulated numerically, and the results discussed briefly.

  10. Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten

    2015-01-01

    We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation...... in the laminar regime for the flow field, to a linear, time-harmonic acoustic equation in the low Mach number regime for the sound signal. B-splines are used both to represent the duct geometry and to approximate the flow and sound fields. This facilitates an exact representation of complex duct geometries...

  11. Analysis of first stage ignition delay times of dimethyl ether in a laminar flow reactor

    Science.gov (United States)

    Wada, Tomoya; Sudholt, Alena; Pitsch, Heinz; Peters, Norbert

    2013-10-01

    The combustion chemistry of the first stage ignition and chemistry/flow interactions are studied for dimethyl ether (DME) with a mathematical analysis of two systems: a plug flow reactor study is used to reduce the reaction chemistry systematically. A skeletal reaction mechanism for the low temperature chemistry of DME until the onset of ignition is derived on the basis of the detailed DME mechanism of the Lawrence Livermore National Laboratory - see Curran, Fischer and Dryer, Int. J. Chem. Kinetics, Vol. 32 (2000). It is shown that reasonably good results for ignition delay times can be reached using a simple system of three ordinary differential equations and that the resulting analytical solution depends only on two reaction rates and the initial fuel concentration. The stepwise reduction of the system based on assumptions yields an understanding on why these reactions are so important. Furthermore, the validation of the assumptions yields insight into the influence of the fuel and the oxygen concentration on the temperature during the induction phase. To investigate the influence of chemistry/flow interactions, a 2D model with a laminar Hagen-Poiseuille flow and 2D-polynomial profiles for the radial species concentration is considered. For the 2D model, it is found that only the diffusion coefficients and the reactor radius need to be taken into consideration additionally to describe the system sufficiently. Also, the coupling of flow and chemistry is clarified in the mathematical analysis. The insight obtained from the comparison of the 2D model and the plug flow model is used to establish an average velocity for the conversion of ignition locations to ignition delay times in a laminar flow reactor. Finally, the 2D analytical solution is compared against new experimental data, obtained in such a laminar flow reactor for an undiluted DME/air mixture with an equivalence ratio of φ = 0.835 and a temperature range of 555 to 585 K at atmospheric pressure.

  12. Russian Laminar Flow Airfoils 3rd Part: Measurements on the Profile No. 2315 BIS with Ava-Nose Flap

    Science.gov (United States)

    Riegels, F.

    1947-01-01

    The tests on the Russian airfoil 2315 Bis were continued. This airfoil shows, according to Moscow tests, good laminar flow characteristics. Several tests were prepared in the large wind tunnel at Gottingen; partial results were obtained.

  13. Adhesion of Streptococcus mutans to various dental materials in a laminar flow chamber system.

    Science.gov (United States)

    Rosentritt, Martin; Hahnel, Sebastian; Gröger, Gerhard; Mühlfriedel, Bastian; Bürgers, Ralf; Handel, Gerhard

    2008-07-01

    Newly developed dental materials have to be tested for their susceptibility to adhere bacteria causing caries and periodontitis. The objective of this study was to establish an in vitro laminar flow chamber assay for dental material evaluation with regard to the adhesion of oral bacteria. Test specimens of commonly used dental materials (ceramic (five brands of ceramics, n = 15/brand), composite (eight brands of composites, n = 15/brand), and alloy (two brands of alloys, n = 15/brand) specimens) were inserted in a laminar flow chamber system and rinsed with artificial saliva (2 h) and Streptococcus mutans NCTC 10,449 suspension (4 h) successively. The amount of adhered bacteria was quantified using a Resazurin reduction assay (Alamar Blue). Statistical analysis was performed using the Mann-Whitney U-test (alpha = 0.05). Regarding adhesion of Streptococcus mutans, significant differences between the various material classes were found. Highest fluorescence values (ranging from 973 to 3145), correlating with high bacterial adhesion, were found on composite samples, and lowest values (173-272) were found on the alloys. Ceramic specimens showed an intermediate adhesion of Streptococcus mutans (fluorescence values from 532 to 1326). Streptococcus mutans NCTC 10449 adhered differently to the various classes of dental materials. The established laminar flow chamber device provides a suitable method for evaluating the adhesion of oral bacteria to dental material surfaces. 2007 Wiley Periodicals, Inc.

  14. Spatial variation of the magnetic field inside laminar flows of a perfect conductive fluid

    Science.gov (United States)

    Duka, Bejo; Boçi, Sonila

    2017-01-01

    The steady state of a perfect conductive fluid in laminar flow resulting from the ‘Hall effect’ is studied. Using the Maxwell equations, the spatial variation of the magnetic field in the steady state is calculated for three cases of different fluid flow geometries: flow between two infinite parallel planes, flow between two coaxial infinite-long cylinders and flow between two concentric spheres. According to our calculation of the three cases, the spatial variation of the magnetic field depends on the flow velocity. The magnetic field is strengthened in layers where the velocity is greater, but this dependency is negligible for non relativistic flows. Our approach in this study provides an example of how to receive interesting results using only basic knowledge of physics and mathematics.

  15. A laminar flow unit for the care of critically ill newborn infants

    Directory of Open Access Journals (Sweden)

    Perez JM

    2013-10-01

    Full Text Available Jose MR Perez,1 Sergio G Golombek,2 Carlos Fajardo,3 Augusto Sola41Stella Maris Hospital, International Neurodevelopment Neonatal Center (CINN, Sao Paulo, Brazil; 2M Fareri Children’s Hospital, Westchester Medical Center, New York Medical College, Valhalla, NY, USA; 3University of Calgary, Calgary, Canada; 4St Jude Hospital, Fullerton, California, CA, USAIntroduction: Medical and nursing care of newborns is predicated on the delicate control and balance of several vital parameters. Closed incubators and open radiant warmers are the most widely used devices for the care of neonates in intensive care; however, several well-known limitations of these devises have not been resolved. The use of laminar flow is widely used in many fields of medicine, and may have applications in neonatal care.Objective: To describe the neonatal laminar flow unit, a new equipment we designed for care of ill newborns.Methods: The idea, design, and development of this device was completed in Sao Paulo, Brazil. The unit is an open mobile bed designed with the objective of maintaining the advantages of the incubator and radiant warmer, while overcoming some of their inherent shortcomings; these shortcomings include noise, magnetic fields and acrylic barriers in incubators, and lack of isolation and water loss through skin in radiant warmers. The unit has a pump that aspirates environmental air which is warmed by electrical resistance and decontaminated with High Efficiency Particulate Air Filter (HEPA filters (laminar flow. The flow is directed by an air flow directioner. The unit has an embedded humidifier to increase humidity in the infant’s microenvironment and a servo control mechanism for regulation of skin temperature.Results: The laminar flow unit is open and facilitates access of care providers and family, which is not the case in incubators. It provides warming by convection at an air velocity of 0.45 m/s, much faster than an incubator (0.1 m/s. The system

  16. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing.

    Science.gov (United States)

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-11-23

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  17. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    Directory of Open Access Journals (Sweden)

    Mohammed-Baker Habhab

    2016-11-01

    Full Text Available Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications.

  18. A Laminar Flow-Based Microfluidic Tesla Pump via Lithography Enabled 3D Printing

    Science.gov (United States)

    Habhab, Mohammed-Baker; Ismail, Tania; Lo, Joe Fujiou

    2016-01-01

    Tesla turbine and its applications in power generation and fluid flow were demonstrated by Nicholas Tesla in 1913. However, its real-world implementations were limited by the difficulty to maintain laminar flow between rotor disks, transient efficiencies during rotor acceleration, and the lack of other applications that fully utilize the continuous flow outputs. All of the aforementioned limits of Tesla turbines can be addressed by scaling to the microfluidic flow regime. Demonstrated here is a microscale Tesla pump designed and fabricated using a Digital Light Processing (DLP) based 3D printer with 43 µm lateral and 30 µm thickness resolutions. The miniaturized pump is characterized by low Reynolds number of 1000 and a flow rate of up to 12.6 mL/min at 1200 rpm, unloaded. It is capable of driving a mixer network to generate microfluidic gradient. The continuous, laminar flow from Tesla turbines is well-suited to the needs of flow-sensitive microfluidics, where the integrated pump will enable numerous compact lab-on-a-chip applications. PMID:27886051

  19. Heat transfer in hybrid media for laminar flow with recirculation; Transferencia de calor em meios hibridos para escoamentos laminares com recirculacao

    Energy Technology Data Exchange (ETDEWEB)

    Rocamora Junior, Francisco Dias [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. de Estudos Avancados. Dept. de Energia Nuclear]. E-mail: rocamora@mec.ita.br; Delemos, Marcelo J.S. [Centro Tecnico Aeroespacial (CTA-IEAv), Sao Jose dos Campos, SP (Brazil). Inst. Tecnologico de Aeronautica. Dept. de Energia]. E-mail: delemos@mec.ita.br

    2000-07-01

    This work presents numerical solutions for flow and heat transfer in hybrid media (clear/porous medium). Laminar flow between parallel plates with recirculation induced by a porous obstacle was considered. The flow governing equations for both clear and porous media were solved using a single computational domain and appropriate interface boundary conditions. The theory proposed by Ochoa-Tapia e Whitaker (1995) was applied for considering the jump conditions at the interface. The influence of several parameters on flow and heat transfer, such as the thermal conductivity ratio, permeability, porosity and fluid superficial velocity, was discussed. (author)

  20. Flow reversal of laminar mixed convection in the entry region of symmetrically heated, vertical plate channels

    Energy Technology Data Exchange (ETDEWEB)

    Desrayaud, G. [Universite de Picardie Jules Verne, INSSET, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 02 - Saint-Quentin (France); Lauriat, G. [Universite Paris-Est, Lab. Modelisation et Simulation Multi Echelle, MSME FRE 3160 CNRS, 77 - Marne-la-Vallee (France)

    2009-11-15

    The present numerical investigation is concerned with flow reversal phenomena for laminar, mixed convection of air in a vertical parallel-plate channel of finite length. Results are obtained for buoyancy-assisted flow in a symmetrically heated channel with uniform wall temperatures for various Grashof numbers and Reynolds numbers in the range 300 {<=} Re {<=} 1300. The effects of buoyancy forces on the flow pattern are investigated and the shapes of velocity and temperature profiles are discussed in detail. Flow reversals centred in the entrance of the channel are predicted. The strength of the cells decreases as the Reynolds number is increased, until they disappear. The regime of reversed flow is identified for high values of the Peclet number in a Pe-Gr/Re map. It is also shown that the channel length has no influence on the occurrence of the reversal flow provided that H/D {>=} 10. (authors)

  1. A microfluidic chip for generating reactive plasma at gas-gas interface formed in laminar flow

    Science.gov (United States)

    Hashimoto, Masahiro; Tsukasaki, Katsuki; Kumagai, Shinya; Sasaki, Minoru

    2015-01-01

    A gas-gas interface is used for generating a localized reactive plasma flow at an atmospheric pressure. A microfluidic chip is fabricated as the reactor integrating a small plasma source located upstream. Within a Y-shaped microchannel, a discharging gas flows with a chemical gas. Owing to the small width of the microchannel, the gas flow is stabilized in a laminar flow. The resultant gas-gas interface is formed in the area where two gases flow facing each other activating the chemical gas through the energetic species in the discharging gas. A characteristic stream pattern is observed as the etching profile of a carbon film with a sub-µm sharp step change that can be explained by the spatial distribution of the reactive oxygen. This etching profile is different from that obtained when plasma discharging occurs near the channel exit being affected by the turbulent flow.

  2. Development of Advanced High Lift Leading Edge Technology for Laminar Flow Wings

    Science.gov (United States)

    Bright, Michelle M.; Korntheuer, Andrea; Komadina, Steve; Lin, John C.

    2013-01-01

    This paper describes the Advanced High Lift Leading Edge (AHLLE) task performed by Northrop Grumman Systems Corporation, Aerospace Systems (NGAS) for the NASA Subsonic Fixed Wing project in an effort to develop enabling high-lift technology for laminar flow wings. Based on a known laminar cruise airfoil that incorporated an NGAS-developed integrated slot design, this effort involved using Computational Fluid Dynamics (CFD) analysis and quality function deployment (QFD) analysis on several leading edge concepts, and subsequently down-selected to two blown leading-edge concepts for testing. A 7-foot-span AHLLE airfoil model was designed and fabricated at NGAS and then tested at the NGAS 7 x 10 Low Speed Wind Tunnel in Hawthorne, CA. The model configurations tested included: baseline, deflected trailing edge, blown deflected trailing edge, blown leading edge, morphed leading edge, and blown/morphed leading edge. A successful demonstration of high lift leading edge technology was achieved, and the target goals for improved lift were exceeded by 30% with a maximum section lift coefficient (Cl) of 5.2. Maximum incremental section lift coefficients ( Cl) of 3.5 and 3.1 were achieved for a blown drooped (morphed) leading edge concept and a non-drooped leading edge blowing concept, respectively. The most effective AHLLE design yielded an estimated 94% lift improvement over the conventional high lift Krueger flap configurations while providing laminar flow capability on the cruise configuration.

  3. Experimental Study on Physical Mechanism of Drag Reduction of Hydrophobic Materials in Laminar Flow

    Institute of Scientific and Technical Information of China (English)

    YU Yong-Sheng; WEI Qin-Ding

    2006-01-01

    We experimentally study the physical mechanism of the drag reduction of hydrophobic materials in the macroscopic scale. The experiment includes the drag and velocity measurements of laminar boundary layer Sow over flat plates, and the observation of air bubbles on the surfaces. The plate surfaces have different wetting and roughness properties. In the drag measurements, the plates with bubbles on the surfaces lead to drag reduction, but not for those without bubbles. Velocity measurement confirms that the flow is laminar and gives apparent fluid slip on the plate wall with bubbles. In observation, air bubbles in macroscopic size emerge and enlarge on hydrophobic surfaces but not on hydrophilic surfaces. Therefore, the drag reduction of hydrophobic materials is explained by the generation of air bubbles of macroscopic size that cause the apparent velocity slip.

  4. The coefficientof hydraulic friction of laminar open flows in smooth channels

    Directory of Open Access Journals (Sweden)

    Borovkov Valeriy Stepanovich

    2015-05-01

    Full Text Available The article examines the dependence of the hydraulic friction coefficient of open laminar uniform streams on the relative width of channels with smooth bottom. The article presents the functional dependence that describes the hydraulic resistance in open channels with smooth bottoms.The experiments were carried out in a rectangular tray (6000×100×200. Aqueous solutions of glycerol were used as working fluids. The superficial tension and liquid density for the used liquids changed a little. The article declares that the coefficient of hydraulic friction λ in the zone of the laminar flow depends on the relative width of the channels with smooth bottom. In the article it is also shown that the Charny formula satisfactorily agrees with the theoretical formula and with the experimental data.

  5. Demonstration of a plasma mirror based on a laminar flow water film

    Energy Technology Data Exchange (ETDEWEB)

    Panasenko, Dmitriy; Shu, Anthony; Gonsalves, Anthony; Nakamura, Kei; Matlis, Nicholas; Toth, Csaba; Leemans, Wim

    2011-07-22

    A plasma mirror based on a laminar water film with low flow speed 0.5-2 cm/s has been developed and characterized, for use as an ultrahigh intensity optical reflector. The use of flowing water as atarget surface automatically results in each laser pulse seeing a new interaction surface and avoids the need for mechanical scanning of the target surface. In addition, the breakdown of water does notproduce contaminating debris that can be deleterious to vacuum chamber conditions and optics, such as is the case when using conventional solid targets. The mirror exhibits 70percent reflectivity, whilemaintaining high-quality of the reflected spot.

  6. Convective heat transfer for incompressible laminar gas flow in micropassage with constant wall temperature

    Institute of Scientific and Technical Information of China (English)

    An; Gang; (

    2001-01-01

    [1]Tuckermann, D. B., Pease, R. F., Optimized convective cooling using micromachined structure, J. Electro-Chemical Society, 1982, 129(3): 98c.[2]Wu Peiyi, Little, W. A., Measurement of friction factor for the flow of gases in very fine channel used for microminiature Joule-Thomson refrigerators, Cryogenics, 1983, 23(5): 273.[3]Wu Peiyi, Little, W. A., Measurement of the heat transfer characteristics of gas flow in fine channel heat exchangers used for microminiature refrigerators, Cryogenics, 1984, 24(8): 415.[4]Choi, B., Barron, R. F., Warrington, R. O., Fluid flow and heat transfer in microtubes, ASME DSC, 1991, 32: 123.[5]Pfahler, J., Harley, J., Bua, H. et al., Gas and liquid flow in small channel, ASME DSC, 1991, 32: 49.[6]Beskok, A., Karniadakis, G. E., Simulation of slip-flow in complex micro-geometries, ASME DSC, 1992, 40: 355.[7]Mohiuddin, M. G., Li Dongqing, Dale, J. D., Heat transfer and fluid flow in microchannels, Int. J. Heat and Mass Transfer, 1997, 40(13): 3079.[8]Li, J. M., Wang, B. X., Peng, X. F., The wall effect for laminar flow through microtube, in Int. Center for Heat and Mass Transfer (ICHMT) Symposium on Molecular and Microscale Heat Transfer in Material Processing and Other Application Yokohama, Japan, (eds. Tanasawa, I., Nishio, S.), New York: Begell House,1996, 55-65.[9]Li, J. M., Wang, B. X., Peng, X. F., Laminar flow of gas through extremely narrow parallel plates, in Heat Transfer and Technology 1996, Proc. Fourth ISHT (ed. Wang, B. X.), Beijing: Higher Education Press, 1996, 318-322.[10]Li, J. M., Wang, B. X., Peng, X. F., Wall effect of gas laminar heat transfer in microtubes, Journal of Engineering Thermophysics (in Chinese), 1998, 19(5): 596.[11]Li, J. M., Wang, B. X., Peng, X. F., Laminar heat transfer of gas in microchannels between two paralled plates, Journal of Engineering Thermophysics (in Chinese), 1999, 20(2): 194.[12]Tao, W. Q., Numerical Heat Transfer (in Chinese), Xi

  7. Fully developed laminar flow of two immiscible liquids through horizontal pipes: a variational approach

    Energy Technology Data Exchange (ETDEWEB)

    Kurban, Adib Paulo Abdalla [PETROBRAS, Rio de Janeiro (Brazil). Centro de Pesquisas; Bannwart, Antonio Carlos [Universidade Estadual de Campinas, SP (Brazil). Faculdade de Engenharia Mecanica

    1990-12-31

    The fully developed laminar flow of two immiscible liquids with both different viscosities and densities through a horizontal round pipe is studied. The interface between the fluids as well as their flow fields are determined by the use of a variational principle: the so called viscous dissipation principle: The results foreseen by this paper are in agreement with the physical observation (e.g. Southern and Ballman) that the more viscous fluid is total or partially encapsulated by the less viscous one. (author) 8 refs., 4 figs.

  8. Numerical Method for laminar fully developed flow in arbitrary cross section of ducts

    Directory of Open Access Journals (Sweden)

    Beghdadi Lotfi

    2015-06-01

    Full Text Available The present paper deals with the approximation of the solutions of partial differential equations that describe the phenomena of heat transfer and fluid flow, using a method based on Stokes' theorem and applied an unstructured computational mesh. The thus developed method will be applied in a problem of heat transfer charactiristics of laminar fully developed flow. After developing a code for calculating quantitative tests are planned to determine the accuracy of the method by the comparison with analytical solution or other studies that are already done.

  9. Heat Transfer from a dc Laminar Plasma-Jet Flow to Different Solid Surfaces

    Institute of Scientific and Technical Information of China (English)

    孟显; 潘文霞; 吴承康

    2003-01-01

    The heat flux distributions were measured by using transient method for an argon dc laminar plasma-jet flow impinging normally on a plate surface embedded with copper probes. Different powders were coated on the probe surfaces and the effect of powder coatings on the heat transfer from jet flow to the probe surface was examined.Experimental results show that the maximum values of the heat flux to the probe increase with the coating of fine metal powders, while for the surfaces coated with fine ceramic powders, the maximum values of heat flux decrease, compared with that to the bare copper probe surface.

  10. Extension of Golay's plate height equation from laminar to turbulent flow I - Theory.

    Science.gov (United States)

    Gritti, Fabrice

    2017-04-07

    The reduced plate height (RPH) equation of Golay derived in 1958 for open tubular columns (OTC) is extended from laminar to turbulent-like flow. The mass balance equation is solved under near-equilibrium conditions in the mobile phase for changing shapes of the velocity profile across the OTC diameter. The final expression of the general RPH equation is: [Formula: see text] where ν is the reduced linear velocity, k is the retention factor, Dm is the bulk diffusion coefficient in the mobile phase, Da¯ is the average axial dispersion coefficient, Dr¯ is the average radial dispersion coefficient, Ds is the diffusion coefficient of the analyte in the stationary film of thickness df, D is the OTC inner diameter, and n≥2 is a positive number controlling the shape of the flow profile (polynomial of degree n). The correctness of the derived RPH equation is verified for Poiseuille (n=2), turburlent-like (n=10), and uniformly flat (n→∞) flow profiles. The derived RPH equation is applied to predict the gain in speed-resolution of a 180μm i.d.×20m OTC (df=2μm) from laminar to turbulent flow in supercritical fluid chromatography. Using pure carbon dioxide as the mobile phase at 297K, k=1, and increasing the Reynolds number from 2000 (laminar) to 4000 (turbulent), the OTC efficiency is expected to increase from 125 to 670 (×5.4) while the hold-up time decreases from 19 to 9s (×0.5). Despite the stronger resistance to mass transfer in the stationary phase, the projected improvement of the column performance in turbulent flow is explained by the quasi-elimination of the resistance to mass transfer in the mobile phase while axial dispersion remains negligible. Copyright © 2017 Elsevier B.V. All rights reserved.

  11. Influence of laminar flow on preorientation of coal tar pitch structural units: Raman microspectroscopic study

    Science.gov (United States)

    Urban, O.; Jehlička, J.; Pokorný, J.; Rouzaud, J. N.

    2003-08-01

    In order to estimate the role of laminar flow of viscous, aromatic matter of carbonaceous precursor on microtextural preorientation in pregraphitization stage, we performed experiments with coal tar pitch (CTP). The principal hypothesis of preorientation of basic structural units (BSUs) in the case of laminar flow (pressure impregnation of CTP into porous matrix) and secondary release of volatiles during carbonization were studied. Glass microplates, planar porous medium with average distance between single microplates 5 μm were used as suitable porous matrix. Samples of CTP were carbonized up to 2500 °C. Optical microscopy reveals large flow domains in the sample of cokes carbonized between glass microplates. Raman microspectroscopy and high resolution transmission electron microscopy (HRTEM) show that at nanometric scale, the samples do not support the proposed hypotheses. With increasing temperature of pyrolysis, the graphitization of CTP impregnated into porous matrix proceeds to lower degree of structural ordering in comparison with single pyrolyzed CTP. This is explained by the release of volatile matter during carbonization in geometrically restricted spaces. More evident structural changes were discovered with the sample of single coke, where parts of fine grain mosaics, relicts of 'so called QI parts', reveal higher structural organization, in comparison with large and prolonged flow domains, similar to flow domains of cokes from microplates.

  12. Propagation of atmospheric pressure helium plasma jet into ambient air at laminar gas flow

    Science.gov (United States)

    Pinchuk, M.; Stepanova, O.; Kurakina, N.; Spodobin, V.

    2017-05-01

    The formation of an atmospheric pressure plasma jet (APPJ) in a gas flow passing through the discharge gap depends on both gas-dynamic properties and electrophysical parameters of the plasma jet generator. The paper presents the results of experimental and numerical study of the propagation of the APPJ in a laminar flow of helium. A dielectric-barrier discharge (DBD) generated inside a quartz tube equipped with a coaxial electrode system, which provided gas passing through it, served as a plasma source. The transition of the laminar regime of gas flow into turbulent one was controlled by the photography of a formed plasma jet. The corresponding gas outlet velocity and Reynolds numbers were revealed experimentally and were used to simulate gas dynamics with OpenFOAM software. The data of the numerical simulation suggest that the length of plasma jet at the unvarying electrophysical parameters of DBD strongly depends on the mole fraction of ambient air in a helium flow, which is established along the direction of gas flow.

  13. Role of surface roughness characterized by fractal geometry on laminar flow in microchannels

    Science.gov (United States)

    Chen, Yongping; Zhang, Chengbin; Shi, Mingheng; Peterson, G. P.

    2009-08-01

    A three-dimensional model of laminar flow in microchannels is numerically analyzed incorporating surface roughness effects as characterized by fractal geometry. The Weierstrass-Mandelbrot function is proposed to characterize the multiscale self-affine roughness. The effects of Reynolds number, relative roughness, and fractal dimension on laminar flow are all investigated and discussed. The results indicate that unlike flow in smooth microchannels, the Poiseuille number in rough microchannels increases linearly with the Reynolds number, Re, and is larger than what is typically observed in smooth channels. For these situations, the flow over surfaces with high relative roughness induces recirculation and flow separation, which play an important role in single-phase pressure drop. More specifically, surfaces with the larger fractal dimensions yield more frequent variations in the surface profile, which result in a significantly larger incremental pressure loss, even though at the same relative roughness. The accuracy of the predicted Poiseuille number as calculated by the present model is verified using experimental data available in the literature.

  14. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows

    Science.gov (United States)

    Park, Joel T.; Mannheimer, Richard J.; Grimley, Terrence A.; Morrow, Thomas B.

    1989-06-01

    An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and fully-developed turbulent pipe flow regimes was the primary objective of this research. Experiments were conducted in a large-scale pipe slurry flow facility with an inside diameter of 51 mm (2 inches). Approximately, 550 liters (145 gal) of slurry were necessary in the operation of the loop. Detailed velocity profile measurements by a two-color, two-component laser Doppler anemometer (LDA) were accomplished in a transparent test section with an optically transparent slurry. These velocity measurements were apparently the first ever reported for a non-Newtonian slurry with a yield value. The transparent slurry was formulated for these experiments from silica with a particle size of one to two microns, mineral oil, and Stoddard solvent. From linear regression analysis of concentric-cylinder viscometer data, the slurry exhibited yield-power-law behavior with a yield stress of 100 dynes/cm(sup 2), and an exponent of 0.630 for a solids concentration of 5.65 percent by weight. Good agreement was attained with rheological data derived from the pressure drop data in the flow loop under laminar flow conditions. The rheological properties of the transparent slurry were similar to many industrial slurries, including coal slurries, which have a yield value.

  15. Gas Flow Dynamics in Inlet Capillaries: Evidence for non Laminar Conditions

    Science.gov (United States)

    Wißdorf, Walter; Müller, David; Brachthäuser, Yessica; Langner, Markus; Derpmann, Valerie; Klopotowski, Sebastian; Polaczek, Christine; Kersten, Hendrik; Brockmann, Klaus; Benter, Thorsten

    2016-09-01

    In this work, the characteristics of gas flow in inlet capillaries are examined. Such inlet capillaries are widely used as a first flow restriction stage in commercial atmospheric pressure ionization mass spectrometers. Contrary to the common assumption, we consider the gas flow in typical glass inlet capillaries with 0.5 to 0.6 mm inner diameters and lengths about 20 cm as transitional or turbulent. The measured volume flow of the choked turbulent gas stream in such capillaries is 0.8 L·min-1 to 1.6 L·min-1 under typical operation conditions, which is in good agreement to theoretically calculated values. Likewise, the change of the volume flow in dependence of the pressure difference along the capillary agrees well with a theoretical model for turbulent conditions as well as with exemplary measurements of the static pressure inside the capillary channel. However, the results for the volume flow of heated glass and metal inlet capillaries are neither in agreement with turbulent nor with laminar models. The velocity profile of the neutral gas in a quartz capillary with an inner diameter similar to commercial inlet capillaries was experimentally determined with spatially resolved ion transfer time measurements. The determined gas velocity profiles do not contradict the turbulent character of the flow. Finally, inducing disturbances of the gas flow by placing obstacles in the capillary channel is found to not change the flow characteristics significantly. In combination the findings suggest that laminar conditions inside inlet capillaries are not a valid primary explanation for the observed high ion transparency of inlet capillaries under common operation conditions.

  16. Membraneless laminar flow cell for electrocatalytic CO2 reduction with liquid product separation

    Science.gov (United States)

    Monroe, Morgan M.; Lobaccaro, Peter; Lum, Yanwei; Ager, Joel W.

    2017-04-01

    The production of liquid fuel products via electrochemical reduction of CO2 is a potential path to produce sustainable fuels. However, to be practical, a separation strategy is required to isolate the fuel-containing electrolyte produced at the cathode from the anode and also prevent the oxidation products (i.e. O2) from reaching the cathode. Ion-conducting membranes have been applied in CO2 reduction reactors to achieve this separation, but they represent an efficiency loss and can be permeable to some product species. An alternative membraneless approach is developed here to maintain product separation through the use of a laminar flow cell. Computational modelling shows that near-unity separation efficiencies are possible at current densities achievable now with metal cathodes via optimization of the spacing between the electrodes and the electrolyte flow rate. Laminar flow reactor prototypes were fabricated with a range of channel widths by 3D printing. CO2 reduction to formic acid on Sn electrodes was used as the liquid product forming reaction, and the separation efficiency for the dissolved product was evaluated with high performance liquid chromatography. Trends in product separation efficiency with channel width and flow rate were in qualitative agreement with the model, but the separation efficiency was lower, with a maximum value of 90% achieved.

  17. PIV experiments in rough-wall, laminar-to-turbulent, oscillatory boundary-layer flows

    Science.gov (United States)

    Mujal-Colilles, Anna; Mier, Jose M.; Christensen, Kenneth T.; Bateman, Allen; Garcia, Marcelo H.

    2014-01-01

    Exploratory measurements of oscillatory boundary layers were conducted over a smooth and two different rough beds spanning the laminar, transitional and turbulent flow regimes using a multi-camera 2D-PIV system in a small oscillatory-flow tunnel (Admiraal et al. in J Hydraul Res 44(4):437-450, 2006). Results show how the phase lag between bed shear stress and free-stream velocity is better defined when the integral of the momentum equation is used to estimate the bed shear stress. Observed differences in bed shear stress and phase lag between bed shear stress and free-stream velocity are highly sensitive to the definition of the bed position ( y = b). The underestimation of turbulent stresses close to the wall is found to explain such differences when using the addition of Reynolds and viscous stresses to define both the bed shear stress and the phase lag. Regardless of the flow regime, in all experiments, boundary-layer thickness reached its maximum value at a phase near the flow reversal at the wall. Friction factors in smooth walls are better estimated using a theoretical equation first proposed by Batchelor (An introduction to fluid dynamics. Cambridge University Press, Cambridge, 1967) while the more recent empirical predictor of Pedocchi and Garcia (J Hydraul Res 47(4):438-444, 2009a) was found to be appropriate for estimating friction coefficients in the laminar-to-turbulent transition regime.

  18. Development of a compact laminar flow heat exchanger with stainless steel micro-tubes

    Science.gov (United States)

    Saji, N.; Nagai, S.; Tsuchiya, K.; Asakura, H.; Obata, M.

    2001-05-01

    The present paper describes the design concept and manufacturing of a new compact laminar flow heat exchanger with stainless-steel micro-tubes for helium refrigerators. In the temperature range of less than 20 K, aluminum plate fin type heat exchangers exhibit a remarkable fall of performance characteristics as a compact heat exchanger. We presented in a previous paper that some compact heat exchangers with good performance in the temperature range of less than 4 K are required for a subcooled He II refrigerator cycle to be worked with 3He turbo-compressors (F. Doty, et al., A new look at the closed brayton cycle, Proceedings, IECEC-90 Reno, NV, 1991, p. 116). For this requirement, we developed a micro-tube strip counter flow type heat exchanger, which consists of 12 elements with a total of 4800 stainless steel micro-tubes. Each element is formed with 400 tubes and a newly developed vacuum brazing method was applied for the bonding to the side plate. Each tube has an inner diameter of 0.5 mm, an outer diameter of 0.7 mm and is 310 mm long. We developed a cladding plate with two layers of gold brazing sheet sandwiched inside. In aerodynamic and thermal design of the element, the laminar flow conditions were adopted for the flows of inner and outer tubes to keep a high heat transfer rate and a low pressure loss.

  19. Identification of the heat transfer frequency response in pulsating laminar and subcritical flow across a cylinder

    Science.gov (United States)

    Witte, A.; Cabrera, A.; Polifke, W.

    2016-09-01

    The steady-state heat transfer from a cylinder in cross-flow is a prototype problem in thermo-fluiddynamics. However, in many applications such as the Rijke tube, the flow may fluctuate. This work analyses the phenomenon combining numerical simulation with system identification. Direct numerical simulation of laminar flow and Large Eddy Simulation at subcritical flow at Reynolds number equal to 3900 are used, respectively. Fluctuations of the inlet velocity in the simulation are excited over a wide range of frequencies. Time series of unsteady heat release and velocity are post-processed to identify dynamic models, which may be represented as transfer functions. They accurately describe the dynamic behavior and can be used for further modeling.

  20. Modification of flow perturbations in a laminar separation bubble by heat transfer

    Science.gov (United States)

    Boiko, A. V.; Dovgal, A. V.; Sorokin, A. M.

    2017-02-01

    Laminar boundary layer separation in conditions of localized heat transfer is investigated at low subsonic velocity through wind-tunnel measurements and linear stability analysis. A backward-facing step flow is subjected to a stationary temperature variation generated by Peltier elements installed on the test model directly downstream of the separation line. The experimental and theoretical data clarify the response of velocity disturbances in the separation region to the temperature variation, the latter appearing primarily as a modifier of the initial wave spectrum of the amplifying separated layer oscillations.

  1. A Hybrid Analytical-Numerical Solution to the Laminar Flow inside Biconical Ducts

    Directory of Open Access Journals (Sweden)

    Thiago Antonini Alves

    2015-10-01

    Full Text Available In this work was presented a hybrid analytical-numerical solution to hydrodynamic problem of fully developed Newtonian laminar flow inside biconical ducts employing the Generalized Integral Transform Technique (GITT. In order to facilitate the analytical treatment and the application of the boundary conditions, a Conformal Transform was used to change the domain into a more suitable coordinate system. Thereafter, the GITT was applied on the momentum equation to obtain the velocity field. Numerical results were obtained for quantities of practical interest, such as maximum and minimum velocity, Fanning friction factor, Poiseuille number, Hagenbach factor and hydrodynamic entry length.

  2. Heat Transfer Characteristics of Laminar Flow in Internally Finned Tubes under Various Boundary Conditions

    Institute of Scientific and Technical Information of China (English)

    Ze-NingWang; Qiang-TaiZhou

    1994-01-01

    Numerical solutions for fully developed laminar flow in internally finned tubes with trapezoidal and triangular fin profiles were given with Finite Elemant Method(FEM):The heat transfer charactieristics were obtained and compared under the boundary conditions of uniform heat flux,univform wall tepmerature,and the third boundary condition with finite wall thermal conductivity considered.The numerical results show that boundary conditions have pronounced effects on the temperature field.Furthermore,a new mechanism on the heat transfer augmentation of internally finned tubes is proposed.

  3. A SIMILARITY METHOD FOR LAMINAR WAKE OF POWER-LAW FLUID FLOW AROUND A FLAT PLATE

    Institute of Scientific and Technical Information of China (English)

    Liu Cun-fang; Wang Mei-xia

    2003-01-01

    Based on the characteristic equation for power-law fluid and the Prandtl boundary layer equation, using the similarity method similar to that of Newtonian fluids, two similarity variables were given and a normal differential equation was derived for the laminar wake of power-law fluid flow produced by a flat plate. And numerical results were obtained. The results show that the power-law index n has evident influence on the velocity distribution in the wake. In the wake, velocity gradient is larger, and the wake is narrower for larger n.

  4. Study on Friction Factor of Developing and Developed Laminar FLow in Annular-Sector Ducts

    Institute of Scientific and Technical Information of China (English)

    1995-01-01

    The pressure drops of laminar developing and developed flow in annular-sector ducts with small roud corner have been investigated experimentally.Numerical simulation has been performed to study the effect of the small round corner on the friction factor in the developed region.It has been found that with the increase in corner radius,the value of f Re decreases,In the range of rc/ro from 0.031to 0.12,the decrease in fRe varies from 0.048%to 0.1% for the fie apex angle computed.

  5. In situ analysis of dynamic laminar flow extraction using surface-enhanced Raman spectroscopy

    Science.gov (United States)

    Wang, Fei; Wang, Hua-Lin; Qiu, Yang; Chang, Yu-Long; Long, Yi-Tao

    2015-12-01

    In this study, we performed micro-scale dynamic laminar flow extraction and site-specific in situ chloride concentration measurements. Surface-enhanced Raman spectroscopy was utilized to investigate the diffusion process of chloride ions from an oil phase to a water phase under laminar flow. In contrast to common logic, we used SERS intensity gradients of Rhodamine 6G to quantitatively calculate the concentration of chloride ions at specific positions on a microfluidic chip. By varying the fluid flow rates, we achieved different extraction times and therefore different chloride concentrations at specific positions along the microchannel. SERS spectra from the water phase were recorded at these different positions, and the spatial distribution of the SERS signals was used to map the degree of nanoparticle aggregation. The concentration of chloride ions in the channel could therefore be obtained. We conclude that this method can be used to explore the extraction behaviour and efficiency of some ions or molecules that enhance the SERS intensity in water or oil by inducing nanoparticle aggregation.

  6. Flow instability in laminar jet flames driven by alternating current electric fields

    KAUST Repository

    Kim, Gyeong Taek

    2016-10-13

    The effect of electric fields on the instability of laminar nonpremixed jet flames was investigated experimentally by applying the alternating current (AC) to a jet nozzle. We aimed to elucidate the origin of the occurrence of twin-lifted jet flames in laminar jet flow configurations, which occurred when AC electric fields were applied. The results indicated that a twin-lifted jet flame originated from cold jet instability, caused by interactions between negative ions in the jet flow via electron attachment as O +e→O when AC electric fields were applied. This was confirmed by conducting systematic, parametric experiment, which included changing gaseous component in jets and applying different polarity of direct current (DC) to the nozzle. Using two deflection plates installed in parallel with the jet stream, we found that only negative DC on the nozzle could charge oxygen molecules negatively. Meanwhile, the cold jet instability occurred only for oxygen-containing jets. A shedding frequency of jet stream due to AC driven instability showed a good correlation with applied AC frequency exhibiting a frequency doubling. However, for the applied AC frequencies over 80Hz, the jet did not respond to the AC, indicating an existence of a minimum flow induction time in a dynamic response of negative ions to external AC fields. Detailed regime of the instability in terms of jet velocity, AC voltage and frequency was presented and discussed. Hypothesized mechanism to explain the instability was also proposed.

  7. UNSTEADY HEAT TRANSFER IN AN ANNULAR PIPE. PART II: SWIRLING LAMINAR FLOW

    Directory of Open Access Journals (Sweden)

    Kelvin Ho Choon Seng

    2012-02-01

    Full Text Available The   heat  transfer   problem  in   magnetocaloric regenerators  during  magnetization  has  been  described  and investigated for convective heat transfer by means of axial flow in part I of this series.   This work will focus on enhancing the unsteady heat  transfer using swirling laminar flow generated using axial vanes.   The governing parameters for this  studyare,  the  D*  ratio  (Inner  diameter/Outer  diameter  and  the swirl number, S.   The study is conducted  using  dimensional analysis and commercial CFD codes provided by ANSYS CFX. The  hydrodynamics and the  heat transfer of the  model are compared with data from similar cases found in literature and is found to be in the vicinity of good agreement.Keywords-  Annular ducts; unsteady heat transfer;  magnetic refrigeration/cooling;   swirling   laminar    flow;    dimensional analysis.

  8. Development of high-lift laminar wing using steady active flow control

    Science.gov (United States)

    Clayton, Patrick J.

    Fuel costs represent a large fraction of aircraft operating costs. Increased aircraft fuel efficiency is thus desirable. Laminar airfoils have the advantage of reduced cruise drag and increased fuel efficiency. Unfortunately, they cannot perform adequately during high-lift situations (i.e. takeoff and landing) due to low stall angles and low maximum lift caused by flow separation. Active flow control has shown the ability to prevent or mitigate separation effects, and increase maximum lift. This fact makes AFC technology a fitting solution for improving high-lift systems and reducing the need for slats and flap elements. This study focused on experimentally investigating the effects of steady active flow control from three slots, located at 1%, 10%, and 80% chord, respectively, over a laminar airfoil with 45 degree deflected flap. A 30-inch-span airfoil model was designed, fabricated, and then tested in the Bill James 2.5'x3' Wind Tunnel at Iowa State University. Pressure data were collected along the mid-span of the airfoil, and lift and drag were calculated. Five test cases with varying injection locations and varying Cμ were chosen: baseline, blown flap, leading edge blowing, equal blowing, and unequal blowing. Of these cases, unequal blowing achieved the greatest lift enhancement over the baseline. All cases were able to increase lift; however, gains were less than anticipated.

  9. Three-dimensional measurement of the laminar flow field inside a static mixer

    Science.gov (United States)

    Speetjens, Michel; Jilisen, Rene; Bloemen, Paul

    2011-11-01

    Static mixers are widely used in industry for laminar mixing of viscous fluids as e.g. polymers and food stuffs. Moreover, given the similarities in flow regime, static mixers often serve as model for compact mixers for process intensification and even for micro-mixers. This practical relevance has motivated a host of studies on the mixing characteristics of static mixers and their small-scale counterparts. However, these studies are primarily theoretical and numerical. Experimental studies, in contrast, are relatively rare and typically restricted to local 2D flow characteristics or integral quantities (pressure drop, residence-time distributions). The current study concerns 3D measurements on the laminar flow field inside a static mixer using 3D Particle-Tracking Velocimetry (3D-PTV) Key challenges to the 3D-PTV image-processing procedure are the optical distortion and degradation of the particle imagery due to light refraction and reflection caused by the cylindrical boundary and the internal elements. Ways to tackle these challenges are discussed and first successful 3D measurements in an actual industrial static mixer are presented.

  10. A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for high Reynolds number laminar flows

    Science.gov (United States)

    Kim, Sang-Wook

    1988-01-01

    A velocity-pressure integrated, mixed interpolation, Galerkin finite element method for the Navier-Stokes equations is presented. In the method, the velocity variables were interpolated using complete quadratic shape functions and the pressure was interpolated using linear shape functions. For the two dimensional case, the pressure is defined on a triangular element which is contained inside the complete biquadratic element for velocity variables; and for the three dimensional case, the pressure is defined on a tetrahedral element which is again contained inside the complete tri-quadratic element. Thus the pressure is discontinuous across the element boundaries. Example problems considered include: a cavity flow for Reynolds number of 400 through 10,000; a laminar backward facing step flow; and a laminar flow in a square duct of strong curvature. The computational results compared favorable with those of the finite difference methods as well as experimental data available. A finite elememt computer program for incompressible, laminar flows is presented.

  11. Measurement and calculations of laminar flow in a ninety degree bifurcation.

    Science.gov (United States)

    Liepsch, D; Moravec, S; Rastogi, A K; Vlachos, N S

    1982-01-01

    Measurements and numericaL calculations of laminar flow in a plane 90 degrees bifurcation are presented. The corresponding two-dimensional steady flow Navier-Stokes equations solved by a finite-difference procedure employing pressure and velocity as dependent variables. The influence of Reynolds number and mass flow ratio on the velocity field, streamlines, local shear stress and pressure drop are quantified and shown to be substantial. The circulation patterns and shear stresses are examined in view of available data regarding the formation of atherotic plaques in the human circulatory system. The calculated velocity profiles are compared with measurements obtained with laser Doppler anemometry and the agreement is shown to be satisfactory. Calculations outside the range of measurements which are of value to biomechanics are also presented.

  12. Response of hot element wall shear stress gages in laminar oscillating flows

    Science.gov (United States)

    Cook, W. J.; Murphy, J. D.; Giddings, T. A.

    1986-01-01

    An experimental investigation of the time-dependent response of hot element wall shear stress gages in unsteady periodic air flows is reported. The study has focused on wall shear stress in laminar oscillating flows produced on a flat plate by a free stream velocity composed of a mean component and a superposed sinusoidal variation. Two types of hot element gages, platinum film and flush wire, were tested for values of reduced frequency ranging from 0.14 to 2.36. Values of the phase angle of the wall shear stress variation relative to the free stream velocity, as indicated by the hot element gages, are compared with numerical prediction. The comparisons show that the gages indicate a wall shear stress variation that lags the true variation, and that the gages will also not indicate the correct wall shear stress variation in periodic turbulent flows.

  13. Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model

    CERN Document Server

    Seshasayanan, K

    2015-01-01

    On its way to turbulence, plane Couette flow - the flow between counter-translating parallel plates - displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier-Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for the spatiotemporal dynamics in the plane of the flow. Truncating this set beyond lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at cruder effective wall-normal resolution. Perspectives opened by the approach are discussed.

  14. Convective Heat Transfer Augmentation by Flexible fins in Laminar Channel Pulsating flow

    CERN Document Server

    Joshi, Rakshitha U; Bhardwaj, Rajneesh

    2015-01-01

    Fluid-structure interaction (FSI) of thin flexible fins coupled with convective heat transfer has applications in energy harvesting and in understanding functioning of several biological systems. We numerically investigate FSI of the thin flexible fins involving large-scale flow-induced deformation as a potential heat transfer enhancement technique. An in-house, strongly-coupled fluid-structure interaction (FSI) solver is employed in which flow and structure solvers are based on sharp-interface immersed boundary and finite element method, respectively. We consider twin flexible fins in a heated channel with laminar pulsating cross flow. The vortex ring past the fin sweep higher sources of vorticity generated on the channel walls out into the downstream - promoting the mixing of the fluid. The moving fin assists in convective mixing, augmenting convection in bulk and at the walls; and thereby reducing thermal boundary layer thickness and improving heat transfer at the channel walls. The thermal augmentation is...

  15. Measurement of velocity profiles of nanofluids in laminar channel flow using Particle Image Velocimetry

    Energy Technology Data Exchange (ETDEWEB)

    Nayak, Arun K.; Kulkarni, Parimal P.; Singh, R.K.; Verma, Pumendra [Bhabha Atomic Research Centre (BARC), Mumbai (India). Reactor Engineering Div.; Gandhi, Mayur [University Institute of Chemical Technology, Mumbai (India). Dept. of Chemical Engineering

    2014-06-15

    The objective of the paper is to measure the velocity profiles of water based nanofluids for flow through channels in order to understand whether the nanofluids behave Newtonian. For this purpose, experiments were carried for flow through a rectangular channel in laminar regime. Four different nanofluids were used, i.e. Al{sub 2}O{sub 3}, CuO, TiO{sub 2} and SiO{sub 2} with base fluid as water. Experiments were conducted at low concentration of these particles. The velocity profiles were measured using Particle Image Velocimetry. The results indicate that the velocity profiles are similar for all the fluids indicating the flows to be Newtonian. (orig.)

  16. Stochastic analysis of the time evolution of laminar-turbulent bands of plane Couette flow.

    Science.gov (United States)

    Rolland, Joran

    2015-11-01

    This article is concerned with the time evolution of the oblique laminar-turbulent bands of transitional plane Couette flow under the influence of turbulent noise. Our study is focused on the amplitude of modulation of turbulence (the bands). In order to guide the numerical study of the flow, we first perform an analytical and numerical analysis of a Stochastic Ginzburg-Landau (GL) equation for a complex order parameter. The modulus of this order parameter models the amplitude of modulation of turbulence. Firstly, we compute the autocorrelation function of said modulus once the band is established. Secondly, we perform a calculation of average and fluctuations around the exponential growth of the order parameter. This type of analysis is similar to the Stochastic Structural Stability Theory (S3T). We then perform numerical simulations of the Navier-Stokes equations in order to confront these predictions with the actual behaviour of the bands. Computation of the autocorrelation function of the modulation of turbulence shows quantitative agreement with the model: in the established band regime, the amplitude of modulation follows an Ornstein-Uhlenbeck process. In order to test the S3T predictions, we perform quench experiments, sudden decreases of the Reynolds number from uniform turbulence, in which modulation appears. We compute the average evolution of the amplitude of modulation and the fluctuations around it. We find good agreement between numerics and modeling. The average trajectory grows exponentially, at a rate clearly smaller than that of the formation of laminar holes. Meanwhile, the actual time evolution remains in a flaring envelope, centered on the average, and expanding at the same rate. These results provide further validation of the stochastic modeling for the time evolution of the bands for further studies. Besides, they stress on the difference between the oblique band formation and the formation of laminar holes.

  17. Evaluation of laser Doppler flowmetry for measuring coronary band and laminar microcirculatory blood flow in clinically normal horses.

    Science.gov (United States)

    Adair, H S; Goble, D O; Shires, G M; Sanders, W L

    1994-04-01

    Once daily for 3 days, laser Doppler flowmetry was used in 5 healthy, nonsedated adult horses to evaluate coronary band and laminar microcirculatory blood flow (MBF) in both forelimbs. The coronary band had significantly (P measurement period in any one site. Significant (P laminar MBF. On occlusion of the digital arteries at the level of the fetlock, marked decrease in coronary band and laminar MBF was observed. Twenty minutes after IV administration of acetylpromazine, marked increase in coronary band and laminar MBF was observed. The technique was easily performed in standing nonsedated horses, did not inflict discomfort, lacked complications, and measurements were repeatable. This technique provides an index of digital MBF, either intermittently or continuously, avoiding introduction of invasive variables associated with other techniques.

  18. Laminar flow in a microchannel with superhydrophobic walls exhibiting transverse ribs

    Science.gov (United States)

    Davies, J.; Maynes, D.; Webb, B. W.; Woolford, B.

    2006-08-01

    One approach recently proposed for reducing the frictional resistance to liquid flow in microchannels is the patterning of microribs and cavities on the channel walls. When treated with a hydrophobic coating, the liquid flowing in the microchannel wets only the surfaces of the ribs, and does not penetrate the cavities, provided the pressure is not too high. The net result is a reduction in the surface contact area between channel walls and the flowing liquid. For microribs and cavities that are aligned normal to the channel axis (principal flow direction), these micropatterns form a repeating, periodic structure. This paper presents results of a study exploring the momentum transport in a parallel-plate microchannel with such microengineered walls. The investigation explored the entire laminar flow Reynolds number range and characterized the influence of the vapor cavity depth on the overall flow field. The liquid-vapor interface (meniscus) in the cavity regions is treated as flat in the numerical analysis and two conditions are explored with regard to the cavity region: (1) The liquid flow at the liquid-vapor interface is treated as shear-free (vanishing viscosity in the vapor region), and (2) the liquid flow in the microchannel core and the vapor flow within the cavity are coupled by matching the velocity and shear stress at the interface. Regions of slip and no-slip behavior exist and the velocity field shows distinct variations from classical laminar flow in a parallel-plate channel. The local streamwise velocity profiles, interfacial velocity distributions, and maximum interfacial velocities are presented for a number of scenarios and provide a sound understanding of the local flow physics. The predictions and accompanying measurements reveal that significant reductions in the frictional pressure drop (enhancement in effective fluid slip at the channel walls) can be achieved relative to the classical smooth-channel Stokes flow. Reductions in the friction

  19. Computational Investigation on Fully Developed Periodic Laminar Flow Structure in Baffled Circular Tube with Various BR

    Directory of Open Access Journals (Sweden)

    Withada Jedsadaratanachai

    2014-01-01

    Full Text Available This paper presents a 3D numerical analysis of fully developed periodic laminar flow in a circular tube fitted with 45° inclined baffles with inline arrangement. The computations are based on a finite volume method, and the SIMPLE algorithm has been implemented. The characteristics of fluid flow are presented for Reynolds number, Re = 100–1000, based on the hydraulic diameter (D of the tube. The angled baffles were repeatedly inserted at the middle of the test tube with inline arrangement to generate vortex flows over the tested tube. Effects of different Reynolds numbers and blockage ratios (b/D, BR with a single pitch ratio of 1 on flow structure in the tested tube were emphasized. The flows in baffled tube show periodic flow at x/D ≈ 2-3, and become a fully developed periodic flow profiles at x/D ≈ 6-7, depending on Re, BR and transverse plane positions. The computational results reveal that the higher of BR and closer position of turbulators, the faster of fully developed periodic flow profiles.

  20. Analysis of Low Speed Stall Aerodynamics of a Swept Wing with Laminar Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  1. Analysis of Low-Speed Stall Aerodynamics of a Swept Wing with Laminar-Flow Glove

    Science.gov (United States)

    Bui, Trong T.

    2014-01-01

    Reynolds-Averaged Navier-Stokes (RANS) computational fluid dynamics (CFD) analysis was conducted to study the low-speed stall aerodynamics of a GIII aircraft's swept wing modified with a laminar-flow wing glove. The stall aerodynamics of the gloved wing were analyzed and compared with the unmodified wing for the flight speed of 120 knots and altitude of 2300 ft above mean sea level (MSL). The Star-CCM+ polyhedral unstructured CFD code was first validated for wing stall predictions using the wing-body geometry from the First American Institute of Aeronautics and Astronautics (AIAA) CFD High-Lift Prediction Workshop. It was found that the Star-CCM+ CFD code can produce results that are within the scattering of other CFD codes considered at the workshop. In particular, the Star-CCM+ CFD code was able to predict wing stall for the AIAA wing-body geometry to within 1 degree of angle of attack as compared to benchmark wind-tunnel test data. Current results show that the addition of the laminar-flow wing glove causes the gloved wing to stall much earlier than the unmodified wing. Furthermore, the gloved wing has a different stall characteristic than the clean wing, with no sharp lift drop-off at stall for the gloved wing.

  2. On the growth of laminar-turbulent patterns in plane Couette flow

    CERN Document Server

    Manneville, Paul

    2012-01-01

    The growth of laminar-turbulent band patterns in plane Couette flow is studied in the vicinity of the global stability threshold R_g below which laminar flow ultimately prevails. Appropriately tailored direct numerical simulations are performed to manage systems extended enough to accommodate several bands. The initial state or germ is an oblique turbulent patch of limited extent. The growth is seen to result from several competing processes: (i) nucleation of turbulent patches close to or at the extremities of already formed band segments, with the same obliquity as the germ or the opposite one, and (ii) turbulence collapse similar to gap formation for band decay. Growth into a labyrinthine pattern is observed as soon as spanwise expansion is effective. An ideally aligned pattern is usually obtained at the end of a long and gradual regularisation stage when R is large enough. Stable isolated bands can be observed slightly above R_g. When growth rates are not large enough, the germ decays at the end of a long...

  3. Analytical solutions of heat transfer for laminar flow in rectangular channels

    Directory of Open Access Journals (Sweden)

    Rybiński Witold

    2014-12-01

    Full Text Available The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type. The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel’s perimeter is related to the asymptotic case of channel’s wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.

  4. Analytical solutions of heat transfer for laminar flow in rectangular channels

    Science.gov (United States)

    Rybiński, Witold; Mikielewicz, Jarosław

    2014-12-01

    The paper presents two analytical solutions namely for Fanning friction factor and for Nusselt number of fully developed laminar fluid flow in straight mini channels with rectangular cross-section. This type of channels is common in mini- and microchannel heat exchangers. Analytical formulae, both for velocity and temperature profiles, were obtained in the explicit form of two terms. The first term is an asymptotic solution of laminar flow between parallel plates. The second one is a rapidly convergent series. This series becomes zero as the cross-section aspect ratio goes to infinity. This clear mathematical form is also inherited by the formulae for friction factor and Nusselt number. As the boundary conditions for velocity and temperature profiles no-slip and peripherally constant temperature with axially constant heat flux were assumed (H1 type). The velocity profile is assumed to be independent of the temperature profile. The assumption of constant temperature at the channel's perimeter is related to the asymptotic case of channel's wall thermal resistance: infinite in the axial direction and zero in the peripheral one. It represents typical conditions in a minichannel heat exchanger made of metal.

  5. Data Analysis for the NASA/Boeing Hybrid Laminar Flow Control Crossflow Experiment

    Science.gov (United States)

    Eppink, Jenna L.; Wlezien, Richard

    2011-01-01

    The Hybrid-Laminar Flow Control (HLFC) Crossflow Experiment, completed in 1995. generated a large database of boundary layer stability and transition data that was only partially analyzed before data analysis was abruptly ended in the late 1990's. Renewed interest in laminar flow technologies prompted additional data analysis, to integrate all data, including some post-test roughness and porosity measurements. The objective is to gain new insights into the effects of suction on boundary layer stability. A number of challenges were encountered during the data analysis, and their solutions are discussed in detail. They include the effect of the probe vibration, the effect of the time-varying surface temperature on traveling crossflow instabilities, and the effect of the stationary crossflow modes on the approximation of wall location. Despite the low turbulence intensity of the wind tunnel (0.01 to 0.02%), traveling crosflow disturbances were present in the data, in some cases at amplitudes up to 1% of the freestream velocity. However, the data suggests that transition was dominated by stationary crossflow. Traveling crossflow results and stationary data in the presence of suction are compared with linear parabolized stability equations results as a way of testing the quality of the results.

  6. A combined PHREEQC-2/parallel fracture model for the simulation of laminar/non-laminar flow and contaminant transport with reactions

    Science.gov (United States)

    Masciopinto, Costantino; Volpe, Angela; Palmiotta, Domenico; Cherubini, Claudia

    2010-09-01

    A combination of a parallel fracture model with the PHREEQC-2 geochemical model was developed to simulate sequential flow and chemical transport with reactions in fractured media where both laminar and turbulent flows occur. The integration of non-laminar flow resistances in one model produced relevant effects on water flow velocities, thus improving model prediction capabilities on contaminant transport. The proposed conceptual model consists of 3D rock-blocks, separated by horizontal bedding plane fractures with variable apertures. Particle tracking solved the transport equations for conservative compounds and provided input for PHREEQC-2. For each cluster of contaminant pathways, PHREEQC-2 determined the concentration for mass-transfer, sorption/desorption, ion exchange, mineral dissolution/precipitation and biodegradation, under kinetically controlled reactive processes of equilibrated chemical species. Field tests have been performed for the code verification. As an example, the combined model has been applied to a contaminated fractured aquifer of southern Italy in order to simulate the phenol transport. The code correctly fitted the field available data and also predicted a possible rapid depletion of phenols as a result of an increased biodegradation rate induced by a simulated artificial injection of nitrates, upgradient to the sources.

  7. Influence of uniform magnetic field on laminar regimes of natural convection in an enclosure

    Science.gov (United States)

    Bondareva, N. S.; Sheremet, M. A.

    2015-03-01

    A numerical analysis of spatial laminar regimes of natural convection in an enclosure is conducted in the presence of a uniform magnetic field. The mathematical model formulated in dimensionless natural variables "velocity-pressure-temperature" has been implemented numerically by the method of control volume. The influence of the Rayleigh number (103 ≤ Ra ≤ 105) and the Hartmann number (0 ≤ Ha ≤ 100), the orientation of the magnetic induction vector (0 ≤ φ ≤ π/2) as well as of the geometric parameter (0.2 ≤ A ≤ 5), which reflects the enclosure relative length, on the velocity and temperature distributions as well as the average Nusselt number on a typical isothermal boundary has been studied in detail. A possibility of describing the integral heat exchange in the spatial object under consideration on the basis of the two-dimensional model has been established.

  8. Stabilized MLPG-VF-based method with CBS scheme for laminar flow at high Reynolds and Rayleigh numbers

    Science.gov (United States)

    Enjilela, Vali; Salimi, Davood; Tavasoli, Ali; Lotfi, Mohsen

    2016-02-01

    In the present work, the meshless local Petrov-Galerkin vorticity-stream function (MLPG-VF) method is extended to solve two-dimensional laminar fluid flow and heat transfer equations for high Reynolds and Rayleigh numbers. The characteristic-based split (CBS) scheme which uses unity test function is employed for discretization, and the moving least square (MLS) method is used for interpolation of the field variables. Four test cases are considered to evaluate the present algorithm, namely lid-driven cavity flow with Reynolds numbers up to and including 104, flow over a backward-facing step at Reynolds number of 800, natural convection in a square cavity for Rayleigh numbers up to and including 108, and natural convection in a concentric square outer cylinder and circular inner cylinder annulus for Rayleigh numbers up to and including 107. In each case, the result obtained using the proposed algorithm is either compared with the results from the literatures or with those obtained using conventional numerical techniques. The present algorithm shows stable results at lower or equal computational cost compared to the other upwinding schemes usually employed in the MLPG method. Close agreements between the compared results as well as higher accuracy of the proposed method show the ability of this stabilized algorithm.

  9. Mathematical modeling and simulation of biologically inspired hair receptor arrays in laminar unsteady flow separation

    Science.gov (United States)

    Dickinson, B. T.; Singler, J. R.; Batten, B. A.

    2012-02-01

    Bats possess arrays of distributed flow-sensitive hair-like mechanoreceptors on their dorsal and ventral wing surfaces. Bat wing hair receptors are known to play a significant role in flight maneuverability and are directionally most sensitive to reversed flow over the wing. In this work, we consider the mechanics of flexible hair-like structures for the time accurate detection and visualization of hydrodynamic images associated with unsteady near surface flow phenomena. A nonlinear viscoelastic model of a hair-like structure coupled to an unsteady nonuniform flow is proposed. Writing the hair model in nondimensional form, we identify five dimensionless groups that govern hair behavior. An order of magnitude analysis of the physical forces involved in the fluid-structure hair response is performed. Through the choice of hair material properties, we show how a local measure of near surface flow velocity may be obtained from hair tip displacement and resultant moment. When hair structures are placed into an array, time and space accurate hydrodynamic images may be obtained. We illustrate the imaging of reversed flow that occurs during a laminar unsteady flow separation with an array of hair-like structures.

  10. Direct velocity measurement and enhanced mixing in laminar flows over ultrahydrophobic surfaces

    Science.gov (United States)

    Ou, Jia

    2005-11-01

    A series of experiment are presented studying the kinematics of water flowing over drag-reducing ultrahydrophobic surfaces. The surfaces are fabricated from silicon wafers using photolithography and are designed to incorporate patterns of microridges with precise spacing and alignment. These surfaces are reacted with an organosilane to achieve high hydrophobicity. Microridges with different widths, spacing and alignments are tested in a microchannel flow cell with rectangular cross-section. The velocity profile across the microchannel is measured with micro particle image velocimetry (μ-PIV) capable of resolving the flow down to length scales well below the size of the surface features. A maximum slip velocity of >60% of the average velocity in the flow is observed at the center of the air-water interface supported between these hydrophobic microridges, and the no-slip boundary condition is found at the hydrophobic microridges. The μ-PIV measurements demonstrate that slip along the shear-free air-water interface supported between the hydrophobic micron-sized ridges is the primary mechanism responsible for the drag reduction. The experiment velocity and pressure drop measurement are compared with the prediction of numerical simulation and an analytical model. By aligning the hydrophobic microridges at an acute angle to the flow direction a secondary flow is produced which can significantly enhance mixing in this laminar flow.

  11. Analysis of laminar flow between stationary and rotating disks with inflow

    Science.gov (United States)

    Rohatgi, U.; Reshotko, E.

    1974-01-01

    The laminar flow between a rotating and a stationary disk with inflow was analyzed. Solutions to the dimensionless governing equations are sought by expanding each of the velocity components in powers of inverse radius. The equations to leading order are those for the configuration with no inflow. The subsequent orders yield sets of linear ordinary differential equations. Solutions are obtained for the first two of these subsequent orders. The solutions indicate that inflow tends to increase the magnitude of the azimuthal velocity in the flow between the two disks and to decrease the torque on the rotating disk. For Prandtl number one, an energy integral is obtained which relates the temperature distribution to the velocity distribution for all Reynolds numbers and therefore eliminates the needs for separate solution of the energy equation.

  12. Laminar-turbulent patterning in wall-bounded shear flows: a Galerkin model

    Energy Technology Data Exchange (ETDEWEB)

    Seshasayanan, K [Laboratoire de Physique Statistique, CNRS UMR 8550, École Normale Supérieure, F-75005 Paris (France); Manneville, P, E-mail: paul.manneville@polytechnique.edu [Laboratoire d’Hydrodynamique, CNRS UMR7646, École Polytechnique, F-91128, Palaiseau (France)

    2015-06-15

    On its way to turbulence, plane Couette flow–the flow between counter-translating parallel plates–displays a puzzling steady oblique laminar-turbulent pattern. We approach this problem via Galerkin modelling of the Navier–Stokes equations. The wall-normal dependence of the hydrodynamic field is treated by means of expansions on functional bases fitting the boundary conditions exactly. This yields a set of partial differential equations for spatiotemporal dynamics in the plane of the flow. Truncating this set beyond the lowest nontrivial order is numerically shown to produce the expected pattern, therefore improving over what was obtained at the cruder effective wall-normal resolution. Perspectives opened by this approach are discussed. (paper)

  13. CFD Analysis of nanofluid forced convection heat transport in laminar flow through a compact pipe

    Science.gov (United States)

    Yu, Kitae; Park, Cheol; Kim, Sedon; Song, Heegun; Jeong, Hyomin

    2017-08-01

    In the present paper, developing laminar forced convection flows were numerically investigated by using water-Al2O3 nano-fluid through a circular compact pipe which has 4.5mm diameter. Each model has a steady state and uniform heat flux (UHF) at the wall. The whole numerical experiments were processed under the Re = 1050 and the nano-fluid models were made by the Alumina volume fraction. A single-phase fluid models were defined through nano-fluid physical and thermal properties calculations, Two-phase model(mixture granular model) were processed in 100nm diameter. The results show that Nusselt number and heat transfer rate are improved as the Al2O3 volume fraction increased. All of the numerical flow simulations are processed by the FLUENT. The results show the increment of thermal transfer from the volume fraction concentration.

  14. Stochastic analysis of the time evolution of Laminar-Turbulent bands of plane Couette flow

    CERN Document Server

    Rolland, Joran

    2015-01-01

    This article is concerned with the time evolution of the oblique laminar-turbulent bands of transitional plane Couette flow under the influence of turbulent noise. Our study is focused on the amplitude of modulation of turbulence. In order to guide the numerical study of the flow, we first perform an analytical and numerical analysis of a Stochastic Ginzburg-Landau equation for a complex order parameter. The modulus of this order parameter models the amplitude of modulation of turbulence. Firstly, we compute the autocorrelation function of said modulus once the band is established. Secondly, we perform a calculation of average and fluctuations around the exponential growth of the order parameter. This type of analysis is similar to the Stochastic Structural Stability Theory. We then perform numerical simulations of the Navier-Stokes equations in order to confront these predictions with the actual behaviour of the bands. Computation of the autocorrelation function of the modulation of turbulence shows quantita...

  15. Forced convection to laminar flow of liquid egg yolk in circular and annular ducts

    Directory of Open Access Journals (Sweden)

    M. Bernardi

    2009-06-01

    Full Text Available The steady-state heat transfer in laminar flow of liquid egg yolk - an important pseudoplastic fluid food - in circular and concentric annular ducts was experimentally investigated. The average convection heat transfer coefficients, determined by measuring temperatures before and after heating sections with constant temperatures at the tube wall, were used to obtain simple new empirical expressions to estimate the Nusselt numbers for fully established flows at the thermal entrance of the considered geometries. The comparisons with existing correlations for Newtonian and non-Newtonian fluids resulted in excellent agreement. The main contribution of this work is to supply practical and easily applicable correlations, which are, especially for the case of annulus, rather scarce and extensively required in the design of heat transfer operations dealing with similar shear-thinning products. In addition, the experimental results may support existing theoretical analyses.

  16. Three-Dimensional Modelling inside a Differential Pressure Laminar Flow Bioreactor Filled with Porous Media

    Directory of Open Access Journals (Sweden)

    Birgit Weyand

    2015-01-01

    Full Text Available A three-dimensional computational fluid dynamics- (CFD- model based on a differential pressure laminar flow bioreactor prototype was developed to further examine performance under changing culture conditions. Cell growth inside scaffolds was simulated by decreasing intrinsic permeability values and led to pressure build-up in the upper culture chamber. Pressure release by an integrated bypass system allowed continuation of culture. The specific shape of the bioreactor culture vessel supported a homogenous flow profile and mass flux at the scaffold level at various scaffold permeabilities. Experimental data showed an increase in oxygen concentration measured inside a collagen scaffold seeded with human mesenchymal stem cells when cultured in the perfusion bioreactor after 24 h compared to static culture in a Petri dish (dynamic: 11% O2 versus static: 3% O2. Computational fluid simulation can support design of bioreactor systems for tissue engineering application.

  17. Dissecting Individual Ligand-Receptor Bonds with a Laminar Flow Chamber

    CERN Document Server

    Pierres, Anne; Benoliel, Anne-Marie; Bongrand, Pierre

    2008-01-01

    The most important function of proteins may well be to bind to other biomolecules. It has long been felt that kinetic rates of bond formation and dissociation between soluble receptors and ligands might account for most features of the binding process. Only theoretical considerations allowed to predict the behaviour of surface-attached receptors from the properties of soluble forms. During the last decade, experimental progress essentially based on flow chambers, atomic force microscopes or biomembrane force probes allowed direct analysis of biomolecule interaction at the single bond level and gave new insight into previously ignored features such as bond mechanical properties or energy landscapes. The aim of this review is (i) to describe the main advances brought by laminar flow chambers, including information on bond response to forces, multiplicity of binding states, kinetics of bond formation between attached structures, effect of molecular environment on receptor efficiency and behaviour of multivalent ...

  18. Laminar Natural Convective Heat Transfer in the Enclosed Evacuated Collector Tube with East—West Symmetric Heat Input

    Institute of Scientific and Technical Information of China (English)

    ZhangHeng-Yun; GeXin-Shi

    1997-01-01

    Heat transfer in the evacuated collector tube is a three-dimensional laminar natural convection problem driven by buoyancy.Because of its complexity,no effective theoretical model is available despite of limited experimental work which is confined to one aspect.The present work aims to depict the convective heat transfer inside a two-ended inclined tube with East-West symmetric heat input using numerical methods,Based on reasonable assumptions,governing equations of the inside fluid are established.The corresponding discretizated equations are solved by emplogying numerical metholds.The calculated results are displayed for velocity and temperature profiles on different cross-sectional plasnes.which present the flow pattern characterized by upflow and downflow along the axial direction and adherent flow along the peripheral direction,and the heat transfer rpocess from the wall to the center,Furthermore,the transient Nusselt number and average temperature level are shown and discussed.Finally,the parametric effects of the tube radius and the heat input on the flow and heat transfer are also given.

  19. Fast benchtop fabrication of laminar flow chambers for advanced microscopy techniques.

    Directory of Open Access Journals (Sweden)

    David S Courson

    Full Text Available BACKGROUND: Fluid handling technology is acquiring an ever more prominent place in laboratory science whether it is in simple buffer exchange systems, perfusion chambers, or advanced microfluidic devices. Many of these applications remain the providence of laboratories at large institutions with a great deal of expertise and specialized equipment. Even with the expansion of these techniques, limitations remain that frequently prevent the coupling of controlled fluid flow with other technologies, such as coupling microfluidics and high-resolution position and force measurements by optical trapping microscopy. METHOD: Here we present a method for fabrication of multiple-input laminar flow devices that are optically clear [glass] on each face, chemically inert, reusable, inexpensive, and can be fabricated on the benchtop in approximately one hour. Further these devices are designed to allow flow regulation by a simple gravity method thus requiring no specialized equipment to drive flow. Here we use these devices to perform total internal reflection fluorescence microscopy measurements as well as position sensitive optical trapping experiments. SIGNIFICANCE: Flow chamber technology needs to be more accessible to the general scientific community. The method presented here is versatile and robust. These devices use standard slides and coverslips making them compatible with nearly all types and models of light microscopes. These devices meet the needs of groups doing advanced optical trapping experiments, but could also be adapted by nearly any lab that has a function for solution flow coupled with microscopy.

  20. A Comparative Study of Material Flow Behavior in Friction Stir Welding Using Laminar and Turbulent Models

    Science.gov (United States)

    Kadian, Arun Kumar; Biswas, Pankaj

    2015-10-01

    Friction stir welding has been quite successful in joining aluminum alloy which has gained importance in almost all industrial sectors over the past two decades. It is a newer technique and therefore needs more attention in many sectors, flow of material being one among them. The material flow pattern actually helps in deciding the parameters required for particular tool geometry. The knowledge of material flow is very significant in removing defects from the weldment. In the work presented in this paper, the flow behavior of AA6061 under a threaded tool has been studied. The convective heat loss has been considered from all the surfaces, and a comparative study has been made with and without the use of temperature-dependent properties and their significance in the finite volume method model. The two types of models that have been implemented are turbulent and laminar models. Their thermal histories have been studied for all the cases. The material flow velocity has been analyzed to predict the flow of material. A swirl inside the weld material has been observed in all the simulations.

  1. Motion of cells sedimenting on a solid surface in a laminar shear flow.

    Science.gov (United States)

    Tissot, O; Pierres, A; Foa, C; Delaage, M; Bongrand, P

    1992-01-01

    Cell adhesion often occurs under dynamic conditions, as in flowing blood. A quantitative understanding of this process requires accurate knowledge of the topographical relationships between the cell membrane and potentially adhesive surfaces. This report describes an experimental study made on both the translational and rotational velocities of leukocytes sedimenting of a flat surface under laminar shear flow. The main conclusions are as follows: (a) Cells move close to the wall with constant velocity for several tens of seconds. (b) The numerical values of translational and rotational velocities are inconsistent with Goldman's model of a neutrally buoyant sphere in a laminar shear flow, unless a drag force corresponding to contact friction between cells and the chamber floor is added. The phenomenological friction coefficient was 7.4 millinewton.s/m. (c) Using a modified Goldman's theory, the width of the gap separating cells (6 microns radius) from the chamber floor was estimated at 1.4 micron. (d) It is shown that a high value of the cell-to-substrate gap may be accounted for by the presence of cell surface protrusions of a few micrometer length, in accordance with electron microscope observations performed on the same cell population. (e) In association with previously reported data (Tissot, O., C. Foa, C. Capo, H. Brailly, M. Delaage, and P. Bongrand. 1991. Biocolloids and Biosurfaces. In press), these results are consistent with the possibility that cell-substrate attachment be initiated by the formation of a single molecular bond, which might be considered as the rate limiting step.

  2. Convective heat transfer in foams under laminar flow in pipes and tube bundles

    Science.gov (United States)

    Attia, Joseph A.; McKinley, Ian M.; Moreno-Magana, David; Pilon, Laurent

    2014-01-01

    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux. PMID:25552745

  3. Convective heat transfer in foams under laminar flow in pipes and tube bundles.

    Science.gov (United States)

    Attia, Joseph A; McKinley, Ian M; Moreno-Magana, David; Pilon, Laurent

    2012-12-01

    The present study reports experimental data and scaling analysis for forced convection of foams and microfoams in laminar flow in circular and rectangular tubes as well as in tube bundles. Foams and microfoams are pseudoplastic (shear thinning) two-phase fluids consisting of tightly packed bubbles with diameters ranging from tens of microns to a few millimeters. They have found applications in separation processes, soil remediation, oil recovery, water treatment, food processes, as well as in fire fighting and in heat exchangers. First, aqueous solutions of surfactant Tween 20 with different concentrations were used to generate microfoams with various porosity, bubble size distribution, and rheological behavior. These different microfoams were flowed in uniformly heated circular tubes of different diameter instrumented with thermocouples. A wide range of heat fluxes and flow rates were explored. Experimental data were compared with analytical and semi-empirical expressions derived and validated for single-phase power-law fluids. These correlations were extended to two-phase foams by defining the Reynolds number based on the effective viscosity and density of microfoams. However, the local Nusselt and Prandtl numbers were defined based on the specific heat and thermal conductivity of water. Indeed, the heated wall was continuously in contact with a film of water controlling convective heat transfer to the microfoams. Overall, good agreement between experimental results and model predictions was obtained for all experimental conditions considered. Finally, the same approach was shown to be also valid for experimental data reported in the literature for laminar forced convection of microfoams in rectangular minichannels and of macrofoams across aligned and staggered tube bundles with constant wall heat flux.

  4. Dimensioning of ducts for maximal volumetric heat transfer taking both laminar and turbulent flow possibilities into consideration

    Science.gov (United States)

    Yilmaz, Alper

    2015-04-01

    It is intended to design compact heat exchangers which can transfer high heat flow for a given volume and temperature difference with high efficiency. This work presents the optimal design of heat exchangers for a given length or hydraulic diameter with a constraint of a certain pressure loss and constant wall temperature. Both volumetric heat transfer and heat transfer efficiency are taken into consideration for the design in laminar or turbulent flow regions. Equations are derived which easily enable optimal design for all shapes of ducts and for all Pr numbers. It is found that optimum conditions for turbulent flow is possible for all duct hydraulic diameters; however, it is possible to have optimum conditions till a certain dimensionless duct hydraulic diameter for laminar flow. Besides maximal volumetric heat flow, heat transfer efficiency should be taken into consideration in turbulent flow for optimum design.

  5. The effect of neutrally buoyant finite-size particles on channel flows in the laminar-turbulent transition regime

    Science.gov (United States)

    Loisel, Vincent; Abbas, Micheline; Masbernat, Olivier; Climent, Eric

    2013-12-01

    The presence of finite-size particles in a channel flow close to the laminar-turbulent transition is simulated with the Force Coupling Method which allows two-way coupling with the flow dynamics. Spherical particles with channel height-to-particle diameter ratio of 16 are initially randomly seeded in a fluctuating flow above the critical Reynolds number corresponding to single phase flow relaminarization. When steady-state is reached, the particle volume fraction is homogeneously distributed in the channel cross-section (ϕ ≅ 5%) except in the near-wall region where it is larger due to inertia-driven migration. Turbulence statistics (intensity of velocity fluctuations, small-scale vortical structures, wall shear stress) calculated in the fully coupled two-phase flow simulations are compared to single-phase flow data in the transition regime. It is observed that particles increase the transverse r.m.s. flow velocity fluctuations and they break down the flow coherent structures into smaller, more numerous and sustained eddies, preventing the flow to relaminarize at the single-phase critical Reynolds number. When the Reynolds number is further decreased and the suspension flow becomes laminar, the wall friction coefficient recovers the evolution of the laminar single-phase law provided that the suspension viscosity is used in the Reynolds number definition. The residual velocity fluctuations in the suspension correspond to a regime of particulate shear-induced agitation.

  6. Three-dimensional flow and vorticity transport in idealized airway model from laminar to turbulent regimes

    Science.gov (United States)

    Jalal, Sahar; van de Moortele, Tristan; Nemes, Andras; Eslam Panah, Azar; Coletti, Filippo

    2015-11-01

    The presence and intensity of secondary flows formed by the inhaled air during respiration has important consequences for gas exchange and particle transport in the lungs. Here we focus on the formation and persistence of such secondary flows by experimentally studying the steady inspiration in an idealized airway model. The geometry consists of a symmetric planar double bifurcation that respects the geometrical proportions of the human bronchial tree. Physiologically relevant Reynolds numbers from 100 to 5000 are investigated, ranging from laminar to turbulent regimes. The time-averaged, three-dimensional velocity fields are obtained from Magnetic Resonance Imaging (MRI), providing detailed distributions of vorticity, circulation, and secondary flow strength. Information on the velocity fluctuations are obtained by Particle Image Velocimetry (PIV). The measurements highlight the effect of the Reynolds number on the momentum transport, flow partitioning at the bifurcations, strength and sense of rotation of the longitudinal vortices. A marked change in topology is found at a specific Reynolds number, above which the influence of the upstream flow prevails over the effect of the local geometry. Finally, turbulence and its role in the mean vorticity transport are also discussed.

  7. Lattice Boltzmann simulation of a laminar square jet in cross flows

    Institute of Scientific and Technical Information of China (English)

    Guoneng Li; Youqu Zheng; Huawen Yang; Wenwen Guo; Yousheng Xu

    2016-01-01

    A three-dimensional, nineteen-velocity (D3Q19) Lattice Boltzmann Method (LBM) model was developed to sim-ulate the fluid flow of a laminar square jet in cross flows based on the single relaxation time algorithm. The code was validated by the mathematic solution of the Poiseuille flow in a square channel, and was further validated with a previous well studied empirical correlation for the central trajectory of a jet in cross flows. The developed LBM model was found to be able to capture the dominant vortex, i.e. the Counter-rotating Vortex Pair (CVP) and the upright wake vortex. Results show that the incoming fluid in the cross flow channel was entrained into the leeside of the jet fluid, which contributes to the blending of the jet. That the spread width of the transverse jet decreases with the velocity ratio. A layer-organized entrainment pattern was found indicating that the incoming fluid at the lower position is firstly entrained into the leeside of the jet, and followed by the incoming fluid at the upper position.

  8. A study of laminar flow of polar liquids through circular microtubes

    Science.gov (United States)

    Phares, Denis J.; Smedley, Gregory T.

    2004-05-01

    Recently, the validity of using classical flow theory to describe the laminar flow of polar liquids and electrolytic solutions through microtubes has been questioned for tube diameters as large as 500 μm [Brutin and Tadrist, Phys. Fluids 15, 653 (2003)]. This potential increase in flow resistance, which has been attributed to electrokinetic effects and enhanced surface roughness effects, is critical to the understanding of certain biofluid systems. We seek to characterize this phenomenon for a variety of capillary/liquid systems. Using a numerical solution to the Poisson-Boltzmann equation, we have calculated the electroviscous effect for the systems under consideration. We have also measured the pressure drop as a function of flow rate across well-characterized stainless steel and polyimide microtubes ranging in diameter from 120 μm to 440 μm. Deionized water, tap water, a saline solution, and a variety of glycerol/water mixtures were used. The calculations and measurements suggest that any deviation from Poiseuille flow for tubes larger than 50 microns in diameter is more likely caused by the enhanced importance of surface roughness in microtubes than by electrokinetic effects.

  9. Experimental design studies and flow visualization of proportional laminar-flow fluidic amplifiers

    Science.gov (United States)

    Hellbaum, R. F.; Mcdermon, J. N.

    1977-01-01

    The effects of certain parameter variations on the performance characteristics of laminar, proportional, jet-deflection fluidic amplifiers were studied. The matching and staging of amplifiers to obtain high pressure gain was included, but dynamic effects were not. The parameter variations considered were aspect ratio, setback, control length, splitter distance, receiver-duct width, width of center-vent duct, and bias pressure. Usable pressure gains of 19 per stage were achieved, and 5 amplifier stages were integrated to yield an overall pressure gain of 2,000,000.

  10. THE LOSS OF STABILITY OF LAMINAR FLOW IN OPEN CHANNEL AND THE MECHANISM OF SAND RIPPLE FORMATION

    Institute of Scientific and Technical Information of China (English)

    白玉川; 罗纪生

    2002-01-01

    In the flow on a mobile bed in an open channel, sand ripple often appears after the sediment begins to move. Different scholars have different views on the formation of sand ripples. This paper holds that as the ripple in general is very small, its formation is due to the instability of the laminar flow or the evolution of the small-scale coherent structures in the sublayer adjacent to the wall of the open channel. When the shear stresses caused by the disturbing waves or the coherent structure near the bed surface boundary and the water flow itself are greater than the shields stresses, responses on the bed surface appear and the sand ripple forms. If the frequency of the shear stress caused by the disturbance is close to the natural frequency of the sand grains that produced resonance,such a phenomenon is called the "detection property" of the sediment. It is at this point that the maximum resonance appears and the sand ripple develops rapidly.

  11. Hybrid solution for the laminar flow of power-law fluids inside rectangular ducts

    Science.gov (United States)

    Lima, J. A.; Pereira, L. M.; Macêdo, E. N.; Chaves, C. L.; Quaresma, J. N. N.

    The so-called generalized integral transform technique (GITT) is employed in the hybrid numerical-analytical solution of two-dimensional fully-developed laminar flow of non-Newtonian power-law fluids inside rectangular ducts. The characteristic of the automatic and straightforward global error control procedure inherent to this approach, permits the determination of fully converged benchmark results to assess the performance of purely numerical techniques. Therefore, numerical results for the product Fanning friction factor-generalized Reynolds number are computed for different values of power-law index and aspect ratio, which are compared with previously reported results in the literature, providing critical comparisons among them as well as illustrating the powerfulness of the integral transform approach. The resulting velocity profiles computed by using this methodology are also compared with those calculated by approximated methods for power-law fluids, within the range of governing parameters studied.

  12. Polar confinement of the Sun's interior magnetic field by laminar magnetostrophic flow

    CERN Document Server

    Wood, Toby S

    2010-01-01

    The global-scale interior magnetic field B_i needed to account for the Sun's observed differential rotation can be effective only if confined in the polar caps. Axisymmetric magnetohydrodynamic solutions are obtained showing that such confinement can be brought about by a very weak downwelling flow U~10^{-5}cm/s over each pole. Such downwelling is consistent with the helioseismic evidence. All three components of the magnetic field decay exponentially with altitude across a thin, laminar "magnetic confinement layer" located at the bottom of the tachocline. With realistic parameter values, the thickness of the confinement layer ~10^{-3} of the Sun's radius. Alongside baroclinic effects and stable thermal stratification, the solutions take into account the stable compositional stratification of the helium settling layer, if present as in today's Sun, and the small diffusivity of helium through hydrogen, chi. The small value of chi relative to magnetic diffusivity produces a double boundary-layer structure in wh...

  13. Unsteady rotating laminar flow: analytical solution of relevant Navier-Stokes equations

    CERN Document Server

    Bocci, Alessio; Ritelli, Daniele

    2016-01-01

    We provide a integration of Navier-Stokes equations concerning the unsteady-state laminar flow of an incompressible, isothermal (newtonian) fluid in a cylindrical vessel spinning about its symmetry axis, say $z$, and inside which the liquid velocity starts with a non-zero axial component as well. Basic physical assumptions are that the pressure axial gradient keeps itself on its hydrostatic value and that no radial velocity exists. In such a way the PDEs become uncoupled and can be faced separately from each other. We succeed in computing both the unsteady velocities, i.e. the axial $v_z$ and the circumferential $v_\\theta$ as well, by means of infinite series expansions of Fourier-Bessel type under time exponential damping. Following this, we also find the unsteady surfaces of dynamical equilibrium, the wall shear stress and the Stokesian streamlines

  14. Homotopy simulation of axisymmetric laminar mixed convection nanofluid boundary layer flow over a vertical cylinder

    Directory of Open Access Journals (Sweden)

    Freidooni Mehr N.

    2012-01-01

    Full Text Available In this paper, the semi-analytical/numerical technique known as the homotopy analysis method (HAM is employed to derive solutions for the laminar axisymmetric mixed convection boundary-layer nanofluid flow past a vertical cylinder. The similarity solutions are employed to transform the parabolic partial differential conservation equations into system of nonlinear, coupled ordinary differential equations, subject to appropriate boundary conditions. A comparison has been done to verify the obtained results with the purely numerical results of Grosan and Pop (2011 with excellent correlation achieved. The effects of nanoparticle volume fraction, curvature parameter and mixed convection or buoyancy parameter on the dimensionless velocity and temperature distributions, skin friction and wall temperature gradients are illustrated graphically. HAM is found to demonstrate excellent potential for simulating nanofluid dynamics problems. Applications of the study include materials processing and also thermal enhancement of energy systems.

  15. On matched asymptotic analysis for laminar channel flow with a turning point

    Directory of Open Access Journals (Sweden)

    Chunqing Lu

    2000-07-01

    Full Text Available This paper presents a formal analysis of the asimptotic behaviour of solutions of type III for the Berman equation $$ epsilon f^{iv}=ff'''-f'f'' ,quad f(0=f''(0=f'(1=f(1-1=0,, $$ where $f$ describes a laminar flow in a channel with porous walls. A solution has a nonlinear turning point $(1-Delta $, i.e. $f(1-Delta = 0$ for some $Delta(epsilon$. It is shown that $$ f(eta sim -frac{1-Delta }{pi Delta }sin frac{pi eta }{1-Delta }, $$ as $epsilon o 0^{+}$, for $eta in [0,1-Delta $ where $Delta $ satisfies $$ frac{Delta }{epsilon } e^{Delta/epsilon }sim frac{1}{2epi^{9} epsilon ^{8}}. $$

  16. A spectral element method for fluid dynamics - Laminar flow in a channel expansion

    Science.gov (United States)

    Patera, A. T.

    1984-01-01

    A spectral element method that combines the generality of the finite element method with the accuracy of spectral techniques is proposed for the numerical solution of the incompressible Navier-Stokes equations. In the spectral element discretization, the computational domain is broken into a series of elements, and the velocity in each element is represented as a high-order Lagrangian interpolant through Chebyshev collocation points. The hyperbolic piece of the governing equations is then treated with an explicit collocation scheme, while the pressure and viscous contributions are treated implicitly with a projection operator derived from a variational principle. The implementation of the technique is demonstrated on a one-dimensional inflow-outflow advection-diffusion equation, and the method is then applied to laminar two-dimensional (separated) flow in a channel expansion. Comparisons are made with experiment and previous numerical work.

  17. Nonlinear response of inertial tracers in steady laminar flows: differential and absolute negative mobility

    CERN Document Server

    Sarracino, A; Puglisi, A; Vulpiani, A

    2016-01-01

    We study the mobility and the diffusion coefficient of an inertial tracer advected by a two-dimensional incompressible laminar flow, in the presence of thermal noise and under the action of an external force. We show, with extensive numerical simulations, that the force-velocity relation for the tracer, in the nonlinear regime, displays complex and rich behaviors, including negative differential and absolute mobility. These effects rely upon a subtle coupling between inertia and applied force which induce the tracer to persist in particular regions of phase space with a velocity opposite to the force. The relevance of this coupling is revisited in the framework of non-equilibrium response theory, applying a generalized Einstein relation to our system. The possibility of experimental observation of these results is also discussed.

  18. Laminar flow of a conducting fluid between coaxial cylinders in a traveling magnetic field

    Energy Technology Data Exchange (ETDEWEB)

    Kamiyama, S.; Kavai, Ya.

    1977-07-01

    An analysis is made of the laminar flow of a conducting fluid between two coaxial cylinders in a traveling magnetic field. A study was made of the characteristics of coaxial induction MHD apparatus as well as the effect of the velocity profile on the efficiency of an ideal machine. The internal cylinder was presumed to consist of a nonconducting material with a magnetic permeability of ..mu../sub 1/ = ..mu../sub 0/ or ..mu../sub 1/ = infinity. The velocity profiles were obtained in the form of functions of the ratios of the external and internal cylinder radii and the radius of the external cylinder to the pole pitch. The heterogeneity of the velocity profile was found to have a significant influence on the energy conversion efficiency of ideal induction MHD machines. 6 references, 4 figures.

  19. Designing a Hybrid Laminar-Flow Control Experiment: The CFD-Experiment Connection

    Science.gov (United States)

    Streett, C. L.

    2003-01-01

    The NASA/Boeing hybrid laminar flow control (HLFC) experiment, designed during 1993-1994 and conducted in the NASA LaRC 8-foot Transonic Pressure Tunnel in 1995, utilized computational fluid dynamics and numerical simulation of complex fluid mechanics to an unprecedented extent for the design of the test article and measurement equipment. CFD was used in: the design of the test wing, which was carried from definition of desired disturbance growth characteristics, through to the final airfoil shape that would produce those growth characteristics; the design of the suction-surface perforation pattern that produced enhanced crossflow-disturbance growth: and in the design of the hot-wire traverse system that produced minimal influence on measured disturbance growth. These and other aspects of the design of the test are discussed, after the historical and technical context of the experiment is described.

  20. Homotopy analysis solutions for the asymmetric laminar flow in a porous channel with expanding or contracting walls

    Institute of Scientific and Technical Information of China (English)

    Xin-Hui Si; Lian-Cun Zheng; Xin-Xin Zhang; Ying Chao

    2011-01-01

    In this paper, the asymmetric laminar flow in a porous channel with expanding or contracting walls is investigated. The governing equations are reduced to ordinary ones by using suitable similar transformations. Homotopy analysis method (HAM) is employed to obtain the expressions for velocity fields. Graphs are sketched for values of parameters and associated dynamic characteristics, especially the expansion ratio, are analyzed in detail.

  1. An investigation of natural and forced transition in a laminar separation bubble via time-resolved Particle Image Velocimetry

    Science.gov (United States)

    Kurelek, John; Yarusevych, Serhiy

    2015-11-01

    The transition process in a laminar separation bubble (LSB) formed on the suction surface of a NACA 0018 airfoil at a chord Reynolds number of 100,000 and an angle of attack of 5° is studied experimentally. Both natural and forced transition are evaluated using controlled acoustic disturbances. Time-resolved Particle Image Velocimetry and surface pressure measurements are used to investigate the streamwise and spanwise flow development in the bubble. For all the cases examined, the transition process is characterized by the formation of strongly periodic shear layer vortices in the LSB due to the amplification of disturbances in the bubble's fore portion. These structures feature strong spanwise coherence at roll-up; however, they deform rapidly and begin to break down upstream of the mean reattachment point. The vortex breakup is shown to be initiated by spanwise deformation of the vortex filaments, linked to the formation of streamwise structures. This is followed by the formation of turbulent spots, which expand rapidly near mean reattachment. The results demonstrate that the acoustic disturbance environment can have a strong influence on the characteristics of the vortices and their breakup, thereby affecting flow transition and the overall dynamics of the LSB.

  2. Numerical evaluation of laminar heat transfer enhancement in nanofluid flow in coiled square tubes.

    Science.gov (United States)

    Sasmito, Agus Pulung; Kurnia, Jundika Candra; Mujumdar, Arun Sadashiv

    2011-05-09

    Convective heat transfer can be enhanced by changing flow geometry and/or by enhancing thermal conductivity of the fluid. This study proposes simultaneous passive heat transfer enhancement by combining the geometry effect utilizing nanofluids inflow in coils. The two nanofluid suspensions examined in this study are: water-Al2O3 and water-CuO. The flow behavior and heat transfer performance of these nanofluid suspensions in various configurations of coiled square tubes, e.g., conical spiral, in-plane spiral, and helical spiral, are investigated and compared with those for water flowing in a straight tube. Laminar flow of a Newtonian nanofluid in coils made of square cross section tubes is simulated using computational fluid dynamics (CFD)approach, where the nanofluid properties are treated as functions of particle volumetric concentration and temperature. The results indicate that addition of small amounts of nanoparticles up to 1% improves significantly the heat transfer performance; however, further addition tends to deteriorate heat transfer performance.

  3. Experiments on densely-loaded non-Newtonian slurries in laminar and turbulent pipe flows

    Science.gov (United States)

    Park, J. T.; Mannheimer, R. J.; Grimley, T. A.; Morrow, T. B.

    1988-05-01

    An experimental description of the flow structure of non-Newtonian slurries in the laminar, transitional, and full turbulent pipe flow regimes is the primary objective of this research. Measurements include rheological characterization of the fluid and local fluid velocity measurements with a Laser Doppler Velocimeter (LDV). Optical access to the flow is gained through a test section and model slurry which are both transparent. The model slurry is formulated from silica gel particles and hydrocarbon liquid mixture whose indices of refraction are matched so that light is not scattered from the particles. Experiments are being conducted in a large-scale pipe slurry. Flow measurements including turbulence quantities such as Reynolds stress were measured with a two-component two-color LDV. The present research indicates that non-Newtonian slurries are possible with concentrations of a few percent by weight of small particles whose sizes are two microns or less. A non-Newtonian slurry from small particles could maintain large particles (one millimeter size) at high concentrations in suspension almost indefinitely. Such a slurry would prevent particle fallout and its associated problems.

  4. Laminar lesions in horses with systemic oxidative stress, committed by experimentally induced or naturally occurring gastrointestinal disorders

    Directory of Open Access Journals (Sweden)

    Luciane M. Laskoski

    Full Text Available Abstract: Laminitis in horses can be associated with lesions in multiple organs secondary to sepsis. Twenty-one horses suffering from gastrointestinal disorders were used in the experiment; 7 horses with experimentally induced endotoxemia and intestinal ischaemia, and 14 horses suffering from naturally occurring colic syndrome. Tissue samples of lungs, liver, heart, brain, cerebellum and hoof laminar tissue were collected for histopathological and oxidative stress evaluation using nitrotyrosine and superoxide dismutase (SOD2 immunostaining. The horses were divided into two groups: the non-oxidative lesions group (NOLG, with 7 horses showing weak immunostaining in lungs, liver and kidney, and the oxidative lesions group (OLG, with 14 horses showing immunostaining indicating systemic oxidative stress in multiple organs. The horses from OLG showed increase of laminar lesions and SOD2 immunostaining in multiple organs when compared to the horses from the NOLG. No differences were found ln regard to laminar immunostaining by nitrotyrosine and SOD2 between experimental groups. It was concluded that systemic oxidative stress can be associated with the development of laminar lesions, and that the laminar tissue does not respond to oxidative stress with increase of SOD as occurs in other organs.

  5. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    Energy Technology Data Exchange (ETDEWEB)

    Mondal, Rabindra Nath, E-mail: rnmondal71@yahoo.com; Shaha, Poly Rani [Department of Mathematics, Jagannath University, Dhaka-1100 (Bangladesh); Roy, Titob [Department of Mathematics, Vikarunnesa Nun School and College, Boshundhara, Dhaka (Bangladesh); Yanase, Shinichiro, E-mail: yanase@okayama-u.ac.jp [Department of Mechanical and Systems Engineering, Okayama University, Okayama 700-8530 (Japan)

    2016-07-12

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number −300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario ‘multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic’, if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario ‘multi-periodic → periodic → steady-state’, if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  6. Unsteady laminar flow with convective heat transfer through a rotating curved square duct with small curvature

    Science.gov (United States)

    Mondal, Rabindra Nath; Roy, Titob; Shaha, Poly Rani; Yanase, Shinichiro

    2016-07-01

    Unsteady laminar flow with convective heat transfer through a curved square duct rotating at a constant angular velocity about the center of curvature is investigated numerically by using a spectral method, and covering a wide range of the Taylor number -300≤Tr≤1000 for the Dean number Dn = 1000. A temperature difference is applied across the vertical sidewalls for the Grashof number Gr = 100, where the outer wall is heated and the inner wall cooled, the top and bottom walls being adiabatic. Flow characteristics are investigated with the effects of rotational parameter, Tr, and the pressure-driven parameter, Dn, for the constant curvature 0.001. Time evolution calculations as well as their phase spaces show that the unsteady flow undergoes through various flow instabilities in the scenario `multi-periodic → chaotic → steady-state → periodic → multi-periodic → chaotic', if Tr is increased in the positive direction. For negative rotation, however, time evolution calculations show that the flow undergoes in the scenario `multi-periodic → periodic → steady-state', if Tr is increased in the negative direction. Typical contours of secondary flow patterns and temperature profiles are obtained at several values of Tr, and it is found that the unsteady flow consists of two- to six-vortex solutions if the duct rotation is involved. External heating is shown to generate a significant temperature gradient at the outer wall of the duct. This study also shows that there is a strong interaction between the heating-induced buoyancy force and the centrifugal-Coriolis instability in the curved channel that stimulates fluid mixing and consequently enhances heat transfer in the fluid.

  7. DETERMINATION OF THE EFFECTIVE RADIAL THERMAL DIFFUSIVITY FOR EVALUATING ENHANCED HEAT TRANSFER IN TUBES UNDER NON-NEWTONIAN LAMINAR FLOW

    Directory of Open Access Journals (Sweden)

    A. O. Morais

    2015-06-01

    Full Text Available AbstractEnhanced heat transfer in tubes under laminar flow conditions can be found in coils or corrugated tubes or in the presence of high wall relative roughness, curves, pipe fittings or mechanical vibration. Modeling these cases can be complex because of the induced secondary flow. A modification of the Graetz problem for non-Newtonian power-law flow is proposed to take into account the augmented heat transfer by the introduction of an effective radial thermal diffusivity. The induced mixing was modeled as an increased radial heat transfer in a straight tube. Three experiments using a coiled tube and a tubular heat exchanger with high relative wall roughness are presented in order to show how this parameter can be obtained. Results were successfully correlated with Reynolds number. This approach can be useful for modeling laminar flow reactors (LFR and tubular heat exchangers available in the chemical and food industries.

  8. Fully developed laminar flow of non-Newtonian liquids through annuli: comparison of numerical calculations with experiments

    Energy Technology Data Exchange (ETDEWEB)

    Escudier, M.P.; Smith, S. [Department of Engineering, Mechanical Engineering, University of Liverpool, Brownlow Hill, Liverpool L69 3GH (United Kingdom); Oliveira, P.J. [Departamento de Engenharia Electromecanica, Universidade da Beira Interior, Rua Marques D' Avila e Boloma, 6200 Covilha (Portugal); Pinho, F.T. [Centro de Estudos de Fenomenos de Transporte, DEMEGI, Faculdade de Engenharia, Universidade do Porto, Rua Roberto Frias, 4200-465 Porto (Portugal)

    2002-07-01

    Experimental data are reported for fully developed laminar flow of a shear-thinning liquid through both a concentric and an 80% eccentric annulus with and without centrebody rotation. The working fluid was an aqueous solution of 0.1% xanthan gum and 0.1% carboxymethylcellulose for which the flow curve is well represented by the Cross model. Comparisons are reported between numerical calculations and the flow data, as well as with other laminar annular-flow data for a variety of shear-thinning liquids previously reported in the literature. In general, the calculations are in good quantitative agreement with the experimental data, even in situations where viscoelastic effects, neglected in the calculations, would be expected to play a role. (orig.)

  9. Zero absolute vorticity: insight from experiments in rotating laminar plane Couette flow.

    Science.gov (United States)

    Suryadi, Alexandre; Segalini, Antonio; Alfredsson, P Henrik

    2014-03-01

    For pressure-driven turbulent channel flows undergoing spanwise system rotation, it has been observed that the absolute vorticity, i.e., the sum of the averaged spanwise flow vorticity and system rotation, tends to zero in the central region of the channel. This observation has so far eluded a convincing theoretical explanation, despite experimental and numerical evidence reported in the literature. Here we show experimentally that three-dimensional laminar structures in plane Couette flow, which appear under anticyclonic system rotation, give the same effect, namely, that the absolute vorticity tends to zero if the rotation rate is high enough. It is shown that this is equivalent to a local Richardson number of approximately zero, which would indicate a stable condition. We also offer an explanation based on Kelvin's circulation theorem to demonstrate that the absolute vorticity should remain constant and approximately equal to zero in the central region of the channel when going from the nonrotating fully turbulent state to any state with sufficiently high rotation.

  10. The Response of an Elastic Splitter Plate Attached to a Cylinder to Laminar Pulsatile Flow

    CERN Document Server

    Kundu, Anup; Bhardwaj, Rajneesh; Thompson, Mark C

    2016-01-01

    The flow-induced deformation of a thin, elastic splitter plate attached to the rear of a circular cylinder and subjected to laminar pulsatile inflow is investigated. The cylinder and elastic splitter plate are contained within a narrow channel and the Reynolds number is mostly restricted to Re = 100, primarily covering the two-dimensional flow regime. An in-house fluid-structure interaction code is employed for simulations, which couples a sharp-interface immersed boundary method for the fluid dynamics with a finite-element method to treat the structural dynamics. The structural solver is implicitly (two-way) coupled with the flow solver using a partitioned approach. This implicit coupling ensures numerical stability at low structure-fluid density ratios. A power spectrum analysis of the time-varying plate displacement shows that the plate oscillates at more than a single frequency for pulsatile inflow, compared to a single frequency observed for steady inflow. The multiple frequencies obtained for the former...

  11. Reynolds number dependence of the drag coefficient for laminar flow through fine-scale photoetched screens

    Science.gov (United States)

    O'Hern, T. J.; Torczynski, J. R.

    1993-06-01

    The laminar steady flow downstream of fine-mesh screens is studied. Instead of woven-wire screens, high-uniformity screens are fabricated by photoetching holes into 50.8-micron-thick Inconel sheets. The resulting screens have minimum wire widths of 50.8 microns and inter-wire separations of 254 and 318 microns for the two screens examined. A flow facility has been constructed for experiments with these screens. Air is passed through the screens at upstream velocities yielding wire width Reynolds numbers from 2 to 35. To determine the drag coefficient, pressure drops across the screens are measured using pressure transducers and manometers. Three-dimensional flow simulations are also performed. The computational drag coefficients consistently overpredict the experimental values. However, the computational results exhibit sensitivity to the assumed wire cross section, indicating that detailed knowledge of the wire cross section is essential for unambiguous interpretation of experiments using photoetched screens. Standard semiempirical drag correlations for woven-wire screens do not predict the present experimental results with consistent accuracy.

  12. Inertia-driven particle migration and mixing in a wall-bounded laminar suspension flow

    Energy Technology Data Exchange (ETDEWEB)

    Loisel, V.; Abbas, M., E-mail: micheline.abbas@ensiacet.fr; Masbernat, O. [Université de Toulouse INPT-UPS: Laboratoire de Génie Chimique and CNRS, Fédération de Recherche FERMaT, Toulouse (France); Climent, E. [Université de Toulouse INPT-UPS: Institut de Mécanique des Fluides de Toulouse and CNRS, Fédération de Recherche FERMaT, Toulouse (France)

    2015-12-15

    Laminar pressure-driven suspension flows are studied in the situation of neutrally buoyant particles at finite Reynolds number. The numerical method is validated for homogeneous particle distribution (no lateral migration across the channel): the increase of particle slip velocities and particle stress with inertia and concentration is in agreement with former works in the literature. In the case of a two-phase channel flow with freely moving particles, migration towards the channel walls due to the Segré-Silberberg effect is observed, leading to the development of a non-uniform concentration profile in the wall-normal direction (the concentration peaks in the wall region and tends towards zero in the channel core). The particle accumulation in the region of highest shear favors the shear-induced particle interactions and agitation, the profile of which appears to be correlated to the concentration profile. A 1D model predicting particle agitation, based on the kinetic theory of granular flows in the quenched state regime when Stokes number St = O(1) and from numerical simulations when St < 1, fails to reproduce the agitation profile in the wall normal direction. Instead, the existence of secondary flows is clearly evidenced by long time simulations. These are composed of a succession of contra-rotating structures, correlated with the development of concentration waves in the transverse direction. The mechanism proposed to explain the onset of this transverse instability is based on the development of a lift force induced by spanwise gradient of the axial velocity fluctuations. The establishment of the concentration profile in the wall-normal direction therefore results from the combination of the mean flow Segré-Silberberg induced migration, which tends to stratify the suspension and secondary flows which tend to mix the particles over the channel cross section.

  13. Stability enhancement of ozone-assisted laminar premixed Bunsen flames in nitrogen co-flow

    KAUST Repository

    Vu, Tran Manh

    2014-04-01

    Ozone (O3) is known as one of the strongest oxidizers and therefore is widely used in many applications. Typically in the combustion field, a combination of non-thermal plasma and combustion systems have been studied focusing on the effects of ozone on flame propagation speeds and ignition characteristics. Here, we experimentally investigated the effects of ozone on blowoff of premixed methane/air and propane/air flames over a full range of equivalence ratios at room temperature and atmospheric pressure by using a co-flow burner and a dielectric barrier discharge. The results with ozone showed that a nozzle exit jet velocity at the moment of flame blowoff (blowoff velocity) significantly increased, and flammability limits for both fuel-lean and rich mixtures were also extended. Ozone had stronger effects of percent enhancement in the blowoff velocity for off-stoichiometric mixtures, while minimum enhancements could be observed around stoichiometric conditions for both fuels showing linear positive dependence on a tested range of ozone concentration up to 3810ppm. Through chemical kinetic simulations, the experimentally observed trends of the enhancement in blowoff velocity were identified as a result of the modification of the laminar burning velocity. Two ozone decomposition pathways of O3+N2→O+O2+N2 and O3+H→O2+OH were identified as the most controlling steps. These reactions, coupled with fuel consumption characteristics of each fuel determined the degree of promotion in laminar burning velocities, supporting experimental observations on blowoff velocities with ozone addition. © 2013 The Combustion Institute.

  14. Non-intrusive measurements of convective heat transfer in smooth- and rough-wall microchannels: laminar flow

    Science.gov (United States)

    Natrajan, V. K.; Christensen, K. T.

    2010-11-01

    The convective heat transfer behavior of laminar flow through a smooth- and two rough-wall microchannels is investigated by performing non-intrusive and spatially resolved measurements of fluid temperature via two-color fluorescent thermometry under constant heat flux conditions at three of the four microchannel walls. Pressure-drop measurements reveal that the apparent friction factors for all surfaces agree well with established macroscale predictions for laminar flow through rectangular ducts with the onset of transition at Re > Recr = 1,800 for smooth-wall flow and deviation from laminar behavior at progressively lower Re with increasing surface roughness. The local Nu for smooth-wall flow agrees well with macroscale predictions in both the thermally developing and developed regimes. With increasing roughness, while an enhancement in local Nu is noted for flow in the thermally developing regime, no measurable influence is noted upon attainment of a thermally developed state. These observations are supported by the examination of temperature profiles across the microchannel at various axial positions and Re, which suggest that the thermal boundary layer may be regenerated locally by roughness in the thermal entrance region of the flow resulting in an increased axial distance (compared to smooth-wall behavior) at which thermally developed flow is attained in the presence of roughness. Finally, estimates of the bulk Nu indicate enhancement in convective heat transfer over the smooth-wall case for laminar flow at higher Re while the smooth-wall bulk Nu data are found to agree well with macroscale predictions.

  15. Boundary layer control by a fish: Unsteady laminar boundary layers of rainbow trout swimming in turbulent flows

    Directory of Open Access Journals (Sweden)

    Kazutaka Yanase

    2016-12-01

    Full Text Available The boundary layers of rainbow trout, Oncorhynchus mykiss [0.231±0.016 m total body length (L (mean±s.d.; N=6], swimming at 1.6±0.09 L s−1 (N=6 in an experimental flow channel (Reynolds number, Re=4×105 with medium turbulence (5.6% intensity were examined using the particle image velocimetry technique. The tangential flow velocity distributions in the pectoral and pelvic surface regions (arc length from the rostrum, lx=71±8 mm, N=3, and lx=110±13 mm, N=4, respectively were approximated by a laminar boundary layer model, the Falkner−Skan equation. The flow regime over the pectoral and pelvic surfaces was regarded as a laminar flow, which could create less skin-friction drag than would be the case with turbulent flow. Flow separation was postponed until vortex shedding occurred over the posterior surface (lx=163±22 mm, N=3. The ratio of the body-wave velocity to the swimming speed was in the order of 1.2. This was consistent with the condition of the boundary layer laminarization that had been confirmed earlier using a mechanical model. These findings suggest an energy-efficient swimming strategy for rainbow trout in a turbulent environment.

  16. Enhanced thermal stability and mismatch discrimination of mutation-carrying DNA duplexes and their kinetic and thermodynamic properties in microchannel laminar flow.

    Science.gov (United States)

    Nagata, Maria Portia B; Yamashita, Kenichi; Miyazaki, Masaya; Nakamura, Hiroyuki; Maeda, Hideaki

    2009-07-01

    This article reports the enhancement of thermal stability involving normal duplex and mutation-carrying DNA duplexes in microchannel laminar flow. The application of an in-house temperature-controllable microchannel-type flow cell is demonstrated for improved discrimination of mismatch base pairs such as A-G and T-G that are difficult to distinguish due to the rather small thermal destabilizations. Enhancement in thermal stability is reflected by an increased thermal melting temperature achieved in microchannel laminar flow as compared with batch reactions. To examine the kinetics and thermodynamics of duplex-coil equilibrium of DNA oligomers, denaturation-renaturation hysteresis curves were measured. The influence of microchannel laminar flow on DNA base mismatch analysis was described from the kinetic and thermodynamic perspectives. An increasing trend was observed for association rate constant as flow rate increased. In contrast, an apparent decrease in dissociation rate constant was observed with increasing flow rate. The magnitudes of the activation energies of dissociation were nearly constant for both the batch and microchannel laminar flow systems at all flow rates. In contrast, the magnitudes of activation energies of association decreased as flow rate increased. These results clearly show how microchannel laminar flow induces change in reaction rate by effecting change in activation energy. We anticipate, therefore, that this approach based on microchannel laminar flow system holds great promise for improved mismatch discrimination in DNA analyses, particularly on single-base-pair mismatch, by pronouncedly enhancing thermal stability.

  17. Laminar Wall Jet Flow and Heat Transfer over a Shallow Cavity.

    Science.gov (United States)

    Prabu, P Maheandera; Padmanaban, K P

    2015-01-01

    This paper presents the detailed simulation of two-dimensional incompressible laminar wall jet flow over a shallow cavity. The flow characteristics of wall jet with respect to aspect ratio (AR), step length (X u), and Reynolds number (Re) of the shallow cavity are expressed. For higher accuracy, third-order discretization is applied for momentum equation which is solved using QUICK scheme with SIMPLE algorithm for pressure-velocity coupling. Low Reynolds numbers 25, 50, 100, 200, 400, and 600 are assigned for simulation. Results are presented for streamline contour, velocity contour, and vorticity formation at wall and also velocity profiles are reported. The detailed study of vortex formation on shallow cavity region is presented for various AR, X u , and Re conditions which led to key findings as Re increases and vortex formation moves from leading edge to trailing edge of the wall. Distance between vortices increases when the step length (X u) increases. When Re increases, the maximum temperature contour distributions take place in shallow cavity region and highest convection heat transfer is obtained in heated walls. The finite volume code (FLUENT) is used for solving Navier-Stokes equations and GAMBIT for modeling and meshing.

  18. Laminar Wall Jet Flow and Heat Transfer over a Shallow Cavity

    Directory of Open Access Journals (Sweden)

    P. Maheandera Prabu

    2015-01-01

    Full Text Available This paper presents the detailed simulation of two-dimensional incompressible laminar wall jet flow over a shallow cavity. The flow characteristics of wall jet with respect to aspect ratio (AR, step length (Xu, and Reynolds number (Re of the shallow cavity are expressed. For higher accuracy, third-order discretization is applied for momentum equation which is solved using QUICK scheme with SIMPLE algorithm for pressure-velocity coupling. Low Reynolds numbers 25, 50, 100, 200, 400, and 600 are assigned for simulation. Results are presented for streamline contour, velocity contour, and vorticity formation at wall and also velocity profiles are reported. The detailed study of vortex formation on shallow cavity region is presented for various AR, Xu, and Re conditions which led to key findings as Re increases and vortex formation moves from leading edge to trailing edge of the wall. Distance between vortices increases when the step length (Xu increases. When Re increases, the maximum temperature contour distributions take place in shallow cavity region and highest convection heat transfer is obtained in heated walls. The finite volume code (FLUENT is used for solving Navier-Stokes equations and GAMBIT for modeling and meshing.

  19. Laminar flow of an electrically conducting liquid through the channel of a cylindrical linear induction pump

    Energy Technology Data Exchange (ETDEWEB)

    Kapusta, A.B.; Shamota, V.P.

    1979-04-01

    Laminar flow of an electrically conducting viscous incompressible fluid through the gap between two nonconducting, thin, and infinitely long coaxial cylinders is considered. The inner cylinder is filled with a ferromagnetic medium and the surface of the outer cylinder carries a distributed electric load of a uniform current density. The traveling external magnetic field in this problem is replaced with the uniform magnetic field of a long ring magnet moving parallel to the axis of the cylinders at a certain velocity. The continuity equation for the magnetic field reduces the system of second-degree differential MHD equations to a simpler form, with the Hartmann number and the magnetic Reynolds number as well as the N/sub Eu/(Euler).N/sub Re/(Reynolds) complex as the only parameters. The velocity distribution is found on the basis of the appropriate boundary conditions, for N/sub Ha/ = 2 and N/sub Ha/ is not equal to 2, respectively, and subsequently also the distribution of magnetic induction. The solution is exact and simply arrived at, applicable to any value of the Hartmann number or of other parameters. Numerical calculations indicate that large positive pressure gradients result in a high flow intensity at the outer wall, because the density of electromagnetic forces decreases along the radius. 1 reference, 3 figures.

  20. Laminar forced convection with viscous dissipation in a Couette-Poiseuille flow between parallel plates

    Energy Technology Data Exchange (ETDEWEB)

    Aydin, Orhan; Avci, Mete [Karadeniz Technical University, Trabzon (Turkey). Department of Mechanical Engineering

    2006-08-15

    In this study, analytical solutions are obtained to predict laminar heat-convection in a Couette-Poiseuille flow between two plane parallel plates with a simultaneous pressure gradient and an axial movement of the upper plate. A Newtonian fluid with constant properties is considered with an emphasis on the viscous-dissipation effect. Both hydrodynamically and thermally fully-developed flow cases are investigated. The axial heat-conduction in the fluid is neglected. Two different orientations of the thermal boundary-conditions are considered: the constant heat-flux at the upper plate with an adiabatic lower plate (Case A) and the constant heat-flux at the lower plate with an adiabatic upper plate (Case B). For different values of the relative velocity of the upper plate, the effect of the modified Brinkman number on the temperature distribution and the Nusselt number are discussed. Comparison of the present analytical results for a special case with those available in the literature indicates an excellent agreement. (author)

  1. Free convection film flows and heat transfer laminar free convection of phase flows and models for heat-transfer analysis

    CERN Document Server

    Shang, De-Yi

    2012-01-01

    This book presents recent developments in our systematic studies of hydrodynamics and heat and mass transfer in laminar free convection, accelerating film boiling and condensation of Newtonian fluids, as well as accelerating film flow of non-Newtonian power-law fluids (FFNF). These new developments provided in this book are (i) novel system of analysis models based on the developed New Similarity Analysis Method; (ii) a system of advanced methods for treatment of gas temperature- dependent physical properties, and liquid temperature- dependent physical properties; (iii) the organically combined models of the governing mathematical models with those on treatment model of variable physical properties; (iv) rigorous approach of overcoming a challenge on accurate solution of three-point boundary value problem related to two-phase film boiling and condensation; and (v) A pseudo-similarity method of dealing with thermal boundary layer of FFNF for greatly simplifies the heat-transfer analysis and numerical calculati...

  2. Numerical investigation of flow and thermal pattern in unbounded flow using nanofluid - Case study: Laminar 2-D plane jet

    Directory of Open Access Journals (Sweden)

    Armaghani Taher

    2016-01-01

    Full Text Available In this article, a numerical study is carried out to analyze the effect of nanoparticle volume fraction over flow and thermal characteristics of laminar 2-D plane jet. Al2O3-water and TiO2-water nanofluids are considered in this investigation with lowest and highest values of particle volume concentration equals to 0 and 0.02 respectively. This paper propose four correlations for describing the relation between the solid volume fraction, δt and δu. The results show that the cross stream thermal diffusion depth and cross stream hydraulic diffusion depth are increased when particles volume concentration is increased and mean temperature and mean velocity decreases when the solid volume fraction is increased. The effects of nanoparticle volume fraction in velocity and temperature time histories are also studied and discussed.

  3. User's guide for the computer code COLTS for calculating the coupled laminar and turbulent flow over a Jovian entry probe

    Science.gov (United States)

    Kumar, A.; Graeves, R. A.

    1980-06-01

    A user's guide for a computer code 'COLTS' (Coupled Laminar and Turbulent Solutions) is provided which calculates the laminar and turbulent hypersonic flows with radiation and coupled ablation injection past a Jovian entry probe. Time-dependent viscous-shock-layer equations are used to describe the flow field. These equations are solved by an explicit, two-step, time-asymptotic finite-difference method. Eddy viscosity in the turbulent flow is approximated by a two-layer model. In all, 19 chemical species are used to describe the injection of carbon-phenolic ablator in the hydrogen-helium gas mixture. The equilibrium composition of the mixture is determined by a free-energy minimization technique. A detailed frequency dependence of the absorption coefficient for various species is considered to obtain the radiative flux. The code is written for a CDC-CYBER-203 computer and is capable of providing solutions for ablated probe shapes also.

  4. Effects of Prandtl number on the laminar cross flow past a heated cylinder

    Science.gov (United States)

    Ajith Kumar, S.; Mathur, Manikandan; Sameen, A.; Anil Lal, S.

    2016-11-01

    Flow past a heated cylinder at constant surface temperature is computationally simulated and analyzed in the laminar regime at moderate buoyancy. The parameters governing the flow dynamics are the Reynolds number, Re, the Richardson number, Ri, and the Prandtl number, Pr. We perform our computations in the range 10 ≤ Re ≤ 35, for which the flow past an unheated cylinder results in a steady separation bubble, and vary the other two parameters in the range 0 ≤ Ri ≤ 2, 0.25 ≤ Pr ≤ 100. The heat transfer from the entire cylinder surface, quantified by the average Nusselt number Nuavg, is shown to obey Nuavg = 0.7435Re0.44Pr0.346 in the mixed convection regime we investigate. For a fixed Re and Pr, the flow downstream of the cylinder becomes asymmetric as Ri is increased from zero, followed by a complete disappearance of the vortices in the recirculation bubble beyond a threshold value of Ri. For a fixed Re and Ri, the vortices in the recirculation bubble are again observed to disappear beyond a threshold Pr, but with the reappearance of both the vortices above a larger threshold of Pr. In the limit of large Pr, the time-averaged flow outside the thermal boundary layer but within the near-wake region regains symmetry about the centerline and ultimately converges to a flow field similar to that of Ri = 0; in the far-wake region, however, we observe asymmetric vortex shedding for moderate Pr. The thermal plume structure in the cylinder wake is then discussed, and the plume generation is identified at points on the cylinder where the Nusselt number is a local minimum. The difference between the plume generation and the flow separation locations on the cylinder is shown to converge to zero in the limit of large Pr. We conclude by plotting the lift and drag coefficients as a function of Ri and Pr, observing that CD decreases with Ri for Pr Prt), where Prt ≈ 7.5.

  5. Hybrid modeling of convective laminar flow in a permeable tube associated with the cross-flow process

    Science.gov (United States)

    Venezuela, A. L.; Pérez-Guerrero, J. S.; Fontes, S. R.

    2009-03-01

    The confined flows in tubes with permeable surfaces are associated to tangential filtration processes (microfiltration or ultrafiltration). The complexity of the phenomena do not allow for the development of exact analytical solutions, however, approximate solutions are of great interest for the calculation of the transmembrane outflow and estimate of the concentration polarization phenomenon. In the present work, the generalized integral transform technique (GITT) was employed in solving the laminar and permanent flow in permeable tubes of Newtonian and incompressible fluid. The mathematical formulation employed the parabolic differential equation of chemical species conservation (convective-diffusive equation). The velocity profiles for the entrance region flow, which are found in the connective terms of the equation, were assessed by solutions obtained from literature. The velocity at the permeable wall was considered uniform, with the concentration at the tube wall regarded as variable with an axial position. A computational methodology using global error control was applied to determine the concentration in the wall and concentration boundary layer thickness. The results obtained for the local transmembrane flux and the concentration boundary layer thickness were compared against others in literature.

  6. Calculations of the flow resistance and heat emission of a sphere in the laminar and high-turbulent gas flows

    Science.gov (United States)

    Simakov, N. N.

    2016-12-01

    An early drag crisis can occur at high turbulence of incoming gas flow to a sphere. To study the influence of a crisis on heat transfer from a sphere to gas, a numerical experiment was carried out in which the free gas flow around a sphere with a temperature lower than the sphere temperature was simulated for two cases. The flow was laminar in the first case and highly turbulent in the second case. To take into account turbulence, the kinematic coefficient of turbulent viscosity with a value, which is much higher (up to 2000 times) than that for physical viscosity, was introduced. The results of calculations show that the early drag crisis occurs at Reynolds numbers of about 100 and results in considerable (by four to seven times) decrease in the hydrodynamic force and sphere drag coefficient C d . The early drag crisis is also accompanied by the crisis of heat transfer from a sphere to gas with a decrease in Nusselt numbers Nu by three to six times.

  7. Selective in situ functionalization of biosensors on LOC devices using laminar co-flow.

    Science.gov (United States)

    Parra-Cabrera, C; Sporer, C; Rodriguez-Villareal, I; Rodriguez-Trujillo, R; Homs-Corbera, A; Samitier, J

    2012-10-21

    Many applications involving lab-on-a-chip (LOC) devices are prevented from entering the market because of difficulties to achieve mass production and impart suitable properties allowing long-term storage. To integrate biosensors on these microfluidic chips, one of the main restrictions is the fabrication and stability of the molecular modifications that must be performed on the surfaces of the sensors for a given application. The complexity of the problem increases exponentially when the LOC integrates several of these sensors. Here we present a system based on laminar co-flow to perform an on-chip selective surface bio-functionalization of LOC-integrated sensors. This method has the advantage that the surface modification protocols are performed in situ before analyte detection. This approach reduces the burdens during LOC fabrication, keeping the required reagents stored outside of the detection structure in suitable wet conditions. The proof of concept is demonstrated through an optical characterization followed by electronic detection based on a novel differential impedance measurement setup. The system can be easily scaled to incorporate several sensors with distinct biosensing targets in a single chip.

  8. Nanoporous separator and low fuel concentration to minimize crossover in direct methanol laminar flow fuel cells

    Energy Technology Data Exchange (ETDEWEB)

    Hollinger, A.S. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 Green Street, Urbana, IL 61801 (United States); Maloney, R.J.; Jayashree, R.S. [Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Matthews Avenue, Urbana, IL 61801 (United States); Natarajan, D.; Markoski, L.J. [INI Power Systems, 175 Southport Drive, Suite 100, Morrisville, NC 27560 (United States); Kenis, P.J.A. [Department of Mechanical Science and Engineering, University of Illinois at Urbana-Champaign, 1206 Green Street, Urbana, IL 61801 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Matthews Avenue, Urbana, IL 61801 (United States)

    2010-06-01

    Laminar flow fuel cells (LFFCs) overcome some key issues - most notably fuel crossover and water management - that typically hamper conventional polymer electrolyte-based fuel cells. Here we report two methods to further minimize fuel crossover in LFFCs: (i) reducing the cross-sectional area between the fuel and electrolyte streams, and (ii) reducing the driving force of fuel crossover, i.e. the fuel concentration gradient. First, we integrated a nanoporous tracketch separator at the interface of the fuel and electrolyte streams in a single-channel LFFC to dramatically reduce the cross-sectional area across which methanol can diffuse. Maximum power densities of 48 and 70 mW cm{sup -2} were obtained without and with a separator, respectively, when using 1 M methanol. This simple design improvement reduces losses at the cathode leading to better performance and enables thinner cells, which is attractive in portable applications. Second, we demonstrated a multichannel cell that utilizes low methanol concentrations (<300 mM) to reduce the driving force for methanol diffusion to the cathode. Using 125 mM methanol as the fuel, a maximum power density of 90 mW cm{sup -2} was obtained. This multichannel cell further simplifies the LFFC design (one stream only) and its operation, thereby extending its potential for commercial application. (author)

  9. Application of Entropy Concept for Shear Stress Distribution in Laminar Pipe Flow

    Science.gov (United States)

    Choo, Yeon Moon; Choo, Tai Ho; Jung, Donghwi; Seon, Yun Gwan; Kim, Joong Hoon

    2016-04-01

    In the river fluid mechanics, shear stress is calculated from frictional force caused by viscosity and fluctuating velocity. Traditional shear stress distribution equations have been widely used because of their simplicity. However, they have a critical limitation of requiring energy gradient which is generally difficult to estimate in practice. Especially, measuring velocity/velocity gradient on the boundary layer is difficult in practice. It requires point velocity throughout the entire cross section to calculate velocity gradient. This study proposes shear stress distribution equations for laminar flow based on entropy theory using mean velocity and entropy coefficient. The proposed equations are demonstrated and compared with measured shear stress distribution using Nikuradse's data. Results showed that the coefficient of determination is around 0.99 indicating that the proposed method well describes the true shear stress distribution. Therefore, it was proved that shear stress distribution can be easily and accurately estimated by using the proposed equations. (This research was supported by a gran(13AWMP-B066744-01) from Advanced Water Management Research Program funded by Ministry of Land, Infrastructure and Transport of Korean Government)

  10. Catalytic oxygen production mediated by smart capsules to modulate elastic turbulence under a laminar flow regime.

    Science.gov (United States)

    Zizzari, A; Bianco, M; Miglietta, R; del Mercato, L L; Carraro, M; Sorarù, A; Bonchio, M; Gigli, G; Rinaldi, R; Viola, I; Arima, V

    2014-11-21

    Liquid flow in microchannels is completely laminar and uniaxial, with a very low Reynolds number regime and long mixing lengths. To increase fluid mixing and solubility of reactants, as well as to reduce reaction time, complex three-dimensional networks inducing chaotic advection have to be designed. Alternatively, turbulence in the liquid can be generated by active mixing methods (magnetic, acoustic waves, etc.) or adding small quantities of elastic materials to the working liquid. Here, polyelectrolyte multilayer capsules embodying a catalytic polyoxometalate complex have been suspended in an aqueous solution and used to create elastic turbulence and to propel fluids inside microchannels as an alternative to viscoelastic polymers. The overall effect is enhanced and controlled by feeding the polyoxometalate-modified capsules with hydrogen peroxide, H2O2, thus triggering an on-demand propulsion due to oxygen evolution resulting from H2O2 decomposition. The quantification of the process is done by analysing some structural parameters of motion such as speed, pressure, viscosity, and Reynolds and Weissenberg numbers, directly obtained from the capillary dynamics of the aqueous mixtures with different concentrations of H2O2. The increases in fluid speed as well as the capsule-induced turbulence effects are proportional to the H2O2 added and therefore dependent on the kinetics of H2O2 dismutation.

  11. Laminar flow assisted anisotropic bacteria absorption for chemotaxis delivery of bacteria-attached microparticle

    Science.gov (United States)

    Huh, Keon; Oh, Darong; Son, Seok Young; Yoo, Hyung Jung; Song, Byeonghwa; Cho, Dong-il Dan; Seo, Jong-Mo; Kim, Sung Jae

    2016-12-01

    The concepts of microrobots has been drawn significant attentions recently since its unprecedented applicability in nanotechnology and biomedical field. Bacteria attached microparticles presented in this work are one of pioneering microrobot technology for self-propulsion or producing kinetic energy from ambient for their motions. Microfluidic device, especially utilizing laminar flow characteristics, were employed for anisotropic attachment of Salmonella typhimurium flagellated chemotactic bacteria to 30 um × 30 um and 50 um × 50 um microparticles that made of biodegradable polymer. Any toxic chemicals or harmful treatments were excluded during the attachment process and it finished within 100 s for the anisotropic attachment. The attachments were directly confirmed by fluorescent intensity changes and SEM visualization. Chemotaxis motions were tracked using aspartate and the maximum velocity of the bacteria-attached microrobot was measured to be 5 um/s which is comparable to prior state of art technologies. This reusable and scalable method could play a key role in chemotaxis delivery of functional microparticles such as drug delivery system.

  12. FLOW PATTERNS AND FORCE CHARACTERISTICS OF LAMINAR FLOW PAST FOUR CYLINDERS IN DIAMOND ARRANGEMENT

    Institute of Scientific and Technical Information of China (English)

    ZOU Lin; LIN Yu-feng; LU Hong

    2011-01-01

    A three-dimensional numerical investigation of cross-flow past four circular cylinders in a diamond arrangement at Reynolds number of 200 is carried out. With the spacing ratios ( L/D ) ranging from 1.2 to 5.0, the flow patterns can be classified into three basic regimes. The critical spacing ratio for the transition from narrow gap flow pattern to vortex impingement flow pattern around the cylinders is found to be L/D = 3.0, while a single bluff-body flow pattern is observed at L/D = 1.2. The relationship between the three-dimensional flow patterns and force characteristics around the four cylinders shows that the variation of forces and Strouhal numbers against L/D are generally governed by these three kinds of flow patterns. It is concluded that the spacing ratio has important effects on the development of the free shear layers about the cylinders and hence has significant effects on the force and pressure characteristics of the four cylinders with different spacing ratios.

  13. Laminar lesions in horses with systemic oxidative stress, committed by experimentally induced or naturally occurring gastrointestinal disorders

    OpenAIRE

    Luciane M. Laskoski; Rosangela Locatelli-Dittrich; Sousa,Renato S.; Juliana S Brum; Cristo,Thierry G.; Fabiano Montiani-Ferreira; Olair C. Beltrame; Carlos A.A. Valadão

    2016-01-01

    Abstract: Laminitis in horses can be associated with lesions in multiple organs secondary to sepsis. Twenty-one horses suffering from gastrointestinal disorders were used in the experiment; 7 horses with experimentally induced endotoxemia and intestinal ischaemia, and 14 horses suffering from naturally occurring colic syndrome. Tissue samples of lungs, liver, heart, brain, cerebellum and hoof laminar tissue were collected for histopathological and oxidative stress evaluation using nitrotyrosi...

  14. Coupled modelling of flow and biofilm in a laminar flow regime through a high-resolution fluid-structure interaction (FSI) solver

    Science.gov (United States)

    Sinha, Sumit; Hardy, Richard; Smith, Gregory; Kazemifar, Farzan; Christensen, Kenneth; Best, Jim

    2017-04-01

    Biofilms are ubiquitously present in fluvial systems, growing on almost all wetted surface and has a significant impact on both water quantity, in terms of ambient flow condition, as well as water quality, biofilms growing in water distribution system leads to unwanted contamination. The local hydraulic conditions have a significant impact on the biofilm lifecycle as in order to sustain their growth biofilms draw essential nutrients either from the flow or from the surface on which they grow. This implies that in convection dominated flow, nutrient transfer from water, would nurture the growth of biofilms. However, at higher flow rates biofilms are subjected to higher stresses which may lead to their detachment. Furthermore, biofilms in ambient flow conditions oscillate and therefore alter the local flow conditions. There is, therefore, a complex feedback between biofilms and flow which have has implications for flow dynamics and water quality issues in riverine ecosystems. The research presented here describes a fluid-structure interaction solver to examine the coupled nature of biofilm oscillations due to the ambient flow and its feedback on the local flow structures. The fluid flow is modelled by the incompressible Navier-Stokes equations and structural deformation of the biofilm is modeled by applying a linear elastic model. The governing equations are numerically solved through Finite Volume methodology based on cell-centered scheme. Simulations are conducted in a laminar regime for a biofilm streamer modelled as moving slender plate. The temporal evolution of the pressure, flow structures are examined in the vicinity of the biofilm. Further investigations examine the impact of changing Reynolds number on the oscillation frequency as well as drag and lift forces experienced by the biofilm. The changing frequency of biofilm oscillation with varying Reynolds number is characterized by the Strouhal number (St). Our investigation reveals that as the flow separates

  15. Thermal development of the laminar flow of a Bingham fluid between two plane plates with viscous dissipation

    Energy Technology Data Exchange (ETDEWEB)

    Boualit, A.; Boualit, S. [Unite de recherche appliquee en energies renouvelables, Ghardaia (Algeria); Zeraibi, N. [Universite de Boumerdes, Faculte des hydrocarbures dept. Transport et equipement, Boumerdes (Algeria); Amoura, M. [Universite des Sciences et de la Technologie Houari Boumedienne, Faculte de Physique, Dept. Energetique, Alger (Algeria)

    2011-01-15

    The thermal development of the hydrodynamically developing laminar flow of a viscoplastic fluid (fluid of Bingham) between two plane plates maintained at a constant temperature has been studied numerically. This analysis has shown the effect caused by inertia and the rheological behaviour of the fluid on the velocity, pressure and temperature fields. The effects of Bingham and Peclet numbers on the Nusselt values with the inclusion of viscous dissipation are also discussed. (authors)

  16. Frequency selection mechanisms in the flow of a laminar boundary layer over a shallow cavity

    Science.gov (United States)

    Qadri, Ubaid Ali; Schmid, Peter J.

    2017-01-01

    We investigate the flow over shallow cavities as a representative configuration for modeling small surface irregularities in wall-bounded shear flows. Due to the globally stable nature of the flow, we perform a frequency response analysis, which shows a significant potential for the amplification of disturbance kinetic energy by harmonic forcing within a certain frequency band. Shorter and more shallow cavities exhibit less amplified responses, while energy from the base flow can be extracted predominantly from forcing that impacts the cavity head on. A structural sensitivity analysis, combined with a componentwise decomposition of the sensitivity tensor, reveals the regions of the flow that act most effectively as amplifiers. We find that the flow inside the cavity plays a negligible role, whereas boundary layer modifications immediately upstream and downstream of the cavity edges contribute significantly to the frequency response. The same regions constitute preferred locations for implementing active or passive control strategies to manipulate the frequency response of the flow.

  17. Characterization and reduction of flow separation in jet pumps for laminar oscillatory flows

    CERN Document Server

    Timmer, Michael A G; Bühler, Simon; Wilcox, Douglas; van der Meer, Theo H

    2016-01-01

    A computational fluid dynamics model is used to predict the oscillatory flow through tapered cylindrical tube sections (jet pumps). The asymmetric shape of jet pumps results in a time-averaged pressure drop that can be used to suppress Gedeon streaming in closed-loop thermoacoustic devices. However, previous work has shown that flow separation in the diverging flow direction counteracts the time-averaged pressure drop. In this work, the characteristics of flow separation in jet pumps are identified and coupled with the observed jet pump performance. Furthermore, it is shown that the onset of flow separation can be shifted to larger displacement amplitudes by designs that have a smoother transition between the small opening and the tapered surface of the jet pump. These design alterations also reduce the duration of separated flow, resulting in more effective and robust jet pumps. To make the proposed jet pump designs more compact without reducing their performance, the minimum big opening radius that can be i...

  18. The Effect of Restriction Shape On Laminar Natural Convection Heat Transfer InA Vertical Circular Tube

    Directory of Open Access Journals (Sweden)

    Hussein Ahmed Mohammed

    2005-01-01

    Full Text Available Natural convection heat transfer is experimentally investigated for laminar air flow in a vertical circular tube by using the boundary condition of constant wall heat flux in the ranges of (RaL from (1.1*109 to (4.7*109. The experimental set-up was designed for determining the effect of different types of restrictions placed at entry of heated tube in bottom position, on the surface temperature distribution and on the local and average heat transfer coefficients. The apparatus was made with an electrically heated cylinder of a length (900mm and diameter (30mm. The entry restrictions were included a circular tube of same diameter as the heated cylinder but with lengths of (60cm, 120cm, sharp-edge and bell-mouth. The surface temperature along the cylinder surface for same heat flux would be higher values for circular restriction with length of (120cm and would be smaller values for bell-mouth restriction. The results show that the local Nusselt number (Nux and average Nusselt number are higher for bell-mouth restriction and smaller values for (120cm restriction. For all entry shape restrictions, the results show that the Nusselt number values increases as the heat flux increases. From the present work an empirical correlations were obtained in a form of (Log versus (Log for each case investigated and obtained a general correlation for all cases which reveals the effect of restriction existence on the natural convection heat transfer process in a vertical circular tube.

  19. Experimental insights into flow impingement in cerebral aneurysm by stereoscopic particle image velocimetry: transition from a laminar regime.

    Science.gov (United States)

    Yagi, Takanobu; Sato, Ayaka; Shinke, Manabu; Takahashi, Sara; Tobe, Yasutaka; Takao, Hiroyuki; Murayama, Yuichi; Umezu, Mitsuo

    2013-05-01

    This study experimentally investigated the instability of flow impingement in a cerebral aneurysm, which was speculated to promote the degradation of aneurysmal wall. A patient-specific, full-scale and elastic-wall replica of cerebral artery was fabricated from transparent silicone rubber. The geometry of the aneurysm corresponded to that found at 9 days before rupture. The flow in a replica was analysed by quantitative flow visualization (stereoscopic particle image velocimetry) in a three-dimensional, high-resolution and time-resolved manner. The mid-systolic and late-diastolic flows with a Reynolds number of 450 and 230 were compared. The temporal and spatial variations of near-wall velocity at flow impingement delineated its inherent instability at a low Reynolds number. Wall shear stress (WSS) at that site exhibited a combination of temporal fluctuation and spatial divergence. The frequency range of fluctuation was found to exceed significantly that of the heart rate. The high-frequency-fluctuating WSS appeared only during mid-systole and disappeared during late diastole. These results suggested that the flow impingement induced a transition from a laminar regime. This study demonstrated that the hydrodynamic instability of shear layer could not be neglected even at a low Reynolds number. No assumption was found to justify treating the aneurysmal haemodynamics as a fully viscous laminar flow.

  20. Inertial migration in dilute and semidilute suspensions of rigid particles in laminar square duct flow

    Science.gov (United States)

    Kazerooni, H. Tabaei; Fornari, W.; Hussong, J.; Brandt, L.

    2017-08-01

    We study the inertial migration of finite-size neutrally buoyant spherical particles in dilute and semidilute suspensions in laminar square duct flow. We perform several direct numerical simulations using an immersed boundary method to investigate the effects of the bulk Reynolds number Reb, particle Reynolds number Rep, and duct to particle size ratio h /a at different solid volume fractions ϕ , from very dilute conditions to 20 % . We show that the bulk Reynolds number Reb is the key parameter in inertial migration of particles in dilute suspensions. At low solid volume fraction (ϕ =0.4 % ), low bulk Reynolds number (Reb=144 ), and h /a =9 particles accumulate at the center of the duct walls. As Reb is increased, the focusing position moves progressively toward the corners of the duct. At higher volume fractions, ϕ =5 % , 10 % , and 20 % , and in wider ducts (h /a =18 ) with Reb=550 , particles are found to migrate away from the duct core toward the walls. In particular, for ϕ =5 % and 10 % , particles accumulate preferentially at the corners. At the highest volume fraction considered, ϕ =20 % , particles sample all the volume of the duct, with a lower concentration at the duct core. For all cases, we find that particles reside longer times at the corners than at the wall centers. In a duct with lower duct to particle size ratio h /a =9 (i.e., with larger particles), ϕ =5 % , and high bulk Reynolds number Reb=550 , we find a particle concentration pattern similar to that in the ducts with h /a =9 regardless of the solid volume fraction ϕ . Instead, for lower Bulk Reynolds number Reb=144 , h /a =9 , and ϕ =5 % , a different particle distribution is observed in comparison to a dilute suspension ϕ =0.4 % . Hence, the volume fraction plays a key role in defining the final distribution of particles in semidilute suspensions at low bulk Reynolds number. The presence of particles induces secondary cross-stream motions in the duct cross section, for all ϕ . The

  1. Heat transfer enhancement in smooth tube with wire coil insert in laminar and transitional non-newtonian flow

    OpenAIRE

    García Pinar, Alberto; Solano Fernández, Juan Pedro; Viedma Robles, Antonio; Martínez Hernández, David Sebastián

    2010-01-01

    This work presents an experimental study on the heat transfer enhancement by means of a tube with wire-coil insert,for non-Newtonian laminar and transitional flow. The dimensionless pitch and wire diameter (based on the plain tube inner diameter) were chosen as p/D= 1 and e/D=0.09. Two pseudoplastic test fluids have been used: 1% by weight aqueous solutions of carboxymethyl cellulose (CMC) with high viscosity and medium viscosity. A wide range of flow conditions has been covered: Reynolds ...

  2. Existence of a natural instability not predicted by theory and connected to a wall deformation in a laminar boundary layer

    Science.gov (United States)

    Gougat, P.; Martin, F.

    1981-01-01

    Natural instability related to negative wall deformation was studied. It was shown that natural instabilities which propagate in a laminar boundary layer of a flat plate are in agreement with stability theory. It is found that if a wall has a deformation, a second frequency does exist, which is not predicted and is twice the first frequency. This second instable frequency only appears if there is a negative velocity gradient. The phenomenon is located very closely to the wall and drops off rapidly when moved away from it.

  3. A numerical analysis of forces exerted by laminar flow on spreading cells in a parallel plate flow chamber assay.

    Science.gov (United States)

    Olivier, L A; Truskey, G A

    1993-10-01

    Exposure of spreading anchorage-dependent cells to laminar flow is a common technique to measure the strength of cell adhesion. Since cells protrude into the flow stream, the force exerted by the fluid on the cells is a function of cell shape. To assess the relationship between cell shape and the hydrodynamic force on adherent cells, we obtained numerical solutions of the velocity and stress fields around bovine aortic endothelial cells during various stages of spreading and calculated the force required to detach the cells. Morphometric parameters were obtained from light and scanning electron microscopy measurements. Cells were assumed to have a constant volume, but the surface area increased during spreading until the membrane was stretched taut. Two-dimensional models of steady flow were generated using the software packages ANSYS (mesh generation) and FIDAP (problem solution). The validity of the numerical results was tested by comparison with published results for a semicircle in contact with the surface. The drag force and torque were greatest for round cells making initial contact with the surface. During spreading, the drag force and torque declined by factors of 2 and 20, respectively. The calculated forces and moments were used in adhesion models to predict the wall shear stress at which the cells detached. Based upon published values for the bond force and receptor number, round cells should detach at shear stresses between 2.5 and 6 dyn/cm(2), whereas substantially higher stresses are needed to detach spreading and fully spread cells. Results from the simulations indicate that (1) the drag force varies little with cell shape whereas the torque is very sensitive to cell shape, and (2) the increase in the strength of adhesion during spreading is due to increased contact area and receptor densities within the contact area.

  4. Quantitative evaluation on contributions of laminar, turbulence and secondary flow to momentum and heat transfer in rhombic ducts

    Science.gov (United States)

    Fukushima, Naoya

    2016-11-01

    In the present study, Direct Numerical Simulation of turbulent flow in rhombic ducts have been carried out to investigate effects of the corner angle on the friction and heat transfer. Due to secondary flow of the second kind, the friction and heat transfer are enhanced in the corner, while turbulence enhances momentum and heat transfer near the wall away from the corner. In previous studies, turbulence and secondary flows are supposed to enhance momentum and heat transfer, qualitatively. The quantitative estimation of their contribution has not been clarified yet. Fukagata, Iwamoto and Kasagi (2002) have theoretically driven the FIK-identity to evaluate quantitative contributions of laminar and turbulence to the friction in turbulent channel. In this study, the FIK-identity has been numerically applied to DNS data in the rhombic ducts to evaluate quantitative contributions of laminar, turbulence and secondary flow to the momentum and heat transfer. From the results, it is quantitatively clarified that the contributions of turbulence and secondary flow to heat transfer are larger than that to friction in the rhombic ducts.

  5. Incompressible laminar flow through hollow fibers: a general study by means of a two-scale approach

    Science.gov (United States)

    Borsi, Iacopo; Farina, Angiolo; Fasano, Antonio

    2011-08-01

    We study the laminar flow of an incompressible Newtonian fluid in a hollow fiber, whose walls are porous. We write the Navier-Stokes equations for the flow in the inner channel and Darcy's law for the flow in the fiber, coupling them by means of the Beavers-Joseph condition which accounts for the (possible) slip at the membrane surface. Then, we introduce a small parameter {\\varepsilon ≪ 1} (the ratio between the radius and the length of the fiber) and expand all relevant quantities in powers of ɛ. Averaging over the fiber cross section, we find the velocity profiles for the longitudinal flow and for the cross-flow, and eventually, we determine the explicit expression of the permeability of the system. This work is also preliminary to the study of more complex systems comprising a large number of identical fibers (e.g., ultrafiltration modules and dialysis).

  6. Hemolysis in a laminar flow-through Couette shearing device: an experimental study.

    Science.gov (United States)

    Boehning, Fiete; Mejia, Tzahiry; Schmitz-Rode, Thomas; Steinseifer, Ulrich

    2014-09-01

    Reducing hemolysis has been one of the major goals of rotary blood pump development and in the investigational phase, the capability of hemolysis estimation for areas of elevated shear stresses is valuable. The degree of hemolysis is determined by the amplitude of shear stress and the exposure time, but to date, the exact hemolytic behavior at elevated shear stresses and potential thresholds for subcritical shear exposure remain vague. This study provides experimental hemolysis data for a set of shear stresses and exposure times to allow better estimations of hemolysis for blood exposed to elevated shearing. Heparinized porcine blood with a hematocrit of 40% was mechanically damaged in a flow-through laminar Couette shear flow at a temperature of 23°C. Four levels of shear stress, 24, 592, 702, and 842 Pa, were replicated at two exposure times, 54 and 873 ms. For the calculation of the shear stresses, an apparent viscosity of 5 mPas was used, which was verified in an additional measurement of the blood viscosity. The hemolysis measurements were repeated four times, whereby all conditions were measured once within the same day and with blood from the same source. Samples were taken at the inlet and outlet of the shear region and an increase in plasma-free hemoglobin was measured. An index of hemolysis (IH) was thereby calculated giving the ratio of free to total hemoglobin. The results are compared with data from previously published studies using a similar shearing device. Hemolysis was found to increase exponentially with shear stress, but high standard deviations existed at measurements with elevated IH. At short exposure times, the IH remained low at under 0.5% for all shear stress levels. For high exposure times, the IH increased from 0.84% at 592 Pa up to 3.57% at the highest shear stress level. Hemolysis was significant for shear stresses above ∼600 Pa at the high exposure time of 873 ms. Copyright © 2014 International Center for Artificial

  7. Effects of laminar flow control on the performance of a large span-distributed-load flying-wing cargo airplane concept

    Science.gov (United States)

    Jernell, L. S.

    1978-01-01

    The effects of laminar flow control (LFC) on the performance of a large span-distributed-load flying-wing cargo airplane concept having a design payload of 2.669 MN and range of 5.93 Mm were determined. Two configurations were considered. One employed laminarized flow over the entire surfaces of the wing and vertical tails, with the exception of the estimated areas of interference due to the fuselage and engines. The other case differed only in that laminar flow was not applied to the flaps, elevons, spoilers, or rudders. The two cases are referred to as the 100 percent and 80 percent laminar configurations, respectively. The utilization of laminar flow control results in reductions in the standard day, sea level installed maximum static thrust per engine from 240 kN for the non-LFC configuration to 205 kN for the 100 percent laminar configuration and 209 kN for the 80 percent case. Weight increases due to the LFC systems cause increases in the operating empty weights of approximately 3 to 4 percent. The design takeoff gross weights decrease approximately 3 to 5 percent. The FAR-25 takeoff field distances for the LFC configurations are greater by about 6 to 7 percent. Fuel efficiencies for the respective configurations are increased 33 percent and 23 percent.

  8. A comparison between numerical predictions and theoretical and experimental results for laminar core-annular flow

    NARCIS (Netherlands)

    Beerens, J.C.; Ooms, G.; Pourquie, M.J.B.M.; Westerweel, J.

    2014-01-01

    high-viscosity liquid core surrounded by a laminar low-viscosity liquid annular layer through a vertical pipe. The numerical results are compared with theoretical results from linear stability calculations and with experimental data. The comparison is good and the general conclusion of our study is

  9. Analysis of developing laminar flows in circular pipes using a higher-order finite-difference technique

    Science.gov (United States)

    Gladden, Herbert J.; Ko, Ching L.; Boddy, Douglas E.

    1995-01-01

    A higher-order finite-difference technique is developed to calculate the developing-flow field of steady incompressible laminar flows in the entrance regions of circular pipes. Navier-Stokes equations governing the motion of such a flow field are solved by using this new finite-difference scheme. This new technique can increase the accuracy of the finite-difference approximation, while also providing the option of using unevenly spaced clustered nodes for computation such that relatively fine grids can be adopted for regions with large velocity gradients. The velocity profile at the entrance of the pipe is assumed to be uniform for the computation. The velocity distribution and the surface pressure drop of the developing flow then are calculated and compared to existing experimental measurements reported in the literature. Computational results obtained are found to be in good agreement with existing experimental correlations and therefore, the reliability of the new technique has been successfully tested.

  10. Formation of polycyclic aromatic hydrocarbons and soot in fuel-rich oxidation of methane in a laminar flow reactor

    DEFF Research Database (Denmark)

    Skjøth-Rasmussen, Martin Skov; Glarborg, Peter; Østberg, M.

    2004-01-01

    Conversion of methane to higher hydrocarbons, polycyclic aromatic hydrocarbons (PAHs), and soot was investigated under fuel-rich conditions in a laminar flow reactor. The effects of stoichiometry, dilution, and water vapor addition were studied at temperatures between 1073 and 1823 K. A chemical...... decrease with increasing addition of water vapor. The effect is described qualitatively by the reaction mechanism. The enhanced oxidation of acetylene is attributed to higher levels of hydroxyl radicals, formed from the reaction between the water vapor and hydrogen atoms....

  11. Numerical Study of Laminar Flow and Convective Heat Transfer Utilizing Nanofluids in Equilateral Triangular Ducts with Constant Heat Flux

    Directory of Open Access Journals (Sweden)

    Hsien-Hung Ting

    2016-07-01

    Full Text Available This study numerically investigates heat transfer augmentation using water-based Al2O3 and CuO nanofluids flowing in a triangular cross-sectional duct under constant heat flux in laminar flow conditions. The Al2O3/water nanofluids with different volume fractions (0.1%, 0.5%, 1%, 1.5%, and 2% and CuO/water nanofluids with various volume fractions (0.05%, 0.16%, 0.36%, 0.5%, and 0.8% are employed, and Reynolds numbers in the range of 700 to 1900 in a laminar flow are considered. The heat transfer rate becomes more remarkable when employing nanofluids. As compared with pure water, at a Peclet number of 7000, a 35% enhancement in the convective heat transfer coefficient, is obtained for an Al2O3/water nanofluid with 2% particle volume fraction; at the same Peclet number, a 41% enhancement in the convective heat transfer coefficient is achieved for a CuO/water nanofluid with 0.8% particle volume concentration. Heat transfer enhancement increases with increases in particle volume concentration and Peclet number. Moreover, the numerical results are found to be in good agreement with published experimental data.

  12. Laminar flow heat transfer studies in a twisted square duct for constant wall heat flux boundary condition

    Indian Academy of Sciences (India)

    Rambir Bhadouriya; Amit Agrawal; S V Prabhu

    2015-04-01

    The problem of fluid flow and heat transfer was studied for flow inside twisted duct of square cross-section. Three-dimensional numerical solutions were obtained for steady fully developed laminar flow and for uniform wall heat flux boundary conditions using commercially available software. Reynolds number range considered was 100-3000. Twist ratio used are 2.5, 5, 10 and 20. Fluids considered are in Prandtl number range of 0.7-20. Product of friction factor and Reynolds number is found to be a function of Reynolds number and maximum values are observed for a twist ratio of 2.5 and Reynolds number of 3000. Maximum Nusselt number is observed for the same values along with Prandtl number of 20. Correlations for friction factor and Nusselt number are developed involving swirl parameter. Local distribution of friction factor ratio and Nusselt number across a cross-section is presented. Based on constant pumping power criteria, enhancement factor is defined to compare twisted ducts with straight ducts. Selection of twisted square duct is presented in terms of enhancement factor. It is found that twisted duct performs well in the laminar region for range of parameters studied. Heat transfer enhancement for Reynolds number of 3000 and Prandtl number of 0.7 for twist ratio of 2.5, 5, 10, and 20 is 20%, 17.8%, 16.1% and 13.7%, respectively. The results are significant because it will contribute to development of energy efficient compact size heat exchangers.

  13. Drag measurements on a laminar-flow body of revolution in the 13-inch magnetic suspension and balance system

    Science.gov (United States)

    Dress, David A.

    1989-01-01

    Low speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 in. Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 in. MSBS. The drag force calibrations and wind-on repeatability data provide a means of assessing these capabilities. Additional investigations include: (1) the effects of fixing transition; (2) the effects of fins installed in the tail; and (3) surface flow visualization using both liquid crystals and oil flow. Also two simple drag prediction codes were used to assess their usefulness in estimating overall body drag.

  14. Singularities of 3D laminar boundary layer equations and flow structure in their vicinity on conical bodies

    Science.gov (United States)

    Shalaev, V. I.

    2016-10-01

    Singularities appearing in solutions of 3D laminar boundary layer (BL) equations, when two streamline families are collided, are discussed. For conical bodies, equations are investigated using asymptotic methods. Analytical solutions are obtained for the outer BL region; their singularities in the runoff plane are studied. The asymptotic flow structure near the singularity is constructed on the base of Navier-Stokes equations at large Reynolds numbers. For different flow regions analytical solutions are found and are matched with BL equation solutions. Properties of BL equations for the near-wall region in the runoff plane are investigated and a criterion of the solution disappearing is found. It is shown that this criterion separates two different topological flow structures and corresponds to the singularity appearance in this plane in solutions of full equations. Calculations confirmed obtained results are presented.

  15. The coefficientof hydraulic friction of laminar open flows in smooth channels

    OpenAIRE

    Borovkov Valeriy Stepanovich; Medzveliya Manana Levanovna

    2015-01-01

    The article examines the dependence of the hydraulic friction coefficient of open laminar uniform streams on the relative width of channels with smooth bottom. The article presents the functional dependence that describes the hydraulic resistance in open channels with smooth bottoms.The experiments were carried out in a rectangular tray (6000×100×200). Aqueous solutions of glycerol were used as working fluids. The superficial tension and liquid density for the used liquids changed a little. T...

  16. Diseño de un sistema de generación de chorro de agua de flujo laminar iluminado//Designing a system to generate water jet illuminated laminar flow

    Directory of Open Access Journals (Sweden)

    Néstor A. Ulloa-Auqui

    2015-09-01

    Full Text Available Se diseñó y fabricó exitosamente un Sistema de Generación de Chorro de Agua de Flujo Laminar Iluminado, el mismo tiene como finalidad desarrollar destrezas y capacidades en el laboratorio de fluidos cuando se realicen prácticas de variación de caudal para obtener diferentes alturas, alcances y observar como viajan las partículas de agua en un flujo laminar, fenómeno que se produce gracias a la iluminación de todo el chorro con la tecnología de la fibra óptica y un potenciador led RGB.  Los resultados obtenidos permiten realizar proyectos en el área de ornamentación que pueden ser utilizados de manera creativa en parques, hoteles, piscinas y piletas.  El estudio inicia con la determinación de las ecuaciones de cantidad de movimiento, balance de energía y movimiento parabólico que sirvieron para el cálculo hidráulico y selección de la bomba de caudal y boquilla del dispositivo. Palabras clave: flujo laminar, chorro de agua, fibra óptica, boquilla._____________________________________________________________________________AbstractA system to generate water jet illuminated laminar flow was successfully designed and fabricated, the same aims to develop skills and capabilities in the laboratory practices fluids when flow variation for different heights and ranges are made and watch the water particles traveling in laminar flow, phenomenon which occurs by lighting the whole jet technology with fiber optics and a RGB led enhancer.  The results obtained allow perform projects in the area of ornamentation, the same that can be used creatively in parks, hotels, swimming pools and fountains.  The study begins with the determination of the equations of momentum, energy balance and parabolic movement that served to the hydraulic calculation and selection of the pump flow and nozzle device. Key words: flow, laminar, waterjet, optical fiber, nozzle.

  17. Analyses of exergy efficiency for forced convection heat transfer in a tube with CNT nanofluid under laminar flow conditions

    Science.gov (United States)

    Hazbehian, Mohammad; Mohammadiun, Mohammad; Maddah, Heydar; Alizadeh, Mostafa

    2016-09-01

    In the present study, the theoretical and experimental results of the second law analysis on the performance of a uniform heat flux tube using are presented in the laminar flow regime. For this purpose, carbon nanotube/water nanofluids is considered as the base fluid. The experimental investigations were undertaken in the Reynolds number range from 800 to 2600, volume concentrations of 0.1-1 %. Results are verified with well-known correlations. The focus will be on the entrance region under the laminar flow conditions for SWCNT nanofluid. The results showed that the Nu number increased about 90-270 % with the enhancement of nanoparticles volume concentration compared to water. The enhancement was particularly significant in the entrance region. Based on the exergy analysis, the results show that exergetic heat transfer effectiveness is increased by 22-67 % employing nanofluids. The exergetic efficiency is increase with increase in nanoparticles concentration. On the other hand, exergy loss was reduced by 23-43 % employing nanofluids as a heat transfer medium with comparing to conventional fluid. In addition, the empirical correlation for exergetic efficiency has also been developed. The consequential results obtained from the correlation are found to be in good agreement with the experimental results within ±5 % variation.

  18. On Laminar to Turbulent Transition of Arc-Jet Flow in the NASA Ames Panel Test Facility

    Science.gov (United States)

    Gokcen, Tahir; Alunni, Antonella I.

    2012-01-01

    This paper provides experimental evidence and supporting computational analysis to characterize the laminar to turbulent flow transition in a high enthalpy arc-jet facility at NASA Ames Research Center. The arc-jet test data obtained in the 20 MW Panel Test Facility include measurements of surface pressure and heat flux on a water-cooled calibration plate, and measurements of surface temperature on a reaction-cured glass coated tile plate. Computational fluid dynamics simulations are performed to characterize the arc-jet test environment and estimate its parameters consistent with the facility and calibration measurements. The present analysis comprises simulations of the nonequilibrium flowfield in the facility nozzle, test box, and flowfield over test articles. Both laminar and turbulent simulations are performed, and the computed results are compared with the experimental measurements, including Stanton number dependence on Reynolds number. Comparisons of computed and measured surface heat fluxes (and temperatures), along with the accompanying analysis, confirm that that the boundary layer in the Panel Test Facility flow is transitional at certain archeater conditions.

  19. Analyses of exergy efficiency for forced convection heat transfer in a tube with CNT nanofluid under laminar flow conditions

    Science.gov (United States)

    Hazbehian, Mohammad; Mohammadiun, Mohammad; Maddah, Heydar; Alizadeh, Mostafa

    2017-05-01

    In the present study, the theoretical and experimental results of the second law analysis on the performance of a uniform heat flux tube using are presented in the laminar flow regime. For this purpose, carbon nanotube/water nanofluids is considered as the base fluid. The experimental investigations were undertaken in the Reynolds number range from 800 to 2600, volume concentrations of 0.1-1 %. Results are verified with well-known correlations. The focus will be on the entrance region under the laminar flow conditions for SWCNT nanofluid. The results showed that the Nu number increased about 90-270 % with the enhancement of nanoparticles volume concentration compared to water. The enhancement was particularly significant in the entrance region. Based on the exergy analysis, the results show that exergetic heat transfer effectiveness is increased by 22-67 % employing nanofluids. The exergetic efficiency is increase with increase in nanoparticles concentration. On the other hand, exergy loss was reduced by 23-43 % employing nanofluids as a heat transfer medium with comparing to conventional fluid. In addition, the empirical correlation for exergetic efficiency has also been developed. The consequential results obtained from the correlation are found to be in good agreement with the experimental results within ±5 % variation.

  20. Flow of wet natural pozzolana

    Energy Technology Data Exchange (ETDEWEB)

    Medici, M E; Benegas, O A; Aguirre, F; Baudino, M R [Departamento de Mineria, Universidad Nacional de San Luis, 5700 San Luis (Argentina); Unac, R O; Vidales, A M [INFAP-CONICET, Departamento de Fisica, Universidad Nacional de San Luis, 5700 San Luis (Argentina); Ippolito, I, E-mail: avidales@unsl.edu.a [GMP, CONICET y Facultad de Ingenieria, Universidad de Buenos Aires, 1063 Buenos Aires (Argentina)

    2009-05-01

    We present experimental results on the flow and stability conditions for natural pozzolana, a natural volcanic sand widely used in concrete production. We measured different angles involved in equilibrium conditions for sand piles and relate them to the flux parameters necessary to produce a silo evacuation. We vary some of the geometrical parameters in the silo to inspect the different flux responses of the system. Results are showed as a function of humidity present in the system. In this way, we related critical angles with flux conditions through a silo under different geometric setups and different humidity degrees, thus setting up a basic phase diagram for flux.

  1. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    Science.gov (United States)

    Kok, Mariana; Young, Trevor M.

    2014-09-01

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (Ra) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (Ra = 5.26 μm) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  2. The evaluation of hierarchical structured superhydrophobic coatings for the alleviation of insect residue to aircraft laminar flow surfaces

    Energy Technology Data Exchange (ETDEWEB)

    Kok, Mariana [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland); Young, Trevor M., E-mail: Trevor.Young@ul.ie [Department of Mechanical, Aeronautical and Biomedical Engineering, University of Limerick, Limerick (Ireland); Materials and Surface Science Institute, University of Limerick, Limerick (Ireland)

    2014-09-30

    Surface contamination caused by insects on laminar flow wing surfaces causes a disruption of the flow, resulting in an increase in drag and fuel consumption. Consequently, the use of superhydrophobic coatings to mitigate insect residue adhesion was investigated. A range of hierarchical superhydrophobic coatings with different surface chemistry and topography was examined. Candidate coatings were characterized in terms of their morphology and hydrophobic properties by scanning electron microscopy (SEM) and static and dynamic contact angle measurements, respectively. Arithmetic mean surface roughness (R{sub a}) values were measured using profilometry. Only superhydrophobic coatings with a specific topography showed complete mitigation against insect residue adhesion. A surface which exhibited a specific microstructure (R{sub a} = 5.26 μm) combined with a low sliding angle (SA = 7.6°) showed the best anti-contamination properties. The dynamics of an insect impact event and its influence on the wetting and adhesion mechanisms of insect residue to a surface were discussed.

  3. An Explicit,Totally Analytic Solution of Laminar Viscous FLow over a Semi—Infinite Flat Plate

    Institute of Scientific and Technical Information of China (English)

    Shi-JunLIAO

    1998-01-01

    In this paper,a new kind of analytic technique for nonlinear problems,namely the Homotopy Analysis Method,is applied to give an explicit,totally analytic solution of the Blasius' flow.i.e.,the two dimensional (2D) laminar viscous flow over a semi-infinite flat plate.This analytic solution is valid in the whole region having physical meanings.To our knowledge,it is the first time in history that such a kind of explicit,totally analytic solution is given.This fact well verifies the great potential and validity of the Honmotopy Analysis Method as a kind of powerful analytic tool for nonlinear problems in science and engineering.

  4. Estudio Numérico de Flujos Turbulentos Isotérmicos en Canales y Flujos Laminares con Convección Mixta en Cavidades Numerical Study of Isothermal Turbulent Channel Flows and Mixed Convection Laminar Cavity Flows

    Directory of Open Access Journals (Sweden)

    Elizaldo D dos Santos

    2011-01-01

    Full Text Available Se ha realizado un estudio numérico sobre flujos estacionarios turbulentos, en canales tridimensionales y flujos transitorios laminares en cavidades con transferencia de calor por convección mixta. Las ecuaciones de conservación se resuelven a través del Método de Elementos Finitos utilizando esquema temporal explícito de Taylor-Galerkin. La simulación de Grandes Escalas se emplea para el tratamiento de la turbulencia. Para el caso isotérmico, flujos con Re = 3300 son simulados usando los modelos submalla de Smagorinsky y Dinámico. Este último modelo permitió mejorar los perfiles de velocidad media y las estadísticas de la turbulencia. Los campos transitorios de velocidad y temperatura se compararon con los resultados de la literatura, obteniéndose un desvío inferior a 6%.A numerical study about three-dimensional steady state turbulent channel flows and laminar transient cavity flows with mixed convection heat transfer has been done. The solution of the conservation equations is obtained by means of Finite Element Method and Taylor-Galerkin explicit scheme. Large Eddy Simulation is employed for the treatment of turbulence. For the isothermal case, flows with Re = 3300 were simulated using the Smagorinsky and Dynamical subgrid models. The latter model allowed improving the average velocity profiles as well as turbulence statistics. The transient velocity and temperature fields were compared with results of the literature, leading to a deviation lower than 6%.

  5. Response analysis of a laminar premixed M-flame to flow perturbations using a linearized compressible Navier-Stokes solver

    Energy Technology Data Exchange (ETDEWEB)

    Blanchard, M., E-mail: mathieu.blanchard@ladhyx.polytechnique.fr [LadHyX, CNRS and Ecole Polytechnique, 91128 Palaiseau (France); Schuller, T. [CNRS, UPR 288, Laboratoire d’Energétique Moléculaire et Macroscopique Combustion (EM2C), Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Centrale-Supélec, Grande Voie des Vignes, 92290 Châtenay-Malabry (France); Sipp, D. [ONERA-DAFE, 8 rue des Vertugadins, 92190 Meudon (France); Schmid, P. J. [Department of Mathematics, Imperial College London, London SW7 2AZ (United Kingdom)

    2015-04-15

    The response of a laminar premixed methane-air flame subjected to flow perturbations around a steady state is examined experimentally and using a linearized compressible Navier-Stokes solver with a one-step chemistry mechanism to describe combustion. The unperturbed flame takes an M-shape stabilized both by a central bluff body and by the external rim of a cylindrical nozzle. This base flow is computed by a nonlinear direct simulation of the steady reacting flow, and the flame topology is shown to qualitatively correspond to experiments conducted under comparable conditions. The flame is then subjected to acoustic disturbances produced at different locations in the numerical domain, and its response is examined using the linearized solver. This linear numerical model then allows the componentwise investigation of the effects of flow disturbances on unsteady combustion and the feedback from the flame on the unsteady flow field. It is shown that a wrinkled reaction layer produces hydrodynamic disturbances in the fresh reactant flow field that superimpose on the acoustic field. This phenomenon, observed in several experiments, is fully interpreted here. The additional perturbations convected by the mean flow stem from the feedback of the perturbed flame sheet dynamics onto the flow field by a mechanism similar to that of a perturbed vortex sheet. The different regimes where this mechanism prevails are investigated by examining the phase and group velocities of flow disturbances along an axis oriented along the main direction of the flow in the fresh reactant flow field. It is shown that this mechanism dominates the low-frequency response of the wrinkled shape taken by the flame and, in particular, that it fully determines the dynamics of the flame tip from where the bulk of noise is radiated.

  6. Influence of mesenchymal stem cells on the response of endothelial cells to laminar flow and shear stress.

    Science.gov (United States)

    Hong, Minsung; Jo, Hansu; Ankeny, Randell F; Holliday-Ankeny, Casey J; Kim, Hyengseok; Khang, Gilson; Nerem, Robert M

    2013-01-01

    The interactions between endothelial cells (ECs) and smooth muscle cells (SMCs) in a complex hemodynamic environment play an important role in the control of blood vessel function. Since autologous SMCs are not readily available for the tissue engineering of a blood vessel substitute, a substitute for SMCs, such as human adult bone marrow-derived mesenchymal stem cells (MSCs), is needed. The objective of this study was to use a three-dimensional coculture model of the blood vessel wall, comprised of ECs and MSCs, to determine how the presence of MSCs affects EC function. Two vascular coculture models with an EC monolayer were created using type I collagen. All models were exposed to steady laminar flow with a shear stress of 15 dyn/cm(2) for up to 48 h. ECs in both the MSC and SMC coculture models expressed up-regulated EC-specific markers compared to the EC-only control model. The most dramatic difference observed between the two coculture models was in the experiments assessing monocyte adhesion. Here, fewer monocytes bound after laminar shear compared to static conditions; however, the number of bound monocytes was much lower for the EC-MSC coculture model than the EC-SMC coculture model for both static and shear conditions. These results suggest the feasibility of developing a tissue-engineered blood vessel substitute using MSCs as a substitute for SMCs.

  7. A new technique for calculating reentry base heating. [analysis of laminar base flow field of two dimensional reentry body

    Science.gov (United States)

    Meng, J. C. S.

    1973-01-01

    The laminar base flow field of a two-dimensional reentry body has been studied by Telenin's method. The flow domain was divided into strips along the x-axis, and the flow variations were represented by Lagrange interpolation polynomials in the transformed vertical coordinate. The complete Navier-Stokes equations were used in the near wake region, and the boundary layer equations were applied elsewhere. The boundary conditions consisted of the flat plate thermal boundary layer in the forebody region and the near wake profile in the downstream region. The resulting two-point boundary value problem of 33 ordinary differential equations was then solved by the multiple shooting method. The detailed flow field and thermal environment in the base region are presented in the form of temperature contours, Mach number contours, velocity vectors, pressure distributions, and heat transfer coefficients on the base surface. The maximum heating rate was found on the centerline, and the two-dimensional stagnation point flow solution was adquate to estimate the maximum heating rate so long as the local Reynolds number could be obtained.

  8. A study of the prediction of cruise noise and laminar flow control noise criteria for subsonic air transports

    Science.gov (United States)

    Swift, G.; Mungur, P.

    1979-01-01

    General procedures for the prediction of component noise levels incident upon airframe surfaces during cruise are developed. Contributing noise sources are those associated with the propulsion system, the airframe and the laminar flow control (LFC) system. Transformation procedures from the best prediction base of each noise source to the transonic cruise condition are established. Two approaches to LFC/acoustic criteria are developed. The first is a semi-empirical extension of the X-21 LFC/acoustic criteria to include sensitivity to the spectrum and directionality of the sound field. In the second, the more fundamental problem of how sound excites boundary layer disturbances is analyzed by deriving and solving an inhomogeneous Orr-Sommerfeld equation in which the source terms are proportional to the production and dissipation of sound induced fluctuating vorticity. Numerical solutions are obtained and compared with corresponding measurements. Recommendations are made to improve and validate both the cruise noise prediction methods and the LFC/acoustic criteria.

  9. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow

    Science.gov (United States)

    Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo

    2017-01-01

    Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas–liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas–liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81–97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps. PMID:28262667

  10. Integrated CO2 capture-fixation chemistry via interfacial ionic liquid catalyst in laminar gas/liquid flow

    Science.gov (United States)

    Vishwakarma, Niraj K.; Singh, Ajay K.; Hwang, Yoon-Ho; Ko, Dong-Hyeon; Kim, Jin-Oh; Babu, A. Giridhar; Kim, Dong-Pyo

    2017-03-01

    Simultaneous capture of carbon dioxide (CO2) and its utilization with subsequent work-up would significantly enhance the competitiveness of CO2-based sustainable chemistry over petroleum-based chemistry. Here we report an interfacial catalytic reaction platform for an integrated autonomous process of simultaneously capturing/fixing CO2 in gas-liquid laminar flow with subsequently providing a work-up step. The continuous-flow microreactor has built-in silicon nanowires (SiNWs) with immobilized ionic liquid catalysts on tips of cone-shaped nanowire bundles. Because of the superamphiphobic SiNWs, a stable gas-liquid interface maintains between liquid flow of organoamines in upper part and gas flow of CO2 in bottom part of channel. The intimate and direct contact of the binary reagents leads to enhanced mass transfer and facilitating reactions. The autonomous integrated platform produces and isolates 2-oxazolidinones and quinazolines-2,4(1H,3H)-diones with 81-97% yields under mild conditions. The platform would enable direct CO2 utilization to produce high-valued specialty chemicals from flue gases without pre-separation and work-up steps.

  11. Effect of Surfactants on the Deformation and Detachment of Oil Droplets in a Model Laminar Flow Cell

    Directory of Open Access Journals (Sweden)

    Fréville V.

    2013-10-01

    Full Text Available Sugar-based surfactants are increasingly present in the development of eco-friendly detergents due to current regulations and consumer demand. In order to assess the degreasing performance of these new surfactants, the behavior of model oil droplets subjected to the action of a flow of surfactant solutions of different concentrations was studied in a laminar flow cell and related to the physico-chemical properties measured at the liquid/liquid (interfacial tension and solid/liquid/liquid interfaces (contact angle. With the surfactant solutions and the model oils employed in this study, three main behaviors were observed when a critical flow rate was reached: elongation, fragmentation or spontaneous detachment of the droplet. The analysis of the results leads to a correlation between the droplet behavior and the balance of the forces applied on the droplet in its initial position, in particular the gravity force Fg, which tends to move the oil droplet upwards (given the density difference, and the capillary force Fc, which tends to keep the droplet spherical. A state diagram could be established, based on the dimensionless Bond number (Fg/Fc and cosθ, θ being the initial contact angle of the drop on the surface before the establishment of the flow. One can thus predict the droplet behavior as a function of the system initial characteristics. The results allowed the comparison of degreasing performance of the different surfactants used and illustrated the potential of AlkylPolyPentosides (APP for detergent formulations.

  12. Development of Fluid Mechanics Methods in the 20th Century and Their Application to Laminar and Turbulent Flow Investigations

    Science.gov (United States)

    Durst, Franz

    1999-11-01

    A short review of the development of fluid mechanics is given and it is pointed out that all methods that permit us these days to study fluid flows in detail have been developed in the second half of this century. It applies to the experimental techniques like hot-wire and laser-Doppler anemometry and also particle image velocimetry. It also applies to the numerical techniques that are employed these days to effectively compute details of laminar and turbulent flows using high performance computer codes on parallel vector computers. All these methods are briefly outlined and applications are shown to bring out new flow information about turbulent flows. The second half of this century has also brought out new analytical approaches to turbulence, based on the invariance of the anisotropy of turbulence. The background of this analysis is indicated and a physically based turbulence model is put forward for axissymmetric turbulence, i.e. turbulence as it occurs in diffusers and confusers. Extension of this work is indicated utilizing new experimental and numerical information obtained in well selected turbulent flows. An extension of this work is indicated using new experimental and numerical information as well as information obtained in well selected flows. Although the work touches the general developments in the field of fluid mechanics, it mainly concentrates on the outcome of research efforts at the Institute of Fluid mechanics of the University of Erlangen-Nürnberg (LSTM-Erlangen). This research work aims for basic information yielding new knowledge that can be used for advanced developments of fluid flow equipment. The transfer of these developments into industry is also indicated.

  13. Laminar film condensation from downward flowing superheated vapors onto a non-isothermal sphere

    Energy Technology Data Exchange (ETDEWEB)

    Hsu, C.H. [Dept. of Mold and Die Engineering, National Kaohsiung Univ. of Applied Sciences, Kaohsiung (Taiwan)

    2001-11-01

    A model is developed for the study of mixed convection film condensation from downward flowing superheated vapors onto a sphere with variable wall temperature. The model combined natural convection dominated and forced convection dominated film condensation, including effects of superheated vapor, pressure gradient and wall temperature variation can be solved numerically by the fourth-order Runge-Kutta technique. By the present numerical approach, the mean heat transfer is evaluated up to the critical angle of the condensate layer, {phi}{sub c}. In general, the result of mean heat transfer shows that, as A, the wall-temperature amplitude, increases, the value of NuRe{sup -1/2} with inclusion of P, the pressure gradient effect, goes down slightly, however, the value of NuRe{sup -1/2} with the pressure gradient effect ignored will remain almost uniform. Further, for P=2.0, the mean heat transfer coefficient increases significantly, by 8.6-23.9%, depending on A, as the superheat parameter, Sp, increases within a practical range. (orig.)

  14. Numerical simulation and parametric study of laminar mixed convection nanofluid flow in flat tubes using two phase mixture model

    Directory of Open Access Journals (Sweden)

    Safikhani Hamed

    2016-01-01

    Full Text Available In this article, the laminar mixed convection of Al2O3-Water nanofluid flow in a horizontal flat tube has been numerically simulated. The two-phase mixture model has been employed to solve the nanofluid flow, and constant heat flux has been considered as the wall boundary condition. The effects of different and important parameters such as the Reynolds number (Re, Grashof number (Gr, nanoparticles volume fraction (Φ and nanoparticle diameter (dp on the thermal and hydrodynamic performances of nanofluid flow have been analyzed. The results of numerical simulation were compared with similar existing data and good agreement is observed between them. It will be demonstrated that the Nusselt number (Nu and the friction factor (Cf are different for each of the upper, lower, left and right walls of the flat tube. The increase of Re, Gr and f and the reduction of dp lead to the increase of Nu. Similarly, the increase of Re and f results in the increase of Cf. Therefore, the best way to increase the amount of heat transfer in flat tubes using nanofluids is to increase the Gr and reduce the dp.

  15. Analysis of Flow Evolution and Thermal Instabilities in the Near-Nozzle Region of a Free Plane Laminar Jet

    Directory of Open Access Journals (Sweden)

    Hector Barrios-Piña

    2015-01-01

    Full Text Available This work focuses on the evolution of a free plane laminar jet in the near-nozzle region. The jet is buoyant because it is driven by a continuous addition of both buoyancy and momentum at the source. Buoyancy is given by a temperature difference between the jet and the environment. To study the jet evolution, numerical simulations were performed for two Richardson numbers: the one corresponding to a temperature difference slightly near the validity of the Boussinesq approximation and the other one corresponding to a higher temperature difference. For this purpose, a time dependent numerical model is used to solve the fully dimensional Navier-Stokes equations. Density variations are given by the ideal gas law and flow properties as dynamic viscosity and thermal conductivity are considered nonconstant. Particular attention was paid to the implementation of the boundary conditions to ensure jet stability and flow rates control. The numerical simulations were also reproduced by using the Boussinesq approximation to find out more about its pertinence for this kind of flows. Finally, a stability diagram is also obtained to identify the onset of the unsteady state in the near-nozzle region by varying control parameters of momentum and buoyancy. It is found that, at the onset of the unsteady state, momentum effects decrease almost linearly when buoyancy effects increase.

  16. 搅拌釜中层流流场的模拟%Numerical simulation of laminar flow field in a stirred tank

    Institute of Scientific and Technical Information of China (English)

    范茏; 王卫京; 杨超; 毛在砂

    2004-01-01

    Stirred tanks are used extensively in process industry and one of the most commonly used impellers in stirred tanks is the Rushton disk turbine.Surprisingly few data are available regarding flow and mixing in stirred-tank reactors with Rushton turbine in the laminar regime,in particular the laminar flow in baffled tanks.In this paper,the laminar flow field in a baffled tank stirred by a standard Rushton turbine is simulated with the improved inner-outer iterative method.The non-inertial coordinate system is used for the impeller region,which is in turn used as the boundary conditions for iteration.It is found that the simulation results are in good agreement with previous experiments.In addition,the flow number and impeller power number calculated from the simulated flow field are in satisfactory agreement with experimental data.This numerical method allows prediction of flow structure requiring no experimental data as the boundary conditions and has the potential of being used to scale-up and design of related process equipment.

  17. Elution behavior of lambda-DNA with ternary mixed carrier solvents in an open-tubular capillary under laminar flow conditions.

    Science.gov (United States)

    Nogami, Takahiro; Fujinaga, Satoshi; Jinno, Naoya; Hashimoto, Masahiko; Tsukagoshi, Kazuhiko

    2012-01-01

    An open-tubular capillary chromatography was developed based on the tube radial distribution of the ternary mixed carrier solvents that generated the inner and outer phases under laminar flow conditions. This is called "tube radial distribution chromatography" (TRDC). In this report, the elution behavior of lambda-DNA (48502 bp) as a biopolymer was examined by the TRDC system. The ternary mixture of water-acetonitrile-ethyl acetate, 15:3:2 or 3:8:4 volume ratio, as a carrier solution was fed into the capillary tube made of polytetrafluoroethylene (PTFE) or fused-silica. The mixture of hydrophobic 1-naphthol and hydrophilic lambda-DNA was subjected to the TRDC system using the water-rich carrier solution. Lambda-DNA and 1-naphthol were distributed between the inner and outer phases due to their hydrophilic and hydrophobic nature, and then eluted in this order, undergoing chromatographic separation. The mixture of hydrophilic 2,6-naphthalenedisulfonic acid and hydrophobic lambda-DNA that was treated with surfactants was also examined with the organic solvent-rich carrier solution. The modified hydrophobic DNA and 2,6-naphthalenedisulfonic acid were distributed and eluted in this order due to their nature.

  18. On the solution of the differential equation occurring in the problem of heat convection in laminar flow through a tube with slip—flow

    Directory of Open Access Journals (Sweden)

    Xanming Wang

    1996-01-01

    Full Text Available A technique is developed for evaluation of eigenvalues in solution of the differential equation d2y/dr2+(1/rdy/dr+λ2(β−r2y=0 which occurs in the problem of heat convection in laminar flow through a circular tube with silp-flow (β>1. A series solution requires the expansions of coeffecients involving extremely large numbers. No work has been reported in the case of β>1, because of its computational complexity in the evaluation of the eigenvalues. In this paper, a matrix was constructed and a computational algorithm was obtained to calculate the first four eigenvalues. Also, an asymptotic formula was developed to generate the full spectrum of eigenvalues. The computational results for various values of β were obtained.

  19. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    CERN Document Server

    Schmidt, Patrick; Lucquiaud, Mathieu; Valluri, Prashant

    2015-01-01

    We consider the genesis and dynamics of interfacial instability in gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of three main flow parameters (density contrast between liquid and gas, film thickness, pressure drop applied to drive the gas stream) on the interfacial dynamics. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable internal mode for low density contrast. The same linear stability approach provides a quantitative prediction for the onset of (partial) liquid flow reversal in terms of the gas and liquid flow rates. ...

  20. Unconfined Unsteady Laminar Flow of a Power-Law Fluid across a Square Cylinder

    Directory of Open Access Journals (Sweden)

    Asterios Pantokratoras

    2016-11-01

    Full Text Available The flow of a non-Newtonian, power-law fluid, directed normally to a horizontal cylinder with square cross-section (two-dimensional flow is considered in the present paper. The problem is investigated numerically with a very large calculation domain in order that the flow could be considered unconfined. The investigation covers the power-law index from 0.1 up to 2 and the Reynolds number ranges from 60 to 160. Over this range of Reynolds numbers the flow is unsteady. It is found that the drag coefficient and the Strouhal number are higher in a confined flow compared to those of an unconfined flow. In addition some flow characteristics are lost in a confined flow. Complete results for the drag coefficient and Strouhal number in the entire shear-thinning and shear-thickening region have been produced. In shear-thinning fluids chaotic structures exist which diminish at higher values of power-law index. This study represents the first investigation of unsteady, non-Newtonian power-law flow past a square cylinder in an unconfined field.

  1. Interface-resolved direct numerical simulation of the erosion of a sediment bed sheared by laminar channel flow

    CERN Document Server

    Kidanemariam, Aman G

    2014-01-01

    A numerical method based upon the immersed boundary technique for the fluid-solid coupling and on a soft-sphere approach for solid-solid contact is used to perform direct numerical simulation of the flow-induced motion of a thick bed of spherical particles in a horizontal plane channel. The collision model features a normal force component with a spring and a damper, as well as a damping tangential component, limited by a Coulomb friction law. The standard test case of a single particle colliding perpendicularly with a horizontal wall in a viscous fluid is simulated over a broad range of Stokes numbers, yielding values of the effective restitution coefficient in close agreement with experimental data. The case of bedload particle transport by laminar channel flow is simulated for 24 different parameter values covering a broad range of the Shields number. Comparison of the present results with reference data from the experiment of Aussillous et al. (J. Fluid Mech. 2013) yields excellent agreement. It is confir...

  2. Numerical Study of Laminar Flow Forced Convection of Water-Al2O3 Nanofluids under Constant Wall Temperature Condition

    Directory of Open Access Journals (Sweden)

    Hsien-Hung Ting

    2015-01-01

    Full Text Available This numerical study is aimed at investigating the forced convection heat transfer and flow characteristics of water-based Al2O3 nanofluids inside a horizontal circular tube in the laminar flow regime under the constant wall temperature boundary condition. Five volume concentrations of nanoparticle, 0.1, 0.5, 1, 1.5, and 2 vol.%, are used and diameter of nanoparticle is 40 nm. Characteristics of heat transfer coefficient, Nusselt number, and pressure drop are reported. The results show that heat transfer coefficient of nanofluids increases with increasing Reynolds number or particle volume concentration. The heat transfer coefficient of the water-based nanofluid with 2 vol.% Al2O3 nanoparticles is enhanced by 32% compared with that of pure water. Increasing particle volume concentration causes an increase in pressure drop. At 2 vol.% of particle concentration, the pressure drop reaches a maximum that is nearly 5.7 times compared with that of pure water. It is important to note that the numerical results are in good agreement with published experimental data.

  3. Hydrodynamic alignment and assembly of nano-fibrillated cellulose in the laminar extensional flow: Effects of solidifying agents

    Science.gov (United States)

    Mittal, Nitesh; Lundell, Fredrik; Soderberg, Daniel

    2015-11-01

    There are several fiber production technologies that are based on wet-spinning processes. Many such processes rely on the transformation of a liquid solution into a solid filament. The kinetics of solidification depends largely on the diffusion of the solvents, additives and polymer molecules, which make such systems quite complex and differ from a system to another as a function of the specific chemical, physical and structural features of the used material components. Moreover, tuning the orientation of the polymers in the liquid suspensions makes it further possible to control their structure, which in turn can lead to materials having improved properties. By keeping in mind the facts mentioned above, the aim of the current study is to utilize benefits of a flow focusing approach to align carboxymethylated cellulose nanofibrils (CNF), as a colloidal dispersion, with the help of a laminar elongational flow-field followed by the solidification using different solidifying agents or molecules (with dissimilar diffusion behavior based on their size and charges) to synthesize fibers with enhanced mechanical properties. CNF are charged elongated particles obtained from woods with diameter of 4-10 nm and length of 1-1.5 μm, and they are completely biodegradable.

  4. [Absolute measurement of laminar flow with the aid of an orthogonal excitation technic in NMR tomography].

    Science.gov (United States)

    Bielke, G; Meindl, S; von Seelen, W

    1986-11-01

    A method for absolute measurement of flow quantities by excitation of a slice orthogonal to the measuring plane is presented. The developing flow profile can be imaged directly and its dynamic behaviour can be sampled and measured using the multiecho technique. Simple formulas can be derived by means of Hagen-Poiseuille's law for quantification.

  5. Laminar, turbulent, and inertial shear-thickening regimes in channel flow of neutrally buoyant particle suspensions

    NARCIS (Netherlands)

    Lashgari, I.; Picano, F.; Breugem, W.P.; Brandt, L.

    2014-01-01

    The aim of this Letter is to characterize the flow regimes of suspensions of finite-size rigid particles in a viscous fluid at finite inertia. We explore the system behavior as a function of the particle volume fraction and the Reynolds number (the ratio of flow and particle inertia to viscous force

  6. The influence of wall permeability on laminar and turbulent flows: Theory and simulations

    NARCIS (Netherlands)

    Breugem, W.P.

    2005-01-01

    The study of flows over permeable walls is relevant to many applications. Examples are flows over and through porous river beds, vegetation, snow, heat exchangers of foam metal, and oil wells. The main objectives of this thesis are to gain insight in the influence of wall permeability on both lamina

  7. Laminar flow at a three-dimensional stagnation point with large rates of injection

    Science.gov (United States)

    Libby, P. A.

    1976-01-01

    Exact calculations of the titled flow are presented and compared to the predictions of an asymptotic analysis for large rates of injection. The inner layer of the boundary layer is found to involve outflow in both orthogonal directions whether the external flow along the y axis is inward or outward. As a result, the flow at a nearly two-dimensional stagnation point involves drastic changes as a weak outflow changes to a weak inflow. It is also found that the velocity profiles in the two directions in the inner layer are quite different.

  8. Three-Dimensional, Laminar Flow Past a Short, Surface-Mounted Cylinder

    Science.gov (United States)

    Liakos, Anastasios; Malamataris, Nikolaos

    2016-11-01

    The topology and evolution of three-dimensional flow past a cylinder of slenderness ratio SR = 1 mounted in a wind tunnel is examined for 0 . 1 segmented to upper and lower parts, whereas the topology of the flow on the solid boundaries remains unaltered. Pressure distributions show that pressure, the key physical parameter in the flow, decreases everywhere except immediately upstream from the cylinder. In addition, creation of critical points from saddle-node-type bifurcations occur when the streamwise component of the pressure gradient changes sign. Finally, at Re = 325 , an additional horseshoe vorrtex is formed at the wake of the cylinder

  9. Dynamical Instability of Laminar Axisymmetric Flow of Perfect Fluid with Stratification

    CERN Document Server

    Zhuravlev, V V

    2007-01-01

    The instability of non-homoentropic axisymmetric flow of perfect fluid with respect to non-axisymmetric infinitesimal perturbations was investigated by numerical integration of hydrodynamical differential equations in two-dimensional approximation. The non-trivial influence of entropy gradient on unstable sound and surface gravity waves was revealed. In particular, both decrease and growth of entropy against the direction of effective gravitational acceleration $g_{eff}$ give rise to growing surface gravity modes which are stable with the same parameters in the case of homoentropic flow. At the same time increment of sound modes either grows monotonically while the rate of entropy decrease against $g_{eff}$ gets higher or vanishes at some values of positive and negative entropy gradient in the basic flow. The calculations have showed also that growing internal gravity modes appear only in the flow unstable to axisymmetric perturbations. At last, the analysis of boundary problem with free boundaries uncovered ...

  10. Fuel density effect on near nozzle flow field in small laminar coflow diffusion flames

    KAUST Repository

    Xiong, Yuan

    2015-01-01

    Flow characteristics in small coflow diffusion flames were investigated with a particular focus on the near-nozzle region and on the buoyancy force exerted on fuels with densities lighter and heavier than air (methane, ethylene, propane, and n-butane). The flow-fields were visualized through the trajectories of seed particles. The particle image velocimetry technique was also adopted for quantitative velocity field measurements. The results showed that the buoyancy force exerted on the fuel as well as on burnt gas significantly distorted the near-nozzle flow-fields. In the fuels with densities heavier than air, recirculation zones were formed very close to the nozzle, emphasizing the importance of the relative density of the fuel to that of the air on the flow-field. Nozzle heating influenced the near-nozzle flow-field particularly among lighter fuels (methane and ethylene). Numerical simulations were also conducted, focusing specifically on the effect of specifying inlet boundary conditions for fuel. The results showed that a fuel inlet boundary with a fully developed velocity profile for cases with long tubes should be specified inside the fuel tube to permit satisfactory prediction of the flow-field. The calculated temperature fields also indicated the importance of the selection of the location of the inlet boundary, especially in testing various combustion models that include soot in small coflow diffusion flames. © 2014 The Combustion Institute.

  11. Laminar and transitional liquid metal duct flow near a magnetic point dipole

    CERN Document Server

    Tympel, Saskia; Schumacher, Jörg

    2013-01-01

    The flow transformation and the generation of vortex structures by a strong magnetic dipole field in a liquid metal duct flow is studied by means of three-dimensional direct numerical simulations. The dipole is considered as the paradigm for a magnetic obstacle which will deviate the streamlines due to Lorentz forces acting on the fluid elements. The duct is of square cross-section. The dipole is located above the top wall and is centered in spanwise direction. Our model uses the quasi-static approximation which is applicable in the limit of small magnetic Reynolds numbers. The analysis covers the stationary flow regime at small hydrodynamic Reynolds numbers $Re$ as well as the transitional time-dependent regime at higher values which may generate a turbulent flow in the wake of the magnetic obstacle. We present a systematic study of these two basic flow regimes and their dependence on $Re$ and on the Hartmann number $Ha$, a measure of the strength of the magnetic dipole field. Furthermore, three orientations...

  12. Laminar mixed convection boundary layer flow induced by a permeable surface stretched with prescribed skin friction boundary conditions

    Directory of Open Access Journals (Sweden)

    Mohamed Ali

    2015-09-01

    Full Text Available The mixed laminar boundary layer flow and heat transfer on a permeable stretched surface moving with prescribed skin friction are studied. Three major cases, which correspond to complete similarity solutions, are considered. The cases are combinations of power law indices n and m representing temperature and skin friction distributions, respectively. The first case (n = 0, m = 0.5 corresponds to isothermal stretched surface with skin friction at the surface scales as x 1/4. The second case (n = 1, m = 1 is a linear temperature and skin friction distribution along the vertical stretched surface. The third case (n = −1, m = 0 represents inverse temperature variation along the surface with prescribed skin friction of the order of x −1/2. Similarity solutions are obtained for the surface stretched in a stagnant air with Prandtl number = 0.72. The effect of suction/injection velocity (fw and the buoyancy parameter (λ is studied in detail. The results show that the heat transfer coefficient along the surface is enhanced for assisting flow (λ > 0 at any value of fw for the first and second cases, while it is reduced for the third case. However, the opposite is true for the opposing flow (λ < 0. Furthermore, suction enhances the heat transfer coefficient, whereas injection degrades it at any fixed λ for the first and second prescribed skin friction boundary conditions, and the opposite is true for the third case.

  13. Laminar premixed methane/air flame extinction characteristics influenced by co-flow water mists

    Institute of Scientific and Technical Information of China (English)

    LIU XuanYa; LU ShouXiang; ZHU YingChun; LIU Yi

    2008-01-01

    Based on the tubular burner, the burning velocities, flame stretch and inhibition rules influenced by co-flow water mists were studied using a high-speed schlieren system. Moreover, the variation rules of the flame critical extinction in our burner equipment were also obtained by analyzing the process and mechanism of flame extinction and inhibition. It is shown that the flame stretch is related to the fuel concentration, co-flow fluxes and water mist diameters. For droplets with a larger diameter, the smaller the co-flow fluxes, the more obvious the flame stretch. When the water mist loading rate is rather smaller, for fuel-rich premixed flame with Le>1, the flame with larger burning rate tends to backfire more easily. Under the same water mist conditions, for fuel-lean premixed flame with Le<1, the smaller the gas concentration, the easier the flame is extinct.

  14. Laminar and turbulent channel flow simulations and the choice of appropriate boundary conditions

    Energy Technology Data Exchange (ETDEWEB)

    Baerwolff, G. [FB Mathematik, TU Berlin (Germany); Koster, F.

    1998-07-01

    Transitional flow over a backward-facing step is studied by large eddy simulation (LES) and direct numerical simulation (DNS). The simulation was performed at a Reynolds number of 3000 based on step height and inlet stream velocity. We compare the passive flow and the flow controlled by a two-dimensional acoustic manipulation in front of the separation line. The aim of the boundary layer control is to decrease the reattachment length. Huppertz and Janke (1995/1997) demonstrated experimentally a reduction of the reattachment length of approximately 30% for a cetain frequency of the acoustic disturbancies. Our statistical results show a good agreement with the experimental data of Huppertz and Janke. The problem of the choice of suitable outflow boundary conditions was considered with respect to the reduction of the length of the computational domain and the reduction of computational expenses respectively. (orig.)

  15. Laminar flow across an unbounded square cylinder with suction or injection

    Science.gov (United States)

    Pantokratoras, Asterios

    2017-02-01

    The flow around a horizontal square cylinder with uniform suction or injection at the front and rear sides is considered in the present paper. The problem is investigated numerically with a finite volume method using the SIMPLE algorithm. This flow has been investigated in the past for Reynolds numbers greater than 70. In the present work, the investigation is extended to very low Reynolds numbers (up to 0.001, Stokes flow) including eight different cases concerning suction-injection at the two sides. It is found that the drag coefficient takes negative and zero values in many cases and varies linearly at low Re numbers. In all eight cases, the vortices around the cylinder have been calculated. It is found that at low Re numbers, some vortices are symmetrical both about the horizontal and vertical cylinder axes.

  16. Laser Doppler measurements of laminar and turbulent flow in a pipe bend

    Science.gov (United States)

    Enayet, M. M.; Gibson, M. M.; Taylor, A. M. K. P.; Yianneskis, M.

    1982-01-01

    The streamwise components of velocity in the flow through a ninety degree bend of circular cross section for which the ratio of radius of curvature to diameter is 2.8 were measured. The development of strong pressure driven secondary flow in the form of a pair of counter rotating vortices in the steamwise direction is shown. Refractive index matching at the fluid wall interface was not employed; the displacement of the measurement volume due to refraction is allowed for in simple geometrical calculations.

  17. Geometric aspect and buoyancy effects on nature convection flow in the complex annuli filled with micropolar fluids

    Science.gov (United States)

    Chen, Wen Ruey

    2016-10-01

    This paper studies the steady laminar natural convection of micropolar fluids in the complex annuli between the inner sphere and outer vertical cylinder to present a numerical analysis of the flow and heat transfer characteristics with buoyancy effects. Computations were carried out systematically by the several different parameters of geometric ratio, micropolar material parameter and Rayleigh number to determine the average Nusselt number and the skin friction coefficient on the flow and the thermal fields.

  18. Homogenous nucleation rates of n-propanol measured in the Laminar Flow Diffusion Chamber at different total pressures

    Science.gov (United States)

    Görke, Hanna; Neitola, Kimmo; Hyvärinen, Antti-Pekka; Lihavainen, Heikki; Wölk, Judith; Strey, Reinhard; Brus, David

    2014-05-01

    Nucleation rates of n-propanol were investigated in the Laminar Flow Diffusion Chamber. Nucleation temperatures between 270 and 300 K and rates between 100 and 106 cm-3 s-1 were achieved. Since earlier measurements of n-butanol and n-pentanol suggest a dependence of nucleation rates on carrier gas pressure, similar conditions were adjusted for these measurements. The obtained data fit well to results available from literature. A small positive pressure effect was found which strengthen the assumption that this effect is attributed to the carbon chain length of the n-alcohol [D. Brus, A. P. Hyvärinen, J. Wedekind, Y. Viisanen, M. Kulmala, V. Ždímal, J. Smolík, and H. Lihavainen, J. Chem. Phys. 128, 134312 (2008)] and might be less intensive for substances in the homologous series with higher equilibrium vapor pressure. A comparison with the theoretical approach by Wedekind et al. [Phys. Rev. Lett. 101, 12 (2008)] shows that the effect goes in the same direction but that the intensity is much stronger in experiments than in theory.

  19. Rising of a single Taylor drop in a stagnant liquid—2D laminar flow and axisymmetry limits

    Science.gov (United States)

    Direito, F. J. N.; Campos, J. B. L. M.; Miranda, J. M.

    2016-05-01

    A numerical (computational fluid dynamics (CFD)) study concerning the rise of individual liquid Taylor drops through vertical columns of stagnant heavier liquids is presented in this paper. CFD simulations were performed in Ansys Fluent, using its implementation of volume of fluid method, assuming the flow to be axisymmetric and laminar. Different physical conditions were tested, corresponding to different combinations of relevant dimensionless parameters and the numerical method was validated through experimental data available in the literature. The viscosity ratio between the lighter and the heavier liquid was within the range 0.01-40 and Eötvös number was between 8 and 30. Morton number was within the interval of 2.32 × 10-6-100. Froude number results were compared to data from a literature correlation. The accordance is acceptable for the ranges studied. Velocity profiles in significant regions are reported (drop nose, drop bottom and continuous phase liquid film). The influence of changing one dimensionless parameter alone was assessed. For small and large viscosity ratios, axisymmetric behavior is not a valid assumption.

  20. Heat Transfer Enhancement in a Helically Coiled Tube with Al2O3/WATER Nanofluid Under Laminar Flow Condition

    Science.gov (United States)

    Kumar, P. C. Mukesh; Kumar, J.; Suresh, S.; Babu, K. Praveen

    2012-10-01

    In this experimental investigation, the heat transfer coefficients of a shell and helically coiled tube heat exchanger using Al2O3/water nanofluid under laminar flow condition were studied. The Al2O3 nanoparticles were characterized by X-Ray diffraction (XRD). The Al2O3/water nanofluid at 0.1%, 0.4% and 0.8% particle volume concentration were prepared by using two step method. The prepared nanofluid was characterized by scanning electron microscope (SEM). It is observed that the overall heat transfer coefficient, inner heat transfer coefficient and experimental inner Nusselt number increase while increasing particle volume concentration and increasing inner Dean number. The enhancement of overall heat transfer coefficient was found to be 7%, 16.9% and 24.2% at 0.1%, 0.4% and 0.8% Al2O3/water nanofluid respectively when compared with water. The enhancement of tube side experimental Nusselt number was found to be 17%, 22.9% and 28% at 0.1%, 0.4% and 0.8% particle volume concentration of Al2O3/water nanofluid respectively when compared with water at fixed Dean number. The tests were conducted in the range of 1600 tube.

  1. Heat transfer characteristics of Al2O3/water nanofluid in laminar flow conditions with circular ring insert

    Directory of Open Access Journals (Sweden)

    Mala Dharmalingam

    2016-01-01

    Full Text Available In this experimental investigation convective heat transfer, friction factor, and thermal enhancement characteristics of straight circular duct fitted with circular ring insert of constant heat flux boundary condition under fully developed laminar flow is presented. Tests have been conducted by using 0.1% volume concentration of Al2O3 nanofluid and water. Inserts of different pitch to diameter ratios of 6.25, 8.33, 12.5, and 16.67 with center core rod were used for this investigation. The circular ring insert shows a superior thermal performance than plain tube. The experimental results demonstrated that the Nusselt number, friction factor, and thermal enhancement factor increases with decrease in pitch to diameter ratio. The circular ring inserts of lower pitch to diameter ratio of 6.25 with nanofluid increases the Nusselt number by 165.38% compared to pure water and the friction factor, found to be 7.89 times higher than that of water. Empirical correlations are develope for Nusselt number and friction factor in terms of Reynolds number, volume concentration, and pitch ratio. The thermal performance factor was found to be greater than unity for all pitch to diameter ratios.

  2. Curved ducts with strong secondary motion - Velocity measurements of developing laminar and turbulent flow

    Science.gov (United States)

    Taylor, A. M. K. P.; Whitelaw, J. H.; Yianneskis, M.

    1982-01-01

    Two orthogonal components of velocity and associated Reynolds stresses are determined in a square-sectioned, 90 degree bend of 2.3 radius ratio by utilizing laser-Doppler velocimetry for Reynolds numbers of 790 and 40,000. Results show that boundary layers at the bend inlet of 0.25 and 0.15 of the hydraulic diameter create secondary velocity maxima of 0.6 and 0.4 of the bulk flow velocity, respectively. It is concluded that the boundary layer thickness is important to the flow development, mainly in the first half of the bend, especially when it is reduced to 0.15 of the hydraulic diameter. Smaller secondary velocities are found for turbulent flow in an identical duct with a radius ratio of 7.0 than in the strongly curved bend, although their effect is more important to the streamwise flow development because of the smaller pressure gradients. In addition, the detail and accuracy of the measurements make them suitable for evaluation of numerical techniques and turbulence models.

  3. Unsteady laminar pipe flow of a Carbopol gel. Part I: experiment

    CERN Document Server

    Poumaere, Antoine; Castelain, Cathy; Burghelea, Teodor

    2013-01-01

    A experimental study of low Reynolds numbers unsteady pipe flows of a yield stress shear thinning fluid (Carbopol- 980) is presented. The investigation of the solid-fluid transition in a rheometric flow in the presence and in the ab- sence of the wall slip reveals a coupling between the irreversible deformation states and the wall slip phenomenon. Particularly, the presence of wall slip nearly suppresses the scaling of the deformation power deficit associated to the rheological hysteresis with the rate at which the material is forced. The irreversible solid-fluid transition and the wall slip behaviour emerge in the same range of the applied stresses and thus, the two phenomena appear to be coupled to each other. In-situ measurements of the flow fields performed during an increasing/decreasing stepped pressure ramp reveal three distinct flow regimes: solid (pluglike), solid-fluid and fluid. The deformation power deficit associated with the hysteresis observed during the increasing/decreasing branches of the pr...

  4. Isogeometric analysis of sound propagation through laminar flow in 2-dimensional ducts

    DEFF Research Database (Denmark)

    Nørtoft, Peter; Gravesen, Jens; Willatzen, Morten

    2015-01-01

    We consider the propagation of sound through a slowly moving fluid in a 2-dimensional duct. A detailed description of a flow-acoustic model of the problem using B-spline based isogeometric analysis is given. The model couples the non-linear, steady-state, incompressible Navier-Stokes equation in ...

  5. Linear and nonlinear instability in vertical counter-current laminar gas-liquid flows

    Science.gov (United States)

    Schmidt, Patrick; Ó Náraigh, Lennon; Lucquiaud, Mathieu; Valluri, Prashant

    2016-04-01

    We consider the genesis and dynamics of interfacial instability in vertical gas-liquid flows, using as a model the two-dimensional channel flow of a thin falling film sheared by counter-current gas. The methodology is linear stability theory (Orr-Sommerfeld analysis) together with direct numerical simulation of the two-phase flow in the case of nonlinear disturbances. We investigate the influence of two main flow parameters on the interfacial dynamics, namely the film thickness and pressure drop applied to drive the gas stream. To make contact with existing studies in the literature, the effect of various density contrasts is also examined. Energy budget analyses based on the Orr-Sommerfeld theory reveal various coexisting unstable modes (interfacial, shear, internal) in the case of high density contrasts, which results in mode coalescence and mode competition, but only one dynamically relevant unstable interfacial mode for low density contrast. A study of absolute and convective instability for low density contrast shows that the system is absolutely unstable for all but two narrow regions of the investigated parameter space. Direct numerical simulations of the same system (low density contrast) show that linear theory holds up remarkably well upon the onset of large-amplitude waves as well as the existence of weakly nonlinear waves. For high density contrasts, corresponding more closely to an air-water-type system, linear stability theory is also successful at determining the most-dominant features in the interfacial wave dynamics at early-to-intermediate times. Nevertheless, the short waves selected by the linear theory undergo secondary instability and the wave train is no longer regular but rather exhibits chaotic motion. The same linear stability theory predicts when the direction of travel of the waves changes — from downwards to upwards. We outline the practical implications of this change in terms of loading and flooding. The change in direction of the

  6. Laminar fluid flow and heat transfer in a fin-tube heat exchanger with vortex generators

    Energy Technology Data Exchange (ETDEWEB)

    Yanagihara, J.I.; Rodriques, R. Jr. [Polytechnic School of Univ. of Sao Paolo, Sao Paolo (Brazil). Dept. of Mechanical Engineering

    1996-12-31

    Development of heat transfer enhancement techniques for fin-tube heat exchangers has great importance in industry. In recent years, heat transfer augmentation by vortex generators has been considered for use in plate fin-tube heat exchangers. The present work describes a numerical investigation about the influence of delta winglet pairs of vortex generators on the flow structure and heat transfer of a plate fin-tube channel. The Navier-Stokes and Energy equations are solved by the finite volume method using a boundary-fitted coordinate system. The influence of vortex generators parameters such as position, angle of attack and aspect ratio were investigated. Local and global influences of vortex generators in heat transfer and flow losses were analyzed by comparison with a model using smooth fin. The results indicate great advantages of this type of geometry for application in plate fin-tube heat exchangers, in terms of large heat transfer enhancement and small pressure loss penalty. (author)

  7. A comparison of measured and modeled velocity fields for a laminar flow in a porous medium

    Science.gov (United States)

    Wood, B. D.; Apte, S. V.; Liburdy, J. A.; Ziazi, R. M.; He, X.; Finn, J. R.; Patil, V. A.

    2015-11-01

    Obtaining highly-resolved velocity data from experimental measurements in porous media is a significant challenge. The goal of this work is to compare the velocity fields measured in a randomly-packed porous medium obtained from particle image velocimetry (PIV) with corresponding fields predicted from direct numerical simulation (DNS). Experimentally, the porous medium was comprised of 15 mm diameter spherical beads made of optical glass placed in a glass flow cell to create the packed bed. A solution of ammonium thiocyanate was refractive-index matched to the glass creating a medium that could be illuminated with a laser sheet without distortion. The bead center locations were quantified using the imaging system so that the geometry of the porous medium was known very accurately. Two-dimensional PIV data were collected and processed to provide high-resolution velocity fields at a single plane within the porous medium. A Cartesian-grid-based fictitious domain approach was adopted for the direct numerical simulation of flow through the same geometry as the experimental measurements and without any adjustable parameters. The uncertainties associated with characterization of the pore geometry, PIV measurements, and DNS predictions were all systematically quantified. Although uncertainties in bead position measurements led to minor discrepancies in the comparison of the velocity fields, the axial and normal velocity deviations exhibited normalized root mean squared deviations (NRMSD) of only 11.32% and 4.74%, respectively. The high fidelity of both the experimental and numerical methods have significant implications for understanding and even for engineering the micro-macro relationship in porous materials. The ability to measure and model sub-pore-scale flow features also has relevance to the development of upscaled models for flow in porous media, where physically reasonable closure models must be developed at the sub-pore scale. These results provide valuable data

  8. Numerical modeling of sooting tendencies in a laminar co-flow diffusion flame

    OpenAIRE

    Xuan, Yuan; Blanquart, Guillaume

    2013-01-01

    The intent of this paper is to predict the experimental sooting tendencies [Combust. Flame 148 (2007) 210–222] from a detailed chemical mechanism with relatively low computational cost, using a flamelet-based model. Towards that goal, direct numerical simulations using finite-rate chemistry are conducted on a methane–air confined axisymmetric co-flow diffusion flame to provide reference data. Soot transport model is excluded in these direct simulations for both simplicity and to be unbiased f...

  9. Numerical study of laminar-turbulent transition in particle-laden channel flow.

    Science.gov (United States)

    Klinkenberg, Joy; Sardina, Gaetano; de Lange, H C; Brandt, Luca

    2013-04-01

    We present direct numerical simulations of subcritical transition to turbulence in a particle-laden channel flow, with particles assumed rigid, spherical, and heavier than the fluid. The equations describing the fluid flow are solved with an Eulerian mesh, whereas those describing the particle dynamics are solved by Lagrangian tracking. Two-way coupling between fluid and particles is modeled with Stokes drag. The numerical code is first validated against previous results from linear stability: the nonmodal growth of streamwise vortices resulting in streamwise streaks is still the most efficient mechanism for linear disturbance amplification at subcritical conditions as for the case of a single phase fluid. To analyze the full nonlinear transition, we examine two scenarios well studied in the literature: (1) transition initiated by streamwise independent counter-rotating streamwise vortices and one three-dimensional mode and (2) oblique transition, initiated by the nonlinear interaction of two symmetric oblique waves. The threshold energy for transition is computed, and it is demonstrated that for both scenarios the transition may be facilitated by the presence of particles at low number density. This is due to the fact that particles may introduce in the system detrimental disturbances of length scales not initially present. At higher concentrations, conversely, we note an increase of the disturbance energy needed for transition. The threshold energy for the oblique scenario shows a more significant increase in the presence of particles, by a factor about four. Interestingly, for the streamwise-vortex scenario the time at which transition occurs increases with the particle volume fraction when considering disturbances of equal initial energy. These results are explained by considering the reduced amplification of oblique modes in the two-phase flow. The results from these two classical scenarios indicate that, although linear stability analysis shows hardly any

  10. A Model of Turbulent-Laminar Gas-Liquid Stratified Flow

    Institute of Scientific and Technical Information of China (English)

    2001-01-01

    The time-dependent liquid film thickness and pressure drop are measured by using parallel-wire conduc tance probes and capacitance differential-pressure transducer. A mathematical model with iterative procedure to calculate holdup and pressure drop in horizontal and inclined gas-liquid stratified flow is developed. The predictions agree well with over a hundred experimental data in 0.024 and 0.04 m diameter pipelines.

  11. Numerical study of laminar flow in a sudden expansion obstacled channel

    Directory of Open Access Journals (Sweden)

    Mushatet Khudheyer S.

    2015-01-01

    Full Text Available In the present work, a numerical study has been conducted to investigate the flow heat transfer through an obstacled sudden expansion channel. Rectangular adiabatic obstacles mounted behind the expansion region on the upper and lower wall of the channel used. The effects of obstacles length, obstacles thickness and number of obstacles on flow and thermal fields for different Reynolds number and expansion ratio examined. Three values of expansion ratio (ER equal to 1.5, 1.75 and 2 were used. The choice of values of Reynolds number takes in consideration the symmetry state. The governing equations of continuity, momentum and energy discretized by using the finite difference formulation and the resulting algebraic equations solved by using Gauss-Seidle iteration method. The obtained results show that the obstacles have a considerable effect on dynamics of the flow and enhancement of heat transfer. In addition, it is found that the heat transfer is enhanced more as the obstacles thickness increases and this trend is decreased as the obstacles length increases.

  12. A Sum-of-Squares approach to feedback control of laminar wake flows

    CERN Document Server

    Lasagna, Davide; Tutty, Owen R; Chernyshenko, Sergei

    2016-01-01

    A novel nonlinear feedback control design methodology for incompressible fluid flows aiming at the optimisation of long-time averages of flow quantities is presented. It applies to reduced-order finite-dimensional models of fluid flows, expressed as a set of first-order nonlinear ordinary differential equations with the right-hand side being a polynomial function in the state variables and in the controls. The key idea, first discussed in Chernyshenko et al. 2014, Philos. T. Roy. Soc. 372(2020), is that the difficulties of treating and optimising long-time averages of a cost are relaxed by using the upper/lower bounds of such averages as the objective function. In this setting, control design reduces to finding a feedback controller that optimises the bound, subject to a polynomial inequality constraint involving the cost function, the nonlinear system, the controller itself and a tunable polynomial function. A numerically tractable approach to the solution of such optimisation problems, based on Sum-of-Squar...

  13. NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) Tests of a 10 deg Cone at Mach 1.6

    Science.gov (United States)

    Wolf, Stephen W. D.; Laub, James A.

    1997-01-01

    This work is part of the ongoing qualification of the NASA Ames Laminar Flow Supersonic Wind Tunnel (LFSWT) as a low-disturbance (quiet) facility suitable for transition research. A 10 deg cone was tested over a range of unit Reynolds numbers (Re = 2.8 to 3.8 million per foot (9.2 to 12.5 million per meter)) and angles of incidence (O deg to 10 deg) at Mach 1.6. The location of boundary layer transition along the cone was measured primarily from surface temperature distributions, with oil flow interferometry and Schlieren flow visualization providing confirmation measurements. With the LFSWT in its normal quiet operating mode, no transition was detected on the cone in the test core, over the Reynolds number range tested at zero incidence and yaw. Increasing the pressure disturbance levels in the LFSWT test section by a factor of five caused transition onset on the cone within the test core, at zero incidence and yaw. When operating the LFSWT in its normal quiet mode, transition could only be detected in the test core when high angles of incidence (greater than 5 deg) for cones were set. Transition due to elevated pressure disturbances (Tollmien-Schlichting) and surface trips produced a skin temperature rise of order 4 F (2.2 C). Transition due to cross flows on the leeward side of the cone at incidence produced a smaller initial temperature rise of only order 2.5 F (1.4 C), which indicates a slower transition process. We can conclude that these cone tests add further proof that the LFSWT test core is normally low-disturbance (pressure fluctuations greater than 0.1%), as found by associated direct flow quality measurements discussed in this report. Furthermore, in a quiet test environment, the skin temperature rise is sensitive to the type of dominant instability causing transition. The testing of a cone in the LFSWT provides an excellent experiment for the development of advanced transition detection techniques.

  14. Further Investigation on Laminar Forced Convection of Nanofluid Flows in a Uniformly Heated Pipe Using Direct Numerical Simulations

    Directory of Open Access Journals (Sweden)

    Ghofrane Sekrani

    2016-11-01

    Full Text Available In the present paper, laminar forced convection nanofluid flows in a uniformly heated horizontal tube were revisited by direct numerical simulations. Single and two-phase models were employed with constant and temperature-dependent properties. Comparisons with experimental data showed that the mixture model performs better than the single-phase model in the all cases studied. Temperature-dependent fluid properties also resulted in a better prediction of the thermal field. Particular attention was paid to the grid arrangement. The two-phase model was used then confidently to investigate the influence of the nanoparticle size on the heat and fluid flow with a particular emphasis on the sedimentation process. Four nanoparticle diameters were considered: 10, 42, 100 and 200 nm for both copper-water and alumina/water nanofluids. For the largest diameter d n p = 200 nm, the Cu nanoparticles were more sedimented by around 80%, while the A l 2 O 3 nanoparticles sedimented only by 2 . 5 %. Besides, it was found that increasing the Reynolds number improved the heat transfer rate, while it decreased the friction factor allowing the nanoparticles to stay more dispersed in the base fluid. The effect of nanoparticle type on the heat transfer coefficient was also investigated for six different water-based nanofluids. Results showed that the Cu-water nanofluid achieved the highest heat transfer coefficient, followed by C, A l 2 O 3 , C u O , T i O 2 , and S i O 2 , respectively. All results were presented and discussed for four different values of the concentration in nanoparticles, namely φ = 0 , 0 . 6 % , 1 % and 1 . 6 % . Empirical correlations for the friction coefficient and the average Nusselt number were also provided summarizing all the presented results.

  15. Numerical methods in laminar and turbulent flow; Proceedings of the 7th International Conference, Stanford Univ., CA, July 15-19, 1991. Vol. 7, pts. 1 & 2

    Science.gov (United States)

    Taylor, C. (Editor); Chin, J. H. (Editor); Homsy, G. M. (Editor)

    1991-01-01

    Consideration is given to the impulse response of a laminar boundary layer and receptivity; numerical transition to turbulence in plane Poiseuille flow; large eddy simulation of turbulent wake flow; a viscous model and loss calculation of a multisplitter cascade; vortex initiation during dynamic stall of an airfoil; a numerical analysis of isothermal flow in a combustion chamber; and compressible flow calculations with a two-equation turbulence model and unstructured grids. Attention is also given to a 2D calculation of a buoyant flow around a burning sphere, a fast multigrid method for 3D turbulent incompressible flows, a streaming flow induced by an oscillating cascade of circular cylinders, an algebraic multigrid scheme for solving the Navier-Stokes equations on unstructured meshes; and nonlinear coupled multigrid solutions to thermal problems employing different nodal grid arrangements and convective transport approximations.

  16. Pharmaceutical modulation of diffusion potentials at aqueous-aqueous boundaries under laminar flow conditions.

    Science.gov (United States)

    Collins, Courtney J; Strutwolf, Jörg; Arrigan, Damien W M

    2011-04-01

    In this work, the modulation of the diffusion potential formed at the microfluidic aqueous-aqueous boundary by a pharmaceutical substance is presented. Co-flowing aqueous streams in a microchannel were used to form the stable boundary between the streams. Measurement of the open circuit potential between two silver/silver chloride electrodes enabled the diffusion potential at the boundary to be determined, which is concentration dependent. Experimental results for protonated propranolol as well as tetrapropylammonium are presented. This concept may be useful as a strategy for the detection of drug substances.

  17. Lattice Boltzmann simulation to laminar pulsating flow past a circular cylinder with constant temperature

    Science.gov (United States)

    Zheng, Youqu; Li, Guoneng; Guo, Wenwen; Dong, Cong

    2017-09-01

    In order to investigate the heat transfer characteristics of pulsating flows past a circular cylinder, a Lattice Boltzmann (LB) numerical code based on a 2-dimension-9-velocity frame is developed. The local Nusselt number and the dimensionless viscous force around the cylinder surface are explored in detail. Double Particle Distribution Function model and the second order extrapolation method for the curve boundary of the cylinder are employed in the LB numerical code. Numerical results found that the spatial averaged Nusselt number of the cylinder is oscillating with the same pulsating frequency of the incoming air flows. The heat transfer enhancement is mainly located in the windward side of the cylinder, and the heat transfer enhancement only happens in one half cycle of the pulsation. Whereas the heat transfer in the leeward side of the cylinder is found to be unaffected, and the heat transfer is slightly deteriorated in the other half cycle of the pulsation. Further analysis showed that the heat transfer enhancement is proportional to the magnitude of dimensionless viscous force.

  18. Control of laminar wake flows using the Sum-of-Squares approach

    Science.gov (United States)

    Lasagna, Davide; Tutty, Owen; Huang, Deqing; Chernyshenko, Sergei

    2015-11-01

    A novel feedback control design methodology for finite-dimensional, reduced-order models of incompressible turbulent fluid flows, aiming at reduction of long-time averages of key quantities, is presented. The key enabler is a recent advance in control design for systems with polynomial dynamics, i.e. the discovery that the Sum-of-Squares decomposition of a non-negative polynomial, or the construction of one of such functions, can be computed via semidefinite programming techniques. Firstly, the theoretical difficulties of treating long-time averages are relaxed by abstracting the analysis to upper bounds of such averages. Then, the problems of estimation and optimisation via control design of these bounds are conveniently reformulated into constructing suitable non-negative polynomial functions, using Sum-of-Squares programming techniques. To showcase the methodology, linear and nonlinear polynomial-type state-feedback controllers are designed to reduce the fluctuations kinetic energy in the wake of a circular cylinder at Re = 100 , using rotary oscillations. A compact, reduced-order Galerkin model of the actuated wake is first derived using Proper Orthogonal Decomposition. Controllers are then designed and implemented in direct numerical simulations of the flow.

  19. An experimental investigation of pressure drop of aqueous foam in laminar tube flow

    Science.gov (United States)

    Blackwell, B. F.; Sobolik, K. B.

    1987-04-01

    This report is the first of two detailing pressure-drop and heat-transfer measurements made at the Foam Flow Heat Transfer Loop. The work was motivated by a desire to extend the application of aqueous foam from petroleum drilling to geothermal drilling. Pressure-drop measurements are detailed in this report; a forthcoming report (SAND85-1922) will describe the heat-transfer measurements. The pressure change across a 2.4-m (8-ft) length of the 2.588-cm (1.019-in.) ID test section was measured for liquid volume fractions between 0.05 and 0.35 and average velocities between 0.12 and 0.80 m/s (0.4 and 2.6 ft/s). The resulting pressure-drop/flow-rate data were correlated to a theoretical model for a Bingham plastic. Simple expressions for the dynamic viscosity and the yield stress as a function of liquid volume fraction were estimated.

  20. Validation of Reactor Physics-Thermal hydraulics Calculations for Research Reactors Cooled by the Laminar Flow of Water

    Energy Technology Data Exchange (ETDEWEB)

    Jordan, K. A.; Schubring, D. [Univ. of Florida, Florida (United States); Girardin, G.; Pautz, A. [Swiss Federal Institute of Technology, Zuerich (Switzerland)

    2013-07-01

    A collaboration between the University of Florida and the Swiss Federal Institute of Technology, Lausanne (EPFL) has been formed to develop and validate detailed coupled multiphysics models of the zero-power (100 W) CROCUS reactor at EPFL and the 100 kW University of Florida Training Reactor, for the comprehensive analysis of the reactor behavior under transient (neutronic or thermal-hydraulic induced) conditions. These two reactors differ significantly in the core design and thermal power output, but share unique heat transfer and flow characteristics. They are characterized by single-phase laminar water flow at near-atmospheric pressures in complex geometries with the possibility of mechanically entrained air bubbles. Validation experiments will be designed to expand the validation domain of these existing models, computational codes and techniques. In this process, emphasis will be placed on validation of the coupled models developed to gain confidence in their applicability for safety analysis. EPFL is responsible for the design and implementation of transient experiments to generate a database of reactor parameters (flow distribution, power profile, and power evolution) to be used to validate against code predictions. The transient experiments performed at EPFL will be simulated on the basis of developed models for these tasks. Comparative analysis will be performed with SERPENT and MCNPX reference core models. UF focuses on the generation of the coupled neutron kinetics and thermal-hydraulic models, including implementation of a TRACE/PARCS reactor simulator model, a PARET model, and development of full-field computational fluid dynamics models (using OpenFOAM) for refined thermal-hydraulics physics treatments. In this subtask of the project, the aim is to verify by means of CFD the validity of TRACE predictions for near-atmospheric pressure water flow in the presence of mechanically entrained air bubbles. The scientific understanding of these multiphysics

  1. Active Flow Separation Control of a Laminar Airfoil at Low Reynolds Number

    Science.gov (United States)

    Packard, Nathan Owen

    Detailed investigation of the NACA 643-618 is obtained at a Reynolds number of 6.4x104 and angle of attack sweep of -5° locked investigation, by way of particle image velocimetry, at ten degrees angle of attack illuminates physical mechanisms responsible for separation control of pulsed actuation at a low frequency and duty cycle. Temporal resolution of large structure formation and wake shedding is obtained, revealing a key mechanism for separation control. The Kelvin-Helmholtz instability is identified as responsible for the formation of smaller structures in the separation region which produce favorable momentum transfer, assisting in further thinning the separation region and then fully attaching the boundary layer. Closed-loop separation control of an oscillating NACA 643-618 airfoil at Re = 6.4x104 is investigated in an effort to autonomously minimize control effort while maximizing aerodynamic performance. High response sensing of unsteady flow with on-surface hot-film sensors placed at zero, twenty, and forty percent chord monitors the airfoil performance and determines the necessity of active flow control. Open-loop characterization identified the use of the forty percent sensor as the actuation trigger. Further, the sensor at twenty percent chord is used to distinguish between pre- and post- leading edge stall; this demarcation enables the utilization of optimal blowing parameters for each circumstance. The range of effectiveness of the employed control algorithm is explored, charting the practicality of the closed-loop control algorithm. To further understand the physical mechanisms inherent in the control process, the transients of the aerodynamic response to flow control are investigated. The on-surface hot-film sensor placed at the leading edge is monitored to understand the time delays and response times associated with the initialization of pulsed normal blowing. The effects of angle of attack and pitch rate on these models are investigated. Black

  2. Heat transfer in laminar Couette flow laden with rigid spherical particles

    CERN Document Server

    Ardekani, Mehdi Niazi; Picano, Francesco; Brandt, Luca

    2016-01-01

    We study heat transfer in plane Couette flow laden with rigid spherical particles by means of direct numerical simulations using a direct-forcing immersed boundary method to account for the dispersed phase. A volume of fluid approach is employed to solve the temperature field inside and outside of the particles. We focus on the variation of the heat transfer with the particle Reynolds number, total volume fraction (number of particles) and the ratio between the particle and fluid thermal diffusivity, quantified in terms of an effective suspension diffusivity. We show that, when inertia at the particle scale is negligible, the heat transfer increases with respect to the unladen case following an empirical correlation recently proposed. In addition, an average composite diffusivity can be used to predict the effective diffusivity of the suspension the inertialess regime when varying the molecular diffusion in the two phases. At finite particle inertia, however, the heat transfer increase is significantly larger...

  3. Laminar forced convection slip-flow in a micro-annulus between two concentric cylinders

    Energy Technology Data Exchange (ETDEWEB)

    Avci, Mete; Aydin, Orhan [Karadeniz Technical University, Department of Mechanical Engineering, 61080 Trabzon (Turkey)

    2008-07-01

    Forced convection heat transfer in hydrodynamically and thermally fully developed flows of viscous dissipating gases in annular microducts between two concentric micro cylinders is analyzed analytically. The viscous dissipation effect, the velocity slip and the temperature jump at the wall are taken into consideration. Two different cases of the thermal boundary conditions are considered: uniform heat flux at the outer wall and adiabatic inner wall (Case A) and uniform heat flux at the inner wall and adiabatic outer wall (Case B). Solutions for the velocity and temperature distributions and the Nusselt number are obtained for different values of the aspect ratio, the Knudsen number and the Brinkman number. The analytical results obtained are compared with those available in the literature and an excellent agreement is observed. (author)

  4. Drag phenomena within a torque converter driven automotive transmission - laminar flow approach

    Science.gov (United States)

    Alexa, O.; Marinescu, M.; Olaru, Gh; Costache, D.; Ilie, C. O.; Vinturis, V.

    2015-11-01

    When discussing a torque converter driven, automotive transmission with respect to the vehicle's coasting mode, automotive engineers have to take into account the slip between the converter's propeller and turbine. If the turbine isn't locked to the propellers during coasting process, drag phenomena within the converter's fluid occur and they have to be properly assessed when computing the coasting process dynamics. The best way to make the needed evaluation is to have a separate torque converter and test it on a test bench, if the data provided by the manufacturer, in this respect, weren't available. But there are several issues that could baffle this action. Among them, one could find the lack of information from the manufacturer, missing (bankrupted) manufacturer, classified information, old (out of date) products and so on. An even more challenging situation consists in dealing with a military special vehicle. Actually, the vehicle that would be subjected to the following topic is a military tracked, heavy vehicle (MBT) with a planetary driveline, driven by its engine via a hydraulic torque converter. In the attempt to assess its’ coasting dynamic performances, we faced the problem of the reverse rotation of the torque converter that strongly influences the general drag of the vehicle's motion. Hence, this paper tries to provide a method to determine the transmission overall drag considering the torque converter as being its main contributor. The method is based on the experimental research our team has performed in the last several months. Using high-quality software and adjacent mathematics while assuming a certain sort of flow type within the torque converter, we aimed at determining the parameter of interest of the flow. The method can be successfully used for all type of hydrodynamic components of the transmission under the condition of developing the necessary experimental research. As far as the test were concerned, they were the typical ones designed

  5. Radiation and Viscous Dissipation Effects on Laminar Boundary Layer Flow Nanofluid over a Vertical Plate with a Convective Surface Boundary Condition with Suction

    Directory of Open Access Journals (Sweden)

    K. Gangadhar

    2016-01-01

    Full Text Available The problem of laminar radiation and viscous dissipation effects on laminar boundary layer flow over a vertical plate with a convective surface boundary condition is studied using different types of nanoparticles. The general governing partial differential equations are transformed into a set of two nonlinear ordinary differential equations using unique similarity transformation. Numerical solutions of the similarity equations are obtained using the Nachtsheim-Swigert Shooting iteration technique along with the fourth order Runga Kutta method. Two different types of nanoparticles copper water nanofluid and alumina water nanofluid are studied. The effects of radiation and viscous dissipation on the heat transfer characteristics are discussed in detail. It is observed that as Radiation parameter increases, temperature decreases for copper water and alumina water nanofluid and the heat transfer coefficient of nanofluids increases with the increase of convective heat transfer parameter for copper water and alumina water nanofluids.

  6. Pulsatile Non-Newtonian Laminar Blood Flows through Arterial Double Stenoses

    Directory of Open Access Journals (Sweden)

    Mir Golam Rabby

    2014-01-01

    Full Text Available The paper presents a numerical investigation of non-Newtonian modeling effects on unsteady periodic flows in a two-dimensional (2D pipe with two idealized stenoses of 75% and 50% degrees, respectively. The governing Navier-Stokes equations have been modified using the Cartesian curvilinear coordinates to handle complex geometries. The investigation has been carried out to characterize four different non-Newtonian constitutive equations of blood, namely, the (i Carreau, (ii Cross, (iii Modified Casson, and (iv Quemada models. The Newtonian model has also been analyzed to study the physics of fluid and the results are compared with the non-Newtonian viscosity models. The numerical results are represented in terms of streamwise velocity, pressure distribution, and wall shear stress (WSS as well as the vorticity, streamlines, and vector plots indicating recirculation zones at the poststenotic region. The results of this study demonstrate a lower risk of thrombogenesis at the downstream of stenoses and inadequate blood supply to different organs of human body in the Newtonian model compared to the non-Newtonian ones.

  7. Experimental and Kinetic Modeling Study of Extinction and Ignition of Methyl Decanoate in Laminar Nonpremixed Flows

    Energy Technology Data Exchange (ETDEWEB)

    Seshadri, K; Lu, T; Herbinet, O; Humer, S; Niemann, U; Pitz, W J; Law, C K

    2008-01-09

    Methyl decanoate is a large methyl ester that can be used as a surrogate for biodiesel. In this experimental and computational study, the combustion of methyl decanoate is investigated in nonpremixed, nonuniform flows. Experiments are performed employing the counterflow configuration with a fuel stream made up of vaporized methyl decanoate and nitrogen, and an oxidizer stream of air. The mass fraction of fuel in the fuel stream is measured as a function of the strain rate at extinction, and critical conditions of ignition are measured in terms of the temperature of the oxidizer stream as a function of the strain rate. It is not possible to use a fully detailed mechanism for methyl decanoate to simulate the counterflow flames because the number of species and reactions is too large to employ with current flame codes and computer resources. Therefore a skeletal mechanism was deduced from a detailed mechanism of 8555 elementary reactions and 3036 species using 'directed relation graph' method. This skeletal mechanism has only 713 elementary reactions and 125 species. Critical conditions of ignition were calculated using this skeletal mechanism and are found to agree well with experimental data. The predicted strain rate at extinction is found to be lower than the measurements. In general, the methyl decanoate mechanism provides a realistic kinetic tool for simulation of biodiesel fuels.

  8. Characteristics of Laminar Flow in Pipelines of Homogenous Alum Sludge Approximated with use of the Vočadlo Model for Viscoplastic Liquids

    Directory of Open Access Journals (Sweden)

    Kempiński Jan

    2014-12-01

    Full Text Available The study presents the manners of determination of the Darcy friction factor λ for a homogenous hydromixture of alum sludge of varied hydration and temperature for the laminar flow zone. The rheological evaluation of the hydromixture as a viscoplastic body has been conducted with use of measurements of viscosity. The curves of flow were approximated with use of the generalized Vočadlo model. The Darcy friction factor λ of the pipeline was determined with use of the non-dimensional criterion λ(Regen and λ(Re, He.

  9. Convective heat transfer enhancement of laminar flow of latent functionally thermal fluid in a circular tube with constant heat flux: internal heat source model and its application

    Institute of Scientific and Technical Information of China (English)

    张寅平; 胡先旭; 郝磬; 王馨

    2003-01-01

    This paper analyzes the convective heat transfer enhancement mechanism of latent heat functionally thermal fluid. By using the proposed internal heat source model, the influence of each factor affecting the heat transfer enhancement of laminar flow in a circular tube with constant heat flux is analyzed. The main influencing factors and the mechanisms of heat transfer enhancement are clarified, and the influences of the main factors on the heat transfer enhancement are quantitatively analyzed. A modified Nusselt number for internal flow is introduced to describe more effectively the degree of heat transfer enhancement for latent functionally thermal fluid.

  10. Mixed convection laminar flow and heat transfer of liquids in horizontal internally finned tubes

    Energy Technology Data Exchange (ETDEWEB)

    Shome, B. [Univ. of Delaware, Newark, DE (United States). Dept. of Mechanical Engineering

    1998-01-01

    Energy and material savings, as well as economic incentives, have led to concentrated efforts over the past several decades in the field of heat transfer enhancement to produce more efficient and compact heat exchangers. Internally finned tubes are widely used for heat transfer enhancement, particularly in chemical process and petroleum industries. A finned tube heat exchanger with optimum geometry could offer 35--40% increase in heat duty for equal pumping power and size over a smooth tube heat exchanger or a comparable decrease in the heat exchanger size for a given heat duty. Developing mixed convection flow in internally finned tubes with variable viscosity was numerically investigated for a fin geometry range of 8 {le} N {le} 24, 0.1 {le} H {le} 0.3 and an operating condition range of 50 {le} Pr{sub in} {le} 1,250, 0 {le} Ra{sub in} {le} 10{sup 7}, and 0 {le} q{sub w}d/k{sub in} {le} 2,000. The numerical model was validated by comparison with existing numerical and experimental data. Internal finning was found to produce a complex two-cell, buoyancy-induced vortex structure. The results show that coring (retarded velocity in the interfin region) leads to poor heat transfer performance of tubes with large numbers of fins or with tall fins. The overall results indicated that large enhancement in the heat transfer can be obtained in the entrance region. Furthermore, variable viscosity effects are seen to have a pronounced effect on the friction factor and Nusselt number predictions.

  11. Growth rates of dynamic dermal model exposed to laminar flow and magnetic fields

    Directory of Open Access Journals (Sweden)

    Luis Javier Martinez

    Full Text Available Abstract Introduction Ongoing research in the use of electromagnetic stimulation as coadjuvant in fracture healing has led the authors to begin generating computer models in order to predict cellular growth changes when cells are electromagnetically stimulated. By generating these models, scientists will be able to better understand how electromagnetic fields affect cellular development. The experimental design integrated a cellular culture bioreactor along with an external magnetic stimulation system, which allowed for dermal models to be exposed to controlled magnetic fields. Methods Initially, it was necessary to analyze the static growth of Normal Human Skin Fibroblast (NHSF cells when they were exposed to Extremely Low Frequency – Electromagnetic Fields (ELF-EMFs. Using optimal conditions for the NHSF culture, from stimulation signal to scaffolding material, we were able to perform the dynamic flow stimulation experiments. Results The following systems were developed: (1 a bioreactor aimed at cellular tissue culture, and (2 Helmholtz coils capable of generating stimulation signals for the cultured tissue. The authors were able to appreciate the quantified values of cellular density diluted in all the experiment samples that were taken and overall, the irradiated samples displayed an average increase of 53% higher cellular density for the same amount of initial cellular seeding when the cells were exposed to a 1 mT, 60 Hz magnetic field signal. Conclusion ELF-EMF’s indeed alter NHSF cell growth rates and it is the challenge of the authors to continue investigating what cellular mechanisms are altered when cells are exposed to ELF-EMF’s.

  12. 层流自然对流传热的一种二阶投影方法%A SECOND ORDER PROJECTION METHOD FOR LAMINAR NATURAL CONVECTION

    Institute of Scientific and Technical Information of China (English)

    朱祚金; 解志民

    2003-01-01

    The paper presents a second order projection method (PmⅢ) whicn can be used to study laminar natural convection numerically by solving its relevant governing equations. Taking the natural convection occurred in an inclined parallel-walled channel as an example, the results of the application of this method to the heat transfer problem were compared with experiments, and an excellent agreement was obtained. This shows that the method given in this paper is reliable and an effective one for numerical heat transfer.

  13. Numerical and experimental analysis of local flow phenomena in laminar Taylor flow in a square mini-channel

    Science.gov (United States)

    Falconi, C. J.; Lehrenfeld, C.; Marschall, H.; Meyer, C.; Abiev, R.; Bothe, D.; Reusken, A.; Schlüter, M.; Wörner, M.

    2016-01-01

    The vertically upward Taylor flow in a small square channel (side length 2 mm) is one of the guiding measures within the priority program "Transport Processes at Fluidic Interfaces" (SPP 1506) of the German Research Foundation (DFG). This paper presents the results of coordinated experiments and three-dimensional numerical simulations (with three different academic computer codes) for typical local flow parameters (bubble shape, thickness of the liquid film, and velocity profiles) in different cutting planes (lateral and diagonal) for a specific co-current Taylor flow. For most quantities, the differences between the three simulation results and also between the numerical and experimental results are below a few percent. The experimental and computational results consistently show interesting three-dimensional flow effects in the rear part of the liquid film. There, a local back flow of liquid occurs in the fixed frame of reference which leads to a temporary reversal of the direction of the wall shear stress during the passage of a Taylor bubble. Notably, the axial positions of the region with local backflow and those of the minimum vertical velocity differ in the lateral and the diagonal liquid films. By a thorough analysis of the fully resolved simulation results, this previously unknown phenomenon is explained in detail and, moreover, approximate criteria for its occurrence in practical applications are given. It is the different magnitude of the velocity in the lateral film and in the corner region which leads to azimuthal pressure differences in the lateral and diagonal liquid films and causes a slight deviation of the bubble from the rotational symmetry. This deviation is opposite in the front and rear parts of the bubble and has the mentioned significant effects on the local flow field in the rear part of the liquid film.

  14. Computations of incompressible fluid flow around a long square obstacle near a wall: laminar forced flow and thermal characteristics

    Indian Academy of Sciences (India)

    DEEPAK KUMAR; AMIT KUMAR DHIMAN

    2017-06-01

    Computations of incompressible fluid flow and heat transfer around a square obstacle with a near by adiabatic wall have been performed in a horizontal plane. The ranges of dimensionless control parameters considered are Prandtl number (Pr) = 10–100, Reynolds number (Re) = 1–150 and gap ratio (G) = 0.25–1.The steady-flow regime is observed up to Re = 121 for G = 0.5, and beyond this Re, time-periodic regime is observed. The shift to a time-periodic regime from a steady regime occurred at greater Re than that for an unconfined square obstacle. With increasing Pr, increase in average Nusselt number values is recorded for all Re and G studied. The heat transfer augmentation is approximately 1332% at Re = 150 (Pr = 100, G = 0.25) with regard to the corresponding values at Re = 1. Lastly, a correlation for jh factor is determined for the preceded conditions.

  15. Finite-Difference Solution for Laminar or Turbulent Boundary Layer Flow over Axisymmetric Bodies with Ideal Gas, CF4, or Equilibrium Air Chemistry

    Science.gov (United States)

    Hamilton, H. Harris, II; Millman, Daniel R.; Greendyke, Robert B.

    1992-01-01

    A computer code was developed that uses an implicit finite-difference technique to solve nonsimilar, axisymmetric boundary layer equations for both laminar and turbulent flow. The code can treat ideal gases, air in chemical equilibrium, and carbon tetrafluoride (CF4), which is a useful gas for hypersonic blunt-body simulations. This is the only known boundary layer code that can treat CF4. Comparisons with experimental data have demonstrated that accurate solutions are obtained. The method should prove useful as an analysis tool for comparing calculations with wind tunnel experiments and for making calculations about flight vehicles where equilibrium air chemistry assumptions are valid.

  16. Drag measurements on a laminar flow body of revolution in Langley's 13 inch magnetic suspension and balance system. M.S. Thesis

    Science.gov (United States)

    Dress, David A.

    1988-01-01

    Low-speed wind tunnel drag force measurements were taken on a laminar flow body of revolution free of support interference. This body was tested at zero incidence in the NASA Langley 13 inch Magnetic Suspension and Balance System (MSBS). The primary objective of these tests was to substantiate the drag force measuring capabilities of the 13 inch MSBS. A secondary objective was to obtain support interference free drag measurements on an axisymmetric body of interest. Both objectives were met. The drag force calibrations and wind-on repeatability data provide a means of assessing the drag force measuring capabilities of the 13 inch MSBS. The measured drag coefficients for this body are of interest to researchers actively involved in designing minimum drag fuselage shapes. Additional investigations included: the effects of fixing transition; the effects of fins installed in the tail; surface flow visualizations using both liquid crystals and oil flow; and base pressure measurements using a one-channel telemetry system. Two drag prediction codes were used to assess their usefulness in estimating overall body drag. These theoretical results did not compare well with the measured values because of the following: incorrect or non-existent modeling of a laminar separation bubble on the body and incorrect of non-existent estimates of base pressure drag.

  17. Integral transformation of the Navier-Stokes equations for laminar flow in channels of arbitrary two-dimensional geometry; Transformacao integral das equacoes de Navier-Stokes para escoamento laminar em canais de geometria bidimensional arbitraria

    Energy Technology Data Exchange (ETDEWEB)

    Perez Guerrero, Jesus Salvador

    1995-12-31

    Laminar developing flow in channels of arbitrary geometry was studied by solving the Navier-Stokes equations in the stream function-only formulation through the Generalized Integral Transform Technique (GITT). The stream function is expanded in an infinite system based on eigenfunctions obtained by considering solely the diffusive terms of the original formulation. The Navier-Stokes equations are transformed into an infinite system of ordinary differential equations, by using the transformation and inversion formulae. For computational purposes, the infinite series is truncated, according to an automatic error control procedure. The ordinary differential is solved through well-established scientific subroutines from widely available mathematical libraries. The classical problem of developing flow between parallel-plates is analysed first, as for both uniform and irrotational inlet conditions. The effect of truncating the duct length in the accuracy of the obtained solution is studied. A convergence analysis of the results obtained by the GITT is performed and compared with results obtained by finite difference and finite element methods, for different values of Reynolds number. The problem of flow over a backward-facing step then follows. Comparisons with experimental results in the literature indicate an excellent agreement. The numerical co-validation was established for a test case, and perfect agreement is reached against results considered as benchmarks in the recent literature. The results were shown to be physically more reasonable than others obtained by purely numerical methods, in particular for situations where three-dimensional effects are identified. Finally, a test problem for an irregular by shoped duct was studied and compared against results found in the literature, with good agreement and excellent convergence rates for the stream function field along the whole channel, for different values of Reynolds number. (author) 78 refs., 24 figs., 14 tabs.

  18. Flow chemistry syntheses of natural products.

    Science.gov (United States)

    Pastre, Julio C; Browne, Duncan L; Ley, Steven V

    2013-12-07

    The development and application of continuous flow chemistry methods for synthesis is a rapidly growing area of research. In particular, natural products provide demanding challenges to this developing technology. This review highlights successes in the area with an emphasis on new opportunities and technological advances.

  19. Does the use of laminar flow and space suits reduce early deep infection after total hip and knee replacement?: the ten-year results of the New Zealand Joint Registry.

    Science.gov (United States)

    Hooper, G J; Rothwell, A G; Frampton, C; Wyatt, M C

    2011-01-01

    We have investigated whether the use of laminar-flow theatres and space suits reduced the rate of revision for early deep infection after total hip (THR) and knee (TKR) replacement by reviewing the results of the New Zealand Joint Registry at ten years. Of the 51 485 primary THRs and 36 826 primary TKRs analysed, laminar-flow theatres were used in 35.5% and space suits in 23.5%. For THR there was a significant increase in early infection in those procedures performed with the use of a space suit compared with those without (p space suit (p space suit (p space suits were used in those theatres (p deep infection has not been reduced by using laminar flow and space suits. Our results question the rationale for their increasing use in routine joint replacement, where the added cost to the health system seems to be unjustified.

  20. Chemical kinetic study of a novel lignocellulosic biofuel: Di-n-butyl ether oxidation in a laminar flow reactor and flames

    KAUST Repository

    Cai, Liming

    2014-03-01

    The combustion characteristics of promising alternative fuels have been studied extensively in the recent years. Nevertheless, the pyrolysis and oxidation kinetics for many oxygenated fuels are not well characterized compared to those of hydrocarbons. In the present investigation, the first chemical kinetic study of a long-chain linear symmetric ether, di-n-butyl ether (DBE), is presented and a detailed reaction model is developed. DBE has been identified recently as a candidate biofuel produced from lignocellulosic biomass. The model includes both high temperature and low temperature reaction pathways with reaction rates generated using appropriate rate rules. In addition, experimental studies on fundamental combustion characteristics, such as ignition delay times and laminar flame speeds have been performed. A laminar flow reactor was used to determine the ignition delay times of lean and stoichiometric DBE/air mixtures. The laminar flame speeds of DBE/air mixtures were measured in the stagnation flame configuration for a wide rage of equivalence ratios at atmospheric pressure and an unburned reactant temperature of 373. K. All experimental data were modeled using the present kinetic model. The agreement between measured and computed results is satisfactory, and the model was used to elucidate the oxidation pathways of DBE. The dissociation of keto-hydroperoxides, leading to radical chain branching was found to dominate the ignition of DBE in the low temperature regime. The results of the present numerical and experimental study of the oxidation of di-n-butyl ether provide a good basis for further investigation of long chain linear and branched ethers. © 2013 The Combustion Institute.

  1. Unsteady laminar mixed convection boundary layer flow near a vertical wedge due to oscillations in the free-stream and surface temperature

    Directory of Open Access Journals (Sweden)

    Roy N.C.

    2016-02-01

    Full Text Available The unsteady laminar boundary layer characteristics of mixed convection flow past a vertical wedge have been investigated numerically. The free-stream velocity and surface temperature are assumed to be oscillating in the magnitude but not in the direction of the oncoming flow velocity. The governing equations have been solved by two distinct methods, namely, the straightforward finite difference method for the entire frequency range, and the extended series solution for low frequency range and the asymptotic series expansion method for high frequency range. The results demonstrate the effects of the Richardson number, Ri, introduced to quantify the influence of mixed convection and the Prandtl number, Pr, on the amplitudes and phase angles of the skin friction and heat transfer. In addition, the effects of these parameters are examined in terms of the transient skin friction and heat transfer.

  2. Hybrid Laminar Fin Investigations

    Science.gov (United States)

    2001-06-01

    the driving unit being an ejector . Reynolds numbers at cruise conditions a ½2 scale model has been chosen to be tested in the ONERA SI MA wind The...enabled laminar flow to be ONERA and based on advanced CFD -tools [3] the final fully demonstrated up to a Mach number of 0.6. For shape which is...for different Mach numbers. As A critical issue for the second item and therefore a part of a detailed analysis of these experimental results

  3. Laminar Plasma Dynamos

    CERN Document Server

    Wang, Z; Barnes, C W; Barnes, D C; Wang, Zhehui; Pariev, Vladimir I.; Barnes, Cris W.; Barnes, Daniel C.

    2002-01-01

    A new kind of dynamo utilizing flowing laboratory plasmas has been identified. Conversion of plasma kinetic energy to magnetic energy is verified numerically by kinematic dynamo simulations for magnetic Reynolds numbers above 210. As opposed to intrinsically-turbulent liquid-sodium dynamos, the proposed plasma dynamos correspond to laminar flow topology. Modest plasma parameters, 1-20 eV temperatures, 10^{19}-10^{20} m^{-3} densities in 0.3-1.0 m scale-lengths driven by velocities on the order of the Alfven Critical Ionization Velocity (CIV), self-consistently satisfy the conditions needed for the magnetic field amplication. Growth rates for the plasma dynamos are obtained numerically with different geometry and magnetic Reynolds numbers. Magnetic-field-free coaxial plasma guns can be used to sustain the plasma flow and the dynamo.

  4. Comparative study of laminar and turbulent flow model with different operating parameters for radio frequency-inductively coupled plasma torch working at 3  MHz frequency at atmospheric pressure

    Energy Technology Data Exchange (ETDEWEB)

    Punjabi, Sangeeta B., E-mail: p.sangeeta@gmail.com [Electrical Engineering Department, V.J.T.I., Matunga, Mumbai 400019 (India); Department of Physics, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098 (India); Sahasrabudhe, S. N.; Das, A. K. [Laser and Plasma Technology Division, BARC, Mumbai 400085 (India); Joshi, N. K. [Faculty of Engineering and Technology, MITS, Lakshmangarh (Sikar), Rajasthan 332311 (India); Mangalvedekar, H. A. [Electrical Engineering Department, V.J.T.I., Matunga, Mumbai 400019 (India); Kothari, D. C. [Department of Physics, University of Mumbai, Kalina, Santacruz (E), Mumbai 400098 (India)

    2014-01-15

    This paper provides 2D comparative study of results obtained using laminar and turbulent flow model for RF (radio frequency) Inductively Coupled Plasma (ICP) torch. The study was done for the RF-ICP torch operating at 50 kW DC power and 3 MHz frequency located at BARC. The numerical modeling for this RF-ICP torch is done using ANSYS software with the developed User Defined Function. A comparative study is done between laminar and turbulent flow model to investigate how temperature and flow fields change when using different operating conditions such as (a) swirl and no swirl velocity for sheath gas flow rate, (b) variation in sheath gas flow rate, and (c) variation in plasma gas flow rate. These studies will be useful for different material processing applications.

  5. Effect of variable viscosity on laminar convection flow of an electrically conducting fluid in uniform magnetic field

    Directory of Open Access Journals (Sweden)

    Chakraborty S.

    2002-01-01

    Full Text Available The flow of a viscous incompressible electrically conducting fluid on a continuous moving flat plate in presence of uniform transverse magnetic field, is studied. The flat plate which is continuously moving in its own plane with a constant speed is considered to be isothermally heated. Assuming the fluid viscosity as an inverse linear function of temperature, the nature of fluid velocity and temperature in presence of uniform magnetic field are shown for changing viscosity parameter at different layers of the medium. Numerical solutions are obtained by using Runge-Kutta and Shooting method. The coefficient of skin friction and the rate of heat transfer are calculated at different viscosity parameter and Prandt l number. .

  6. Mass and heat transfer during water evaporation in laminar flow inside a rectangular channel - validity of heat and mass transfer analogy

    Energy Technology Data Exchange (ETDEWEB)

    Boukadida, N. [Faculte des Sciences, Dept. of Physics, Monastir (Tunisia); Ben Nasrallah, S. [Ecole Nationale d' Ingenieurs de Monastir, Dept. of Energetics (Tunisia)

    2001-01-01

    A detailed numerical analysis concerning the mechanism of heat and mass transfer during water evaporation in a two dimensional steady laminar flow of dry air or air-vapor mixture in a horizontal channel is studied. The gas is considered as absorbing, emitting and non-scattering medium with variable thermophysical properties. The results show the effect of different state variables on the coefficients of heat and mass transfer and the domain where the analogy between the heat and mass transfer is valid. They also show the effect of the thermal radiation on the ratio between Sherwood and Nusselt numbers. The comparison between the present results and those obtained in previous published studies [32-34] features to a satisfactory agreement. (authors)

  7. Experimental study of the friction factor of liquid laminar flows in micro-tubes; Etude experimentale du coefficient de frottement d'ecoulements laminaires en microtubes

    Energy Technology Data Exchange (ETDEWEB)

    Brutin, D.; Tadrist, L. [Ecole Polytechnique Universitaire de Marseille: Lab. IUSTI-U.M.R. 6595, 13 - Marseille (France)

    2003-07-01

    We highlight an original method to determine precisely the friction factor of laminar flows in capillaries. The experiments are performed at Reynolds numbers ranging from 10 to 1000 using a transient method. We carry out a set of experiments and develop a specific treatment method. The friction factor obtained for capillary diameters ranging from 50 to 530 {mu}m is experimentally determined. Experiments are also developed for two fluids: distilled and tap water. Experimental results for tap water and fused silica surfaces indicate a deviation to the Moody's theory. An increase of the friction factor is observed for decreasing diameters using tap water. This result seems to be to due to the fluid's ionic composition (Electric Double Layer). (authors)

  8. Experimental study on heat transfer enhancement of laminar ferrofluid flow in horizontal tube partially filled porous media under fixed parallel magnet bars

    Science.gov (United States)

    Sheikhnejad, Yahya; Hosseini, Reza; Saffar Avval, Majid

    2017-02-01

    In this study, steady state laminar ferroconvection through circular horizontal tube partially filled with porous media under constant heat flux is experimentally investigated. Transverse magnetic fields were applied on ferrofluid flow by two fixed parallel magnet bar positioned on a certain distance from beginning of the test section. The results show promising notable enhancement in heat transfer as a consequence of partially filled porous media and magnetic field, up to 2.2 and 1.4 fold enhancement were observed in heat transfer coefficient respectively. It was found that presence of both porous media and magnetic field simultaneously can highly improve heat transfer up to 2.4 fold. Porous media of course plays a major role in this configuration. Virtually, application of Magnetic field and porous media also insert higher pressure loss along the pipe which again porous media contribution is higher that magnetic field.

  9. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux

    Energy Technology Data Exchange (ETDEWEB)

    Karimipour, Arash; Taghipour, Abdolmajid [Department of Mechanical Engineering, Najafabad Branch, Islamic Azad University, Najafabad (Iran, Islamic Republic of); Malvandi, Amir, E-mail: amirmalvandi@aut.ac.ir [Department of Mechanical Engineering, Neyshabur Branch, Islamic Azad University, Neyshabur (Iran, Islamic Republic of)

    2016-12-01

    This paper aims to investigate magnetic field and slip effects on developing laminar forced convection of nanofluids in the microchannels. A novel mixture of water and FMWNT carbon nanotubes is used as the working fluid. To do this, fluid flow and heat transfer through a microchannel is simulated by a computer code in FORTRAN language. The mixture of FMWNT carbon nanotubes suspended in water is considered as the nanofluid. Slip velocity is supposed as the hydrodynamic boundary condition while the microchannel's lower wall is insulated and the top wall is under the effect of a constant heat flux. Moreover, the flow field is subjected to a magnetic field with a constant strength. The results are presented as the velocity, temperature and Nusselt number profiles. It is observed that nanofluid composed of water and carbon nanotubes (FMWNT) can work well to increase the heat transfer rate along the microchannel walls. Furthermore, it is indicated that imposing the magnetic field is very effective at the thermally developing region. In contrast, the magnetic field effect at fully developed region is insignificant, especially at low values of Reynolds number. - Highlights: • Simulation of water/FMWNT carbon nanotubes flow in a microchannel. • The effects of magnetic field strength on nanofluid's slip velocity. • The effects of Ha, Re, ϕ and slip coefficient on averaged Nusselt number. • Magnetic field effect at developing flow region is significant.

  10. The impact of reactants composition and temperature on the flow structure in a wake stabilized laminar lean premixed CH4/H2/air flames; mechanism and scaling

    KAUST Repository

    Michaels, D.

    2016-11-11

    In this paper we investigate the role of reactants composition and temperature in defining the steady flow structure in bluff body stabilized premixed flames. The study was motivated by experiments which showed that the flow structure and stability map for different fuels and inlet conditions collapse using the extinction strain rate as the chemical time scale. The investigation is conducted using a laminar lean premixed flame stabilized on a heat conducting bluff-body. Calculations are performed for a wide range of mixtures of CH4/H2/air (0.35 ≤ ϕ ≤ 0.75, 0 ≤ %H2 ≤ 40, 300 ≤ Tin [K] ≤ 500) in order to systematically vary the burning velocity (2.0–35.6 cm/s), dilatation ratio (2.7–6.4), and extinction strain rate (106–2924 1/s). The model is based on a fully resolved unsteady two-dimensional flow with detailed chemistry and species transport, and with no artificial flame anchoring boundary conditions. Calculations reveal that the recirculation zone length correlates with a chemical time scale based on the flame extinction strain rate corresponding to the inlet fuel composition, stoichiometry, pressure and temperature; and are consistent with experimental data in literature. It was found that in the wake region the flame is highly stretched and its location and interaction with the flow is governed by the reactants combustion characteristics under high strain.

  11. Effect of rod gap spacing on a suction panel for laminar flow and noise control in supersonic wind tunnels. M.S. Thesis - Old Dominion Univ.

    Science.gov (United States)

    Harvey, W. D.

    1975-01-01

    Results are presented of a coordinated experimental and theoretical study of a sound shield concept which aims to provide a means of noise reduction in the test section of supersonic wind tunnels at high Reynolds numbers. The model used consists of a planar array of circular rods aligned with the flow, with adjustable gaps between them for boundary layer removal by suction, i.e., laminar flow control. One of the basic requirements of the present sound shield concept is to achieve sonic cross flow through the gaps in order to prevent lee-side flow disturbances from penetrating back into the shielded region. Tests were conducted at Mach 6 over a local unit Reynolds number range from about 1.2 x 10 to the 6th power to 13.5 x 10 to the 6th power per foot. Measurements of heat transfer, static pressure, and sound levels were made to establish the transition characteristics of the boundary layer on the rod array and the sound shielding effectiveness.

  12. 无菌层流病房护理人员倦怠调查及对策%Investigation in job burnout of nursing staff in sterile laminar flow wards and countermeasures

    Institute of Scientific and Technical Information of China (English)

    李文娟; 丁小萍

    2012-01-01

    Objective To evaluate the job burnout of the nurses in sterile laminar flow wards and offer proposals for improvements.Methods Forty nurses in sterile laminar flow wards were surveyed with MBI-GS.Results The scores of emotional exhaustion,cynicism,job inefficiency were higher after working in sterile laminar flow wards for 3 months than those working in general wards for 3 months.Conclusions The nurses in laminar flow wards are prone to have job burnout.Standardized training,humanized management and positive psvchological intervention can improve the job burnout of the nurses in laminar flow wards.%目的 分析、评价层流病房护理人员工作倦怠的状态,并提出相应的改善对策.方法 选取血液科和器官移植科层流病房护理人员40名,采用Maslach工作倦怠量表(MBI-GS)对其工作倦怠状况进行评价.结果 40名护理人员在层流病房工作3个月后,情绪耗竭、消极怠慢、专业低效能感的得分均高于普通病房连续工作3个月后的测评状态.结论 层流病房护理人员更易产生工作倦怠状态;通过加强层流病房护理规范培训、人性化管理及积极的心理干预可以舒缓工作倦怠状态.

  13. Lab-on-chip microfluidic impedance measurement for laminar flow ratio sensing and differential conductivity difference detection

    Science.gov (United States)

    Kong, Tian Fook; Shen, Xinhui; Marcos, Yang, Chun

    2017-06-01

    We present a microfluidic impedance device for achieving both the flow ratio sensing and the conductivity difference detection between sample stream and reference buffer. By using a flow focusing configuration, with the core flow having a higher conductivity sample than the sheath flow streams, the conductance of the device varies linearly with the flow ratio, with R2 > 0.999. On the other hand, by using deionized (DI)-water sheath flow as a reference, we can detect the difference in conductivity between the buffer of core flow and sheath DI-water with a high detection sensitivity of up to 1 nM of sodium chloride solution. Our study provides a promising approach for on-chip flow mixing characterization and bacteria detection.

  14. CFD and experimental investigation on the heat transfer characteristics of alumina nanofluids under the laminar flow regime

    Directory of Open Access Journals (Sweden)

    A. Azari

    2014-06-01

    Full Text Available This study reports experimental and Computational Fluid Dynamics (CFD investigations of the laminar convective heat transfer coefficient of Al2O3/water nanofluids in a circular tube under uniform and constant heat flux on the wall. Three different models including a constant physical properties single-phase (CP-SP model, a variable physical properties single-phase (VP-SP model and a discrete particles two-phase model were developed. Particle agglomeration and cluster size distribution were considered in the two-phase model. Experimental and simulation results showed that the thermal performance of nanofluids is higher than that of the base fluid and the heat transfer enhancement increases with the particle volume concentration and Reynolds number. Furthermore, higher heat transfer coefficients were detected in the case of the VP-SP model and the two-phase model. The results demonstrated that the two-phase model prediction and experimental data match significantly and that the model can be employed with confidence for the prediction of any type of nanofluid.

  15. Flow and heat and mass transfer in laminar and turbulent mist gas-droplets stream over a flat plate

    CERN Document Server

    Terekhov, Victor I

    2014-01-01

    In this book the author presents selected challenges of thermal-hydraulics modeling of two-phase flows in minichannels with change of phase. These encompass the common modeling of flow boiling and flow condensation using the same expression. Approaches to model these two respective cases show, however, that experimental data show different results to those obtained by methods of calculation of heat transfer coefficient for respective cases. Partially that can be devoted to the fact that there are non-adiabatic effects present in both types of phase change phenomena which modify the pressure drop due to friction, responsible for appropriate modelling. The modification of interface shear stresses between flow boiling and flow condensation in case of annular flow structure may be considered through incorporation of the so called blowing parameter, which differentiates between these two modes of heat transfer. On the other hand, in case of bubbly flows, the generation of bubbles also modifies the friction pressur...

  16. Theoretical analysis for the heterogeneous decomposition of hydrogen sulfide to hydrogen on an iron-metallic plate in a laminar stagnation-point flow

    Energy Technology Data Exchange (ETDEWEB)

    Martinez, J.C. [Facultad de Ingenieria, Universidad Autonoma de Campeche, 24030 Campeche (Mexico); Mendez, F. [Facultad de Ingenieria, Universidad Nacional Autonoma de Mexico, 04510 Mexico DF (Mexico)]. E-mail: fmendez@servidor.unam.mx; Trevino, C. [Facultad de Ciencias, Universidad Nacional Autonoma de Mexico, 04510 Mexico DF (Mexico)

    2006-12-15

    In this work, we have theoretically analyzed the conversion process of hydrogen sulfide, H{sub 2}S, to atomic hydrogen, H{sup 0}, in a planar stagnation-point flow over an iron-metallic surface. We assume that a binary mixture of hydrogen sulfide and methane composes the laminar stagnation flow. In order to characterize this complex phenomenon with very specific chemical activities on the surface of the metallic plate, we propose a heterogeneous reaction scheme based on four reactions: two electrochemical, one adsorption and an additional exothermic reaction needed to complete the direct conversion of hydrogen sulfide to hydrogen on the surface of the iron. The nondimensional governing equations, which include the mass species and momentum conservation of the mixture and the molecular diffusion of hydrogen into the iron plate, are numerically solved by conventional finite-difference methods. The numerical results show the critical conditions of the H{sub 2}S decomposition as functions of the involved nondimensional parameters of the present model. In particular, we show parametrically the influence that has the initial concentration of H{sub 2}S on the surface coverage of the chemical products HS{sup -} H{sup +} and H{sup 0} derived from the chemical and electrochemical reactions.

  17. Developing the laminar MHD forced convection flow of water/FMWNT carbon nanotubes in a microchannel imposed the uniform heat flux

    Science.gov (United States)

    Karimipour, Arash; Taghipour, Abdolmajid; Malvandi, Amir

    2016-12-01

    This paper aims to investigate magnetic field and slip effects on developing laminar forced convection of nanofluids in the microchannels. A novel mixture of water and FMWNT carbon nanotubes is used as the working fluid. To do this, fluid flow and heat transfer through a microchannel is simulated by a computer code in FORTRAN language. The mixture of FMWNT carbon nanotubes suspended in water is considered as the nanofluid. Slip velocity is supposed as the hydrodynamic boundary condition while the microchannel's lower wall is insulated and the top wall is under the effect of a constant heat flux. Moreover, the flow field is subjected to a magnetic field with a constant strength. The results are presented as the velocity, temperature and Nusselt number profiles. It is observed that nanofluid composed of water and carbon nanotubes (FMWNT) can work well to increase the heat transfer rate along the microchannel walls. Furthermore, it is indicated that imposing the magnetic field is very effective at the thermally developing region. In contrast, the magnetic field effect at fully developed region is insignificant, especially at low values of Reynolds number.

  18. Effects of magnetic and kinetic helicities on the growth of magnetic fields in laminar and turbulent flows by helical-Fourier decomposition

    Science.gov (United States)

    Linkmann, Moritz; Sahoo, Ganapati; McKay, Mairi; Berera, Arjun; Biferale, Luca

    2016-11-01

    We perform an analytical and numerical study of incompressible homogeneous conducting fluids by Fourier-helical decomposition of the equations of magnetohydrodynamics (MHD) and a subsequent reduction of the number of degrees of freedom. From the stability properties of the most general subset of interacting velocity and magnetic fields on a closed Fourier triad, we make predictions on the large-scale magnetic-field growth depending on the distribution of magnetic and kinetic helicities among the three wavenumbers. In the kinematic dynamo regime we predict the formation of a large-scale magnetic component with a magnetic helicity of opposite sign with respect to the kinetic helicity, a sort of triadic-by-triad α-effect in Fourier space, while in presence of strong small-scale magnetic helicity we predict an inverse cascade of magnetic helicity. We confirm these predictions through a series of Direct Numerical Simulations, either seeding different magnetic helical components in a strongly helical flow (turbulent/laminar) or directly injecting helical magnetic fluctuations at small scales. Our results show that important dynamical features of MHD flows can be predicted from an analytically tractable dynamical system derived directly from the MHD equations. ERC ADG NewTURB 2013.

  19. A numerical method for solving the boundary layer equations of laminar natural convention about a vertical plate

    Institute of Scientific and Technical Information of China (English)

    Liancun Zheng; Chen Liang; Xinxin Zhang

    2007-01-01

    An improved shooting method was presented for solving the natural convention boundary layer equations,with a coupling of the velocity field to the temperature field.The numerical results are consistent with the approximate solution obtained by former researchers.

  20. Evaporation, Heat Transfer, and Velocity Distribution in Two-Dimensional and Rotationally Symmetrical Laminar Boundary-Layer Flow

    Science.gov (United States)

    Froessling, Nils

    1958-01-01

    The fundamental boundary layer equations for the flow, temperature and concentration fields are presented. Two dimensional symmetrical and unsymmetrical and rotationally symmetrical steady boundary layer flows are treated as well as the transfer boundary layer. Approximation methods for the calculation of the transfer layer are discussed and a brief survey of an investigation into the validity of the law that the Nusselt number is proportional to the cube root of the Prandtl number is presented.

  1. Plastic Models Designed to Produce Large Height-to-Length Ratio Steady-State Planar and Axisymmetric (Radial) Viscous Liquid Laminar Flow Gravity Currents

    Science.gov (United States)

    Blanck, Harvey F.

    2012-01-01

    Naturally occurring gravity currents include events such as air flowing through an open front door, a volcanic eruption's pyroclastic flow down a mountainside, and the spread of the Bhopal disaster's methyl isocyanate gas. Gravity currents typically have a small height-to-distance ratio. Plastic models were designed and constructed with a…

  2. Impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel

    Directory of Open Access Journals (Sweden)

    Omid Ali Akbari

    2015-11-01

    Full Text Available This article aims to study the impact of ribs on flow parameters and laminar heat transfer of water–aluminum oxide nanofluid with different nanoparticle volume fractions in a three-dimensional rectangular microchannel. To this aim, compulsory convection heat transfer of water–aluminum oxide nanofluid in a rib-roughened microchannel has been numerically studied. The results of this simulation for rib-roughened three-dimensional microchannel have been evaluated in contrast to the smooth (unribbed three-dimensional microchannel with identical geometrical and heat–fluid boundary conditions. Numerical simulation is performed for different nanoparticle volume fractions for Reynolds numbers of 10 and 100. Cold fluid entering the microchannel is heated in order to apply constant flux to external surface of the microchannel walls and then leaves it. Given the results, the fluid has a higher heat transfer with a hot wall in surfaces with ribs rather than in smooth ones. As Reynolds number, number of ribs, and nanoparticle volume fractions increase, more temperature increase happens in fluid in exit intersection of the microchannel. By investigating Nusselt number and friction factor, it is observed that increase in nanoparticle volume fractions causes nanofluid heat transfer properties to have a higher heat transfer and friction factor compared to the base fluid used in cooling due to an increase in viscosity.

  3. An atmospheric pressure high-temperature laminar flow reactor for investigation of combustion and related gas phase reaction systems

    Energy Technology Data Exchange (ETDEWEB)

    Oßwald, Patrick; Köhler, Markus [Institute of Combustion Technology, German Aerospace Center (DLR), Pfaffenwaldring 38-40, D-70569 Stuttgart (Germany)

    2015-10-15

    A new high-temperature flow reactor experiment utilizing the powerful molecular beam mass spectrometry (MBMS) technique for detailed observation of gas phase kinetics in reacting flows is presented. The reactor design provides a consequent extension of the experimental portfolio of validation experiments for combustion reaction kinetics. Temperatures up to 1800 K are applicable by three individually controlled temperature zones with this atmospheric pressure flow reactor. Detailed speciation data are obtained using the sensitive MBMS technique, providing in situ access to almost all chemical species involved in the combustion process, including highly reactive species such as radicals. Strategies for quantifying the experimental data are presented alongside a careful analysis of the characterization of the experimental boundary conditions to enable precise numeric reproduction of the experimental results. The general capabilities of this new analytical tool for the investigation of reacting flows are demonstrated for a selected range of conditions, fuels, and applications. A detailed dataset for the well-known gaseous fuels, methane and ethylene, is provided and used to verify the experimental approach. Furthermore, application for liquid fuels and fuel components important for technical combustors like gas turbines and engines is demonstrated. Besides the detailed investigation of novel fuels and fuel components, the wide range of operation conditions gives access to extended combustion topics, such as super rich conditions at high temperature important for gasification processes, or the peroxy chemistry governing the low temperature oxidation regime. These demonstrations are accompanied by a first kinetic modeling approach, examining the opportunities for model validation purposes.

  4. 利用层流分布测量微流控芯片压力的方法研究%Study of pressure measurement method for micro-fluid chip using laminar flow distribution

    Institute of Scientific and Technical Information of China (English)

    廖彦剑; 陈礼; 杨国清; 刘畅

    2011-01-01

    A micro-fluid chip pressure measurement method based on the laminar flow distribution in microscale structure is proposed. The main research contents include the design of suitable mirco-confluncence laminar flow structure (Y style structure), the formula derivation of pressure ( velocity) in laminar flow distribution. The measurement approach uses microscope image processing methed. The computer simulation and on-chip experiments are carried out. The results have verified the feasibility of the proposed design.%针对微流控芯片中压力相关测量的问题,提出了一种利用微尺度层流分布测量微流控芯片中的压力(流速)的方法.主要研究内容包括微汇合层流结构的设计(Y型结构),微尺度层流分布的压力(流速)关系的推导和利用显微图像处理进行测量的方法等,并通过计算机仿真和实际芯片实验对Y型测压结构进行了分析,结果证实了提出方法的有效性.

  5. 层流净化手术室环境管理的研究进展(综述)%Research Progress of Environment Management of Laminar Flow Operation Room

    Institute of Scientific and Technical Information of China (English)

    陈燕芳

    2014-01-01

    3陈小君,冯祖莲,黄焕宜.层流手术室术前开机时间与空气细菌培养达标的研究[J].全科护理,2008,6  (29):2637~2368.  4杜秀华,赵逢玲,冯艳秋,等.层流手术室回风口过滤器清洁除尘时间研究[J].齐鲁护理杂志,2010,16  (9):15~16.  5吉琦,掌孝荣,刘春霞.手术室温度与感染及人体舒适度关系的研究现状[J].中华医院感染学杂志,2012,22%Operation room is one of the high risk department of hospital infection, the vast majority of postopera-tive infection can be traced back to the operation environment. Widely used laminar flow operation room of bacteria in the control operation in concentration, plays an important role in reducing postoperative infection risk. But clean lami-nar flow operation room has the problem of prioritizing"restart"and ignoring effect. It is essential to strengthen the management of three aspects including air, staff and goods, in order to reflect the advantages of laminar flow operation room.

  6. Heat transfer enhancement of laminar nanofluids flow in a circular tube fitted with parabolic-cut twisted tape inserts.

    Science.gov (United States)

    Salman, Sami D; Kadhum, Abdul Amir H; Takriff, Mohd S; Mohamad, Abu Bakar

    2014-01-01

    Numerical investigation has been carried out on heat transfer and friction factor characteristics of copper-water nanofluid flow in a constant heat-fluxed tube with the existence of new configuration of vortex generator using Computational Fluid Dynamics (CFD) simulation. Two types of swirl flow generator: Classical twisted tape (CTT) and Parabolic-cut twisted tape (PCT) with a different twist ratio (y = 2.93, 3.91 and 4.89) and different cut depth (w = 0.5, 1.0 and 1.5 cm) with 2% and 4% volume concentration of CuO nanofluid were used for simulation. The effect of different parameters such as flow Reynolds number, twist ratio, cut depth and nanofluid were considered. The results show that the enhancement of heat transfer rate and the friction factor induced by the Classical (CTT) and Parabolic-cut (PCT) inserts increases with twist ratio and cut depth decreases. The results also revealed that the heat transfer enhancement increases with an increase in the volume fraction of the CuO nanoparticle. Furthermore, the twisted tape with twist ratio (y = 2.93) and cut depth w = 0.5 cm offered 10% enhancement of the average Nusselt number with significant increases in friction factor than those of Classical twisted tape.

  7. Experimental studies on heat transfer and friction factor characteristics of CuO/water nanofluid under laminar flow in a helically dimpled tube

    Science.gov (United States)

    Suresh, S.; Chandrasekar, M.; Selvakumar, P.

    2012-04-01

    An experimental investigation on the convective heat transfer and friction factor characteristics in the plain and dimpled tube under laminar flow with constant heat flux is carried out with distilled water and CuO/water nanofluids. For this, CuO nanoparticles with an average size of 15.3 nm were synthesized by sol-gel method. The nanoparticles are then dispersed in distilled water to form stable suspension of CuO/water nanofluid containing 0.1, 0.2 and 0.3% volume concentration of nanoparticles. It is found that the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 6, 9.9 and 12.6%, respectively higher than those obtained with distilled water in plain tube. However, the experimental Nusselt numbers for 0.1, 0.2 and 0.3% volume concentration of CuO nanoparticles are about 3.4, 6.8 and 12%, respectively higher than those obtained with distilled water in dimpled tube. The friction factor of CuO/water nanofluid is also increased due to the inclusion of nanoparticles and found to increase with nanoparticle volume concentration. The experimental results show that there exists a difference in the enhancement levels of Nusselt numbers obtained with nanofluids in plain tube and dimpled tube. Hence it is proposed that the mechanism of heat transfer enhancement obtained with nanofluids is due to particle migration from the core of fluid flow to tube wall.

  8. 2D Temperature Analysis of Energy and Exergy Characteristics of Laminar Steady Flow across a Square Cylinder under Strong Blockage

    Directory of Open Access Journals (Sweden)

    M. Ozgun Korukcu

    2015-05-01

    Full Text Available Energy and exergy characteristics of a square cylinder (SC in confined flow are investigated computationally by numerically handling the steady-state continuity, Navier-Stokes and energy equations in the Reynolds number range of Re = 10–50, where the blockage ratio (β = B/H is kept constant at the high level of β = 0.8. Computations indicated for the upstream region that, the mean non-dimensional streamwise (u/Uo and spanwise (v/Uo velocities attain the values of u/Uo = 0.840®0.879 and v/Uo = 0.236®0.386 (Re = 10®50 on the front-surface of the SC, implying that Reynolds number and blockage have stronger impact on the spanwise momentum activity. It is determined that flows with high Reynolds number interact with the front-surface of the SC developing thinner thermal boundary layers and greater temperature gradients, which promotes the thermal entropy generation values as well. The strict guidance of the throat, not only resulted in the fully developed flow character, but also imposed additional cooling; such that the analysis pointed out the drop of duct wall (y = 0.025 m non-dimensional temperature values (ζ from ζ = 0.387®0.926 (Re = 10®50 at xth = 0 mm to ζ = 0.002®0.266 at xth = 40 mm. In the downstream region, spanwise thermal disturbances are evaluated to be most inspectable in the vortex driven region, where the temperature values show decrease trends in the spanwise direction. In the corresponding domain, exergy destruction is determined to grow with Reynolds number and decrease in the streamwise direction (xds = 0®10 mm. Besides, asymmetric entropy distributions as well were recorded due to the comprehensive mixing caused by the vortex system.

  9. Experimental and detailed kinetic modeling study of PAH formation in laminar co-flow methane diffusion flames

    DEFF Research Database (Denmark)

    Cuoci, Alberto; Frassoldati, Alessio; Faravelli, Tiziano

    2013-01-01

    In the present paper, synchrotron VUV photoionization mass spectrometry is used to study the detailed chemistry of co-flow methane diffusion flames with different dilution ratios. The experimental results constitute a comprehensive characterization of species important for PAH and soot formation...... an original CFD code based on the operator-splitting technique, specifically conceived to handle large kinetic mechanisms. The detailed kinetic modeling was effectively used to describe and analyze the fuel consumption and the formation of PAH. Experimental measurements and numerical predictions were found...

  10. Melting of nanoparticle-enhanced phase change material inside an enclosure heated by laminar heat transfer fluid flow

    Science.gov (United States)

    Elbahjaoui, Radouane; El Qarnia, Hamid; El Ganaoui, Mohammed

    2016-05-01

    The proposed work presents a numerical investigation of the melting of a phase change material (PCM: Paraffin wax P116) dispersed with nanoparticles (Al2O3) in a latent heat storage unit (LHSU). The latter is composed of a number of vertical and identical slabs of nano-enhanced phase change material (NEPCM) separated by rectangular channels through which passes heat transfer fluid (HTF: water). A mathematical model based on the conservation equations of mass, momentum and energy has been developed. The resulting equations are discretized using the finite volume approach. The numerical model has been validated by experimental and numerical results published in literature. Numerical investigations have been conducted to evaluate the effects of the volumetric fraction of nanoparticles, HTF mass flow rate and inlet temperature on the latent heat storage unit's thermal behaviour and performance. Modelling results show that the volumetric fraction, HTF mass flow rate and inlet temperature need to be designed to achieve a significant improvement in thermal performance. Contribution to the topical issue "Materials for Energy Harvesting, Conversion and Storage (ICOME 2015) - Elected submissions", edited by Jean-Michel Nunzi, Rachid Bennacer and Mohammed El Ganaoui

  11. Coupling effect of Brownian motion and laminar shear flow on colloid coagulation: a Brownian dynamics simulation study

    Institute of Scientific and Technical Information of China (English)

    Xu Sheng-Hua; Sun Zhi-Wei; Li Xu; Jin Tong Wang

    2012-01-01

    Simultaneous orthokinetic and perikinetic coagulations(SOPCs)are studied for small and large Peclet numbers(Pe)using Brownian dynamics simulation.The results demonstrate that the contributions of the Brownian motion and the shear flow to the overall coagulation rate are basically not additive.At the early stages of coagulation with small Peclet numbers,the ratio of overall coagulation rate to the rate of pure perikinetic coagulation is proportional to Pe1/2,while with high Peclet numbers,the ratio of overall coagulation rate to the rate of pure orthokinetic coagulation is proportional to pe-1/2.Moreover,our results show that the aggregation rate generally changes with time for the SOPC,which is different from that for pure preikinetic and pure orthokinetic coagulations.By comparing the SOPC with pure preikinetic and pure orthokinetic coagulations,we show that the redistribution of particles due to Brownian motion can play a very important role in the SOPC.In addition,the effects of redistribution in the directions perpendicular and parallel to the shear flow direction are different.This perspective explains the behavior of coagulation due to the joint effects of the Brownian motion(perikinetic)and the fluid motion(orthokinetic).

  12. On plane submerged laminar jets

    Science.gov (United States)

    Coenen, Wilfried; Sanchez, Antonio L.

    2016-11-01

    We address the laminar flow generated when a developed stream of liquid of kinematic viscosity ν flowing along channel of width 2 h discharges into an open space bounded by two symmetric plane walls departing from the channel rim with an angle α 1 . Attention is focused on values of the jet volume flux 2 Q such that the associated Reynolds number Re = Qh / ν is of order unity. The formulation requires specification of the boundary conditions far from the channel exit. If the flow is driven by the volume flux, then the far-field solution corresponds to Jeffery-Hamel self-similar flow. However, as noted by Fraenkel (1962), such solutions exist only for α potential flow driven by the jet entrainment, and a Falkner-Skan near-wall boundary layer. Numerical integrations of the Navier-Stokes equations are used to ascertain the existence of these different solutions.

  13. MHD forced convective laminar boundary layer flow from a convectively heated moving vertical plate with radiation and transpiration effect.

    Science.gov (United States)

    Uddin, Md Jashim; Khan, Waqar A; Ismail, A I Md

    2013-01-01

    A two-dimensional steady forced convective flow of a Newtonian fluid past a convectively heated permeable vertically moving plate in the presence of a variable magnetic field and radiation effect has been investigated numerically. The plate moves either in assisting or opposing direction to the free stream. The plate and free stream velocities are considered to be proportional to x(m) whilst the magnetic field and mass transfer velocity are taken to be proportional to x((m-1)/2) where x is the distance along the plate from the leading edge of the plate. Instead of using existing similarity transformations, we use a linear group of transformations to transform the governing equations into similarity equations with relevant boundary conditions. Numerical solutions of the similarity equations are presented to show the effects of the controlling parameters on the dimensionless velocity, temperature and concentration profiles as well as on the friction factor, rate of heat and mass transfer. It is found that the rate of heat transfer elevates with the mass transfer velocity, convective heat transfer, Prandtl number, velocity ratio and the magnetic field parameters. It is also found that the rate of mass transfer enhances with the mass transfer velocity, velocity ratio, power law index and the Schmidt number, whilst it suppresses with the magnetic field parameter. Our results are compared with the results existing in the open literature. The comparisons are satisfactory.

  14. Analytical Investigation of Laminar Viscoelastic Fluid Flow over a Wedge in the Presence of Buoyancy Force Effects

    Directory of Open Access Journals (Sweden)

    B. Rostami

    2014-01-01

    Full Text Available An analytical strong method, the homotopy analysis method (HAM, is employed to study the mixed convective heat transfer in an incompressible steady two-dimensional viscoelastic fluid flow over a wedge in the presence of buoyancy effects. The two-dimensional boundary-layer governing partial differential equations (PDEs are derived by the consideration of Boussinesq approximation. By the use of similarity transformation, we have obtained the ordinary differential nonlinear (ODE forms of momentum and energy equations. The highly nonlinear forms of momentum and energy equations are solved analytically. The effects of different involved parameters such as viscoelastic parameter, Prandtl number, buoyancy parameter, and the wedge angle parameter, which is related to the exponent m of the external velocity, on velocity and temperature distributions are plotted and discussed. An excellent agreement can be seen between the results and the previously published papers for f′′(0 and θ′(0 in some of the tables and figures of the paper for velocity and temperature profiles for various values of viscoelastic parameter and Prandtl number. The effects of buoyancy parameter on the velocity and temperature distributions are completely illustrated in detail.

  15. Advanced bifunctional electrocatalyst generated through cobalt phthalocyanine tetrasulfonate intercalated Ni2Fe-layered double hydroxides for a laminar flow unitized regenerative micro-cell

    Science.gov (United States)

    Zhong, Haihong; Tian, Ran; Gong, Xiaoman; Li, Dianqing; Tang, Pinggui; Alonso-Vante, Nicolas; Feng, Yongjun

    2017-09-01

    We fabricated a NiFeOx/CoNy-C nanocomposite derived from CoPcTs-intercalated Ni2Fe-layered double hydroxides (Ni2Fe-CoPcTs-LDH), which served as high-efficiency, low-cost, and long-durability bifunctional oxygen electrocatalyst in half-cell, and a H2-O2 laminar flow unitized regenerative micro-cell (LFURMC) in alkaline media. Based on the synergistic effect between Co-Ny and NiFeOx centers, the non-noble hybrid catalyst NiFeOx/CoNy-C achieves a ΔE (η@jOER,10 - η@jORR,-3) = 0.84 V in alkaline solution, outperforming the commercial Pt/C, and very close to that of IrOx/C. In the fuel cell mode, the performance of NiFeOx/CoNy-C with the maximum power density of 56 mW cm-2 is similar to that of Pt/C (63 mW cm-2) and IrOx/C (58 mW cm-2); in the electrolysis mode, the calculated maximum electrical power consumed on NiFeOx/CoNy-C (237 mW cm-2) is more than 3 times that on Pt/C (73 mW cm-2), similar with that of IrOx/C. More importantly, the NiFeOx/CoNy-C shows a remarkable stability in alternating modes in a LFURMC system.

  16. PIV measurement of char powders motion in laminar entrained flow reactor%层流炉反应管内炭粉颗粒运动的PIV试验

    Institute of Scientific and Technical Information of China (English)

    王娜娜; 易维明; 刘珠伟; 柏雪源

    2011-01-01

    In order to study the movements of char powders in laminar entrained flow reactor, a transparent experimental apparatus was designed for Particle Image Velocimetry(PIV) measurement of flow field.The velocities of char powders whose mesh size was between 100 to 120 were investigated by PIV at the different flow rates of 1.0-2.5 m3/h.The results indicated that the axial velocity of char powers in the pipe center was very small near the outlet, subsequently rapidly reached the maximum and then decreased.The axial velocity at the center of pipe reached a maximum in the region within 1.8-123.8 mm.The axial velocity distribution was a parabola-like curve along the radius.The relationship between Re and the dimensionless residential time of char powders was obtained finally.%为了研究炭粉颗粒在层流炉反应管内的运动规律,按照1:1比例设计制造了一套透明玻璃试验装置用于PIV流场测量.分别在4种不同的主气流量下,对粒径为100~120目的炭粉颗粒在反应管内的速度场进行了PIV无接触测量.结果表明,在反应管中心处,开始时,炭粉颗粒的轴向速度在下料口附近很小,然后迅速增加到最大值,而后以此速度运动一段距离后,速度开始减小.在约1.8~123.8 mm段,炭粉颗粒的轴向速度在管道中心处为最大.轴向速度沿径向成类似抛物线状分布;通过对测量数据的分析计算,获得了管内气流雷诺数与炭粉颗粒停留时间(无量纲处理后)的关联式.

  17. Study on common bacteria of respiratory system in patients in laminar flow area of ICU and its countermeasures%层流ICU病区病人呼吸系统常见细菌及对策

    Institute of Scientific and Technical Information of China (English)

    林桦; 王伟; 高淑红; 陈丹丹

    2012-01-01

    OBJECTIVE To monitor common bacterial infection of respiratory system in patients in laminar flow area of intensive care unit (ICU) , to improve care measures to control the infection. METHODS Implemented laminar ward management processes enacted in 2011, monitored daily inpatientg' respiratory infection, analyzed monitoring results from January to December 2011, compared to the effectiveness of countermeasures. RESULTS Yeast was the main bacteria in laminar flow area of ICU, the incidences of Pseudomonas aeruginosa, Klebsiella pneumoniae were effectively controlled. CONCLUSION Under the strict management of laminar flow area of ICU, and with the air purification system, control hospital infections of Pseudomonas aeruginosa, Klebsiella pneumoniae, the scientific and effective preventive measures are developed for the laminar flow area in ICU.%目的 监测层流净化重症监护病房(ICU)病人呼吸系统常见感染细菌,完善护理对策,控制感染.方法 执行2011年制定的层流净化病区管理流程,每日监测住院病人呼吸系统医院感染发生病例,统计2011年1~12月监测情况,与医院监测结果相比较,检验相关对策的有效性.结果 层流净化ICU病区细菌生长以酵母菌为主,铜绿假单胞菌、肺炎克雷伯菌发生率得到有效控制.结论 层流净化ICU区域在严格管理下,借助空气净化系统能控制医院内感染常见致病菌铜绿假单胞菌、肺炎克雷伯菌的发生率,目前针对层流净化ICU病区制定的预防措施科学有效.

  18. On the Geodesic Nature of Wegner's Flow

    OpenAIRE

    Itto, Yuichi; Abe, Sumiyoshi

    2008-01-01

    Wegner's method of flow equations offers a useful tool for diagonalizing a given Hamiltonian and is widely used in various branches of quantum physics. Here, generalizing this method, a condition is derived, under which the corresponding flow of a quantum state becomes geodesic in a submanifold of the projective Hilbert space, independently of specific initial conditions. This implies the geometric optimality of the present method as an algorithm of generating stationary states. The result is...

  19. Computational simulation of flow and heat transfer in single-phase natural circulation loops; Simulacao computacional de escoamento e transferencia de calor em circuitos de circulacao natural monofasica

    Energy Technology Data Exchange (ETDEWEB)

    Pinheiro, Larissa Cunha

    2017-07-01

    Passive decay heat removal systems based on natural circulation are essential assets for the new Gen III+ nuclear power reactors and nuclear spent fuel pools. The aim of the present work is to study both laminar and turbulent flow and heat transfer in single-phase natural circulation systems through computational fluid dynamics simulations. The working fluid is considered to be incompressible with constant properties. In the way, the Boussinesq Natural Convection Hypothesis was applied. The model chosen for the turbulence closure problem was the k -- εThe commercial computational fluid dynamics code ANSYS CFX 15.0 was used to obtain the numerical solution of the governing equations. Two single-phase natural circulation circuits were studied, a 2D toroidal loop and a 3D rectangular loop, both with the same boundary conditions of: prescribed heat flux at the heater and fixed wall temperature at the cooler. The validation and verification was performed with the numerical data provided by DESRAYAUD et al. [1] and the experimental data provided by MISALE et al. [2] and KUMAR et al. [3]. An excellent agreement between the Reynolds number (Re) and the modified Grashof number (Gr{sub m}), independently of Prandtl Pr number was observed. However, the convergence interval was observed to be variable with Pr, thus indicating that Pr is a stability governing parameter for natural circulation. Multiple steady states was obtained for Pr = 0,7. Finally, the effect of inclination was studied for the 3D circuit, both in-plane and out-of-plane inclinations were verified for the steady state laminar regime. As a conclusion, the Re for the out-of-plane inclination was in perfect agreement with the correlation found for the zero inclination system, while for the in-plane inclined system the results differ from that of the corresponding vertical loop. (author)

  20. Laminar flow operation room air quality on intraoperative equipment safety study%层流手术室动态空气质量对术中器械安全性的研究

    Institute of Scientific and Technical Information of China (English)

    白晓霞

    2013-01-01

    objective:Analyze the effect of laminar flow operation room air quality change on intraoperative equipment of bacterial colony growth ,take effective measures to ensure the air quality of laminar flow operation room , prevent intraoperative equipment pollution, improve the quality and safety of operation. Methods:Choose the area of 30M2, air cleanliness class of 100 laminar flow operation room to take 40 operations, operation time are more than 6 hours, the 40 operations were randomly divided into intervention group and control group. By monitoring the surface colony number of two groups of instruments, compare the bacterial colony number and intraoperative air colony number. Results:There is no bacterial growth in the intervention group or bacterial number was minimal, and no correlation with operation time. The gloves and intraoperative equipment of control group in 2 hours have bacterial growth, equipment covered have no bacterial growth. Conclusion:In the laminar flow purification air conditioning equipment running under good conditions, if we strictly control the operation flow and reduce the times of opening number in operation process ,we can ensure the air quality,and prevent equipment pollution.%目的:分析手术过程中细菌生长繁殖数量与手术时间的变化规律,采取有效措施减少各种感染因素,提高手术质量与安全。方法:通过空气培养监测手术过程中细菌菌落数,将细菌菌落数量与手术时间进行统计分析,得出两者之间的关系。结果:细菌数量与手术时间呈非线性关系,菌落数先增长后下降。结论:了解手术时间与细菌繁殖数量之间的规律对控制手术感染有较好的参考意义。

  1. Flow and Friction over Natural Rough Beds.

    Science.gov (United States)

    1983-06-01

    boundary shear stress. Hence for the outer layer Us-U = g (Y) 1.2 u, D Millikan (1939) showed that by requiring that both (1.1) and (1.2) hold in some...where the overbar denotes time averaging, the equivalent argument requires that we drop the stress term (vuij-u’u’),ji 3 to obtain potential flow. A... oil whose viscosity v is six times that of water, and it included velocity measurements down to (u*y/v)=2. The relative fluctuation intensity of the

  2. Prediction of Boundary Layer Transition Based on Modeling of Laminar Fluctuations Using RANS Approach

    Institute of Scientific and Technical Information of China (English)

    Reza; Taghavi; Z.; Mahmood; Salary; Amir; Kolaei

    2009-01-01

    This article presents a linear eddy-viscosity turbulence model for predicting bypass and natural transition in boundary layers by using Reynolds-averaged Navier-Stokes (RANS) equations. The model includes three transport equations, separately, to compute laminar kinetic energy, turbulent kinetic energy, and dissipation rate in a flow field. It needs neither correlations of intermittency factors nor knowledge of the transition onset. Two transition tests are carried out: flat plate boundary layer under zero ...

  3. Experimental study of natural circulation flow instability in rectangular channels

    Energy Technology Data Exchange (ETDEWEB)

    Zhou, Tao; Qi, Shi; Song, Mingqiang [North China Electric Power Univ., Beijing (China). School of Nuclear Science and Engineering; Passive Nuclear Safety Technology, Beijing (China). Beijing Key Lab.; Xiao, Zejun [Nuclear, Reactor Thermal Hydraulics Technology, Chengdu (China). CNNC Key Lab.

    2017-05-15

    Experiments of natural circulation flow instability were conducted in rectangular channels with 5 mm and 10 mm wide gaps. Results for different heating powers were obtained. The results showed that the flow will tend to be instable with the growing of heating power. The oscillation period of pressure D-value and volume flow are the same, but their phase positions are opposite. They both can be described by trigonometric functions. The existence of edge position and secondary flow will strengthen the disturbance of fluid flow in rectangle channels, which contributes to heat transfer. The disturbance of bubble and fluid will be strengthened, especially in the saturated boiling section, which make it possible for the mixing flow. The results also showed that the resistance in 5 mm channel is bigger than that in 10 mm channel, it is less likely to form stable natural circulation in the subcooled region.

  4. 层流手术中人员流动次数与空气含菌量的关系%Relationship between quantum of bacteria in air and the movement of medical staff in laminar flow operation room

    Institute of Scientific and Technical Information of China (English)

    宋玉翠; 邱香廷

    2009-01-01

    Objective To investigate and evaluate the effect of personnel movement frequency during operation to quantum of bacteria in air in laminar flow operation room. Methods Air samples during 20 operation cases were collected by plat slab exposure method. The sampling-time was from starting laminar flow for 30 minutes (patients came into operation room at this time)to operation finish. During this time,samples were taken from the rooms every 30 minutes and persons' movement fre-quency were recorded. Results At each phase,the correlation coeffcient of persons' movement frequency during operation and quantum of bacteria in air in laminar flow operation room was 0. 945. There was correlation between quantum of bacteria in air and persons' movement. Quantum of bacte-ria of air would exceed national sanitary standard of normal operation room when persons' movement frequency was accumulated counted to 60. Conclusions During operation, persons' movement frequency will effect quantum of bacteria in air in laminar flow operation room directly,so we must strictly limit the number of persons' moving in or out operation room.%目的 了解并评价层流手术室中人员流动对空气含菌量的影响.方法 采用平板暴露法对20例手术进行术中空气采样,采样时间从层流30 min后手术患者入室前开始至手术结束,每隔30 min采样计数空气细菌;同时记录各时间段内人员流动次数.结果 层流手术室中各时间段平均人员流动次数及空气菌落数的相关系数为0.945,空气细菌含量与人员流动具有相关性,术中人员流动累计达60人次时空气微生物超过国家规定的普通手术室空气静态标准.结论 术中人员流动的次数,直接影响层流手术室空气中的细菌含量,层流手术室术中必须严格限制入室人员.

  5. LAMINAR FLOW AND HEAT TRANSFER IN MICRO-ANNULAR CHANNEL IN SLIP FLOW REGIME%滑移流区内微环缝槽道中的层流流动与换热

    Institute of Scientific and Technical Information of China (English)

    朱恂; 辛明道

    2001-01-01

    In this article, the momentum and energy equations with the boundary conditions of slip velocity and temperature jump are solved for the hydraulic and thermalfully developed laminar flow of the incompressible fluid in micro-annular channel. A theoretical analysis is conducted for flow and heat transfer characteristics in this micro channel on the condition of one wall heated alonewith uniform heat flux and two walls heated with different heat flux in slipflow regime. The influences of the Kn number, the ratio of inner diameter toouter diameter and the heat flux ratio on the flow and heat transfercharacteristics are discussed, respectively. The results show that the frictioncoefficient and Nusselt number in the micro-annular channel are smaller thanthat in the macrochannel, and decrease with the increase of Kn number.%本文针对微环缝槽道采用速度滑移和温度跳跃边界条件求解了不可压缩气体的N-S方程和能量方程,理论分析了微环缝槽道在单侧或双侧不同热流密度加热条件下的流动与层流换热特性,讨论了Kn数、内外径比对流动阻力及换热特性的影响。结果表明:滑移流区微环缝通道内的流阻和Nusselt数明显低于连续流区;且随着Kn数的增加,流阻和Nusselt数均减小;但其随内外径比r*的变化趋势与连续流区相似。

  6. Cubierta laminar prefabricada, Suiza

    Directory of Open Access Journals (Sweden)

    Hossdorf, Heinz

    1964-04-01

    Full Text Available The roof constructed recently near Olten, in Switzerland, consists of a series of cylindrical shell surfaces, with skylights between the successive shells. It covers an area of 13.500 m2, and the building is to be used as a storehouse and servicing installation for the Federation of Consumer Goods Society. The general nature of the design made it logical, from the outset, to construct the roof as a number of similar prefabricated units. This method had evident economic advantages. The repetition of similar cylindrical roof sections made it possible to reiterate also the particular constructive process which was adopted in this case. The prefabricated shell units have been reinforced with lateral ribs, which make them sufficiently stiff to be handled at the working site. Each unit is 25.20 m long and spans a width of 1.40 ms. The roof is made up of 18 such elements. A feature of this roof is that it has been subjected to a prestressing process, applied by cables, running along the extrados of the cylindrical surface of each unit. This improves the stability and strength of the shells, and induces favourable stresses which counteract noticeably the effects of the shear forces and bending moments. The edges of these shells have been reinforced by increasing the thickness of the ribs, thereby improving the end anchorage. In order to check the theoretical calculations for this structure, several tests were carried out on scale models.La cubierta recientemente construida en las cercanías de Olten (Suiza, de tipo laminar, especial, curvada, constituida por una serie de superficies cilíndricas sucesivas y con lucernario en las soluciones de continuidad que cada par de superficies parciales cilíndricas motiva, tiene por principal objeto cubrir una superficie de 13.500 m2 edificados con destino a los servicios y explotación de un almacén de la Federación de Sociedades de Consumo. Debido a las ideas generales básicas del proyecto se impuso, desde un

  7. Nursing management in the laminar air flow units for hematopoietic stem cell transplantation%层流病房造血干细胞移植的护理组织管理

    Institute of Scientific and Technical Information of China (English)

    宋丹; 牛艳萍; 耿丽萍; 马淑卿; 陈静

    2009-01-01

    目的 探讨层流病房造血干细胞移植护理的组织管理方法.方法 对层流病房护士进行专科知识技能、心理干预能力及相关制度培训,建立质量控制标准,完善移植前各项准备工作,建立护理查房制度.结果 提高了护士的专科理论知识及操作技能,33例患者均移植成功,无护理并发症发生.结论 科学有效的组织管理是造血干细胞移植工作顺利开展的重要保证.%Objective To explore nursing management methods in the laminar air flow units for hematopoietic stem cell transplantation. Methods The manage-ment measures included nurse training in the aspects of specialty knowledge and skills, techniques in psychological nursing, related regulations and rules ; formula-tion of quality control standards, careful preparations before transplantation as well as nursing ward round system. Results This practice improved nurses' spe-cialty knowledge and skills, and 33 patients received the transplantation surgery successfully without complications. Conclusion Scientific management can guar-antee the success of hematopoietic stem cell transplantation in the laminar air flow units.

  8. Effect of laminar flow clean operating room on surgical wound infection rate%层流洁净手术室对手术切口感染的影响研究

    Institute of Scientific and Technical Information of China (English)

    方群

    2013-01-01

    目的 探讨层流洁净手术室对手术切口感染的影响,为不同类型手术的手术室安排及手术切口感染控制提供参考依据.方法 采用回顾性方法对医院2010年1月-2011年6月普通手术室1652台手术以及2011年7月-2012年6月层流洁净手术室842台手术资料分析,比较各类切口在普通手术室和层流洁净手术室施行的手术切口感染率.结果 洁净手术室手术切口总感染率为1.31%,普通手术室切口总感染率为2.66%,洁净手术室切口总感染率低于普通手术室(P<0.05);洁净层流手术室Ⅰ、Ⅱ、Ⅲ类手术切口感染率分别为0、0.40%、5.10%,普通手术室Ⅰ、Ⅱ、Ⅲ类手术切口感染率分别为1.14%、2.48%、5.77%,洁净层流手术室Ⅰ、Ⅱ类切口感染率低于普通手术室(P<0.05);Ⅲ类手术切口感染率同普通手术室差异无统计学意义.结论 层流洁净手术室能够降低Ⅰ、Ⅱ类手术切口感染率,有利于医院感染控制.%OBJECTIVE To investigate the effect of laminar flow clean operating room on the incidence of surgical incision infections so as to provide basis for the arrangement of operating room as well as for the control of surgical incision infections.METHODS Totally 1652 cases of operations in the ordinary operating rooms from Jan 2010 to Jun 2011 and 842 cases of operations in laminar flow clean operating rooms from Jul 2011 to Jun 2012 were enrolled in the study,then the clinical data of the cases were retrospectively analyzed,and the incidence of surgical incision infections was compared between the ordinary operating rooms and the laminar flow clean operating rooms.RESULTS The total incidence rate of surgical incision infections in the ordinary operating rooms was 2.66%,significantly higher than 1.31% in the laminar flow clean operating rooms (P<0.05).In the laminar flow clean operating rooms,the incidence rate of type Ⅰ incision infection was 0%,the type Ⅱ incision

  9. The Natural Convection Heat Transfer inside Vertical Pipe: Characteristic of Pipe Flow according to the Boundary layer

    Energy Technology Data Exchange (ETDEWEB)

    Ohk, Seung Min; Chung, Bum Jin [Kyunghee University, Yongin (Korea, Republic of)

    2016-05-15

    The Passive Cooling System (PCS) driven by natural forces drew research attention since Fukushima nuclear power plant accident. This study investigated the natural convection heat transfer inside of vertical pipe with emphasis on the phenomena regarding the boundary layer interaction. Numerical calculations were carried out using FLUENT 6.3. Experiments were performed for the parts of the cases to explore the accuracy of calculation. Based on the analogy, heat transfer experiment is replaced by mass transfer experiment using sulfuric acid copper sulfate (CuSO{sub 4}. H{sub 2}SO{sub 4}) electroplating system. The natural convection heat transfer inside a vertical pipe is studied experimentally and numerically. Experiments were carried out using sulfuric acid-copper sulfate (H{sub 2}SO{sub 4}-CuSO{sub 4}) based on the analogy concept between heat and mass transfer system. Numerical analysis was carried out using FLUENT 6.3. It is concluded that the boundary layer interaction along the flow passage influences the heat transfer, which is affected by the length, diameter, and Prandtl number. For the large diameter and high Prandtl number cases, where the thermal boundary layers do not interfered along the pipe, the heat transfer agreed with vertical flat plate for laminar and turbulent natural convection correlation within 8%. When the flow becomes steady state, the forced convective flow appears in the bottom of the vertical pipe and natural convection flow appears near the exit. It is different behavior from the flow on the parallel vertical flat plates. Nevertheless, the heat transfer was not different greatly compared with those of vertical plate.

  10. Inverted annular flow heat transfer in a natural circulation loop

    Energy Technology Data Exchange (ETDEWEB)

    Ozawa, M.; Umekawa, H.; Shiba, Y.; Yano, T. [Kansai Univ., Osaka (Japan)

    1998-07-01

    Gravity-feed reflooding experiment was conducted in a natural circulation loop of liquid nitrogen. The cooling curve of high temperature tube wall had a characteristic feature, i.e. initial rapid cooling with steam binding, relatively long-time plateau, gradual decrease with or without flow oscillation, and final drastic decrease during quenching process. Such phenomena had close relationship to the heated wall dynamics and heating power transient. To provide fundamental understanding on the present phenomena, the heat transfer data in inverted annular and dispersed flows were obtained under steady or oscillatory flow condition. The experimental data suggested that the heat transfer coefficient in the inverted annular or dispersed flow regimes is a slightly increasing function of heat flux but significantly depended on the tube diameter. The flow oscillation deteriorated heat transfer slightly in the inverted annular and dispersed flow regimes but significantly in the quenching process.

  11. Numerical simulation of MHD duct flow about laminar and turbulence model%磁流体管流的层流与湍流模型数值模拟

    Institute of Scientific and Technical Information of China (English)

    侯俊; 毛洁; 潘华辰

    2013-01-01

    采用FLUENT软件分别对外加均匀横向磁场的等截面三维充分发展液态金属管流的层流模型和低雷诺数湍流Lam/Bremhost(LB)模型进行了数值模拟,分析了外加磁场对普通方管LB模型速度分布和压降的影响.比较在相同哈特曼数下,层流和湍流模型方管截面上速度分布和管道中MHD压降.其中,对电流的计算采用磁感应方程来求得.数值模拟结果证明了用低雷诺数LB湍流模型解决方管磁流体流动的可行性.通过层流模型和湍流模型的对比可知,层流模型有较短的入口长度,但管内流体的压降却很大;而湍流模型管内速度更加平均化,管内压降较小,但管内入口长度较长.%The numerical analysis of full-developed flow of a liquid metal in a rectangular duct of constant cross-section with a uniform transverse magnetic field was proceeded in laminar and low-Reynolds number Lam/Bremhost turbulence model (for short LB model) using FLUENT software. The paper analyzed the influence of external magnetic field for velocity distribution and MHD pressure drop in turbulence model. Under the same Hartmann number conductions, the paper compared the velocity distribution and MHD pressure drop of laminar model and turbulent model. The solution of current density was obtained by means of induced magnetic field formulation. The result of numerical simulation proved that this was a feasible scheme to use the low-Reynolds LB turbulence model to calculate MHD duct flow. Comparison between laminar model and turbulent model show that laminar model made shorter entrance length, but the pressure drop in the duct increased. Turbulent model had more average speed and smaller pressure drop, but entrance length was longer.

  12. Natural Convection Flow along an Isothermal Vertical Flat Plate with Temperature Dependent Viscosity and Heat Generation

    Directory of Open Access Journals (Sweden)

    Md. Mamun Molla

    2014-01-01

    Full Text Available The purpose of this study is to investigate the natural convection laminar flow along an isothermal vertical flat plate immersed in a fluid with viscosity which is the exponential function of fluid temperature in presence of internal heat generation. The governing boundary layer equations are transformed into a nondimensional form and the resulting nonlinear system of partial differential equations is reduced to a convenient form which are solved numerically using an efficient marching order implicit finite difference method with double sweep technique. Numerical results are presented in terms of the velocity and temperature distribution of the fluid as well as the heat transfer characteristics, namely, the wall shear stress and the local and average rate of heat transfer in terms of the local skin-friction coefficient, the local and average Nusselt number for a wide range of the viscosity-variation parameter, heat generation parameter, and the Rayleigh number. Increasing viscosity variation parameter and Rayleigh number lead to increasing the local and average Nusselt number and decreasing the wall shear stress. Wall shear stress and the rate of heat transfer decreased due to the increase of heat generation.

  13. Casa de estructura laminar

    Directory of Open Access Journals (Sweden)

    Mac L. Johansen, John

    1958-02-01

    Full Text Available Llevando hasta sus últimos extremos la utilización de las bóvedas laminares de hormigón se ha proyectado esta casa. No se trata de una realización práctica, sino de un estudio teórico y experimental sobre las posibilidades de este tipo de estructuras.

  14. Rotating thermal flows in natural and industrial processes

    CERN Document Server

    Lappa, Marcello

    2012-01-01

    Rotating Thermal Flows in Natural and Industrial Processes provides the reader with a systematic description of the different types of thermal convection and flow instabilities in rotating systems, as present in materials, crystal growth, thermal engineering, meteorology, oceanography, geophysics and astrophysics. It expressly shows how the isomorphism between small and large scale phenomena becomes beneficial to the definition and ensuing development of an integrated comprehensive framework.  This allows the reader to understand and assimilate the underlying, quintessential mechanisms withou

  15. 层流炉二维PIV自动控制系统%Design and Experiment of the Two-dimensional PIV Automatic Control System for Laminar Entrained Flow Reactor

    Institute of Scientific and Technical Information of China (English)

    杨延强; 易维明; 李志合; 柏雪源; 李永军

    2012-01-01

    In the cold PIV (particle image velocimetry) system of the laminar entrained flow reactor, the relative position between the camera and the measuring tube was an important condition to ensure accurate test data. To make the PIV operation more convenient, accurate, and fast in the test, two-dimensional PIV automatic control system was designed. And the reliability of the system was tested in the cold simulation equipment of laminar flow furnace, compared with no using two-dimensional PIV automatic control system, the results showed that in different sections of the measuring tube, the particle speed of the axial center achieves a smooth transition, and eliminates the jump change; when collection distance is 350mm and main air flow rate is 1. 5 mVh, the relative error of particle residence time is 9. 218% ; and the operation saves time and effort in the test process. These suggested that the two-dimensional PIV automatic control system could satisfy the cold test of the laminar entrained flow reactor needs, achieve uniform and continuous test, reduce human error and improve the accuracy of test data.%在层流炉冷态粒子图像测速( PIV)系统中,相机与测量管的相对位置是保证试验数据精确的重要条件.为使试验过程中整个PIV系统操作起来更加方便、准确、快捷,设计了二维PIV自动控制系统,并在层流炉冷态模拟装置上对该系统的可靠性进行了试验验证.与没有使用二维PIV自动控制系统之前的试验结果相比:各测量段颗粒的轴向中心速度相互之间的衔接实现了平滑过渡,消除了跳跃性变化;收集距离为350 mm,主气流流量为1.5 m3/h时,层流炉内颗粒停留时间的相对误差为9.218%.说明该二维PIV自动控制系统能够满足层流炉冷态试验需要,实现了均匀、连续拍摄,减少了人为误差,提高了试验数据的准确性.

  16. The flow patterning capability of localized natural convection.

    Science.gov (United States)

    Huang, Ling-Ting; Chao, Ling

    2016-09-14

    Controlling flow patterns to align materials can have various applications in optics, electronics, and biosciences. In this study, we developed a natural-convection-based method to create desirable spatial flow patterns by controlling the locations of heat sources. Fluid motion in natural convection is induced by the spatial fluid density gradient that is caused by the established spatial temperature gradient. To analyze the patterning resolution capability of this method, we used a mathematical model combined with nondimensionalization to correlate the flow patterning resolution with experimental operating conditions. The nondimensionalized model suggests that the flow pattern and resolution is only influenced by two dimensionless parameters, and , where Gr is the Grashof number, representing the ratio of buoyancy to the viscous force acting on a fluid, and Pr is the Prandtl number, representing the ratio of momentum diffusivity to thermal diffusivity. We used the model to examine all of the flow behaviors in a wide range of the two dimensionless parameter group and proposed a flow pattern state diagram which suggests a suitable range of operating conditions for flow patterning. In addition, we developed a heating wire with an angular configuration, which enabled us to efficiently examine the pattern resolution capability numerically and experimentally. Consistent resolutions were obtained between the experimental results and model predictions, suggesting that the state diagram and the identified operating range can be used for further application.

  17. Study on stability of natural circulation flow in an LMFBR. Pt. 2. Stability of core flow

    Energy Technology Data Exchange (ETDEWEB)

    Koga, Tomonari [Central Research Inst. of Electric Power Industry, Abiko, Chiba (Japan). Abiko Research Lab.

    1997-11-01

    By using an experimental apparatus with water in which the primary loop and the core of an LMFBR were roughly simulated, stability of natural circulation flows in the core has been experimentally evaluated. The following were clarified as a result of the present study: (1) Though a certain and stable flow occurs in the primary loop under a steady state of natural circulation, a chaotic flow or a variant flow in addition to the steady flow arises in some simulated fuel sub-assemblies. The chaotic flow tends to occur in the range of large Reynolds number and large Richardson number. (2) Estimation of the fluctuation supposed as a chaos revealed that it was a high dimensional chaos. (author)

  18. Experimental study of laminar mixed convection in a rod bundle with mixing vane spacer grids

    Energy Technology Data Exchange (ETDEWEB)

    Mohanta, Lokanath, E-mail: lxm971@psu.edu [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Cheung, Fan-Bill [Department of Mechanical and Nuclear Engineering, Pennsylvania State University, University Park, PA 16802 (United States); Bajorek, Stephen M.; Tien, Kirk; Hoxie, Chris L. [Office of Nuclear Regulatory Research, U.S. Nuclear Regulatory Commission, Washington, DC 20555-0001 (United States)

    2017-02-15

    Highlights: • Investigated the heat transfer during mixed laminar convection in a rod bundle with linearly varying heat flux. • The Nusselt number increases downstream of the inlet with increasing Richardson number. • Developed an enhancement factor to account for the effects of mixed convection over the forced laminar heat transfer. - Abstract: Heat transfer by mixed convection in a rod bundle occurs when convection is affected by both the buoyancy and inertial forces. Mixed convection can be assumed when the Richardson number (Ri = Gr/Re{sup 2}) is on the order of unity, indicating that both forced and natural convection are important contributors to heat transfer. In the present study, data obtained from the Rod Bundle Heat Transfer (RBHT) facility was used to determine the heat transfer coefficient in the mixed convection regime, which was found to be significantly larger than those expected assuming purely forced convection based on the inlet flow rate. The inlet Reynolds (Re) number for the tests ranged from 500 to 1300, while the Grashof (Gr) number varied from 1.5 × 10{sup 5} to 3.8 × 10{sup 6} yielding 0.25 < Ri < 4.3. Using results from RBHT test along with the correlation from the FLECHT-SEASET test program for laminar forced convection, a new correlation ​is proposed for mixed convection in a rod bundle. The new correlation accounts for the enhancement of heat transfer relative to laminar forced convection.

  19. Magnetic Field Effect on Natural Convection Flow with Internal Heat Generation using Fast  –  Method

    Directory of Open Access Journals (Sweden)

    M.A. Taghikhani

    2015-01-01

    Full Text Available The magnetic field effect on laminar natural convection flow is investigated in a filled enclosure with internal heat generation using two-dimensional numerical simulation. The enclosure is heated by a uniform volumetric heat density and walls have constant temperature. A fixed magnetic field is applied to the enclosure. The dimensionless governing equations are solved numerically for the stream function, vorticity and temperature using finite difference method for various Rayleigh (Ra and Hartmann (Ha numbers in MATLAB software. The stream function equation is solved using fast Poisson's equation solver on a rectangular grid (POICALC function in MATLAB, voricity and temperature equations are solved using red-black Gauss-Seidel and bi-conjugate gradient stabilized (BiCGSTAB methods respectively. The results show that the strength of the magnetic field has significant effects on the flow and temperature fields. For the square cavity, the maximum temperature reduces with increasing Ra number. It is also observed that at low Ra number, location of the maximum temperature is at the centre of the cavity and it shifts upwards with increase in Ra number. Circulation inside the enclosure and therefore the convection becomes stronger as the Ra number increases while the magnetic field suppresses the convective flow and the heat transfer rate. The ratio of the Lorentz force to the buoyancy force (Ha2/Ra is as an index to compare the contribution of natural convection and magnetic field strength on heat transfer.

  20. An investigation of the behavior of different fuels in a co-flow flame configuration with CFD, Study on the influence of different fuels on laminar flame structures, looking more closely to more subtle effects like preferential diffusion

    Energy Technology Data Exchange (ETDEWEB)

    Cadsand, P.G.F.

    2009-08-15

    The aim of this work is to investigate the influence of different fuels on laminar flame structures followed by an assessment on how combustion processes of these fuels can be modeled adequately, doing justice to more subtle effects like preferential diffusion. The two fuels investigated are methane and dodecane. A full detailed kinetic chemistry approach is used to compare different fuel inlet speeds for a laminar co-flow fuel air flame with a flamelet based reduction method, looking more specifically at the effect of preferential diffusion on the structure of the flame using the DRM19, GRI30 and a dodecane mechanism. This flamelet database is created with the use of the numerical code CHEM1D, assuming that the chemistry and mixture can be described by using just two variables: the mixture fraction and the progress variable. These flamelets are compiled in a manifold using the Flamelet Generated Manifold (FGM) reduction method. This results in a Flamelet Generated Manifold chemistry reduction technique. Both kinds of calculations are implemented in FLUENT to be able to compare to one and another. Results are compared with measurement on a flame using the same geometry and conditions.

  1. Combined Effects of Pipe Diameter, Reynolds Number and Wall Heat Flux and on Flow, Heat Transfer and Second-Law Characteristics of Laminar-Transitional Micro-Pipe Flows

    Directory of Open Access Journals (Sweden)

    A. Alper Ozalp

    2010-03-01

    Full Text Available Fluid flow, heat transfer and entropy generation characteristics of micro-pipes are investigated computationally by considering the simultaneous effects of pipe diameter, wall heat flux and Reynolds number in detail. Variable fluid property continuity, Navier-Stokes and energy equations are numerically handled for wide ranges of pipe diameter (d = 0.50–1.00 mm, wall heat flux (q''= 1000–2000 W/m2 and Reynolds number (Re = 1 – 2000, where the relative roughness is kept constant at e/d = 0.001 in the complete set of the scenarios considered. Computations indicated slight shifts in velocity profiles from the laminar character at Re = 500 with the corresponding shape factor (H and intermittency values (γ of H = 3.293→3.275 and γ = 0.041→0.051 (d = 1.00→0.50 mm. Moreover, the onset of transition was determined to move down to Retra = 1,656, 1,607, 1,491, 1,341 and 1,272 at d = 1.00, 0.90, 0.75, 0.60 and 0.50 mm, respectively. The impacts of pipe diameter on friction mechanism and heat transfer rates are evaluated to become more significant at high Reynolds numbers, resulting in the rise of energy loss data at the identical conditions as well. In cases with low pipe diameter and high Reynolds number, wall heat flux is determined to promote the magnitude of local thermal entropy generation rates. Local Bejan numbers are inspected to rise with wall heat flux at high Reynolds numbers, indicating that the elevating role of wall heat flux on local thermal entropy generation is dominant to the suppressing function of Reynolds number on local thermal entropy generation. Cross-sectional total entropy generation is computed to be most influenced by pipe diameter at high wall heat flux and low Reynolds numbers.

  2. A new approach to laminar flowmeters.

    Science.gov (United States)

    Pena, Fernando Lopez; Diaz, Alvaro Deibe; Lema, Marcos Rodriguez; Rodriguez, Santiago Vazquez

    2010-01-01

    After studying the performance and characteristics of actual laminar flowmeters a new disposition for this type of sensors is proposed in such a way that the measurement errors introduced by the intrinsic nature of the device can be minimized. The preliminary study shows that the developing entry region introduces non-linearity effects in all these devices. These effects bring about not only errors, but also a change in the slope of the linear calibration respect of the Poiseuille relation. After a subsequent analysis on how these non-linearity errors can be reduced, a new disposition of this type of flowmeters is introduced. This device makes used of flow elements having pressure taps at three locations along its length and connected to three isolated chambers. In this way, the static pressure can be measured at three locations and contributed to by the pressure taps at the level of each chamber. Thus the linearization error is reduced with an additional advantage of producing a reduced pressure drop.

  3. A New Approach to Laminar Flowmeters

    Directory of Open Access Journals (Sweden)

    Alvaro Deibe

    2010-11-01

    Full Text Available After studying the performance and characteristics of actual laminar flowmeters a new disposition for this type of sensors is proposed in such a way that the measurement errors introduced by the intrinsic nature of the device can be minimized. The preliminary study shows that the developing entry region introduces non-linearity effects in all these devices. These effects bring about not only errors, but also a change in the slope of the linear calibration respect of the Poiseuille relation. After a subsequent analysis on how these non-linearity errors can be reduced, a new disposition of this type of flowmeters is introduced. This device makes used of flow elements having pressure taps at three locations along its length and connected to three isolated chambers. In this way, the static pressure can be measured at three locations and contributed to by the pressure taps at the level of each chamber. Thus the linearization error is reduced with an additional advantage of producing a reduced pressure drop.

  4. Rethinking the process of detrainment: jets in obstructed natural flows

    Science.gov (United States)

    Mossa, Michele; de Serio, Francesca

    2016-12-01

    A thorough understanding of the mixing and diffusion of turbulent jets released in porous obstructions is still lacking in literature. This issue is undoubtedly of interest because it is not strictly limited to vegetated flows, but also includes outflows which come from different sources and which spread among oyster or wind farms, as well as aerial pesticide treatments sprayed onto orchards. The aim of the present research is to analyze this process from a theoretical point of view. Specifically, by examining the entrainment coefficient, it is deduced that the presence of a canopy prevents a momentum jet from having an entrainment process, but rather promotes its detrainment. In nature, detrainment is usually associated with buoyancy-driven flows, such as plumes or density currents flowing in a stratified environment. The present study proves that detrainment occurs also when a momentum-driven jet is issued in a not-stratified obstructed current, such as a vegetated flow.

  5. Hot Strip Laminar Cooling Control Model

    Institute of Scientific and Technical Information of China (English)

    WANG Jun; WANG Guo-dong; LIU Xiang-hua

    2004-01-01

    The control model of laminar cooling system for hot strip, including air-cooling model, water-cooling model, temperature distribution model along thickness direction, feedforward control model, feedback control model and self-learning model, was introduced. PID arithmetic and Smith predictor controller were applied to feedback control. The sample of model parameter classification was given. The calculation process was shown by flow chart. The model has been proved to be simple, effective and of high precision.

  6. Experimental study for the detection of the laminar/turbulent aerodynamic transition on a wing aircraft, using fiber optic sensors

    Science.gov (United States)

    Molin, S.; Dolfi, D.; Doisy, M.; Seraudie, A.; Arnal, D.; Coustols, E.; Mandle, J.

    2010-09-01

    We demonstrate the feasibility of detection of the nature (laminar/turbulent/transitional) of the aerodynamic boundary layer of a profile of a wing aircraft model, using a Distributed FeedBack (DFB) Fiber Laser as optical fiber sensor. Signals to be measured are pressure variations : ΔP~1Pa at few 100Hz in the laminar region and ΔP~10Pa at few kHz in the turbulent region. Intermittent regime occurring in-between these two regions (transition) is characterized by turbulent bursts in laminar flow. Relevant pressure variations have been obtained in a low-speed research-type wind tunnel of ONERA Centre of Toulouse. In order to validate the measurements, a "classical" hot film sensor, the application and use of which have been formerly developed and validated by ONERA, has been placed at the neighborhood of the fiber sensor. The hot film allows measurement of the boundary layer wall shear stress whose characteristics are a well known signature of the boundary layer nature (laminar, intermittent or turbulent) [1]. In the three regimes, signals from the fiber sensor and the hot film sensor are strongly correlated, which allows us to conclude that a DFB fiber laser sensor is a good candidate for detecting the boundary layer nature, and thus for future integration in an aircraft wing. The work presented here has been realized within the framework of "Clean Sky", a Joint Technology Initiative of the European Union.

  7. Air bacterial counts in hundred-level laminar flow operating room under dynamic conditions%百级层流手术室动态条件下空气细菌数量的调查

    Institute of Scientific and Technical Information of China (English)

    张亚莉; 于芳; 周浩; 姚翠军; 汪能平; 孙树梅

    2012-01-01

    目的 探讨医院百级层流手术室在进行手术状态下,空气中沉降细菌数量监测结果,了解影响其因素和探讨改进层流手术室洁净度的措施.方法 测定百级层流手术室在进行手术状态下(即动态条件下)不同时段空气中沉降细菌菌落数.结果 静态条件下不同手术室之间比较,差异无统计学意义,动态条件下不同手术室之间亦差异无统计学意义;同一手术室动态条件下第一台手术开始时与结束前比较,1、3室沉降菌数量随手术时间延长而增加,差异有统计学意义(P<0.01),2室差异无统计学意义;在手术室内5~10人时,空气沉降菌数量为(10.978±7.275)CFU/平板,11~16人时,沉降菌数量为(23.399±17.334)CFU/平板,两组比较差异有统计学意义(P<0.01),即手术室动态条件下空气沉降菌数量与手术室人数呈正相关.结论 人员是层流手术室空气污染的主要因素,应严格限制手术室内人数,是保障手术中空气清净度的一项关键措施.%OBJECTIVE To evaluate results of the bacteria settlement in hundred-level laminar flow operating room of our hospital> and find out factors correlated with the number of bacteria settlement and measures to improve the clean level of the laminar flow operating room. METHODS The number of bacteria settlement in the air during the operation (under dynamic conditions) in the hundred-level laminar flow operating room was determined at different time points. RESULTS There was no significant difference in the number of bacteria settlement between the operating room under static and dynamic conditions; comparing the beginning (incision) and the end (suture) of the first operation in the same operating room under dynamic conditions, the numbers of bacteria settlement of room No. 1 and No, 3 significantly increased (P<0. 01) with operating time, but not in room No. 2. When there were 5-10 persons in the operating room, the number of bacteria settlement

  8. 80C196KC单片机在层流流量计数字式仪表开发中的应用%The Application of 80C196KC Micro -controller In Developing a Digital Laminar Flow Meter

    Institute of Scientific and Technical Information of China (English)

    李过房

    2012-01-01

    In this paper, using 80C196KC micro - controller, a digital laminar flow meter is de- signed. Practice has proved that compared with the MCS -51 micro -controller,the 80C196KC mi- cro- controller can greatly improve the efficiency of the development processes. And, at the same time, it can ensure the running speed of the digital meters developed.%本文通过实例,介绍了80C196KC单片机在层流流量计数字式仪表开发中的应用方法,实践证明,与传统的MCS-51单片机比,它可大大提高数字式仪表的开发效率,同时,保证所开发的数字式仪表的运行速度。

  9. Coordinated scheduling of electricity and natural gas infrastructures with a transient model for natural gas flow.

    Science.gov (United States)

    Liu, Cong; Shahidehpour, Mohammad; Wang, Jianhui

    2011-06-01

    This paper focuses on transient characteristics of natural gas flow in the coordinated scheduling of security-constrained electricity and natural gas infrastructures. The paper takes into account the slow transient process in the natural gas transmission systems. Considering their transient characteristics, natural gas transmission systems are modeled as a set of partial differential equations (PDEs) and algebraic equations. An implicit finite difference method is applied to approximate PDEs by difference equations. The coordinated scheduling of electricity and natural gas systems is described as a bi-level programming formulation from the independent system operator's viewpoint. The objective of the upper-level problem is to minimize the operating cost of electric power systems while the natural gas scheduling optimization problem is nested within the lower-level problem. Numerical examples are presented to verify the effectiveness of the proposed solution and to compare the solutions for steady-state and transient models of natural gas transmission systems.

  10. Numerical simulation of a viscoelastic flow through a concentric annular with BSD scheme, influence of the Deborah number; Simulacao numerica do escoamento laminar de fluido viscoelastico PTT (Phan-Thien-Tanner) em tubo anular concentrico - influencia do numero de Deborah

    Energy Technology Data Exchange (ETDEWEB)

    D' Ambros, Alder C.; Vitorassi, Pedro H.; Franco, Admilson T.; Morales, Rigoberto E.M. [Universidade Tecnologica Federal do Parana (UTFPR), Curitiba, PR (Brazil); Matins, Andre Leibsohn [PETROBRAS S.A., Rio de Janeiro, RJ (Brazil). Centro de Pesquisas (CENPES). Tecnologia de Engenharia de Perfuracao

    2008-07-01

    The success of oil well drilling process depends on the correct prediction of the velocities and stresses fields inside the gap between the drill string and the rock formation. Using CFD is possible to predict the behavior of the drilling fluid flow along the annular space, from the bottom to the top of the well. Commonly the drilling fluid is modeled as a Herschel-Bulkley fluid. An alternative is to employ a non-linear viscoelastic model, like the one developed by Phan-Thien-Tanner (PTT). In the present work the PTT constitutive equation is used to model the drilling fluid flow along the annular space. Thus, this work investigates the influence of the Deborah number on the laminar flow pattern through the numerical solution of the equations formed by the coupled velocity-pressure-stress fields. The results are analyzed and validated against the analytical solution for the fully developed annular pipe flow. The relation between the Deborah number (De) and the entry length is investigated, along with the influence of high values of Deborah number on the friction factor, stress and velocity fields. (author)

  11. Shear Flow Induced Alignment of Carbon Nanotubes in Natural Rubber

    Directory of Open Access Journals (Sweden)

    Yan He

    2015-01-01

    Full Text Available A new procedure for the fabrication of natural rubber composite with aligned carbon nanotubes is provided in this study. The two-step approach is based on (i the preparation of mixture latex of natural rubber, multiwalled carbon nanotubes, and other components and (ii the orientation of carbon nanotubes by a flow field. Rubber composite sheets filled with variable volume fraction of aligned carbon nanotubes were fabricated and then confirmed by transmission electron microscopy and Raman spectroscopy studies. An obvious increase in thermal conductivity has been obtained after the alignment of carbon nanotubes. The dynamic mechanical analysis was carried out in a tear mode for the composite.

  12. Natures of Rotating Stall Cell in a Diagonal Flow Fan

    Institute of Scientific and Technical Information of China (English)

    N. SHIOMI; K. KANEKO; T. SETOGUCHI

    2005-01-01

    In order to clarify the natures of a rotating stall cell, the experimental investigation was carried out in a high specific-speed diagonal flow fan. The pressure field on the casing wall and the velocity fields at the rotor inlet and outlet were measured under rotating stall condition with a fast response pressure transducer and a single slant hot-wire probe, respectively. The data were processed using the "Double Phase-Locked Averaging (DPLA)"technique, which enabled to obtain the unsteady flow field with a rotating stall cell in the relative co-ordinate system fixed to the rotor. As a result, the structure and behavior of the rotating stall cell in a high specific-speed diagonal flow fan were shown.

  13. Electrification of particulates in industrial and natural multiphase flows

    CERN Document Server

    Gu, Zhaolin

    2017-01-01

    This book introduces comprehensive fundamentals, numerical simulations and experimental methods of electrification of particulates entrained multiphase flows. The electrifications of two particulate forms, liquid droplets and solid particles, are firstly described together. Liquid droplets can be charged under preset or associated electric fields, while solid particles can be charged through contact. Different charging ways in gas (liquid)-liquid or gas-solid multiphase flows are summarized, including ones that are beneficial to industrial processes, such as electrostatic precipitation, electrostatic spraying, and electrostatic separation, etc., ones harmful for shipping and powder industry, and ones occurring in natural phenomenon, such as wind-blown sand and thunderstorm. This book offers theoretical references to the control and utilization of the charging or charged particulates in multiphase flows as well.

  14. Nonlinear Multiplicative Schwarz Preconditioning in Natural Convection Cavity Flow

    KAUST Repository

    Liu, Lulu

    2017-03-17

    A natural convection cavity flow problem is solved using nonlinear multiplicative Schwarz preconditioners, as a Gauss-Seidel-like variant of additive Schwarz preconditioned inexact Newton (ASPIN). The nonlinear preconditioning extends the domain of convergence of Newton’s method to high Rayleigh numbers. Convergence performance varies widely with respect to different groupings of the fields of this multicomponent problem, and with respect to different orderings of the groupings.

  15. Natural Regulation of Energy Flow in a Green Quantum Photocell

    OpenAIRE

    Arp, Trevor B.; Barlas, Yafis; Aji, Vivek; Gabor, Nathaniel M.

    2015-01-01

    Manipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light harvesting photocell lead to inefficient energy storage in conventional solar cells and potentially fatal oxidative damage in photosynthesis. Here, we show that regulation against these fluctuations arises naturally within a tw...

  16. Laminar streak enhancement using streamwise grooves

    Science.gov (United States)

    Martel, Carlos; Martín, Juan Ángel

    2011-11-01

    Laminar streak promotion in a flat plate boundary layer results in an increase of the stability of the Tollmien-Schlichting waves with respect to that of the 2D Blasius profile. This stabilization delays the laminar-turbulent transition, increasing the laminar phase of the flow. The stabilization effect is stronger for higher streak amplitudes, and therefore simple ways of generating high amplitude stable streaks are sought to be used as boundary layer flow control methods. In a recent experiment [Tallamelli & Franson,AIAA 2010-4291] high amplitude stable steady streaks have been produced using Miniature Vortex Generators (MGVs), where one array of MGVs is used to excite the streak and a second array is used downstream to enhance their amplitude. In this presentation we numerically explore the possibility of enhancing the streaks using a different passive mechanism: streamwise grooves carved in the plate. We will present some numerical simulations for different values of the spanwise period of the streaks and of the grooves, and we will show the combinations that provide maximum streak amplitude.

  17. 液体乙醇微尺度层流扩散燃烧的数值模拟%Numerical Simulation of Microscale Laminar-Flow Diffusion Combustion of Liquid Ethanol

    Institute of Scientific and Technical Information of China (English)

    徐涛; 杨泽亮; 甘云华

    2011-01-01

    结合微尺度条件下液体乙醇的流动和燃烧特性,通过理论分析选择合理的模型来对液体乙醇的微尺度层流扩散燃烧进行数值模拟,然后采用数值模拟软件Fluent来分析液滴辐射传热与边界层滑移因素对数值模拟的影响,将数值模拟结果与测量值进行对比分析.研究结果表明:将液滴辐射传热和边界层滑移因素结合起来考虑能使数值模拟值与测量值更接近.%By taking into consideration the flow and combustion characteristics of liquid ethanol in microscale flow,a reasonable simulation model is selected based on theoretical analysis for the numerical simulation of microscale laminar-flow diffusion cumbustion of liquid ethanol, and the effects of droplet radiation heat transfer and boundary slip on the simulation are analyzed with Fluent. The simulated results are then compared with the measured ones finding that the numerical simulation considering both the droplet radiation heat transfer and the boundary slip is more accurate.

  18. Heat transfer of laminar mixed convection of liquid

    CERN Document Server

    Shang, De-Yi

    2016-01-01

    This book presents a new algorithm to calculate fluid flow and heat transfer of laminar mixed convection. It provides step-by-step tutorial help to learn quickly how to set up the theoretical and numerical models of laminar mixed convection, to consider the variable physical properties of fluids, to obtain the system of numerical solutions, to create a series of formalization equations for the convection heat transfer by using a curve-fitting approach combined with theoretical analysis and derivation. It presents the governing ordinary differential equations of laminar mixed convection, equivalently transformed by an innovative similarity transformation with the description of the related transformation process. A system of numerical calculations of the governing ordinary differential equations is presented for the water laminar mixed convection. A polynomial model is induced for convenient and reliable treatment of variable physical properties of liquids. The developed formalization equations of mixed convec...

  19. Investigation of Shock-Induced Laminar Separation Bubble in a Supersonic Boundary Layer

    Science.gov (United States)

    Sivasubramanian, Jayahar; Fasel, Hermann

    2015-11-01

    The interaction between an impinging oblique shock and a laminar boundary-layer on a flat plate is investigated using DNS. In particular, the two-dimensional separation bubble resulting from the shock/boundary-layer interaction (SBLI) at freestream Mach number of 2.0 is investigated in detail. The flow parameters used for the present investigation match the laboratory conditions in the experiments by Hakkinen et al. The skin friction and pressure distribution from the simulations are compared to the experimental measurements and numerical results available in the literature. Our results confirm the asymmetric nature of the separation bubble as reported in the literature. In addition to the steady flow field calculations, the response to low-amplitude disturbances is investigated in order to study the linear stability behavior of the separation bubble. For comparison, both the development of two-dimensional and three-dimensional (oblique) disturbances are studied with and without the impinging oblique shock. Furthermore, the effects of the shock incidence angle and Reynolds number are also investigated. Finally, three-dimensional simulations were performed in order to explore the laminar-turbulent transition process in the presence of a laminar separation bubble. Funded by the Air Force Office of Scientific Research under grant FA9550-14-1-0195.

  20. Surgical area contamination--comparable bacterial counts using disposable head and mask and helmet aspirator system, but dramatic increase upon omission of head-gear: an experimental study in horizontal laminar air-flow.

    Science.gov (United States)

    Friberg, B; Friberg, S; Ostensson, R; Burman, L G

    2001-02-01

    The effect of different head coverings on air-borne transmission of bacteria and particles in the surgical area was studied during 30 strictly standardized sham operations performed in a horizontal laminar air flow (LAF) unit. The operating team members wore disposable gowns plus either a non-sterile head covering consisting of a squire type disposable hood and triple laminar face mask, a sterilized helmet aspirator system or no head cover at all. In the wound area both types of head cover resulted in low and comparable air (means of 8 and 4cfu/m(3)) and surface contamination (means of 69 and 126cfu/m(2)/h) rates. Omission of head-gear resulted in a three- to five-fold increase (P > or = 0.01- 0.001), depending on site sampled air contamination rate (mean of 22cfu/m(3)) whereas the bacterial sedimentation rate in the wound area increased about 60-fold ( P > or = 0.0001). A proper head cover minimized the emission of apparently heavy particles that were not removed by the horizontal LAF and contained mainly streptococci, presumably of respiratory tract origin. Dust particle counts revealed no differences between the three experimental situations. No correlation between air and surface contamination rates or between air contamination and air particle counts was found. We conclude that, from a bacteriological point of view, disposable hoods of squire type and face masks are equally as efficient as a helmet aspirator system and both will efficiently contain the substantial emission of bacteria-carrying droplets from the respiratory tract occurring when head cover is omitted. Finally, the use of bacterial air counts to assess surgical site surface contamination in horizontal LAF units must be seriously questioned.

  1. Numerical Simulation of the Laminar Flow Field and Mixing Time in Stirred Tank with Double Layer Impeller%双层桨搅拌槽内层流流场与混合时间的数值模拟

    Institute of Scientific and Technical Information of China (English)

    梁瑛娜; 高殿荣; 拜亮

    2015-01-01

    The laminar model, the multiple reference frame(MRF) and the tracer concentration method are employed to simulate the laminar flow field and the mixing time of highly viscous non-Newtonian fluid in stirred tank with double layer straight impeller. The flow field characteristics, the spreading process of tracer, the responding curves of tracer concentration and the mixing time are analyzed. The tracer particles and the acid-base indicator method are used to measure the flow field and the mixing process in a transparent plexiglass stirred tank in experiment. The results show that the tracer is flowing and diffusing with main medium first in the feeding half of stirred tank because of the intermediate surface between double paddle, then diffusing to the other half when the concentration difference has increased. The shorter mixing time is obtained when feeding tracer at the blade-closed-area which stirred vigorously or at the intermediate surface. Different time are used to complete mixing at different points, so choosing reasonable monitor points with mixing require could avoid resource wasting or insufficient stirring. The mixing process of the medium in stirred tank is faster and the mixing time is shorter when increasing stirring speed. The accuracy of the numerical simulation results is verified by the experimental results. The research provides the theory basis for the design and engineering application of the laminar flow stirred tank with non-Newtonian fluid.%采用Laminar模型、多重参考系法(Multiple reference frame,MRF)和示踪剂浓度法对双层六直叶桨搅拌槽内高黏非牛顿流体层流流场和混合时间进行数值模拟,分析其流动特性、示踪剂扩散过程、示踪剂浓度响应曲线和混合时间;采用示踪粒子法和酸碱指示剂变色法对透明有机玻璃搅拌槽内流动场和混合过程进行试验测定。结果表明,双层桨中间面将示踪剂先控制在加料的半层内随主体介质流

  2. Object-oriented Implementation of the Galerkin Finite Element Method and Its Application to the Numerical Study of Natural Convective Flows in Enclosures

    Science.gov (United States)

    Moreno, Rafael; Ramaswamy, Balasubramaniam

    2003-01-01

    Using object-oriented programming (OOP) techniques and philosophies, a collection of C++ tools for the rapid development of finite element applications has been created. The object-oriented finite element analysis (OOFEA) toolkit provides both the geometrical and mathematical management tools necessary for this task in the form of useful class hierarchies. In particular, the OOFEA toolkit features methods for evaluating arbitrary weak forms provided by the user in order to solve particular problems of interest. A description of the underlying concepts, philosophies and techniques used to develop the toolkit are included. A strong effort has been made to concentrate on its possibly beneficial usage in the computational fluid dynamics area. In order to demonstrate the toolkit capabilities of managing complex projects, a simulator for laminar and turbulent natural convective flows in enclosures has been developed and a numerical study of some of these flows has been conducted.

  3. Turbulence in laminar premixed V-flames

    Institute of Scientific and Technical Information of China (English)

    ZHANG; Xiaoqian(张孝谦); LEI; Yu(雷宇); WANG; Baorui(王宝瑞); WANG; Yue(王岳); WEI; Minggang(韦明罡)

    2003-01-01

    Strong velocity fluctuations had been found in the laminar premixed V-flames. These velocity fluctuations are closely related to the chemical reaction. But the effects of the upstream combustible mixture velocity on the velocity fluctuations inside the flame are quite weak. The probability distribution function (PDF) of the velocity in the centre region of the flame appears "flat top" shaped. By analyzing the experiment results the flame-flow interactions are found to affect the flame not only at large scale in the flow field but also at small scale inside the flame. These effects will give rise to flame generated small scale turbulences.

  4. Modeling the natural convective flow of micropolar nanofluids

    KAUST Repository

    Bourantas, Georgios

    2014-01-01

    A micropolar model for nanofluidic suspensions is proposed in order to investigate theoretically the natural convection of nanofluids. The microrotation of the nanoparticles seems to play a significant role into flow regime and in that manner it possibly can interpret the controversial experimental data and theoretical numerical results over the natural convection of nanofluids. Natural convection of a nanofluid in a square cavity is studied and computations are performed for Rayleigh number values up to 106, for a range of solid volume fractions (0 ≤ φ ≤ 0.2) and, different types of nanoparticles (Cu, Ag, Al2O3 and TiO 2). The theoretical results show that the microrotation of the nanoparticles in suspension in general decreases overall heat transfer from the heated wall and should not therefore be neglected when computing heat and fluid flow of micropolar fluids, as nanofluids. The validity of the proposed model is depicted by comparing the numerical results obtained with available experimental and theoretical data. © 2013 Elsevier Ltd. All rights reserved.

  5. Numerical simulation and verification on laminar flow between two parallel flat plates based on SPH method%基于SPH方法的两平行平板间层流的数值模拟及验证

    Institute of Scientific and Technical Information of China (English)

    徐国宾; 王永鹏; 高仕赵; 刘昉

    2011-01-01

    Based on the basic principle of smoothed particle hydrodynamics ( SPH ) method, the paper gave 2 - D SPH Fortran program to make numerical simulations for Poiseuille flow and Couette flow which are Laminar Flow between two parallel flat plates after a comprehensive consideration of several kinds of settings on solution conditions. Compared SPH with theoretical analysis solution and simulation results which use Flow-3D numerical simulation software, this paper discovers that they are very anastomosis. The results realized a verification for the SPH mathematical model and 2 - D SPH Fortran program, supplied theoretical support and laid a good foundation for the use and development of SPH in the future.%基于SPH方法的基本原理,综合考虑了对各种定解条件的设置,用Fortran语言独立编写了一套用于模拟两平行平板间层流的SPH二维计算程序,并应用于泊肃叶流和库埃特流的数值模拟之中,将模拟结果与理论解析解和通过Flow -3D软件数值模拟得到的数值结果进行对比,分析表明三种方法得到的计算结果非常吻合,从而实现了对SPH数学模型和SPH计算程序的验证,为SPH方法的进一步发展和广泛应用奠定了一定的基础.

  6. Topological analysis of a mixing flow generated by natural convection

    Science.gov (United States)

    Contreras, Pablo Sebastián; de la Cruz, Luis Miguel; Ramos, Eduardo

    2016-01-01

    We use topological tools to describe the natural convective motion and the Lagrangian trajectories of a flow generated by stepwise, alternating heating and cooling protocol of opposite vertical walls of a cubic container. The working fluid considered is Newtonian and the system is in presence of the acceleration of gravity but the nonlinear terms are neglected, i.e., we study the piece-wise steady and linear problem. For this convective mixing flow, we identify invariant surfaces formed by the Lagrangian orbits of massless tracers that are topologically equivalent to spherical shells and period-1 lines with elliptic and hyperbolic segments that are located on symmetry planes. We describe the previous features as functions of the Rayleigh number in the range 3 × 104 ≤ Ra ≤ 5 × 105. We show that this system shares properties with other systems with non-toroidal invariant surfaces.

  7. Use of the Natural Circulation Flow Map for Natural Circulation Systems Evaluation

    Directory of Open Access Journals (Sweden)

    M. Cherubini

    2008-01-01

    Full Text Available The aim of this paper is to collect and resume the work done to build and develop, at the University of Pisa, an engineering tool related to the natural circulation. After a brief description of the different loop flow regimes in single phase and two phase, the derivation of a suitable tool to judge the NC performance in a generic system is presented. Finally, an extensive comparison among the NC performance of various nuclear power plants having different design is done to show a practical application of the NC flow map.

  8. Experimental studies on heat transfer and friction factor characteristics of Al{sub 2}O{sub 3}/water nanofluid in a circular pipe under laminar flow with wire coil inserts

    Energy Technology Data Exchange (ETDEWEB)

    Chandrasekar, M.; Suresh, S. [Department of Mechanical Engineering, National Institute of Technology, Tiruchirappalli 620015 (India); Chandra Bose, A. [Nanomaterials Laboratory, Department of Physics, National Institute of Technology, Tiruchirappalli 620015 (India)

    2010-02-15

    In this paper, fully developed laminar flow convective heat transfer and friction factor characteristics of Al{sub 2}O{sub 3}/water nanofluid flowing through a uniformly heated horizontal tube with and without wire coil inserts is presented. For this purpose, Al{sub 2}O{sub 3} nanoparticles of 43 nm size were synthesized, characterized and dispersed in distilled water to form stable suspension containing 0.1% volume concentration of nanoparticles. The Nusselt number in the fully developed region were measured and found to increase by 12.24% at Re = 2275 for plain tube with nanofluid compared to distilled water. Two wire coil inserts made of stainless steel with pitch ratios 2 and 3 were used which increased the Nusselt numbers by 15.91% and 21.53% respectively at Re = 2275 with nanofluid compared to distilled water. The better heat transfer performance of nanofluid with wire coil insert is attributed to the effects of dispersion or back-mixing which flattens the temperature distribution and make the temperature gradient between the fluid and wall steeper. The measured pressure loss with the use of nanofluids is almost equal to that of the distilled water. The empirical correlations developed for Nusselt number and friction factor in terms of Reynolds/Peclet number, pitch ratio and volume concentration fits with the experimental data within {+-}15%. (author)

  9. Inferring network flows from incomplete information with application to natural gas flows. [State-to-state natural gas flows in 1974-77

    Energy Technology Data Exchange (ETDEWEB)

    Hooker, J.N.

    1980-02-01

    A method is detailed for estimating flows along arcs (edges or links) of a network, such as a transportation network, when the total outflow and total inflow at each node (vertex) are known. It proves the optimality of a greedy method of choosing flows for independent estimation so as to determine the other flows, and does so by exploiting an underlying matroid structure. The resulting problem is formulated both as a linear program and a multi-commodity flow problem, and sensitivity analysis is performed. The technique is applied to the estimation of US state-to-state natural gas flows in the years 1974 to 1977, and numerical results are presented; 1974 and 1975 results are checked against actual data. The potential application of the same technique to the estimation of disaggregate data (of any kind), when aggregate and some disaggregate data are known, is pointed out.

  10. Linear stability of horizontal, laminar fully developed, quasi-two-dimensional liquid metal duct flow under a transverse magnetic field and heated from below

    Science.gov (United States)

    Vo, Tony; Pothérat, Alban; Sheard, Gregory J.

    2017-03-01

    This study considers the linear stability of Poiseuille-Rayleigh-Bénard flows subjected to a transverse magnetic field, to understand the instabilities that arise from the complex interaction between the effects of shear, thermal stratification, and magnetic damping. This fundamental study is motivated in part by the desire to enhance heat transfer in the blanket ducts of nuclear fusion reactors. In pure magnetohydrodynamic flows, the imposed transverse magnetic field causes the flow to become quasi-two-dimensional and exhibit disturbances that are localized to the horizontal walls. However, the vertical temperature stratification in Rayleigh-Bénard flows feature convection cells that occupy the interior region, and therefore the addition of this aspect provides an interesting point for investigation. The linearized governing equations are described by the quasi-two-dimensional model proposed by Sommeria and Moreau [J. Fluid Mech. 118, 507 (1982), 10.1017/S0022112082001177], which incorporates a Hartmann friction term, and the base flows are considered fully developed and one-dimensional. The neutral stability curves for critical Reynolds and Rayleigh numbers, Rec and Rac, respectively, as functions of Hartmann friction parameter H have been obtained over 10-2≤H ≤104 . Asymptotic trends are observed as H →∞ following Rec∝H1 /2 and Rac∝H . The linear stability analysis reveals multiple instabilities which alter the flow both within the Shercliff boundary layers and the interior flow, with structures consistent with features from plane Poiseuille and Rayleigh-Bénard flows.

  11. 层流手术室感染控制存在的问题及护理措施%Laminar flow operating room nursing infection control problems and the presence of

    Institute of Scientific and Technical Information of China (English)

    敖永琼

    2014-01-01

    Objective: To study the problems existing in the laminar flow operating room infection control and nursing measures. Methods: to choose between September 2013 and December 2013 in our hospital operating room for surgery of 190 cases as control group. Since the implementation of infection control management of between December 2013 and February 2013 in our hospital operating room as observation group, 260 patients underwent surgery. Combined with the specific situation of the hospital itself, the laminar flow operating room infection control the infection incidence of patients before and after comparison with data of satisfaction. Results: the control group of 190 cases occurred in 6 cases of infection, infection occurs in the observation group of 260 patients with 2 cases, significantly lower than the control group; Control group satisfaction was 66.84%, the observation group of satisfaction was 94.23%, obviously better than the control group. Conclusion: the laminar flow operating room infection control comprehensive nursing measures, to improve patient satisfaction and reduce the incidence of infection in patients with plays a very important significance, is worth popularizing widely.%目的::探讨层流手术室感染控制存在的问题及护理措施。方法:选取2013年9月至2013年12月在我院手术室进行手术的190例患者作为对照组。自实施感染控制管理之后的2013年12月至2014年2月在我院手术室进行手术的260例患者作为观察组。结合医院本身具体情况,将层流手术室感染控制前后患者的感染发生率与满意度数据进行比较。结果:对照组190例患者中发生感染的有6例,观察组260例患者中发生感染的有2例,明显低于对照组;对照组满意度为66.84%,观察组满意度为94.23%,明显优于对照组。结论:对层流手术室的感染控制采取全面的护理措施,对于提高患者满意度和降低患者的感染发生率起着非常

  12. 层流手术室空气中浮游菌超标原因与控制%The causes and control of excessive planktonic bacteria in the air of laminar flow operation room

    Institute of Scientific and Technical Information of China (English)

    雷凤琼; 唐葶婷; 卞红强; 罗万军; 徐润林; 范丽; 杨泳茹

    2015-01-01

    目的:研究层流手术室空气中浮游菌超标的原因与控制,以降低感染发生率。方法对2012年7月-2014年7月层流手术室连续100台手术进行检测,使用浮游菌采样器和尘埃粒子计数仪在手术室中不同的时间段进行多点采样,包括手术区和非手术区(周边区),对所测浮游菌及尘埃粒子进行计数统计,分析浮游菌、尘埃粒子超标的原因,提出处理对策。结果层流手术室在手术前浮游菌、尘埃粒子数量均符合标准,手术开始后浮游菌及尘埃粒子开始呈上升趋势,直到手术结束时达到最大值,在手术结束后浮游菌及尘埃粒子开始下降,30 min后恢复标准,差异有统计学意义(P<0.05)。结论在手术室中,尘埃粒子及浮游菌超标的原因是由于手术的动态运行、人员的走动、操作等均导致其上升,而严格的消毒、防止感染是保证手术室洁净的关键。%OBJECTIVE To study the causes and control of excessive planktonic bacteria in the air of laminar flow operation room so as to reduce infection rates .METHODS A total of 100 consecutive operation of laminar flow op‐eration from Jul .2012 to Jul .2014 were detected .Multi‐point sampling in different time period in operation rooms was conducted by planktonic bacteria sampler and dust particle calculating instrument in different areas ,including the operation area and non operation area (peripheral regions) .The planktonic bacteria and dust particle were counted and the causes for excessive planktonic bacteria and dust particle were analyzed to come up with some measures .RESULTS Before surgeries ,numbers of planktonic bacteria and dust particles in laminar flow operation room met the standards .But w hen the operation began ,numbers of planktonic bacteria and dust particle increased rapidly and reached the maximum at the end of the surgery .After that ,the numbers started to reduce and 30 mi‐nutes later

  13. Local Non-Similarity Solution of Coupled Heat-Mass Transfer of a Flat Plate with Uniform Heat Flux in a Laminar Parallel Flow

    Institute of Scientific and Technical Information of China (English)

    1996-01-01

    The coupled heat and mass transfer problem of gas flow over a UHF flat plate with its wall coated with sublimable substance was been solved by local non-smimilarity method.Considerations have been given also to the effect of non-saturation of the sublimable substance in the oncoming flow and the normal injection velocity at the surface.Analytical results are given for local Noselt and Sherwood Numbers at the various locations.

  14. Topology optimisation of natural convection problems

    DEFF Research Database (Denmark)

    Alexandersen, Joe; Aage, Niels; Andreasen, Casper Schousboe

    2014-01-01

    This paper demonstrates the application of the density-based topology optimisation approach for the design of heat sinks and micropumps based on natural convection effects. The problems are modelled under the assumptions of steady-state laminar flow using the incompressible Navier-Stokes equation...

  15. Numerical analysis of laminar pulsating flow for power-law fluid in concentric annulus%幂律流体同心环空内层流脉动流的数值分析

    Institute of Scientific and Technical Information of China (English)

    黄善波; 李兆敏

    2011-01-01

    建立幂律流体环空内层流脉动流的数学模型,采用SIMPLE算法进行数值求解,得到幂律流体环空脉动层流的流动特性.结果表明:幂律流体环空脉动流的流动特性与稳态流动时差异较大;环空脉动流在距入口非常短的一段距离内就可达到充分发展,且不同时刻的人口段长度随时间而变化;低脉动频率下速度分布曲线类似于稳态时的抛物形分布,高频率下壁面附近的速度分布曲线发生扭曲,振荡速度的最大值出现在壁面附近;内、外壁面的摩擦系数和轴向压力梯度均近似满足正弦变化规律,脉动频率、振幅和流体流性指数的增加均会使壁面摩擦系数和轴向压力梯度及其变化幅度增大.%A mathematical model for laminar pulsating flow of power-law fluid in annulus was set up and solved by SIMPLE method. The results show that the flow behavior of pulsating flow is quite different from that of steady flow. Fully developed lamilar flow can be achieved in a small distance from the annulus entrance. and the hydrodynamic entrance length varies with time. The transient pulsating velocity curve at low pulsating frequency is similar to parabolic distribution of steady flow. The influence of pulsation is distinct at high frequency and the maxmum oscillating velocity component appears near the wall.The wall friction coefficient and the axial pressure gradient vary with time approximately in sinusoidal manner. The friction coefficient at inner and outer wall and the axial pressure gradient and their variation range all increase with the increase of pulsating frequency, amplitude and the flow index of fluid.

  16. Analysis of the laminar Newtonian fluid flow through a thin fracture modelled as a fluid-saturated sparsely packed porous medium

    Energy Technology Data Exchange (ETDEWEB)

    Pazanin, Igor [Zagreb Univ. (Croatia). Dept. of Mathematics; Siddheshwar, Pradeep G. [Bangalore Univ., Bengaluru (India). Dept. of Mathematics

    2017-06-01

    In this article we investigate the fluid flow through a thin fracture modelled as a fluid-saturated porous medium. We assume that the fracture has constrictions and that the flow is governed by the prescribed pressure drop between the edges of the fracture. The problem is described by the Darcy-Lapwood-Brinkman model acknowledging the Brinkman extension of the Darcy law as well as the flow inertia. Using asymptotic analysis with respect to the thickness of the fracture, we derive the explicit higher-order approximation for the velocity distribution. We make an error analysis to comment on the order of accuracy of the method used and also to provide rigorous justification for the model.

  17. Efficient Extraction of Uranium(Ⅵ) by Laminar Flow Microfluidic System Modified With OTS%O TS 修饰的微流控层流系统萃取铀

    Institute of Scientific and Technical Information of China (English)

    王琬箐; 杨善丽; 张靖; 褚明福; 蒙大桥

    2016-01-01

    The laminar flow extraction of uranium (Ⅵ ) by microfluidic has been studied . Two‐phase liquid can be separated automatically by selective modification in order to analyze using octadecyltrichlorosilane .Above 90% uranium can be extracted by 20% TBP‐hydrogen‐ated kerosene from 3 mol/L HNO3 in microchannel .Furthermore ,it is expected that the efficient microfluidic extraction system can be used in the separation and extraction of radio‐nuclides .%十八烷基三氯硅烷(OTS)能够选择性修饰通道,保证层流的稳定进行,萃取过程中两相液体自动分相,便于分析。20%磷酸三丁酯(TBP)‐氢化煤油萃取剂能够从3 mol/L HNO3中高效萃取硝酸铀酰,当硝酸铀酰质量浓度为1~5 g/L时,单次萃取效率均高达90%以上,接触时间仅为37 s。因此,微流控层流萃取技术在核素的快速高效分离与元素萃取等领域有着广泛的应用前景。

  18. Absolute TDLAS based in-situ determination of acetylene concentration profiles in laminar cross-flow flames; Absolute TDLAS basierte in Situ Messung von Acetylen Konzentrationsprofilen in laminaren Gegenstromflammen

    Energy Technology Data Exchange (ETDEWEB)

    Wagner, S.; Raith, P.; Klein, M.; Ebert, V. [Heidelberg Univ. (Germany). Physikalisch-Chemisches Institut

    2009-07-01

    A system for the quantitative, local dissolved, sampling-free and calibration-free in-situ measurement of acetylene in a flame environment by means of the direct Tunable Diode Laser Absorption Spectroscopy (TDLAS) was developed. Using a fibre-coupled Distributed Feedback Diode Lasers at a wavelength of 1,535 nm, spatially dissolved and absolute concentration profiles of acetylene in laminar, not premixed methane/air flames based on a modified Tsuji cross-flow burner could be measured. By adjustment of a multi line Voigt model to the spectrum measured by means TDLAS, optical resolutions of up to 1.10{sup -}4 (1{sigma}) in the flame (T up to 2,000 K) were obtained. Thus, temperature-dependent detection limits from 50 to 700 ppm acetylene at maximal concentrations of up to 1,200 ppm were obtained for the P17e line at 6,513 cm{sup -}1. Due to the DC engine supported shifting of the burner relative to the laser, spatially dissolved, absolute acetylene concentration profiles were measured along the flame with a spatial dissolution of 0.5 mm. Without further scaling or calibration, the TDLAS based vertical concentration profile of acetylene agrees well with the computed distribution of the acetylene concentration for the same flame at a comparable burner. Thus, these concentration data can be used for the validation of new models for the description of the chemiluminescence.

  19. MEKC-LIF method for analysis of amino acids after on-capillary derivatization by transverse diffusion of laminar flow profiles mixing of reactants for assessing developmental capacity of human embryos after in vitro fertilization.

    Science.gov (United States)

    Celá, Andrea; Mádr, Aleš; Dědová, Tereza; Pelcová, Marta; Ješeta, Michal; Žáková, Jana; Crha, Igor; Glatz, Zdeněk

    2016-09-01

    Evaluating the physiological state of an organism is of clinical importance. In assisted reproduction, knowledge of the embryo's physiology is crucial for selecting the embryo with the highest developmental capacity to ensure high pregnancy rates. Amino acids (AAs) are involved in many biochemical processes during embryo development, which means that the determination of AA fluctuations in the embryo's surroundings can determine the embryo's physiological state. Since current embryo selection methods are mainly based on visual assessment, which lacks proper accuracy, a novel method for the analysis of AAs in the embryo's surroundings was developed. AAs were analyzed by means of MEKC-LIF after on-capillary derivatization by naphthalene-2,3-dicarboxaldehyde. The reactants were injected under the three zone arrangement and mixed using the transverse diffusion of laminar flow profiles methodology. The resulting derivatives of all the standard AAs were baseline resolved in the BGE comprised of 35 mM sodium tetraborate, 55 mM SDS, 2.7 M urea, 1 mM BIS-TRIS propane, and 23 mM NaOH within 50 min. The method was applied on an analysis of spent culture media used in assisted reproduction to culture embryos after in vitro fertilization.

  20. Natural Regulation of Energy Flow in a Green Quantum Photocell

    CERN Document Server

    Arp, Trevor B; Aji, Vivek; Gabor, Nathaniel M

    2015-01-01

    Manipulating the flow of energy in nanoscale and molecular photonic devices is of both fundamental interest and central importance for applications in light harvesting optoelectronics. Under erratic solar irradiance conditions, unregulated power fluctuations in a light harvesting photocell lead to inefficient energy storage in conventional solar cells and potentially fatal oxidative damage in photosynthesis. Here, we show that regulation against these fluctuations arises naturally within a two-channel quantum heat engine photocell, thus enabling the efficient conversion of varying incident solar spectrum at Earth's surface. Remarkably, absorption in the green portion of the spectrum is avoided, as it provides no inherent regulatory benefit. Our findings illuminate a quantum structural origin of regulation, provide a novel optoelectronic design strategy, and may elucidate the link between photoprotection in photosynthesis and the predominance of green plants on Earth.

  1. Lie Group Analysis of Natural Convective Flow from a Convectively Heated Upward Facing Radiating Permeable Horizontal Plate in Porous Media Filled with Nanofluid

    Directory of Open Access Journals (Sweden)

    Md. Jashim Uddin

    2012-01-01

    Full Text Available Two-dimensional, steady, laminar and incompressible natural convective flow of a nanofluid over a connectively heated permeable upward facing radiating horizontal plate in porous medium is studied numerically. The present model incorporates Brownian motion and thermophoresis effects. The similarity transformations for the governing equations are developed by Lie group analysis. The transformed equations are solved numerically by Runge-Kutta-Fehlberg fourth-fifth order method with shooting technique. Effects of the governing parameters on the dimensionless velocity, temperature and nanoparticle volume fraction as well as on the dimensionless rate of heat and mass transfer are presented graphically and the results are compared with the published data for special cases. Good agreement is found between numerical results of the present paper and published results. It is found that Lewis number, Brownian motion and convective heat transfer parameters increase the heat and mass transfer rates whilst thermophoresis decreases both heat and mass transfer rates.

  2. Groundwater flow through a natural fracture. Flow experiments and numerical modelling

    Energy Technology Data Exchange (ETDEWEB)

    Larsson, Erik [Chalmers Univ. of Technology, Goeteborg (Sweden). Dept of Geology

    1997-09-01

    Groundwater flow and transport play an important role not only for groundwater exploration but also in environmental engineering problems. This report considers how the hydraulic properties of fractures in crystalline rock depend on the fracture aperture geometry. Different numerical models are discussed and a FDM computer code for two- and three- dimensional flow-modelling has been developed. Different relations between the cells in the model are tested and compared with results in the literature. A laboratory experimental work has been done to carry out flow experiments and aperture measurements on the same specimen of a natural fracture. The drilled core sample had fractures parallel to the core axis and was placed inside a biaxial cell during the experiments. The water pressure gradient and the compression stress were varied during the experiments and also a tracer test was done. After the flow experiments, the aperture distribution for a certain compression was measured by injecting an epoxy resin into the fracture. The thickness of the resin layer was then studied in saw cut sections of the sample. The results from the experiments were used to validate numerical and analytical models, based on aperture distribution, for flow and transport simulations. In the disturbed zone around a drift both water and air are present in the fractures. The gas will go to the most wide part of the fracture because the capillarity and the conductivity decrease. The dependence of the effective conductivity on the variance of the conductivity and the effect of extinction of highly conductive cells has also been studied. A discussion of how gas in fractures around a drift can cause a skin effect is modelled and an example is given of what a saturation depending on the magnitude of the flow causes. 25 refs, 17 tabs, 43 figs.

  3. 微细尺度下液体乙醇层流扩散燃烧的特性仿真%Simulationof Micro Scale Liquid Ethanol Laminar Flow Diffusion Combustion Characteristic

    Institute of Scientific and Technical Information of China (English)

    徐涛; 杨泽亮; 甘云华; 杨帅

    2011-01-01

    Current study is not sufficient on micro scale liquid ethanol laminar flow diffusion combustion characteristic, in order to overcome the limit of micro flame temperature measurement in experimental process, simulation study method was proposed with Fluent6.3 software in this article.The simulation results showed that the applied electric field could enhance the maximum flame temperature, the positive electric field could stretch the flame height,the reverse electric field could condense the flame height when the ethanol flow rate was 2.7ml/h.When ethanol flow rate was low, the flame height of the non-electric field was higher than the applied electric field, with the increasing of ethanol flow rate, the flame height of the applied electric field was the highest, and the flame height of the positive electric field was significantly higher than the reverse electric field at the same volume flow.Proved by the experiment, the simulation values of flame structure and temperature were in good agreement with experimental values, and simulation method for effective micro combustor research had important guiding significance.%在微尺度燃烧器特性的研究中,针对目前对微细尺度液体燃料层流扩散燃烧特性研究,为了克服实验研究过程中微火焰温度的测量限制,通过建模进行仿真分析,外加电场可提高火焰最高温度,正向电场能拉伸火焰高度,而反向电场压缩火焰高度;流量较少时,无电场火焰高度最高;随着流量增加,外加电场火焰高度最高;相同流量下,正向电场火焰高度较反向电场高.以上是采用 Fhent6.3 软件进行仿真,结果表明,火燃结构与实验值吻合良好,仿真方法对高效微型燃烧器研制具有重要指导意义.

  4. 一种多通道微流控芯片压力检测方法研究%Study on a multi-channel micro fluid chip pressure measurement method based on laminar flow distribution

    Institute of Scientific and Technical Information of China (English)

    杨国清; 廖彦剑; 杨军; 陈礼; 郑小林; 胡宁

    2012-01-01

    Aiming at the flow pressure in micro fluidic chip, especially the multi-channel pressure measurement problem, this paper provides a micro fluidic chip multi-channel pressure measurement method based on laminar flow distribution and microscopic image processing method. Taking the two channel case as an example, a multi-channel pressure measurement chip was designed and fabricated. This paper mainly focuses on the formula derivation of pressure measurement, design and fabrication of multi-channel micro fluidic chip, model simulation and analysis, and acquiring experiment data with microscope image processing. Furthermore, the data obtained from design verification experiment ware compared with simulation result, which proves the feasibility of the proposed method.%针对微流控芯片中的流路压力,特别是多通道的压力测量问题,提出了一种利用微尺度层流结合显微图像处理进行多通道压力(流速)测量的方法,并以双路通道情况为例,设计并制作了一种基于层流的多通道压力检测芯片.主要研究内容包括微尺度层流条件下压力(流速)测量方法的建立、多通道压力测压芯片的设计和制作、对该芯片模型的仿真分析和利用显微图像处理获得实验数据几个方面.最终,通过设计验证实验得到的数据与仿真结果的对比,验证了方法的可行性.

  5. Laminar-turbulent transition delay on a swept wing

    Science.gov (United States)

    Borodulin, V. I.; Ivanov, A. V.; Kachanov, Y. S.; Hanifi, A.

    2016-10-01

    The paper describes the results of experiments on robustness of laminar-turbulent transition control on a swept-wing using distributed micro-sized roughness (DMSR) elements. These elements introduce controlled stationary vortices which are able to significantly modify the base flow and its stability characteristics. We have performed parametric study first varying height and period of the DMSR elements in order to find the most stabilizing effect on boundary later flow in compare to uncontrolled reference case without DMSR. Significant downstream shift of laminar-turbulent transition position due to application of DMSR is found and well documented with help of thermography. The robustness of this flow control method was studied by variation of the wind-tunnel flow quality introducing significant sound background or introducing enhanced turbulence level (applying turbulizing grids). The wind-tunnel tests performed with turbulence-generating grids (at enhanced turbulence levels) have shown that laminar-turbulent transition moves upstream in this case, while DMSR-elements loose their effectiveness for transition control (no matter in quiet sound conditions or at elevated sound background). The experiments on acoustic influence have shown that without DMSR acoustic does not effect transition location. However, in case then laminar-turbulent transition is delayed by presence of DMSR, an additional transition delay was observed when harmonic acoustic waves of certain frequency were excited.

  6. An Analysis of Shock Structure and Nonequilibrium Laminar Boundary Layers Induced by a Normal Shock Wave in an Ionized Argon Flow

    Science.gov (United States)

    1975-10-01

    Moore and Erdos (Ref. 28) in solving the boundary layer equations for dissoci- tion and ionizing air in a nonequilibrium flow. * 21 Another powerful...8217 =o g =o ’ =o(4.31b) fit = 0 g" = 0 Zt =0 fi’ = 0 git = 0 where, the prime denotes differentiation with respect to 1. The edge of the sheath is now the...i LX ] (4.37e) where, C = pR/Pee and the prime denotes differentiation with respect to T. Equations 4.31 and 4.37 produce seven, seven, and five

  7. Flow Visualization of Forced and Natural Convection in Internal Cavities

    Energy Technology Data Exchange (ETDEWEB)

    John Crepeau; Hugh M. Mcllroy,Jr.; Donald M. McEligot; Keith G. Condie; Glenn McCreery; Randy Clarsean; Robert S. Brodkey; Yann G. Guezennec

    2002-01-31

    The report descries innovative flow visualization techniques, fluid mechanics measurements and computational models of flows in a spent nuclear fuel canister. The flow visualization methods used a fluid that reacted with a metal plate to show how a local reaction affects the surrounding flow. A matched index of refraction facility was used to take mean flow and turbulence measurements within a generic spent nuclear fuel canister. Computational models were also made of the flow in the canister. It was determined that the flow field in the canister was very complex, and modifications may need to be made to ensure that the spent fuel elements are completely passivated.

  8. 地球三级层流隆陷构造系统的关联机理%Correlation in Mechanism Among Three-levels of Uplift and Depression Driven by Laminar Flows in the Earth

    Institute of Scientific and Technical Information of China (English)

    李德威

    2016-01-01

    This paper studies the regularity of time and space, matter and energy in the complex and open Earth system and its subsystems using analytical techniques in systems science and systems philosophy in an effort to solve many scientific problems that cannot be satisfactorily explained by the plate tectonics. The author integrates the basic features in geometry, kinematics, rheology, and evolutionary history of the ocean-continent systems and the related continental basin-mountain systems, establishes a preliminary unified dynamic mechanism, in which the formation of super ocean-super continent, ocean-continent and basin-mountain is driven by four-dimensional non-uniform laminar flow and by related tectonic conversion between horizontal movement and vertical movement of the outer core, mantle asthenosphere and active lower crust. The author also emphasizes that the thermal energy, which results in magma activity and solid state flow, is the main force of the tectonic activities of the Earth, demonstrates the law in material movement of the Earth subsystems at different thermal state, and proposes ten scientific conjectures, including the Modern Tethys in the southern hemisphere, the future super oceanic-continental patterns, the existence of Meso-Tethys and Neo-Tethys and their related continents in the western Pacific Ocean, the rifting of the western North America into the ocean, the dynamic superposition of magnetic fields and shift of magnetic poles of the Earth caused by the three-level non-uniform laminar flow geodynamo, and new production revolution driven by geothermal energy which will replace carbon energy. The author hopes that the results may lay the foundation for a new earth science theory, and provide new ideas for the mankind to improve the global environments.%本文针对板块构造学说不能合理解释的一些重大科学问题,采用系统科学和系统哲学的分析方法,研究开放复杂地球系统及其子系统的时空、物质

  9. Measurement and Modelling of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Heiselberg, Per; Kalyanova, Olena; Jensen, Rasmus Lund

    2008-01-01

    Air flow rate in a naturally ventilated double skin façade (DSF) is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes the results of two different methods to measure the air flow in a full-scale ...

  10. Mixing with herringbone-inspired microstructures: overcoming the diffusion limit in co-laminar microfluidic devices.

    Science.gov (United States)

    Marschewski, Julian; Jung, Stefan; Ruch, Patrick; Prasad, Nishant; Mazzotti, Sergio; Michel, Bruno; Poulikakos, Dimos

    2015-04-21

    Enhancing mixing is of uttermost importance in many laminar microfluidic devices, aiming at overcoming the severe performance limitation of species transport by diffusion alone. Here we focus on the significant category of microscale co-laminar flows encountered in membraneless redox flow cells for power delivery. The grand challenge is to achieve simultaneously convective mixing within each individual reactant, to thin the reaction depletion boundary layers, while maintaining separation of the co-flowing reactants, despite the absence of a membrane. The concept presented here achieves this goal with the help of optimized herringbone flow promoting microstructures with an integrated separation zone. Our electrochemical experiments using a model redox couple show that symmetric flow promoter designs exhibit laminar to turbulent flow behavior, the latter at elevated flow rates. This change in flow regime is accompanied by a significant change in scaling of the Sherwood number with respect to the Reynolds number from Sh ~ Re(0.29) to Sh ~ Re(0.58). The stabilized continuous laminar flow zone along the centerline of the channel allows operation in a co-laminar flow regime up to Re ~325 as we demonstrate by micro laser-induced fluorescence (μLIF) measurements. Micro particle image velocimetry (μPIV) proves the maintenance of a stratified flow along the centerline, mitigating reactant cross-over effectively. The present work paves the way toward improved performance in membraneless microfluidic flow cells for electrochemical energy conversion.

  11. Laminar and turbulent heating predictions for mars entry vehicles

    Science.gov (United States)

    Wang, Xiaoyong; Yan, Chao; Zheng, Weilin; Zhong, Kang; Geng, Yunfei

    2016-11-01

    Laminar and turbulent heating rates play an important role in the design of Mars entry vehicles. Two distinct gas models, thermochemical non-equilibrium (real gas) model and perfect gas model with specified effective specific heat ratio, are utilized to investigate the aerothermodynamics of Mars entry vehicle named Mars Science Laboratory (MSL). Menter shear stress transport (SST) turbulent model with compressible correction is implemented to take account of the turbulent effect. The laminar and turbulent heating rates of the two gas models are compared and analyzed in detail. The laminar heating rates predicted by the two gas models are nearly the same at forebody of the vehicle, while the turbulent heating environments predicted by the real gas model are severer than the perfect gas model. The difference of specific heat ratio between the two gas models not only induces the flow structure's discrepancy but also increases the heating rates at afterbody of the vehicle obviously. Simple correlations for turbulent heating augmentation in terms of laminar momentum thickness Reynolds number, which can be employed as engineering level design and analysis tools, are also developed from numerical results. At the time of peak heat flux on the +3σ heat load trajectory, the maximum value of momentum thickness Reynolds number at the MSL's forebody is about 500, and the maximum value of turbulent augmentation factor (turbulent heating rates divided by laminar heating rates) is 5 for perfect gas model and 8 for real gas model.

  12. Soot Formation in Freely-Propagating Laminar Premixed Flames

    Science.gov (United States)

    Lin, K.-C.; Hassan, M. I.; Faeth, G. M.

    1997-01-01

    Soot formation within hydrocarbon-fueled flames is an important unresolved problem of combustion science. Thus, the present study is considering soot formation in freely-propagating laminar premixed flames, exploiting the microgravity environment to simplify measurements at the high-pressure conditions of interest for many practical applications. The findings of the investigation are relevant to reducing emissions of soot and continuum radiation from combustion processes, to improving terrestrial and spacecraft fire safety, and to developing methods of computational combustion, among others. Laminar premixed flames are attractive for studying soot formation because they are simple one-dimensional flows that are computationally tractable for detailed numerical simulations. Nevertheless, studying soot-containing burner-stabilized laminar premixed flames is problematical: spatial resolution and residence times are limited at the pressures of interest for practical applications, flame structure is sensitive to minor burner construction details so that experimental reproducibility is not very good, consistent burner behavior over the lengthy test programs needed to measure soot formation properties is hard to achieve, and burners have poor durability. Fortunately, many of these problems are mitigated for soot-containing, freely-propagating laminar premixed flames. The present investigation seeks to extend work in this laboratory for various soot processes in flames by observing soot formation in freely-propagating laminar premixed flames. Measurements are being made at both Normal Gravity (NG) and MicroGravity (MG), using a short-drop free-fall facility to provide MG conditions.

  13. Flow restriction of multicontrolled natural gas; Restritor de fluxo de gas natural microcontrolado

    Energy Technology Data Exchange (ETDEWEB)

    Cruz, Lauro C.; Reis, Antonio M.; Maldonado, Waldemar; Suzuqui, Moises [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Nucleo de Energia, Automacao e Controle; Scucuglia, Jose W.; Cortez, Marco A.A. [Universidade para o Desenvolvimento do Estado e da Regiao do Pantanal (UNIDERP), Campo Grande, MS (Brazil). Curso de Engenharia Eletrica; Teixeira, Marcelo C.M. [UNESP, Ilha Solteira, SP (Brazil). Faculdade de Engenharia Eletrica; Carrasco, Benjamim N. [PETROBRAS, Rio de Janeiro, RJ (Brazil)

    2004-07-01

    One of the specific cases of control in the operation of natural gas distribution is of the automatic restriction of the outflow due the violations of standards of draining of the natural gas in the ducts. With the objective to get a device of low cost, with national technology and high technological value aggregate, developed an electronic, microcontrolled, programmable device, and of low cost, that will function connected the sensors and valves of flow control, of form to monitor in real time the outflow of draining of the natural gas in the respective ducts and to restrict of automatic form the outflow, that necessary or always convenient. The developed hardware was conceived using micro controllers of high performance with capacity of reading of sensors of pressure, temperature and measurers of outflow. Had to a serial communication and the storage in memory of mass with 264 capacity of Kbytes is possible the pertinent visualization of graphs and reports to the behavior of the outflow and performance of the system. An internal RTC - Real Clock Teams, added to the hardware a clock and a calendar for acquisition of data in the schedule defined, as well as the possibility of unloading of the data through the telephonic line, using one embedded modem. (author)

  14. DNS of Laminar-Turbulent Transition in Swept-Wing Boundary Layers

    Science.gov (United States)

    Duan, L.; Choudhari, M.; Li, F.

    2014-01-01

    Direct numerical simulation (DNS) is performed to examine laminar to turbulent transition due to high-frequency secondary instability of stationary crossflow vortices in a subsonic swept-wing boundary layer for a realistic natural-laminar-flow airfoil configuration. The secondary instability is introduced via inflow forcing and the mode selected for forcing corresponds to the most amplified secondary instability mode that, in this case, derives a majority of its growth from energy production mechanisms associated with the wall-normal shear of the stationary basic state. An inlet boundary condition is carefully designed to allow for accurate injection of instability wave modes and minimize acoustic reflections at numerical boundaries. Nonlinear parabolized stability equation (PSE) predictions compare well with the DNS in terms of modal amplitudes and modal shape during the strongly nonlinear phase of the secondary instability mode. During the transition process, the skin friction coefficient rises rather rapidly and the wall-shear distribution shows a sawtooth pattern that is analogous to the previously documented surface flow visualizations of transition due to stationary crossflow instability. Fully turbulent features are observed in the downstream region of the flow.

  15. An investigation of radial tracer flow in naturally fractured reservoirs

    Energy Technology Data Exchange (ETDEWEB)

    Jetzabeth, Ramirez-Sabag; Fernando, Samaniego V.; Jesus, Rivera R.; Fernando Rodriguez

    1991-01-01

    This study presents a general solution for the radial flow of tracers in naturally fractured reservoirs. Continuous and finite step injection of chemical and radioactive tracers are considered. The reservoir is treated as being composed of two regions: a mobile region where longitudinal dispersion and convection take place and a stagnant region where only diffusion and adsorption are allowed. Radioactive decay is considered in both regions. The model of this study is thoroughly compared to those previously presented in literature by Moench and Ogata, Tang et al., Chen et al., and Hsieh et al. The solution is numerically inverted by means of the Crump algorithm. A detailed validation of the model with respect to solutions previously presented and/or simplified physical conditions solutions (i.e., homogeneous case) or limit solutions (i.e., for short times) was carried out. The influence of various dimensionless parameters that enter into the solution was investigated. A discussion of results obtained through the Crump and Stehfest algorithm is presented, concluding that the Crump method provides more reliable tracer concentrations.

  16. Mathematical Study of Laminar Boundary Layer Flow and Heat Transfer of Tangenthyperbolic Fluid Pasta Vertical Porous Plate with Biot Number Effects

    Directory of Open Access Journals (Sweden)

    Ramachandra Prasad

    2016-01-01

    Full Text Available In this article, we investigate the nonlinear steady boundary layer flow and heat transfer of an incompressible Tangent Hyperbolicnon-Newtonian fluid from a vertical porous plate. The transformed conservation equations are solved numerically subject to physically appropriate boundary conditions using a second-order accurate implicit finite-difference Keller Box technique. The numerical code is validated with previous studies. The influence of a number of emerging non-dimensional parameters, namely the Weissenberg number (We, the power law index (n, Prandtl number (Pr, Biot number (, and dimensionless local suction parameter(on velocity and temperature evolution in the boundary layer regime are examined in detail. Furthermore the effects of these parameters on surface heat transfer rate and local skin friction are also investigated. Validation with earlier Newtonian studies is presented and excellent correlation achieved. It is found that velocity, Skin friction and Nusselt number (heat transfer rate are reduced with increasing Weissenberg number (We, whereas, temperature is enhanced. Increasing power law index (n enhances velocity and Nusselt number (heat transfer rate but temperature and Skin friction decrease. An increase in the Biot number ( is observed to enhance velocity, temperature, local skin friction and Nusselt number. An increasing Prandtl number, Pr, is found to decrease both velocity, temperature and skin friction but elevates heat transfer rate (Nusselt number. The study is relevant to chemical materials processing applications.

  17. Low flow and high flow responses to converting natural grassland into bluegum ( Eucalyptus globulus) in Nilgiris watersheds of South India

    Science.gov (United States)

    Sikka, A. K.; Samra, J. S.; Sharda, V. N.; Samraj, P.; Lakshmanan, V.

    2003-01-01

    A concern has been raised in many parts of the world over the effect of large scale planting of Eucalyptus on hydrological behaviour of small watersheds. Hydrological response of watersheds due to conversion of natural grasslands into bluegum ( Eucalyptus globulus) plantations on low flows and high flows has been presented in this paper. The concept of using low flow index (LFI) as a tool to study and quantify the effects of bluegum plantation on low flow regime has been demonstrated. Conversion of natural grasslands into bluegum plantations has resulted in decreased low flow volume as well as peak flow, which in turn increased the soil moisture losses. These effects were more pronounced during the second rotation (i.e. first coppiced growth) as compared to the first rotation. Significant reduction in low flow as a result of decline in base flow could be predicted with LFI decreasing by 2.0 and 3.75 times, in the first and second rotation, respectively. Moderation in peak discharge rates was also observed as a result of bluegum plantation. Probability plots of peak discharge tend to suggest that the effect of bluegum plantation on peak flows become insignificant for the floods with higher return periods. These results clearly suggest that caution need to be exercised while planning large scale conversion of natural grasslands into bluegum plantations in the catchments of hydro-electric reservoirs in the Nilgiris which adversely affects water availability especially during lean flow period.

  18. 层流翼型三维边界层横流驻波精确测量方法研究%On the Accurate Measurement Method of Standing Cross-flow for Three-dimensional Laminar Airfoil Boundary Layer

    Institute of Scientific and Technical Information of China (English)

    马彪; 白存儒; 杨广珺; 李栋

    2011-01-01

    Laminar flow control (LFC) of swept-back wing is a complex but very significant topic for drag reduction. The study of standing cross-flow has a great significance for LFC. For this reason, the experimental method of standing cross-flow measurement was analyzed and studied by using hot wire anemometer and sublimation method in a low turbulence wind tunnel. Corresponding technical details about the setup of hot wire anemometer system and process of sublimation surface spray are elaborated in this paper. The velocity profile curve in boundary layer, the image of sublimation result, the distance between standing waves and the wedge transition line were obtained in experiment. Synthetical analysis of experimental results shows that there is a high agreement between hot wire anemometer and sublimation method. This indicates that flow state in a 3-D boundary layer can be measured conveniently by hot wire anemometer; that at a suitable angle, the hot wire anemometer support does not impact the measurement; that hot wire probe has less effect on flow in boundary layer. So the results measured by hot wire anemometer may be regarded as actual flow in boundary layer. Analysis of experimental data shows that the combination of hot wire anemometer and sublimation method is a very effective method.%后掠机翼的层流控制对于气动减阻有着重要的意义,同时也是非常复杂的研究课题.而对横流驻波的研究是实现层流翼型的一个关健.为此,本文分析并研究了在低湍流度风洞中,采用热线风速仪(CTA)与表面升华法相结合研究由横流不稳定性产生的驻波及其对转捩影响的实验技术,阐述了该实验中架设热线测量系统与升华法表面喷涂的相关技术与细节.实验得到了边界层内的速度剖面图、升华法图形、驻波间距和楔形转捩线.实验结果的综合分析表明热线和升华法一致性很高.说明通过热线风速仪可以方便地测得三维边界层内的流动

  19. Natural flow regimes of the Ozark-Ouachita Interior Highlands region

    Science.gov (United States)

    Leasure, D. R.; Magoulick, Daniel D.; Longing, S. D.

    2016-01-01

    Natural flow regimes represent the hydrologic conditions to which native aquatic organisms are best adapted. We completed a regional river classification and quantitative descriptions of each natural flow regime for the Ozark–Ouachita Interior Highlands region of Arkansas, Missouri and Oklahoma. On the basis of daily flow records from 64 reference streams, seven natural flow regimes were identified with mixture model cluster analysis: Groundwater Stable, Groundwater, Groundwater Flashy, Perennial Runoff, Runoff Flashy, Intermittent Runoff and Intermittent Flashy. Sets of flow metrics were selected that best quantified nine ecologically important components of these natural flow regimes. An uncertainty analysis was performed to avoid selecting metrics strongly affected by measurement uncertainty that can result from short periods of record. Measurement uncertainties (bias, precision and accuracy) were assessed for 170 commonly used flow metrics. The ranges of variability expected for select flow metrics under natural conditions were quantified for each flow regime to provide a reference for future assessments of hydrologic alteration. A random forest model was used to predict the natural flow regimes of all stream segments in the study area based on climate and catchment characteristics, and a map was produced. The geographic distribution of flow regimes suggested distinct ecohydrological regions that may be useful for conservation planning. This project provides a hydrologic foundation for future examination of flow–ecology relationships in the region. Published 2014. This article is a U.S. Government work and is in the public domain in the USA.

  20. Flow visualization of bubble behavior under two-phase natural circulation flow conditions using high speed digital camera

    Energy Technology Data Exchange (ETDEWEB)

    Lemos, Wanderley F.; Su, Jian, E-mail: wlemos@con.ufrj.br, E-mail: sujian@lasme.coppe.ufrj.br [Coordenacao dos Programas de Pos-Graduacao em Engenharia (COPPE/UFRJ), Rio de Janeiro, RJ (Brazil). Programa de Engenharia Nuclear; Faccini, Jose L.H., E-mail: faccini@ien.gov.br [Instituto de Engenharia Nuclear (IEN/CNEN-RJ), Rio de Janeiro, RJ (Brazil). Lab. de Termo-Hidraulica Experimental

    2013-07-01

    The The present work aims at identifying flow patterns and measuring interfacial parameters in two-phase natural circulation by using visualization technique with high-speed digital camera. The experiments were conducted in the Natural Circulation Circuit (CCN), installed at Nuclear Engineering Institute/CNEN. The thermo-hydraulic circuit comprises heater, heat exchanger, expansion tank, the pressure relief valve and pipes to interconnect the components. A glass tube is installed at the midpoint of the riser connected to the heater outlet. The natural circulation circuit is complemented by acquisition system of values of temperatures, flow and graphic interface. The instrumentation has thermocouples, volumetric flow meter, rotameter and high-speed digital camera. The experimental study is performed through analysis of information from measurements of temperatures at strategic points along the hydraulic circuit, besides natural circulation flow rates. The comparisons between analytical and experimental values are validated by viewing, recording and processing of the images for the flows patterns. Variables involved in the process of identification of flow regimes, dimensionless parameters, the phase velocity of the flow, initial boiling point, the phenomenon of 'flashing' pre-slug flow type were obtained experimentally. (author)

  1. Numerical simulation of laminar flow past two side-by-side cylinders by discontinuous Galerkin metho d%基于间断有限元方法的并列圆柱层流流动特性∗

    Institute of Scientific and Technical Information of China (English)

    张忠宇; 姚熊亮; 张阿漫

    2016-01-01

    基于高阶的间断有限元方法,数值模拟低马赫数下并列圆柱的可压缩层流流动,捕捉并列圆柱流场中的漩涡结构,以便分析并列圆柱尾流的流动特性。针对二维圆柱的边界形式,采用曲边三角形单元构造二维圆柱的曲面边界,以适应高阶离散格式的精度。在验证方法合理性的基础上,分析圆柱间距及雷诺数对漩涡脱落及受力特性的影响规律。研究结果表明:并列圆柱的间距是影响流场流动特性的一个主要因素,它会改变圆柱漩涡脱落的形式。随着圆柱间距的增加,上下圆柱的平均阻力系数及平均升力系数的绝对值随之显著下降。雷诺数对于平均阻力系数的影响相对较小。但随着雷诺数的增加,上下圆柱的平均升力系数会随之降低,而漩涡的脱落频率会随之增大。%Investigations of vortex dynamics about two circular cylinders in a side-by-side arrangement help the understanding of flows around more complex structures, which are found to have many engineering applications. These applications involve offshore structures, power generation, micro-turbine engines, cooling towers, and paper machine forming fabrics, etc. Therefore, two-dimensional compressible laminar flows over two cylinders in side-by-side arrangement are numerically investigated at low Reynolds number. The high-order discontinuous Galerkin method is employed to simulate the flow, which combines the advantages associated with finite element and finite volume methods. As in classical finite element method, the spatial accuracy can be obtained by the high-order polynomial approximation within an element rather than by stencils as in finite volume method. The curved triangle is used to represent the wall boundary of cylinder to maintain the high-order accurate simulation. Then the characteristics of the wake flow are identified by capturing the vortex structure. After verifying the rationality of

  2. Transport and Mixing in Laminar Flows

    CERN Document Server

    Grigoriev, Roman

    2012-01-01

    This book provides readers from academia and industry with an up-to-date overview of important advances in the field, dealing with such fundamental fluid mechanics problems as nonlinear transport phenomena and optimal control of mixing at the micro- and nanoscale. The editors provide both in-depth knowledge of the topic as well as vast experience in guiding an expert team of authors. The review style articles offer a coherent view of the micromixing methods, resulting in a much-needed synopsis of the theoretical models needed to direct experimental research and establish engineering principles

  3. Laminar Flow Breakdown due to Particle Interactions

    Science.gov (United States)

    2012-08-01

    control number. PLEASE DO NOT RETURN YOUR FORM TO THE ABOVE ADDRESS. 1. REPORT DATE (DD-MM-YYYY) 22 August 2012 2. REPORT TYPE Final Report 3...conny.schmidt@ul.ie Senior lecturer, PhD student, MABE department MABE department, University of Limerick University of Limerick Ireland Ireland...11 Impact on Flight Planning

  4. Laminar laboratory rivers

    Science.gov (United States)

    Seizilles, Grégoire; Devauchelle, Olivier; Lajeunesse, Éric; Métivier, François

    2014-05-01

    A viscous fluid flowing over fine plastic grains spontaneously channelizes into a few centimeters-wide river. After reaching its equilibrium shape, this stable laboratory flume is able to carry a steady load of sediments, like many alluvial rivers. When the sediment discharge vanishes, the river size, shape and slope fit the threshold theory proposed by Glover and Florey (1951), which assumes that the Shields parameter is critical on the channel bed. As the sediment discharge is increased, the river widens and flattens. Surprisingly, the aspect ratio of its cross section depends on the sediment discharge only, regardless of the water discharge. We propose a theoretical interpretation of these findings based on the balance between gravity, which pulls particles towards the center of the channel, and the diffusion of bedload particles, which pushes them away from areas of intense bedload.

  5. Numerical Investigation of Nonisothermal Reversed Stagnation-point Flow

    OpenAIRE

    Chio, Chon Kit

    2013-01-01

    This thesis investigates the nature of the development of two-dimensional laminar nonisothermal flow of an incompressible fluid close to the reversed stagnation-point. Proudman and Johnson (1962) \\cite{proudman1962boundary} first studied the flow and obtained an asymptotic solution by neglecting the viscous terms. This is not practice in neglecting the viscous terms within the total flow field. Viscous terms in this analysis are now included, and two-dimensional nonisothermal reversed stagnat...

  6. Effect of water flow rate on the heat transfer coefficient of a hot steel plate during laminar flow cooling%水流量对热轧钢板层流冷却过程对流换热系数的影响

    Institute of Scientific and Technical Information of China (English)

    汪贺模; 蔡庆伍; 余伟; 苏岚

    2012-01-01

    Establishing an accuracy relationship between the convective heat transfer coefficient and cooling process is the key to improve the laminar cooling control model, The convective heat transfer coefficient and corresponding surface temperature were calculated by the finite difference method and the inverse heat conduction method. The effects of cooling water jet flow rate on the heat transfer coefficient and surface temperature was investigated when the cooling water jet flow rate varied from 0. 9 to 2, 1 m3 · h -1. It is found that the convective heat transfer coefficient is a nonlinear function of the surface temperature during laminar flow cooling. Within a distance of 70 mm from the stagnation line, the cooling flow rate has no effect on the heat transfer coefficient and surface temperature. But outside 70 mm, the heat transfer coefficient ratio becomes smaller with increasing distance from the stagnation line, It is also shown that relatively good agreement is obtained between the calculated and measured curves.%提高带钢层流冷却控制模型的精度,关键是建立精确的对流换热系数与冷却工艺之间的关系.采用有限差分法和反向热传导法,获得了实验条件下钢板表面的对流换热系数及表面温度.研究了不同水流量(0.9—2.1m3·h-1)对换热系数与表面温度变化规律的影响.在层流冷却过程中,对流换热系数与表面温度呈非线性关系;在距离驻点70mm内,水流量对换热系数随表面温度变化规律没影响;远离驻点70mm外,对流换热系数比随远离冲击区驻点距离的增加而减小.采用所确定的换热系数计算得到的温降曲线与实测曲线吻合较好.

  7. The hydrogen laminar jet

    Energy Technology Data Exchange (ETDEWEB)

    Sanchez-Sanz, M. [Departamento de Motopropulsion y Termofluidomecanica, ETSI Aeronauticos, Universidad Politecnica de Madrid, 28040 Madrid (Spain); Rosales, M. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain); Instituto de Innovacion en Mineria y Metalurgia, Avenida del Valle 738, Santiago (Chile); Sanchez, A.L. [Department Ingenieria Termica y de Fluidos, Universidad Carlos III de Madrid, 28911, Leganes (Spain)

    2010-04-15

    Numerical and asymptotic methods are used to investigate the structure of the hydrogen jet discharging into a quiescent air atmosphere. The analysis accounts in particular for the variation of the density and transport properties with composition. The Reynolds number of the flow R{sub j}, based on the initial jet radius a, the density {rho}{sub j} and viscosity {mu}{sub j} of the jet and the characteristic jet velocity u{sub j}, is assumed to take moderately large values, so that the jet remains slender and stable, and can be correspondingly described by numerical integration of the continuity, momentum and species conservation equations written in the boundary-layer approximation. The solution for the velocity and composition in the jet development region of planar and round jets, corresponding to streamwise distances of order R{sub j}a, is computed numerically, along with the solutions that emerge both in the near field and in the far field. The small value of the hydrogen-to-air molecular weight ratio is used to simplify the solution by considering the asymptotic limit of vanishing jet density. The development provides at leading-order explicit analytical expressions for the far-field velocity and hydrogen mass fraction that describe accurately the hydrogen jet near the axis. The information provided can be useful in particular to characterize hydrogen discharge processes from holes and cracks. (author)

  8. THE MANAGEMENT MEASURES FOR THE OPERATION QUALITY OF LAMINAR FLOW OPERATING ROOM SYSTEMS SECURITY IN OPERATING ROOM OF THE HOSPITAL%医院手术部层流洁净系统运行质量安全管理措施

    Institute of Scientific and Technical Information of China (English)

    林彬; 李文霞; 李晓花

    2012-01-01

    Objective To observe the operation quality of laminar flow clean system in operating room so as to enhance safety management measures. Methods Through the instrumental analysis and detection methods on the field, the running quality of laminar flow clean system in operating room of this hospital was monitored. Results After the laminar flow system of each level of the operating room and ancillary rooms running for 30 min, the average pass rate of micro - climate of all parts of the indoor environment was more than 98% ; that of precipitating bacterial indicators in the surgical area and the surrounding area of one thousand purification surgery air was more than 97% and that of the subsidence bacteria indicators in the 100 000 - 300 000 clean regional area was 100%. Conclusion The operation quality of laminar flow clean system in operating room of this hospital is reliable and the management is normative. The operating manual should be stricdy executed.%目的 观察医院手术部层流洁净系统运行质量,加强安全管理措施.方法 通过现场仪器分析检测方法,对某医院手术部层流洁净系统运行质量进行了监测.结果 各级别手术室和辅助用房在层流洁净系统运行30min后,所有部位室内环境微小气候平均合格率达到98%以上.1000级手术区和周边区空气中沉降菌指标有97%以上达标;10万至30万级洁净区域沉降菌指标合格率均达到100%.结论 该医院手术部层流洁净系统运行质量可靠,管理规范,主要靠严格执行操作规程.

  9. Optimal Control of Transient Flow in Natural Gas Networks

    CERN Document Server

    Zlotnik, Anatoly; Backhaus, Scott

    2015-01-01

    We outline a new control system model for the distributed dynamics of compressible gas flow through large-scale pipeline networks with time-varying injections, withdrawals, and control actions of compressors and regulators. The gas dynamics PDE equations over the pipelines, together with boundary conditions at junctions, are reduced using lumped elements to a sparse nonlinear ODE system expressed in vector-matrix form using graph theoretic notation. This system, which we call the reduced network flow (RNF) model, is a consistent discretization of the PDE equations for gas flow. The RNF forms the dynamic constraints for optimal control problems for pipeline systems with known time-varying withdrawals and injections and gas pressure limits throughout the network. The objectives include economic transient compression (ETC) and minimum load shedding (MLS), which involve minimizing compression costs or, if that is infeasible, minimizing the unfulfilled deliveries, respectively. These continuous functional optimiza...

  10. Numerical assessment of accurate measurements of laminar flame speed

    Science.gov (United States)

    Goulier, Joules; Bizon, Katarzyna; Chaumeix, Nabiha; Meynet, Nicolas; Continillo, Gaetano

    2016-12-01

    In combustion, the laminar flame speed constitutes an important parameter that reflects the chemistry of oxidation for a given fuel, along with its transport and thermal properties. Laminar flame speeds are used (i) in turbulent models used in CFD codes, and (ii) to validate detailed or reduced mechanisms, often derived from studies using ideal reactors and in diluted conditions as in jet stirred reactors and in shock tubes. End-users of such mechanisms need to have an assessment of their capability to predict the correct heat released by combustion in realistic conditions. In this view, the laminar flame speed constitutes a very convenient parameter, and it is then very important to have a good knowledge of the experimental errors involved with its determination. Stationary configurations (Bunsen burners, counter-flow flames, heat flux burners) or moving flames (tubes, spherical vessel, soap bubble) can be used. The spherical expanding flame configuration has recently become popular, since it can be used at high pressures and temperatures. With this method, the flame speed is not measured directly, but derived through the recording of the flame radius. The method used to process the radius history will have an impact on the estimated flame speed. Aim of this work is to propose a way to derive the laminar flame speed from experimental recording of expanding flames, and to assess the error magnitude.

  11. Numerical Simulation of Natural Gas Flow in Anisotropic Shale Reservoirs

    KAUST Repository

    Negara, Ardiansyah

    2015-11-09

    Shale gas resources have received great attention in the last decade due to the decline of the conventional gas resources. Unlike conventional gas reservoirs, the gas flow in shale formations involves complex processes with many mechanisms such as Knudsen diffusion, slip flow (Klinkenberg effect), gas adsorption and desorption, strong rock-fluid interaction, etc. Shale formations are characterized by the tiny porosity and extremely low-permeability such that the Darcy equation may no longer be valid. Therefore, the Darcy equation needs to be revised through the permeability factor by introducing the apparent permeability. With respect to the rock formations, several studies have shown the existence of anisotropy in shale reservoirs, which is an essential feature that has been established as a consequence of the different geological processes over long period of time. Anisotropy of hydraulic properties of subsurface rock formations plays a significant role in dictating the direction of fluid flow. The direction of fluid flow is not only dependent on the direction of pressure gradient, but it also depends on the principal directions of anisotropy. Therefore, it is very important to take into consideration anisotropy when modeling gas flow in shale reservoirs. In this work, the gas flow mechanisms as mentioned earlier together with anisotropy are incorporated into the dual-porosity dual-permeability model through the full-tensor apparent permeability. We employ the multipoint flux approximation (MPFA) method to handle the full-tensor apparent permeability. We combine MPFA method with the experimenting pressure field approach, i.e., a newly developed technique that enables us to solve the global problem by breaking it into a multitude of local problems. This approach generates a set of predefined pressure fields in the solution domain in such a way that the undetermined coefficients are calculated from these pressure fields. In other words, the matrix of coefficients

  12. Particle streak velocimetry and its application to impinging laminar jets

    Science.gov (United States)

    Bergthorson, Jeff; Dimotakis, Paul

    2002-11-01

    The technique of Particle Streak Velocimetry (PSV) was improved to include digital imaging and image processing, allowing it to compete with PIV or LDV in terms of accuracy and ease of implementation. PSV provides advantages over other techniques, such as low particle mass loading, short run time experiments, and high accuracy velocity data through the direct measurement of Lagrangian trajectories. PSV, coupled with measurements of the static (Bernoulli) pressure drop across a well designed nozzle contraction, provided redundancy in the measurement of the axisymmetric impinging laminar jet. The impinging laminar jet was studied in the intermediate regime where the existence of a stagnation plate will affect the flow out of the nozzle. This nozzle separation to diameter ratio, L/d_j, regime has not been well characterized. The results indicate that a one-dimensional streamfunction formulation is not sufficient to characterize this flow.

  13. Measurement of Air Flow Rate in a Naturally Ventilated Double Skin Facade

    DEFF Research Database (Denmark)

    Kalyanova, Olena; Jensen, Rasmus Lund; Heiselberg, Per

    2007-01-01

    Air flow rate in a naturally ventilated space is extremely difficult to measure due to the stochastic nature of wind, and as a consequence non-uniform and dynamic flow conditions. This paper describes three different methods to measure the air flow in a full-scale outdoor test facility...... with a naturally ventilated double skin façade. In the first method, the air flow in the cavity is estimated on the basis of six measured velocity profiles. The second method is represented by constant injection of tracer gas and in the third method a measured relation in the laboratory is used to estimate...... the flow rate on the basis of continues measurement of the pressure difference between the surface pressure at the opening and inside pressure of the double skin façade. Although all three measurement methods are difficult to use under such dynamic air flow conditions, two of them show reasonable agreement...

  14. 两种敷料对层流手术间动态下空气质量的影响%Effects of two surgical dressings on dynamic air quality in laminar flow operating room

    Institute of Scientific and Technical Information of China (English)

    赵峰; 周学颖; 王萃; 张超; 周乐

    2014-01-01

    OBJECTIVE To study the effects of non‐woven surgical gowns and surgical dressings and cotton weaving gowns and dressings on dynamic air quality in laminar flow operating room so as to provide a scientific basis for improving the dynamic air quality in the laminar flow operating room .METHODS A total of 100 patients who un‐derwent the total hip replacement surgery in the department of orthopedics from Feb 2013 to Oct 2013 were en‐rolled in the study and randomly divided into the group A and the group B ,with 50 cases in each ;the group A was treated with the non‐woven surgical gown and dressings ,while the group B was given cotton weaving gowns and dressings .The sedimentation method and floating method were used to monitor the dynamic air qualities in the two groups of operating rooms ,and the monitoring results were compared .RESULTS As compared with the aver‐age air sedimentation bacterial colony counts monitored by the sedimentation method ,there was statistically signif‐icant difference between the group A and the group B (t=3 .12 ,P<0 .01);as compared with the different time points ,there was no statistically significant difference in the air sedimentation bacterial colony counts between the group A and the group B before the anesthesia , there was statistically significant difference between the two groups at the time points including before the skin incision ,during the surgery ,before suture ,and after surgery (P<0 .05) .As compared with the average air floating bacterial colony counts monitored by the floating method , there was statistically significant difference between the group A and the group B (t=3 .78 ,P<0 .01);as com‐pared with the average air floating bacterial colony counts at different time points ,there was no statistically signifi‐cant difference between the group A and the group B before the anesthesia ,there was statistically significant difference between the two groups at the time points including before the skin incision

  15. 沿同心环面层流流动的气体中颗粒的传热沉积物的预测:发展中的流动和已充分发展的流动的比较%Prediction of Thermophoretic Deposition Efficiency of Particles in a Laminar Gas Flow along a Concentric Annulus: A Comparison of Developing and Fully Developed Flows

    Institute of Scientific and Technical Information of China (English)

    Samira Hashemi; Ataallah Soltani Goharrizi

    2009-01-01

    Thermophoresis is an important mechanism of micro-particle transport due to temperature gradients in the surrounding medium. It has numerous applications, especially in the field of aerosol technology. This study has numerically investigated the thermophoretic deposition efficiency of particles in a laminar gas flow in a concentric annulus using the critical trajectory method. The governing equations are the momentum and energy equations for the gas and the particle equations of motion. The effects of the annulus size, particle diameter, the ratio of inner to outer radius of tube and wall temperature on the deposition efficiency were studied for both developing and fully-developed flows. Simulation results suggest that thermophoretic deposition increases by increasing thermal gradient, deposition distance, and the ratio of inner to outer radius, but decreases with increasing particle size. It has been found that by taking into account the effect of developing flow at the entrance region, higher deposition efficiency was obtained, than fully developed flow.

  16. Direct Numerical Simulation of laminar separation bubbles

    Science.gov (United States)

    Ramesh, O. N.; Patwardhan, Saurabh; Mitra, Abhijit

    2012-11-01

    This work presents the DNS of laminar separation bubbles (LSB) that formed over a flat plate due to an imposed pressure gradient. Mean flow parameters such as mean velocity, static pressure distribution and the geometric parameters, such as aspect ratio of the LSB, over the plate closely corresponds to those found in experiments and literature. The locus of the inflection point of the mean velocity profile was found to lie outside the dividing streamline and this is expected to correspond to a convectively unstable bubble. A closer look of the LSB as when advects along the reverse flow streamline adjacent to the wall suggest that turbulence progressively decayed as one moved upstream. This is indicative of the phenomenon similar to relaminarisation in this region, presumably due to the decrease in pressure along the reverse flow streamline. The energy budget inside the dividing streamline showed interesting trends and these will be discussed during the presentation. Furthermore, the dynamics of free shear layer and nonlinearity will also be presented.

  17. Spatial structure and NO formation of a laminar methane-nitrogen jet in hot coflow under MILD conditions : A spontaneous Raman and LIF study

    NARCIS (Netherlands)

    Sepman, A. V.; Mokhov, A. V.; Levinsky, H. B.

    2013-01-01

    We report the spatial structure of the reaction zone from a diluted, preheated fuel jet in hot coflowing oxidizer in laminar flow, using an axisymmetric laminar-jet-in-hot-coflow (LJHC) burner. In the experiments, a preheated CH4/N-2 (20/80) mixture at similar to 1100 K flows into the 1500 K product

  18. Vertebral Artery Diameter and Flow: Nature or Nurture.

    Science.gov (United States)

    Tarnoki, Adam Domonkos; Fejer, Bence; Tarnoki, David Laszlo; Littvay, Levente; Lucatelli, Pierleone; Cirelli, Carlo; Fanelli, Fabrizio; Sacconi, Beatrice; Fagnani, Corrado; Medda, Emanuela; Farina, Filippo; Meneghetti, Giorgio; Horvath, Tamas; Pucci, Giacomo; Schillaci, Giuseppe; Stazi, Maria Antonietta; Baracchini, Claudio

    2017-09-01

    In contrast with the carotid arteries, the vertebral arteries (VAs) show considerable variation in length, caliber, and vessel course. This study investigated whether the variation in diameter and flow characteristics of the VAs might be inherited. A total of 172 Italian twins from Padua, Perugia, and Terni (54 monozygotic, 32 dizygotic) recruited from the Italian Twin Registry underwent B-mode and pulsed-wave Doppler ultrasound assessment of their VAs. VA diameters, peak systolic velocity (PSV) and end diastolic velocity (EDV) were assessed at the level of a horizontal V2 segment. Univariate quantitative genetic modeling was performed. Fourteen percent of the sample had VA hypoplasia. Within pair correlation in monozygotic twins was higher than in dizygotics (.552 vs. .229) for VA diameter. Age- and sex-adjusted genetic effect, under the most parsimonious model, accounted for 54.7% (95% CI: 42.2-69.1%) of the variance of VA diameter, and unshared environmental effect for 45.3% (95% CI: 30.9-57.8%). No heritability was found for the PSV of VA, but shared (34.1%; 95% CI: 16.7-53.7%) and unshared (65.9%; 95% CI: 45.9-83.1%) environmental factors determined the variance. EDV of VA is moderately genetically influenced (42.4%; 95% CI: 16.1-64.9%) and also determined by the unshared environment (57.6%; 95% CI: 34.7-83.7%). The diameter of the VAs is moderately genetically determined. Different factors influence the PSV and EDV of VAs, which may highlight the complex hemodynamic background of VA flow and help to understand the vertebral flow anomalies found by ultrasound. Copyright © 2017 by the American Society of Neuroimaging.

  19. Estimation of natural historical flows for the Manitowish River near Manitowish Waters, Wisconsin

    Science.gov (United States)

    Juckem, Paul F.; Reneau, Paul C.; Robertson, Dale M.

    2012-01-01

    The Wisconsin Department of Natural Resources is charged with oversight of dam operations throughout Wisconsin and is considering modifications to the operating orders for the Rest Lake Dam in Vilas County, Wisconsin. State law requires that the operation orders be tied to natural low flows at the dam. Because the presence of the dam confounds measurement of natural flows, the U.S. Geological Survey, in cooperation with the Wisconsin Department of Natural Resources, installed streamflow-gaging stations and developed two statistical methods to improve estimates of natural flows at the Rest Lake Dam. Two independent methods were used to estimate daily natural flow for the Manitowish River approximately 1 mile downstream of the Rest Lake Dam. The first method was an adjusted drainage-area ratio method, which used a regression analysis that related measured water yield (flow divided by watershed area) from short-term (2009–11) gaging stations upstream of the Manitowish Chain of Lakes to the water yield from two nearby long-term gaging stations in order to extend the flow record (1991–2011). In this approach, the computed flows into the Chain of Lakes at the upstream gaging stations were multiplied by a coefficient to account for the monthly hydrologic contributions (precipitation, evaporation, groundwater, and runoff) associated with the additional watershed area between the upstream gaging stations and the dam at the outlet of the Chain of Lakes (Rest Lake Dam). The second method used to estimate daily natural flow at the Rest Lake Dam was a water-budget approach, which used lake stage and dam outflow data provided by the dam operator. A water-budget model was constructed and then calibrated with an automated parameter-estimation program by matching simulated flow-duration statistics with measured flow-duration statistics at the upstream gaging stations. After calibration of the water-budget model, the model was used to compute natural flow at the dam from 1973 to

  20. Synthesis of Natural and Unnatural Cyclooligomeric Depsipeptides Enabled by Flow Chemistry.

    Science.gov (United States)

    Lücke, Daniel; Dalton, Toryn; Ley, Steven V; Wilson, Zoe E

    2016-03-14

    Flow chemistry has been successfully integrated into the synthesis of a series of cyclooligomeric depsipeptides of three different ring sizes including the natural products beauvericin (1 a), bassianolide (2 b) and enniatin C (1 b). A reliable flow chemistry protocol was established for the coupling and macrocyclisation to form challenging N-methylated amides. This flexible approach has allowed the rapid synthesis of both natural and unnatural depsipeptides in high yields, enabling further exploration of their promising biological activity.