WorldWideScience

Sample records for natural intracellular parasites

  1. Microsporidia are natural intracellular parasites of the nematode Caenorhabditis elegans.

    Science.gov (United States)

    Troemel, Emily R; Félix, Marie-Anne; Whiteman, Noah K; Barrière, Antoine; Ausubel, Frederick M

    2008-12-09

    For decades the soil nematode Caenorhabditis elegans has been an important model system for biology, but little is known about its natural ecology. Recently, C. elegans has become the focus of studies of innate immunity and several pathogens have been shown to cause lethal intestinal infections in C. elegans. However none of these pathogens has been shown to invade nematode intestinal cells, and no pathogen has been isolated from wild-caught C. elegans. Here we describe an intracellular pathogen isolated from wild-caught C. elegans that we show is a new species of microsporidia. Microsporidia comprise a large class of eukaryotic intracellular parasites that are medically and agriculturally important, but poorly understood. We show that microsporidian infection of the C. elegans intestine proceeds through distinct stages and is transmitted horizontally. Disruption of a conserved cytoskeletal structure in the intestine called the terminal web correlates with the release of microsporidian spores from infected cells, and appears to be part of a novel mechanism by which intracellular pathogens exit from infected cells. Unlike in bacterial intestinal infections, the p38 MAPK and insulin/insulin-like growth factor (IGF) signaling pathways do not appear to play substantial roles in resistance to microsporidian infection in C. elegans. We found microsporidia in multiple wild-caught isolates of Caenorhabditis nematodes from diverse geographic locations. These results indicate that microsporidia are common parasites of C. elegans in the wild. In addition, the interaction between C. elegans and its natural microsporidian parasites provides a system in which to dissect intracellular intestinal infection in vivo and insight into the diversity of pathogenic mechanisms used by intracellular microbes.

  2. Mechanisms of cellular invasion by intracellular parasites.

    Science.gov (United States)

    Walker, Dawn M; Oghumu, Steve; Gupta, Gaurav; McGwire, Bradford S; Drew, Mark E; Satoskar, Abhay R

    2014-04-01

    Numerous disease-causing parasites must invade host cells in order to prosper. Collectively, such pathogens are responsible for a staggering amount of human sickness and death throughout the world. Leishmaniasis, Chagas disease, toxoplasmosis, and malaria are neglected diseases and therefore are linked to socio-economical and geographical factors, affecting well-over half the world's population. Such obligate intracellular parasites have co-evolved with humans to establish a complexity of specific molecular parasite-host cell interactions, forming the basis of the parasite's cellular tropism. They make use of such interactions to invade host cells as a means to migrate through various tissues, to evade the host immune system, and to undergo intracellular replication. These cellular migration and invasion events are absolutely essential for the completion of the lifecycles of these parasites and lead to their for disease pathogenesis. This review is an overview of the molecular mechanisms of protozoan parasite invasion of host cells and discussion of therapeutic strategies, which could be developed by targeting these invasion pathways. Specifically, we focus on four species of protozoan parasites Leishmania, Trypanosoma cruzi, Plasmodium, and Toxoplasma, which are responsible for significant morbidity and mortality.

  3. Activation of a Neospora caninum EGFR-Like Kinase Facilitates Intracellular Parasite Proliferation

    Directory of Open Access Journals (Sweden)

    Xiaoxia Jin

    2017-10-01

    Full Text Available The Apicomplexan parasite Neospora caninum, an obligate intracellular protozoan, causes serious diseases in a number of mammalian species, especially in cattle. Infection with N. caninum is associated with abortions in both dairy and beef cattle worldwide which have a major economic impact on the cattle industry. However, the mechanism by which N. caninum proliferates within host cells is poorly understood. Epidermal growth factor receptor (EGFR is a protein kinase ubiquitously expressed, present on cell surfaces in numerous species, which has been confirmed to be essential in signal transduction involved in cell growth, proliferation, survival, and many other intracellular processes. However, the presence of EGFR in N. caninum and its role in N. caninum proliferation remain unclear. In the present study, we identified a putative EGFR-like kinase in N. caninum, which could be activated in tachyzoites by infection or treatment with rNcMIC3 [containing four epidermal growth factor (EGF domains] or human EGF. Blockade of EGFR-like in tachyzoites by AG1478 significantly reduced parasite proliferation in host cells. Our data suggested that the activation of tachyzoite EGFR-like might facilitate the intracellular proliferation of N. caninum.

  4. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    KAUST Repository

    Woo, Yong

    2015-07-15

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. © Woo et al.

  5. Chromerid genomes reveal the evolutionary path from photosynthetic algae to obligate intracellular parasites

    KAUST Repository

    Woo, Yong; Ansari, Hifzur Rahman; Otto, Thomas D.; Linger, Christen M K; Olisko, Martin K.; Michá lek, Jan; Saxena, Alka; Shanmugam, Dhanasekaran; Tayyrov, Annageldi; Veluchamy, Alaguraj; Ali, Shahjahan; Bernal, Axel; Del Campo, Javier; Cihlá ř, Jaromí r; Flegontov, Pavel; Gornik, Sebastian G.; Hajdušková , Eva; Horá k, Aleš; Janouškovec, Jan; Katris, Nicholas J.; Mast, Fred D.; Miranda-Saavedra, Diego; Mourier, Tobias; Naeem, Raeece; Nair, Mridul; Panigrahi, Aswini Kumar; Rawlings, Neil D.; Padron Regalado, Eriko; Ramaprasad, Abhinay; Samad, Nadira; Tomčala, Aleš; Wilkes, Jon; Neafsey, Daniel E.; Doerig, Christian; Bowler, Chris; Keeling, Patrick J.; Roos, David S.; Dacks, Joel B.; Templeton, Thomas J.; Waller, Ross F.; Lukeš, Julius; Oborní k, Miroslav; Pain, Arnab

    2015-01-01

    The eukaryotic phylum Apicomplexa encompasses thousands of obligate intracellular parasites of humans and animals with immense socio-economic and health impacts. We sequenced nuclear genomes of Chromera velia and Vitrella brassicaformis, free-living non-parasitic photosynthetic algae closely related to apicomplexans. Proteins from key metabolic pathways and from the endomembrane trafficking systems associated with a free-living lifestyle have been progressively and non-randomly lost during adaptation to parasitism. The free-living ancestor contained a broad repertoire of genes many of which were repurposed for parasitic processes, such as extracellular proteins, components of a motility apparatus, and DNA- and RNA-binding protein families. Based on transcriptome analyses across 36 environmental conditions, Chromera orthologs of apicomplexan invasion-related motility genes were co-regulated with genes encoding the flagellar apparatus, supporting the functional contribution of flagella to the evolution of invasion machinery. This study provides insights into how obligate parasites with diverse life strategies arose from a once free-living phototrophic marine alga. © Woo et al.

  6. Hijacking of host cellular functions by an intracellular parasite, the microsporidian Anncaliia algerae.

    Directory of Open Access Journals (Sweden)

    Johan Panek

    Full Text Available Intracellular pathogens including bacteria, viruses and protozoa hijack host cell functions to access nutrients and to bypass cellular defenses and immune responses. These strategies have been acquired through selective pressure and allowed pathogens to reach an appropriate cellular niche for their survival and growth. To get new insights on how parasites hijack host cellular functions, we developed a SILAC (Stable Isotope Labeling by Amino Acids in Cell culture quantitative proteomics workflow. Our study focused on deciphering the cross-talk in a host-parasite association, involving human foreskin fibroblasts (HFF and the microsporidia Anncaliia algerae, a fungus related parasite with an obligate intracellular lifestyle and a strong host dependency. The host-parasite cross-talk was analyzed at five post-infection times 1, 6, 12 and 24 hours post-infection (hpi and 8 days post-infection (dpi. A significant up-regulation of four interferon-induced proteins with tetratricopeptide repeats IFIT1, IFIT2, IFIT3 and MX1 was observed at 8 dpi suggesting a type 1 interferon (IFN host response. Quantitative alteration of host proteins involved in biological functions such as signaling (STAT1, Ras and reduction of the translation activity (EIF3 confirmed a host type 1 IFN response. Interestingly, the SILAC approach also allowed the detection of 148 A. algerae proteins during the kinetics of infection. Among these proteins many are involved in parasite proliferation, and an over-representation of putative secreted effectors proteins was observed. Finally our survey also suggests that A. algerae could use a transposable element as a lure strategy to escape the host innate immune system.

  7. Activation of Host IRE1α-Dependent Signaling Axis Contributes the Intracellular Parasitism of Brucella melitensis

    Directory of Open Access Journals (Sweden)

    Aseem Pandey

    2018-04-01

    Full Text Available Brucella spp. are intracellular vacuolar pathogens that causes brucellosis, a worldwide zoonosis of profound importance. We previously demonstrated that the activity of host unfolded protein response (UPR sensor IRE1α (inositol-requiring enzyme 1 and ER-associated autophagy confer susceptibility to Brucella melitensis and Brucella abortus intracellular replication. However, the mechanism by which host IRE1α regulates the pathogen intracellular lifestyle remains elusive. In this study, by employing a diverse array of molecular approaches, including biochemical analyses, fluorescence microscopy imaging, and infection assays using primary cells derived from Ern1 (encoding IRE1 conditional knockout mice, we address this gap in our understanding by demonstrating that a novel IRE1α to ULK1, an important component for autophagy initiation, signaling axis confers susceptibility to Brucella intracellular parasitism. Importantly, deletion or inactivation of key signaling components along this axis, including IRE1α, BAK/BAX, ASK1, and JNK as well as components of the host autophagy system ULK1, Atg9a, and Beclin 1, resulted in striking disruption of Brucella intracellular trafficking and replication. Host kinases in the IRE1α-ULK1 axis, including IRE1α, ASK1, JNK1, and/or AMPKα as well as ULK1, were also coordinately phosphorylated in an IRE1α-dependent fashion upon the pathogen infection. Taken together, our findings demonstrate that the IRE1α-ULK1 signaling axis is subverted by the bacterium to promote intracellular parasitism, and provide new insight into our understanding of the molecular mechanisms of intracellular lifestyle of Brucella.

  8. Yersinia pestis intracellular parasitism of macrophages from hosts exhibiting high and low severity of plague.

    Directory of Open Access Journals (Sweden)

    Duraisamy Ponnusamy

    Full Text Available BACKGROUND: Yersinia pestis causes severe disease in natural rodent hosts, but mild to inapparent disease in certain rodent predators such as dogs. Y. pestis initiates infection in susceptible hosts by parasitizing and multiplying intracellularly in local macrophages prior to systemic dissemination. Thus, we hypothesize that Y. pestis disease severity may depend on the degree to which intracellular Y. pestis overcomes the initial host macrophage imposed stress. METHODOLOGY/PRINCIPAL FINDINGS: To test this hypothesis, the progression of in vitro infection by Y. pestis KIM62053.1+ of mouse splenic and RAW264.7 tissue culture macrophages and dog peripheral blood-derived and DH82 tissue culture macrophages was studied using microscopy and various parameters of infection. The study showed that during the early stage of infection, intracellular Y. pestis assumed filamentous cellular morphology with multiple copies of the genome per bacterium in both mouse and dog macrophages. Later, in mouse macrophages, the infection elicited spacious vacuolar extension of Yersinia containing vacuoles (YCV, and the filamentous Y. pestis reverted to coccobacillary morphology with genomic equivalents approximately equaling colony forming units. In contrast, Y. pestis infected dog macrophages did not show noticeable extension of YCV, and intracellular Y. pestis retained the filamentous cellular morphology for the entire experiment in DH82 cells or were killed by blood-derived macrophages. In addition, during the later stage of infection, Y. pestis infected mouse macrophages exhibited cell lysis whereas dog macrophages did not. CONCLUSION/SIGNIFICANCE: Overall, these results support our hypothesis that Y. pestis in mouse macrophages can overcome the initial intracellular stress necessary for subsequent systemic infection. However, in dogs, failure of Y. pestis to overcome macrophage imposed stress may result in mild or in apparent disease in dogs.

  9. Plasma Membrane-Located Purine Nucleotide Transport Proteins Are Key Components for Host Exploitation by Microsporidian Intracellular Parasites

    Science.gov (United States)

    Heinz, Eva; Hacker, Christian; Dean, Paul; Mifsud, John; Goldberg, Alina V.; Williams, Tom A.; Nakjang, Sirintra; Gregory, Alison; Hirt, Robert P.; Lucocq, John M.; Kunji, Edmund R. S.; Embley, T. Martin

    2014-01-01

    Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT) proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT) is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes), consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP) when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis. PMID:25474405

  10. Plasma membrane-located purine nucleotide transport proteins are key components for host exploitation by microsporidian intracellular parasites.

    Directory of Open Access Journals (Sweden)

    Eva Heinz

    2014-12-01

    Full Text Available Microsporidia are obligate intracellular parasites of most animal groups including humans, but despite their significant economic and medical importance there are major gaps in our understanding of how they exploit infected host cells. We have investigated the evolution, cellular locations and substrate specificities of a family of nucleotide transport (NTT proteins from Trachipleistophora hominis, a microsporidian isolated from an HIV/AIDS patient. Transport proteins are critical to microsporidian success because they compensate for the dramatic loss of metabolic pathways that is a hallmark of the group. Our data demonstrate that the use of plasma membrane-located nucleotide transport proteins (NTT is a key strategy adopted by microsporidians to exploit host cells. Acquisition of an ancestral transporter gene at the base of the microsporidian radiation was followed by lineage-specific events of gene duplication, which in the case of T. hominis has generated four paralogous NTT transporters. All four T. hominis NTT proteins are located predominantly to the plasma membrane of replicating intracellular cells where they can mediate transport at the host-parasite interface. In contrast to published data for Encephalitozoon cuniculi, we found no evidence for the location for any of the T. hominis NTT transporters to its minimal mitochondria (mitosomes, consistent with lineage-specific differences in transporter and mitosome evolution. All of the T. hominis NTTs transported radiolabelled purine nucleotides (ATP, ADP, GTP and GDP when expressed in Escherichia coli, but did not transport radiolabelled pyrimidine nucleotides. Genome analysis suggests that imported purine nucleotides could be used by T. hominis to make all of the critical purine-based building-blocks for DNA and RNA biosynthesis during parasite intracellular replication, as well as providing essential energy for parasite cellular metabolism and protein synthesis.

  11. Anti-parasitic action and elimination of intracellular Toxoplasma gondii in the presence of novel thiosemicarbazone and its 4-thiazolidinone derivatives

    Directory of Open Access Journals (Sweden)

    C.S. Carvalho

    2010-02-01

    Full Text Available Toxoplasma, which infects all eukaryotic cells, is considered to be a good system for the study of drug action and of the behavior of infected host cells. In the present study, we asked if thiosemicarbazone derivatives can be effective against tachyzoites and which morphological and ultrastructural features of host cells and parasites are associated with the destruction of Toxoplasma. The compounds were tested in infected Vero cell culture using concentration screens (0.1 to 20 mM. The final concentration of 1 mM was chosen for biological assay. The following results were obtained: 1 These new derivatives decreased T. gondii infection with an in vitro parasite IC50% of 0.2-0.7 mM, without a significant effect on host cells and the more efficient compounds were 2, 3 (thiosemicarbazone derivatives and 4 (thiazolidinone derivative; 2 The main feature observed during parasite elimination was continuous morphological disorganization of the tachyzoite secretory system, progressive organelle vesiculation, and then complete disruption; 3 Ultrastructural assays also revealed that progressive vesiculation in the cytoplasm of treated parasites did not occur in the host cell; 4 Vesiculation inside the parasite resulted in death, but this feature occurred asynchronously in different intracellular tachyzoites; 5 The death and elimination of T. gondii was associated with features such as apoptosis-like stage, acidification and digestion of parasites into parasitophorous vacuoles. Our results suggest that these new chemical compounds are promising for the elimination of intracellular parasites by mainly affecting tachyzoite development at 1 mM concentration for 24 h of treatment.

  12. Novel amidines and analogues as promising agents against intracellular parasites: a systematic review.

    Science.gov (United States)

    Soeiro, M N C; Werbovetz, K; Boykin, D W; Wilson, W D; Wang, M Z; Hemphill, A

    2013-07-01

    Parasitic protozoa comprise diverse aetiological agents responsible for important diseases in humans and animals including sleeping sickness, Chagas disease, leishmaniasis, malaria, toxoplasmosis and others. They are major causes of mortality and morbidity in tropical and subtropical countries, and are also responsible for important economic losses. However, up to now, for most of these parasitic diseases, effective vaccines are lacking and the approved chemotherapeutic compounds present high toxicity, increasing resistance, limited efficacy and require long periods of treatment. Many of these parasitic illnesses predominantly affect low-income populations of developing countries for which new pharmaceutical alternatives are urgently needed. Thus, very low research funding is available. Amidine-containing compounds such as pentamidine are DNA minor groove binders with a broad spectrum of activities against human and veterinary pathogens. Due to their promising microbicidal activity but their rather poor bioavailability and high toxicity, many analogues and derivatives, including pro-drugs, have been synthesized and screened in vitro and in vivo in order to improve their selectivity and pharmacological properties. This review summarizes the knowledge on amidines and analogues with respect to their synthesis, pharmacological profile, mechanistic and biological effects upon a range of intracellular protozoan parasites. The bulk of these data may contribute to the future design and structure optimization of new aromatic dicationic compounds as novel antiparasitic drug candidates.

  13. The genome of the obligate intracellular parasite Trachipleistophora hominis: new insights into microsporidian genome dynamics and reductive evolution.

    Directory of Open Access Journals (Sweden)

    Eva Heinz

    Full Text Available The dynamics of reductive genome evolution for eukaryotes living inside other eukaryotic cells are poorly understood compared to well-studied model systems involving obligate intracellular bacteria. Here we present 8.5 Mb of sequence from the genome of the microsporidian Trachipleistophora hominis, isolated from an HIV/AIDS patient, which is an outgroup to the smaller compacted-genome species that primarily inform ideas of evolutionary mode for these enormously successful obligate intracellular parasites. Our data provide detailed information on the gene content, genome architecture and intergenic regions of a larger microsporidian genome, while comparative analyses allowed us to infer genomic features and metabolism of the common ancestor of the species investigated. Gene length reduction and massive loss of metabolic capacity in the common ancestor was accompanied by the evolution of novel microsporidian-specific protein families, whose conservation among microsporidians, against a background of reductive evolution, suggests they may have important functions in their parasitic lifestyle. The ancestor had already lost many metabolic pathways but retained glycolysis and the pentose phosphate pathway to provide cytosolic ATP and reduced coenzymes, and it had a minimal mitochondrion (mitosome making Fe-S clusters but not ATP. It possessed bacterial-like nucleotide transport proteins as a key innovation for stealing host-generated ATP, the machinery for RNAi, key elements of the early secretory pathway, canonical eukaryotic as well as microsporidian-specific regulatory elements, a diversity of repetitive and transposable elements, and relatively low average gene density. Microsporidian genome evolution thus appears to have proceeded in at least two major steps: an ancestral remodelling of the proteome upon transition to intracellular parasitism that involved reduction but also selective expansion, followed by a secondary compaction of genome

  14. Natural metabolites for parasitic weed management.

    Science.gov (United States)

    Vurro, Maurizio; Boari, Angela; Evidente, Antonio; Andolfi, Anna; Zermane, Nadjia

    2009-05-01

    Compounds of natural origin, such as phytotoxins produced by fungi or natural amino acids, could be used in parasitic weed management strategies by interfering with the early growth stages of the parasites. These metabolites could inhibit seed germination or germ tube elongation, so preventing attachment to the host plant, or, conversely, stimulate seed germination in the absence of the host, contributing to a reduction in the parasite seed bank. Some of the fungal metabolites assayed were very active even at very low concentrations, such as some macrocyclic trichothecenes, which at 0.1 microM strongly suppressed the germination of Orobanche ramosa L. seeds. Interesting results were also obtained with some novel toxins, such as phyllostictine A, highly active in reducing germ tube elongation and seed germination both of O. ramosa and of Cuscuta campestris Yuncker. Among the amino acids tested, methionine and arginine were particularly interesting, as they were able to suppress seed germination at concentrations lower than 1 mM. Some of the fungal metabolites tested were also able to stimulate the germination of O. ramosa seeds. The major findings in this research field are described and discussed.

  15. Metabolic Cooperation of Glucose and Glutamine Is Essential for the Lytic Cycle of Obligate Intracellular Parasite Toxoplasma gondii*

    Science.gov (United States)

    Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith

    2016-01-01

    Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells. PMID:26518878

  16. Parasite transmission in a natural multihost–multiparasite community

    Science.gov (United States)

    2017-01-01

    Understanding the transmission and dynamics of infectious diseases in natural communities requires understanding the extent to which the ecology, evolution and epidemiology of those diseases are shaped by alternative hosts. We performed laboratory experiments to test how parasite spillover affected traits associated with transmission in two co-occurring parasites: the bacterium Pasteuria ramosa and the fungus Metschnikowia bicuspidata. Both parasites were capable of transmission from the reservoir host (Daphnia dentifera) to the spillover host (Ceriodaphnia dubia), but this occurred at a much higher rate for the fungus than the bacterium. We quantified transmission potential by combining information on parasite transmission and growth rate, and used this to compare parasite fitness in the two host species. For both parasites, transmission potential was lower in the spillover host. For the bacterium, virulence was higher in the spillover host. Transmission back to the original host was high for both parasites, with spillover influencing transmission rate of the fungus but not the bacterium. Thus, while inferior, the spillover host is not a dead-end for either parasite. Overall, our results demonstrate that the presence of multiple hosts in a community can have important consequences for disease transmission, and host and parasite fitness. This article is part of the themed issue ‘Opening the black box: re-examining the ecology and evolution of parasite transmission’. PMID:28289264

  17. Parasite transmission in a natural multihost-multiparasite community.

    Science.gov (United States)

    Auld, Stuart K J R; Searle, Catherine L; Duffy, Meghan A

    2017-05-05

    Understanding the transmission and dynamics of infectious diseases in natural communities requires understanding the extent to which the ecology, evolution and epidemiology of those diseases are shaped by alternative hosts. We performed laboratory experiments to test how parasite spillover affected traits associated with transmission in two co-occurring parasites: the bacterium Pasteuria ramosa and the fungus Metschnikowia bicuspidata Both parasites were capable of transmission from the reservoir host ( Daphnia dentifera ) to the spillover host ( Ceriodaphnia dubia ), but this occurred at a much higher rate for the fungus than the bacterium. We quantified transmission potential by combining information on parasite transmission and growth rate, and used this to compare parasite fitness in the two host species. For both parasites, transmission potential was lower in the spillover host. For the bacterium, virulence was higher in the spillover host. Transmission back to the original host was high for both parasites, with spillover influencing transmission rate of the fungus but not the bacterium. Thus, while inferior, the spillover host is not a dead-end for either parasite. Overall, our results demonstrate that the presence of multiple hosts in a community can have important consequences for disease transmission, and host and parasite fitness.This article is part of the themed issue 'Opening the black box: re-examining the ecology and evolution of parasite transmission'. © 2017 The Author(s).

  18. Metabolic Cooperation of Glucose and Glutamine Is Essential for the Lytic Cycle of Obligate Intracellular Parasite Toxoplasma gondii.

    Science.gov (United States)

    Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith

    2016-01-01

    Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure the parasite survival. The parasite can counteract genetic ablation of its glucose transporter by increasing the flux of glutamine-derived carbon through the tricarboxylic acid cycle and by concurrently activating gluconeogenesis, which guarantee a continued biogenesis of ATP and biomass for host-cell invasion and parasite replication, respectively. In accord, a pharmacological inhibition of glutaminolysis or oxidative phosphorylation arrests the lytic cycle of the glycolysis-deficient mutant, which is primarily a consequence of impaired invasion due to depletion of ATP. Unexpectedly, however, intracellular parasites continue to proliferate, albeit slower, notwithstanding a simultaneous deprivation of glucose and glutamine. A growth defect in the glycolysis-impaired mutant is caused by a compromised synthesis of lipids, which cannot be counterbalanced by glutamine but can be restored by acetate. Consistently, supplementation of parasite cultures with exogenous acetate can amend the lytic cycle of the glucose transport mutant. Such plasticity in the parasite's carbon flux enables a growth-and-survival trade-off in assorted nutrient milieus, which may underlie the promiscuous survival of T. gondii tachyzoites in diverse host cells. Our results also indicate a convergence of parasite metabolism with cancer cells. © 2016 by The American Society for Biochemistry and Molecular Biology, Inc.

  19. Genus-specific PCR Primers Targeting Intracellular Parasite Euduboscquella (Dinoflagellata: Syndinea)

    Science.gov (United States)

    Jung, Jae-Ho; Choi, Jung Min; Kim, Young-Ok

    2018-03-01

    We designed a genus-specific primer pair targeting the intracellular parasite Euduboscquella. To increase target specificity and inhibit untargeted PCR, two nucleotides were added at the 3' end of the reverse primer, one being a complementary nucleotide to the Euduboscquella-specific SNP (single-nucleotide polymorphism) and the other a deliberately mismatched nucleotide. Target specificity of the primer set was verified experimentally using PCR of two Euduboscquella species (positive controls) and 15 related species (negative controls composed of ciliates, diatoms and dinoflagellates), and analytical comparison with SILVA SSU rRNA gene database (release 119) in silico. In addition, we applied the Euduboscquella-specific primer set to four environmental samples previously determined by cytological staining to be either positive or negative for Euduboscquella. As expected, only positive controls and environmental samples known to contain Euduboscquella were successfully amplified by the primer set. An inferred SSU rRNA gene phylogeny placed environmental samples containing aloricate ciliates infected by Euduboscquella in a cluster discrete from Euduboscquella groups a-d previously reported from loricate, tintinnid ciliates.

  20. Delineation of diverse macrophage activation programs in response to intracellular parasites and cytokines.

    Directory of Open Access Journals (Sweden)

    Shuyi Zhang

    2010-03-01

    Full Text Available The ability to reside and proliferate in macrophages is characteristic of several infectious agents that are of major importance to public health, including the intracellular parasites Trypanosoma cruzi (the etiological agent of Chagas disease and Leishmania species (etiological agents of Kala-Azar and cutaneous leishmaniasis. Although recent studies have elucidated some of the ways macrophages respond to these pathogens, the relationships between activation programs elicited by these pathogens and the macrophage activation programs elicited by bacterial pathogens and cytokines have not been delineated.To provide a global perspective on the relationships between macrophage activation programs and to understand how certain pathogens circumvent them, we used transcriptional profiling by genome-wide microarray analysis to compare the responses of mouse macrophages following exposure to the intracellular parasites T. cruzi and Leishmania mexicana, the bacterial product lipopolysaccharide (LPS, and the cytokines IFNG, TNF, IFNB, IL-4, IL-10, and IL-17. We found that LPS induced a classical activation state that resembled macrophage stimulation by the Th1 cytokines IFNG and TNF. However, infection by the protozoan pathogen L. mexicana produced so few transcriptional changes that the infected macrophages were almost indistinguishable from uninfected cells. T. cruzi activated macrophages produced a transcriptional signature characterized by the induction of interferon-stimulated genes by 24 h post-infection. Despite this delayed IFN response by T. cruzi, the transcriptional response of macrophages infected by the kinetoplastid pathogens more closely resembled the transcriptional response of macrophages stimulated by the cytokines IL-4, IL-10, and IL-17 than macrophages stimulated by Th1 cytokines.This study provides global gene expression data for a diverse set of biologically significant pathogens and cytokines and identifies the relationships between

  1. Amastin Knockdown in Leishmania braziliensis Affects Parasite-Macrophage Interaction and Results in Impaired Viability of Intracellular Amastigotes.

    Directory of Open Access Journals (Sweden)

    Rita Marcia Cardoso de Paiva

    2015-12-01

    Full Text Available Leishmaniasis, a human parasitic disease with manifestations ranging from cutaneous ulcerations to fatal visceral infection, is caused by several Leishmania species. These protozoan parasites replicate as extracellular, flagellated promastigotes in the gut of a sandfly vector and as amastigotes inside the parasitophorous vacuole of vertebrate host macrophages. Amastins are surface glycoproteins encoded by large gene families present in the genomes of several trypanosomatids and highly expressed in the intracellular amastigote stages of Trypanosoma cruzi and Leishmania spp. Here, we showed that the genome of L. braziliensis contains 52 amastin genes belonging to all four previously described amastin subfamilies and that the expression of members of all subfamilies is upregulated in L. braziliensis amastigotes. Although primary sequence alignments showed no homology to any known protein sequence, homology searches based on secondary structure predictions indicate that amastins are related to claudins, a group of proteins that are components of eukaryotic tight junction complexes. By knocking-down the expression of δ-amastins in L. braziliensis, their essential role during infection became evident. δ-amastin knockdown parasites showed impaired growth after in vitro infection of mouse macrophages and completely failed to produce infection when inoculated in BALB/c mice, an attenuated phenotype that was reverted by the re-expression of an RNAi-resistant amastin gene. Further highlighting their essential role in host-parasite interactions, electron microscopy analyses of macrophages infected with amastin knockdown parasites showed significant alterations in the tight contact that is normally observed between the surface of wild type amastigotes and the membrane of the parasitophorous vacuole.

  2. [Parasites and cancer: is there a causal link?

    Science.gov (United States)

    Cheeseman, Kevin; Certad, Gabriela; Weitzman, Jonathan B

    2016-10-01

    Over 20 % of cancers have infectious origins, including well-known examples of microbes such as viruses (HPV, EBV) and bacteria (H. pylori). The contribution of intracellular eukaryotic parasites to cancer etiology is largely unexplored. Epidemiological and clinical reports indicate that eukaryotic protozoan, such as intracellular apicomplexan that cause diseases of medical or economic importance, can be linked to various cancers: Theileria and Cryptosporidium induce host cell transformation while Plasmodium was linked epidemiologically to the "African lymphoma belt" over fifty years ago. These intracellular eukaryotic parasites hijack cellular pathways to manipulate the host cell epigenome, cellular machinery, signaling pathways and epigenetic programs and marks, such as methylation and acetylation, for their own benefit. In doing so, they tinker with the same pathways as those deregulated during cancer onset. Here we discuss how epidemiological evidence linking eukaryotic intracellular parasites to cancer onset are further strengthened by recent mechanistic studies in three apicomplexan parasites. © 2016 médecine/sciences – Inserm.

  3. Antiparasitic efficacy of ivermectin in naturally parasitized sheep.

    Science.gov (United States)

    Yazwinski, T A; Greenway, T; Presson, B L; Pote, L M; Featherstone, H; Williams, M

    1983-11-01

    Sixteen sheep harboring naturally acquired parasitisms were allocated to 1 of 2 treatment groups: (i) sheep given ivermectin in an oral solution at the dosage rate of 200 micrograms/kg of body weight, and (ii) those given the vehicle at a dosage rate of 0.25 ml/kg. All animals were necropsied at 2 weeks after treatment. Parasites and percentages of parasitic reductions, as demonstrated in this trial, were: Dictyocaulus filaria (99.4%), Oestrus ovis first stage instars (100%), Trichuris ovis (98.9%), Strongyloides papillosus (99.8%), Nematodirus spathiger (100%), arrested 4th stage Nematodirus spp (96.2%), Trichostrongylus colubriformis (100%), T axei (100%), Oster tagia circumcincta (100%), Haemonchus contortus (100%), and arrested Haemonchus spp 4th stage larvae (99.9%). The sheep showed no adverse effects due to ivermectin or vehicle administration.

  4. Parasitismo natural em ovos crisopídeos Natural egg parasitism of chrysopids

    Directory of Open Access Journals (Sweden)

    Maria Alice de Medeiros

    2009-02-01

    Full Text Available Os predadores, em geral, apresentam hábitos generalistas e por isso podem ser usados em programas de controle biológico, em diferentes agroecossistemas. A sobrevivência dos predadores é afetada por diversos fatores, como, por exemplo, a presença de parasitóides. Este trabalho foi conduzido com os objetivos de identificar os parasitóides de crisopídeos, especialmente os parasitóides de ovos, e determinar o nível de parasitismo natural. As amostragens foram feitas na Embrapa Hortaliças, em campos de milho-doce, de setembro/1997 a fevereiro/1998. Os ovos de crisopídeos foram coletados semanalmente, sendo individualizados em cápsulas de gelatina até a emergência da larva e/ou do parasitóide. Foram coletados 800 ovos de crisopídeos, sendo que em 71% dos ovos, as larvas sobreviveram; 9% dos ovos foram considerados inviáveis e 20% foram parasitados por seis espécies de microhimenópteros. Destes, 57% foram parasitados por Telenomus sp. (Scelionidae, 32% por Trichogramma pretiosum (Trichogrammatidae, 6% por Oencyrtus chrysopae Crawford (Encyrtidae e 5% por Aprostocetus sp. (Eulophidae.Most predators, in general, have generalist habits and can be used as biological control agents in several crops. Predator survival is affected by several factors, such as occurrence of parasitoids. The main purpose of this research was to identify the parasitoids of chrysopids, especially egg parasitoids and their level of parasitism. The samples were taken in a sweet-corn field at Embrapa Hortaliças from September/1997 to February/1998. The chrysopids eggs were collected weekly and then individualized in gelatine capsules until larval or parasitoid emergency. A total of 800 eggs were collected. The predator emerged from 71% of the eggs, 9% were inviable eggs and the other 20% were parasitized by six species of microhymenopterans. Among these, 57% were parasitized by Telenomus sp. (Scelionidae, 32% were parasitized by Trichogramma pretiosum

  5. One Health: parasites and beyond…

    OpenAIRE

    Blake, DP; Betson, ME

    2016-01-01

    The field of parasitism is broad, encompassing relationships between organisms where one benefits at the expense of another. Traditionally the discipline focuses on eukaryotes, with the study of bacteria and viruses complementary but distinct. Nonetheless, parasites vary in size and complexity from single celled protozoa, to enormous plants like those in the genus Rafflesia. Lifecycles range from obligate intracellular to extensive exoparasitism. Examples of parasites include high profile med...

  6. Quantitative Analysis of a Parasitic Antiviral Strategy

    OpenAIRE

    Kim, Hwijin; Yin, John

    2004-01-01

    We extended a computer simulation of viral intracellular growth to study a parasitic antiviral strategy that diverts the viral replicase toward parasite growth. This strategy inhibited virus growth over a wide range of conditions, while minimizing host cell perturbations. Such parasitic strategies may inhibit the development of drug-resistant virus strains.

  7. Malaria parasites: the great escape

    Directory of Open Access Journals (Sweden)

    Laurent Rénia

    2016-11-01

    Full Text Available Parasites of the genus Plasmodium have a complex life cycle. They alternate between their final mosquito host and their intermediate hosts. The parasite can be either extra- or intracellular, depending on the stage of development. By modifying their shape, motility, and metabolic requirements, the parasite adapts to the different environments in their different hosts. The parasite has evolved to escape the multiple immune mechanisms in the host that try to block parasite development at the different stages of their development. In this article, we describe the mechanisms reported thus far that allow the Plasmodium parasite to evade innate and adaptive immune responses.

  8. The genome of the simian and human malaria parasite Plasmodium knowlesi

    DEFF Research Database (Denmark)

    Pain, A; Böhme, U; Berry, A E

    2008-01-01

    Plasmodium knowlesi is an intracellular malaria parasite whose natural vertebrate host is Macaca fascicularis (the 'kra' monkey); however, it is now increasingly recognized as a significant cause of human malaria, particularly in southeast Asia. Plasmodium knowlesi was the first malaria parasite...... species in which antigenic variation was demonstrated, and it has a close phylogenetic relationship to Plasmodium vivax, the second most important species of human malaria parasite (reviewed in ref. 4). Despite their relatedness, there are important phenotypic differences between them, such as host blood...... cell preference, absence of a dormant liver stage or 'hypnozoite' in P. knowlesi, and length of the asexual cycle (reviewed in ref. 4). Here we present an analysis of the P. knowlesi (H strain, Pk1(A+) clone) nuclear genome sequence. This is the first monkey malaria parasite genome to be described...

  9. Intracellular distribution of nontargeted quantum dots after natural uptake and microinjection

    Science.gov (United States)

    Damalakiene, Leona; Karabanovas, Vitalijus; Bagdonas, Saulius; Valius, Mindaugas; Rotomskis, Ricardas

    2013-01-01

    Background: The purpose of this study was to elucidate the mechanism of natural uptake of nonfunctionalized quantum dots in comparison with microinjected quantum dots by focusing on their time-dependent accumulation and intracellular localization in different cell lines. Methods: The accumulation dynamics of nontargeted CdSe/ZnS carboxyl-coated quantum dots (emission peak 625 nm) was analyzed in NIH3T3, MCF-7, and HepG2 cells by applying the methods of confocal and steady-state fluorescence spectroscopy. Intracellular colocalization of the quantum dots was investigated by staining with Lysotracker®. Results: The uptake of quantum dots into cells was dramatically reduced at a low temperature (4°C), indicating that the process is energy-dependent. The uptake kinetics and imaging of intracellular localization of quantum dots revealed three accumulation stages of carboxyl-coated quantum dots at 37°C, ie, a plateau stage, growth stage, and a saturation stage, which comprised four morphological phases: adherence to the cell membrane; formation of granulated clusters spread throughout the cytoplasm; localization of granulated clusters in the perinuclear region; and formation of multivesicular body-like structures and their redistribution in the cytoplasm. Diverse quantum dots containing intracellular vesicles in the range of approximately 0.5–8 μm in diameter were observed in the cytoplasm, but none were found in the nucleus. Vesicles containing quantum dots formed multivesicular body-like structures in NIH3T3 cells after 24 hours of incubation, which were Lysotracker-negative in serum-free medium and Lysotracker-positive in complete medium. The microinjected quantum dots remained uniformly distributed in the cytosol for at least 24 hours. Conclusion: Natural uptake of quantum dots in cells occurs through three accumulation stages via a mechanism requiring energy. The sharp contrast of the intracellular distribution after microinjection of quantum dots in comparison

  10. Pervasiveness of parasites in pollinators.

    Directory of Open Access Journals (Sweden)

    Sophie E F Evison

    Full Text Available Many pollinator populations are declining, with large economic and ecological implications. Parasites are known to be an important factor in the some of the population declines of honey bees and bumblebees, but little is known about the parasites afflicting most other pollinators, or the extent of interspecific transmission or vectoring of parasites. Here we carry out a preliminary screening of pollinators (honey bees, five species of bumblebee, three species of wasp, four species of hoverfly and three genera of other bees in the UK for parasites. We used molecular methods to screen for six honey bee viruses, Ascosphaera fungi, Microsporidia, and Wolbachia intracellular bacteria. We aimed simply to detect the presence of the parasites, encompassing vectoring as well as actual infections. Many pollinators of all types were positive for Ascosphaera fungi, while Microsporidia were rarer, being most frequently found in bumblebees. We also detected that most pollinators were positive for Wolbachia, most probably indicating infection with this intracellular symbiont, and raising the possibility that it may be an important factor in influencing host sex ratios or fitness in a diversity of pollinators. Importantly, we found that about a third of bumblebees (Bombus pascuorum and Bombus terrestris and a third of wasps (Vespula vulgaris, as well as all honey bees, were positive for deformed wing virus, but that this virus was not present in other pollinators. Deformed wing virus therefore does not appear to be a general parasite of pollinators, but does interact significantly with at least three species of bumblebee and wasp. Further work is needed to establish the identity of some of the parasites, their spatiotemporal variation, and whether they are infecting the various pollinator species or being vectored. However, these results provide a first insight into the diversity, and potential exchange, of parasites in pollinator communities.

  11. Induction of cell-mediated immunity during early stages of infection with intracellular protozoa

    Directory of Open Access Journals (Sweden)

    Gazzinelli R.T.

    1998-01-01

    Full Text Available Toxoplasma gondii and Trypanosoma cruzi are intracellular parasites which, as part of their life cycle, induce a potent cell-mediated immunity (CMI maintained by Th1 lymphocytes and IFN-g. In both cases, induction of a strong CMI is thought to protect the host against rapid parasite multiplication and consequent pathology and lethality during the acute phase of infection. However, the parasitic infection is not eliminated by the immune system and the vertebrate host serves as a parasite reservoir. In contrast, Leishmania sp, which is a slow growing parasite, appears to evade induction of CMI during early stages of infection as a strategy for surviving in a hostile environment (i.e., inside the macrophages which are their obligatory niche in the vertebrate host. Recent reports show that the initiation of IL-12 synthesis by macrophages during these parasitic infections is a key event in regulating CMI and disease outcome. The studies reviewed here indicate that activation/inhibition of distinct signaling pathways and certain macrophage functions by intracellular protozoa are important events in inducing/modulating the immune response of their vertebrate hosts, allowing parasite and host survival and therefore maintaining parasite life cycles.

  12. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Science.gov (United States)

    Messlinger, Helena; Sebald, Heidi; Heger, Lukas; Dudziak, Diana; Bogdan, Christian; Schleicher, Ulrike

    2018-01-01

    Activated natural killer (NK) cells release interferon (IFN)-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani). When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis) were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL)-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs) of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells reduced the

  13. Monocyte-Derived Signals Activate Human Natural Killer Cells in Response to Leishmania Parasites

    Directory of Open Access Journals (Sweden)

    Helena Messlinger

    2018-01-01

    Full Text Available Activated natural killer (NK cells release interferon (IFN-γ, which is crucial for the control of intracellular pathogens such as Leishmania. In contrast to experimental murine leishmaniasis, the human NK cell response to Leishmania is still poorly characterized. Here, we investigated the interaction of human blood NK cells with promastigotes of different Leishmania species (Leishmania major, Leishmania mexicana, Leishmania infantum, and Leishmania donovani. When peripheral blood mononuclear cells or purified NK cells and monocytes (all derived from healthy blood donors from Germany without a history of leishmaniasis were exposed to promastigotes, NK cells showed increased surface expression of the activation marker CD69. The extent of this effect varied depending on the Leishmania species; differences between dermotropic and viscerotropic L. infantum strains were not observed. Upregulation of CD69 required direct contact between monocytes and Leishmania and was partly inhibitable by anti-interleukin (IL-18. Unexpectedly, IL-18 was undetectable in most of the supernatants (SNs of monocyte/parasite cocultures. Confocal fluorescence microscopy of non-permeabilized cells revealed that Leishmania-infected monocytes trans-presented IL-18 to NK cells. Native, but not heat-treated SNs of monocyte/Leishmania cocultures also induced CD69 on NK cells, indicating the involvement of a soluble heat-labile factor other than IL-18. A role for the NK cell-activating cytokines IL-1β, IL-2, IL-12, IL-15, IL-21, and IFN-α/β was excluded. The increase of CD69 was not paralleled by NK cell IFN-γ production or enhanced cytotoxicity. However, prior exposure of NK cells to Leishmania parasites synergistically increased their IFN-γ release in response to IL-12, which was dependent on endogenous IL-18. CD1c+ dendritic cells were identified as possible source of Leishmania-induced IL-12. Finally, we observed that direct contact between Leishmania and NK cells

  14. [What makes a parasite "transforming"? Insights into cancer from the agents of an exotic pathology, Theileria spp].

    Science.gov (United States)

    Cheeseman, K M; Weitzman, J B

    2017-02-01

    Theileria are obligate eukaryotic intracellular parasites of cattle. The diseases they cause, Tropical theileriosis and East Coast Fever, cause huge economic loss in East African, Mediterranean and central and South-East Asian countries. These apicomplexan parasites are the only intracellular eukaryotic parasites known to transform their host cell and represent a unique model to study host-parasite interactions and mechanisms of cancer onset.Here, we review how Theileria parasites induce transformation of their leukocyte host cell and discuss similarities with tumorigenesis. We describe how genomic innovation, epigenetic changes and hijacking of signal transductions enable a eukaryotic parasite to transform its host cell.

  15. Host-Parasite Interaction: Parasite-Derived and -Induced Proteases That Degrade Human Extracellular Matrix

    Directory of Open Access Journals (Sweden)

    Carolina Piña-Vázquez

    2012-01-01

    Full Text Available Parasitic protozoa are among the most important pathogens worldwide. Diseases such as malaria, leishmaniasis, amoebiasis, giardiasis, trichomoniasis, and trypanosomiasis affect millions of people. Humans are constantly threatened by infections caused by these pathogens. Parasites engage a plethora of surface and secreted molecules to attach to and enter mammalian cells. The secretion of lytic enzymes by parasites into host organs mediates critical interactions because of the invasion and destruction of interstitial tissues, enabling parasite migration to other sites within the hosts. Extracellular matrix is a complex, cross-linked structure that holds cells together in an organized assembly and that forms the basement membrane lining (basal lamina. The extracellular matrix represents a major barrier to parasites. Therefore, the evolution of mechanisms for connective-tissue degradation may be of great importance for parasite survival. Recent advances have been achieved in our understanding of the biochemistry and molecular biology of proteases from parasitic protozoa. The focus of this paper is to discuss the role of protozoan parasitic proteases in the degradation of host ECM proteins and the participation of these molecules as virulence factors. We divide the paper into two sections, extracellular and intracellular protozoa.

  16. Conventional oil and natural gas infrastructure increases brown-headed cowbird (Molothrus ater) relative abundance and parasitism in mixed-grass prairie.

    Science.gov (United States)

    Bernath-Plaisted, Jacy; Nenninger, Heather; Koper, Nicola

    2017-07-01

    The rapid expansion of oil and natural gas development across the Northern Great Plains has contributed to habitat fragmentation, which may facilitate brood parasitism of ground-nesting grassland songbird nests by brown-headed cowbirds ( Molothrus ater ), an obligate brood parasite, through the introduction of perches and anthropogenic edges. We tested this hypothesis by measuring brown-headed cowbird relative abundance and brood parasitism rates of Savannah sparrow ( Passerculus sandwichensis ) nests in relation to the presence of infrastructure features and proximity to potential perches and edge habitat. The presence of oil and natural gas infrastructure increased brown-headed cowbird relative abundance by a magnitude of four times, which resulted in four times greater brood parasitism rates at infrastructure sites. While the presence of infrastructure and the proximity to roads were influential in predicting brood parasitism rates, the proximity of perch sites was not. This suggests that brood parasitism associated with oil and natural gas infrastructure may result in additional pressures that reduce productivity of this declining grassland songbird.

  17. Advances in the application of genetic manipulation methods to apicomplexan parasites

    Science.gov (United States)

    Apicomplexan parasites such as Babesia, Theileria, Cryptosporidium, and Toxoplasma have a high negative impact on animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular...

  18. Surveillance of parasitic Legionella in surface waters by using immunomagnetic separation and amoebae enrichment.

    Science.gov (United States)

    Hsu, Tsui-Kang; Wu, Shu-Fen; Hsu, Bing-Mu; Kao, Po-Min; Tao, Chi-Wei; Shen, Shu-Min; Ji, Wen-Tsai; Huang, Wen-Chien; Fan, Cheng-Wei

    2015-01-01

    Free-living amoebae (FLA) are potential reservoirs of Legionella in aquatic environments. However, the parasitic relationship between various Legionella and amoebae remains unclear. In this study, surface water samples were gathered from two rivers for evaluating parasitic Legionella. Warmer water temperature is critical to the existence of Legionella. This result suggests that amoebae may be helpful in maintaining Legionella in natural environments because warmer temperatures could enhance parasitisation of Legionella in amoebae. We next used immunomagnetic separation (IMS) to identify extracellular Legionella and remove most free Legionella before detecting the parasitic ones in selectively enriched amoebae. Legionella pneumophila was detected in all the approaches, confirming that the pathogen is a facultative amoebae parasite. By contrast, two obligate amoebae parasites, Legionella-like amoebal pathogens (LLAPs) 8 and 9, were detected only in enriched amoebae. However, several uncultured Legionella were detected only in the extracellular samples. Because the presence of potential hosts, namely Vermamoeba vermiformis, Acanthamoeba spp. and Naegleria gruberi, was confirmed in the samples that contained intracellular Legionella, uncultured Legionella may survive independently of amoebae. Immunomagnetic separation and amoebae enrichment may have referential value for detecting parasitic Legionella in surface waters.

  19. Monoclonal Antibodies to Intracellular Stages of Cryptosporidium parvum Define Life Cycle Progression In Vitro.

    Science.gov (United States)

    Wilke, Georgia; Ravindran, Soumya; Funkhouser-Jones, Lisa; Barks, Jennifer; Wang, Qiuling; VanDussen, Kelli L; Stappenbeck, Thaddeus S; Kuhlenschmidt, Theresa B; Kuhlenschmidt, Mark S; Sibley, L David

    2018-06-27

    Among the obstacles hindering Cryptosporidium research is the lack of an in vitro culture system that supports complete life development and propagation. This major barrier has led to a shortage of widely available anti- Cryptosporidium antibodies and a lack of markers for staging developmental progression. Previously developed antibodies against Cryptosporidium were raised against extracellular stages or recombinant proteins, leading to antibodies with limited reactivity across the parasite life cycle. Here we sought to create antibodies that recognize novel epitopes that could be used to define intracellular development. We identified a mouse epithelial cell line that supported C. parvum growth, enabling immunization of mice with infected cells to create a bank of monoclonal antibodies (MAbs) against intracellular parasite stages while avoiding the development of host-specific antibodies. From this bank, we identified 12 antibodies with a range of reactivities across the parasite life cycle. Importantly, we identified specific MAbs that can distinguish different life cycle stages, such as trophozoites, merozoites, type I versus II meronts, and macrogamonts. These MAbs provide valuable tools for the Cryptosporidium research community and will facilitate future investigation into parasite biology. IMPORTANCE Cryptosporidium is a protozoan parasite that causes gastrointestinal disease in humans and animals. Currently, there is a limited array of antibodies available against the parasite, which hinders imaging studies and makes it difficult to visualize the parasite life cycle in different culture systems. In order to alleviate this reagent gap, we created a library of novel antibodies against the intracellular life cycle stages of Cryptosporidium We identified antibodies that recognize specific life cycle stages in distinctive ways, enabling unambiguous description of the parasite life cycle. These MAbs will aid future investigation into Cryptosporidium biology and

  20. Cytoplasmic free Ca2+ is essential for multiple steps in malaria parasite egress from infected erythrocytes

    Directory of Open Access Journals (Sweden)

    Glushakova Svetlana

    2013-01-01

    Full Text Available Abstract Background Egress of Plasmodium falciparum, from erythrocytes at the end of its asexual cycle and subsequent parasite invasion into new host cells, is responsible for parasite dissemination in the human body. The egress pathway is emerging as a coordinated multistep programme that extends in time for tens of minutes, ending with rapid parasite extrusion from erythrocytes. While the Ca2+ regulation of the invasion of P. falciparum in erythrocytes is well established, the role of Ca2+ in parasite egress is poorly understood. This study analysed the involvement of cytoplasmic free Ca2+ in infected erythrocytes during the multistep egress programme of malaria parasites. Methods Live-cell fluorescence microscopy was used to image parasite egress from infected erythrocytes, assessing the effect of drugs modulating Ca2+ homeostasis on the egress programme. Results A steady increase in cytoplasmic free Ca2+ is found to precede parasite egress. This increase is independent of extracellular Ca2+ for at least the last two hours of the cycle, but is dependent upon Ca2+ release from internal stores. Intracellular BAPTA chelation of Ca2+ within the last 45 minutes of the cycle inhibits egress prior to parasitophorous vacuole swelling and erythrocyte membrane poration, two characteristic morphological transformations preceding parasite egress. Inhibitors of the parasite endoplasmic reticulum (ER Ca2+-ATPase accelerate parasite egress, indicating that Ca2+ stores within the ER are sufficient in supporting egress. Markedly accelerated egress of apparently viable parasites was achieved in mature schizonts using Ca2+ ionophore A23187. Ionophore treatment overcomes the BAPTA-induced block of parasite egress, confirming that free Ca2+ is essential in egress initiation. Ionophore treatment of immature schizonts had an adverse effect inducing parasitophorous vacuole swelling and killing the parasites within the host cell. Conclusions The parasite egress

  1. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity, and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent, subcellular site and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissues followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. No evidence was obtained for the production of volatile Cd complexes in tobacco

  2. Fitness of Leishmania donovani parasites resistant to drug combinations.

    Directory of Open Access Journals (Sweden)

    Raquel García-Hernández

    2015-04-01

    Full Text Available Drug resistance represents one of the main problems for the use of chemotherapy to treat leishmaniasis. Additionally, it could provide some advantages to Leishmania parasites, such as a higher capacity to survive in stress conditions. In this work, in mixed populations of Leishmania donovani parasites, we have analyzed whether experimentally resistant lines to one or two combined anti-leishmanial drugs better support the stress conditions than a susceptible line expressing luciferase (Luc line. In the absence of stress, none of the Leishmania lines showed growth advantage relative to the other when mixed at a 1:1 parasite ratio. However, when promastigotes from resistant lines and the Luc line were mixed and exposed to different stresses, we observed that the resistant lines are more tolerant of different stress conditions: nutrient starvation and heat shock-pH stress. Further to this, we observed that intracellular amastigotes from resistant lines present a higher capacity to survive inside the macrophages than those of the control line. These results suggest that resistant parasites acquire an overall fitness increase and that resistance to drug combinations presents significant differences in their fitness capacity versus single-drug resistant parasites, particularly in intracellular amastigotes. These results contribute to the assessment of the possible impact of drug resistance on leishmaniasis control programs.

  3. Food plant derived disease tolerance and resistance in a natural butterfly-plant-parasite interactions.

    Science.gov (United States)

    Sternberg, Eleanore D; Lefèvre, Thierry; Li, James; de Castillejo, Carlos Lopez Fernandez; Li, Hui; Hunter, Mark D; de Roode, Jacobus C

    2012-11-01

    Organisms can protect themselves against parasite-induced fitness costs through resistance or tolerance. Resistance includes mechanisms that prevent infection or limit parasite growth while tolerance alleviates the fitness costs from parasitism without limiting infection. Although tolerance and resistance affect host-parasite coevolution in fundamentally different ways, tolerance has often been ignored in animal-parasite systems. Where it has been studied, tolerance has been assumed to be a genetic mechanism, unaffected by the host environment. Here we studied the effects of host ecology on tolerance and resistance to infection by rearing monarch butterflies on 12 different species of milkweed food plants and infecting them with a naturally occurring protozoan parasite. Our results show that monarch butterflies experience different levels of tolerance to parasitism depending on the species of milkweed that they feed on, with some species providing over twofold greater tolerance than other milkweed species. Resistance was also affected by milkweed species, but there was no relationship between milkweed-conferred resistance and tolerance. Chemical analysis suggests that infected monarchs obtain highest fitness when reared on milkweeds with an intermediate concentration, diversity, and polarity of toxic secondary plant chemicals known as cardenolides. Our results demonstrate that environmental factors-such as interacting species in ecological food webs-are important drivers of disease tolerance. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  4. Isolation of intracellular parasites (Plasmodium falciparum) from culture using free-flow electrophoresis: separation of the free parasites according to stages.

    Science.gov (United States)

    Heidrich, H G; Mrema, J E; Vander Jagt, D L; Reyes, P; Rieckmann, K H

    1982-06-01

    Parasitized human erythrocytes were concentrated from continuous cultures of Plasmodium falciparum from 5-7% up to 80-95% using Plasmagel. After aggregation of the cells with phythemagglutinin, the aggregated erythrocytes were fragmented by passing them, with minimal force, through successive nylon filters of decreasing pore size (100 microns-3 microns). The mixture of liberated, free parasites, intact erythrocytes and erythrocyte membrane vesicles was separated using free-flow electrophoresis. Most of the fractions containing free parasites did not show contamination with erythrocyte constituents as determined by light and electron microscopy, polyacrylamide gel electrophoresis, and enzymatic analysis. In addition, the various stages of free parasites of Plasmodium falciparum exhibited different electrical surface charges. Rings and trophozoites were highly negatively charged whereas schizonts and, in particular, merozoites showed low negative charges. Thus, the various stages could be isolated separate from each other.

  5. Leukocyte profiles for western fence lizards, Sceloporus occidentalis, naturally infected by the malaria parasite Plasmodium mexicanum.

    Science.gov (United States)

    Motz, Victoria L; Lewis, William D; Vardo-Zalik, Anne M

    2014-10-01

    Plasmodium mexicanum is a malaria parasite that naturally infects the western fence lizard, Sceloporus occidentalis , in northern California. We set out to determine whether lizards naturally infected with this malaria parasite have different leukocyte profiles, indicating an immune response to infection. We used 29 naturally infected western fence lizards paired with uninfected lizards based on sex, snout-to-vent length, tail status, and the presence-absence of ectoparasites such as ticks and mites, as well as the presence-absence of another hemoparasite, Schellackia occidentalis. Complete white blood cell (WBC) counts were conducted on blood smears stained with Giemsa, and the proportion of granulocytes per microliter of blood was estimated using the Avian Leukopet method. The abundance of each WBC class (lymphocytes, monocytes, heterophils, eosinophils, and basophils) in infected and uninfected lizards was compared to determine whether leukocyte densities varied with infection status. We found that the numbers of WBCs and lymphocytes per microliter of blood significantly differed (P lizard's immune response to increase the levels of circulating WBCs, but what effect this has on the biology of the parasite remains unclear.

  6. Parasites: Water

    Science.gov (United States)

    ... Consultations, and General Public. Contact Us Parasites Home Water Language: English Español (Spanish) Recommend on Facebook Tweet Share Compartir Parasites can live in natural water sources. When outdoors, treat your water before drinking ...

  7. Foodborne parasites from wildlife

    DEFF Research Database (Denmark)

    Kapel, Christian Moliin Outzen; Fredensborg, Brian Lund

    2015-01-01

    The majority of wild foods consumed by humans are sourced from intensively managed or semi-farmed populations. Management practices inevitably affect wildlife density and habitat characteristics, which are key elements in the transmission of parasites. We consider the risk of transmission...... of foodborne parasites to humans from wildlife maintained under natural or semi-natural conditions. A deeper understanding will be useful in counteracting foodborne parasites arising from the growing industry of novel and exotic foods....

  8. Cell Death of Gamma Interferon-Stimulated Human Fibroblasts upon Toxoplasma gondii Infection Induces Early Parasite Egress and Limits Parasite Replication

    NARCIS (Netherlands)

    Niedelman, Wendy; Sprokholt, Joris K.; Clough, Barbara; Frickel, Eva-Maria; Saeij, Jeroen P. J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-γ) activation of both hematopoietic and nonhematopoietic cells. Although IFN-γ-induced innate

  9. Cell death of gamma interferon-stimulated human fibroblasts upon toxoplasma gondii infection induces early parasite egress and limits parasite replication

    NARCIS (Netherlands)

    Niedelman, W.; Sprokholt, J.K.; Clough, B.; Frickel, E.; Saeij, J.P.J.

    2013-01-01

    The intracellular protozoan parasite Toxoplasma gondii is a major food-borne illness and opportunistic infection for the immunosuppressed. Resistance to Toxoplasma is dependent on gamma interferon (IFN-¿) activation of both hematopoietic and nonhematopoietic cells. Although IFN-¿-induced innate

  10. Immune escape strategies of malaria parasites

    Directory of Open Access Journals (Sweden)

    Pollyanna Stephanie Gomes

    2016-10-01

    Full Text Available Malaria is one of the most life-threatening infectious diseases worldwide. Immunity to malaria is slow and short-lived despite the repeated parasite exposure in endemic areas. Malaria parasites have evolved refined machinery to evade the immune system based on a range of genetic changes that include allelic variation, biomolecular exposure of proteins and intracellular replication. All of these features increase the probability of survival in both mosquitoes and the vertebrate host. Plasmodium species escape from the first immunological trap in its invertebrate vector host, the Anopheles mosquitoes. The parasites have to pass through various immunological barriers within the mosquito such as anti-microbial molecules and the mosquito microbiota in order to achieve successful transmission to the vertebrate host. Within these hosts, Plasmodium species employ various immune evasion strategies during different life cycle stages. Parasite persistence against the vertebrate immune response depends on the balance among virulence factors, pathology, metabolic cost of the host immune response, and the parasites ability to evade the immune response. In this review we discuss the strategies that Plasmodium parasites use to avoid the vertebrate host immune system and how they promote successful infection and transmission.

  11. Enforcing host cell polarity: an apicomplexan parasite strategy towards dissemination.

    Science.gov (United States)

    Baumgartner, Martin

    2011-08-01

    The propagation of apicomplexan parasites through transmitting vectors is dependent on effective dissemination of parasites inside the mammalian host. Intracellular Toxoplasma and Theileria parasites face the challenge that their spread inside the host depends in part on the motile capacities of their host cells. In response, these parasites influence the efficiency of dissemination by altering adhesive and/or motile properties of their host cells. Theileria parasites do so by targeting signalling pathways that control host cell actin dynamics. The resulting enforced polar host cell morphology facilitates motility and invasiveness, by establishing focal adhesion and invasion structures at the leading edge of the infected cell. This parasite strategy highlights mechanisms of motility regulation that are also likely relevant for immune or cancer cell motility. Copyright © 2011 Elsevier Ltd. All rights reserved.

  12. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon.

    Science.gov (United States)

    Lalremruata, Albert; Magris, Magda; Vivas-Martínez, Sarai; Koehler, Maike; Esen, Meral; Kempaiah, Prakasha; Jeyaraj, Sankarganesh; Perkins, Douglas Jay; Mordmüller, Benjamin; Metzger, Wolfram G

    2015-09-01

    The quartan malaria parasite Plasmodium malariae is the widest spread and best adapted human malaria parasite. The simian Plasmodium brasilianum causes quartan fever in New World monkeys and resembles P. malariae morphologically. Since the genetics of the two parasites are nearly identical, differing only in a range of mutations expected within a species, it has long been speculated that the two are the same. However, no naturally acquired infection with parasites termed as P. brasilianum has been found in humans until now. We investigated malaria cases from remote Yanomami indigenous communities of the Venezuelan Amazon and analyzed the genes coding for the circumsporozoite protein (CSP) and the small subunit of ribosomes (18S) by species-specific PCR and capillary based-DNA sequencing. Based on 18S rRNA gene sequencing, we identified 12 patients harboring malaria parasites which were 100% identical with P. brasilianum isolated from the monkey, Alouatta seniculus. Translated amino acid sequences of the CS protein gene showed identical immunodominant repeat units between quartan malaria parasites isolated from both humans and monkeys. This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  13. Dynamic protein S-palmitoylation mediates parasite life cycle progression and diverse mechanisms of virulence.

    Science.gov (United States)

    Brown, Robert W B; Sharma, Aabha I; Engman, David M

    2017-04-01

    Eukaryotic parasites possess complex life cycles and utilize an assortment of molecular mechanisms to overcome physical barriers, suppress and/or bypass the host immune response, including invading host cells where they can replicate in a protected intracellular niche. Protein S-palmitoylation is a dynamic post-translational modification in which the fatty acid palmitate is covalently linked to cysteine residues on proteins by the enzyme palmitoyl acyltransferase (PAT) and can be removed by lysosomal palmitoyl-protein thioesterase (PPT) or cytosolic acyl-protein thioesterase (APT). In addition to anchoring proteins to intracellular membranes, functions of dynamic palmitoylation include - targeting proteins to specific intracellular compartments via trafficking pathways, regulating the cycling of proteins between membranes, modulating protein function and regulating protein stability. Recent studies in the eukaryotic parasites - Plasmodium falciparum, Toxoplasma gondii, Trypanosoma brucei, Cryptococcus neoformans and Giardia lamblia - have identified large families of PATs and palmitoylated proteins. Many palmitoylated proteins are important for diverse aspects of pathogenesis, including differentiation into infective life cycle stages, biogenesis and tethering of secretory organelles, assembling the machinery powering motility and targeting virulence factors to the plasma membrane. This review aims to summarize our current knowledge of palmitoylation in eukaryotic parasites, highlighting five exemplary mechanisms of parasite virulence dependent on palmitoylation.

  14. Parasite load in the blood and skin of dogs naturally infected by Leishmania infantum is correlated with their capacity to infect sand fly vectors.

    Science.gov (United States)

    Borja, Lairton Souza; Sousa, Orlando Marcos Farias de; Solcà, Manuela da Silva; Bastos, Leila Andrade; Bordoni, Marcelo; Magalhães, Jairo Torres; Larangeira, Daniela Farias; Barrouin-Melo, Stella Maria; Fraga, Deborah Bittencourt Mothé; Veras, Patrícia Sampaio Tavares

    2016-10-15

    The sand fly Lutzomyia longipalpis is primarily responsible for the transmission of visceral leishmaniasis (VL) in the New World, and dogs are considered to be the main urban reservoir of this disease. In order to improve the efficacy of control measures, it is essential to assess the transmission capacity of Leishmania infantum to the sand fly vector by naturally infected dogs. The present study investigated the existence of correlations between canine clinical presentation and the intensity of parasite load in the blood, skin and spleen of naturally infected dogs. In addition, we also attempted to establish correlations between the intensity of parasite load in canine tissue and the parasite load detected in sandflies five days after feeding on naturally infected dogs. A total of 23 dogs were examined and classified according to clinical manifestation of canine VL. Blood samples, splenic aspirate and skin biopsies were collected and parasite DNA was quantified by qPCR. Canine capacity to infect Lu. longipalpis with parasites was evaluated by xenodiagnosis and parasite loads were measured five days after feeding. No significant differences were observed with respect to canine clinical manifestation and the parasite loads detected in the blood, skin and spleen samples obtained from naturally infected dogs. Regardless of clinical canine visceral leishmaniasis (CVL) presentation and the degree of parasite burden, almost half of the dogs successfully infected sandflies with parasites, albeit to a low number of sandflies with correspondingly low parasite loads. Parasite loads in both canine blood and skin were shown to be positively correlated with the canine infectiousness to the sand fly vector, and positive correlations were also observed with respect to these tissues and the sand fly infection rate, as well as the parasite load detected in sandflies following xenodiagnosis. In conclusion, this indicates that parasite loads in both blood and skin can function as

  15. Mechanisms of CNS invasion and damage by parasites.

    Science.gov (United States)

    Kristensson, Krister; Masocha, Willias; Bentivoglio, Marina

    2013-01-01

    Invasion of the central nervous system (CNS) is a most devastating complication of a parasitic infection. Several physical and immunological barriers provide obstacles to such an invasion. In this broad overview focus is given to the physical barriers to neuroinvasion of parasites provided at the portal of entry of the parasites, i.e., the skin and epithelial cells of the gastrointestinal tract, and between the blood and the brain parenchyma, i.e., the blood-brain barrier (BBB). A description is given on how human pathogenic parasites can reach the CNS via the bloodstream either as free-living or extracellular parasites, by embolization of eggs, or within red or white blood cells when adapted to intracellular life. Molecular mechanisms are discussed by which parasites can interact with or pass across the BBB. The possible targeting of the circumventricular organs by parasites, as well as the parasites' direct entry to the brain from the nasal cavity through the olfactory nerve pathway, is also highlighted. Finally, examples are given which illustrate different mechanisms by which parasites can cause dysfunction or damage in the CNS related to toxic effects of parasite-derived molecules or to immune responses to the infection. Copyright © 2013 Elsevier B.V. All rights reserved.

  16. Trypanosoma cruzi: partial prevention of the natural infection of guinea pigs with a killed parasite vaccine.

    Science.gov (United States)

    Basombrio, M A

    1990-07-01

    Guinea pigs are natural reservoirs of Chagas' disease. Domestic breeding and local trade of these animals are common practices among andean communities in South America. Infection by Trypanosoma cruzi occurs when the animals live in triatomine-infested houses or yards. The preventive effect of a vaccine consisting of cultured T. cruzi killed by freezing and thawing plus saponin was tested both in mice and in the guinea pig ecosystem. Resistance against T. cruzi challenge in mice was improved by increasing the trypomastigote/epimastigote ratio in live attenuated vaccines but not in killed parasite vaccines. Although the killing of attenuated parasites sharply reduced their immunogenicity for mice, a protective effect against natural T. cruzi infection was detected in guinea pigs. A total of 88 guinea pigs were vaccinated in four intradermal sites on three occasions. Eighty controls received similar inoculations of culture medium plus saponin. All animals were kept in a triatomine-infested yard. Parasitemia was studied with the capillary microhematocrit method. After an exposure time averaging 4 months, natural T. cruzi infection occurred in 55% (44/80) of the controls and in 33% (29/88) of the vaccinated group (P less than 0.01). The number of highly parasitemic guinea pigs was also significantly decreased (6/80 vs 0/88, P less than 0.01). Thus, immunizing protocols which are only partially protective against artificial callenge with T. cruzi may nevertheless constrain the exchange of parasites between natural hosts and vectors.

  17. 17-AAG kills intracellular Leishmania amazonensis while reducing inflammatory responses in infected macrophages.

    Science.gov (United States)

    Petersen, Antonio Luis de Oliveira Almeida; Guedes, Carlos Eduardo Sampaio; Versoza, Carolina Leite; Lima, José Geraldo Bomfim; de Freitas, Luiz Antônio Rodrigues; Borges, Valéria Matos; Veras, Patrícia Sampaio Tavares

    2012-01-01

    Leishmaniasis is a neglected endemic disease with a broad spectrum of clinical manifestations. Pentavalent antimonials have been the treatment of choice for the past 70 years and, due to the emergence of resistant cases, the efficacy of these drugs has come under scrutiny. Second-line drugs are less efficacious, cause a range of side effects and can be costly. The formulation of new generations of drugs, especially in developing countries, has become mandatory. We investigated the anti-leishmanial effect of 17-(allylamino)-17-demethoxygeldanamycin (17-AAG), an HSP90 inhibitor, in vitro. This inhibitor is currently in clinical trials for cancer treatment; however, its effects against intracellular Leishmania remain untested. Macrophages infected with L. amazonensis were treated with 17-AAG (25-500 nM) and parasite load was quantified using optical microscopy. Parasite load declined in 17-AAG-treated macrophages in a dose- and time-dependent manner. Intracellular parasite death became irreversible after 4 h of treatment with 17-AAG, and occurred independent of nitric oxide (NO) and superoxide (O(2) (-)) production. Additionally, intracellular parasite viability was severely reduced after 48 h of treatment. Interestingly, treatment with 17-AAG reduced pro-inflammatory mediator production, including TNF-α, IL-6 and MCP-1, yet IL-12 remained unaffected. Electron microscopy revealed morphological alterations, such as double-membrane vacuoles and myelin figures at 24 and 48 h after 17-AAG treatment. The HSP90 inhibitor, 17-AAG, possesses high potency under low dosage and reduces both pro-inflammatory and oxidative molecule production. Therefore, further studies are warranted to investigate this inhibitor's potential in the development of new generations of anti-leishmanials.

  18. Cancer in the parasitic protozoans Trypanosoma brucei and Toxoplasma gondii.

    Science.gov (United States)

    Lun, Zhao-Rong; Lai, De-Hua; Wen, Yan-Zi; Zheng, Ling-Ling; Shen, Ji-Long; Yang, Ting-Bo; Zhou, Wen-Liang; Qu, Liang-Hu; Hide, Geoff; Ayala, Francisco J

    2015-07-21

    Cancer is a general name for more than 100 malignant diseases. It is postulated that all cancers start from a single abnormal cell that grows out of control. Untreated cancers can cause serious consequences and deaths. Great progress has been made in cancer research that has significantly improved our knowledge and understanding of the nature and mechanisms of the disease, but the origins of cancer are far from being well understood due to the limitations of suitable model systems and to the complexities of the disease. In view of the fact that cancers are found in various species of vertebrates and other metazoa, here, we suggest that cancer also occurs in parasitic protozoans such as Trypanosoma brucei, a blood parasite, and Toxoplasma gondii, an obligate intracellular pathogen. Without treatment, these protozoan cancers may cause severe disease and death in mammals, including humans. The simpler genomes of these single-cell organisms, in combination with their complex life cycles and fascinating life cycle differentiation processes, may help us to better understand the origins of cancers and, in particular, leukemias.

  19. Intracellular zinc flux causes reactive oxygen species mediated mitochondrial dysfunction leading to cell death in Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Anjali Kumari

    Full Text Available Leishmaniasis caused by Leishmania parasite is a global threat to public health and one of the most neglected tropical diseases. Therefore, the discovery of novel drug targets and effective drug is a major challenge and an important goal. Leishmania is an obligate intracellular parasite that alternates between sand fly and human host. To survive and establish infections, Leishmania parasites scavenge and internalize nutrients from the host. Nevertheless, host cells presents mechanism like nutrient restriction to inhibit microbial growth and control infection. Zinc is crucial for cellular growth and disruption in its homeostasis hinders growth and survival in many cells. However, little is known about the role of zinc in Leishmania growth and survival. In this study, the effect of zinc on the growth and survival of L.donovani was analyzed by both Zinc-depletion and Zinc-supplementation using Zinc-specific chelator N, N, N', N'-tetrakis (2-pyridylmethyl ethylenediamine (TPEN and Zinc Sulfate (ZnSO4. Treatment of parasites with TPEN rather than ZnSO4 had significantly affected the growth in a dose- and time-dependent manner. The pre-treatment of promastigotes with TPEN resulted into reduced host-parasite interaction as indicated by decreased association index. Zn depletion resulted into flux in intracellular labile Zn pool and increased in ROS generation correlated with decreased intracellular total thiol and retention of plasma membrane integrity without phosphatidylserine exposure in TPEN treated promastigotes. We also observed that TPEN-induced Zn depletion resulted into collapse of mitochondrial membrane potential which is associated with increase in cytosolic calcium and cytochrome-c. DNA fragmentation analysis showed increased DNA fragments in Zn-depleted cells. In summary, intracellular Zn depletion in the L. donovani promastigotes led to ROS-mediated caspase-independent mitochondrial dysfunction resulting into apoptosis-like cell death

  20. An Agar-Based Method for Plating Marine Protozoan Parasites of the Genus Perkinsus.

    Directory of Open Access Journals (Sweden)

    Emma R Cold

    Full Text Available The genus Perkinsus includes protozoan parasites of mollusks responsible for losses in the aquaculture industry and hampering the recovery of natural shellfish beds worldwide, and they are a key taxon for understanding intracellular parasitism adaptations. The ability to propagate the parasite in liquid media, in the absence of the host, has been crucial for improving understanding of its biology; however, alternative techniques to grow the parasite are needed to explore other basic aspects of the Perkinsus spp. biology. We optimized a DME: Ham's F12-5% FBS- containing solid agar medium for plating Perkinsus marinus. This solid medium supported trophozoite propagation both by binary fission and schizogony. Colonies were visible to the naked eye 17 days after plating. We tested the suitability of this method for several applications, including the following: 1 Subcloning P. marinus isolates: single discrete P. marinus colonies were obtained from DME: Ham's F12-5% FBS- 0.75% agar plates, which could be further propagated in liquid medium; 2 Subcloning engineered Perkinsus mediterraneus MOE[MOE]: GFP by streaking cultures on plates; 3 Chemical susceptibility: Infusing the DME: Ham's F12-5% FBS- 0.75% agar plates with triclosan resulted in inhibition of the parasite propagation in a dose-dependent manner. Altogether, our plating method has the potential for becoming a key tool for investigating diverse aspects of Perkinsus spp. biology, developing new molecular tools, and for biotechnological applications.

  1. Leishmania hijacking of the macrophage intracellular compartments.

    Science.gov (United States)

    Liévin-Le Moal, Vanessa; Loiseau, Philippe M

    2016-02-01

    Leishmania spp., transmitted to humans by the bite of the sandfly vector, are responsible for the three major forms of leishmaniasis, cutaneous, diffuse mucocutaneous and visceral. Leishmania spp. interact with membrane receptors of neutrophils and macrophages. In macrophages, the parasite is internalized within a parasitophorous vacuole and engages in a particular intracellular lifestyle in which the flagellated, motile Leishmania promastigote metacyclic form differentiates into non-motile, metacyclic amastigote form. This phenomenon is induced by Leishmania-triggered events leading to the fusion of the parasitophorous vacuole with vesicular members of the host cell endocytic pathway including recycling endosomes, late endosomes and the endoplasmic reticulum. Maturation of the parasitophorous vacuole leads to the intracellular proliferation of the Leishmania amastigote forms by acquisition of host cell nutrients while escaping host defense responses. © 2015 FEBS.

  2. The neurotropic parasite Toxoplasma gondii increases dopamine metabolism.

    Directory of Open Access Journals (Sweden)

    Emese Prandovszky

    Full Text Available The highly prevalent parasite Toxoplasma gondii manipulates its host's behavior. In infected rodents, the behavioral changes increase the likelihood that the parasite will be transmitted back to its definitive cat host, an essential step in completion of the parasite's life cycle. The mechanism(s responsible for behavioral changes in the host is unknown but two lines of published evidence suggest that the parasite alters neurotransmitter signal transduction: the disruption of the parasite-induced behavioral changes with medications used to treat psychiatric disease (specifically dopamine antagonists and identification of a tyrosine hydroxylase encoded in the parasite genome. In this study, infection of mammalian dopaminergic cells with T. gondii enhanced the levels of K+-induced release of dopamine several-fold, with a direct correlation between the number of infected cells and the quantity of dopamine released. Immunostaining brain sections of infected mice with dopamine antibody showed intense staining of encysted parasites. Based on these analyses, T. gondii orchestrates a significant increase in dopamine metabolism in neural cells. Tyrosine hydroxylase, the rate-limiting enzyme for dopamine synthesis, was also found in intracellular tissue cysts in brain tissue with antibodies specific for the parasite-encoded tyrosine hydroxylase. These observations provide a mechanism for parasite-induced behavioral changes. The observed effects on dopamine metabolism could also be relevant in interpreting reports of psychobehavioral changes in toxoplasmosis-infected humans.

  3. Subcellular site and nature of intracellular cadmium in plants

    International Nuclear Information System (INIS)

    Wagner, G.J.

    1979-01-01

    The mechanisms underlying heavy metal accumulation, toxicity and tolerance in higher plants are poorly understood. Since subcellular processes are undoubtedly involved in all these phenomena, it is of interest to study the extent of, subcellular site of and nature of intracellularly accumulated cadmium in higher plants. Whole plants supplied 109 CdCl 2 or 112 CdSO 4 accumulated Cd into roots and aerial tissues. Preparation of protoplasts from aerial tissue followed by subcellular fractionation of the protoplasts to obtain intact vacuoles, chloroplasts and cytosol revealed the presence of Cd in the cytosol but not in vacuoles or chloroplasts. Particulate materials containing other cell components were also labeled. Of the 109 Cd supplied to plants, 2 to 10% was recovered in both cytosol preparations and in particulate materials. Cytosol contained proteinaceous--Cd complexes, free metal and low molecular weight Cd complexes. Labeling of protoplasts gave similar results. No evidence was obtained for the production of volatile Cd complexes in tobacco

  4. The Romanomermis iyengari parasite for Anopheles pseudopunctipennis suppression in natural habitats in Oaxaca State, Mexico

    Directory of Open Access Journals (Sweden)

    Santamarina Mijares Alberto

    1999-01-01

    Full Text Available In September and November 1996 Romanomermis iyengari Welch, a parasite of larval mosquitoes, was released in 44 natural larval habitat sites of Anopheles pseudopunctipennis Theobald in an attempt to reduce the larval populations of this important malaria vector. The selected treatment sites ranged in size from 5 to 500 m². The study was carried out in Pochutla District of Oaxaca State, on the Pacific coast of Mexico. Chemical pesticides to reduce vector populations have been the principal tool in malaria suppression campaigns. However, the excessive use of these chemicals has created pesticide resistance and other serious collateral problems. Therefore, a biological control project using agents that are pathogens of Anopheles larvae was initiated in 1996. The principal objective was to establish mass rearing capacities for R. iyengari. Detailed methodology for rearing and introducing these nematodes into mosquito larval habitats was established at the National Polytechnic Institute of Oaxaca State. Before application of the parasites to larval habitats, site characteristics were determined, including size, depth, aquatic vegetation, salinity, pH, conductivity, temperature, and pretreatment larval density. With a compressed air sprayer, infective mermithid parasites were released at rates of either 2000 or 3000/m², and the parasites produced high levels of infection. Anopheles populations were sampled 72 h posttreatment, and the larvae obtained were taken to the laboratory and examined through microscopic dissection to determine infection levels and mean parasitism. Nematode parasitism ranged from 85 to 100% at all the treatment sites, even though no previous information concerning field parasitism of An. pseudopunctipennis by R. iyengari has been reported. In addition, a significant reduction of mosquito larval density at the treatment sites was found five days after the nematode application. Levels of parasitism were indicative of the number

  5. [Natural infection of Lutzomyia cayennensis cayennensis with trypanosomatid parasites (Kinetoplastida: Trypanosomatidae) in Los Montes de Maria, Colombia].

    Science.gov (United States)

    Cochero, Suljey; Anaya, Yosed; Díaz, Yirys; Paternina, Margaret; Luna, Arturo; Paternina, Luis; Eduar Elías, Bejarano

    2007-01-01

    The presence of sand flies naturally infected with trypanosomatid parasites was determined in Los Montes de Maria, Colombia, a region considered endemic for visceral and cutaneous leishmaniasis. Phlebotomines were collected using CDC light-traps, and sticky traps soaked with castor oil placed in the peri and intradomestic habitats. Six species of Lutzomyia were morphologically identified among the 159 sand flies captured: Lu. evansi, Lu. cayennensis cayennensis, Lu. trinidadensis, Lu. atroclavata, Lu. gomezi and Lu. dubitans. A DNA band of 800 pb corresponding to the small-subunit ribosomal RNA gene (ssrRNA) of the family Trypanosomatidae was amplified in one pool of nine females of Lu. cayennensis cayennensis. This finding constitutes the first evidence of natural infection of this sand fly species with trypanosomatid parasites in Los Montes de Maria.

  6. Differentially expressed genes linked to natural variation in long-term memory formation in Cotesia parasitic wasps

    NARCIS (Netherlands)

    Vugt, van J.J.F.A.; Hoedjes, K.M.; Geest, van de H.C.; Schijlen, E.G.W.M.; Vet, L.E.M.; Smid, H.M.

    2015-01-01

    Even though learning and memory are universal traits in the Animal Kingdom, closely related species reveal substantial variation in learning rate and memory dynamics. To determine the genetic background of this natural variation, we studied two congeneric parasitic wasp species, Cotesia glomerata

  7. Differentially expressed genes linked to natural variation in long-term memory formation in Cotesia parasitic wasps

    NARCIS (Netherlands)

    Van Vugt, Joke J. F. A.; Hoedjes, Katja M.; Van de Geest, Henri C.; Schijlen, Elio W. G. M.; Vet, Louise E. M.; Smid, Hans M.

    2015-01-01

    BACKGROUND: Even though learning and memory are universal traits in the Animal Kingdom, closely related species reveal substantial variation in learning rate and memory dynamics. To determine the genetic background of this natural variation, we studied two congeneric parasitic wasp species, Cotesia

  8. Pitting of malaria parasites and spherocyte formation

    Directory of Open Access Journals (Sweden)

    Gichuki Charity W

    2006-07-01

    Full Text Available Abstract Background A high prevalence of spherocytes was detected in blood smears of children enrolled in a case control study conducted in the malaria holoendemic Lake Victoria basin. It was speculated that the spherocytes reflect intraerythrocytic removal of malarial parasites with a concurrent removal of RBC membrane through a process analogous to pitting of intraerythrocytic inclusion bodies. Pitting and re-circulation of RBCs devoid of malaria parasites could be a host mechanism for parasite clearance while minimizing the anaemia that would occur were the entire parasitized RBC removed. The prior demonstration of RBCs containing ring-infected erythrocyte surface antigen (pf 155 or RESA but no intracellular parasites, support the idea of pitting. Methods An in vitro model was developed to examine the phenomenon of pitting and spherocyte formation in Plasmodium falciparum infected RBCs (iRBC co-incubated with human macrophages. In vivo application of this model was evaluated using blood specimens from patients attending Kisumu Ditrict Hospital. RBCs were probed with anti-RESA monoclonal antibody and a DNA stain (propidium iodide. Flow cytometry and fluorescent microscopy was used to compare RBCs containing both the antigen and the parasites to those that were only RESA positive. Results Co-incubation of iRBC and tumor necrosis factor-alpha activated macrophages led to pitting (14% ± 1.31% macrophages with engulfed trophozoites as opposed to erythrophagocytosis (5.33% ± 0.95% (P Conclusion It is proposed that in malaria holoendemic areas where prevalence of asexual stage parasites approaches 100% in children, RBCs with pitted parasites are re-circulated and pitting may produce spherocytes.

  9. Genetics of simple and complex host-parasite interactions

    International Nuclear Information System (INIS)

    Sidhu, G.S.; Webster, J.M.

    1977-01-01

    In nature a host plant can be viewed as a miniature replica of an ecological system where true and incidental parasites share the same habitat. Consequently, they influence each other's presence directly by interspecific interaction, and indirectly by inducing changes in the host's physiology and so form disease complexes. Since all physiological phenomena have their counterpart in the respective genetic systems of interacting organisms, valuable genetic information can be derived from the analysis of complex parasitic systems. Disease complexes may be classified according to the nature of interaction between various parasites on the same host. One parasite may nullify the host's resistance to another (e.g. Tomato - Meloidogyne incognita + Fusarium oxysporum lycopersici system). Conversely, a parasite may invoke resistance in the host against another parasite (e.g. Tomato - Fusarium oxysporum lycopersici + Verticillium albo atrum system). From the study of simple parasitic systems we know that resistance versus susceptibility against a single parasite is normally monogenically controlled. However, when more than one parasite interacts to invoke or nullify each other's responses on the same host plant, the genetic results suggest epistatic ratios. Nevertheless, epistatic ratios have been obtained also from simple parasitic systems owing to gene interaction. The epistatic ratios obtained from complex and simple parasitic systems are contrasted and compared. It is suggested that epistatic ratios obtained from simple parasitic systems may, in fact, be artifacts resulting from complex parasitic associations that often occur in nature. Polygenic inheritance and the longevity of a cultivar is also discussed briefly in relation to complex parasitic associations. Induced mutations can play a significant role in the study of complex parasitic associations, and thus can be very useful in controlling plant diseases

  10. The expression of virulence during double infections by different parasites with conflicting host exploitation and transmission strategies.

    Science.gov (United States)

    Ben-Ami, F; Rigaud, T; Ebert, D

    2011-06-01

    In many natural populations, hosts are found to be infected by more than one parasite species. When these parasites have different host exploitation strategies and transmission modes, a conflict among them may arise. Such a conflict may reduce the success of both parasites, but could work to the benefit of the host. For example, the less-virulent parasite may protect the host against the more-virulent competitor. We examine this conflict using the waterflea Daphnia magna and two of its sympatric parasites: the blood-infecting bacterium Pasteuria ramosa that transmits horizontally and the intracellular microsporidium Octosporea bayeri that can concurrently transmit horizontally and vertically after infecting ovaries and fat tissues of the host. We quantified host and parasite fitness after exposing Daphnia to one or both parasites, both simultaneously and sequentially. Under conditions of strict horizontal transmission, Pasteuria competitively excluded Octosporea in both simultaneous and sequential double infections, regardless of the order of exposure. Host lifespan, host reproduction and parasite spore production in double infections resembled those of single infection by Pasteuria. When hosts became first vertically (transovarilly) infected with O. bayeri, Octosporea was able to withstand competition with P. ramosa to some degree, but both parasites produced less transmission stages than they did in single infections. At the same time, the host suffered from reduced fecundity and longevity. Our study demonstrates that even when competing parasite species utilize different host tissues to proliferate, double infections lead to the expression of higher virulence and ultimately may select for higher virulence. Furthermore, we found no evidence that the less-virulent and vertically transmitting O. bayeri protects its host against the highly virulent P. ramosa. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  11. Extracellular functions of glycolytic enzymes of parasites: unpredicted use of ancient proteins.

    Science.gov (United States)

    Gómez-Arreaza, Amaranta; Acosta, Hector; Quiñones, Wilfredo; Concepción, Juan Luis; Michels, Paul A M; Avilán, Luisana

    2014-02-01

    In addition of their usual intracellular localization where they are involved in catalyzing reactions of carbohydrate and energy metabolism by glycolysis, multiple studies have shown that glycolytic enzymes of many organisms, but notably pathogens, can also be present extracellularly. In the case of parasitic protists and helminths, they can be found either secreted or attached to the surface of the parasites. At these extracellular localizations, these enzymes have been shown to perform additional, very different so-called "moonlighting" functions, such as acting as ligands for a variety of components of the host. Due to this recognition, different extracellular glycolytic enzymes participate in various important parasite-host interactions such as adherence and invasion of parasites, modulation of the host's immune and haemostatic systems, promotion of angiogenesis, and acquisition of specific nutrients by the parasites. Accordingly, extracellular glycolytic enzymes are important for the invasion of the parasites and their establishment in the host, and in determining their virulence. Copyright © 2014 Elsevier B.V. All rights reserved.

  12. Polyamine uptake by the intraerythrocytic malaria parasite, Plasmodium falciparum.

    Science.gov (United States)

    Niemand, J; Louw, A I; Birkholtz, L; Kirk, K

    2012-09-01

    Polyamines and the enzymes involved in their biosynthesis are present at high levels in rapidly proliferating cells, including cancer cells and protozoan parasites. Inhibition of polyamine biosynthesis in asexual blood-stage malaria parasites causes cytostatic arrest of parasite development under in vitro conditions, but does not cure infections in vivo. This may be due to replenishment of the parasite's intracellular polyamine pool via salvage of exogenous polyamines from the host. However, the mechanism(s) of polyamine uptake by the intraerythrocytic parasite are not well understood. In this study, the uptake of the polyamines, putrescine and spermidine, into Plasmodium falciparum parasites functionally isolated from their host erythrocyte was investigated using radioisotope flux techniques. Both putrescine and spermidine were taken up into isolated parasites via a temperature-dependent process that showed cross-competition between different polyamines. There was also some inhibition of polyamine uptake by basic amino acids. Inhibition of polyamine biosynthesis led to an increase in the total amount of putrescine and spermidine taken up from the extracellular medium. The uptake of putrescine and spermidine by isolated parasites was independent of extracellular Na(+) but increased with increasing external pH. Uptake also showed a marked dependence on the parasite's membrane potential, decreasing with membrane depolarization and increasing with membrane hyperpolarization. The data are consistent with polyamines being taken up into the parasite via an electrogenic uptake process, energised by the parasite's inwardly negative membrane potential. Copyright © 2012 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  13. Double impact: natural molluscicide for schistosomiasis vector control also impedes development of Schistosoma mansoni cercariae into adult parasites.

    Directory of Open Access Journals (Sweden)

    Ronaldo de Carvalho Augusto

    2017-07-01

    Full Text Available Schistosomiasis has been reported in 78 endemic countries and affects 240 million people worldwide. The digenetic parasite Schistosoma mansoni needs fresh water to compete its life cycle. There, it is susceptible to soluble compounds that can affect directly and/or indirectly the parasite's biology. The cercariae stage is one of the key points in which the parasite is vulnerable to different soluble compounds that can significantly alter the parasite's life cycle. Molluscicides are recommended by the World Health Organization for the control of schistosomiasis transmission and Euphorbia milii latex is effective against snails intermediate hosts.We used parasitological tools and electron microscopy to verify the effects of cercariae exposure to natural molluscicide (Euphorbia milii latex on morphology, physiology and fitness of adult parasite worms. In order to generate insights into key metabolic pathways that lead to the observed phenotypes we used comparative transcriptomics and proteomics.We describe here that the effect of latex on the adult is not due to direct toxicity but it triggers an early change in developmental trajectory and perturbs cell memory, mobility, energy metabolism and other key pathways. We conclude that latex has not only an effect on the vector but applies also long lasting schistosomastatic action. We believe that these results are of interest not only to parasitologists since it shows that natural compounds, presumably without side effects, can have an impact that occurred unexpectedly on developmental processes. Such collateral damage is in this case positive, since it impacts the true target of the treatment campaign. This type of treatment could also provide a rational for the control of other pests. Our results will contribute to enforce the use of E. milii latex in Brazil and other endemic countries as cheap alternative or complement to mass drug treatment with Praziquantel, the only available drug to cure the

  14. Traffic pathways of Plasmodium vivax antigens during intraerythrocytic parasite development.

    Science.gov (United States)

    Bracho, Carmen; Dunia, Irene; De, La Rosa Mercedes; Benedetti, Ennio-Lucio; Perez, Hilda A

    2002-03-01

    We investigated the secretory traffic of a Plasmodium vivax antigen (Pv-148) synthesised by the parasite during the blood cycle, exported into the host cell cytosol and then transported to the surface membrane of the infected erythrocyte. Studies of the ultrastructure of erythrocytes infected with P. vivax showed that intracellular schizogony is accompanied by the generation of parasite-induced membrane profiles in the erythrocyte cytoplasm. These structures are detectable soon after the parasite invades the erythrocyte and develop an elaborate organisation, leading to a tubovesicular membrane (TVM) network, in erythrocytes infected with mature trophozoites. Interestingly, the clefts formed stacked, flattened cisternae resembling a classical Golgi apparatus. The TVM network stained with the fluorescent Golgi marker Bodipy-ceramide. Specific immunolabelling showed that Pv-148 was transferred from the parasite to the erythrocyte surface membrane via the clefts and the TVM network. These findings suggest that the TVM network is part of the secretory pathways involved in parasite protein transport across the Plasmodium-infected erythrocyte and that Pv- 148 may represent a marker that links the parasite with the host cell cytoplasm and, in turn, with the extracellular milieu.

  15. Deception and Manipulation: The Arms of Leishmania, a Successful Parasite

    Science.gov (United States)

    Cecílio, Pedro; Pérez-Cabezas, Begoña; Santarém, Nuno; Maciel, Joana; Rodrigues, Vasco; Cordeiro da Silva, Anabela

    2014-01-01

    Leishmania spp. are intracellular parasitic protozoa responsible for a group of neglected tropical diseases, endemic in 98 countries around the world, called leishmaniasis. These parasites have a complex digenetic life cycle requiring a susceptible vertebrate host and a permissive insect vector, which allow their transmission. The clinical manifestations associated with leishmaniasis depend on complex interactions between the parasite and the host immune system. Consequently, leishmaniasis can be manifested as a self-healing cutaneous affliction or a visceral pathology, being the last one fatal in 85–90% of untreated cases. As a result of a long host–parasite co-evolutionary process, Leishmania spp. developed different immunomodulatory strategies that are essential for the establishment of infection. Only through deception and manipulation of the immune system, Leishmania spp. can complete its life cycle and survive. The understanding of the mechanisms associated with immune evasion and disease progression is essential for the development of novel therapies and vaccine approaches. Here, we revise how the parasite manipulates cell death and immune responses to survive and thrive in the shadow of the immune system. PMID:25368612

  16. Deception and Manipulation: the arms of Leishmania, a successful parasite

    Directory of Open Access Journals (Sweden)

    Pedro eCecílio

    2014-10-01

    Full Text Available Leishmania spp. are intracellular parasitic protozoa responsible for a group of neglected tropical diseases, endemic in 98 countries around the world, called leishmaniasis. These parasites have a complex digenetic life cycle requiring a susceptible vertebrate host and a permissive insect vector, which allow their transmission. The clinical manifestations associated with leishmaniasis depend on complex interactions between the parasite and the host immune system. Consequently, leishmaniasis can be manifested as a self-healing cutaneous affliction or a visceral pathology, being the last one fatal in 85-90% of untreated cases. As a result of a long host-parasite co-evolutionary process, Leishmania spp. developed different immunomodulatory strategies that are essential for the establishment of infection. Only through deception and manipulation of the immune system, Leishmania spp. can complete its life cycle and survive. The understanding of the mechanisms associated with immune evasion and disease progression is essential for the development of novel therapies and vaccine approaches. Here, we revise how the parasite manipulates cell death and immune responses to survive and thrive in the shadow of the immune system.

  17. Passive transfer of leishmania lipopolysaccharide confers parasite survival in macrophages

    International Nuclear Information System (INIS)

    Handman, E.; Schnur, L.F.; Spithill, T.W.; Mitchell, G.F.

    1986-01-01

    Infection of macrophages by the intracellular protozoan parasite Leishmania involves specific attachment to the host membrane, followed by phagocytosis and intracellular survival and growth. Two parasite molecules have been implicated in the attachment event: Leishmania lipopolysaccharide (L-LPS) and a glycoprotein (gp63). This study was designed to clarify the role of L-LPS in infection and the stage in the process of infection at which it operates. The authors have recently identified a Leishmania major strain (LRC-L119) which lacks the L-LPS molecule and is not infective for hamsters or mice. This parasite was isolated from a gerbil in Kenya and was identified phenotypically as L. major by isoenzyme and fatty acid analysis. In this study they have confirmed at the genotype level that LRC-L119 is L. major by analyzing and comparing the organization of cloned DNA sequences in the genome of different strains of L. major. Here they show that LRC-L119 promastigotes are phagocytosed rapidly by macrophages in vitro, but in contrast to virulent strains of L. major, they are then killed over a period of 18 hr. In addition, they show that transfer of purified L-LPS from a virulent clone of L. major (V121) into LRC-L119 promastigotes confers on them the ability to survive in macrophages in vitro

  18. Natural infection of Plasmodium brasilianum in humans: Man and monkey share quartan malaria parasites in the Venezuelan Amazon

    Directory of Open Access Journals (Sweden)

    Albert Lalremruata

    2015-09-01

    Interpretation: This study reports, for the first time, naturally acquired infections in humans with parasites termed as P. brasilianum. We conclude that quartan malaria parasites are easily exchanged between humans and monkeys in Latin America. We hypothesize a lack of host specificity in mammalian hosts and consider quartan malaria to be a true anthropozoonosis. Since the name P. brasilianum suggests a malaria species distinct from P. malariae, we propose that P. brasilianum should have a nomenclatorial revision in case further research confirms our findings. The expansive reservoir of mammalian hosts discriminates quartan malaria from other Plasmodium spp. and requires particular research efforts.

  19. Pico gauges for minimally invasive intracellular hydrostatic pressure measurements

    DEFF Research Database (Denmark)

    Knoblauch, Jan; Mullendore, Daniel L.; Jensen, Kaare Hartvig

    2014-01-01

    Intracellular pressure has a multitude of functions in cells surrounded by a cell wall or similar matrix in all kingdoms of life. The functions include cell growth, nastic movements, and penetration of tissue by parasites. The precise measurement of intracellular pressure in the majority of cells......, however, remains difficult or impossible due to their small size and/or sensitivity to manipulation. Here, we report on a method that allows precise measurements in basically any cell type over all ranges of pressure. It is based on the compression of nanoliter and picoliter volumes of oil entrapped...... in the tip of microcapillaries, which we call pico gauges. The production of pico gauges can be accomplished with standard laboratory equipment, and measurements are comparably easy to conduct. Example pressure measurements are performed on cells that are difficult or impossible to measure with other methods....

  20. Involvement of apoptosis in host-parasite interactions in the zebra mussel.

    Directory of Open Access Journals (Sweden)

    Laëtitia Minguez

    Full Text Available The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism.

  1. Involvement of Apoptosis in Host-Parasite Interactions in the Zebra Mussel

    Science.gov (United States)

    Minguez, Laëtitia; Brulé, Nelly; Sohm, Bénédicte; Devin, Simon; Giambérini, Laure

    2013-01-01

    The question of whether cell death by apoptosis plays a biological function during infection is key to understanding host-parasite interactions. We investigated the involvement of apoptosis in several host-parasite systems, using zebra mussels Dreissena polymorpha as test organisms and their micro- and macroparasites. As a stress response associated with parasitism, heat shock proteins (Hsp) can be induced. In this protein family, Hsp70 are known to be apoptosis inhibitors. Mussels were diagnosed for their respective infections by standard histological methods; apoptosis was detected using the TUNEL methods on paraffin sections and Hsp70 by immunohistochemistry on cryosections. Circulating hemocytes were the main cells observed in apoptosis whereas infected tissues displayed no or few apoptotic cells. Parasitism by intracellular bacteria Rickettsiales-like and the trematode Bucephalus polymorphus were associated with the inhibition of apoptosis whereas ciliates Ophryoglena spp. or the trematode Phyllodistomum folium did not involve significant differences in apoptosis. Even if some parasites were able to modulate apoptosis in zebra mussels, we did not see evidence of any involvement of Hsp70 on this mechanism. PMID:23785455

  2. Differentially expressed genes linked to natural variation in long-term memory formation in Cotesia parasitic wasps

    Directory of Open Access Journals (Sweden)

    Joke J. F. A. Van Vugt

    2015-09-01

    Full Text Available Even though learning and memory are universal traits in the Animal Kingdom, closely related species reveal substantial variation in learning rate and memory dynamics. To determine the genetic background of this natural variation, we studied two congeneric parasitic wasp species, Cotesia glomerata and C. rubecula, which lay their eggs in caterpillars of the large and small cabbage white butterfly. A successful egg laying event serves as an unconditioned stimulus in a classical conditioning paradigm, where plant odors become associated to the encounter of a suitable host caterpillar. Depending on the host species, the number of conditioning trials and the parasitic wasp species, three different types of transcription-dependent long-term memory (LTM and one type of transcription-independent, anesthesia-resistant memory (ARM can be distinguished. To identify transcripts underlying these differences in memory formation, we isolated mRNA from parasitic wasp heads at three different time points between induction and consolidation of each of the four memory types, and for each sample three biological replicates, where after strand-specific paired-end 100 bp deep sequencing. Transcriptomes were assembled de novo and differential expression was determined for each memory type and time point after conditioning, compared to unconditioned wasps. Most differentially expressed (DE genes and antisense transcripts were only DE in one of the LTM types. Among the DE genes that were DE in two or more LTM types, were many protein kinases and phosphatases, small GTPases, receptors and ion channels. Some genes were DE in opposing directions between any of the LTM memory types and ARM, suggesting that ARM in Cotesia requires the transcription of genes inhibiting LTM or vice versa. We discuss our findings in the context of neuronal functioning, including RNA splicing and transport, epigenetic regulation, neurotransmitter/peptide synthesis and antisense transcription. In

  3. Valosin-containing protein VCP/p97 is essential for the intracellular development of Leishmania and its survival under heat stress.

    Science.gov (United States)

    Aguiar, Bruno G; Padmanabhan, Prasad K; Dumas, Carole; Papadopoulou, Barbara

    2018-06-12

    VCP/p97/Cdc48 is one of the best-characterized type II cytosolic AAA+ ATPases most known for their role in ubiquitin-dependent protein quality control. Here, we provide functional insights into the role of the Leishmania VCP/p97 homolog (LiVCP) in the parasite intracellular development. We demonstrate that although LiVCP is an essential gene, L. infantum promastigotes can grow with less VCP. In contrast, growth of axenic and intracellular amastigotes is dramatically affected upon decreased LiVCP levels in heterozygous and temperature sensitive LiVCP mutants or the expression of dominant negative mutants known to specifically target the second conserved VCP ATPase domain, a major contributor of the VCP overall ATPase activity. Interestingly, these VCP mutants are also unable to survive heat stress and a temperature sensitive VCP mutant is defective in amastigote growth. Consistent with LiVCP's essential function in amastigotes, LiVCP mRNA undergoes 3'UTR-mediated developmental regulation, resulting in higher VCP expression in amastigotes. Furthermore, we show that parasite mutant lines expressing lower VCP levels or dominant negative VCP forms exhibit high accumulation of polyubiquitinated proteins and increased sensitivity to proteotoxic stress, supporting the ubiquitin-selective chaperone function of LiVCP. Together, these results emphasize the crucial role LiVCP plays under heat stress and during the parasite intracellular development. This article is protected by copyright. All rights reserved.

  4. Identifying rapidly parasiticidal anti-malarial drugs using a simple and reliable in vitro parasite viability fast assay.

    Science.gov (United States)

    Linares, María; Viera, Sara; Crespo, Benigno; Franco, Virginia; Gómez-Lorenzo, María G; Jiménez-Díaz, María Belén; Angulo-Barturen, Íñigo; Sanz, Laura María; Gamo, Francisco-Javier

    2015-11-05

    The emergence of Plasmodium falciparum resistance to artemisinins threatens to undermine the effectiveness of artemisinin-based combination anti-malarial therapy. Developing suitable drugs to replace artemisinins requires the identification of new compounds that display rapid parasite killing kinetics. However, no current methods fully meet the requirements to screen large compound libraries for candidates with such properties. This study describes the development and validation of an in vitro parasite viability fast assay for identifying rapidly parasiticidal anti-malarial drugs. Parasite killing kinetics were determined by first culturing unlabelled erythrocytes with P. falciparum in the presence of anti-malarial drugs for 24 or 48 h. After removing the drug, samples were added to erythrocytes pre-labelled with intracellular dye to allow their subsequent identification. The ability of viable parasites to re-establish infection in labelled erythrocytes could then be detected by two-colour flow cytometry after tagging of parasite DNA. Thus, double-stained erythrocytes (with the pre-labelled intracellular dye and the parasite DNA dye) result only after establishment of new infections by surviving parasites. The capacity of the test anti-malarial drugs to eliminate viable parasites within 24 or 48 h could, therefore, be determined. The parasite viability fast assay could be completed within 48 h following drug treatment and distinguished between rapidly parasiticidal anti-malarial drugs versus those acting more slowly. The assay was validated against ten standard anti-malarial agents with known properties and results correlated well with established methods. An abbreviated assay, suitable for adaption to medium-high throughput screening, was validated and applied against a set of 20 compounds retrieved from the publically available Medicines for Malaria Venture 'Malaria Box'. The quantification of new infections to determine parasite viability offers important

  5. Apicomplexa-specific tRip facilitates import of exogenous tRNAs into malaria parasites.

    Science.gov (United States)

    Bour, Tania; Mahmoudi, Nassira; Kapps, Delphine; Thiberge, Sabine; Bargieri, Daniel; Ménard, Robert; Frugier, Magali

    2016-04-26

    The malaria-causing Plasmodium parasites are transmitted to vertebrates by mosquitoes. To support their growth and replication, these intracellular parasites, which belong to the phylum Apicomplexa, have developed mechanisms to exploit their hosts. These mechanisms include expropriation of small metabolites from infected host cells, such as purine nucleotides and amino acids. Heretofore, no evidence suggested that transfer RNAs (tRNAs) could also be exploited. We identified an unusual gene in Apicomplexa with a coding sequence for membrane-docking and structure-specific tRNA binding. This Apicomplexa protein-designated tRip (tRNA import protein)-is anchored to the parasite plasma membrane and directs import of exogenous tRNAs. In the absence of tRip, the fitness of the parasite stage that multiplies in the blood is significantly reduced, indicating that the parasite may need host tRNAs to sustain its own translation and/or as regulatory RNAs. Plasmodium is thus the first example, to our knowledge, of a cell importing exogenous tRNAs, suggesting a remarkable adaptation of this parasite to extend its reach into host cell biology.

  6. Comparative genome analysis reveals a conserved family of actin-like proteins in apicomplexan parasites

    Directory of Open Access Journals (Sweden)

    Sibley L David

    2005-12-01

    Full Text Available Abstract Background The phylum Apicomplexa is an early-branching eukaryotic lineage that contains a number of important human and animal pathogens. Their complex life cycles and unique cytoskeletal features distinguish them from other model eukaryotes. Apicomplexans rely on actin-based motility for cell invasion, yet the regulation of this system remains largely unknown. Consequently, we focused our efforts on identifying actin-related proteins in the recently completed genomes of Toxoplasma gondii, Plasmodium spp., Cryptosporidium spp., and Theileria spp. Results Comparative genomic and phylogenetic studies of apicomplexan genomes reveals that most contain only a single conventional actin and yet they each have 8–10 additional actin-related proteins. Among these are a highly conserved Arp1 protein (likely part of a conserved dynactin complex, and Arp4 and Arp6 homologues (subunits of the chromatin-remodeling machinery. In contrast, apicomplexans lack canonical Arp2 or Arp3 proteins, suggesting they lost the Arp2/3 actin polymerization complex on their evolutionary path towards intracellular parasitism. Seven of these actin-like proteins (ALPs are novel to apicomplexans. They show no phylogenetic associations to the known Arp groups and likely serve functions specific to this important group of intracellular parasites. Conclusion The large diversity of actin-like proteins in apicomplexans suggests that the actin protein family has diverged to fulfill various roles in the unique biology of intracellular parasites. Conserved Arps likely participate in vesicular transport and gene expression, while apicomplexan-specific ALPs may control unique biological traits such as actin-based gliding motility.

  7. Unique physiology of host-parasite interactions in microsporidia infections.

    Science.gov (United States)

    Williams, Bryony A P

    2009-11-01

    Microsporidia are intracellular parasites of all major animal lineages and have a described diversity of over 1200 species and an actual diversity that is estimated to be much higher. They are important pathogens of mammals, and are now one of the most common infections among immunocompromised humans. Although related to fungi, microsporidia are atypical in genomic biology, cell structure and infection mechanism. Host cell infection involves the rapid expulsion of a polar tube from a dormant spore to pierce the host cell membrane and allow the direct transfer of the spore contents into the host cell cytoplasm. This intimate relationship between parasite and host is unique. It allows the microsporidia to be highly exploitative of the host cell environment and cause such diverse effects as the induction of hypertrophied cells to harbour prolific spore development, host sex ratio distortion and host cell organelle and microtubule reorganization. Genome sequencing has revealed that microsporidia have achieved this high level of parasite sophistication with radically reduced proteomes and with many typical eukaryotic pathways pared-down to what appear to be minimal functional units. These traits make microsporidia intriguing model systems for understanding the extremes of reductive parasite evolution and host cell manipulation.

  8. Bonamia parasites: a rapidly changing perspective on a genus of important mollusc pathogens

    NARCIS (Netherlands)

    Engelsma, M.Y.; Culloty, S.C.; Lynch, S.A.; Arzul, I.; Carnegie, R.B.

    2014-01-01

    Organisms of the genus Bonamia are intracellular protistan parasites of oysters. To date, 4 species have been described (B. ostreae, B. exitiosa, B. perspora and B. roughleyi), although the status of B. roughleyi is controversial. Introduction especially of B. ostreae and B. exitiosa to naïve host

  9. Smart Parasitic Nematodes Use Multifaceted Strategies to Parasitize Plants

    Directory of Open Access Journals (Sweden)

    Muhammad A. Ali

    2017-10-01

    Full Text Available Nematodes are omnipresent in nature including many species which are parasitic to plants and cause enormous economic losses in various crops. During the process of parasitism, sedentary phytonematodes use their stylet to secrete effector proteins into the plant cells to induce the development of specialized feeding structures. These effectors are used by the nematodes to develop compatible interactions with plants, partly by mimicking the expression of host genes. Intensive research is going on to investigate the molecular function of these effector proteins in the plants. In this review, we have summarized which physiological and molecular changes occur when endoparasitic nematodes invade the plant roots and how they develop a successful interaction with plants using the effector proteins. We have also mentioned the host genes which are induced by the nematodes for a compatible interaction. Additionally, we discuss how nematodes modulate the reactive oxygen species (ROS and RNA silencing pathways in addition to post-translational modifications in their own favor for successful parasitism in plants.

  10. In vitro activity of the beta-carboline alkaloids harmane, harmine, and harmaline toward parasites of the species Leishmania infantum.

    Science.gov (United States)

    Di Giorgio, C; Delmas, F; Ollivier, E; Elias, R; Balansard, G; Timon-David, P

    2004-01-01

    Harmane, harmine, and harmaline were investigated for their in vitro antileishmanial activity toward parasites of the species Leishmania infantum. Harmane and Harmine displayed a moderate antiproliferative activity toward human monocytes and exerted a weak antileishmanial activity toward both the promastigote and the amastigote forms of the parasite. Their mechanism of action on the promastigote form of the parasite involved interactions with DNA metabolism leading to an accumulation of parasites in the S-G(2)M phases of the cell-cycle. Harmaline, at the contrary, was deprived from toxicity toward human cells and Leishmania promastigotes, however it exerted a strong antileishmanial activity toward the intracellular amastigote form of the parasite. This property was shown to partly result from the capacity of the molecule to prevent parasite internalization within macrophages by inhibiting Leishmania PKC activity.

  11. Malaria parasite cGMP-dependent protein kinase regulates blood stage merozoite secretory organelle discharge and egress.

    Directory of Open Access Journals (Sweden)

    Christine R Collins

    2013-05-01

    Full Text Available The malaria parasite replicates within an intraerythrocytic parasitophorous vacuole (PV. Eventually, in a tightly regulated process called egress, proteins of the PV and intracellular merozoite surface are modified by an essential parasite serine protease called PfSUB1, whilst the enclosing PV and erythrocyte membranes rupture, releasing merozoites to invade fresh erythrocytes. Inhibition of the Plasmodium falciparum cGMP-dependent protein kinase (PfPKG prevents egress, but the underlying mechanism is unknown. Here we show that PfPKG activity is required for PfSUB1 discharge into the PV, as well as for release of distinct merozoite organelles called micronemes. Stimulation of PfPKG by inhibiting parasite phosphodiesterase activity induces premature PfSUB1 discharge and egress of developmentally immature, non-invasive parasites. Our findings identify the signalling pathway that regulates PfSUB1 function and egress, and raise the possibility of targeting PfPKG or parasite phosphodiesterases in therapeutic approaches to dysregulate critical protease-mediated steps in the parasite life cycle.

  12. Effect of BMAP-28 antimicrobial peptides on Leishmania major promastigote and amastigote growth: role of leishmanolysin in parasite survival.

    Directory of Open Access Journals (Sweden)

    Miriam A Lynn

    Full Text Available Protozoan parasites, such as Leishmania, still pose an enormous public health problem in many countries throughout the world. Current measures are outdated and have some associated drug resistance, prompting the search into novel therapies. Several innovative approaches are under investigation, including the utilization of host defence peptides (HDPs as emerging anti-parasitic therapies. HDPs are characterised by their small size, amphipathic nature and cationicity, which induce permeabilization of cell membranes, whilst modulating the immune response of the host. Recently, members of the cathelicidin family of HDPs have demonstrated significant antimicrobial activities against various parasites including Leishmania. The cathelicidin bovine myeloid antimicrobial peptide 28 (BMAP-28 has broad antimicrobial activities and confers protection in animal models of bacterial infection or sepsis. We tested the effectiveness of the use of BMAP-28 and two of its isomers the D-amino acid form (D-BMAP-28 and the retro-inverso form (RI-BMAP-28, as anti-leishmanial agents against the promastigote and amastigote intracellular Leishmania major lifecycle stages.An MTS viability assay was utilized to show the potent antiparasitic activity of BMAP-28 and its protease resistant isomers against L. major promastigotes in vitro. Cell membrane permeability assays, caspase 3/7, Tunel assays and morphologic studies suggested that this was a late stage apoptotic cell death with early osmotic cell lysis caused by the antimicrobial peptides. Furthermore, BMAP-28 and its isomers demonstrated anti-leishmanial activities against intracellular amastigotes within a macrophage infection model.Interestingly, D-BMAP-28 appears to be the most potent antiparasitic of the three isomers against wild type L. major promastigotes and amastigotes. These exciting results suggest that BMAP-28 and its protease resistant isomers have significant therapeutic potential as novel anti-leishmanials.

  13. Development of growth rate measuring method for intracellular, parasitic acid-fast bacteria using radioisotopes

    International Nuclear Information System (INIS)

    Nakata, Noboru; Fukutomi, Yasuo

    1998-01-01

    To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using 14 C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO 2 was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)

  14. Development of growth rate measuring method for intracellular, parasitic acid-fast bacteria using radioisotopes

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Deseases, Tokyo (Japan)

    1998-02-01

    To prevent and treat infections diseases caused by pathogenic acid-fast bacteria such as Mycobacterium leprae, Tubercle bacillus, it is important to elucidate the mechanisms of intracellular proliferations of these bacteria. This research project was started to make DNA library using a new constructed shuttle vector. Development of in vitro evaluation method for intracellular proliferation of mycobacterium and its transformed cells was attempted on the basis of Buddemeyer method. This method was able to precisely determine the metabolic activities as low as those in leprae and its modified method using {sup 14}C-palmitic acid was highly sensitive and the results were obtainable in a shorter period. The generated CO{sub 2} was satisfactorily absorbed into scintillator without using a filter paper. A new culture medium from which arginine, a NO-producing compound was eliminated was used to repress the sterilizing effects of NO, but the metabolic activities of leprae was not enhanced. (M.N.)

  15. Natural variation in long-term memory formation among Nasonia parasitic wasp species

    NARCIS (Netherlands)

    Hoedjes, K.M.; Smid, H.M.

    2014-01-01

    Closely related species of parasitic wasps can differ substantially in memory dynamics. In this study we demonstrate differences in the number of conditioning trials required to form long-term memory between the closely related parasitic wasp species Nasonia vitripennis and Nasonia giraulti

  16. The adaptive significance of inquiline parasite workers

    DEFF Research Database (Denmark)

    Sumner, Seirian; Nash, David R; Boomsma, Jacobus J

    2003-01-01

    Social parasites exploit the socially managed resources of their host's society. Inquiline social parasites are dependent on their host throughout their life cycle, and so many of the traits inherited from their free-living ancestor are removed by natural selection. One trait that is commonly lost...... is the worker caste, the functions of which are adequately fulfilled by host workers. The few inquiline parasites that have retained a worker caste are thought to be at a transitional stage in the evolution of social parasitism, and their worker castes are considered vestigial and non-adaptive. However...... a vital role in ensuring the parasite's fitness. We show that the presence of these parasite workers has a positive effect on the production of parasite sexuals and a negative effect on the production of host sexuals. This suggests that inquiline workers play a vital role in suppressing host queen...

  17. First report of the intracellular fish parasite Sphaerothecum destruens associated with the invasive topmouth gudgeon (Pseudorasbora parva in France

    Directory of Open Access Journals (Sweden)

    Charrier Amélie

    2016-01-01

    Full Text Available Sphaerothecum destruens has emerged as a serious parasite of fish. Its life cycle, as well as its association with Asian cyprinids, allows it to infect a wide range of hosts. The topmouth gudgeon (Pseudorasbora parva, an invasive species that has rapidly colonized Europe, has been shown to be a healthy carrier of the parasite. However, in France, the presence of S. destruens and its possible association with P. parva have not yet been demonstrated. Here, we screened topmouth gudgeon DNA for S. destruens using PCR amplification of an 18S rRNA gene fragment of the parasite. Sequencing and phylogenetic analysis confirmed the presence of S. destruens in the invasive fish species. Our results suggest that P. parva can be a potent vector of the parasite, and has the potential to become a major ecological and economic threat to the French fish population.

  18. Melatonin and N-acetyl-serotonin cross the red blood cell membrane and evoke calcium mobilization in malarial parasites

    Directory of Open Access Journals (Sweden)

    Hotta C.T.

    2003-01-01

    Full Text Available The duration of the intraerythrocytic cycle of Plasmodium is a key factor in the pathogenicity of this parasite. The simultaneous attack of the host red blood cells by the parasites depends on the synchronicity of their development. Unraveling the signals at the basis of this synchronicity represents a challenging biological question and may be very important to develop alternative strategies for therapeutic approaches. Recently, we reported that the synchrony of Plasmodium is modulated by melatonin, a host hormone that is synthesized only during the dark phases. Here we report that N-acetyl-serotonin, a melatonin precursor, also releases Ca2+ from isolated P. chabaudi parasites at micro- and nanomolar concentrations and that the release is blocked by 250 mM luzindole, an antagonist of melatonin receptors, and 20 mM U73122, a phospholipase C inhibitor. On the basis of confocal microscopy, we also report the ability of 0.1 µM melatonin and 0.1 µM N-acetyl-serotonin to cross the red blood cell membrane and to mobilize intracellular calcium in parasites previously loaded with the fluorescent calcium indicator Fluo-3 AM. The present data represent a step forward into the understanding of the signal transduction process in the host-parasite relationship by supporting the idea that the host hormone melatonin and N-acetyl-serotonin generate IP3 and therefore mobilize intracellular Ca2+ in Plasmodium inside red blood cells.

  19. Intracellular Trafficking Modulation by Ginsenoside Rg3 Inhibits Brucella abortus Uptake and Intracellular Survival within RAW 264.7 Cells.

    Science.gov (United States)

    Huy, Tran Xuan Ngoc; Reyes, Alisha Wehdnesday Bernardo; Hop, Huynh Tan; Arayan, Lauren Togonon; Min, WonGi; Lee, Hu Jang; Rhee, Man Hee; Chang, Hong Hee; Kim, Suk

    2017-03-28

    Ginsenoside Rg3, a saponin extracted from ginseng, has various pharmacological and biological activities; however, its effects against Brucella infection are still unclear. Herein, the inhibitory effects of ginsenoside Rg3 against intracellular parasitic Brucella infection were evaluated through bacterial infection, adherence assays, and LAMP-1 colocalization, as well as immunoblotting and FACS for detecting MAPK signaling proteins and F-actin polymerization, respectively. The internalization, intracellular growth, and adherence of Brucella abortus in Rg3-treated RAW 264.7 cells were significantly decreased compared with the Rg3-untreated control. Furthermore, an apparent reduction of F-actin content and intensity of F-actin fluorescence in Rg3-treated cells was observed compared with B. abortus -infected cells without treatment by flow cytometry analysis and confocal microscopy, respectively. In addition, treating cells with Rg3 decreased the phosphorylation of MAPK signaling proteins such as ERK 1/2 and p38 compared with untreated cells. Moreover, the colocalization of B. abortus -containing phagosomes with LAMP-1 was markedly increased in Rg3-treated cells. These findings suggest that ginsenoside Rg3 inhibits B. abortus infection in mammalian cells and can be used as an alternative approach in the treatment of brucellosis.

  20. [Establishment of response system to emergency parasitic disease affairs in China].

    Science.gov (United States)

    Chun-Li, C; Le-Ping, S; Qing-Biao, H; Bian-Li, X U; Bo, Z; Jian-Bing, L; Dan-Dan, L; Shi-Zhu, L I; Oning, X; Xiao-Nong, Z

    2017-08-14

    China's prevention and control of parasitic diseases has made remarkable achievements. However, the prevalence and transmission of parasitic diseases is impacted by the complicated natural and social factors of environment, natural disasters, population movements, and so on. Therefore, there are still the risks of the outbreak of emergency parasitic diseases affairs, which may affect the control effectiveness of parasitic diseases and endanger the social stability seriously. In this article, we aim at the analysis of typical cases of emergency parasitic disease affairs and their impacts on public health security in China in recently years, and we also elaborate the disposal characteristics of emergency parasitic disease affairs, and propose the establishment of response system to emergency parasitic disease affairs in China, including the organizational structure and response flow path, and in addition, point out that, in the future, we should strengthen the system construction and measures of the response system to emergency parasitic disease affairs, so as to control the risk and harm of parasitic disease spread as much as possible and to realize the early intervention and proper disposal of emergency parasitic disease affairs.

  1. One Health: parasites and beyond.

    Science.gov (United States)

    Blake, Damer P; Betson, Martha

    2017-01-01

    The field of parasitism is broad, encompassing relationships between organisms where one benefits at the expense of another. Traditionally the discipline focuses on eukaryotes, with the study of bacteria and viruses complementary but distinct. Nonetheless, parasites vary in size and complexity from single celled protozoa, to enormous plants like those in the genus Rafflesia. Lifecycles range from obligate intracellular to extensive exoparasitism. Examples of parasites include high-profile medical and zoonotic pathogens such as Plasmodium, veterinary pathogens of wild and captive animals and many of the agents which cause neglected tropical diseases, stretching to parasites which infect plants and other parasites (e.g. Kikuchi et al. 2011; Hotez et al. 2014; Blake et al. 2015; Hemingway, 2015; Meekums et al. 2015; Sandlund et al. 2015). The breadth of parasitology has been matched by the variety of ways in which parasites are studied, drawing upon biological, chemical, molecular, epidemiological and other expertise. Despite such breadth bridging between disciplines has commonly been problematic, regardless of extensive encouragement from government agencies, peer audiences and funding bodies promoting multidisciplinary research. Now, progress in understanding and collaboration can benefit from establishment of the One Health concept (Zinsstag et al. 2012; Stark et al. 2015). One Health draws upon biological, environmental, medical, veterinary and social science disciplines in order to improve human, animal and environmental health, although it remains tantalizingly difficult to engage many relevant parties. For infectious diseases traditional divides have been exacerbated as the importance of wildlife reservoirs, climate change, food production systems and socio-economic diversity have been recognized but often not addressed in a multidisciplinary manner. In response the 2015 Autumn Symposium organized by the British Society for Parasitology (BSP; https

  2. Wholly Rickettsia! Reconstructed Metabolic Profile of the Quintessential Bacterial Parasite of Eukaryotic Cells.

    Science.gov (United States)

    Driscoll, Timothy P; Verhoeve, Victoria I; Guillotte, Mark L; Lehman, Stephanie S; Rennoll, Sherri A; Beier-Sexton, Magda; Rahman, M Sayeedur; Azad, Abdu F; Gillespie, Joseph J

    2017-09-26

    Reductive genome evolution has purged many metabolic pathways from obligate intracellular Rickettsia ( Alphaproteobacteria ; Rickettsiaceae ). While some aspects of host-dependent rickettsial metabolism have been characterized, the array of host-acquired metabolites and their cognate transporters remains unknown. This dearth of information has thwarted efforts to obtain an axenic Rickettsia culture, a major impediment to conventional genetic approaches. Using phylogenomics and computational pathway analysis, we reconstructed the Rickettsia metabolic and transport network, identifying 51 host-acquired metabolites (only 21 previously characterized) needed to compensate for degraded biosynthesis pathways. In the absence of glycolysis and the pentose phosphate pathway, cell envelope glycoconjugates are synthesized from three imported host sugars, with a range of additional host-acquired metabolites fueling the tricarboxylic acid cycle. Fatty acid and glycerophospholipid pathways also initiate from host precursors, and import of both isoprenes and terpenoids is required for the synthesis of ubiquinone and the lipid carrier of lipid I and O-antigen. Unlike metabolite-provisioning bacterial symbionts of arthropods, rickettsiae cannot synthesize B vitamins or most other cofactors, accentuating their parasitic nature. Six biosynthesis pathways contain holes (missing enzymes); similar patterns in taxonomically diverse bacteria suggest alternative enzymes that await discovery. A paucity of characterized and predicted transporters emphasizes the knowledge gap concerning how rickettsiae import host metabolites, some of which are large and not known to be transported by bacteria. Collectively, our reconstructed metabolic network offers clues to how rickettsiae hijack host metabolic pathways. This blueprint for growth determinants is an important step toward the design of axenic media to rescue rickettsiae from the eukaryotic cell. IMPORTANCE A hallmark of obligate intracellular

  3. Using Proteomics to Understand How Leishmania Parasites Survive inside the Host and Establish Infection.

    Science.gov (United States)

    Veras, Patrícia Sampaio Tavares; Bezerra de Menezes, Juliana Perrone

    2016-08-19

    Leishmania is a protozoan parasite that causes a wide range of different clinical manifestations in mammalian hosts. It is a major public health risk on different continents and represents one of the most important neglected diseases. Due to the high toxicity of the drugs currently used, and in the light of increasing drug resistance, there is a critical need to develop new drugs and vaccines to control Leishmania infection. Over the past few years, proteomics has become an important tool to understand the underlying biology of Leishmania parasites and host interaction. The large-scale study of proteins, both in parasites and within the host in response to infection, can accelerate the discovery of new therapeutic targets. By studying the proteomes of host cells and tissues infected with Leishmania, as well as changes in protein profiles among promastigotes and amastigotes, scientists hope to better understand the biology involved in the parasite survival and the host-parasite interaction. This review demonstrates the feasibility of proteomics as an approach to identify new proteins involved in Leishmania differentiation and intracellular survival.

  4. Parasitism can be a confounding factor in assessing the response of zebra mussels to water contamination.

    Science.gov (United States)

    Minguez, Laëtitia; Buronfosse, Thierry; Beisel, Jean-Nicolas; Giambérini, Laure

    2012-03-01

    Biological responses measured in aquatic organisms to monitor environmental pollution could be also affected by different biotic and abiotic factors. Among these environmental factors, parasitism has often been neglected even if infection by parasites is very frequent. In the present field investigation, the parasite infra-communities and zebra mussel biological responses were studied up- and downstream a waste water treatment plant in northeast France. In both sites, mussels were infected by ciliates and/or intracellular bacteria, but prevalence rates and infection intensities were different according to the habitat. Concerning the biological responses differences were observed related to the site quality and the infection status. Parasitism affects both systems but seemed to depend mainly on environmental conditions. The influence of parasites is not constant, but remains important to consider it as a potential confounding factor in ecotoxicological studies. This study also emphasizes the interesting use of integrative indexes to synthesize data set. Copyright © 2011 Elsevier Ltd. All rights reserved.

  5. Non-specific immunization against parasites

    International Nuclear Information System (INIS)

    Cox, F.E.G.

    1981-01-01

    Non-specific resistance to tumours can be induced by pretreating animals with micro-organisms, microbial extracts or various synthetic substances. Mycobacterium bovis, Corynebacterium parvum and a number of other micro-organisms also protect mice against rodent piroplasms and there is evidence that they are also protective against other parasites including Schistosoma mansoni. The actual mechanisms of non-specific immunity are still unclear but it is influenced by both the genetic make-up of the host and the nature of the parasite. Non-specific immunization may be a possible alternative to specific immunization and may avoid many of the potential immunopathological changes induced during parasite infections. Irradiated vaccines (Dictyocaulus viviparus, schistomiasis) are mentioned marginally only

  6. Forward genetic screening identifies a small molecule that blocks Toxoplasma gondii growth by inhibiting both host- and parasite-encoded kinases.

    Directory of Open Access Journals (Sweden)

    Kevin M Brown

    2014-06-01

    Full Text Available The simultaneous targeting of host and pathogen processes represents an untapped approach for the treatment of intracellular infections. Hypoxia-inducible factor-1 (HIF-1 is a host cell transcription factor that is activated by and required for the growth of the intracellular protozoan parasite Toxoplasma gondii at physiological oxygen levels. Parasite activation of HIF-1 is blocked by inhibiting the family of closely related Activin-Like Kinase (ALK host cell receptors ALK4, ALK5, and ALK7, which was determined in part by use of an ALK4,5,7 inhibitor named SB505124. Besides inhibiting HIF-1 activation, SB505124 also potently blocks parasite replication under normoxic conditions. To determine whether SB505124 inhibition of parasite growth was exclusively due to inhibition of ALK4,5,7 or because the drug inhibited a second kinase, SB505124-resistant parasites were isolated by chemical mutagenesis. Whole-genome sequencing of these mutants revealed mutations in the Toxoplasma MAP kinase, TgMAPK1. Allelic replacement of mutant TgMAPK1 alleles into wild-type parasites was sufficient to confer SB505124 resistance. SB505124 independently impacts TgMAPK1 and ALK4,5,7 signaling since drug resistant parasites could not activate HIF-1 in the presence of SB505124 or grow in HIF-1 deficient cells. In addition, TgMAPK1 kinase activity is inhibited by SB505124. Finally, mice treated with SB505124 had significantly lower tissue burdens following Toxoplasma infection. These data therefore identify SB505124 as a novel small molecule inhibitor that acts by inhibiting two distinct targets, host HIF-1 and TgMAPK1.

  7. Metabolic Cooperation of Glucose and Glutamine Is Essential for the Lytic Cycle of Obligate Intracellular Parasite Toxoplasma gondii*

    OpenAIRE

    Nitzsche, Richard; Zagoriy, Vyacheslav; Lucius, Richard; Gupta, Nishith

    2015-01-01

    Toxoplasma gondii is a widespread protozoan parasite infecting nearly all warm-blooded organisms. Asexual reproduction of the parasite within its host cells is achieved by consecutive lytic cycles, which necessitates biogenesis of significant energy and biomass. Here we show that glucose and glutamine are the two major physiologically important nutrients used for the synthesis of macromolecules (ATP, nucleic acid, proteins, and lipids) in T. gondii, and either of them is sufficient to ensure ...

  8. RNA trafficking in parasitic plant systems

    Science.gov (United States)

    LeBlanc, Megan; Kim, Gunjune; Westwood, James H.

    2012-01-01

    RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs, and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host–parasite connections and the potential significance of host RNAs for the parasite. Additional research on host–parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking. PMID:22936942

  9. RNA trafficking in parasitic plant systems

    Directory of Open Access Journals (Sweden)

    Megan L LeBlanc

    2012-08-01

    Full Text Available RNA trafficking in plants contributes to local and long-distance coordination of plant development and response to the environment. However, investigations of mobile RNA identity and function are hindered by the inherent difficulty of tracing a given molecule of RNA from its cell of origin to its destination. Several methods have been used to address this problem, but all are limited to some extent by constraints associated with accurately sampling phloem sap or detecting trafficked RNA. Certain parasitic plant species form symplastic connections to their hosts and thereby provide an additional system for studying RNA trafficking. The haustorial connections of Cuscuta and Phelipanche species are similar to graft junctions in that they are able to transmit mRNAs, viral RNAs, siRNAs and proteins from the host plants to the parasite. In contrast to other graft systems, these parasites form connections with host species that span a wide phylogenetic range, such that a high degree of nucleotide sequence divergence may exist between host and parasites and allow confident identification of most host RNAs in the parasite system. The ability to identify host RNAs in parasites, and vice versa, will facilitate genomics approaches to understanding RNA trafficking. This review discusses the nature of host parasite connections and the potential significance of host RNAs for the parasite. Additional research on host-parasite interactions is needed to interpret results of RNA trafficking studies, but parasitic plants may provide a fascinating new perspective on RNA trafficking.

  10. Memantine, an antagonist of the NMDA glutamate receptor, affects cell proliferation, differentiation and the intracellular cycle and induces apoptosis in Trypanosoma cruzi.

    Directory of Open Access Journals (Sweden)

    Flávia Silva Damasceno

    2014-02-01

    Full Text Available Chagas' disease is caused by the protozoan parasite Trypanosoma cruzi and affects approximately 10 million people in endemic areas of Mexico and Central and South America. Currently available chemotherapies are limited to two compounds: Nifurtimox and Benznidazole. Both drugs reduce the symptoms of the disease and mortality among infected individuals when used during the acute phase, but their efficacy during the chronic phase (during which the majority of cases are diagnosed remains controversial. Moreover, these drugs have several side effects. The aim of this study was to evaluate the effect of Memantine, an antagonist of the glutamate receptor in the CNS of mammals, on the life cycle of T. cruzi. Memantine exhibited a trypanocidal effect, inhibiting the proliferation of epimastigotes (IC50 172.6 µM. Furthermore, this compound interfered with metacyclogenesis (approximately 30% reduction and affected the energy metabolism of the parasite. In addition, Memantine triggered mechanisms that led to the apoptosis-like cell death of epimastigotes, with extracellular exposure of phosphatidylserine, increased production of reactive oxygen species, decreased ATP levels, increased intracellular Ca(2+ and morphological changes. Moreover, Memantine interfered with the intracellular cycle of the parasite, specifically the amastigote stage (IC50 31 µM. Interestingly, the stages of the parasite life cycle that require more energy (epimastigote and amastigote were more affected as were the processes of differentiation and cell invasion.

  11. A novel approach to parasite population genetics: experimental infection reveals geographic differentiation, recombination and host-mediated population structure in Pasteuria ramosa, a bacterial parasite of Daphnia.

    Science.gov (United States)

    Andras, J P; Ebert, D

    2013-02-01

    The population structure of parasites is central to the ecology and evolution of host-parasite systems. Here, we investigate the population genetics of Pasteuria ramosa, a bacterial parasite of Daphnia. We used natural P. ramosa spore banks from the sediments of two geographically well-separated ponds to experimentally infect a panel of Daphnia magna host clones whose resistance phenotypes were previously known. In this way, we were able to assess the population structure of P. ramosa based on geography, host resistance phenotype and host genotype. Overall, genetic diversity of P. ramosa was high, and nearly all infected D. magna hosted more than one parasite haplotype. On the basis of the observation of recombinant haplotypes and relatively low levels of linkage disequilibrium, we conclude that P. ramosa engages in substantial recombination. Isolates were strongly differentiated by pond, indicating that gene flow is spatially restricted. Pasteuria ramosa isolates within one pond were segregated completely based on the resistance phenotype of the host-a result that, to our knowledge, has not been previously reported for a nonhuman parasite. To assess the comparability of experimental infections with natural P. ramosa isolates, we examined the population structure of naturally infected D. magna native to one of the two source ponds. We found that experimental and natural infections of the same host resistance phenotype from the same source pond were indistinguishable, indicating that experimental infections provide a means to representatively sample the diversity of P. ramosa while reducing the sampling bias often associated with studies of parasite epidemics. These results expand our knowledge of this model parasite, provide important context for the large existing body of research on this system and will guide the design of future studies of this host-parasite system. © 2012 Blackwell Publishing Ltd.

  12. Evaluation of a novel magneto-optical method for the detection of malaria parasites.

    Directory of Open Access Journals (Sweden)

    Agnes Orbán

    Full Text Available Improving the efficiency of malaria diagnosis is one of the main goals of current malaria research. We have recently developed a magneto-optical (MO method which allows high-sensitivity detection of malaria pigment (hemozoin crystals in blood via the magnetically induced rotational motion of the hemozoin crystals. Here, we evaluate this MO technique for the detection of Plasmodium falciparum in infected erythrocytes using in-vitro parasite cultures covering the entire intraerythrocytic life cycle. Our novel method detected parasite densities as low as ∼ 40 parasites per microliter of blood (0.0008% parasitemia at the ring stage and less than 10 parasites/µL (0.0002% parasitemia in the case of the later stages. These limits of detection, corresponding to approximately 20 pg/µL of hemozoin produced by the parasites, exceed that of rapid diagnostic tests and compete with the threshold achievable by light microscopic observation of blood smears. The MO diagnosis requires no special training of the operator or specific reagents for parasite detection, except for an inexpensive lysis solution to release intracellular hemozoin. The devices can be designed to a portable format for clinical and in-field tests. Besides testing its diagnostic performance, we also applied the MO technique to investigate the change in hemozoin concentration during parasite maturation. Our preliminary data indicate that this method may offer an efficient tool to determine the amount of hemozoin produced by the different parasite stages in synchronized cultures. Hence, it could eventually be used for testing the susceptibility of parasites to antimalarial drugs.

  13. Trichinella inflammatory myopathy: host or parasite strategy?

    Directory of Open Access Journals (Sweden)

    Chiumiento Lorena

    2011-03-01

    Full Text Available Abstract The parasitic nematode Trichinella has a special relation with muscle, because of its unique intracellular localization in the skeletal muscle cell, completely devoted in morphology and biochemistry to become the parasite protective niche, otherwise called the nurse cell. The long-lasting muscle infection of Trichinella exhibits a strong interplay with the host immune response, mainly characterized by a Th2 phenotype. The aim of this review is to illustrate the role of the Th2 host immune response at the muscle level during trichinellosis in different experimental models, such as knock-out or immuno-modulated mice. In particular, in knock-out mice a crucial role of IL-10 is evident for the regulation of inflammation intensity. The muscular host immune response to Trichinella is partially regulated by the intestinal phase of the parasite which emphasizes the intensity of the following muscle inflammation compared with animals infected by synchronized injections of newborn larvae. In eosinophil-ablated mice such as PHIL and GATA-- animals it was observed that there was an increased NOS2 expression in macrophages, driven by higher IFN-γ release, thus responsible for muscle larva damage. Besides modulation of the intestinal stage of the infection, using recombinant IL-12, increases the muscular parasite burden delaying adult worm expulsion from the intestine. Furthermore, a Th1 adjuvant of bacterial origin called Helicobacter pylori neutrophil activating protein (HP-NAP, administered during the intestinal phase of trichinellosis, alters the Th2 dependent response at muscle level. All these data from the literature delineate then a mutual adaptation between parasite and host immune response in order to achieve a strategic compromise between two evolutionary forces pointed towards the survival of both species.

  14. Evaluation of TNF-α, IL-4, and IL-10 and parasite density in spleen and liver of L. (L.) chagasi naturally infected dogs.

    Science.gov (United States)

    DE F Michelin, A; Perri, S H V; De Lima, V M F

    2011-07-01

    Dogs are the main domestic reservoirs of L. (L.) chagasi. Once in the vertebrate host, the parasite can cause visceral leishmaniasis, which can also be transmitted to humans. Cytokines are key elements of the host immune response against Leishmania spp. To investigate whether tumor necrosis factor (TNF)-α, interleukin (IL)-4 and IL-10 are associated with pattern infection in dogs, these cytokines were quantified in the spleen and liver of dogs naturally infected with L. (L.) chagasi, with or without clinical manifestations, and their levels were correlated with the parasite load verified in these organs. A total of 40 adult dogs naturally infected with L. (L.) chagasi were assessed, together with 12 uninfected control dogs. Samples from spleen and liver were used to determine the cytokine levels by capture ELISA and for quantifying parasite load by real-time PCR. Statistical analysis was performed using the minimum Chi square method and group means were compared using the Tukey test. TNF-α, IL-4 and IL-10 levels in infected dogs were higher than in control groups; the liver was the main cytokine-producing organ during infection. The level of splenic TNF-α showed correlation with parasite load and may represent an important marker for infection process evolution, with the participation of IL-10. These results may contribute to a clearer understanding of the immune response in dogs infected with L. (L.) chagasi, which may lead to the development of prophylactic or preventive measures for these animals.

  15. Development of a method to measure intracellular growth rate of parasitic acid-fast bacteria using radio-isotope and its improvement

    International Nuclear Information System (INIS)

    Nakata, Noboru; Fukutomi, Yasuo

    1999-01-01

    Development of measurement method for intracellular growth rate was attempted using gene-transfected acid-fast bacteria and Mycobacterium leprae. M. leprae was inoculated into a well, which was filled with fetus bovine serum containing a cover slip pasted with mouse monocyte-derived malignant cell lines, J774 and P388D1 and cultured for 3-4 hours. Then, the cells on the cover slip were mobilized with 0.1 N NaOH. The metabolic activity of M. leprae was assessed based on the β-oxidation activity of 14 C-palmitic acid. Then, it was investigated whether TNF is produced by the cell culture added with M. leprae or LPS. J774 cells abundantly produced TNF after sensitization with LPS and its production was depending on the amount of added bacteria, whereas TNF production after sensitization with LPS or M. leprae was little in P388D1 cells. Staining for acid-fast bacteria revealed that either of these cell lines has phagocytic activity for M. leprae. To identify the bacterial factor involved to the intracellular proliferation of acid-fast bacteria, transposon insertion mutagenesis was attempted to M. avium complex (MAC) and the degrees of drug-resistance in M. avium mino, M. intracellulare JATA-52 and 8 clinically isolated M. intracellulare strains were determined. M. intracellulare JATA-52 was resistant to kanamycin and plasmid pAL8 and pYT937 were both able to transform the strain with dose-dependency. Since M. intracellulare is pathogenic to human and the strain proliferates with a generation time shorter than that of M. tuberculosis, the former strain is thought suitable for the analysis of a mutated gene. Thus, it became possible to study transposition insertion mutagenesis in M. intracellulare. (M.N.)

  16. Development of a method to measure intracellular growth rate of parasitic acid-fast bacteria using radio-isotope and its improvement

    Energy Technology Data Exchange (ETDEWEB)

    Nakata, Noboru; Fukutomi, Yasuo [National Inst. of Infectious Diseases, Tokyo (Japan)

    1999-02-01

    Development of measurement method for intracellular growth rate was attempted using gene-transfected acid-fast bacteria and Mycobacterium leprae. M. leprae was inoculated into a well, which was filled with fetus bovine serum containing a cover slip pasted with mouse monocyte-derived malignant cell lines, J774 and P388D1 and cultured for 3-4 hours. Then, the cells on the cover slip were mobilized with 0.1 N NaOH. The metabolic activity of M. leprae was assessed based on the {beta}-oxidation activity of {sup 14}C-palmitic acid. Then, it was investigated whether TNF is produced by the cell culture added with M. leprae or LPS. J774 cells abundantly produced TNF after sensitization with LPS and its production was depending on the amount of added bacteria, whereas TNF production after sensitization with LPS or M. leprae was little in P388D1 cells. Staining for acid-fast bacteria revealed that either of these cell lines has phagocytic activity for M. leprae. To identify the bacterial factor involved to the intracellular proliferation of acid-fast bacteria, transposon insertion mutagenesis was attempted to M. avium complex (MAC) and the degrees of drug-resistance in M. avium mino, M. intracellulare JATA-52 and 8 clinically isolated M. intracellulare strains were determined. M. intracellulare JATA-52 was resistant to kanamycin and plasmid pAL8 and pYT937 were both able to transform the strain with dose-dependency. Since M. intracellulare is pathogenic to human and the strain proliferates with a generation time shorter than that of M. tuberculosis, the former strain is thought suitable for the analysis of a mutated gene. Thus, it became possible to study transposition insertion mutagenesis in M. intracellulare. (M.N.)

  17. Gametogenesis in malaria parasites is mediated by the cGMP-dependent protein kinase.

    Directory of Open Access Journals (Sweden)

    Louisa McRobert

    2008-06-01

    Full Text Available Malaria parasite transmission requires differentiation of male and female gametocytes into gametes within a mosquito following a blood meal. A mosquito-derived molecule, xanthurenic acid (XA, can trigger gametogenesis, but the signalling events controlling this process in the human malaria parasite Plasmodium falciparum remain unknown. A role for cGMP was revealed by our observation that zaprinast (an inhibitor of phosphodiesterases that hydrolyse cGMP stimulates gametogenesis in the absence of XA. Using cGMP-dependent protein kinase (PKG inhibitors in conjunction with transgenic parasites expressing an inhibitor-insensitive mutant PKG enzyme, we demonstrate that PKG is essential for XA- and zaprinast-induced gametogenesis. Furthermore, we show that intracellular calcium (Ca2+ is required for differentiation and acts downstream of or in parallel with PKG activation. This work defines a key role for PKG in gametogenesis, elucidates the hierarchy of signalling events governing this process in P. falciparum, and demonstrates the feasibility of selective inhibition of a crucial regulator of the malaria parasite life cycle.

  18. Towards identifying novel anti-Eimeria agents: trace elements, vitamins, and plant-based natural products.

    Science.gov (United States)

    Wunderlich, Frank; Al-Quraishy, Saleh; Steinbrenner, Holger; Sies, Helmut; Dkhil, Mohamed A

    2014-10-01

    Eimeriosis, a widespread infectious disease of livestock, is caused by coccidian protozoans of the genus Eimeria. These obligate intracellular parasites strike the digestive tract of their hosts and give rise to enormous economic losses, particularly in poultry, ruminants including cattle, and rabbit farming. Vaccination, though a rational prophylactic measure, has not yet been as successful as initially thought. Numerous broad-spectrum anti-coccidial drugs are currently in use for treatment and prophylactic control of eimeriosis. However, increasing concerns about parasite resistance, consumer health, and environmental safety of the commercial drugs warrant efforts to search for novel agents with anti-Eimeria activity. This review summarizes current approaches to prevent and treat eimeriosis such as vaccination and commercial drugs, as well as recent attempts to use dietary antioxidants as novel anti-Eimeria agents. In particular, the trace elements selenium and zinc, the vitamins A and E, and natural products extracted from garlic, barberry, pomegranate, sweet wormwood, and other plants are discussed. Several of these novel anti-Eimeria agents exhibit a protective role against oxidative stress that occurs not only in the intestine of Eimeria-infected animals, but also in their non-parasitized tissues, in particular, in the first-pass organ liver. Currently, it appears to be promising to identify safe combinations of low-cost natural products with high anti-Eimeria efficacy for a potential use as feed supplementation in animal farming.

  19. Horizontal Transmission of Intracellular Insect Symbionts via Plants

    Directory of Open Access Journals (Sweden)

    Ewa Chrostek

    2017-11-01

    Full Text Available Experimental evidence is accumulating that endosymbionts of phytophagous insects may transmit horizontally via plants. Intracellular symbionts known for manipulating insect reproduction and altering fitness (Rickettsia, Cardinium, Wolbachia, and bacterial parasite of the leafhopper Euscelidius variegatus have been found to travel from infected insects into plants. Other insects, either of the same or different species can acquire the symbiont from the plant through feeding, and in some cases transfer it to their progeny. These reports prompt many questions regarding how intracellular insect symbionts are delivered to plants and how they affect them. Are symbionts passively transported along the insect-plant-insect path, or do they actively participate in the process? How widespread are these interactions? How does symbiont presence influence the plant? And what conditions are required for the new infection to establish in an insect? From an ecological, evolutionary, and applied perspective, this mode of horizontal transmission could have profound implications if occurring frequently enough or if new stable symbiont infections are established. Transmission of symbionts through plants likely represents an underappreciated means of infection, both in terms of symbiont epidemiology and the movement of symbionts to new host species.

  20. Molecular genetic transfection of the coccidian parasite Sarcocystis neurona.

    Science.gov (United States)

    Gaji, Rajshekhar Y; Zhang, Deqing; Breathnach, Cormac C; Vaishnava, Shipra; Striepen, Boris; Howe, Daniel K

    2006-11-01

    Sarcocystis neurona is an apicomplexan parasite that is the major cause of equine protozoal myeloencephalitis (EPM). The biology of this pathogen remains poorly understood in part due to unavailability of molecular genetic tools. Hence, with an objective to develop DNA transfection capabilities for S. neurona, the 5' flanking region of the SnSAG1 gene was isolated from a genomic library and used to construct expression plasmids. In transient assays, the reporter molecules beta-galactosidase (beta-gal) and yellow fluorescent protein (YFP) could be detected in electroporated S. neurona, thereby confirming the feasibility of transgene expression in this organism. Stable transformation of S. neurona was achieved using a mutant dihydrofolate reductase thymidylate synthase (DHFR-TS) gene of Toxoplasma gondii that confers resistance to pyrimethamine. This selection system was used to create transgenic S. neurona that stably express beta-gal and YFP. As shown in this study, these transgenic clones can be useful for analyzing growth rate of parasites in vitro and for assessing drug sensitivities. More importantly, the DNA transfection methods described herein should greatly facilitate studies examining intracellular parasitism by this important coccidian pathogen.

  1. Modeling effective transmission pathways and control of the world's most successful parasite.

    Science.gov (United States)

    Turner, Matthew; Lenhart, Suzanne; Rosenthal, Benjamin; Zhao, Xiaopeng

    2013-06-01

    Toxoplasma gondii(T. gondii) is a single-celled, intracellular protozoan responsible for the disease toxoplasmosis. The parasite is prevalent worldwide, and it infects all warm-blooded vertebrates. Consumption of meats in which this parasite has encysted confers risk of infection to people and other animals, as does ingestion of water or foods contaminated with environmentally resistant oocysts excreted by cats. Vertical transmission (from mother to offspring) is also possible, leading to disease risk and contributing additional means of ensuring perpetuation of transmission. In this work, we adopt a differential equation model to investigate the effective transmission pathways of T. gondii, as well as potential control mechanisms. Detailed analyses are carried out to examine the significance of transmission routes, virulence, vertical transmission, parasite-induced changes in host behavior, and controls based on vaccination and harvesting. Modeling and analysis efforts may shed insights into understanding the complex life cycle of T. gondii. Copyright © 2013 Elsevier Inc. All rights reserved.

  2. Blood parasites from California ducks and geese

    Science.gov (United States)

    Herman, C.M.

    1951-01-01

    Blood smears were procured from 1,011 geese and ducks of 19 species from various locations in California. Parasites were found in 28 individuals. The parasites observed included Haemoproteus hermani, Leucocytozoon simondi, microfilaria, Plasmodium relictum (=P. biziurae), and Plasmodium sp. with elongate gametocytes. This is the first report of a natural infection with a Plasmodium in North American wild ducks.

  3. Phylogenetic relationship of Hepatozoon blood parasites found in snakes from Africa, America and Asia.

    Science.gov (United States)

    Haklová, B; Majláthová, V; Majláth, I; Harris, D J; Petrilla, V; Litschka-Koen, T; Oros, M; Peťko, B

    2014-03-01

    The blood parasites from the genus Hepatozoon Miller, 1908 (Apicomplexa: Adeleida: Hepatozoidae) represent the most common intracellular protozoan parasites found in snakes. In the present study, we examined 209 individuals of snakes, from different zoogeographical regions (Africa, America, Asia and Europe), for the occurrence of blood parasites using both molecular and microscopic examination methods, and assess phylogenetic relationships of all Hepatozoon parasites from snakes for the first time. In total, 178 blood smears obtained from 209 individuals, representing 40 species, were examined, from which Hepatozoon unicellular parasites were found in 26 samples (14·6% prevalence). Out of 180 samples tested by molecular method polymerase chain reaction (PCR), the presence of parasites was observed in 21 individuals (prevalence 11·6%): 14 snakes from Africa belonging to six genera (Dendroaspis, Dispholidus, Mehelya, Naja, Philothamnus and Python), five snakes from Asia from the genus Morelia and two snakes from America, from two genera (Coluber and Corallus). The intensity of infection varied from one to 1433 infected cells per 10 000 erythrocytes. Results of phylogenetic analyses (Bayesian and Maximum Likelihood) revealed the existence of five haplotypes divided into four main lineages. The present data also indicate neither geographical pattern of studied Hepatozoon sp., nor congruency in the host association.

  4. Evidence that leishmania donovani utilizes a mannose receptor on human mononuclear phagocytes to establish intracellular parasitism

    International Nuclear Information System (INIS)

    Wilson, M.E.; Pearson, R.D.

    1986-01-01

    The pathogenic protozoan Leishmania donovani must gain entrance into mononuclear phagocytes to successfully parasitize man. The parasite's extracellular promastigote stage is ingested by human peripheral blood monocytes or monocyte-derived macrophages in the absence of serum, in a manner characteristic of receptor-mediated endocytosis. Remarkable similarities have been found between the macrophage receptor(s) for promastigotes and a previously characterized eucaryotic receptor system, the mannose/fucose receptor (MFR), that mediates the binding of zymosan particles and mannose- or fucose-terminal glycoconjugates to macrophages. Ingestion of promastigotes by monocyte-derived macrophages was inhibited by several MFR ligands; that is mannan, mannose-BSA and fucose-BSA. In contrast, promastigote ingestion by monocytes was unaffected by MFR ligands. Furthermore, attachment of promastigotes to macrophages, assessed by using cytochalasin D to prevent phagocytosis, was reduced 49.8% by mannan. Reorientation of the MFR to the ventral surface of the cell was achieved by plating macrophages onto mannan-coated coverslips, reducing MFR activity on the exposed cell surface by 94% as assessed by binding of 125 I-mannose-BSA. Under these conditions, ingestion of promastigotes was inhibited by 71.4%. Internalization of the MFR by exposure of macrophages to zymosan before infection with promastigotes resulted in a 62.3% decrease in parasite ingestion. Additionally, NH 4 Cl decreased macrophage ingestion of promastigotes by 38.2%. Subinhibitory concentration of NH 4 Cl (10 mM) and of mannan (0.25 mg/ml) together inhibited parsite ingestion by 76.4%

  5. Quantitative non-invasive intracellular imaging of Plasmodium falciparum infected human erythrocytes

    International Nuclear Information System (INIS)

    Edward, Kert; Farahi, Faramarz

    2014-01-01

    Malaria is a virulent pathological condition which results in over a million annual deaths. The parasitic agent Plasmodium falciparum has been extensively studied in connection with this epidemic but much remains unknown about its development inside the red blood cell host. Optical and fluorescence imaging are among the two most common procedures for investigating infected erythrocytes but both require the introduction of exogenous contrast agents. In this letter, we present a procedure for the non-invasive in situ imaging of malaria infected red blood cells. The procedure is based on the utilization of simultaneously acquired quantitative phase and independent topography data to extract intracellular information. Our method allows for the identification of the developmental stages of the parasite and facilitates in situ analysis of the morphological changes associated with the progression of this disease. This information may assist in the development of efficacious treatment therapies for this condition. (letters)

  6. Advances in the application of genetic manipulation methods to apicomplexan parasites.

    Science.gov (United States)

    Suarez, C E; Bishop, R P; Alzan, H F; Poole, W A; Cooke, B M

    2017-10-01

    Apicomplexan parasites such as Babesia, Theileria, Eimeria, Cryptosporidium and Toxoplasma greatly impact animal health globally, and improved, cost-effective measures to control them are urgently required. These parasites have complex multi-stage life cycles including obligate intracellular stages. Major gaps in our understanding of the biology of these relatively poorly characterised parasites and the diseases they cause severely limit options for designing novel control methods. Here we review potentially important shared aspects of the biology of these parasites, such as cell invasion, host cell modification, and asexual and sexual reproduction, and explore the potential of the application of relatively well-established or newly emerging genetic manipulation methods, such as classical transfection or gene editing, respectively, for closing important gaps in our knowledge of the function of specific genes and proteins, and the biology of these parasites. In addition, genetic manipulation methods impact the development of novel methods of control of the diseases caused by these economically important parasites. Transient and stable transfection methods, in conjunction with whole and deep genome sequencing, were initially instrumental in improving our understanding of the molecular biology of apicomplexan parasites and paved the way for the application of the more recently developed gene editing methods. The increasingly efficient and more recently developed gene editing methods, in particular those based on the CRISPR/Cas9 system and previous conceptually similar techniques, are already contributing to additional gene function discovery using reverse genetics and related approaches. However, gene editing methods are only possible due to the increasing availability of in vitro culture, transfection, and genome sequencing and analysis techniques. We envisage that rapid progress in the development of novel gene editing techniques applied to apicomplexan parasites of

  7. Prevalence of Endoglobular Hemotropic Parasites in Pure Gyr Cattle in Córdoba, Colombia

    Directory of Open Access Journals (Sweden)

    Rafael Blanco Martínez

    2015-12-01

    Full Text Available Bovine parasitic sadness produces significant losses in Colombia and it is associated with the presence of ticks. It is caused by microscopic endoglobular hemotropic parasites such as Anaplasma spp. and Babesia spp. In this study, 131 pure Gyr cows were studied from four cattle farms in Córdoba, Colombia. A blood sample of 5 ml was collected from the coccygeal vein for hematocrit determination and for blood smears stained with Wright’s stain, in order to assess intracellular parasitic forms morphologically compatible with Anaplasma spp. and Babesia spp. Chi-square test was used to determine whether the variables of body condition, mucous color, sex and production system (grazing, semi-confinement, and confinement were independent from the frequency of endoglobular hemotropic parasites. The study found that 24.43% of the sampled animals were positive for endoglobular hemotropic parasites; 20.61% (27/131 of them were positive for Anaplasma spp.; 3.05% (4/131 for Babesia spp., and 0.76% (1/131 for both Anaplasma spp. and Babesia spp. No significant differences (p > 0.05 were found for variables of mucous color, sex and production system (grazing, semi-confinement, and confinement. This allowed to register for the first time the prevalence of infection by endoglobular hemotropic parasites in Bos indicus cattle, of the Gyr breed specifically.

  8. The Ecology of Parasite-Host Interactions at Montezuma Well National Monument, Arizona - Appreciating the Importance of Parasites

    Science.gov (United States)

    O'Brien, Chris; van Riper, Charles

    2009-01-01

    Although parasites play important ecological roles through the direct interactions they have with their hosts, historically that fact has been underappreciated. Today, scientists have a growing appreciation of the scope of such impacts. Parasites have been reported to dominate food webs, alter predator-prey relationships, act as ecosystem engineers, and alter community structure. In spite of this growing awareness in the scientific community, parasites are still often neglected in the consideration of the management and conservation of resources and ecosystems. Given that at least half of the organisms on earth are probably parasitic, it should be evident that the ecological functions of parasites warrant greater attention. In this report, we explore different aspects of parasite-host relationships found at a desert spring pond within Montezuma Well National Monument, Arizona. In three separate but related chapters, we explore interactions between a novel amphipod host and two parasites. First, we identify how host behavior responds to this association and how this association affects interactions with both invertebrate non-host predators and a vertebrate host predator. Second, we look at the human dimension, investigating how human recreation can indirectly affect patterns of disease by altering patterns of vertebrate host space use. Finally - because parasites and diseases are of increasing importance in the management of wildlife species, especially those that are imperiled or of management concern - the third chapter argues that research would benefit from increased attention to the statistical analysis of wildlife disease studies. This report also explores issues of statistical parasitology, providing information that may better inform those designing research projects and analyzing data from studies of wildlife disease. In investigating the nature of parasite-host interactions, the role that relationships play in ecological communities, and how human

  9. Ned-19 inhibition of parasite growth and multiplication suggests a role for NAADP mediated signalling in the asexual development of Plasmodium falciparum.

    Science.gov (United States)

    Suárez-Cortés, Pablo; Gambara, Guido; Favia, Annarita; Palombi, Fioretta; Alano, Pietro; Filippini, Antonio

    2017-09-12

    Although malaria is a preventable and curable human disease, millions of people risk to be infected by the Plasmodium parasites and to develop this illness. Therefore, there is an urgent need to identify new anti-malarial drugs. Ca 2+ signalling regulates different processes in the life cycle of Plasmodium falciparum, representing a suitable target for the development of new drugs. This study investigated for the first time the effect of a highly specific inhibitor of nicotinic acid adenine dinucleotide phosphate (NAADP)-induced Ca 2+ release (Ned-19) on P. falciparum, revealing the inhibitory effect of this compound on the blood stage development of this parasite. Ned-19 inhibits both the transition of the parasite from the early to the late trophozoite stage and the ability of the late trophozoite to develop to the multinucleated schizont stage. In addition, Ned-19 affects spontaneous intracellular Ca 2+ oscillations in ring and trophozoite stage parasites, suggesting that the observed inhibitory effects may be associated to regulation of intracellular Ca 2+ levels. This study highlights the inhibitory effect of Ned-19 on progression of the asexual life cycle of P. falciparum. The observation that Ned-19 inhibits spontaneous Ca 2+ oscillations suggests a potential role of NAADP in regulating Ca 2+ signalling of P. falciparum.

  10. Cyclosporin A treatment of Leishmania donovani reveals stage-specific functions of cyclophilins in parasite proliferation and viability.

    Directory of Open Access Journals (Sweden)

    Wai-Lok Yau

    Full Text Available BACKGROUND: Cyclosporin A (CsA has important anti-microbial activity against parasites of the genus Leishmania, suggesting CsA-binding cyclophilins (CyPs as potential drug targets. However, no information is available on the genetic diversity of this important protein family, and the mechanisms underlying the cytotoxic effects of CsA on intracellular amastigotes are only poorly understood. Here, we performed a first genome-wide analysis of Leishmania CyPs and investigated the effects of CsA on host-free L. donovani amastigotes in order to elucidate the relevance of these parasite proteins for drug development. METHODOLOGY/PRINCIPAL FINDINGS: Multiple sequence alignment and cluster analysis identified 17 Leishmania CyPs with significant sequence differences to human CyPs, but with highly conserved functional residues implicated in PPIase function and CsA binding. CsA treatment of promastigotes resulted in a dose-dependent inhibition of cell growth with an IC50 between 15 and 20 microM as demonstrated by proliferation assay and cell cycle analysis. Scanning electron microscopy revealed striking morphological changes in CsA treated promastigotes reminiscent to developing amastigotes, suggesting a role for parasite CyPs in Leishmania differentiation. In contrast to promastigotes, CsA was highly toxic to amastigotes with an IC50 between 5 and 10 microM, revealing for the first time a direct lethal effect of CsA on the pathogenic mammalian stage linked to parasite thermotolerance, independent from host CyPs. Structural modeling, enrichment of CsA-binding proteins from parasite extracts by FPLC, and PPIase activity assays revealed direct interaction of the inhibitor with LmaCyP40, a bifunctional cyclophilin with potential co-chaperone function. CONCLUSIONS/SIGNIFICANCE: The evolutionary expansion of the Leishmania CyP protein family and the toxicity of CsA on host-free amastigotes suggest important roles of PPIases in parasite biology and implicate

  11. Control of toxic marine dinoflagellate blooms by serial parasitic killers.

    Science.gov (United States)

    Chambouvet, Aurelie; Morin, Pascal; Marie, Dominique; Guillou, Laure

    2008-11-21

    The marine dinoflagellates commonly responsible for toxic red tides are parasitized by other dinoflagellate species. Using culture-independent environmental ribosomal RNA sequences and fluorescence markers, we identified host-specific infections among several species. Each parasitoid produces 60 to 400 offspring, leading to extraordinarily rapid control of the host's population. During 3 consecutive years of observation in a natural estuary, all dinoflagellates observed were chronically infected, and a given host species was infected by a single genetically distinct parasite year after year. Our observations in natural ecosystems suggest that although bloom-forming dinoflagellates may escape control by grazing organisms, they eventually succumb to parasite attack.

  12. Host influence on germination and reproduction of the facultative hemi-parasitic weed Rhamphicarpa fistulosa

    NARCIS (Netherlands)

    Kabiri, S.; Ast, van A.; Rodenburg, J.; Bastiaans, L.

    2016-01-01

    Rice Vampireweed, Rhamphicarpa fistulosa, was a minor parasitic weed until recently when rice cultivation in sub-Saharan Africa was expanded into marginal wetlands, that are the parasite's natural habitat. Unlike most of the parasitic weeds, R. fistulosa is facultative, meaning that the parasite

  13. Overcoming T. gondii infection and intracellular protein nanocapsules as biomaterials for ultrasonically controlled drug release.

    Science.gov (United States)

    Aw, M S; Paniwnyk, L

    2017-09-26

    One of the pivotal matters of concern in intracellular drug delivery is the preparation of biomaterials containing drugs that are compatible with the host target. Nanocapsules for oral delivery are found to be suitable candidates for targeting Toxoplasma gondii (T. gondii), a maneuvering and smart protozoic parasite found across Europe and America that causes a subtle but deadly infection. To overcome this disease, there is much potential of integrating protein-based cells into bioinspired nanocompartments such as via biodegradable cross-linked disulfide polyelectrolyte nanoparticles. The inner membrane vesicle system of these protein-drugs is not as simple as one might think. It is a complex transport network that includes sequential pathways, namely, endocytosis, exocytosis and autophagy. Unfortunately, the intracellular trafficking routes for nanoparticles in cells have not been extensively and intensively investigated. Hence, there lies the need to create robust protein nanocapsules for precise tracing and triggering of drug release to combat this protozoic disease. Protein nanocapsules have the advantage over other biomaterials due to their biocompatibility, use of natural ingredients, non-invasiveness, patient compliance, cost and time effectiveness. They also offer low maintenance, non-toxicity to healthy cells and a strictly defined route toward intracellular elimination through controlled drug delivery within the therapeutic window. This review covers the unprecedented opportunities that exist for constructing advanced nanocapsules to meet the growing needs arising from many therapeutic fields. Their versatile use includes therapeutic ultrasound for tumor imaging, recombinant DNA, ligand and functional group binding, the delivery of drugs and peptides via protein nanocapsules and polyelectrolytes, ultrasound-(US)-aided drug release through the gastrointestinal (GI) tract, and the recent progress in targeting tumor cells and a vast range of cancer therapies

  14. Plant actin cytoskeleton re-modeling by plant parasitic nematodes.

    Science.gov (United States)

    Engler, Janice de Almeida; Rodiuc, Natalia; Smertenko, Andrei; Abad, Pierre

    2010-03-01

    The cytoskeleton is an important component of the plant's defense mechanism against the attack of pathogenic organisms. Plants however, are defenseless against parasitic root-knot and cyst nematodes and respond to the invasion by the development of a special feeding site that supplies the parasite with nutrients required for the completion of its life cycle. Recent studies of nematode invasion under treatment with cytoskeletal drugs and in mutant plants where normal functions of the cytoskeleton have been affected, demonstrate the importance of the cytoskeleton in the establishment of a feeding site and successful nematode reproduction. It appears that in the case of microfilaments, nematodes hijack the intracellular machinery that regulates actin dynamics and modulate the organization and properties of the actin filament network. Intervening with this process reduces the nematode infection efficiency and inhibits its life cycle. This discovery uncovers a new pathway that can be exploited for the protection of plants against nematodes.

  15. Changes to cholesterol trafficking in macrophages by Leishmania parasites infection.

    Science.gov (United States)

    Semini, Geo; Paape, Daniel; Paterou, Athina; Schroeder, Juliane; Barrios-Llerena, Martin; Aebischer, Toni

    2017-08-01

    Leishmania spp. are protozoan parasites that are transmitted by sandfly vectors during blood sucking to vertebrate hosts and cause a spectrum of diseases called leishmaniases. It has been demonstrated that host cholesterol plays an important role during Leishmania infection. Nevertheless, little is known about the intracellular distribution of this lipid early after internalization of the parasite. Here, pulse-chase experiments with radiolabeled cholesteryl esterified to fatty acids bound to low-density lipoproteins indicated that retention of this source of cholesterol is increased in parasite-containing subcellular fractions, while uptake is unaffected. This is correlated with a reduction or absence of detectable NPC1 (Niemann-Pick disease, type C1), a protein responsible for cholesterol efflux from endocytic compartments, in the Leishmania mexicana habitat and infected cells. Filipin staining revealed a halo around parasites within parasitophorous vacuoles (PV) likely representing free cholesterol accumulation. Labeling of host cell membranous cholesterol by fluorescent cholesterol species before infection revealed that this pool is also trafficked to the PV but becomes incorporated into the parasites' membranes and seems not to contribute to the halo detected by filipin. This cholesterol sequestration happened early after infection and was functionally significant as it correlated with the upregulation of mRNA-encoding proteins required for cholesterol biosynthesis. Thus, sequestration of cholesterol by Leishmania amastigotes early after infection provides a basis to understand perturbation of cholesterol-dependent processes in macrophages that were shown previously by others to be necessary for their proper function in innate and adaptive immune responses. © 2017 The Authors. MicrobiologyOpen published by John Wiley & Sons Ltd.

  16. Sex steroids, immune system, and parasitic infections: facts and hypotheses.

    Science.gov (United States)

    Nava-Castro, Karen; Hernández-Bello, Romel; Muñiz-Hernández, Saé; Camacho-Arroyo, Ignacio; Morales-Montor, Jorge

    2012-07-01

    It has been widely reported that the incidence and the severity of natural parasitic infections are different between males and females of several species, including humans. This sexual dimorphism involves a distinct exposure of males and females to various parasite infective stages, differential effects of sex steroids on immune cells, and direct effects of these steroids on parasites, among others. Typically, for a large number of parasitic diseases, the prevalence and intensity is higher in males than females; however, in several parasitic infections, males are more resistant than females. In the present work, we review the effects of sex hormones on immunity to protozoa and helminth parasites, which are the causal agents of several diseases in humans, and discuss the most recent research related to the role of sex steroids in the complex host-parasite relationship. © 2012 New York Academy of Sciences.

  17. Specific developmental pathways underlie host specificity in the parasitic plant Orobanche

    Science.gov (United States)

    Hiscock, Simon

    2010-01-01

    Parasitic angiosperms are an ecologically and economically important group of plants. However our understanding of the basis for host specificity in these plants is embryonic. Recently we investigated host specificity in the parasitic angiosperm Orobanche minor, and demonstrated that this host generalist parasite comprises genetically defined races that are physiologically adapted to specific hosts. Populations occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota subsp. gummifer) respectively, showed distinct patterns of host specificity at various developmental stages, and a higher fitness on their natural hosts, suggesting these races are locally adapted. Here we discuss the implications of our findings from a broader perspective. We suggest that differences in signal responsiveness and perception by the parasite, as well as qualitative differences in signal production by the host, may elicit host specificity in this parasitic plant. Together with our earlier demonstration that these O. minor races are genetically distinct based on molecular markers, our recent data provide a snapshot of speciation in action, driven by host specificity. Indeed, host specificity may be an underestimated catalyst for speciation in parasitic plants generally. We propose that identifying host specific races using physiological techniques will complement conventional molecular marker-based approaches to provide a framework for delineating evolutionary relationships among cryptic host-specific parasitic plants. PMID:20081361

  18. Reproductive success in a natural population of male three-spined stickleback Gasterosteus aculeatus: effects of nuptial colour, parasites and body size.

    Science.gov (United States)

    Sparkes, T C; Rush, V; Kopp, D A; Foster, S A

    2013-05-01

    The effects of nuptial colour, parasites and body size on reproductive success were examined in a natural population of three-spined stickleback Gasterosteus aculeatus. Reproductive males were collected, with the contents of their nests, during the embryo-guarding stage from Lynne Lake (Cook Inlet, Alaska, U.S.A.), and nuptial colour, infection status and body size were recorded. Regression analysis revealed that male body size was the only predictor, of those measured, of reproductive success in nature. © 2013 The Authors. Journal of Fish Biology © 2013 The Fisheries Society of the British Isles.

  19. The nitrate reductase activity of some root and stem parasites and their hosts

    International Nuclear Information System (INIS)

    Hunter, J.J.

    1984-12-01

    This investigation surveyed the nitrate reductase activity (NRA) of some South African root and stem parasites, as well as their hosts. Fourteen species - five stem and nine root parasites, representative of seven families - and eleven different hosts from eight families, were studied. Two methods were applied in the determination of the NRA of parasite and host, namely the in vivo and in vitro methods. Because of the limited literature on the NRA of parasitic flowering plants both the in vivo and in vitro methods were developed for the host species and subsequently applied to that specific species of parasite as well. Parasites and hosts were also investigated in their natural habitat. The NRA of the roots could, however, only be increased providing phorsynthetic products as a source of NADH, were available. By using [U- 14 C]-Sucrose it was confirmed that the parasite could have fulfilled this need. Generally, the investigation showed that the parasites that were studied, have not altogether lost their ability to reduce nitrate. However, it would appear that the host is used as a source of reduced nitrogen, rather than nitrate, under natural conditions

  20. Genotype-specific interactions and the trade-off between host and parasite fitness

    Directory of Open Access Journals (Sweden)

    Shykoff Jacqui A

    2007-10-01

    Full Text Available Abstract Background Evolution of parasite traits is inextricably linked to their hosts. For instance one common definition of parasite virulence is the reduction in host fitness due to infection. Thus, traits of infection must be viewed in both protagonists and may be under shared genetic and physiological control. We investigated these questions on the oomycete Hyaloperonospora arabidopsis (= parasitica, a natural pathogen of the Brassicaceae Arabidopsis thaliana. Results We performed a controlled cross inoculation experiment confronting six lines of the host plant with seven strains of the parasite in order to evaluate genetic variation for phenotypic traits of infection among hosts, parasites, and distinct combinations. Parasite infection intensity and transmission were highly variable among parasite strains and host lines but depended also on the interaction between particular genotypes of the protagonists, and genetic variation for the infection phenotype of parasites from natural populations was found even at a small spatial scale within population. Furthermore, increased parasite fitness led to a significant decrease in host fitness only on a single host line (Gb, although a trade-off between these two traits was expected because host and parasite share the same resource pool for their respective reproduction. We propose that different levels of compatibility dependent on genotype by genotype interactions might lead to different amounts of resources available for host and parasite reproduction. This variation in compatibility could thus mask the expected negative relationship between host and parasite fitness, as the total resource pool would not be constant. Conclusion These results highlight the importance of host variation in the determination of parasite fitness traits. This kind of interaction may in turn decouple the relationship between parasite transmission and its negative effect on host fitness, altering theoretical predictions

  1. Interferon-Mediated Innate Immune Responses against Malaria Parasite Liver Stages

    Directory of Open Access Journals (Sweden)

    Jessica L. Miller

    2014-04-01

    Full Text Available Mosquito-transmitted malaria parasites infect hepatocytes and asymptomatically replicate as liver stages. Using RNA sequencing, we show that a rodent malaria liver-stage infection stimulates a robust innate immune response including type I interferon (IFN and IFNγ pathways. Liver-stage infection is suppressed by these infection-engendered innate responses. This suppression was abrogated in mice deficient in IFNγ, the type I IFN α/β receptor (IFNAR, and interferon regulatory factor 3. Natural killer and CD49b+CD3+ natural killer T (NKT cells increased in the liver after a primary infection, and CD1d-restricted NKT cells, which secrete IFNγ, were critical in reducing liver-stage burden of a secondary infection. Lack of IFNAR signaling abrogated the increase in NKT cell numbers in the liver, showing a link between type I IFN signaling, cell recruitment, and subsequent parasite elimination. Our findings demonstrate innate immune sensing of malaria parasite liver-stage infection and that the ensuing innate responses can eliminate the parasite.

  2. The genotypic structure of a multi-host bumblebee parasite suggests a role for ecological niche overlap.

    Directory of Open Access Journals (Sweden)

    Rahel M Salathé

    Full Text Available The genotypic structure of parasite populations is an important determinant of ecological and evolutionary dynamics of host-parasite interactions with consequences for pest management and disease control. Genotypic structure is especially interesting where multiple hosts co-exist and share parasites. We here analyze the natural genotypic distribution of Crithidia bombi, a trypanosomatid parasite of bumblebees (Bombus spp., in two ecologically different habitats over a time period of three years. Using an algorithm to reconstruct genotypes in cases of multiple infections, and combining these with directly identified genotypes from single infections, we find a striking diversity of infection for both data sets, with almost all multi-locus genotypes being unique, and are inferring that around half of the total infections are resulting from multiple strains. Our analyses further suggest a mixture of clonality and sexuality in natural populations of this parasite species. Finally, we ask whether parasite genotypes are associated with host species (the phylogenetic hypothesis or whether ecological factors (niche overlap in flower choice shape the distribution of parasite genotypes (the ecological hypothesis. Redundancy analysis demonstrates that in the region with relatively high parasite prevalence, both host species identity and niche overlap are equally important factors shaping the distribution of parasite strains, whereas in the region with lower parasite prevalence, niche overlap more strongly contributes to the distribution observed. Overall, our study underlines the importance of ecological factors in shaping the natural dynamics of host-parasite systems.

  3. Asteraceae Pollen Provisions Protect Osmia Mason Bees (Hymenoptera: Megachilidae) from Brood Parasitism.

    Science.gov (United States)

    Spear, Dakota M; Silverman, Sarah; Forrest, Jessica R K

    2016-06-01

    Many specialist herbivores eat foods that are apparently low quality. The compensatory benefits of a poor diet may include protection from natural enemies. Several bee lineages specialize on pollen of the plant family Asteraceae, which is known to be a poor-quality food. Here we tested the hypothesis that specialization on Asteraceae pollen protects bees from parasitism. We compared rates of brood parasitism by Sapyga wasps on Asteraceae-specialist, Fabeae-specialist, and other species of Osmia bees in the field over several years and sites and found that Asteraceae-specialist species were parasitized significantly less frequently than other species. We then tested the effect of Asteraceae pollen on parasites by raising Sapyga larvae on three pollen mixtures: Asteraceae, Fabeae, and generalist (a mix of primarily non-Asteraceae pollens). Survival of parasite larvae was significantly reduced on Asteraceae provisions. Our results suggest that specialization on low-quality pollen may evolve because it helps protect bees from natural enemies.

  4. Evaluation of haemato-biochemical and oxidative indices in naturally infected concomitant tick borne intracellular diseases in dogs

    Directory of Open Access Journals (Sweden)

    Kalyan Sarma

    2015-01-01

    Full Text Available Objective: To explore haemato-biochemical and oxidative stress indices due to concomitant tick borne intracellular diseases in dogs presented at Referral Veterinary Polyclinic, Indian Veterinary Research Institute, Bareilly during May 2010 to May 2012. Methods: Microscopy of Giemsa blood smear and ELISA test (SNAP 4D伊 were carried out in suspected cases to confirm haemo-parasitic infection. Blood and serum samples were analyzed for oxidative stress indices and haemato-biochemical changes. All the ailing conditions were recorded to investigate the clinical pattern of concomitant tick borne diseases. Ultrasonographic study was carried out to obtain the hepatic involvement. Results: Examination of 3 650 dogs revealed that 2.77% dog were positive for various tick borne diseases, out of which 21.78% were with concomitant infection. Clinical symptoms were noted with overall mean clinical score of 9.95依0.30. Ultrasonographic examination revealed hepatomegaly, distension of gall bladder, and ascites. Haemato-biochemical evaluation confirmed anaemia, leucopenia, thrombocytopenia, hypoproteinemia, hypoalbuminemia, hyperglobulinemia and hyperbilirubinemia with increased serum alanine amino transferase, alkaline phosphatase and gamma-glutamyl transpeptidase in concomitant infected dogs. The lipid peroxidation level of concomitant infection was significantly higher (P<0.05 than healthy group whereas superoxide dismutase, glutathione-reduced and catalase activity in concomitant infected group were decreased. Conclusions: The severity of infection was more pronounced in dogs harboring Ehrlichia, Babesia and Hepatozoon and the oxidative stress may have a pathophysiological role in concomitant infection in dogs.

  5. Efficacy of Doramectin and Fendendazole against naturally infected dairy animals with parasites at central zone of vidarbha region of Maharashtra State

    Directory of Open Access Journals (Sweden)

    A.S Gadre

    2008-08-01

    Full Text Available Comparative efficacy of doramectin and fenbendazole was studied against naturally infected dairy animals with helminth parasites showing clinical symptoms such as rough body coat, emaciation, diarrhoea and weakness etc. Based on the number of days taken for clinico-parasitological cure and the mean reduction EPG, doramectin was found to be superior to fenbendazole. [Veterinary World 2008; 1(4.000: 101-102

  6. Temporal and demographic blood parasite dynamics in two free-ranging neotropical primates

    Directory of Open Access Journals (Sweden)

    Gideon A. Erkenswick

    2017-08-01

    Full Text Available Parasite-host relationships are influenced by several factors intrinsic to hosts, such as social standing, group membership, sex, and age. However, in wild populations, temporal variation in parasite distributions and concomitant infections can alter these patterns. We used microscropy and molecular methods to screen for naturally occurring haemoparasitic infections in two Neotropical primate host populations, the saddleback (Leontocebus weddelli and emperor (Saguinus imperator tamarin, in the lowland tropical rainforests of southeastern Peru. Repeat sampling was conducted from known individuals over a three-year period to test for parasite-host and parasite-parasite associations. Three parasites were detected in L. weddelli including Trypanosoma minasense, Mansonella mariae, and Dipetalonema spp., while S. imperator only hosted the latter two. Temporal variation in prevalence was observed in T. minasense and Dipetalonema spp., confirming the necessity of a multi-year study to evaluate parasite-host relationships in this system. Although callitrichids display a distinct reproductive dominance hierarchy, characterized by single breeding females that typically mate polyandrously and can suppress the reproduction of subdominant females, logistic models did not identify sex or breeding status as determining factors in the presence of these parasites. However, age class had a positive effect on infection with M. mariae and T. minasense, and adults demonstrated higher parasite species richness than juveniles or sub-adults across both species. Body weight had a positive effect on the presence of Dipetalonema spp. The inclusion of co-infection variables in statistical models of parasite presence/absence data improved model fit for two of three parasites. This study verifies the importance and need for broad spectrum and long-term screening of parasite assemblages of natural host populations.

  7. Infectivity to Phlebotomus perniciosus of dogs naturally parasitized with Leishmania infantum after different treatments

    Directory of Open Access Journals (Sweden)

    Descalzo Miguel A

    2011-04-01

    Full Text Available Abstract Background In Europe most dogs with clinical leishmaniosis are treated with leishmanicides, typically antimonials combined with allopurinol and good clinical recovery is observed in a high number of these dogs. Through xenodiagnosis, the capacity of a treated animal to infect the vector of the disease under treatment is assessed as a measure of the chemotherapeutic efficacy of the drug used. The objective of the present study was to evaluate through direct xenodiagnosis the infectivity to Phlebotomus perniciosus of dogs naturally parasitized with Leishmania infantum after treatment, and to follow the clinical and parasite course of disease. Thirty two dogs with clinical leishmaniosis were assigned to one of three treatment groups: meglumine antimoniate plus allopurinol (Group A, meglumine antimoniate (Group B or allopurinol (Group C. During the study, the dogs were examined before treatment (Day 0 and bimonthly thereafter until Day 180 (six months post-treatment onset. Results The three groups were scored over time according to the effects of treatment on clinical signs and clinical-pathological variables. Significant differences in clinical scores were observed between Group A and the other two groups, indicating the combined treatment was the most effective. After treatment, bone marrow cultures were positive for the parasite in 30.8% of dogs in some of the check ups (3 or 25% in Group A, 1 or 11.1% in Group B, and 4 or 80% in Group C. Our xenodiagnosis experiments revealed that 15.4% of treated dogs were still able to infect sand flies at some point after treatment (2 dogs or 16.6% in Group A, 2 or 22.2% in Group B and none in Group C. Only 7.7% of the entire study population could infect sand flies as from the second month post-treatment onset. Conclusion The three treatment regimens tested significantly reduced the infectivity of dogs towards sand flies, thus diminishing the epidemiological risks of treated dogs both for human

  8. Paternity-parasitism trade-offs: a model and test of host-parasite cooperation in an avian conspecific brood parasite.

    Science.gov (United States)

    Lyon, Bruce E; Hochachka, Wesley M; Eadie, John M

    2002-06-01

    Efforts to evaluate the evolutionary and ecological dynamics of conspecific brood parasitism in birds and other animals have focused on the fitness costs of parasitism to hosts and fitness benefits to parasites. However, it has been speculated recently that, in species with biparental care, host males might cooperate with parasitic females by allowing access to the host nest in exchange for copulations. We develop a cost-benefit model to explore the conditions under which such host-parasite cooperation might occur. When the brood parasite does not have a nest of her own, the only benefit to the host male is siring some of the parasitic eggs (quasi-parasitism). Cooperation with the parasite is favored when the ratio of host male paternity of his own eggs relative to his paternity of parasitic eggs exceeds the cost of parasitism. When the brood parasite has a nest of her own, a host male can gain additional, potentially more important benefits by siring the high-value, low-cost eggs laid by the parasite in her own nest. Under these conditions, host males should be even more likely to accept parasitic eggs in return for copulations with the parasitic female. We tested these predictions for American coots (Fulica americana), a species with a high frequency of conspecific brood parasitism. Multilocus DNA profiling indicated that host males did not sire any of the parasitic eggs laid in host nests, nor did they sire eggs laid by the parasite in her own nest. We used field estimates of the model parameters from a four-year study of coots to predict the minimum levels of paternity required for the costs of parasitism to be offset by the benefits of mating with brood parasites. Observed levels of paternity were significantly lower than those predicted under a variety of assumptions, and we reject the hypothesis that host males cooperated with parasitic females. Our model clarifies the specific costs and benefits that influence host-parasite cooperation and, more generally

  9. Breastfeeding and risk of parasitic infection-a review

    Directory of Open Access Journals (Sweden)

    Prameela Kannan Kutty

    2014-11-01

    Full Text Available Breastfeeding, as exclusive nutrition in the first six months of life, is a necessary nutritional requisite in infants. Except for very few maternal diseases that contraindicate breastfeeding, some of which still controversial, breastfeeding mothers must continue exclusive and sustained lactation to provide maximum overall benefits through breastfeeding. Parasitic infections is a global disease and children remain a significant proportion of the affected population. The complex and mandatory life cycles of some parasites, particularly the helminths may partly explain their geographical distribution. The world-wide prevalence of parasitic infections as well as the largely asymptomatic nature of most infections, make many of these infections to likely remain under-recognized. Breast milk, the prime infant nutrition must be recognized to be more than a rare vehicle of parasite transmission, but also a general and focused immune defensive tool against some important parasites. The possibility and influence of small quantities of parasite antigens in breast milk have not been adequately explored. It is believed that useful immunological responses both direct and indirect in breast milk that occur due to the presence of parasite antigens, must be further studied in the light of both immediate and long term benefits. Within this context, and prompted by a spectrum of existing uncertainties, researched and hypothetical roles of parasites and associated immunological responses in the lactating mammary gland are proposed and reviewed.

  10. Social Parasites

    Science.gov (United States)

    Lopez, Miguel A.; Nguyen, HoangKim T.; Oberholzer, Michael; Hill, Kent L.

    2011-01-01

    Summary of recent advances Protozoan parasites cause tremendous human suffering worldwide, but strategies for therapeutic intervention are limited. Recent studies illustrate that the paradigm of microbes as social organisms can be brought to bear on questions about parasite biology, transmission and pathogenesis. This review discusses recent work demonstrating adaptation of social behaviors by parasitic protozoa that cause African sleeping sickness and malaria. The recognition of social behavior and cell-cell communication as a ubiquitous property of bacteria has transformed our view of microbiology, but protozoan parasites have not generally been considered in this context. Works discussed illustrate the potential for concepts of sociomicrobiology to provide insight into parasite biology and should stimulate new approaches for thinking about parasites and parasite-host interactions. PMID:22020108

  11. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    Directory of Open Access Journals (Sweden)

    Esther Bettiol

    Full Text Available The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50: 54, 190 and 23 nM, respectively. Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50 values of 2 nM (PCH6 and CX2. These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  12. Identification of three classes of heteroaromatic compounds with activity against intracellular Trypanosoma cruzi by chemical library screening.

    Science.gov (United States)

    Bettiol, Esther; Samanovic, Marie; Murkin, Andrew S; Raper, Jayne; Buckner, Frederick; Rodriguez, Ana

    2009-01-01

    The development of new drugs against Chagas disease is a priority since the currently available medicines have toxic effects, partial efficacy and are targeted against the acute phase of disease. At present, there is no drug to treat the chronic stage. In this study, we have optimized a whole cell-based assay for high throughput screening of compounds that inhibit infection of mammalian cells by Trypanosoma cruzi trypomastigotes. A 2000-compound chemical library was screened using a recombinant T. cruzi (Tulahuen strain) expressing beta-galactosidase. Three hits were selected for their high activity against T. cruzi and low toxicity to host cells in vitro: PCH1, NT1 and CX1 (IC(50): 54, 190 and 23 nM, respectively). Each of these three compounds presents a different mechanism of action on intracellular proliferation of T. cruzi amastigotes. CX1 shows strong trypanocidal activity, an essential characteristic for the development of drugs against the chronic stage of Chagas disease where parasites are found intracellular in a quiescent stage. NT1 has a trypanostatic effect, while PCH1 affects parasite division. The three compounds also show high activity against intracellular T. cruzi from the Y strain and against the related kinetoplastid species Leishmania major and L. amazonensis. Characterization of the anti-T. cruzi activity of molecules chemically related to the three library hits allowed the selection of two compounds with IC(50) values of 2 nM (PCH6 and CX2). These values are approximately 100 times lower than those of the medicines used in patients against T. cruzi. These results provide new candidate molecules for the development of treatments against Chagas disease and leishmaniasis.

  13. Control strategies for a stochastic model of host-parasite interaction in a seasonal environment.

    Science.gov (United States)

    Gómez-Corral, A; López García, M

    2014-08-07

    We examine a nonlinear stochastic model for the parasite load of a single host over a predetermined time interval. We use nonhomogeneous Poisson processes to model the acquisition of parasites, the parasite-induced host mortality, the natural (no parasite-induced) host mortality, and the reproduction and death of parasites within the host. Algebraic results are first obtained on the age-dependent distribution of the number of parasites infesting the host at an arbitrary time t. The interest is in control strategies based on isolation of the host and the use of an anthelmintic at a certain intervention instant t0. This means that the host is free living in a seasonal environment, and it is transferred to a uninfected area at age t0. In the uninfected area, the host does not acquire new parasites, undergoes a treatment to decrease the parasite load, and its natural and parasite-induced mortality are altered. For a suitable selection of t0, we present two control criteria that appropriately balance effectiveness and cost of intervention. Our approach is based on simple probabilistic principles, and it allows us to examine seasonal fluctuations of gastrointestinal nematode burden in growing lambs. Copyright © 2014 Elsevier Ltd. All rights reserved.

  14. An ethnobotanical analysis of parasitic plants (Parijibi) in the Nepal Himalaya.

    Science.gov (United States)

    O'Neill, Alexander Robert; Rana, Santosh Kumar

    2016-02-24

    Indigenous biocultural knowledge is a vital part of Nepalese environmental management strategies; however, much of it may soon be lost given Nepal's rapidly changing socio-ecological climate. This is particularly true for knowledge surrounding parasitic and mycoheterotrophic plant species, which are well represented throughout the Central-Eastern Himalayas but lack a collated record. Our study addresses this disparity by analyzing parasitic and mycoheterotrophic plant species diversity in Nepal as well as the ethnobotanical knowledge that surrounds them. Botanical texts, online databases, and herbarium records were reviewed to create an authoritative compendium of parasitic and mycoheterotrophic plant species native or naturalized to the Nepal Central-Eastern Himalaya. Semi-structured interviews were then conducted with 141 informants to better understand the biocultural context of these species, emphasizing ethnobotanical uses, in 12 districts of Central-Eastern Nepal. Nepal is a hotspot of botanical diversity, housing 15 families and 29 genera of plants that exhibit parasitic or mycoheterotrophic habit. Over 150 of the known 4500 parasitic plant species (~3 %) and 28 of the 160 mycoheterotrophic species (~18 %) are native or naturalized to Nepal; 13 of our surveyed parasitic species are endemic. Of all species documented, approximately 17 % of parasitic and 7 % of mycoheterotrophic plants have ethnobotanical uses as medicine (41 %), fodder (23 %), food (17 %), ritual objects (11 %), or material (8 %). Parasitic and mycoheterotrophic plant species exhibit high diversity in the Nepal Central-Eastern Himalaya and are the fodder for biocultural relationships that may help inform future environmental management projects in the region.

  15. Parasitism can be a confounding factor in assessing the response of zebra mussels to water contamination

    International Nuclear Information System (INIS)

    Minguez, Laëtitia; Buronfosse, Thierry; Beisel, Jean-Nicolas; Giambérini, Laure

    2012-01-01

    Biological responses measured in aquatic organisms to monitor environmental pollution could be also affected by different biotic and abiotic factors. Among these environmental factors, parasitism has often been neglected even if infection by parasites is very frequent. In the present field investigation, the parasite infra-communities and zebra mussel biological responses were studied up- and downstream a waste water treatment plant in northeast France. In both sites, mussels were infected by ciliates and/or intracellular bacteria, but prevalence rates and infection intensities were different according to the habitat. Concerning the biological responses differences were observed related to the site quality and the infection status. Parasitism affects both systems but seemed to depend mainly on environmental conditions. The influence of parasites is not constant, but remains important to consider it as a potential confounding factor in ecotoxicological studies. This study also emphasizes the interesting use of integrative indexes to synthesize data set. Highlights: ► Study of potential bias associated with the use of infected zebra mussels in ecotoxicological studies. ► Presence of infected mussels on banks and channels, up- and downstream a waste water treatment plant. ► Parasitism influence on biological responses dependent of mussel population history. ► Integrative index, an interesting tool to synthesize the set of biological data. - Parasitism influence on the host physiology would be strongly dependent on environmental conditions but remains a potential confounding factor in ecotoxicological studies.

  16. A Toxoplasma gondii protein with homology to intracellular type Na+/H+ exchangers is important for osmoregulation and invasion

    International Nuclear Information System (INIS)

    Francia, Maria E.; Wicher, Sarah; Pace, Douglas A.; Sullivan, Jack; Moreno, Silvia N.J.; Arrizabalaga, Gustavo

    2011-01-01

    The obligate intracellular parasite Toxoplasma gondii is exposed to a variety of physiological conditions while propagating in an infected organism. The mechanisms by which Toxoplasma overcomes these dramatic changes in its environment are not known. In yeast and plants, ion detoxification and osmotic regulation are controlled by vacuolar compartments. A novel compartment named the plant-like vacuole or vacuolar compartment (PLV/VAC) has recently been described in T.gondii, which could potentially protect extracellular tachyzoites against salt and other ionic stresses. Here, we report the molecular characterization of the vacuolar type Na + /H + exchanger in T. gondii, TgNHE3, and its co-localization with the PLV/VAC proton-pyrophosphatase (TgVP1). We have created a TgNHE3 knockout strain, which is more sensitive to hyperosmotic shock and toxic levels of sodium, possesses a higher intracellular Ca 2+ concentration [Ca 2+ ] i , and exhibits a reduced host invasion efficiency. The defect in invasion correlates with a measurable reduction in the secretion of the adhesin TgMIC2. Overall, our results suggest that the PLV/VAC has functions analogous to those of the vacuolar compartments of plants and yeasts, providing the parasite with a mechanism to resist ionic fluctuations and, potentially, regulate protein trafficking.

  17. Living With Parasites in Palo Verde National Park

    Directory of Open Access Journals (Sweden)

    Eben Kirksey

    2012-11-01

    Full Text Available Bruno Latour has tried to bring a parliamentary democracy to the domain of nature. Wading through the swamps of Palo Verde, a national park in the Guanacaste Province of Costa Rica, and wandering onto neighbouring agricultural lands, I failed to find a central place where people were speaking for nature. Departing from a failed attempt to speak for another species (the fringe-toed foam frog, this paper considers how diverging values and obligations shape relationships in multi-species worlds. As spokespersons articulated competing visions of nature on the borderlands of Palo Verde, multiple social and ecological worlds went to war. The haunting specter of capital joined the fray—animating the movements of cattle, grasses with animal rhizomes, rice seeds, and flighty ducks across national borders and through fragmented landscapes. Amidst this warfare, the fringe-toed foam frog was just one tenacious parasite, a noisy agent eating at the table of another, which began to flourish in worlds designed with the well-being of others in mind. Cattails, charismatic birds, and a multitude of insects began interrupting human dreams and schemes. Final solutions to the problem of living with parasites failed in Palo Verde. Humans and parasites, who became para-selves of one another, maintained an abiding presence in the landscape.

  18. Morphological, morphometric, and molecular characterization of Hepatozoon spp. (Apicomplexa, Hepatozoidae) from naturally infected Caudisona durissa terrifica (Serpentes, Viperidae).

    Science.gov (United States)

    Moço, Tatiana Cristina; da Silva, Reinaldo José; Madeira, Newton Goulart; Dos Santos Paduan, Karina; Rubini, Adriano Stefani; Leal, Denise Dutra Menezes; O'Dwyer, Lucia Helena

    2012-04-01

    Hepatozoon spp. are the most frequent intracellular protozoa in snakes. Considering the variety of parasites infecting specimens of Caudisona durissa terrifica and the divergent data in literature where only two species, Hepatozoon romani and Hepatozoon capsulata, are described, the aim of this study was to morphologically, morphometrically, and molecularly characterize Hepatozoon spp. from some naturally infected specimens of C. durissa terrifica, and observe changes caused by these protozoa in parasitized erythrocytes. Four snakes were examined. Two of them had two morphological distinct gamonts, while the other two had only one type of gamont. The six distinct gamonts were provisionally named gamonts A, B, C, D, E, and F. Statistical analysis, however, confirmed the existence of only four parasite populations, those which were capable of inducing significant alterations in determined red blood cells variables. Attempts to infect Aedes aegypti and Culex quinquefasciatus mosquitoes were done for each snake specimen. Some mosquitoes became infected and oocysts were recovered and measured. The detection of Hepatozoon DNA was obtained with success but the molecular characterization was unable to differentiate species of the samples, with respect to the fragment studied.

  19. Do the venous blood samples replicate malaria parasite densities found in capillary blood? A field study performed in naturally-infected asymptomatic children in Cameroon.

    Science.gov (United States)

    Sandeu, Maurice M; Bayibéki, Albert N; Tchioffo, Majoline T; Abate, Luc; Gimonneau, Geoffrey; Awono-Ambéné, Parfait H; Nsango, Sandrine E; Diallo, Diadier; Berry, Antoine; Texier, Gaétan; Morlais, Isabelle

    2017-08-17

    The measure of new drug- or vaccine-based approaches for malaria control is based on direct membrane feeding assays (DMFAs) where gametocyte-infected blood samples are offered to mosquitoes through an artificial feeder system. Gametocyte donors are identified by the microscopic detection and quantification of malaria blood stages on blood films prepared using either capillary or venous blood. However, parasites are known to sequester in the microvasculature and this phenomenon may alter accurate detection of parasites in blood films. The blood source may then impact the success of mosquito feeding experiments and investigations are needed for the implementation of DMFAs under natural conditions. Thick blood smears were prepared from blood obtained from asymptomatic children attending primary schools in the vicinity of Mfou (Cameroon) over four transmission seasons. Parasite densities were determined microscopically from capillary and venous blood for 137 naturally-infected gametocyte carriers. The effect of the blood source on gametocyte and asexual stage densities was then assessed by fitting cumulative link mixed models (CLMM). DMFAs were performed to compare the infectiousness of gametocytes from the different blood sources to mosquitoes. Prevalence of Plasmodium falciparum asexual stages among asymptomatic children aged from 4 to 15 years was 51.8% (2116/4087). The overall prevalence of P. falciparum gametocyte carriage was 8.9% and varied from one school to another. No difference in the density of gametocyte and asexual stages was found between capillary and venous blood. Attempts to perform DMFAs with capillary blood failed. Plasmodium falciparum malaria parasite densities do not differ between capillary and venous blood in asymptomatic subjects for both gametocyte and trophozoite stages. This finding suggests that the blood source should not interfere with transmission efficiency in DMFAs.

  20. Seawater detection and biological assessments regarding transmission of the oyster parasite Mikrocytos mackini using qPCR.

    Science.gov (United States)

    Polinski, Mark P; Meyer, Gary R; Lowe, Geoffrey J; Abbott, Cathryn L

    2017-10-18

    Mikrocytos mackini is an intracellular parasite of oysters and causative agent of Denman Island disease in Pacific oysters Crassostrea gigas. Although M. mackini has been investigated for decades, its natural mode of transmission, mechanism for host entry, and environmental stability are largely unknown. We explored these biological characteristics of M. mackini using a recently described quantitative PCR (qPCR) assay. We detected M. mackini in the flow-through tank water of experimentally infected oysters and during disease remission in host tissues following 6 wk of elevated water temperature. Waterborne exposure of oysters to M. mackini further confirmed the potential for extracellular seawater transmission of this parasite and also identified host gill to have the highest early and continued prevalence for M. mackini DNA compared to stomach, mantle, labial palps, or adductor muscle samples. However, infections following waterborne challenge were slow to develop despite a substantial exposure (>106 M. mackini l-1 for 24 h), and further investigation demonstrated that M. mackini occurrence and infectivity severely declined following extracellular seawater incubation of more than 24 h. This study demonstrates a potential for using qPCR to monitor M. mackini in wild or farmed oyster populations during periods of disease remission or from environmental seawater samples. This work also suggests that gill tissues may provide a primary site for waterborne entry and possibly shedding of M. mackini in oysters. Further, although extracellular seawater transmission of M. mackini was possible, poor environmental stability and infection efficiency likely restricts the geographic transmission of M. mackini between oysters in natural environs and may help to explain localized areas of infection.

  1. Lipid Bodies as Sites of Prostaglandin E2 Synthesis During Chagas Disease: Impact in the Parasite Escape Mechanism

    Directory of Open Access Journals (Sweden)

    Patrícia E. de Almeida

    2018-03-01

    Full Text Available During Chagas disease, the Trypanosoma cruzi can induce some changes in the host cells in order to escape or manipulate the host immune response. The modulation of the lipid metabolism in the host phagocytes or in the parasite itself is one feature that has been observed. The goal of this mini review is to discuss the mechanisms that regulate intracellular lipid body (LB biogenesis in the course of this parasite infection and their meaning to the pathophysiology of the disease. The interaction host–parasite induces LB (or lipid droplet formation in a Toll-like receptor 2-dependent mechanism in macrophages and is enhanced by apoptotic cell uptake. Simultaneously, there is a lipid accumulation in the parasite due to the incorporation of host fatty acids. The increase in the LB accumulation during infection is correlated with an increase in the synthesis of PGE2 within the host cells and the parasite LBs. Moreover, the treatment with fatty acid synthase inhibitor C75 or non-steroidal anti-inflammatory drugs such as NS-398 and aspirin inhibited the LB biogenesis and also induced the down modulation of the eicosanoid production and the parasite replication. These findings show that LBs are organelles up modulated during the course of infection. Furthermore, the biogenesis of the LB is involved in the lipid mediator generation by both the macrophages and the parasite triggering escape mechanisms.

  2. Are all red algal parasites cut from the same cloth?

    Directory of Open Access Journals (Sweden)

    Eric D. Salomaki

    2014-12-01

    Full Text Available Parasitism is a common life strategy throughout the eukaryotic tree of life. Many devastating human pathogens, including the causative agents of malaria and toxoplasmosis, have evolved from a photosynthetic ancestor. However, how an organism transitions from a photosynthetic to a parasitic life history strategy remains mostly unknown. This is largely because few systems present the opportunity to make meaningful comparisons between a parasite and a close free-living relative. Parasites have independently evolved dozens of times throughout the Florideophyceae (Rhodophyta, and often infect close relatives. The accepted evolutionary paradigm proposes that red algal parasites arise by first infecting a close relative and over time diversify and infect more distantly related species. This provides a natural evolutionary gradient of relationships between hosts and parasites that share a photosynthetic common ancestor. Elegant microscopic work in the late 20th century provided detailed insight into the infection cycle of red algal parasites and the cellular interactions between parasites and their hosts. Those studies led to the use of molecular work to further investigate the origins of the parasite organelles and reveal the evolutionary relationships between hosts and their parasites. Here we synthesize the research detailing the infection methods and cellular interactions between red algal parasites and their hosts. We offer an alternative hypothesis to the current dogma of red algal parasite evolution and propose that red algae can adopt a parasitic life strategy through multiple evolutionary pathways, including direct infection of distant relatives. Furthermore, we highlight potential directions for future research to further evaluate parasite evolution in red algae.

  3. Absolute Quantification of the Host-To-Parasite DNA Ratio in Theileria parva-Infected Lymphocyte Cell Lines.

    Science.gov (United States)

    Gotia, Hanzel T; Munro, James B; Knowles, Donald P; Daubenberger, Claudia A; Bishop, Richard P; Silva, Joana C

    2016-01-01

    Theileria parva is a tick-transmitted intracellular apicomplexan pathogen of cattle in sub-Saharan Africa that causes East Coast fever (ECF). ECF is an acute fatal disease that kills over one million cattle annually, imposing a tremendous burden on African small-holder cattle farmers. The pathology and level of T. parva infections in its wildlife host, African buffalo (Syncerus caffer), and in cattle are distinct. We have developed an absolute quantification method based on quantitative PCR (qPCR) in which recombinant plasmids containing single copy genes specific to the parasite (apical membrane antigen 1 gene, ama1) or the host (hypoxanthine phosphoribosyltransferase 1, hprt1) are used as the quantification reference standards. Our study shows that T. parva and bovine cells are present in similar numbers in T. parva-infected lymphocyte cell lines and that consequently, due to its much smaller genome size, T. parva DNA comprises between 0.9% and 3% of the total DNA samples extracted from these lines. This absolute quantification assay of parasite and host genome copy number in a sample provides a simple and reliable method of assessing T. parva load in infected bovine lymphocytes, and is accurate over a wide range of host-to-parasite DNA ratios. Knowledge of the proportion of target DNA in a sample, as enabled by this method, is essential for efficient high-throughput genome sequencing applications for a variety of intracellular pathogens. This assay will also be very useful in future studies of interactions of distinct host-T. parva stocks and to fully characterize the dynamics of ECF infection in the field.

  4. Ecomorphology and disease: cryptic effects of parasitism on host habitat use, thermoregulation, and predator avoidance.

    Science.gov (United States)

    Goodman, Brett A; Johnson, Pieter T J

    2011-03-01

    Parasites can cause dramatic changes in the phenotypes of their hosts, sometimes leading to a higher probability of predation and parasite transmission. Because an organism's morphology directly affects its locomotion, even subtle changes in key morphological traits may affect survival and behavior. However, despite the ubiquity of parasites in natural communities, few studies have incorporated parasites into ecomorphological research. Here, we evaluated the effects of parasite-induced changes in host phenotype on the habitat use, thermal biology, and simulated predator-escape ability of Pacific chorus frogs (Pseudacris regilla) in natural environments. Frogs with parasite-induced limb malformations were more likely to use ground microhabitats relative to vertical refugia and selected less-angled perches closer to the ground in comparison with normal frogs. Although both groups had similar levels of infection, malformed frogs used warmer microhabitats, which resulted in higher body temperatures. Likely as a result of their morphological abnormalities, malformed frogs allowed a simulated predator to approach closer before escaping and escaped shorter distances relative to normal frogs. These data indicate that parasite-induced morphological changes can significantly alter host behavior and habitat use, highlighting the importance of incorporating the ubiquitous, albeit cryptic, role of parasites into ecomorphological research.

  5. Fish population studies using parasites from the Southeastern Pacific Ocean: considering host population changes and species body size as sources of variability of parasite communities.

    Science.gov (United States)

    George-Nascimento, Mario; Oliva, Marcelo

    2015-01-01

    Research using parasites in fish population studies in the South Eastern Pacific (SEP) is summarized. There are 27 such studies (snapshots mainly) in single host species sampled at different geographic localities and at somewhat similar times. They have been devoted mainly to economically important species, though others on coastal and intertidal fish or on less- or non-commercial species provide insights on scales of temporal and spatial variation of parasite infracommunities. Later, we assess whether the probability of harbouring parasites depends on the host species body size. Our results indicate that a stronger tool for fish population studies may be developed under regular (long term) scrutiny of parasite communities, especially of small fish host species, due to their larger variability in richness, abundance and total biomass, than in large fish species. Finally, it might also be necessary to consider the effects of fishing on parasite communities as well as the natural oscillations (coupled or not) of host and parasite populations.

  6. The cellular immune response of Daphnia magna under host-parasite genetic variation and variation in initial dose.

    Science.gov (United States)

    Auld, Stuart K J R; Edel, Kai H; Little, Tom J

    2012-10-01

    In invertebrate-parasite systems, the likelihood of infection following parasite exposure is often dependent on the specific combination of host and parasite genotypes (termed genetic specificity). Genetic specificity can maintain diversity in host and parasite populations and is a major component of the Red Queen hypothesis. However, invertebrate immune systems are thought to only distinguish between broad classes of parasite. Using a natural host-parasite system with a well-established pattern of genetic specificity, the crustacean Daphnia magna and its bacterial parasite Pasteuria ramosa, we found that only hosts from susceptible host-parasite genetic combinations mounted a cellular response following exposure to the parasite. These data are compatible with the hypothesis that genetic specificity is attributable to barrier defenses at the site of infection (the gut), and that the systemic immune response is general, reporting the number of parasite spores entering the hemocoel. Further supporting this, we found that larger cellular responses occurred at higher initial parasite doses. By studying the natural infection route, where parasites must pass barrier defenses before interacting with systemic immune responses, these data shed light on which components of invertebrate defense underlie genetic specificity. © 2012 The Author(s). Evolution© 2012 The Society for the Study of Evolution.

  7. THE EVOLUTION OF PARASITES FROM THEIR HOSTS: A CASE STUDY IN THE PARASITIC RED ALGAE.

    Science.gov (United States)

    Goff, Lynda J; Ashen, Jon; Moon, Debra

    1997-08-01

    Morphological similarities of many parasites and their hosts have led to speculation that some groups of plant, animal, fungal, and algal parasites may have evolved directly from their hosts. These parasites, which have been termed adelphoparasites in the botanical literature, and more recently, agastoparasites in the insect literature, may evolve monophyletically from one host and radiate secondarily to other hosts or, these parasites may arise polyphyletically, each arising from its own host. In this study we compare the internal transcribed spacer regions of the nuclear ribosomal repeats of species and formae specialis (host races) included in the red algal parasite genus Asterocolax with its hosts, which all belong to the Phycodrys group of the Delesseriaceae and with closely related nonhost taxa of the Delesseriaceae. These analyses reveal that species of Asterocolax have evolved polyphyletically. Asterocolax erythroglossi from the North Atlantic host Erythroglossum laciniatum appears to have evolved from its host, whereas taxa included in the north Pacific species Asterocolax gardneri have had two independent origins. Asterocolax gardneri from the host Polyneura latissima probably arose directly from this host. In contrast, all other A. gardneri formae specialis appear to have originated from either Phycodrys setchellii or P. isabelliae and radiated secondarily onto other closely related taxa of the Phycodrys group, including Nienburgia andersoniana and Anisocladella pacifica. Gamete crossing experiments confirm that A. gardneri from each host is genetically isolated from both its host, and from other A. gardneri and their hosts. Cross-infection experiments reveal that A. gardneri develops normally only on its natural host, although some abberrant growth may occur on alternate hosts. The ability of red algal parasites to radiate secondarily to other red algal taxa, where they may become isolated genetically and speciate, suggests that this process of

  8. Molecular architecture of a complex between an adhesion protein from the malaria parasite and intracellular adhesion molecule 1

    DEFF Research Database (Denmark)

    Brown, Alan; Turner, Louise; Christoffersen, Stig

    2013-01-01

    The adhesion of Plasmodium falciparum-infected erythrocytes to human tissues or endothelium is central to the pathology caused by the parasite during malaria. It contributes to the avoidance of parasite clearance by the spleen and to the specific pathologies of cerebral and placental malaria....... The PfEMP1 family of adhesive proteins is responsible for this sequestration by mediating interactions with diverse human ligands. In addition, as the primary targets of acquired, protective immunity, the PfEMP1s are potential vaccine candidates. PfEMP1s contain large extracellular ectodomains made from......, intercellular adhesion molecule-1 (ICAM-1). We show through small angle x-ray scattering that IT4VAR13 is rigid, elongated, and monomeric. We also show that it interacts with ICAM-1 through the DBLß domain alone, forming a 1:1 complex. These studies provide a first low resolution structural view of a PfEMP1...

  9. Gastrointestinal parasites and Trypanosoma evansi in buffaloes

    International Nuclear Information System (INIS)

    Sani, R.A.; Chandrawathani, P.; Rosli, M.

    1990-01-01

    Gastrointestinal parasitism is common in buffalo calves. The effect of helminths on growth was studied by administration of an anthelmintic to buffalo calves following natural infections with gastrointestinal parasites. In studies conducted on calves belonging to an institute and a smallholder farmer, the treated calves showed improved weight gains. Serial parasitic examinations showed these animals had moderate to high faecal counts with Strongyloides, Toxocara vitulorum and Haemonchus eggs and Eimeria oocytes. In another study, there was no live weight advantage in treated over untreated calves. Few animals in this study had evidence of parasites and even those which were infested had low faecal egg counts. Hence, in general, helminths at certain levels of infection do affect the live weight gains of young buffalo calves. The prevalence of Trypanosoma evansi, as assessed parasitologically using the haematocrit centrifugation technique and mice inoculation, was 2.7 and 1%, respectively, in cattle and buffaloes. The serological prevalence using the enzyme linked immunosorbent assay was 35 and 2% for cattle and buffaloes, respectively. (author). 6 refs, 5 figs, 2 tabs

  10. Host-parasite interactions in sympatric and allopatric populations of European bitterling.

    Science.gov (United States)

    Francová, Kateřina; Ondračková, Markéta

    2011-09-01

    Susceptibility to parasite infection was examined in a field experiment for four populations of 0+ juvenile European bitterling (Rhodeus amarus): one sympatric to local parasite fauna, one allopatric, and two hybrid populations. Significantly higher parasite abundance was recorded in the allopatric bitterling population, suggesting a maladaptation of parasites to their sympatric host. Type of parasite life cycle played an important role in host-parasite interactions. While the abundance of allogenic species between populations was comparable, a significant difference was found in abundance of autogenic parasite species between fish populations, with the allopatric population more infected. These results correspond with a prediction of higher dispersion probability and higher gene flow among geographically distant populations of allogenic species as compared to autogenic species. Increased susceptibility to parasites that do not occur within the natural host's geographical distribution was found in the allopatric host, but only for autogenic species. A difference in infection susceptibility was detected among populations of early-hatched bitterling exposed to infection during a period of high parasite abundance and richness in the environment. Differences in parasite abundance and species diversity among populations diminished, however, with increasing time of exposure. No difference was found within late-hatched populations, probably due to a lower probability of infection in late-hatched cohorts.

  11. Evolution of plant parasitism in the phylum Nematoda.

    Science.gov (United States)

    Quist, Casper W; Smant, Geert; Helder, Johannes

    2015-01-01

    Within the species-rich and trophically diverse phylum Nematoda, at least four independent major lineages of plant parasites have evolved, and in at least one of these major lineages plant parasitism arose independently multiple times. Ribosomal DNA data, sequence information from nematode-produced, plant cell wall-modifying enzymes, and the morphology and origin of the style(t), a protrusible piercing device used to penetrate the plant cell wall, all suggest that facultative and obligate plant parasites originate from fungivorous ancestors. Data on the nature and diversification of plant cell wall-modifying enzymes point at multiple horizontal gene transfer events from soil bacteria to bacterivorous nematodes resulting in several distinct lineages of fungal or oomycete-feeding nematodes. Ribosomal DNA frameworks with sequence data from more than 2,700 nematode taxa combined with detailed morphological information allow for explicit hypotheses on the origin of agronomically important plant parasites, such as root-knot, cyst, and lesion nematodes.

  12. Effects of nitro-heterocyclic derivatives against Leishmania (Leishmania) infantum promastigotes and intracellular amastigotes.

    Science.gov (United States)

    Petri e Silva, Simone Carolina Soares; Palace-Berl, Fanny; Tavares, Leoberto Costa; Soares, Sandra Regina Castro; Lindoso, José Angelo Lauletta

    2016-04-01

    Leishmaniasis is an overlooked tropical disease affecting approximately 1 million people in several countries. Clinical manifestation depends on the interaction between Leishmania and the host's immune response. Currently available treatment options for leishmaniasis are limited and induce severe side effects. In this research, we tested nitro-heterocyclic compounds (BSF series) as a new alternative against Leishmania. Its activity was measured in Leishmania (Leishmania) infantum promastigotes and intracellular amastigotes using MTT colorimetric assay. Additionally, we assessed the phosphatidylserine exposure by promastigotes, measured by flow cytometry, as well as nitric oxide production, measured by Griess' method. The nitro-heterocyclic compounds (BSF series) showed activity against L. (L.) infantum promastigotes, inducting the phosphatidylserine exposition by promastigotes, decreasing intracellular amastigotes and increasing oxide nitric production. The selectivity index was more prominent to Leishmania than to macrophages. Compared to amphotericin b, our compounds presented higher IC50, however the selectivity index was more specific to parasite than to amphotericin b. In conclusion, these nitro-heterocyclic compounds showed to be promising as an anti-Leishmania drug, in in vitro studies. Copyright © 2016 Elsevier Inc. All rights reserved.

  13. Leishmania infantum proteophosphoglycans regurgitated by the bite of its natural sand fly vector, Lutzomyia longipalpis, promote parasite establishment in mouse skin and skin-distant tissues.

    Science.gov (United States)

    Rogers, Matthew Edward; Corware, Karina; Müller, Ingrid; Bates, Paul Andrew

    2010-10-01

    We demonstrate that a proteophosphoglycan-rich gel secreted by Leishmania infantum inside the midgut of Lutzomyia longipalpis sand flies (promastigote secretory gel) is regurgitated along with an average dose of 500 L. infantum metacyclic promastigotes per infected bite. Using both low (10³) and high (10⁵) doses of parasites in the ears of BALB/c mice we show that the infections benefit from the presence of vector saliva and parasite gel in the skin. However, chronic infection of the spleen was only enhanced in high dose co-infections with gel. These results provide the framework for a more natural experimental model of visceral leishmaniasis. Copyright © 2010. Published by Elsevier SAS.

  14. Trichomonicidal and parasite membrane damaging activity of bidesmosic saponins from Manilkara rufula.

    Directory of Open Access Journals (Sweden)

    Patrícia de Brum Vieira

    Full Text Available The infection caused by Trichomonas vaginalis is the most common but overlooked non-viral sexually transmitted disease worldwide. Treatment relies on one class of drugs, the 5-nitroimidazoles, but resistance is widespread. New drugs are urgently needed. We reported the effect of crude and purified saponin fractions of Manilkara rufula against Trichomonas vaginalis. The compound responsible for antitrichomonal activity was isolated and identified as an uncommon bidesmosic saponin, Mi-saponin C. This saponin eliminated parasite viability without toxicity against the human vaginal epithelial line (HMVII. In addition, the isolated saponin fraction improved the metronidazole effect against a metronidazole-resistant isolate and dramatically reduced the cytoadherence of T. vaginalis to human cells. Investigation of the mechanism of death showed that the saponin fraction induced the parasite death due to profound membrane damage, inducing a disturbance of intracellular content without nuclear damage. To the best of our knowledge, this is the first report of antitrichomonal activity in the bidesmosic saponins of Manilkara rufula.

  15. Introduced cryptic species of parasites exhibit different invasion pathways.

    Science.gov (United States)

    Miura, Osamu; Torchin, Mark E; Kuris, Armand M; Hechinger, Ryan F; Chiba, Satoshi

    2006-12-26

    Sometimes infectious agents invade and become established in new geographic regions. Others may be introduced yet never become established because of the absence of suitable hosts in the new region. This phenomenon may be particularly true for the many parasites with complex life cycles, where various life stages require different host species. Homogenization of the world's biota through human-mediated invasions may reunite hosts and parasites, resulting in disease outbreaks in novel regions. Here we use molecular genetics to differentiate invasion pathways for two digenean trematode parasites and their exotic host, the Asian mud snail, Batillaria attramentaria. All of the snail haplotypes found in introduced populations in North America were identical to haplotypes common in the areas of Japan that provided oysters for cultivation in North America, supporting the hypothesis that the snails were introduced from Japan with seed oysters. Two cryptic trematode species were introduced to North American populations in high frequencies. We found a marked reduction of genetic variation in one of these species, suggesting it experienced a bottleneck or founder event comparable to that of the host snail. In contrast, no genetic variation was lost in the other parasite species. We hypothesize that this parasite was and is dispersed naturally by migratory shorebirds and was able to establish only after the host snail, B. attramentaria, was introduced to North America. Evaluation of the nature of invasion pathways and postinvasion consequences will aid mitigation of spreading diseases of humans, livestock, and wildlife in an increasingly globalized world.

  16. Antiparasitic activity of natural and semi-synthetic tirucallane triterpenoids from Schinus terebinthifolius (Anacardiaceae): structure/activity relationships.

    Science.gov (United States)

    Morais, Thiago R; da Costa-Silva, Thais A; Tempone, Andre G; Borborema, Samanta Etel T; Scotti, Marcus T; de Sousa, Raquel Maria F; Araujo, Ana Carolina C; de Oliveira, Alberto; de Morais, Sérgio Antônio L; Sartorelli, Patricia; Lago, João Henrique G

    2014-05-05

    Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae), and nine semi-synthetic derivatives were investigated against Leishmania (L.) infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR) data as well as electrospray ionization mass spectrometry (ESI-MS). Additionally, structure-activity relationships were performed using Decision Trees.

  17. Antiparasitic Activity of Natural and Semi-Synthetic Tirucallane Triterpenoids from Schinus terebinthifolius (Anacardiaceae: Structure/Activity Relationships

    Directory of Open Access Journals (Sweden)

    Thiago R. Morais

    2014-05-01

    Full Text Available Leishmaniasis and Chagas are diseases caused by parasitic protozoans that affect the poorest population in the World, causing a high mortality and morbidity. As a result of highly toxic and long-term treatments, the discovery of novel, safe and more efficacious drugs is essential. In this work, the in vitro antiparasitic activity and mammalian cytotoxicity of three natural tirucallane triterpenoids, isolated from leaves of Schinus terebinthifolius (Anacardiaceae, and nine semi-synthetic derivatives were investigated against Leishmania (L. infantum and Trypanosoma cruzi. Trypomastigotes of T. cruzi were the most susceptible parasites and seven compounds demonstrated a trypanocidal activity with IC50 values in the range between 15 and 58 µg/mL. Four compounds demonstrated selectivity towards the intracellular amastigotes of Leishmania, with IC50 values in the range between 28 and 97 µg/mL. The complete characterization of triterpenoids was afforded after thorough analysis of nuclear magnetic resonance (NMR data as well as electrospray ionization mass spectrometry (ESI-MS. Additionally, structure-activity relationships were performed using Decision Trees.

  18. Infection of Gymnodinium sanguineum by the dinoflagellate Amoebophrya sp.: effect of nutrient environment on parasite generation time, reproduction, and infectivity.

    Science.gov (United States)

    Yih, W; Coats, D W

    2000-01-01

    Preliminary attempts to culture Amoebophrya sp., a parasite of Gymnodinium sanguineum from Chesapeake Bay, indicated that success may be influenced by water quality. To explore that possibility, we determined development time, reproductive output, and infectivity of progeny (i.e. dinospores) for Amoebophyra sp. maintained on G. sanguineum grown in four different culture media. The duration of the parasite's intracellular growth phase showed no significant difference among treatments; however, the time required for completion of multiple parasite generations did, with elapsed time to the middle of the third generation being shorter in nutrient-replete media. Parasites of hosts grown in nutrient-replete medium also produced three to four times more dinospores than those infecting hosts under low-nutrient conditions, with mean values of 380 and 130 dinospores/host, respectively. Dinospore production relative to host biovolume also differed, with peak values of 7.4 per 1,000 microm3 host for nutrient-replete medium and 4.8 per 1,000 microm3 host for nutrient-limited medium. Furthermore, dinospores produced by "high-nutrient" parasites had a higher success rate than those formed by "low-nutrient" parasites. Results suggest that Amoebophrya sp. is well adapted to exploit G. sanguineum populations in nutrient-enriched environments.

  19. INTRACELLULAR Leishmania amazonensis KILLING INDUCED BY THE GUANINE NUCLEOSIDE 8-BROMOGUANOSINE

    Directory of Open Access Journals (Sweden)

    GIORGIO Selma

    1998-01-01

    Full Text Available In this study we investigated the effect of 8-Bromoguanosine, an immunostimulatory compound, on the cytotoxicity of macrophages against Leishmania amazonensis in an in vitro system. The results showed that macrophages treated with 8-Bromoguanosine before or after infection are capable to reduce parasite load, as monitored by the number of amastigotes per macrophage and the percentage of infected cells (i.e. phagocytic index. Since 8-Bromoguanosine was not directly toxic to the promastigotes, it was concluded that the ribonucleoside induced macrophage activation. Presumably, 8-Bromoguanosine primed macrophages by inducing interferon alpha and beta which ultimately led to L. amazonensis amastigote killing. The results suggest that guanine ribonucleosides may be useful to treat infections with intracellular pathogens.

  20. The role of small heat shock proteins in parasites.

    Science.gov (United States)

    Pérez-Morales, Deyanira; Espinoza, Bertha

    2015-09-01

    The natural life cycle of many protozoan and helminth parasites involves exposure to several hostile environmental conditions. Under these circumstances, the parasites arouse a cellular stress response that involves the expression of heat shock proteins (HSPs). Small HSPs (sHSPs) constitute one of the main families of HSPs. The sHSPs are very divergent at the sequence level, but their secondary and tertiary structures are conserved and some of its members are related to α-crystallin from vertebrates. They are involved in a variety of cellular processes. As other HSPs, the sHSPs act as molecular chaperones; however, they have shown other activities apparently not related to chaperone action. In this review, the diverse activities of sHSPs in the major genera of protozoan and helminth parasites are described. These include stress response, development, and immune response, among others. In addition, an analysis comparing the sequences of sHSPs from some parasites using a distance analysis is presented. Because many parasites face hostile conditions through its life cycles the study of HSPs, including sHSPs, is fundamental.

  1. Leishmania eukaryotic initiation factor (LeIF inhibits parasite growth in murine macrophages.

    Directory of Open Access Journals (Sweden)

    Olga Koutsoni

    Full Text Available The leishmaniases constitute neglected global public health problems that require adequate control measures, prophylactic clinical vaccines and effective and non-toxic drug treatments. In this study, we explored the potential of Leishmania infantum eukaryotic initiation factor (LieIF, an exosomal protein, as a novel anti-infective therapeutic molecule. More specifically, we assessed the efficacy of recombinant LieIF, in combination with recombinant IFN-γ, in eliminating intracellular L. donovani parasites in an in vitro macrophage model. J774A.1 macrophages were initially treated with LieIF/IFN-γ prior to in vitro infection with L. donovani stationary phase promastigotes (pre-infection treatment, and resistance to infection was observed 72 h after infection. J774A.1 macrophages were also treated with LieIF/IFN-γ after L. donovani infection (post-infection treatment, and resistance to infection was also observed at both time points tested (19 h and 72 h after infection. To elucidate the LieIF/IFN-γ-induced mechanism(s that mediate the reduction of intracellular parasite growth, we examined the generation of potent microbicidal molecules, such as nitric oxide (NO and reactive oxygen species (ROS, within infected macrophages. Furthermore, macrophages pre-treated with LieIF/IFN-γ showed a clear up-regulation in macrophage inflammatory protein 1α (MIP-1α as well as tumor necrosis factor alpha (TNF-α expression. However, significant different protein levels were not detected. In addition, macrophages pre-treated with LieIF/IFN-γ combined with anti-TNF-α monoclonal antibody produced significantly lower amounts of ROS. These data suggest that during the pre-treatment state, LieIF induces intramacrophage parasite growth inhibition through the production of TNF-α, which induces microbicidal activity by stimulating NO and ROS production. The mechanisms of NO and ROS production when macrophages are treated with LieIF after infection are probably

  2. Is there a link between shell morphology and parasites of zebra mussels?

    Science.gov (United States)

    Minguez, Laëtitia; Lang, Anne-Sophie; Beisel, Jean-Nicolas; Giambérini, Laure

    2012-02-01

    The shell morphology of zebra mussels, Dreissena polymorpha, was analyzed to determine if alterations in shell shape and asymmetry between valves were related to its infection status, i.e. infected or not by microparasites like ciliates Ophryoglena spp. or intracellular bacteria Rickettsiales-like organisms (RLOs), and by macroparasites like trematodes Phyllodistomum folium and Bucephalus polymorphus. For microparasites, two groups of mussels were observed depending on shell measurements. Mussels with the more concave shells were the most parasitized by ciliates. This could be more a consequence than a cause and we hypothesized that a modification of the water flow through the mantle cavity could promote the infection with a ciliate. There were more RLOs present in the most symmetrical individuals. A potential explanation involved a canalization of the left-right asymmetry as a by-product of the parasite infection. Trematode infections were associated with different responses in valve width. Females infected by P. folium displayed significantly higher symmetry in valve width compared with non-infected congeners, whereas the infection involved an opposite pattern in males. B. polymorphus was also linked to a decrease in valve width asymmetry. This study suggested that a relationship exists between parasitism and shell morphology through the physiological condition of host zebra mussels. Copyright © 2011 Elsevier Inc. All rights reserved.

  3. Genetic variation for maternal effects on parasite susceptibility.

    Science.gov (United States)

    Stjernman, M; Little, T J

    2011-11-01

    The expression of infectious disease is increasingly recognized to be impacted by maternal effects, where the environmental conditions experienced by mothers alter resistance to infection in offspring, independent of heritability. Here, we studied how maternal effects (high or low food availability to mothers) mediated the resistance of the crustacean Daphnia magna to its bacterial parasite Pasteuria ramosa. We sought to disentangle maternal effects from the effects of host genetic background by studying how maternal effects varied across 24 host genotypes sampled from a natural population. Under low-food conditions, females produced offspring that were relatively resistant, but this maternal effect varied strikingly between host genotypes, i.e. there were genotype by maternal environment interactions. As infection with P. ramosa causes a substantial reduction in host fecundity, this maternal effect had a large effect on host fitness. Maternal effects were also shown to impact parasite fitness, both because they prevented the establishment of the parasites and because even when parasites did establish in the offspring of poorly fed mothers, and they tended to grow more slowly. These effects indicate that food stress in the maternal generation can greatly influence parasite susceptibility and thus perhaps the evolution and coevolution of host-parasite interactions. © 2011 The Authors. Journal of Evolutionary Biology © 2011 European Society For Evolutionary Biology.

  4. Gastrointestinal parasites of the chimpanzee population introduced onto Rubondo Island National Park, Tanzania.

    Science.gov (United States)

    Petrzelková, Klára J; Hasegawa, Hideo; Appleton, Chris C; Huffman, Michael A; Archer, Colleen E; Moscovice, Liza R; Mapua, Mwanahamissi Issa; Singh, Jatinder; Kaur, Taranjit

    2010-04-01

    The release of any species into a novel environment can evoke transmission of parasites that do not normally parasitize the host as well as potentially introducing new parasites into the environment. Species introductions potentially incur such risks, yet little is currently known about the parasite fauna of introduced primate species over the long term. We describe the results of long-term monitoring of the intestinal parasite fauna of an unprovisioned, reproducing population of chimpanzees introduced 40 years earlier (1966-1969) onto Rubondo Island in Lake Victoria, Tanzania, a non-native habitat for chimpanzees. Two parasitological surveys (March 1997-October 1998 and October 2002-December 2005) identified Entamoeba spp. including E. coli, Iodamoeba buetschlii, Troglodytella abrassarti, Chilomastix mesnili, Trichuris sp., Anatrichosoma sp., Strongyloides spp., Strongylida fam. gen. sp., Enterobius anthropopitheci, Subulura sp., Ascarididae gen. sp., and Protospirura muricola. The parasite fauna of the Rubondo chimpanzees is similar to wild chimpanzees living in their natural habitats, but Rubondo chimpanzees have a lower prevalence of strongylids (9%, 3.8%) and a higher prevalence of E. anthropopitheci (8.6%, 17.9%) than reported elsewhere. Species prevalence was similar between our two surveys, with the exception of Strongyloides spp. being higher in the first survey. None of these species are considered to pose a serious health risk to chimpanzees, but continued monitoring of the population and surveys of the parasitic fauna of the two coinhabitant primate species and other animals, natural reservoir hosts of some of the same parasites, is important to better understand the dynamics of host-parasite ecology and potential long-term implications for chimpanzees introduced into a new habitat. 2009 Wiley-Liss, Inc.

  5. Nuclear techniques in the control of parasitic infections

    International Nuclear Information System (INIS)

    Mulligan, W.

    1976-01-01

    The development of radiation-attenuated vaccines against economically important parasitic diseases of farm animals has met with mixed success. Examples are presented ranging from the highly effective and much used commercial vaccine against cattle lungworm to the almost completely unsuccessful attempts to immunize sheep against liver fluke. The results presented emphasize that this approach is likely to be successful only if there is evidence of a strong degree of acquired immunity to the natural infection. The extension of immunological control to those systems where the parasite provokes only a modest resistance by the host will probably depend on a much greater understanding of the mechanism of the immune response. Such fundamental studies are likely to rely heavily on nuclear techniques, e.g. in the labelling of antigens, antibodies and parasites with radioactive isotopes. (author)

  6. The comparative ecology and biogeography of parasites

    Science.gov (United States)

    Poulin, Robert; Krasnov, Boris R.; Mouillot, David; Thieltges, David W.

    2011-01-01

    Comparative ecology uses interspecific relationships among traits, while accounting for the phylogenetic non-independence of species, to uncover general evolutionary processes. Applied to biogeographic questions, it can be a powerful tool to explain the spatial distribution of organisms. Here, we review how comparative methods can elucidate biogeographic patterns and processes, using analyses of distributional data on parasites (fleas and helminths) as case studies. Methods exist to detect phylogenetic signals, i.e. the degree of phylogenetic dependence of a given character, and either to control for these signals in statistical analyses of interspecific data, or to measure their contribution to variance. Parasite–host interactions present a special case, as a given trait may be a parasite trait, a host trait or a property of the coevolved association rather than of one participant only. For some analyses, it is therefore necessary to correct simultaneously for both parasite phylogeny and host phylogeny, or to evaluate which has the greatest influence on trait expression. Using comparative approaches, we show that two fundamental properties of parasites, their niche breadth, i.e. host specificity, and the nature of their life cycle, can explain interspecific and latitudinal variation in the sizes of their geographical ranges, or rates of distance decay in the similarity of parasite communities. These findings illustrate the ways in which phylogenetically based comparative methods can contribute to biogeographic research. PMID:21768153

  7. Building the perfect parasite: cell division in apicomplexa.

    Directory of Open Access Journals (Sweden)

    Boris Striepen

    2007-06-01

    Full Text Available Apicomplexans are pathogens responsible for malaria, toxoplasmosis, and crytposporidiosis in humans, and a wide range of livestock diseases. These unicellular eukaryotes are stealthy invaders, sheltering from the immune response in the cells of their hosts, while at the same time tapping into these cells as source of nutrients. The complexity and beauty of the structures formed during their intracellular development have made apicomplexans the darling of electron microscopists. Dramatic technological progress over the last decade has transformed apicomplexans into respectable genetic model organisms. Extensive genomic resources are now available for many apicomplexan species. At the same time, parasite transfection has enabled researchers to test the function of specific genes through reverse and forward genetic approaches with increasing sophistication. Transfection also introduced the use of fluorescent reporters, opening the field to dynamic real time microscopic observation. Parasite cell biologists have used these tools to take a fresh look at a classic problem: how do apicomplexans build the perfect invasion machine, the zoite, and how is this process fine-tuned to fit the specific niche of each pathogen in this ancient and very diverse group? This work has unearthed a treasure trove of novel structures and mechanisms that are the focus of this review.

  8. Theileria parasites secrete a prolyl isomerase to maintain host leukocyte transformation.

    Science.gov (United States)

    Marsolier, J; Perichon, M; DeBarry, J D; Villoutreix, B O; Chluba, J; Lopez, T; Garrido, C; Zhou, X Z; Lu, K P; Fritsch, L; Ait-Si-Ali, S; Mhadhbi, M; Medjkane, S; Weitzman, J B

    2015-04-16

    Infectious agents develop intricate mechanisms to interact with host cell pathways and hijack their genetic and epigenetic machinery to change host cell phenotypic states. Among the Apicomplexa phylum of obligate intracellular parasites, which cause veterinary and human diseases, Theileria is the only genus that transforms its mammalian host cells. Theileria infection of bovine leukocytes induces proliferative and invasive phenotypes associated with activated signalling pathways, notably JNK and AP-1 (ref. 2). The transformed phenotypes are reversed by treatment with the theilericidal drug buparvaquone. We used comparative genomics to identify a homologue of the peptidyl-prolyl isomerase PIN1 in T. annulata (TaPIN1) that is secreted into the host cell and modulates oncogenic signalling pathways. Here we show that TaPIN1 is a bona fide prolyl isomerase and that it interacts with the host ubiquitin ligase FBW7, leading to its degradation and subsequent stabilization of c-JUN, which promotes transformation. We performed in vitro and in silico analysis and in vivo zebrafish xenograft experiments to demonstrate that TaPIN1 is directly inhibited by the anti-parasite drug buparvaquone (and other known PIN1 inhibitors) and is mutated in a drug-resistant strain. Prolyl isomerization is thus a conserved mechanism that is important in cancer and is used by Theileria parasites to manipulate host oncogenic signalling.

  9. Protein kinase a dependent phosphorylation of apical membrane antigen 1 plays an important role in erythrocyte invasion by the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Kerstin Leykauf

    2010-06-01

    Full Text Available Apicomplexan parasites are obligate intracellular parasites that infect a variety of hosts, causing significant diseases in livestock and humans. The invasive forms of the parasites invade their host cells by gliding motility, an active process driven by parasite adhesion proteins and molecular motors. A crucial point during host cell invasion is the formation of a ring-shaped area of intimate contact between the parasite and the host known as a tight junction. As the invasive zoite propels itself into the host-cell, the junction moves down the length of the parasite. This process must be tightly regulated and signalling is likely to play a role in this event. One crucial protein for tight-junction formation is the apical membrane antigen 1 (AMA1. Here we have investigated the phosphorylation status of this key player in the invasion process in the human malaria parasite Plasmodium falciparum. We show that the cytoplasmic tail of P. falciparum AMA1 is phosphorylated at serine 610. We provide evidence that the enzyme responsible for serine 610 phosphorylation is the cAMP regulated protein kinase A (PfPKA. Importantly, mutation of AMA1 serine 610 to alanine abrogates phosphorylation of AMA1 in vivo and dramatically impedes invasion. In addition to shedding unexpected new light on AMA1 function, this work represents the first time PKA has been implicated in merozoite invasion.

  10. Ex Vivo Host and Parasite Response to Antileishmanial Drugs and Immunomodulators

    Science.gov (United States)

    McMahon-Pratt, Diane; Saravia, Nancy Gore

    2015-01-01

    Background Therapeutic response in infectious disease involves host as well as microbial determinants. Because the immune and inflammatory response to Leishmania (Viannia) species defines the outcome of infection and efficacy of treatment, immunomodulation is considered a promising therapeutic strategy. However, since Leishmania infection and antileishmanial drugs can themselves modulate drug transport, metabolism and/or immune responses, immunotherapeutic approaches require integrated assessment of host and parasite responses. Methodology To achieve an integrated assessment of current and innovative therapeutic strategies, we determined host and parasite responses to miltefosine and meglumine antimoniate alone and in combination with pentoxifylline or CpG 2006 in peripheral blood mononuclear cells (PBMCs) of cutaneous leishmaniasis patients. Parasite survival and secretion of TNF-α, IFN-γ, IL-10 and IL-13 were evaluated concomitantly in PBMCs infected with Luc-L. (V.) panamensis exposed to meglumine antimoniate (4, 8, 16, 32 and 64 μg SbV/mL) or miltefosine (2, 4, 8, 16 and 32 μM HePC). Concentrations of 4 μM of miltefosine and 8 μg SbV/mL were selected for evaluation in combination with immunomodulators based on the high but partial reduction of parasite burden by these antileishmanial concentrations without affecting cytokine secretion of infected PBMCs. Intracellular parasite survival was determined by luminometry and cytokine secretion measured by ELISA and multiplex assays. Principal Findings Anti- and pro-inflammatory cytokines characteristic of L. (V.) panamensis infection were evaluable concomitantly with viability of Leishmania within monocyte-derived macrophages present in PBMC cultures. Both antileishmanial drugs reduced the parasite load of macrophages; miltefosine also suppressed IL-10 and IL-13 secretion in a dose dependent manner. Pentoxifylline did not affect parasite survival or alter antileishmanial effects of miltefosine or meglumine

  11. Light-induced dynamic structural color by intracellular 3D photonic crystals in brown algae.

    Science.gov (United States)

    Lopez-Garcia, Martin; Masters, Nathan; O'Brien, Heath E; Lennon, Joseph; Atkinson, George; Cryan, Martin J; Oulton, Ruth; Whitney, Heather M

    2018-04-01

    Natural photonic crystals are responsible for strong reflectance at selective wavelengths in different natural systems. We demonstrate that intracellular opal-like photonic crystals formed from lipids within photosynthetic cells produce vivid structural color in the alga Cystoseira tamariscifolia . The reflectance of the opaline vesicles is dynamically responsive to environmental illumination. The structural color is present in low light-adapted samples, whereas higher light levels produce a slow disappearance of the structural color such that it eventually vanishes completely. Once returned to low-light conditions, the color re-emerges. Our results suggest that these complex intracellular natural photonic crystals are responsive to environmental conditions, changing their packing structure reversibly, and have the potential to manipulate light for roles beyond visual signaling.

  12. Network analysis shining light on parasite ecology and diversity.

    Science.gov (United States)

    Poulin, Robert

    2010-10-01

    The vast number of species making up natural communities, and the myriad interactions among them, pose great difficulties for the study of community structure, dynamics and stability. Borrowed from other fields, network analysis is making great inroads in community ecology and is only now being applied to host-parasite interactions. It allows a complex system to be examined in its entirety, as opposed to one or a few components at a time. This review explores what network analysis is and how it can be used to investigate parasite ecology. It also summarizes the first findings to emerge from network analyses of host-parasite interactions and identifies promising future directions made possible by this approach. Copyright © 2010 Elsevier Ltd. All rights reserved.

  13. Parasites of the hard clam Meretrix meretrix Linnaeus from Western Johor Straits, Malaysian

    Science.gov (United States)

    Azmi, Nur Fauzana; Ghaffar, Mazlan Abd.; Cob, Zaidi Che

    2014-09-01

    This study describes the apicomplexa as well as other parasites infecting organs/tissues of the hard clam Meretrix meretrix Linnaeus, from Merambong Shoal, Western Johor Straits, Malaysia. Samples were collected randomly by hand picking, in November and December 2013. Histological techniques were performed, stained using Masson's Trichrome protocol and observed under light microscope. The results showed that gonad and gill were the most infected organs followed by digestive gland, intestine and adductor muscle. No pathology condition was observed in the mantle. Histophatological examination showed that the gregarine, Nematopsis, unidentified coccidian and Perkinsus were found in the gill and gonad, and also in the numerous hemocytes. Other pathological conditions such as bacteria-like inclusion and intracellular bacteria were also observed in the same organs. Further investigations are needed particularly on other molluscs present at the study area. Understanding the morphology and pathology of parasites infecting mollusks are very important for management of the resources.

  14. Parasites

    Centers for Disease Control (CDC) Podcasts

    2010-05-06

    In this podcast, a listener wants to know what to do if he thinks he has a parasite or parasitic disease.  Created: 5/6/2010 by National Center for Emerging and Zoonotic Infectious Diseases (NCEZID).   Date Released: 5/6/2010.

  15. A Feast of Malaria Parasite Genomes.

    Science.gov (United States)

    Carlton, Jane M; Sullivan, Steven A

    2017-03-08

    The Plasmodium genus has evolved over time and across hosts, complexifying our understanding of malaria. In a recent Nature paper, Rutledge et al. (2017) describe the genome sequences of three major human malaria parasite species, providing insight into Plasmodium evolution and raising the question of how many species there are. Copyright © 2017 Elsevier Inc. All rights reserved.

  16. Secretome of obligate intracellular Rickettsia

    Science.gov (United States)

    Gillespie, Joseph J.; Kaur, Simran J.; Rahman, M. Sayeedur; Rennoll-Bankert, Kristen; Sears, Khandra T.; Beier-Sexton, Magda; Azad, Abdu F.

    2014-01-01

    The genus Rickettsia (Alphaproteobacteria, Rickettsiales, Rickettsiaceae) is comprised of obligate intracellular parasites, with virulent species of interest both as causes of emerging infectious diseases and for their potential deployment as bioterrorism agents. Currently, there are no effective commercially available vaccines, with treatment limited primarily to tetracycline antibiotics, although others (e.g. josamycin, ciprofloxacin, chloramphenicol, and azithromycin) are also effective. Much of the recent research geared toward understanding mechanisms underlying rickettsial pathogenicity has centered on characterization of secreted proteins that directly engage eukaryotic cells. Herein, we review all aspects of the Rickettsia secretome, including six secretion systems, 19 characterized secretory proteins, and potential moonlighting proteins identified on surfaces of multiple Rickettsia species. Employing bioinformatics and phylogenomics, we present novel structural and functional insight on each secretion system. Unexpectedly, our investigation revealed that the majority of characterized secretory proteins have not been assigned to their cognate secretion pathways. Furthermore, for most secretion pathways, the requisite signal sequences mediating translocation are poorly understood. As a blueprint for all known routes of protein translocation into host cells, this resource will assist research aimed at uniting characterized secreted proteins with their apposite secretion pathways. Furthermore, our work will help in the identification of novel secreted proteins involved in rickettsial ‘life on the inside’. PMID:25168200

  17. Brown-headed Cowbird parasitism of the Black-throated Sparrow in central Arizona

    Science.gov (United States)

    Johnson, M.J.; van Riper, Charles

    2004-01-01

    From 1994-1996 we investigated effects of Brown-headed Cowbird (Molothrus ater) parasitism on Black-throated Sparrow (Amphispiza bilineata) nesting success in the Verde Valley of central Arizona. Of 56 Black-throated Sparrow nests, 52% were parasitized. Black-throated Sparrows appear to respond to natural parasitism by accepting the cowbird egg, deserting the nest, or burying the cowbird egg. Removal and damage of host eggs by female cowbirds effectively reduced clutch size from an average of 3.4 to 1.9 eggs. Because of this reduced clutch size, Black-throated Sparrow reproductive success was significantly lower in parasitized nests (0.2 young fledged/ nest) as compared to nonparasitized nests (1.6 young fledged/nest). When comparing cowbird parasitism between two habitat types, we found significantly higher parasitism frequencies in crucifixion-thorn (Canotia holacantha) versus creosote-bush (Larrea divaricata) habitat. We argue that this difference in parasitism is due to the greater number of tall perches (e.g., shrubs >4 m) available in crucifixion-thorn habitat, providing vantage points for female cowbirds to better find Black-throated Sparrow nests.

  18. Natural infection of Didelphis aurita (Mammalia: Marsupialia) with Leishmania infantum in Brazil.

    Science.gov (United States)

    Carreira, João Carlos Araujo; da Silva, Alba Valéria Machado; de Pita Pereira, Daniela; Brazil, Reginaldo Peçanha

    2012-06-07

    The opossum Didelphis have been considered as natural hosts of Leishmania parasites in the New World, suggesting an important role in the epidemiology of Visceral Leishmaniasis (VL). Among six extant species that belong to the genus Didelphis, only two (D. marsupialis and D. albiventris), have been mentioned as natural hosts of Leishmania infantum in Brazil and Colombia. In the present paper, it is reported for the first time, the observation of intracellular parasites (amastigotes) in tissues of Didelphis aurita naturally infected with Leishmania infantum in Brazil. We also discuss some aspects associated to the relationship between L. infantum and the geographical distribution of some species of the genus Didelphis. The opossums studied were caught by wire traps (Tomahawk) in Barra de Guaratiba, a peri-urban area in Rio de Janeiro. The opossums were killed with an overdose of Thiopental sodium.At necropsy, macroscopic alterations were examined and samples from liver, spleen, lymph nodes, ear, abdominal skin, scent glands and bone marrow were collected for parasitological and molecular diagnoses. Forty-eight opossums were captured in an AVL endemic region, 30 being caught in a mangrove area and eighteen animals in a forest area near to some residential-yards. Among the thirty opossums trapped in the mangrove area, all of them were negative by both imprint and sera samples assayed on Dipstick Tests, that is a test based on a combination of protein-A colloidal gold conjugate and rk39 Leishmania antigen to detect anti-Leishmania antibody in serum or plasma. At the macroscopic examination one out of eighteen opossums, caught close to the forest, presented alterations compatible with spleen hypertrophy and three were positive by Dipstick Tests (16.6%) and presented amastigotes in the spleen and in one of them, the parasites were also observed in a submandibular lymph node. Leishmania infantum infections were confirmed through dot blot hybridization using a L. infantum

  19. Sex-specific effects of a parasite evolving in a female-biased host population.

    Science.gov (United States)

    Duneau, David; Luijckx, Pepijn; Ruder, Ludwig F; Ebert, Dieter

    2012-12-18

    Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  20. Sex-specific effects of a parasite evolving in a female-biased host population

    Directory of Open Access Journals (Sweden)

    Duneau David

    2012-12-01

    Full Text Available Abstract Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration, which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts.

  1. Sex-specific effects of a parasite evolving in a female-biased host population

    Science.gov (United States)

    2012-01-01

    Background Males and females differ in many ways and might present different opportunities and challenges to their parasites. In the same way that parasites adapt to the most common host type, they may adapt to the characteristics of the host sex they encounter most often. To explore this hypothesis, we characterized host sex-specific effects of the parasite Pasteuria ramosa, a bacterium evolving in naturally, strongly, female-biased populations of its host Daphnia magna. Results We show that the parasite proliferates more successfully in female hosts than in male hosts, even though males and females are genetically identical. In addition, when exposure occurred when hosts expressed a sexual dimorphism, females were more infected. In both host sexes, the parasite causes a similar reduction in longevity and leads to some level of castration. However, only in females does parasite-induced castration result in the gigantism that increases the carrying capacity for the proliferating parasite. Conclusions We show that mature male and female Daphnia represent different environments and reveal one parasite-induced symptom (host castration), which leads to increased carrying capacity for parasite proliferation in female but not male hosts. We propose that parasite induced host castration is a property of parasites that evolved as an adaptation to specifically exploit female hosts. PMID:23249484

  2. The Puf-family RNA-binding protein Puf2 controls sporozoite conversion to liver stages in the malaria parasite.

    Directory of Open Access Journals (Sweden)

    Katja Müller

    Full Text Available Malaria is a vector-borne infectious disease caused by unicellular, obligate intracellular parasites of the genus Plasmodium. During host switch the malaria parasite employs specialized latent stages that colonize the new host environment. Previous work has established that gametocytes, sexually differentiated stages that are taken up by the mosquito vector, control expression of genes required for mosquito colonization by translational repression. Sexual parasite development is controlled by a DEAD-box RNA helicase of the DDX6 family, termed DOZI. Latency of sporozoites, the transmission stage injected during an infectious blood meal, is controlled by the eIF2alpha kinase IK2, a general inhibitor of protein synthesis. Whether RNA-binding proteins participate in translational regulation in sporozoites remains to be studied. Here, we investigated the roles of two RNA-binding proteins of the Puf-family, Plasmodium Puf1 and Puf2, during sporozoite stage conversion. Our data reveal that, in the rodent malaria parasite P. berghei, Puf2 participates in the regulation of IK2 and inhibits premature sporozoite transformation. Inside mosquito salivary glands puf2⁻ sporozoites transform over time to round forms resembling early intra-hepatic stages. As a result, mutant parasites display strong defects in initiating a malaria infection. In contrast, Puf1 is dispensable in vivo throughout the entire Plasmodium life cycle. Our findings support the notion of a central role for Puf2 in parasite latency during switch between the insect and mammalian hosts.

  3. Leishmania development in sand flies: parasite-vector interactions overview.

    Science.gov (United States)

    Dostálová, Anna; Volf, Petr

    2012-12-03

    Leishmaniases are vector-borne parasitic diseases with 0.9 - 1.4 million new human cases each year worldwide. In the vectorial part of the life-cycle, Leishmania development is confined to the digestive tract. During the first few days after blood feeding, natural barriers to Leishmania development include secreted proteolytic enzymes, the peritrophic matrix surrounding the ingested blood meal and sand fly immune reactions. As the blood digestion proceeds, parasites need to bind to the midgut epithelium to avoid being excreted with the blood remnant. This binding is strictly stage-dependent as it is a property of nectomonad and leptomonad forms only. While the attachment in specific vectors (P. papatasi, P. duboscqi and P. sergenti) involves lipophosphoglycan (LPG), this Leishmania molecule is not required for parasite attachment in other sand fly species experimentally permissive for various Leishmania. During late-stage infections, large numbers of parasites accumulate in the anterior midgut and produce filamentous proteophosphoglycan creating a gel-like plug physically obstructing the gut. The parasites attached to the stomodeal valve cause damage to the chitin lining and epithelial cells of the valve, interfering with its function and facilitating reflux of parasites from the midgut. Transformation to metacyclic stages highly infective for the vertebrate host is the other prerequisite for effective transmission. Here, we review the current state of knowledge of molecular interactions occurring in all these distinct phases of parasite colonization of the sand fly gut, highlighting recent discoveries in the field.

  4. The path to host extinction can lead to loss of generalist parasites.

    Science.gov (United States)

    Farrell, Maxwell J; Stephens, Patrick R; Berrang-Ford, Lea; Gittleman, John L; Davies, T Jonathan

    2015-07-01

    Host extinction can alter disease transmission dynamics, influence parasite extinction and ultimately change the nature of host-parasite systems. While theory predicts that single-host parasites are among the parasite species most susceptible to extinction following declines in their hosts, documented parasite extinctions are rare. Using a comparative approach, we investigate how the richness of single-host and multi-host parasites is influenced by extinction risk among ungulate and carnivore hosts. Host-parasite associations for free-living carnivores (order Carnivora) and terrestrial ungulates (orders Perissodactyla + Cetartiodactyla minus cetaceans) were merged with host trait data and IUCN Red List status to explore the distribution of single-host and multi-host parasites among threatened and non-threatened hosts. We find that threatened ungulates harbour a higher proportion of single-host parasites compared to non-threatened ungulates, which is explained by decreases in the richness of multi-host parasites. However, among carnivores threat status is not a significant predictor of the proportion of single-host parasites, or the richness of single-host or multi-host parasites. The loss of multi-host parasites from threatened ungulates may be explained by decreased cross-species contact as hosts decline and habitats become fragmented. Among carnivores, threat status may not be important in predicting patterns of parasite specificity because host decline results in equal losses of both single-host parasites and multi-host parasites through reduction in average population density and frequency of cross-species contact. Our results contrast with current models of parasite coextinction and highlight the need for updated theories that are applicable across host groups and account for both inter- and intraspecific contact. © 2015 The Authors. Journal of Animal Ecology © 2015 British Ecological Society.

  5. Parasite infection and immune and health-state in wild fish exposed to marine pollution.

    Science.gov (United States)

    Sueiro, María Cruz; Bagnato, Estefanía; Palacios, María Gabriela

    2017-06-15

    Association between parasitism and immunity and health-state was investigated in wild Sebastes oculatus after having determined that pollution exposure is associated with altered immune and health-state parameters. Given the importance of the immune system in antiparasite defense we predicted: (i) parasite infection would be higher in pollution-exposed than in control fish and (ii) fish with lower immune and health-state parameters would show higher parasitism than fish in better condition. Metazoan parasite fauna was compared between pollution-exposed and non-exposed fish and parasitic indices were correlated with integrated measures of immunity and health-state. Results provided little support for the predictions; some parasite taxa increased, some decreased, and some were not affected in pollution-exposed fish despite their altered health and immunity. Furthermore, there was no link between individual immune and health-state parameters and parasitism. These findings highlight the complexity of host-parasite-environment interactions in relation to pollution in natural marine ecosystems. Copyright © 2017 Elsevier Ltd. All rights reserved.

  6. Parasitization by Scleroderma guani influences expression of superoxide dismutase genes in Tenebrio molitor.

    Science.gov (United States)

    Zhu, Jia-Ying; Ze, Sang-Zi; Stanley, David W; Yang, Bin

    2014-09-01

    Superoxide dismutase (SOD) is an antioxidant enzyme involved in detoxifying reactive oxygen species. In this study, we identified genes encoding the extracellular and intracellular copper-zinc SODs (ecCuZnSOD and icCuZnSOD) and a manganese SOD (MnSOD) in the yellow mealworm beetle, Tenebrio molitor. The cDNAs for ecCuZnSOD, icCuZnSOD, and MnSOD, respectively, encode 24.55, 15.81, and 23.14 kDa polypeptides, which possess structural features typical of other insect SODs. They showed 20-94% identity to other known SOD sequences from Bombyx mori, Musca domestica, Nasonia vitripennis, Pediculus humanus corporis, and Tribolium castaneum. Expression of these genes was analyzed in selected tissues and developmental stages, and following exposure to Escherichia coli and parasitization by Scleroderma guani. We recorded expression of all three SODs in cuticle, fat body, and hemocytes and in the major developmental stages. Relatively higher expressions were detected in late-instar larvae and pupae, compared to other developmental stages. Transcriptional levels were upregulated following bacterial infection. Analysis of pupae parasitized by S. guani revealed that expression of T. molitor SOD genes was significantly induced following parasitization. We infer that these genes act in immune response and in host-parasitoid interactions. © 2014 Wiley Periodicals, Inc.

  7. Parasites and cancers: parasite antigens as possible targets for cancer immunotherapy.

    Science.gov (United States)

    Darani, Hossein Yousofi; Yousefi, Morteza

    2012-12-01

    An adverse relationship between some parasite infections and cancer in the human population has been reported by different research groups. Anticancer activity of some parasites such as Trypanosoma cruzi, Toxoplasma gondii, Toxocara canis, Acantamoeba castellani and Plasmodium yoelii has been shown in experimental animals. Moreover, it has been shown that cancer-associated mucin-type O-glycan compositions are made by parasites, therefore cancers and parasites have common antigens. In this report anticancer activities of some parasites have been reviewed and the possible mechanisms of these actions have also been discussed.

  8. Host-parasite genotypic interactions in the honey bee: the dynamics of diversity.

    Science.gov (United States)

    Evison, Sophie E F; Fazio, Geraldine; Chappell, Paula; Foley, Kirsten; Jensen, Annette B; Hughes, William O H

    2013-07-01

    Parasites are thought to be a major driving force shaping genetic variation in their host, and are suggested to be a significant reason for the maintenance of sexual reproduction. A leading hypothesis for the occurrence of multiple mating (polyandry) in social insects is that the genetic diversity generated within-colonies through this behavior promotes disease resistance. This benefit is likely to be particularly significant when colonies are exposed to multiple species and strains of parasites, but host-parasite genotypic interactions in social insects are little known. We investigated this using honey bees, which are naturally polyandrous and consequently produce genetically diverse colonies containing multiple genotypes (patrilines), and which are also known to host multiple strains of various parasite species. We found that host genotypes differed significantly in their resistance to different strains of the obligate fungal parasite that causes chalkbrood disease, while genotypic variation in resistance to the facultative fungal parasite that causes stonebrood disease was less pronounced. Our results show that genetic variation in disease resistance depends in part on the parasite genotype, as well as species, with the latter most likely relating to differences in parasite life history and host-parasite coevolution. Our results suggest that the selection pressure from genetically diverse parasites might be an important driving force in the evolution of polyandry, a mechanism that generates significant genetic diversity in social insects.

  9. Presence of ecto-protein tyrosine phosphatase activity is vital for survival of Setaria cervi, a bovine filarial parasite.

    Science.gov (United States)

    Singh, Neetu; Heneberg, Petr; Rathaur, Sushma

    2014-10-01

    The ecto protein tyrosine phosphatases (PTP) are known to play a crucial role in the pathogenesis and survival of the intracellular parasites. However, their presence and role in filarial parasites is still unknown. We found a significant amount of tyrosine phosphatase activity in the surface antigen fraction extracted from Setaria cervi (S. cervi), a bovine filarial parasite. An antibody designed against the conserved catalytic core of human protein tyrosine phosphatases, PTP1B cross reacted with a 63 kDa band in the surface antigen. We detected a significant amount of PTP activity in the intact S. cervi adult parasites as well as microfilariae in this study for the first time. This PTP may be localized on the surface of the parasite with an exposed active site available for the external substrates. The PTP activity was also inhibited by sodium orthovanadate and phenyl arsine oxide, specific inhibitors of PTP in both the life stages. The Km and Vmax for PTP in the adult parasites and microfilariae were determined to be 2.574 ± 0.14 mM; 206.3 ± 2.75 μM Pi/h/two parasites and 5.510 ± 0.59 mM; 62.27 ± 2.27 μM Pi/h/10(6) parasites respectively using O-P-L-Tyrosine as substrate. Interestingly, a positive correlation was observed between the inhibition in PTP activity and reduction in the motility/ viability of the parasites when they were subjected to the specific PTP inhibitors (Orthovanadate and Phenyl arsine oxide) for 4 h in the KRB maintenance medium. The activity was also significantly inhibited in the parasites exposed to antifilarial drug/compounds for e.g. Diethylcarbamazine, Acetylsalicylic Acid and SK7, a methyl chalcone. Therefore suggesting a possible role played by PTP in the survival of the parasite, its interaction with the host as well as in the screening of newly synthesized antifilarials/drugs.

  10. Contrasting parasite communities among allopatric colour morphs of the Lake Tanganyika cichlid Tropheus.

    Science.gov (United States)

    Raeymaekers, Joost A M; Hablützel, Pascal I; Grégoir, Arnout F; Bamps, Jolien; Roose, Anna K; Vanhove, Maarten P M; Van Steenberge, Maarten; Pariselle, Antoine; Huyse, Tine; Snoeks, Jos; Volckaert, Filip A M

    2013-02-14

    Adaptation to different ecological environments is thought to drive ecological speciation. This phenomenon culminates in the radiations of cichlid fishes in the African Great Lakes. Multiple characteristic traits of cichlids, targeted by natural or sexual selection, are considered among the driving factors of these radiations. Parasites and pathogens have been suggested to initiate or accelerate speciation by triggering both natural and sexual selection. Three prerequisites for parasite-driven speciation can be inferred from ecological speciation theory. The first prerequisite is that different populations experience divergent infection levels. The second prerequisite is that these infection levels cause divergent selection and facilitate adaptive divergence. The third prerequisite is that parasite-driven adaptive divergence facilitates the evolution of reproductive isolation. Here we investigate the first and the second prerequisite in allopatric chromatically differentiated lineages of the rock-dwelling cichlid Tropheus spp. from southern Lake Tanganyika (Central Africa). Macroparasite communities were screened in eight populations belonging to five different colour morphs. Parasite communities were mainly composed of acanthocephalans, nematodes, monogeneans, copepods, branchiurans, and digeneans. In two consecutive years (2011 and 2012), we observed significant variation across populations for infection with acanthocephalans, nematodes, monogeneans of the genera Gyrodactylus and Cichlidogyrus, and the copepod Ergasilus spp. Overall, parasite community composition differed significantly between populations of different colour morphs. Differences in parasite community composition were stable in time. The genetic structure of Tropheus populations was strong and showed a significant isolation-by-distance pattern, confirming that spatial isolation is limiting host dispersal. Correlations between parasite community composition and Tropheus genetic differentiation were

  11. Effect of age, photoperiod and host availability on the parasitism behavior of Oomyzus sokolowskii Kurdjumov (Hymenoptera: Eulophidae)

    International Nuclear Information System (INIS)

    Silva-Torres, Christian S.A.; Barros, Reginaldo; Torres, Jorge B.

    2009-01-01

    The high reproduction rate, potential to cause damage, wide geographic distribution and resistance to insecticides of Plutella xylostella (L.) makes difficult its efficient control. However, larvae and pupae of this pest are naturally parasitized by Oomyzus Sokolowskii (Kurdjumov), providing opportunities to improve the natural parasitism. This study investigated the effects of the age of adult parasitoids, host availability and time of exposure on O. sokolowskii parasitism behavior. The number of larvae encounters by parasitoid females and the parasitism rate increased with parasitoid age up to 96 h. The parasitization was higher when wasps received a constant number of hosts daily in comparison with a random number (13.3 versus 8.9 larvae parasitized). Female parasitization activity was maintained up to the age of 20 days in both treatments and exhibited similar longevity (constant host = 33.5 d; and random host = 34.7 d). The progeny produced per female and the number of parasitoids emerged per host significantly decreased as wasps aged. There was no significant effect of the light regime (12 h darkness or 12 h light exposure) on the parasitization, although parasitoid was more active after 3 h of light exposure. Therefore, further studies on field application of O. sokolowskii should consider the release of 48 h - to 72 h - old parasitoids at dawn as a way to increase the success of host parasitization. (author)

  12. The ecology of fish parasites with particular reference to helminth parasites and their salmonid fish hosts in Welsh rivers: a review of some of the central questions.

    Science.gov (United States)

    Thomas, J D

    2002-01-01

    Ecological studies carried out in Welsh rivers on the feeding behaviour of salmonid fish, their helminth parasites and intermediate hosts in the early 1950s and in 1998 have been used as a basis to review the literature dealing with the following questions. First, how are the helminth populations dispersed in space-time? Second, to what extent are the distributional patterns and the life history strategies of the parasites influenced by physicochemical factors? Third, to what extent are populations of helmith parasites in salmonid fish influenced by host characteristics including the genome, sex, age, size, social position and Feeding behaviour? Fourth, are the populations of parasites regulated in a density-dependent manner? Fifth, do the parasites influence the survival and wellbeing of their salmonid hosts and the evolution of sex? Sixth, to what extent is the parasite community influenced by environmental changes including those of an anthropogenic nature and can the parasites be used as bioindicators of pollution? As with most parasites the helminth species found were highly overdispersed thus making it necessary to undertake a log10 (1 + x) conversion for statistical analyses. Statistical analyses confirm that the genome, age and sex of salmonid fish hosts, the station and seasonal change in radiation levels were significant factors in predicting the number of parasites. The evidence given supports the hypothesis that the feeding behaviour and habitat selection by the host fish, their position in the social hierarchy and the overdispersed nature of the transmission sites are the key factors in causing differences in the parasitic fauna related to host species, age, size and sex. Differences in the helminth parasite community related to station can be explained on the basis of differences in water types, sediments and chemistry. Although the evidence presented is in accord with the consensus view that temperature is correlated with seasonal changes in the

  13. A PKA survival pathway inhibited by DPT-PKI, a new specific cell permeable PKA inhibitor, is induced by T. annulata in parasitized B-lymphocytes.

    Science.gov (United States)

    Guergnon, Julien; Dessauge, Frederic; Traincard, François; Cayla, Xavier; Rebollo, Angelita; Bost, Pierre Etienne; Langsley, Gordon; Garcia, Alphonse

    2006-08-01

    T. annulata, an intracellular pathogenic parasite of the Aplicomplexa protozoan family infects bovine B-lymphocytes and macrophages. Parasitized cells that become transformed survive and proliferate independently of exogenous growth factors. In the present study, we used the isogenic non parasitized BL3 and parasitized TBL3 B cell lines, as a model to evaluate the contribution of two-major PI3-K- and PKA-dependent anti-apoptotic pathways in the survival of T. annulata parasitized B lymphocytes. We found that T. annulata increases PKA activity, induces over-expression of the catalytic subunit and down-regulates the pro-survival phosphorylation state of Akt/PKB. Consistent with a role of PKA activation in survival, two pharmacological inhibitors H89 and KT5720 ablate PKA-dependent survival of parasitized cells. To specifically inhibit PKA pro-survival pathways we linked the DPTsh1 peptide shuttle sequence to PKI(5-24) and we generated DPT-PKI, a cell permeable PKI. DPT-PKI specifically inhibited PKA activity in bovine cell extracts and, as expected, also inhibited the PKA-dependent survival of T. annulata parasitized TBL3 cells. Thus, parasite-dependent constitutive activation of PKA in TBL3 cells generates an anti-apoptotic pathway that can protect T. annulata-infected B cells from apoptosis. These results also indicate that DPT-PKI could be a powerful tool to inhibit PKA pathways in other cell types.

  14. Parasites and diseases in marine copepods: Challenges for future mass-production of live feed for fish larva production

    DEFF Research Database (Denmark)

    Skovgaard, Alf

    Copepods are the natural food for many marine fish larvae, and the use of cultured copepods as life feed is, therefore, becoming increasingly important as more marine fish species are being produced in aquaculture. Large-scale cultivation of copepods may be challenged by diseases and parasites....... In nature, marine copepods are hosts for parasitic organisms of many different taxonomic groups, including e.g. dinoflagellates, ciliates, paramyxans, nematodes and even other crustaceans. In addition, several parasites of copepods have yet not been investigated in relation to their taxonomic affiliation...

  15. Fishing drives declines in fish parasite diversity and has variable effects on parasite abundance.

    Science.gov (United States)

    Wood, Chelsea L; Sandin, Stuart A; Zgliczynski, Brian; Guerra, Ana Sofía; Micheli, Fiorenza

    2014-07-01

    Despite the ubiquity and ecological importance of parasites, relatively few studies have assessed their response to anthropogenic environmental change. Heuristic models have predicted both increases and decreases in parasite abundance in response to human disturbance, with empirical support for both. However, most studies focus on one or a few selected parasite species. Here, we assess the abundance of parasites of seven species of coral reef fishes collected from three fished and three unfished islands of the Line Islands archipelago in the central equatorial Pacific. Because we chose fish hosts that spanned different trophic levels, taxonomic groups, and body sizes, we were able to compare parasite responses across a broad cross section of the total parasite community in the presence and absence of fishing, a major human impact on marine ecosystems. We found that overall parasite species richness was substantially depressed on fished islands, but that the response of parasite abundance varied among parasite taxa: directly transmitted parasites were significantly more abundant on fished than on unfished islands, while the reverse was true for trophically transmitted parasites. This probably arises because trophically transmitted parasites require multiple host species, some of which are the top predators most sensitive to fishing impacts. The increase in directly transmitted parasites appeared to be due to fishing-driven compensatory increases in the abundance of their hosts. Together, these results provide support for the predictions of both heuristic models, and indicate that the direction of fishing's impact on parasite abundance is mediated by parasite traits, notably parasite transmission strategies.

  16. Paradigms for parasite conservation.

    Science.gov (United States)

    Dougherty, Eric R; Carlson, Colin J; Bueno, Veronica M; Burgio, Kevin R; Cizauskas, Carrie A; Clements, Christopher F; Seidel, Dana P; Harris, Nyeema C

    2016-08-01

    Parasitic species, which depend directly on host species for their survival, represent a major regulatory force in ecosystems and a significant component of Earth's biodiversity. Yet the negative impacts of parasites observed at the host level have motivated a conservation paradigm of eradication, moving us farther from attainment of taxonomically unbiased conservation goals. Despite a growing body of literature highlighting the importance of parasite-inclusive conservation, most parasite species remain understudied, underfunded, and underappreciated. We argue the protection of parasitic biodiversity requires a paradigm shift in the perception and valuation of their role as consumer species, similar to that of apex predators in the mid-20th century. Beyond recognizing parasites as vital trophic regulators, existing tools available to conservation practitioners should explicitly account for the unique threats facing dependent species. We built upon concepts from epidemiology and economics (e.g., host-density threshold and cost-benefit analysis) to devise novel metrics of margin of error and minimum investment for parasite conservation. We define margin of error as the risk of accidental host extinction from misestimating equilibrium population sizes and predicted oscillations, while minimum investment represents the cost associated with conserving the additional hosts required to maintain viable parasite populations. This framework will aid in the identification of readily conserved parasites that present minimal health risks. To establish parasite conservation, we propose an extension of population viability analysis for host-parasite assemblages to assess extinction risk. In the direst cases, ex situ breeding programs for parasites should be evaluated to maximize success without undermining host protection. Though parasitic species pose a considerable conservation challenge, adaptations to conservation tools will help protect parasite biodiversity in the face of

  17. Signaling in Parasitic Nematodes: Physicochemical Communication Between Host and Parasite and Endogenous Molecular Transduction Pathways Governing Worm Development and Survival.

    Science.gov (United States)

    Lok, James B

    2016-12-01

    chemotherapeutic strategies. Signaling between parasites and their hosts' immune systems also occurs and serves to modulate these responses to allow chronic infection and down regulate acute inflammatory responses. Knowledge of the precise nature of this signaling may form the basis of immunological interventions to protect against parasitism or related lesions and to alleviate inflammatory diseases of various etiologies.

  18. Chimpanzee malaria parasites related to Plasmodium ovale in Africa.

    Directory of Open Access Journals (Sweden)

    Linda Duval

    Full Text Available Since the 1970's, the diversity of Plasmodium parasites in African great apes has been neglected. Surprisingly, P. reichenowi, a chimpanzee parasite, is the only such parasite to have been molecularly characterized. This parasite is closely phylogenetically related to P. falciparum, the principal cause of the greatest malaria burden in humans. Studies of malaria parasites from anthropoid primates may provide relevant phylogenetic information, improving our understanding of the origin and evolutionary history of human malaria species. In this study, we screened 130 DNA samples from chimpanzees (Pan troglodytes and gorillas (Gorilla gorilla from Cameroon for Plasmodium infection, using cytochrome b molecular tools. Two chimpanzees from the subspecies Pan t. troglodytes presented single infections with Plasmodium strains molecularly related to the human malaria parasite P. ovale. These chimpanzee parasites and 13 human strains of P. ovale originated from a various sites in Africa and Asia were characterized using cytochrome b and cytochrome c oxidase 1 mitochondrial partial genes and nuclear ldh partial gene. Consistent with previous findings, two genetically distinct types of P. ovale, classical and variant, were observed in the human population from a variety of geographical locations. One chimpanzee Plasmodium strain was genetically identical, on all three markers tested, to variant P. ovale type. The other chimpanzee Plasmodium strain was different from P. ovale strains isolated from humans. This study provides the first evidence of possibility of natural cross-species exchange of P. ovale between humans and chimpanzees of the subspecies Pan t. troglodytes.

  19. Host-specific races in the holoparasitic angiosperm Orobanche minor: implications for speciation in parasitic plants.

    Science.gov (United States)

    Thorogood, C J; Rumsey, F J; Hiscock, S J

    2009-05-01

    Orobanche minor is a root-holoparasitic angiosperm that attacks a wide range of host species, including a number of commonly cultivated crops. The extent to which genetic divergence among natural populations of O. minor is influenced by host specificity has not been determined previously. Here, the host specificity of natural populations of O. minor is quantified for the first time, and evidence that this species may comprise distinct physiological races is provided. A tripartite approach was used to examine the physiological basis for the divergence of populations occurring on different hosts: (1) host-parasite interactions were cultivated in rhizotron bioassays in order to quantify the early stages of the infection and establishment processes; (2) using reciprocal-infection experiments, parasite races were cultivated on their natural and alien hosts, and their fitness determined in terms of biomass; and (3) the anatomy of the host-parasite interface was investigated using histochemical techniques, with a view to comparing the infection process on different hosts. Races occurring naturally on red clover (Trifolium pratense) and sea carrot (Daucus carota ssp. gummifer) showed distinct patterns of host specificity: parasites cultivated in cross-infection studies showed a higher fitness on their natural hosts, suggesting that races show local adaptation to specific hosts. In addition, histological evidence suggests that clover and carrot roots vary in their responses to infection. Different root anatomy and responses to infection may underpin a physiological basis for host specificity. It is speculated that host specificity may isolate races of Orobanche on different hosts, accelerating divergence and ultimately speciation in this genus. The rapid life cycle and broad host range of O. minor make this species an ideal model with which to study the interactions of parasitic plants with their host associates.

  20. Immunity to Visceral Leishmaniasis Using Genetically Defined Live-Attenuated Parasites

    Directory of Open Access Journals (Sweden)

    Angamuthu Selvapandiyan

    2012-01-01

    Full Text Available Leishmaniasis is a protozoan parasitic disease endemic to the tropical and subtropical regions of the world, with three major clinical forms, self-healing cutaneous leishmaniasis (CL, mucocutaneous leishmaniasis (MCL, and visceral leishmaniasis (VL. Drug treatments are expensive and often result in the development of drug resistance. No vaccine is available against leishmaniasis. Subunit Leishmania vaccine immunization in animal models has shown some efficacy but little or none in humans. However, individuals who recover from natural infection are protected from reinfection and develop life-long protection, suggesting that infection may be a prerequisite for immunological memory. Thus, genetically altered live-attenuated parasites with controlled infectivity could achieve such memory. In this paper, we discuss development and characteristics of genetically altered, live-attenuated Leishmania donovani parasites and their possible use as vaccine candidates against VL. In addition, we discuss the challenges and other considerations in the use of live-attenuated parasites.

  1. Role of efflux pumps and intracellular thiols in natural antimony resistant isolates of Leishmania donovani.

    Directory of Open Access Journals (Sweden)

    Smita Rai

    Full Text Available BACKGROUND: In view of the recent upsurge in the phenomenon of therapeutic failure, drug resistance in Leishmania, developed under natural field conditions, has become a great concern yet little understood. Accordingly, the study of determinants of antimony resistance is urgently warranted. Efflux transporters have been reported in Leishmania but their role in clinical resistance is still unknown. The present study was designed to elucidate the mechanism of natural antimony resistance in L. donovani field isolates by analyzing the functionality of efflux pump(s and expression profiles of known genes involved in transport and thiol based redox metabolism. METHODOLOGY/PRINCIPAL FINDINGS: We selected 7 clinical isolates (2 sensitive and 5 resistant in addition to laboratory sensitive reference and SbIII resistant mutant strains for the present study. Functional characterization using flow cytometry identified efflux pumps that transported substrates of both P-gp and MRPA and were inhibited by the calmodulin antagonist trifluoperazine. For the first time, verapamil sensitive efflux pumps for rhodamine 123 were observed in L. donovani that were differentially active in resistant isolates. RT-PCR confirmed the over-expression of MRPA in isolates with high resistance index only. Resistant isolates also exhibited consistent down regulation of AQP1 and elevated intracellular thiol levels which were accompanied with increased expression of ODC and TR genes. Interestingly, γ-GCS is not implicated in clinical resistance in L. donovani isolates. CONCLUSIONS/SIGNIFICANCE: Here we demonstrate for the first time, the role of P-gp type plasma membrane efflux transporter(s in antimony resistance in L. donovani field isolates. Further, decreased levels of AQP1 and elevated thiols levels have emerged as biomarkers for clinical resistance.

  2. Parasites as prey

    NARCIS (Netherlands)

    Goedknegt, M.A.; Welsh, J.E.; Thieltges, D.W.

    2012-01-01

    Parasites are usually considered to use their hosts as a resource for energy. However, there is increasing awareness that parasites can also become a resource themselves and serve as prey for other organisms. Here we describe various types of predation in which parasites act as prey for other

  3. Neutrophils reduce the parasite burden in Leishmania (Leishmania amazonensis-infected macrophages.

    Directory of Open Access Journals (Sweden)

    Erico Vinícius de Souza Carmo

    2010-11-01

    Full Text Available Studies on the role of neutrophils in Leishmania infection were mainly performed with L. (L major, whereas less information is available for L. (L amazonensis. Previous results from our laboratory showed a large infiltrate of neutrophils in the site of infection in a mouse strain resistant to L. (L. amazonensis (C3H/HePas. In contrast, the susceptible strain (BALB/c displayed a predominance of macrophages harboring a high number of amastigotes and very few neutrophils. These findings led us to investigate the interaction of inflammatory neutrophils with L. (L. amazonensis-infected macrophages in vitro.Mouse peritoneal macrophages infected with L. (L. amazonensis were co-cultured with inflammatory neutrophils, and after four days, the infection was quantified microscopically. Data are representative of three experiments with similar results. The main findings were 1 intracellular parasites were efficiently destroyed in the co-cultures; 2 the leishmanicidal effect was similar when cells were obtained from mouse strains resistant (C3H/HePas or susceptible (BALB/c to L. (L. amazonensis; 3 parasite destruction did not require contact between infected macrophages and neutrophils; 4 tumor necrosis factor alpha (TNF-α, neutrophil elastase and platelet activating factor (PAF were involved with the leishmanicidal activity, and 5 destruction of the parasites did not depend on generation of oxygen or nitrogen radicals, indicating that parasite clearance did not involve the classical pathway of macrophage activation by TNF-α, as reported for other Leishmania species.The present results provide evidence that neutrophils in concert with macrophages play a previously unrecognized leishmanicidal effect on L. (L. amazonensis. We believe these findings may help to understand the mechanisms involved in innate immunity in cutaneous infection by this Leishmania species.

  4. Energetic cost of bot fly parasitism in free-ranging eastern chipmunks.

    Science.gov (United States)

    Careau, Vincent; Thomas, Donald W; Humphries, Murray M

    2010-02-01

    The energy and nutrient demands of parasites on their hosts are frequently invoked as an explanation for negative impacts of parasitism on host survival and reproductive success. Although cuterebrid bot flies are among the physically largest and most-studied insect parasites of mammals, the only study conducted on metabolic consequences of bot fly parasitism revealed a surprisingly small effect of bot flies on host metabolism. Here we test the prediction that bot fly parasitism increases the resting metabolic rate (RMR) of free-ranging eastern chipmunks (Tamias striatus), particularly in juveniles who have not previously encountered parasites and have to allocate energy to growth. We found no effect of bot fly parasitism on adults. In juveniles, however, we found that RMR strongly increased with the number of bot fly larvae hosted. For a subset of 12 juveniles during a year where parasite prevalence was particularly high, we also compared the RMR before versus during the peak of bot fly prevalence, allowing each individual to act as its own control. Each bot fly larva resulted in a approximately 7.6% increase in the RMR of its host while reducing juvenile growth rates. Finally, bot fly parasitism at the juvenile stage was positively correlated with adult stage RMR, suggesting persistent effects of bot flies on RMR. This study is the first to show an important effect of bot fly parasitism on the metabolism and growth of a wild mammal. Our work highlights the importance of studying cost of parasitism over multiple years in natural settings, as negative effects on hosts are more likely to emerge in periods of high energetic demand (e.g. growing juveniles) and/or in harsh environmental conditions (e.g. low food availability).

  5. Virus epidemics can lead to a population-wide spread of intragenomic parasites in a previously parasite-free asexual population.

    Science.gov (United States)

    Jalasvuori, Matti; Lehtonen, Jussi

    2014-03-01

    Sexual reproduction is problematic to explain due to its costs, most notably the twofold cost of sex. Yet, sex has been suggested to be favourable in the presence of proliferating intragenomic parasites given that sexual recombination provides a mechanism to confine the accumulation of deleterious mutations. Kraaijeveld et al. compared recently the accumulation of transposons in sexually and asexually reproducing lines of the same species, the parasitoid wasp Leptopilina clavipes. They discovered that within asexually reproducing wasps, the number of gypsy-like retrotransposons was increased fourfold, whereas other retrotransposons were not. Interestingly, gypsy-like retrotransposons are closely related to retroviruses. Endogenous retroviruses are retroviruses that have integrated to the germ line cells and are inherited thereafter vertically. They can also replicate within the genome similarly to retrotransposons as well as form virus particles and infect previously uninfected cells. This highlights the possibility that endogenous retroviruses could play a role in the evolution of sexual reproduction. Here, we show with an individual-based computational model that a virus epidemic within a previously parasite-free asexual population may establish a new intragenomic parasite to the population. Moreover and in contrast to other transposons, the possibility of endogenous viruses to maintain a virus epidemic and simultaneously provide resistance to individuals carrying active endogenous viruses selects for the presence of active intragenomic parasites in the population despite their deleterious effects. Our results suggest that the viral nature of certain intragenomic parasites should be taken into account when sex and its benefits are being considered. © 2014 John Wiley & Sons Ltd.

  6. Urbanization breaks up host-parasite interactions: a case study on parasite community ecology of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient.

    Science.gov (United States)

    Calegaro-Marques, Cláudia; Amato, Suzana B

    2014-01-01

    Urbanization drastically alters natural ecosystems and the structure of their plant and animal communities. Whereas some species cope successfully with these environmental changes, others may go extinct. In the case of parasite communities, the expansion of urban areas has a critical effect by changing the availability of suitable substrates for the eggs or free-larval stages of those species with direct life cycles or for the range of hosts of those species with complex cycles. In this study we investigated the influence of the degree of urbanization and environmental heterogeneity on helminth richness, abundance and community structure of rufous-bellied thrushes (Turdus rufiventris) along a rural-urban gradient in the metropolitan region of Porto Alegre, State of Rio Grande do Sul, Brazil. This common native bird species of southern Brazil hosts 15 endoparasite species at the study region. A total of 144 thrushes were collected with mist nets at 11 sites. The degree of urbanization and environmental heterogeneity were estimated by quantifying five landscape elements: buildings, woodlands, fields, bare lands, and water. Landscape analyses were performed at two spatial scales (10 and 100 ha) taking into account home range size and the potential dispersal distance of thrushes and their prey (intermediate hosts). Mean parasite richness showed an inverse relationship with the degree of urbanization, but a positive relationship with environmental heterogeneity. Changes in the structure of component communities along the rural-urban gradient resulted from responses to the availability of particular landscape elements that are compatible with the parasites' life cycles. We found that the replacement of natural environments with buildings breaks up host-parasite interactions, whereas a higher environmental (substrate) diversity allows the survival of a wider range of intermediate hosts and vectors and their associated parasites.

  7. Hypothetical physicochemical mechanisms of some intracellular processes: The hydrate hypothesis of mitosis and DNA replication

    International Nuclear Information System (INIS)

    Kadyshevich, E.A.; Ostrovskii, V.E.

    2007-01-01

    A DNA replication, mitosis, and binary fission hydrate hypothesis (MRH hypothesis) allowing non-trivial explanations for the physicochemical mechanisms of some intracellular processes is proposed. The hypothesis has a thermodynamic basis and is initiated by original experimental calorimetric and kinetic studies of the behavior of functional organic polymer and monomer substances in highly concentrated aqueous solutions. Experimental data demonstrating the occurrence of a short-range ordering in concentrated aqueous solutions of such substances are included. Hypothetical simple non-enzymatic unified mechanisms for the natural processes of DNA local unwinding preceding the start of duplication, DNA replication, formation and disappearance of the protein bonds between sister chromatids in the centromere region of eukaryotic DNA and in the centromere-like region of prokaryotic DNA, moving of daughter chromosomes apart to the opposite sides of cells in late anaphase, and formation of the nuclear envelopes in telophase and intracellular membranes between the newly formed nuclei in cytokinesis are formulated. The nature of a number of other intracellular phenomena is discussed

  8. Canine visceral leishmaniasis: a remarkable histopathological picture of one asymptomatic animal reported from Belo Horizonte, Minas Gerais, Brazil

    OpenAIRE

    Xavier,S.C.; Chiarelli,I.M.; Lima,W.G.; Gonçalves,R.; Tafuri,W.L.

    2006-01-01

    A remarkable histopathological picture of one asymptomatic dog naturally infected with Leishmania infantum (syn. chagasi) has been presented. Intracellular parasites were ease found in macrophages of all exanimated organs, especially in skin. Embedded paraffin tissues of liver, spleen, axillary and popliteal lymph nodes, and skin (ear, muzzle and abdomen) were stained by hematoxylin and eosin and by immunocytochemical reaction (streptoavidin-peroxidase method) to detect parasites. All organs ...

  9. ABMA, a small molecule that inhibits intracellular toxins and pathogens by interfering with late endosomal compartments.

    Science.gov (United States)

    Wu, Yu; Pons, Valérie; Goudet, Amélie; Panigai, Laetitia; Fischer, Annette; Herweg, Jo-Ana; Kali, Sabrina; Davey, Robert A; Laporte, Jérôme; Bouclier, Céline; Yousfi, Rahima; Aubenque, Céline; Merer, Goulven; Gobbo, Emilie; Lopez, Roman; Gillet, Cynthia; Cojean, Sandrine; Popoff, Michel R; Clayette, Pascal; Le Grand, Roger; Boulogne, Claire; Tordo, Noël; Lemichez, Emmanuel; Loiseau, Philippe M; Rudel, Thomas; Sauvaire, Didier; Cintrat, Jean-Christophe; Gillet, Daniel; Barbier, Julien

    2017-11-14

    Intracellular pathogenic microorganisms and toxins exploit host cell mechanisms to enter, exert their deleterious effects as well as hijack host nutrition for their development. A potential approach to treat multiple pathogen infections and that should not induce drug resistance is the use of small molecules that target host components. We identified the compound 1-adamantyl (5-bromo-2-methoxybenzyl) amine (ABMA) from a cell-based high throughput screening for its capacity to protect human cells and mice against ricin toxin without toxicity. This compound efficiently protects cells against various toxins and pathogens including viruses, intracellular bacteria and parasite. ABMA provokes Rab7-positive late endosomal compartment accumulation in mammalian cells without affecting other organelles (early endosomes, lysosomes, the Golgi apparatus, the endoplasmic reticulum or the nucleus). As the mechanism of action of ABMA is restricted to host-endosomal compartments, it reduces cell infection by pathogens that depend on this pathway to invade cells. ABMA may represent a novel class of broad-spectrum compounds with therapeutic potential against diverse severe infectious diseases.

  10. First report of a Mephitidae (Mammalia: Carnivora) naturally infected by parasites of the genus Physaloptera (Rudolphi, 1918) (Spirurida: Physalopteridae)

    OpenAIRE

    Gregório Correa Guimarães; Thales Augusto Barçante; Pedro Soares Bezerra-Junior; Amanda do Nascimento Oliveira; Matheus Camargo de Britto Rosa; Gabriela Castro Lopes; Joziana Muniz de Paiva Barçante

    2015-01-01

    Wild animals may be regarded as reservoirs of several parasite species. The occurrence of certain parasitic agents may provide significant information on host’s ecology and behavior and its trophic relations. Thus, this study aimed to determine the parasitic fauna of wild animals from southern Minas Gerais within the period from January to December 2011. A cross-sectional study was conducted with a convenience sample consisting of the dead bodies of two run over animals, which were rescued fr...

  11. The nature and origin of nucleus-like intracellular inclusions in Paleoproterozoic eukaryote microfossils.

    Science.gov (United States)

    Pang, K; Tang, Q; Schiffbauer, J D; Yao, J; Yuan, X; Wan, B; Chen, L; Ou, Z; Xiao, S

    2013-11-01

    The well-known debate on the nature and origin of intracellular inclusions (ICIs) in silicified microfossils from the early Neoproterozoic Bitter Springs Formation has recently been revived by reports of possible fossilized nuclei in phosphatized animal embryo-like fossils from the Ediacaran Doushantuo Formation of South China. The revisitation of this discussion prompted a critical and comprehensive investigation of ICIs in some of the oldest indisputable eukaryote microfossils-the ornamented acritarchs Dictyosphaera delicata and Shuiyousphaeridium macroreticulatum from the Paleoproterozoic Ruyang Group of North China-using a suite of characterization approaches: scanning electron microscopy (SEM), transmission electron microscopy (TEM), and focused ion beam scanning electron microscopy (FIB-SEM). Although the Ruyang acritarchs must have had nuclei when alive, our data suggest that their ICIs represent neither fossilized nuclei nor taphonomically condensed cytoplasm. We instead propose that these ICIs likely represent biologically contracted and consolidated eukaryotic protoplasts (the combination of the nucleus, surrounding cytoplasm, and plasma membrane). As opposed to degradational contraction of prokaryotic cells within a mucoidal sheath-a model proposed to explain the Bitter Springs ICIs-our model implies that protoplast condensation in the Ruyang acritarchs was an in vivo biologically programmed response to adverse conditions in preparation for encystment. While the discovery of bona fide nuclei in Paleoproterozoic acritarchs would be a substantial landmark in our understanding of eukaryote evolution, the various processes (such as degradational and biological condensation of protoplasts) capable of producing nuclei-mimicking structures require that interpretation of ICIs as fossilized nuclei be based on comprehensive investigations. © 2013 John Wiley & Sons Ltd.

  12. Intracellular phase for an extracellular bacterial pathogen: MgtC shows the way

    Directory of Open Access Journals (Sweden)

    Audrey Bernut

    2015-08-01

    Full Text Available Pseudomonas aeruginosa is an extracellular pathogen known to impair host phagocytic functions. However, our recent results identify MgtC as a novel actor in P. aeruginosa virulence, which plays a role in an intramacrophage phase of this pathogen. In agreement with its intracellular function, P. aeruginosa mgtC gene expression is strongly induced when the bacteria reside within macrophages. MgtC was previously known as a horizontally-acquired virulence factor important for multiplication inside macrophages in several intracellular bacterial pathogens. MgtC thus provides a singular example of a virulence determinant that subverts macrophages both in intracellular and extracellular pathogens. Moreover, we demonstrate that P. aeru-ginosa MgtC is required for optimal growth in Mg2+ deprived medium, a property shared by MgtC factors from intracellular pathogens and, under Mg2+ limitation, P. aeruginosaMgtC prevents biofilm formation. We propose that MgtC has a similar function in intracellular and extracellular pathogens, which contributes to macrophage resistance and fine-tune adaptation to the host in relation to the different bacterial lifestyles. MgtC thus appears as an attractive target for antivirulence strategies and our work provides a natural peptide as MgtC antagonist, which paves the way for the development of MgtC inhibitors.

  13. Parasite load induces progressive spleen architecture breakage and impairs cytokine mRNA expression in Leishmania infantum-naturally infected dogs.

    Science.gov (United States)

    Cavalcanti, Amanda S; Ribeiro-Alves, Marcelo; Pereira, Luiza de O R; Mestre, Gustavo Leandro; Ferreira, Anna Beatriz Robottom; Morgado, Fernanda N; Boité, Mariana C; Cupolillo, Elisa; Moraes, Milton O; Porrozzi, Renato

    2015-01-01

    Canine Visceral Leishmaniasis (CVL) shares many aspects with the human disease and dogs are considered the main urban reservoir of L. infantum in zoonotic VL. Infected dogs develop progressive disease with a large clinical spectrum. A complex balance between the parasite and the genetic/immunological background of the host are decisive for infection evolution and clinical outcome. This study comprised 92 Leishmania infected mongrel dogs of various ages from Mato Grosso, Brazil. Spleen samples were collected for determining parasite load, humoral response, cytokine mRNA expression and histopathology alterations. By real-time PCR for the ssrRNA Leishmania gene, two groups were defined; a low (lowP, n = 46) and a high parasite load groups (highP, n = 42). When comparing these groups, results show variable individual humoral immune response with higher specific IgG production in infected animals but with a notable difference in CVL rapid test optical densities (DPP) between highP and lowP groups. Splenic architecture disruption was characterized by disorganization of white pulp, more evident in animals with high parasitism. All cytokine transcripts in spleen were less expressed in highP than lowP groups with a large heterogeneous variation in response. Individual correlation analysis between cytokine expression and parasite load revealed a negative correlation for both pro-inflammatory cytokines: IFNγ, IL-12, IL-6; and anti-inflammatory cytokines: IL-10 and TGFβ. TNF showed the best negative correlation (r2 = 0.231; pdogs with high parasite load associated with a structural modification in the splenic lymphoid micro-architecture. We also discuss the possible mechanism responsible for the uncontrolled parasite growth and clinical outcome.

  14. Parasites in marine food webs

    Science.gov (United States)

    Lafferty, Kevin D.

    2013-01-01

    Most species interactions probably involve parasites. This review considers the extent to which marine ecologists should consider parasites to fully understand marine communities. Parasites are influential parts of food webs in estuaries, temperate reefs, and coral reefs, but their ecological importance is seldom recognized. Though difficult to observe, parasites can have substantial biomass, and they can be just as common as free-living consumers after controlling for body mass and trophic level. Parasites have direct impacts on the energetics of their hosts and some affect host behaviors, with ecosystem-level consequences. Although they cause disease, parasites are sensitive components of ecosystems. In particular, they suffer secondary extinctions due to biodiversity loss. Some parasites can also return to a system after habitat restoration. For these reasons, parasites can make good indicators of ecosystem integrity. Fishing can indirectly increase or decrease parasite populations and the effects of climate change on parasites are likely to be equally as complex.

  15. Trypanosoma (Herpetosoma rangeli Tejera, 1920: intracellular amastigote stages of reproduction in white mice

    Directory of Open Access Journals (Sweden)

    Servio Urdaneta-Morales

    1986-06-01

    Full Text Available The method, site, and stage of multiplication of Trypanosoma (Herpetosoma rangeli Tejera, 1920 has not hitherto been known. "We have now observed many intracellular nests or pseudocysts, containing amastigotes and trypomastigotes of this parasite in the heart, liver, and spleen of suckling (5.0 g male white mice (NMRI strain inoculated i.p. with 9 x 10(4 metatrypomastigotes/g body weight from a 12-day-old culture of the "Dog-82" strain of T. rangeli. At the peak of parasitemia (1.9 x 10(6 trypomastigotes/ml blood, 3 days post-inoculation various tissues were taken for sectioning and staining. The heart was most intensely parasitized. The amastigotes were rounded or ellipsoidal, with a rounded nucleus and the kinetoplast in the form of a straight or curved bar; the average maximum diameter of 50 measured amastigotes was 4.2 p. Binary fission was seen in the nucleus and kinetoplast of some amastigotes; no blood trypomastigotes were seen in division. The above characteristics, as well as the location of the pseudocysts in the tissues, are similar to T. cruzi. Comparison of these results with those reported for other Herpetosoma suggest study of the taxonomic position of T. rangeli.

  16. Parasitic diseases

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.S.

    1983-01-01

    Foundations of roentgenological semiotics of parasitic diseases of lungs, w hich are of the greatest practical value, are presented. Roentgenological pictu res of the following parasitic diseases: hydatid and alveolar echinococcosis, pa ragonimiasis, toxoplasmosis, ascariasis, amebiasis, bilharziasis (Schistosomias is) of lungs, are considered

  17. How have fisheries affected parasite communities?

    Science.gov (United States)

    Wood, Chelsea L; Lafferty, Kevin D

    2015-01-01

    To understand how fisheries affect parasites, we conducted a meta-analysis of studies that contrasted parasite assemblages in fished and unfished areas. Parasite diversity was lower in hosts from fished areas. Larger hosts had a greater abundance of parasites, suggesting that fishing might reduce the abundance of parasites by selectively removing the largest, most heavily parasitized individuals. After controlling for size, the effect of fishing on parasite abundance varied according to whether the host was fished and the parasite's life cycle. Parasites of unfished hosts were more likely to increase in abundance in response to fishing than were parasites of fished hosts, possibly due to compensatory increases in the abundance of unfished hosts. While complex life cycle parasites tended to decline in abundance in response to fishing, directly transmitted parasites tended to increase. Among complex life cycle parasites, those with fished hosts tended to decline in abundance in response to fishing, while those with unfished hosts tended to increase. However, among directly transmitted parasites, responses did not differ between parasites with and without fished hosts. This work suggests that parasite assemblages are likely to change substantially in composition in increasingly fished ecosystems, and that parasite life history and fishing status of the host are important in predicting the response of individual parasite species or groups to fishing.

  18. The role of extracellular vesicles in parasite-host interaction

    Directory of Open Access Journals (Sweden)

    Justyna Gatkowska

    2016-09-01

    Full Text Available Extracellular vesicles (EVs, initially considered cell debris, were soon proved to be an essential tool of intercellular communication enabling the exchange of information without direct contact of the cells. At present EVs are the subject of extensive research due to their universal presence in single- and multi-cell organisms, regardless of their systematic position, and their substantial role in cell-to-cell communication. EVs seem to be released by both prokaryotic and eukaryotic cells under natural (in vivo and laboratory (in vitro conditions. Even purified fractions of isolated EVs comprise various membrane-derived structures. However, EVs can be classified into general groups based primarily on their size and origin. EVs may carry various materials, and ongoing research investigations give new insight into their potenti participation in critical biological processes, e.g. carcinogenesis. This paper presents current knowledge on the EVs’ involvement in host–parasite interactions including the invasion process, the maintenance of the parasite infection and modulation of the host immune response to parasite antigenic stimulation, as well as perspectives of the potential use of EVs as immunoprophylactic and diagnostic tools for controlling parasite infections. The most numerous literature data concern protozoan parasites, especially those of the greatest medical and social importance worldwide. However, available information about the EVs’ contribution to helminth invasion has also been included.

  19. Viruses of parasites as actors in the parasite-host relationship: A "ménage à trois".

    Science.gov (United States)

    Gómez-Arreaza, Amaranta; Haenni, Anne-Lise; Dunia, Irene; Avilán, Luisana

    2017-02-01

    The complex parasite-host relationship involves multiple mechanisms. Moreover, parasites infected by viruses modify this relationship adding more complexity to the system that now comprises three partners. Viruses infecting parasites were described several decades ago. However, until recently little was known about the viruses involved and their impact on the resulting disease caused to the hosts. To clarify this situation, we have concentrated on parasitic diseases caused to humans and on how virus-infected parasites could alter the symptoms inflicted on the human host. It is clear that the effect caused to the human host depends on the virus and on the parasite it has infected. Consequently, the review is divided as follows: Viruses with a possible effect on the virulence of the parasite. This section reviews pertinent articles showing that infection of parasites by viruses might increase the detrimental effect of the tandem virus-parasite on the human host (hypervirulence) or decrease virulence of the parasite (hypovirulence). Parasites as vectors affecting the transmission of viruses. In some cases, the virus-infected parasite might facilitate the transfer of the virus to the human host. Parasites harboring viruses with unidentified effects on their host. In spite of recently renewed interest in parasites in connection with their viruses, there still remains a number of cases in which the effect of the virus of a given parasite on the human host remains ambiguous. The triangular relationship between the virus, the parasite and the host, and the modulation of the pathogenicity and virulence of the parasites by viruses should be taken into account in the rationale of fighting against parasites. Copyright © 2016 Elsevier B.V. All rights reserved.

  20. Host and parasite morphology influence congruence between host and parasite phylogenies.

    Science.gov (United States)

    Sweet, Andrew D; Bush, Sarah E; Gustafsson, Daniel R; Allen, Julie M; DiBlasi, Emily; Skeen, Heather R; Weckstein, Jason D; Johnson, Kevin P

    2018-03-23

    Comparisons of host and parasite phylogenies often show varying degrees of phylogenetic congruence. However, few studies have rigorously explored the factors driving this variation. Multiple factors such as host or parasite morphology may govern the degree of phylogenetic congruence. An ideal analysis for understanding the factors correlated with congruence would focus on a diverse host-parasite system for increased variation and statistical power. In this study, we focused on the Brueelia-complex, a diverse and widespread group of feather lice that primarily parasitise songbirds. We generated a molecular phylogeny of the lice and compared this tree with a phylogeny of their avian hosts. We also tested for the contribution of each host-parasite association to the overall congruence. The two trees overall were significantly congruent, but the contribution of individual associations to this congruence varied. To understand this variation, we developed a novel approach to test whether host, parasite or biogeographic factors were statistically associated with patterns of congruence. Both host plumage dimorphism and parasite ecomorphology were associated with patterns of congruence, whereas host body size, other plumage traits and biogeography were not. Our results lay the framework for future studies to further elucidate how these factors influence the process of host-parasite coevolution. Copyright © 2018 Australian Society for Parasitology. Published by Elsevier Ltd. All rights reserved.

  1. Induction of a stringent metabolic response in intracellular stages of Leishmania mexicana leads to increased dependence on mitochondrial metabolism.

    Directory of Open Access Journals (Sweden)

    Eleanor C Saunders

    2014-01-01

    Full Text Available Leishmania parasites alternate between extracellular promastigote stages in the insect vector and an obligate intracellular amastigote stage that proliferates within the phagolysosomal compartment of macrophages in the mammalian host. Most enzymes involved in Leishmania central carbon metabolism are constitutively expressed and stage-specific changes in energy metabolism remain poorly defined. Using (13C-stable isotope resolved metabolomics and (2H2O labelling, we show that amastigote differentiation is associated with reduction in growth rate and induction of a distinct stringent metabolic state. This state is characterized by a global decrease in the uptake and utilization of glucose and amino acids, a reduced secretion of organic acids and increased fatty acid β-oxidation. Isotopomer analysis showed that catabolism of hexose and fatty acids provide C4 dicarboxylic acids (succinate/malate and acetyl-CoA for the synthesis of glutamate via a compartmentalized mitochondrial tricarboxylic acid (TCA cycle. In vitro cultivated and intracellular amastigotes are acutely sensitive to inhibitors of mitochondrial aconitase and glutamine synthetase, indicating that these anabolic pathways are essential for intracellular growth and virulence. Lesion-derived amastigotes exhibit a similar metabolism to in vitro differentiated amastigotes, indicating that this stringent response is coupled to differentiation signals rather than exogenous nutrient levels. Induction of a stringent metabolic response may facilitate amastigote survival in a nutrient-poor intracellular niche and underlie the increased dependence of this stage on hexose and mitochondrial metabolism.

  2. Erythrocytic ferroportin reduces intracellular iron accumulation, hemolysis, and malaria risk.

    Science.gov (United States)

    Zhang, De-Liang; Wu, Jian; Shah, Binal N; Greutélaers, Katja C; Ghosh, Manik C; Ollivierre, Hayden; Su, Xin-Zhuan; Thuma, Philip E; Bedu-Addo, George; Mockenhaupt, Frank P; Gordeuk, Victor R; Rouault, Tracey A

    2018-03-30

    Malaria parasites invade red blood cells (RBCs), consume copious amounts of hemoglobin, and severely disrupt iron regulation in humans. Anemia often accompanies malaria disease; however, iron supplementation therapy inexplicably exacerbates malarial infections. Here we found that the iron exporter ferroportin (FPN) was highly abundant in RBCs, and iron supplementation suppressed its activity. Conditional deletion of the Fpn gene in erythroid cells resulted in accumulation of excess intracellular iron, cellular damage, hemolysis, and increased fatality in malaria-infected mice. In humans, a prevalent FPN mutation, Q248H (glutamine to histidine at position 248), prevented hepcidin-induced degradation of FPN and protected against severe malaria disease. FPN Q248H appears to have been positively selected in African populations in response to the impact of malaria disease. Thus, FPN protects RBCs against oxidative stress and malaria infection. Copyright © 2018 The Authors, some rights reserved; exclusive licensee American Association for the Advancement of Science. No claim to original U.S. Government Works.

  3. Parasites as prey in aquatic food webs: implications for predator infection and parasite transmission

    NARCIS (Netherlands)

    Thieltges, D.W.; Amundsen, P.-A.; Hechinger, R.F.; Johnson, P.T.J.; Lafferty, K.D.; Mouritsen, K.N.; Preston, D.L.; Reise, K.; Zander, C.D.; Poulin, R.

    2013-01-01

    While the recent inclusion of parasites into food-web studies has highlighted the role of parasites as consumers, there is accumulating evidence that parasites can also serve as prey for predators. Here we investigated empirical patterns of predation on parasites and their relationships with

  4. United States Department of Agriculture-Agricultural Research Service research programs on microbes for management of plant-parasitic nematodes.

    Science.gov (United States)

    Meyer, Susan L F

    2003-01-01

    Restrictions on the use of conventional nematicides have increased the need for new methods of managing plant-parasitic nematodes. Consequently, nematode-antagonistic microbes, and active compounds produced by such organisms, are being explored as potential additions to management practices. Programs in this area at the USDA Agricultural Research Service investigate applied biocontrol agents, naturally occurring beneficial soil microbes and natural compounds. Specific research topics include use of plant growth-promoting rhizobacteria and cultural practices for management of root-knot and ring nematodes, determination of management strategies that enhance activity of naturally occurring Pasteuria species (bacterial obligate parasites of nematodes), studies on interactions between biocontrol bacteria and bacterial-feeding nematodes, and screening of microbes for compounds active against plant-parasitic nematodes. Some studies involve biocontrol agents that are active against nematodes and soil-borne plant-pathogenic fungi, or combinations of beneficial bacteria and fungi, to manage a spectrum of plant diseases or to increase efficacy over a broader range of environmental conditions. Effective methods or agents identified in the research programs are investigated as additions to existing management systems for plant-parasitic nematodes.

  5. Within- and among-family variation in parasite load and parasite-induced mortality in the land snail Arianta arbustorum, a host of parasitic mites.

    Science.gov (United States)

    Schüpbach, Hans Ulrich; Baur, Bruno

    2010-08-01

    Variation in host susceptibility and parasite-induced mortality are preconditions for parasite-related selection on host populations. In terrestrial gastropods, variation in resistance against ectoparasite infection is poorly understood. We examined the within- and among-family variation in parasite load in full-siblings of the land snail Arianta arbustorum experimentally infected with Riccardoella limacum , a mite living in the mantle cavity of helicid land snails. We also quantified the influence of family origin and host size on parasite load and calculated its heritability (h(2)). Furthermore, we examined the influence of parasite load, snail size, and family origin on host winter mortality, an important life-history trait of A. arbustorum . Parasite load was heritable (h(2) = 0.63). In infected snails, parasite load was affected by family origin and increased with increasing shell size. Host mortality during hibernation increased with increasing parasite load and differed among families, but was not affected by snail size. Our results show high among-family variation both in resistance against ectoparasite infection and in host winter mortality. Furthermore, we show that parasite load is linked to snail size, which suggests that the proliferation of R. limacum is limited by resources provided by A. arbustorum .

  6. Mosquito transmission of the rodent malaria parasite Plasmodium chabaudi

    Directory of Open Access Journals (Sweden)

    Spence Philip J

    2012-12-01

    Full Text Available Abstract Background Serial blood passage of Plasmodium increases virulence, whilst mosquito transmission inherently regulates parasite virulence within the mammalian host. It is, therefore, imperative that all aspects of experimental malaria research are studied in the context of the complete Plasmodium life cycle. Methods Plasmodium chabaudi chabaudi displays many characteristics associated with human Plasmodium infection of natural mosquito vectors and the mammalian host, and thus provides a unique opportunity to study the pathogenesis of malaria in a single infection setting. An optimized protocol that permits efficient and reproducible vector transmission of P. c. chabaudi via Anopheles stephensi was developed. Results and conclusions This protocol was utilized for mosquito transmission of genetically distinct P. c. chabaudi isolates, highlighting differential parasite virulence within the mosquito vector and the spectrum of host susceptibility to infection initiated via the natural route, mosquito bite. An apposite experimental system in which to delineate the pathogenesis of malaria is described in detail.

  7. Natural infection of Didelphis aurita (Mammalia: Marsupialia with Leishmania infantum in Brazil

    Directory of Open Access Journals (Sweden)

    Carreira João Carlos

    2012-06-01

    Full Text Available Abstract Background The opossum Didelphis have been considered as natural hosts of Leishmania parasites in the New World, suggesting an important role in the epidemiology of Visceral Leishmaniasis (VL. Among six extant species that belong to the genus Didelphis, only two (D. marsupialis and D. albiventris, have been mentioned as natural hosts of Leishmania infantum in Brazil and Colombia. In the present paper, it is reported for the first time, the observation of intracellular parasites (amastigotes in tissues of Didelphis aurita naturally infected with Leishmania infantum in Brazil. We also discuss some aspects associated to the relationship between L. infantum and the geographical distribution of some species of the genus Didelphis. Methods The opossums studied were caught by wire traps (Tomahawk in Barra de Guaratiba, a peri-urban area in Rio de Janeiro. The opossums were killed with an overdose of Thiopental sodium.At necropsy, macroscopic alterations were examined and samples from liver, spleen, lymph nodes, ear, abdominal skin, scent glands and bone marrow were collected for parasitological and molecular diagnoses. Results Forty-eight opossums were captured in an AVL endemic region, 30 being caught in a mangrove area and eighteen animals in a forest area near to some residential-yards. Among the thirty opossums trapped in the mangrove area, all of them were negative by both imprint and sera samples assayed on Dipstick Tests, that is a test based on a combination of protein-A colloidal gold conjugate and rk39 Leishmania antigen to detect anti-Leishmania antibody in serum or plasma. At the macroscopic examination one out of eighteen opossums, caught close to the forest, presented alterations compatible with spleen hypertrophy and three were positive by Dipstick Tests (16.6% and presented amastigotes in the spleen and in one of them, the parasites were also observed in a submandibular lymph node. Leishmania infantum infections were confirmed

  8. Inevitability of Genetic Parasites

    Science.gov (United States)

    Iranzo, Jaime; Puigbò, Pere; Lobkovsky, Alexander E.; Wolf, Yuri I.

    2016-01-01

    Abstract Almost all cellular life forms are hosts to diverse genetic parasites with various levels of autonomy including plasmids, transposons and viruses. Theoretical modeling of the evolution of primordial replicators indicates that parasites (cheaters) necessarily evolve in such systems and can be kept at bay primarily via compartmentalization. Given the (near) ubiquity, abundance and diversity of genetic parasites, the question becomes pertinent: are such parasites intrinsic to life? At least in prokaryotes, the persistence of parasites is linked to the rate of horizontal gene transfer (HGT). We mathematically derive the threshold value of the minimal transfer rate required for selfish element persistence, depending on the element duplication and loss rates as well as the cost to the host. Estimation of the characteristic gene duplication, loss and transfer rates for transposons, plasmids and virus-related elements in multiple groups of diverse bacteria and archaea indicates that most of these rates are compatible with the long term persistence of parasites. Notably, a small but non-zero rate of HGT is also required for the persistence of non-parasitic genes. We hypothesize that cells cannot tune their horizontal transfer rates to be below the threshold required for parasite persistence without experiencing highly detrimental side-effects. As a lower boundary to the minimum DNA transfer rate that a cell can withstand, we consider the process of genome degradation and mutational meltdown of populations through Muller’s ratchet. A numerical assessment of this hypothesis suggests that microbial populations cannot purge parasites while escaping Muller’s ratchet. Thus, genetic parasites appear to be virtually inevitable in cellular organisms. PMID:27503291

  9. Effects of nutrients on interaction between the invasive bidens pilosa the parasitic cusuta australis

    International Nuclear Information System (INIS)

    Yang, B.; Li, J.; Yan, M.

    2015-01-01

    Parasitic plants have been identified as potential biological agents to control invasive plants. Understanding the interaction between invasive plants and their novel natural enemies is important for understanding mechanisms underlying plant invasion success and thus taking measures to control invasion. We conducted a factorial experiment to test the interactive effects of nutrient addition (low vs. high) and parasitism (with vs. without Cuscuta australis) on the growth of the invasive Bidens pilosa. Parasitism significantly decreased leaf, stem and root biomass of the host invasive plant, and nutrient addition increased leaf and stem biomass of the host. A synergistic effect of parasitism and nutrient addition was found on stem and leaf biomass of the hosts. Nutrient addition significantly increased vegetative biomass of the parasitic plant and caused a more deleterious effect on the invasive host. Reproductive biomass of the parasitic plant was significantly positively related with net photosynthetic rate, light-utilisation efficiency and apparent carboxylation efficiency. Vegetative biomass and total biomass of the parasitic plants were significantly positively related with specific leaf area and the relative chlorophyll content of the host plant. The deleterious effect of the parasite on the growth of the host plant was significantly positively correlated with vegetative biomass of the parasitic plant. Nutrient addition increased the negative effect of the parasitic plant on the invasive host, indicating that the parasitic plant is potentially a biological control agent for the invasive plant even in the context of changing global resources. (author)

  10. [Analysis on Research Projects Supported by the National Natural Science Foundation of China at the National Institute of Parasitic Diseases during 2003-2013].

    Science.gov (United States)

    Zhou, Xiao-jun; Zheng, Bin; Yi, Feng-yun; Xiong, Yan-hong; Zhang, Min-qi

    2015-04-01

    The data of the National Natural Science Foundation (NSFC) projests obtained by the National Institute of Parasitic Diseases (NIPD), Chinese Center for Disease Control and Prevention (China CDC) during 2003-2013 were collected from internet-based science information system of NSFC, and NSFC search tool of Dingxiang Garden (http://nsfc.biomart.cn/). The number of funded projects, their subject classification and approved amount were analyzed, and compared with the other institutes of China CDC. Furthermore, the rationalization proposals were given in order to enhance the level of foundation management in the future.

  11. Expression of inducible nitric oxide synthase in macrophages inversely correlates with parasitism of lymphoid tissues in dogs with visceral leishmaniasis.

    Science.gov (United States)

    Sanches, Françoise P; Tomokane, Thaise Y; Da Matta, Vânia L R; Marcondes, Mary; Corbett, Carlos E P; Laurenti, Márcia D

    2014-09-07

    There are only a few studies reporting the role of nitric oxide metabolites for controlling macrophage intracellular parasitism, and these are controversial. Therefore, the present study aimed to evaluate the expression of inducible nitric oxide synthase (iNOS) in the lymph nodes and spleen of dogs affected by visceral leishmaniasis through immunohistochemistry and to determine its correlation with tissue parasite burden and serum interferon (IFN)-γ levels. Twenty-eight dogs were selected and assigned to one of two groups, symptomatic (n = 18) and asymptomatic (n = 10), according to clinical status and laboratory evaluation. A negative control group (n = 6) from a non-endemic region for visceral leishmaniasis was included as well. Parasite density (amastigotes/mm2) was similar between clinical groups in the lymph nodes (P = 0.2401) and spleen (P = 0.8869). The density of iNOS⁺ cells was higher in infected dogs compared to controls (P spleen (P = 0.5940) densities between symptomatic and asymptomatic dogs. A positive correlation was found between the number of iNOS⁺ cells in lymph nodes and interferon-γ levels (r = 0.3776; P = 0.0303), and there was a negative correlation between parasites and iNOS⁺ cell densities both in lymph nodes (r = -0.5341; P = 0.0034) and spleen (r = -0.4669; P = 0.0329). The negative correlation observed between tissue parasitism and the expression of iNOS may be a reflection of NO acting on the control of parasites.

  12. Cross-species comparison of parasite richness, prevalence, and intensity in a native compared to two invasive brachyuran crabs

    NARCIS (Netherlands)

    Goedknegt, M.A.; Havermans, J.; Waser, A.M.; Luttikhuizen, P.C.; Velilla, E.; Camphuysen, C.J.; Van der Meer, J.; Thieltges, D.W.

    2017-01-01

    An introduced species’ invasion success may be facilitated by the release of natural enemies, like parasites, which may provide an invader with a competitive advantage over native species (enemy release hypothesis). Lower parasite infection levels in introduced versus native populations have

  13. Naturally acquired bovine besnoitiosis: Differential distribution of parasites in the skin of chronically infected cattle.

    Science.gov (United States)

    Schares, G; Langenmayer, M C; Majzoub-Altweck, M; Scharr, J C; Gentile, A; Maksimov, A; Schares, S; Conraths, F J; Gollnick, N S

    2016-01-30

    Bovine besnoitiosis is caused by Besnoitia besnoiti, an apicomplexan parasite closely related to Toxoplasma gondii and Neospora caninum. In the acute stage of besnoitiosis, cattle suffer from pyrexia, swollen lymph nodes, anorexia and subcutaneous edema. In the chronic stage, tissue cysts are formed in a variety of tissues including the skin. Knowledge about the distribution of tissue cysts of different parts of the skin of infected animals is scarce. Four chronically infected cattle were euthanized and skin samples were taken from a total of 77 standardized cutaneous locations per animal. Portions of the dermis were taken, from which DNA was extracted and examined by real-time PCR. Cycle of transition (Ct) values reflecting the amount of parasite DNA in the samples were determined. For statistical analysis, samples were attributed to 11 larger skin regions ('OuterHindlegDistal', 'Rump, ForelegMiddle', 'NoseFrontEars', 'CheekEye', 'SideLowerPart', 'ForelegDistal', 'SideUpperPart', 'LegsInner', 'VentralHeadNeck', 'DorsalNeckWithersBackTail'). While all samples revealed a positive result in three female cattle, only 63.6% (49/77) of the samples of a bull showed positive results. For statistical analysis, a Ct value of 45 was assumed for samples with a negative result. The dams showed median Ct values of 16.1, 17.5 and 19.4, while in skin samples of the bull a median Ct value of 37.6 was observed. To determine the differences in DNA concentrations between different locations of the skin of the animals, a relative Ct (relCt) was determined by subtracting for each animal indv the MedianCtindv from each sample Ct. Analyses of the relCt values showed that the highest relative parasite DNA concentrations were observed in the categories 'OuterHindlegDistal', 'Rump', 'ForelegMiddle' and 'NoseFrontEars'. The relCt values in these categories differed statistically significantly from those determined for the categories 'VentralHeadNeck' and 'DorsalNeckWithersBackTail'. The

  14. Northeast India Helminth Parasite Information Database (NEIHPID: Knowledge Base for Helminth Parasites.

    Directory of Open Access Journals (Sweden)

    Devendra Kumar Biswal

    Full Text Available Most metazoan parasites that invade vertebrate hosts belong to three phyla: Platyhelminthes, Nematoda and Acanthocephala. Many of the parasitic members of these phyla are collectively known as helminths and are causative agents of many debilitating, deforming and lethal diseases of humans and animals. The North-East India Helminth Parasite Information Database (NEIHPID project aimed to document and characterise the spectrum of helminth parasites in the north-eastern region of India, providing host, geographical distribution, diagnostic characters and image data. The morphology-based taxonomic data are supplemented with information on DNA sequences of nuclear, ribosomal and mitochondrial gene marker regions that aid in parasite identification. In addition, the database contains raw next generation sequencing (NGS data for 3 foodborne trematode parasites, with more to follow. The database will also provide study material for students interested in parasite biology. Users can search the database at various taxonomic levels (phylum, class, order, superfamily, family, genus, and species, or by host, habitat and geographical location. Specimen collection locations are noted as co-ordinates in a MySQL database and can be viewed on Google maps, using Google Maps JavaScript API v3. The NEIHPID database has been made freely available at http://nepiac.nehu.ac.in/index.php.

  15. Northeast India Helminth Parasite Information Database (NEIHPID): Knowledge Base for Helminth Parasites.

    Science.gov (United States)

    Biswal, Devendra Kumar; Debnath, Manish; Kharumnuid, Graciously; Thongnibah, Welfrank; Tandon, Veena

    2016-01-01

    Most metazoan parasites that invade vertebrate hosts belong to three phyla: Platyhelminthes, Nematoda and Acanthocephala. Many of the parasitic members of these phyla are collectively known as helminths and are causative agents of many debilitating, deforming and lethal diseases of humans and animals. The North-East India Helminth Parasite Information Database (NEIHPID) project aimed to document and characterise the spectrum of helminth parasites in the north-eastern region of India, providing host, geographical distribution, diagnostic characters and image data. The morphology-based taxonomic data are supplemented with information on DNA sequences of nuclear, ribosomal and mitochondrial gene marker regions that aid in parasite identification. In addition, the database contains raw next generation sequencing (NGS) data for 3 foodborne trematode parasites, with more to follow. The database will also provide study material for students interested in parasite biology. Users can search the database at various taxonomic levels (phylum, class, order, superfamily, family, genus, and species), or by host, habitat and geographical location. Specimen collection locations are noted as co-ordinates in a MySQL database and can be viewed on Google maps, using Google Maps JavaScript API v3. The NEIHPID database has been made freely available at http://nepiac.nehu.ac.in/index.php.

  16. Northeast India Helminth Parasite Information Database (NEIHPID): Knowledge Base for Helminth Parasites

    Science.gov (United States)

    Debnath, Manish; Kharumnuid, Graciously; Thongnibah, Welfrank; Tandon, Veena

    2016-01-01

    Most metazoan parasites that invade vertebrate hosts belong to three phyla: Platyhelminthes, Nematoda and Acanthocephala. Many of the parasitic members of these phyla are collectively known as helminths and are causative agents of many debilitating, deforming and lethal diseases of humans and animals. The North-East India Helminth Parasite Information Database (NEIHPID) project aimed to document and characterise the spectrum of helminth parasites in the north-eastern region of India, providing host, geographical distribution, diagnostic characters and image data. The morphology-based taxonomic data are supplemented with information on DNA sequences of nuclear, ribosomal and mitochondrial gene marker regions that aid in parasite identification. In addition, the database contains raw next generation sequencing (NGS) data for 3 foodborne trematode parasites, with more to follow. The database will also provide study material for students interested in parasite biology. Users can search the database at various taxonomic levels (phylum, class, order, superfamily, family, genus, and species), or by host, habitat and geographical location. Specimen collection locations are noted as co-ordinates in a MySQL database and can be viewed on Google maps, using Google Maps JavaScript API v3. The NEIHPID database has been made freely available at http://nepiac.nehu.ac.in/index.php PMID:27285615

  17. Fauna Europaea: Helminths (Animal Parasitic

    Directory of Open Access Journals (Sweden)

    David Gibson

    2014-09-01

    Full Text Available Fauna Europaea provides a public web-service with an index of scientific names (including important synonyms of all living European land and freshwater animals, their geographical distribution at country level (up to the Urals, excluding the Caucasus region, and some additional information. The Fauna Europaea project covers about 230,000 taxonomic names, including 130,000 accepted species and 14,000 accepted subspecies, which is much more than the originally projected number of 100,000 species. This represents a huge effort by more than 400 contributing specialists throughout Europe and is a unique (standard reference suitable for many users in science, government, industry, nature conservation and education. Helminths parasitic in animals represent a large assemblage of worms, representing three phyla, with more than 200 families and almost 4,000 species of parasites from all major vertebrate and many invertebrate groups. A general introduction is given for each of the major groups of parasitic worms, i.e. the Acanthocephala, Monogenea, Trematoda (Aspidogastrea and Digenea, Cestoda and Nematoda. Basic information for each group includes its size, host-range, distribution, morphological features, life-cycle, classification, identification and recent key-works. Tabulations include a complete list of families dealt with, the number of species in each and the name of the specialist responsible for data acquisition, a list of additional specialists who helped with particular groups, and a list of higher taxa dealt with down to the family level. A compilation of useful references is appended.

  18. Heme requirement and intracellular trafficking in Trypanosoma cruzi epimastigotes

    International Nuclear Information System (INIS)

    Lara, F.A.; Sant'Anna, C.; Lemos, D.; Laranja, G.A.T.; Coelho, M.G.P.; Reis Salles, I.; Michel, A.; Oliveira, P.L.; Cunha-e-Silva, N.; Salmon, D.; Paes, M.C.

    2007-01-01

    Epimastigotes multiplies in the insect midgut by taking up nutrients present in the blood meal including heme bound to hemoglobin of red blood cell. During blood meal digestion by vector proteases in the posterior midgut, hemoglobin is clipped off into amino acids, peptides, and free heme. In this paper, we compared the heme and hemoglobin uptake kinetics and followed their intracellular trafficking. Addition of heme to culture medium increased epimastigote proliferation in a dose-dependent manner, while medium supplemented with hemoglobin enhanced growth after 3-day lag phase. Medium supplemented with globin-derived peptides stimulated cell proliferation in a dose-independent way. Using Palladium mesoporphyrin IX (Pd-mP) as a fluorescent heme-analog, we observed that heme internalization proceeded much faster than that observed by hemoglobin-rhodamine. Binding experiments showed that parasites accumulated the Pd-mP into the posterior region of the cell whereas hemoglobin-rhodamine stained the anterior region. Finally, using different specific inhibitors of ABC transporters we conclude that a P-glycoprotein homologue transporter is probably involved in heme transport through the plasma membrane

  19. Extracellular Trap Formation in Response to Trypanosoma cruzi Infection in Granulocytes Isolated From Dogs and Common Opossums, Natural Reservoir Hosts

    Directory of Open Access Journals (Sweden)

    Nicole de Buhr

    2018-05-01

    Full Text Available Granulocytes mediate the first line of defense against infectious diseases in humans as well as animals and they are well known as multitasking cells. They can mediate antimicrobial activity by different strategies depending on the pathogen they encounter. Besides phagocytosis, a key strategy against extracellular pathogens is the formation of extracellular traps (ETs. Those ETs mainly consist of DNA decorated with antimicrobial components and mediate entrapment of various pathogens. In the last years, various studies described ET formation as response to bacteria, viruses and parasites e.g., Trypanosma (T. cruzi. Nevertheless, it is not fully understood, if ET formation helps the immune system to eliminate intracellular parasites. The goal of this study was to analyze ET formation in response to the intracellular parasite Trypanosma (T. cruzi by granulocytes derived from animals that serve as natural reservoir. Thus, we investigated the ET formation in two T. cruzi reservoirs, namely dogs as domestic animal and common opossums (Didelphis marsupialis as wild animal. Granulocytes were harvested from fresh blood by density gradient centrifugation and afterwards incubated with T. cruzi. We conducted the analysis by determination of free DNA and immunofluorescence microscopy. Using both methods, we show that T. cruzi efficiently induces ET formation in granulocytes derived from common opossum as well as dog blood. Most ETs from both animal species as response to T. cruzi are decorated with the protease neutrophil elastase. Since T. cruzi is well known to circulate over years in both analyzed animals as reservoirs, it may be assumed that T. cruzi efficiently evades ET-mediated killing in those animals. Therefore, ETs may not play a major role in efficient elimination of the pathogen from the blood of dogs or common opossums as T. cruzi survives in niches of their body. The characterization of granulocytes in various animals and humans may be helpful

  20. Female field crickets incur increased parasitism risk when near preferred song.

    Directory of Open Access Journals (Sweden)

    Cassandra M Martin

    2010-03-01

    Full Text Available Female animals often prefer males with conspicuous traits because these males provide direct or indirect benefits. Conspicuous male traits, however, can attract predators. This not only increases the risk of predation for conspicuous males but also for the females that prefer them. In the variable field cricket, Gryllus lineaticeps, males that produce preferred song types provide females with greater material benefits, but they are also more likely to attract lethal parasitoid flies. First, we conducted a field experiment that tested the hypothesis that females have a greater risk of fly parasitism when in association with preferred high chirp rate males. Females were nearly twice as likely to be parasitized when caged with high chirp rate song than when caged with low chirp rate song. Females may thus be forced to trade off the quality of the benefits they receive from mating with preferred males and the risk of being killed by a predator when near these males. Second, we assessed female parasitism rates in a natural population. Up to 6% of the females were parasitized in field samples. Because the females we collected could have become parasitized had they not been collected, this provides a minimum estimate of the female parasitism rate in the field. In a laboratory study, we found no difference in the proportion of time parasitized and unparasitized females spent hiding under shelters; thus, differences in activity patterns do not appear to have biased our estimate of female parasitism rates. Overall, our results suggest that female association costs have the potential to shape the evolution of female mating preferences.

  1. Parasitism and super parasitism of Trichogramma pretiosum Riley (Hymenoptera: Trichogrammatidae) on Sitotroga cerealella (Oliver) (Lepidoptera: Gelechiidae) eggs

    International Nuclear Information System (INIS)

    Moreira, Marciene D.; Torres, Jorge B.

    2009-01-01

    The parasitoid Trichogramma has been used worldwide as biological control agent due to its wide geographic distribution, high specialization and efficacy against many lepidopteran pests. Biological and behavioral traits of Trichogramma pretiosum Riley parasitizing Sitotroga cerealella (Oliver) eggs were studied aiming to a better understanding of the Results from parasitism and super parasitism. The variables investigated were: host acceptance and contact time by T. pretiosum on parasitized host, percentage of parasitoid emergence, number of deformed individuals produced, egg-adult period, sex ratio, offspring female body size and longevity, and number of S. cerealella eggs parasitized/female. Parasitism rejection was observed on parasitized host eggs after 24, 72 and 120h of parasitism. The rejection was higher for eggs parasitized after 72h and 120h of parasitism as compared to the eggs after 24h of parasitism. T. pretiosum contact time on eggs after 24h of parasitism was greater than on 72 and 120h. The offspring produced from hosts from which a single parasitoid emerged were larger, exhibited no deformities and greater capacity of parasitism, different from those produced from eggs where two parasitoids emerged. Offspring longevity, however, was similar for females emerged from hosts from which one or two adults emerged. In Conclusion, T. pretiosum was able to recognize previously parasitized eggs and the super parasitism reduced the parasitoid.reproductive success. (author)

  2. Fish parasites

    DEFF Research Database (Denmark)

    This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems......This book contains 22 chapters on some of the most important parasitic diseases in wild and farmed fish. International experts give updated reviews and provide solutions to the problems...

  3. Testing Dose-Dependent Effects of the Nectar Alkaloid Anabasine on Trypanosome Parasite Loads in Adult Bumble Bees.

    Science.gov (United States)

    Anthony, Winston E; Palmer-Young, Evan C; Leonard, Anne S; Irwin, Rebecca E; Adler, Lynn S

    2015-01-01

    The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, Crithidia bombi, and dietary concentration of anabasine, a nectar alkaloid produced by Nicotiana spp. using four concentrations naturally observed in floral nectar. We hypothesized that increased consumption of secondary compounds at concentrations found in nature would decrease survival of uninfected bees, but improve survival and ameliorate parasite loads in infected bees. We found medicinal effects of anabasine in infected bees; the high-anabasine diet decreased parasite loads and increased the probability of clearing the infection entirely. However, survival time was not affected by any level of anabasine concentration, or by interactive effects of anabasine concentration and infection. Crithidia infection reduced survival time by more than two days, but this effect was not significant. Our results support a medicinal role for anabasine at the highest concentration; moreover, we found no evidence for a survival-related cost of anabasine consumption across the concentration range found in nectar. Our results suggest that consuming anabasine at the higher levels of the natural range could reduce or clear pathogen loads without incurring costs for healthy bees.

  4. Testing Dose-Dependent Effects of the Nectar Alkaloid Anabasine on Trypanosome Parasite Loads in Adult Bumble Bees.

    Directory of Open Access Journals (Sweden)

    Winston E Anthony

    Full Text Available The impact of consuming biologically active compounds is often dose-dependent, where small quantities can be medicinal while larger doses are toxic. The consumption of plant secondary compounds can be toxic to herbivores in large doses, but can also improve survival in parasitized herbivores. In addition, recent studies have found that consuming nectar secondary compounds may decrease parasite loads in pollinators. However, the effect of compound dose on bee survival and parasite loads has not been assessed. To determine how secondary compound consumption affects survival and pathogen load in Bombus impatiens, we manipulated the presence of a common gut parasite, Crithidia bombi, and dietary concentration of anabasine, a nectar alkaloid produced by Nicotiana spp. using four concentrations naturally observed in floral nectar. We hypothesized that increased consumption of secondary compounds at concentrations found in nature would decrease survival of uninfected bees, but improve survival and ameliorate parasite loads in infected bees. We found medicinal effects of anabasine in infected bees; the high-anabasine diet decreased parasite loads and increased the probability of clearing the infection entirely. However, survival time was not affected by any level of anabasine concentration, or by interactive effects of anabasine concentration and infection. Crithidia infection reduced survival time by more than two days, but this effect was not significant. Our results support a medicinal role for anabasine at the highest concentration; moreover, we found no evidence for a survival-related cost of anabasine consumption across the concentration range found in nectar. Our results suggest that consuming anabasine at the higher levels of the natural range could reduce or clear pathogen loads without incurring costs for healthy bees.

  5. Temporal effects on host-parasite associations in four naturalized goby species living in sympatry

    Czech Academy of Sciences Publication Activity Database

    Ondračková, Markéta; Valová, Zdenka; Hudcová, Iveta; Michálková, Veronika; Šimková, A.; Borcherding, J.; Jurajda, Pavel

    2015-01-01

    Roč. 746, č. 1 (2015), s. 233-243 ISSN 0018-8158 R&D Projects: GA ČR(CZ) GAP505/12/2569 Institutional support: RVO:68081766 Keywords : Fish * Gobiidae * Non-native species * Parasite * Rhine Subject RIV: EG - Zoology Impact factor: 2.051, year: 2015

  6. Historia natural cuantitativa de una relación parásito-hospedero: el sistema Tristerix-cactáceas en Chile semiárido Quantitative natural history of a host-parasite relationship: the Tristerix-cactus system in semiarid Chile

    Directory of Open Access Journals (Sweden)

    RODRIGO MEDEL

    2002-03-01

    Full Text Available Presentamos información cuantitativa de la historia natural de la relación parásito-hospedero constituida por el muérdago holoparásito Tristerix aphyllus (Loranthaceae y sus hospederos cactáceas. Más específicamente, indagamos en los determinantes históricos y biogeográficos de la interacción y cuantificamos la autoecología de la biología floral, polinización, dispersión y parasitismo en este sistema. El impacto del parasitismo sobre la evolución de sistemas defensivos en las cactáceas hospederas es considerado tanto a nivel intraespecífico como interespecífico, tomando en cuenta el potencial para selección mediada por parásitos y la estructura geográfica de la interacción. Finalmente, sugerimos futuras avenidas de investigación en este sistema que incluyen los tópicos de: (i evolución de la virulencia, (ii estructuración de la interacción en mosaico geográfico y, (iii pruebas históricas de adaptación. Estos aspectos permitirán adquirir un mayor conocimiento de la sutileza ecológica y de la evolución de esta especial interacción en los sistemas naturales de Chile semiáridoWe present quantitative information on the natural history of a host-parasite interaction that consists on the holoparasitic mistletoe Tristerix aphyllus (Loranthaceae and its cacti host species. More specifically, we inquire into the historical and biogeographical setting of the relationship, and quantify the autoecology of the floral biology, pollination, seed dispersal, and parasitism of the system. The impact of the mistletoe on the evolution of defense systems is evaluated both at intraspecific and interspecific levels through consideration of the potential for parasite-mediated selection and the geographical structure of the host-parasite interaction. Finally, we suggest prospective lines of research which include aspects related to: (i the evolution of virulence, (ii the geographic structure of the interaction, and (iii the historical

  7. Paleoparasitology: the origin of human parasites

    Directory of Open Access Journals (Sweden)

    Adauto Araujo

    2013-09-01

    Full Text Available Parasitism is composed by three subsystems: the parasite, the host, and the environment. There are no organisms that cannot be parasitized. The relationship between a parasite and its host species most of the time do not result in damage or disease to the host. However, in a parasitic disease the presence of a given parasite is always necessary, at least in a given moment of the infection. Some parasite species that infect humans were inherited from pre-hominids, and were shared with other phylogenetically close host species, but other parasite species were acquired from the environment as humans evolved. Human migration spread inherited parasites throughout the globe. To recover and trace the origin and evolution of infectious diseases, paleoparasitology was created. Paleoparasitology is the study of parasites in ancient material, which provided new information on the evolution, paleoepidemiology, ecology and phylogenetics of infectious diseases.

  8. The population dynamics of the parasitic copepode Lernaeocera lusci (Bassett-Smith, 1896) on its definitive host

    Science.gov (United States)

    van Damme, P. A.; Hamerlynck, O.; Ollevier, F.

    1996-06-01

    The mesoparasitic copepod Lernaeocera lusci (Bassett-Smith, 1896) was recovered from first-year bib ( Trisopterus luscus L.) in the Voordelta (Southern Bight of the North Sea) from May until December 1989. Analysis of the seasonal abundance and of the population structure showed that transmission of infective stages to bib mainly occurred from June to September. From September to December the overall prevalence fluctuated around 70%. Maximum parasite population size (47/104m2) and the highest total egg number were recorded in September and October, respectively. It was found that total parasite mortality was significantly influenced by mortality of hosts carrying parasites. Natural mortality probably contributed a small percentage to total parasite mortality. Calculation of the temporal mean-variance regression equation revealed that the parasites were aggregated within the definitive host population.

  9. Protein moonlighting in parasitic protists.

    Science.gov (United States)

    Ginger, Michael L

    2014-12-01

    Reductive evolution during the adaptation to obligate parasitism and expansions of gene families encoding virulence factors are characteristics evident to greater or lesser degrees in all parasitic protists studied to date. Large evolutionary distances separate many parasitic protists from the yeast and animal models upon which classic views of eukaryotic biochemistry are often based. Thus a combination of evolutionary divergence, niche adaptation and reductive evolution means the biochemistry of parasitic protists is often very different from their hosts and to other eukaryotes generally, making parasites intriguing subjects for those interested in the phenomenon of moonlighting proteins. In common with other organisms, the contribution of protein moonlighting to parasite biology is only just emerging, and it is not without controversy. Here, an overview of recently identified moonlighting proteins in parasitic protists is provided, together with discussion of some of the controversies.

  10. The Paranuclear corpuscles in poikilothermic vertebrates: description of a new species of Pirhemocyton in Iguana iguana of Venezuela, with remarks on the nature of these organisms and their relation to applied parasites

    Directory of Open Access Journals (Sweden)

    Lucila Arcay de Peraza

    1971-01-01

    Full Text Available This paper discusses the relations between the genera Toddia and Pirhemocyton, describing certain cytochemical reactions that clarify their nature, and discussing the position of these organisms as being of a parasitic or viral nature. A new species of Pirhemocyton is described form Iguana iguana from Mamo, Marapa (Dto. Federal of Venezuela; characterized by rectangular globoids with rounded borders. Attempts at experimental infections of other genera of lizerds indicate that the new species, Pirhemocyton iguanae, is specific to the natural host, Iguana iguana. The course of the parasitemia in the lizard is described.

  11. Subcompartmentalisation of proteins in the rhoptries correlates with ordered events of erythrocyte invasion by the blood stage malaria parasite.

    Directory of Open Access Journals (Sweden)

    Elizabeth S Zuccala

    Full Text Available Host cell infection by apicomplexan parasites plays an essential role in lifecycle progression for these obligate intracellular pathogens. For most species, including the etiological agents of malaria and toxoplasmosis, infection requires active host-cell invasion dependent on formation of a tight junction - the organising interface between parasite and host cell during entry. Formation of this structure is not, however, shared across all Apicomplexa or indeed all parasite lifecycle stages. Here, using an in silico integrative genomic search and endogenous gene-tagging strategy, we sought to characterise proteins that function specifically during junction-dependent invasion, a class of proteins we term invasins to distinguish them from adhesins that function in species specific host-cell recognition. High-definition imaging of tagged Plasmodium falciparum invasins localised proteins to multiple cellular compartments of the blood stage merozoite. This includes several that localise to distinct subcompartments within the rhoptries. While originating from the same organelle, however, each has very different dynamics during invasion. Apical Sushi Protein and Rhoptry Neck protein 2 release early, following the junction, whilst a novel rhoptry protein PFF0645c releases only after invasion is complete. This supports the idea that organisation of proteins within a secretory organelle determines the order and destination of protein secretion and provides a localisation-based classification strategy for predicting invasin function during apicomplexan parasite invasion.

  12. In vitro and in vivo efficacy of ether lipid edelfosine against Leishmania spp. and SbV-resistant parasites.

    Directory of Open Access Journals (Sweden)

    Rubén E Varela-M

    Full Text Available BACKGROUND: The leishmaniases are a complex of neglected tropical diseases caused by more than 20 Leishmania parasite species, for which available therapeutic arsenal is scarce and unsatisfactory. Pentavalent antimonials (SbV are currently the first-line pharmacologic therapy for leishmaniasis worldwide, but resistance to these compounds is increasingly reported. Alkyl-lysophospoholipid analogs (ALPs constitute a family of compounds with antileishmanial activity, and one of its members, miltefosine, has been approved as the first oral treatment for visceral and cutaneous leishmaniasis. However, its clinical use can be challenged by less impressive efficiency in patients infected with some Leishmania species, including L. braziliensis and L. mexicana, and by proneness to develop drug resistance in vitro. METHODOLOGY/PRINCIPAL FINDINGS: We found that ALPs ranked edelfosine>perifosine>miltefosine>erucylphosphocholine for their antileishmanial activity and capacity to promote apoptosis-like parasitic cell death in promastigote and amastigote forms of distinct Leishmania spp., as assessed by proliferation and flow cytometry assays. Effective antileishmanial ALP concentrations were dependent on both the parasite species and their development stage. Edelfosine accumulated in and killed intracellular Leishmania parasites within macrophages. In vivo antileishmanial activity was demonstrated following oral treatment with edelfosine of mice and hamsters infected with L. major, L. panamensis or L. braziliensis, without any significant side-effect. Edelfosine also killed SbV-resistant Leishmania parasites in in vitro and in vivo assays, and required longer incubation times than miltefosine to generate drug resistance. CONCLUSIONS/SIGNIFICANCE: Our data reveal that edelfosine is the most potent ALP in killing different Leishmania spp., and it is less prone to lead to drug resistance development than miltefosine. Edelfosine is effective in killing Leishmania

  13. The maintenance of hybrids by parasitism in a freshwater snail.

    Science.gov (United States)

    Guttel, Yonathan; Ben-Ami, Frida

    2014-11-01

    Hybrids have often been labelled evolutionary dead-ends due to their lower fertility and viability. However, there is growing awareness that hybridisation between different species may play a constructive role in animal evolution as a means to create variability. Thus, hybridisation and introgression may contribute to adaptive evolution, for example with regards to natural antagonists (parasites, predators, competitors) and adaptation to local environmental conditions. Here we investigated whether parasite intensity contributes to the continuous recreation of hybrids in 74 natural populations of Melanopsis, a complex of freshwater snails with three species. We also examined, under laboratory conditions, whether hybrids and their parental taxa differ in their tolerance of low and high temperatures and salinity levels. Infections were consistently less prevalent in males than in females, and lower in snails from deeper habitats. Infection prevalence in hybrids was significantly lower than in the parental taxa. Low hybrid infection rates could not be explained by sediment type, snail density or geographic distribution of the sampling sites. Interestingly, infected hybrid snails did not show signs of parasite-induced gigantism, whereas all parental taxa did. We found that hybrids mostly coped with extreme temperatures and salinity levels as well as their parental taxa did. Taken together, our results suggest that Melanopsis hybrids perform better in the presence of parasites and environmental stress. This may explain the widespread and long-term occurrence of Melanopsis hybrids as evidenced by paleontological and biogeographic data. Hybridisation may be an adaptive host strategy, reducing infection rates and resisting gigantism. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  14. Host-seeking behaviors of mosquitoes experimentally infected with sympatric field isolates of the human malaria parasite Plasmodium falciparum: no evidence for host manipulation

    Directory of Open Access Journals (Sweden)

    Amélie eVantaux

    2015-08-01

    Full Text Available Previous studies have shown that Plasmodium parasites can manipulate mosquito feeding behaviours such as motivation and avidity to feed on vertebrate hosts, in ways that increase the probability of parasite transmission. These studies, however, have been mainly carried out on non-natural and/or laboratory based model systems and hence may not reflect what occurs in the field. We now need to move closer to the natural setting, if we are to fully capture the ecological and evolutionary consequences of these parasite-induced behavioral changes. As part of this effort, we conducted a series of experiments to investigate the long and short-range behavioural responses to human stimuli in the mosquito Anopheles coluzzii during different stages of infection with sympatric field isolates of the human malaria parasite Plasmodium falciparum in Burkina Faso. First, we used a dual-port olfactometer designed to take advantage of the whole body odor to gauge mosquito long-range host-seeking behaviors. Second, we used a locomotor activity monitor system to assess mosquito short-range behaviors. Compared to control uninfected mosquitoes, P. falciparum infection had no significant effect neither on long-range nor on short-range behaviors both at the immature and mature stages. This study, using a natural mosquito-malaria parasite association, indicates that manipulation of vector behavior may not be a general phenomenon. We speculate that the observed contrasting phenotypes with model systems might result from coevolution of the human parasite and its natural vector. Future experiments, using other sympatric malaria mosquito populations or species are required to test this hypothesis. In conclusion, our results highlight the importance of following up discoveries in laboratory model systems with studies on natural parasite–mosquito interactions to accurately predict the epidemiological, ecological and evolutionary consequences of parasite manipulation of vector

  15. Genetic architecture of resistance in Daphnia hosts against two species of host-specific parasites.

    Science.gov (United States)

    Routtu, J; Ebert, D

    2015-02-01

    Understanding the genetic architecture of host resistance is key for understanding the evolution of host-parasite interactions. Evolutionary models often assume simple genetics based on few loci and strong epistasis. It is unknown, however, whether these assumptions apply to natural populations. Using a quantitative trait loci (QTL) approach, we explore the genetic architecture of resistance in the crustacean Daphnia magna to two of its natural parasites: the horizontally transmitted bacterium Pasteuria ramosa and the horizontally and vertically transmitted microsporidium Hamiltosporidium tvaerminnensis. These two systems have become models for studies on the evolution of host-parasite interactions. In the QTL panel used here, Daphnia's resistance to P. ramosa is controlled by a single major QTL (which explains 50% of the observed variation). Resistance to H. tvaerminnensis horizontal infections shows a signature of a quantitative trait based in multiple loci with weak epistatic interactions (together explaining 38% variation). Resistance to H. tvaerminnensis vertical infections, however, shows only one QTL (explaining 13.5% variance) that colocalizes with one of the QTLs for horizontal infections. QTLs for resistance to Pasteuria and Hamiltosporidium do not colocalize. We conclude that the genetics of resistance in D. magna are drastically different for these two parasites. Furthermore, we infer that based on these and earlier results, the mechanisms of coevolution differ strongly for the two host-parasite systems. Only the Pasteuria-Daphnia system is expected to follow the negative frequency-dependent selection (Red Queen) model. How coevolution works in the Hamiltosporidium-Daphnia system remains unclear.

  16. Role of parasites in cancer.

    Science.gov (United States)

    Mandong, B M; Ngbea, J A; Raymond, Vhriterhire

    2013-01-01

    In areas of parasitic endemicity, the occurrence of cancer that is not frequent may be linked with parasitic infection. Epidemiological correlates between some parasitic infections and cancer is strong, suggesting a strong aetiological association. The common parasites associated with human cancers are schistosomiasis, malaria, liver flukes (Clonorchis sinenses, Opistorchis viverrini). To review the pathology, literature and methods of diagnosis. Literature review from peer reviewed Journals cited in PubMed and local journals. Parasites may serve as promoters of cancer in endemic areas of infection.

  17. Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato

    Science.gov (United States)

    Tjiurutue, Muvari Connie; Palmer-Young, Evan C.; Adler, Lynn S.

    2016-01-01

    Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types, we predict that prior parasitism would have a greater deterrent effect on subsequent parasites than would prior herbivory. To test the effects of prior parasitism and prior herbivory on subsequent parasitic dodder (Cuscuta spp.) preference, we conducted two separate greenhouse studies with tomato hosts (Solanum lycopersicum). In the first experiment, we tested the effects of previous dodder attachment on subsequent dodder preference on tomato hosts using three treatments: control plants that had no previous dodder attachment; dodder-removed plants that had an initial dodder seedling attached, removed and left in the same pot to simulate parasite death; and dodder-continuous plants with an initial dodder seedling that remained attached. In the second experiment, we tested the effects of previous caterpillar damage (Spodoptera exigua) and mechanical damage on future dodder attachment on tomato hosts. Dodder attached most slowly to tomato hosts that had dodder plants previously attached and then removed, compared to control plants or plants with continuous dodder attachment. In contrast, herbivory did not affect subsequent dodder attachment rate. These results indicate that dodder preference depended on the identity and the outcome of the initial attack, suggesting that early-season interactions have the potential for profound impacts on subsequent community dynamics. PMID:27529694

  18. Parasite Removal, but Not Herbivory, Deters Future Parasite Attachment on Tomato.

    Directory of Open Access Journals (Sweden)

    Muvari Connie Tjiurutue

    Full Text Available Plants face many antagonistic interactions that occur sequentially. Often, plants employ defense strategies in response to the initial damage that are highly specific and can affect interactions with subsequent antagonists. In addition to herbivores and pathogens, plants face attacks by parasitic plants, but we know little about how prior herbivory compared to prior parasite attachment affects subsequent host interactions. If host plants can respond adaptively to these different damage types, we predict that prior parasitism would have a greater deterrent effect on subsequent parasites than would prior herbivory. To test the effects of prior parasitism and prior herbivory on subsequent parasitic dodder (Cuscuta spp. preference, we conducted two separate greenhouse studies with tomato hosts (Solanum lycopersicum. In the first experiment, we tested the effects of previous dodder attachment on subsequent dodder preference on tomato hosts using three treatments: control plants that had no previous dodder attachment; dodder-removed plants that had an initial dodder seedling attached, removed and left in the same pot to simulate parasite death; and dodder-continuous plants with an initial dodder seedling that remained attached. In the second experiment, we tested the effects of previous caterpillar damage (Spodoptera exigua and mechanical damage on future dodder attachment on tomato hosts. Dodder attached most slowly to tomato hosts that had dodder plants previously attached and then removed, compared to control plants or plants with continuous dodder attachment. In contrast, herbivory did not affect subsequent dodder attachment rate. These results indicate that dodder preference depended on the identity and the outcome of the initial attack, suggesting that early-season interactions have the potential for profound impacts on subsequent community dynamics.

  19. Variation of parasite load and immune parameters in two species of New Zealand shore crabs.

    Science.gov (United States)

    Dittmer, Jessica; Koehler, Anson V; Richard, Freddie-Jeanne; Poulin, Robert; Sicard, Mathieu

    2011-09-01

    While parasites are likely to encounter several potential intermediate hosts in natural communities, a parasite's actual range of compatible hosts is limited by numerous biological factors ranging from behaviour to immunology. In crustaceans, two major components of immunity are haemocytes and the prophenoloxidase system involved in the melanisation of foreign particles. Here, we analysed metazoan parasite prevalence and loads in the two sympatric crab species Hemigrapsus crenulatus and Macrophthalmus hirtipes at two sites. In parallel, we analysed the variation in haemocyte concentration and amount of circulating phenoloxidase (PO) in the haemolymph of the same individuals in an attempt to (a) explain differences in parasite prevalence and loads in the two species at two sites and (b) assess the impact of parasites on these immune parameters. M. hirtipes harboured more parasites but also exhibited higher haemocyte concentrations than H. crenulatus independent of the study site. Thus, higher investment in haemocyte production for M. hirtipes does not seem to result in higher resistance to parasites. Analyses of variation in immune parameters for the two crab species between the two sites that differed in parasite prevalence showed common trends. (a) In general, haemocyte concentrations were higher at the site experiencing higher parasitic pressure while circulating PO activity was lower and (b) haemocyte concentrations were influenced by microphallid trematode metacercariae in individuals from the site with higher parasitic pressure. We suggest that the higher haemocyte concentrations observed in both crab species exposed to higher parasitic pressure may represent an adaptive response to the impact of parasites on this immune parameter.

  20. Parasitism and the biodiversity-functioning relationship

    Science.gov (United States)

    Frainer, André; McKie, Brendan G.; Amundsen, Per-Arne; Knudsen, Rune; Lafferty, Kevin D.

    2018-01-01

    Biodiversity affects ecosystem functioning.Biodiversity may decrease or increase parasitism.Parasites impair individual hosts and affect their role in the ecosystem.Parasitism, in common with competition, facilitation, and predation, could regulate BD-EF relationships.Parasitism affects host phenotypes, including changes to host morphology, behavior, and physiology, which might increase intra- and interspecific functional diversity.The effects of parasitism on host abundance and phenotypes, and on interactions between hosts and the remaining community, all have potential to alter community structure and BD-EF relationships.Global change could facilitate the spread of invasive parasites, and alter the existing dynamics between parasites, communities, and ecosystems.Species interactions can influence ecosystem functioning by enhancing or suppressing the activities of species that drive ecosystem processes, or by causing changes in biodiversity. However, one important class of species interactions – parasitism – has been little considered in biodiversity and ecosystem functioning (BD-EF) research. Parasites might increase or decrease ecosystem processes by reducing host abundance. Parasites could also increase trait diversity by suppressing dominant species or by increasing within-host trait diversity. These different mechanisms by which parasites might affect ecosystem function pose challenges in predicting their net effects. Nonetheless, given the ubiquity of parasites, we propose that parasite–host interactions should be incorporated into the BD-EF framework.

  1. How Many Parasites Species a Frog Might Have? Determinants of Parasite Diversity in South American Anurans.

    Directory of Open Access Journals (Sweden)

    Karla Magalhães Campião

    Full Text Available There is an increasing interest in unveiling the dynamics of parasite infection. Understanding the interaction patterns, and determinants of host-parasite association contributes to filling knowledge gaps in both community and disease ecology. Despite being targeted as a relevant group for conservation efforts, determinants of the association of amphibians and their parasites in broad scales are poorly understood. Here we describe parasite biodiversity in South American amphibians, testing the influence of host body size and geographic range in helminth parasites species richness (PSR. We also test whether parasite diversity is related to hosts' phylogenetic diversity. Results showed that nematodes are the most common anuran parasites. Host-parasite network has a nested pattern, with specialist helminth taxa generally associated with hosts that harbour the richest parasite faunas. Host size is positively correlated with helminth fauna richness, but we found no support for the association of host geographic range and PSR. These results remained consistent after correcting for uneven study effort and hosts' phylogenic correlation. However, we found no association between host and parasite diversity, indicating that more diversified anuran clades not necessarily support higher parasite diversity. Overall, considering both the structure and the determinants of PRS in anurans, we conclude that specialist parasites are more likely to be associated with large anurans, which are the ones harbouring higher PSR, and that the lack of association of PSR with hosts' clade diversification suggests it is strongly influenced by ecological and contemporary constrains.

  2. Insecticide resistance and intracellular proteases.

    Science.gov (United States)

    Wilkins, Richard M

    2017-12-01

    Pesticide resistance is an example of evolution in action with mechanisms of resistance arising from mutations or increased expression of intrinsic genes. Intracellular proteases have a key role in maintaining healthy cells and in responding to stressors such as pesticides. Insecticide-resistant insects have constitutively elevated intracellular protease activity compared to corresponding susceptible strains. This increase was shown for some cases originally through biochemical enzyme studies and subsequently putatively by transcriptomics and proteomics methods. Upregulation and expression of proteases have been characterised in resistant strains of some insect species, including mosquitoes. This increase in proteolysis results in more degradation products (amino acids) of intracellular proteins. These may be utilised in the resistant strain to better protect the cell from stress. There are changes in insect intracellular proteases shortly after insecticide exposure, suggesting a role in stress response. The use of protease and proteasome inhibitors or peptide mimetics as synergists with improved application techniques and through protease gene knockdown using RNA interference (possibly expressed in crop plants) may be potential pest management strategies, in situations where elevated intracellular proteases are relevant. © 2017 Society of Chemical Industry. © 2017 Society of Chemical Industry.

  3. (macro- Evolutionary ecology of parasite diversity: From determinants of parasite species richness to host diversification

    Directory of Open Access Journals (Sweden)

    Serge Morand

    2015-04-01

    Full Text Available The present review summarized the factors or determinants that may explain parasite diversity among host species and the consequences of this parasite diversity on the evolution of host-life history traits. As host–parasite interactions are asymmetrical exploited–exploiter relationships, ecological and epidemiological theories produce hypotheses to find the potential determinants of parasite species richness, while life-history theory helps for testing potential consequences on parasite diversity on the evolution of hosts. This review referred only to studies that have specifically controlled or took into account phylogenetic information illustrated with parasites of mammals. Several points needing more investigation were identified with a special emphasis to develop the metabolic theory of epidemiology.

  4. Pets and Parasites

    Science.gov (United States)

    ... good news is that this rarely happens. Most pet-to-people diseases can be avoided by following a few ... your doctor Can a parasite cause death in people and pets? Can human disease from a parasite be treated ...

  5. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size.

    Science.gov (United States)

    Rodríguez, Sara M; Valdivia, Nelson

    2017-01-01

    Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence) and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts' exposure to the parasite's dispersive stages. Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm) than large molecrabs (analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation-a characteristic of indirect host-parasite interactions-and subsequent increasing mortality rates over ontogeny underpin size-dependent host-parasite dynamics.

  6. Neglected Parasitic Infections: Toxocariasis

    Centers for Disease Control (CDC) Podcasts

    2012-01-05

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: Neglected Parasitic Infections in the United States. Neglected Parasitic Infections are a group of diseases that afflict vulnerable populations and are often not well studied or diagnosed. A subject matter expert from CDC's Division of Parasitic Diseases and Malaria describes the epidemiology, diagnosis, and treatment of toxocariasis.  Created: 1/5/2012 by Center for Global Health, Division of Parasitic Diseases and Malaria (DPDM); Emergency Risk Communication Branch (ERCB)/Joint Information Center (JIC), Office of Public Health Preparedness and Response (OPHPR).   Date Released: 1/9/2012.

  7. The high resolution melting analysis (HRM) as a molecular tool for monitoring parasites of the wildlife.

    Science.gov (United States)

    Héritier, Laurent; Verneau, Olivier; Breuil, Gregory; Meistertzheim, Anne-Leila

    2017-04-01

    In an interconnected world, the international pet trade on wild animals is becoming increasingly important. As a consequence, non-native parasite species are introduced, which affect the health of wildlife and contribute to the loss of biodiversity. Because the investigation of parasite diversity within vulnerable host species implies the molecular identification of large samples of parasite eggs, the sequencing of DNA barcodes is time-consuming and costly. Thereby, the objectives of our study were to apply the high resolution melting (HRM) approach for species determination from pools of parasite eggs. Molecular assays were validated on flatworm parasites (polystomes) infecting the Mediterranean pond turtle Mauremys leprosa and the invasive red-eared slider Trachemys scripta elegans in French natural environments. HRM analysis results indicated that double or multiple parasitic infections could be detected from wild animal populations. They also showed that the cycle of parasite eggs production was not regular over time and may depend on several factors, among which the ecological niche and the target species. Thereby, monitoring parasites from wild endangered animals implies periodic parasitological surveys to avoid false negative diagnostics, based solely on eggs production.

  8. Ecological implications of floods on the parasite communities of two freshwater catfishes in a Neotropical floodplain.

    Science.gov (United States)

    Yamada, Priscilla de Oliveira Fadel; Yamada, Fabio Hideki; da Silva, Reinaldo José; Anjos, Luciano Alves Dos

    2017-06-01

    The parasite communities of two freshwater catfishes (Auchenipterus osteomystax and Trachelyopterus galeatus) were analyzed during the dry and rainy seasons in a Neotropical floodplain. The nature of river-floodplain systems places specific demands on parasite community structure, due to changes in the host environment. It was therefore hypothesized that flood conditions lead to an increase in the richness and abundance of fish parasites in the rainy season at the mouth of Aguapeí River floodplain. The Auchenipterus osteomystax parasite community was richer (11 vs. eight) in species than T. galeatus, although the latter exhibited a greater parasite burden (F1,108 = 126.99, PFlood conditions during the rainy season caused a change in the composition and structure of the parasitic communities. The results corroborate the hypothesis that floods are one of the most significant influences on shaping the parasite communities of fish in floodplains. Our greatest concern is the reduction these dynamics and effects bring about on local biota and, consequently, in host-parasite interaction. We would therefore like to take this opportunity to warn environmental agencies and hydroelectric companies about the importance of the conservation of the diversity of this location.

  9. Purine salvage in the apicomplexan Sarcocystis neurona, and generation of hypoxanthine-xanthine-guanine phosphoribosyltransferase-deficient clones for positive-negative selection of transgenic parasites.

    Science.gov (United States)

    Dangoudoubiyam, Sriveny; Zhang, Zijing; Howe, Daniel K

    2014-09-01

    Sarcocystis neurona is an apicomplexan parasite that causes severe neurological disease in horses and marine mammals. The Apicomplexa are all obligate intracellular parasites that lack purine biosynthesis pathways and rely on the host cell for their purine requirements. Hypoxanthine-xanthine-guanine phosphoribosyltransferase (HXGPRT) and adenosine kinase (AK) are key enzymes that function in two complementary purine salvage pathways in apicomplexans. Bioinformatic searches of the S. neurona genome revealed genes encoding HXGPRT, AK and all of the major purine salvage enzymes except purine nucleoside phosphorylase. Wild-type S. neurona were able to grow in the presence of mycophenolic acid (MPA) but were inhibited by 6-thioxanthine (6-TX), suggesting that the pathways involving either HXGPRT or AK are functional in this parasite. Prior work with Toxoplasma gondii demonstrated the utility of HXGPRT as a positive-negative selection marker. To enable the use of HXGPRT in S. neurona, the SnHXGPRT gene sequence was determined and a gene-targeting plasmid was transfected into S. neurona. SnHXGPRT-deficient mutants were selected with 6-TX, and single-cell clones were obtained. These Sn∆HXG parasites were susceptible to MPA and could be complemented using the heterologous T. gondii HXGPRT gene. In summary, S. neurona possesses both purine salvage pathways described in apicomplexans, thus allowing the use of HXGPRT as a positive-negative drug selection marker in this parasite.

  10. Rapid parallel evolution overcomes global honey bee parasite.

    Science.gov (United States)

    Oddie, Melissa; Büchler, Ralph; Dahle, Bjørn; Kovacic, Marin; Le Conte, Yves; Locke, Barbara; de Miranda, Joachim R; Mondet, Fanny; Neumann, Peter

    2018-05-16

    In eusocial insect colonies nestmates cooperate to combat parasites, a trait called social immunity. However, social immunity failed for Western honey bees (Apis mellifera) when the ectoparasitic mite Varroa destructor switched hosts from Eastern honey bees (Apis cerana). This mite has since become the most severe threat to A. mellifera world-wide. Despite this, some isolated A. mellifera populations are known to survive infestations by means of natural selection, largely by supressing mite reproduction, but the underlying mechanisms of this are poorly understood. Here, we show that a cost-effective social immunity mechanism has evolved rapidly and independently in four naturally V. destructor-surviving A. mellifera populations. Worker bees of all four 'surviving' populations uncapped/recapped worker brood cells more frequently and targeted mite-infested cells more effectively than workers in local susceptible colonies. Direct experiments confirmed the ability of uncapping/recapping to reduce mite reproductive success without sacrificing nestmates. Our results provide striking evidence that honey bees can overcome exotic parasites with simple qualitative and quantitative adaptive shifts in behaviour. Due to rapid, parallel evolution in four host populations this appears to be a key mechanism explaining survival of mite infested colonies.

  11. Parasitic load and histological aspects in different regions of the spleen of dogs with visceral leishmaniasis.

    Science.gov (United States)

    Bagues, Naiara Carvalho Teixeira; Pinheiro, Cristiane Garboggini Melo de; Bastos, Leila Andrade; Fraga, Deborah Bittencourt Mothé; Veras, Patrícia Sampaio Tavares; Pontes-de-Carvalho, Lain Carlos; Dos-Santos, Washington L C; Oliveira, Geraldo Gileno de Sá

    2018-02-01

    Leishmania infantum causes from subclinical infection to severe disease in humans and dogs. The spleen is one of the organs most affected by the infection. Although evidence exists that the parasitic load distribution and histological alterations may not be homogeneous in the affected organs of naturally infected individuals, it has not been formally demonstrated using the current techniques used for studying the disease. In six dogs naturally infected with Leishmania, parasitic load and histological changes were compared in samples collected from the lower, middle and upper third of the spleen. Parasitic load in the spleen of the group of dogs was variable, revealing a difference of 61 times between animals with the lowest and the highest parasitism. The set of parasitic load values of each dog showed a cluster trend, when compared to the other animals. Nevertheless, the parasitic load values of each dog showed a variation ranging from 3.2 to 34.7 times between lowest and highest value. Histological changes showed recognizable variation in frequency (granulomas) or intensity (perisplenitis) in the spleen of 2 out of the 6 dogs. The agreement of histological findings between samples collected from the different thirds of the spleen was good (kappa coeficient, 0.61-0.80) very good (0.81-0.99) or perfect (1.00), for most of the parameters analyzed. Variability of parasitic load and, to a lesser extent, histological changes in spleen of dogs with visceral leishmaniasis is observed. Such variability may be taken in account in the design of studies on pathogenesis, vaccine and therapeutic drug development. Copyright © 2017 Elsevier Ltd. All rights reserved.

  12. Ticks parasitizing bats (Mammalia: Chiroptera) in the Caatinga Biome, Brazil.

    Science.gov (United States)

    Luz, Hermes Ribeiro; Muñoz-Leal, Sebastián; Almeida, Juliana Cardoso de; Faccini, João Luiz Horacio; Labruna, Marcelo Bahia

    2016-01-01

    In this paper, the authors report ticks parasitizing bats from the Serra das Almas Natural Reserve (RPPN) located in the municipality of Crateús, state of Ceará, in the semiarid Caatinga biome of northeastern Brazil. The study was carried out during nine nights in the dry season (July 2012) and 10 nights in the rainy season (February 2013). Only bats of the Phyllostomidae and Mormoopidae families were parasitized by ticks. The species Artibeus planirostris and Carolia perspicillata were the most parasitized. A total of 409 larvae were collected and classified into three genera: Antricola (n = 1), Nothoaspis (n = 1) and Ornithodoros (n = 407). Four species were morphologically identified as Nothoaspis amazoniensis, Ornithodoros cavernicolous, Ornithodoros fonsecai, Ornithodoros hasei, and Ornithodoros marinkellei. Ornithodoros hasei was the most common tick associated with bats in the current study. The present study expand the distributional ranges of at least three soft ticks into the Caatinga biome, and highlight an unexpected richness of argasid ticks inhabiting this arid ecosystem.

  13. Neglected Parasitic Infections: Toxocariasis

    Centers for Disease Control (CDC) Podcasts

    This podcast is an overview of the Clinician Outreach and Communication Activity (COCA) Call: Neglected Parasitic Infections in the United States. Neglected Parasitic Infections are a group of diseases that afflict vulnerable populations and are often not well studied or diagnosed. A subject matter expert from CDC's Division of Parasitic Diseases and Malaria describes the epidemiology, diagnosis, and treatment of toxocariasis.

  14. Lutte Contre Les Parasites Chez Le Karite | Soro | Agronomie Africaine

    African Journals Online (AJOL)

    This butter is used in many products, such as local food, chocolate, cosmetic and pharmacopoeia. Nevertheless,shea orchards are more and more subject to severe attacks by Loranthaceae, a vascular parasite plants, commonly called guis. Therefore, a pest management study was carried out on Tengrela\\'s natural shea ...

  15. Genome Evolution of Plant-Parasitic Nematodes.

    Science.gov (United States)

    Kikuchi, Taisei; Eves-van den Akker, Sebastian; Jones, John T

    2017-08-04

    Plant parasitism has evolved independently on at least four separate occasions in the phylum Nematoda. The application of next-generation sequencing (NGS) to plant-parasitic nematodes has allowed a wide range of genome- or transcriptome-level comparisons, and these have identified genome adaptations that enable parasitism of plants. Current genome data suggest that horizontal gene transfer, gene family expansions, evolution of new genes that mediate interactions with the host, and parasitism-specific gene regulation are important adaptations that allow nematodes to parasitize plants. Sequencing of a larger number of nematode genomes, including plant parasites that show different modes of parasitism or that have evolved in currently unsampled clades, and using free-living taxa as comparators would allow more detailed analysis and a better understanding of the organization of key genes within the genomes. This would facilitate a more complete understanding of the way in which parasitism has shaped the genomes of plant-parasitic nematodes.

  16. Testing GxG interactions between coinfecting microbial parasite genotypes within hosts

    Directory of Open Access Journals (Sweden)

    Rebecca D Schulte

    2014-05-01

    Full Text Available Host-parasite interactions represent one of the strongest selection pressures in nature. They are often governed by genotype-specific (GxG interactions resulting in host genotypes that differ in resistance and parasite genotypes that differ in virulence depending on the antagonist’s genotype. Another type of GxG interactions, which is often neglected but which certainly influences host-parasite interactions, are those between coinfecting parasite genotypes. Mechanistically, within-host parasite interactions may range from competition for limited host resources to cooperation for more efficient host exploitation. The exact type of interaction, i.e. whether competitive or cooperative, is known to affect life-history traits such as virulence. However, the latter has been shown for chosen genotype combinations only, not considering whether the specific genotype combination per se may influence the interaction (i.e. GxG interactions. Here, we want to test for the presence of GxG interactions between coinfections of the bacterium Bacillus thuringiensis infecting the nematode Caenorhabditis elegans by combining two non-pathogenic and five pathogenic strains in all possible ways. Furthermore, we evaluate whether the type of interaction, reflected by the direction of virulence change of multiple compared to single infections, is genotype-specific. Generally, we found no indication for GxG interactions between non-pathogenic and pathogenic bacterial strains, indicating that virulence of pathogenic strains is equally affected by both non-pathogenic strains. Specific genotype combinations, however, differ in the strength of virulence change, indicating that the interaction type between coinfecting parasite strains and thus the virulence mechanism is specific for different genotype combinations. Such interactions are expected to influence host-parasite interactions and to have strong implications for coevolution.

  17. Blood parasites infections in domiciled dogs in an animal health service in Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Paulo Daniel Sant’Anna Leal

    2015-12-01

    Full Text Available ABSTRACT. Leal P.D.S., Moraes M.I.M.R., Barbosa L.L. deO. & Lopes C.W.G. [Blood parasites infections in domiciled dogs in an animal health service in Rio de Janeiro, Brazil.] Infecção por hematozoários nos cães domésticos atendidos em serviço de saúde animal, Rio de Janeiro, Brasil. Revista Brasileira de Medicina Veterinária, 37(Supl.1:55-62, 2015. Curso de Pós-Graduação de Ciências Veterinárias, Anexo 1, Instituto de Veterinária, Universidade Federal Rural do Rio de Janeiro, BR 465 Km 7, Campus Seropédica, BR 465 Km 7, Seropédica, RJ 23890-970, Brasil. E-mail: pauloleal@ctiveterinario.com.br The vector-borne diseases in dogs are caused by pathogens with different biological behaviors that result in different clinical and laboratory findings presentations. The diagnosis of these diseases is a challenge for veterinarians and those caused by obligate intracellular blood parasites of blood cells constitute vogeli of Babesia canis, Anaplasma platys, Erhlichia canis and Mycoplasma canis. This paper looks at the frequency of these parasites in 204 laboratory results dogs treated at the Intensive Care Unit and Emergency Veterinary through CBC and research of blood parasites in blood estiraço and concentrate platelets and leukocytes. There was one or more species of haemoparasites in 132 dogs (64.7% through blood samples. They were observed: 7 (5.3% dogs for B. c. vogeli, 64 (48.5% for A. platys, 16 (12.2% for M. canis, A. platys and E. canis in one (0.7%, A. platys and M. canis in 36 dogs (27.3%, M. canis and B. c. vogeli five (3.8%, M. canis and E. canis one (0.7%, A. platys, B. c. vogeli and M. canis in two (1.50%, confirming thus the high frequency of blood parasites in pet dogs in an urban environment, treated in the routine, the importance of viewing parasitic inclusions in leukocytes, platelets and red blood cells, It thus demonstrating the need for greater attention to the diagnosis of multiple infections by different parasitic

  18. Imaging of the host/parasite interplay in cutaneous leishmaniasis.

    Science.gov (United States)

    Millington, Owain R; Myburgh, Elmarie; Mottram, Jeremy C; Alexander, James

    2010-11-01

    An understanding of host-parasite interplay is essential for the development of therapeutics and vaccines. Immunoparasitologists have learned a great deal from 'conventional'in vitro and in vivo approaches, but recent developments in imaging technologies have provided us (immunologists and parasitologists) with the ability to ask new and exciting questions about the dynamic nature of the parasite-immune system interface. These studies are providing us with new insights into the mechanisms involved in the initiation of a Leishmania infection and the consequent induction and regulation of the immune response. Here, we review some of the recent developments and discuss how these observations can be further developed to understand the immunology of cutaneous Leishmania infection in vivo. (c) 2010 Elsevier Inc. All rights reserved.

  19. Parasitic diseases of lungs

    International Nuclear Information System (INIS)

    Rozenshtraukh, L.C.; Rybakova, N.I.; Vinner, M.G.

    1987-01-01

    Roentgenologic semiotics of the main parasitic diseases of lungs is described: echinococcosis, paragonimiasis, cysticercosis, toxoplasmosis, ascariasis, amebiosis and some rarely met parasitic diseases

  20. Spatial heterogeneity, frequency-dependent selection and polymorphism in host-parasite interactions

    Directory of Open Access Journals (Sweden)

    Tellier Aurélien

    2011-11-01

    Full Text Available Abstract Background Genomic and pathology analysis has revealed enormous diversity in genes involved in disease, including those encoding host resistance and parasite effectors (also known in plant pathology as avirulence genes. It has been proposed that such variation may persist when an organism exists in a spatially structured metapopulation, following the geographic mosaic of coevolution. Here, we study gene-for-gene relationships governing the outcome of plant-parasite interactions in a spatially structured system and, in particular, investigate the population genetic processes which maintain balanced polymorphism in both species. Results Following previous theory on the effect of heterogeneous environments on maintenance of polymorphism, we analysed a model with two demes in which the demes have different environments and are coupled by gene flow. Environmental variation is manifested by different coefficients of natural selection, the costs to the host of resistance and to the parasite of virulence, the cost to the host of being diseased and the cost to an avirulent parasite of unsuccessfully attacking a resistant host. We show that migration generates negative direct frequency-dependent selection, a condition for maintenance of stable polymorphism in each deme. Balanced polymorphism occurs preferentially if there is heterogeneity for costs of resistance and virulence alleles among populations and to a lesser extent if there is variation in the cost to the host of being diseased. We show that the four fitness costs control the natural frequency of oscillation of host resistance and parasite avirulence alleles. If demes have different costs, their frequencies of oscillation differ and when coupled by gene flow, there is amplitude death of the oscillations in each deme. Numerical simulations show that for a multiple deme island model, costs of resistance and virulence need not to be present in each deme for stable polymorphism to occur

  1. Blastocystis, an unrecognized parasite: an overview of pathogenesis and diagnosis.

    Science.gov (United States)

    Wawrzyniak, Ivan; Poirier, Philippe; Viscogliosi, Eric; Dionigia, Meloni; Texier, Catherine; Delbac, Frédéric; Alaoui, Hicham El

    2013-10-01

    Blastocystis sp. is among the few enteric parasites with a prevalence that often exceeds 5% in the general population of industrialized countries and can reach 30-60% in developing countries. This parasite is frequently found in people who are immunocompromised (patients with human immunodeficiency virus/acquired immunodeficiency syndrome or cancer) and a higher risk of Blastocystis sp. infection has been found in people with close animal contact. Such prevalence in the human population and the zoonotic potential naturally raise questions about the impact of these parasites on public health and has increased interest in this area. Recent in vitro and in vivo studies have shed new light on the pathogenic power of this parasite, suggesting that Blastocystis sp. infection is associated with a variety of gastrointestinal disorders, may play a significant role in irritable bowel syndrome, and may be linked with cutaneous lesions (urticaria). Despite recent significant advances in the knowledge of the extensive genetic diversity of this species, the identification of extracellular proteases as virulence factors and the publication of one isolate genome, many aspects of the biology of Blastocystis sp. remain poorly investigated. In this review, we investigate several biological aspects of Blastocystis sp. (diversity and epidemiology, diagnosis tools and pathophysiology). These data pave the way for the following challenges concerning Blastocystis sp. research: deciphering key biological mechanisms and pathways of this parasite and clarification of its clinical impact in humans.

  2. Plant hormone cytokinins control cell cycle progression and plastid replication in apicomplexan parasites.

    Science.gov (United States)

    Andrabi, Syed Bilal Ahmad; Tahara, Michiru; Matsubara, Ryuma; Toyama, Tomoko; Aonuma, Hiroka; Sakakibara, Hitoshi; Suematsu, Makoto; Tanabe, Kazuyuki; Nozaki, Tomoyoshi; Nagamune, Kisaburo

    2018-02-01

    Cytokinins are plant hormones that are involved in regulation of cell proliferation, cell cycle progression, and cell and plastid development. Here, we show that the apicomplexan parasites Toxoplasma gondii and Plasmodium berghei, an opportunistic human pathogen and a rodent malaria agent, respectively, produce cytokinins via a biosynthetic pathway similar to that in plants. Cytokinins regulate the growth and cell cycle progression of T. gondii by mediating expression of the cyclin gene TgCYC4. A natural form of cytokinin, trans-zeatin (t-zeatin), upregulated expression of this cyclin, while a synthetic cytokinin, thidiazuron, downregulated its expression. Immunofluorescence microscopy and quantitative PCR analysis showed that t-zeatin increased the genome-copy number of apicoplast, which are non-photosynthetic plastid, in the parasite, while thidiazuron led to their disappearance. Thidiazuron inhibited growth of T. gondii and Plasmodium falciparum, a human malaria parasite, suggesting that thidiazuron has therapeutic potential as an inhibitor of apicomplexan parasites. Copyright © 2017 The Authors. Published by Elsevier B.V. All rights reserved.

  3. Mesoscale spatiotemporal variability in a complex host-parasite system influenced by intermediate host body size

    Directory of Open Access Journals (Sweden)

    Sara M. Rodríguez

    2017-08-01

    Full Text Available Background Parasites are essential components of natural communities, but the factors that generate skewed distributions of parasite occurrences and abundances across host populations are not well understood. Methods Here, we analyse at a seascape scale the spatiotemporal relationships of parasite exposure and host body-size with the proportion of infected hosts (i.e., prevalence and aggregation of parasite burden across ca. 150 km of the coast and over 22 months. We predicted that the effects of parasite exposure on prevalence and aggregation are dependent on host body-sizes. We used an indirect host-parasite interaction in which migratory seagulls, sandy-shore molecrabs, and an acanthocephalan worm constitute the definitive hosts, intermediate hosts, and endoparasite, respectively. In such complex systems, increments in the abundance of definitive hosts imply increments in intermediate hosts’ exposure to the parasite’s dispersive stages. Results Linear mixed-effects models showed a significant, albeit highly variable, positive relationship between seagull density and prevalence. This relationship was stronger for small (cephalothorax length >15 mm than large molecrabs (<15 mm. Independently of seagull density, large molecrabs carried significantly more parasites than small molecrabs. The analysis of the variance-to-mean ratio of per capita parasite burden showed no relationship between seagull density and mean parasite aggregation across host populations. However, the amount of unexplained variability in aggregation was strikingly higher in larger than smaller intermediate hosts. This unexplained variability was driven by a decrease in the mean-variance scaling in heavily infected large molecrabs. Conclusions These results show complex interdependencies between extrinsic and intrinsic population attributes on the structure of host-parasite interactions. We suggest that parasite accumulation—a characteristic of indirect host-parasite

  4. Environmental risk and toxicology of human and veterinary waste pharmaceutical exposure to wild aquatic host-parasite relationships.

    Science.gov (United States)

    Morley, Neil J

    2009-03-01

    Pollution of the aquatic environment by human and veterinary waste pharmaceuticals is an increasing area of concern but little is known about their ecotoxicological effects on wildlife. In particular the interactions between pharmaceuticals and natural stressors of aquatic communities remains to be elucidated. A common natural stressor of freshwater and marine organisms are protozoan and metazoan parasites, which can have significant effects on host physiology and population structure, especially under the influence of many traditional kinds of toxic pollutants. However, little is known about the effects of waste pharmaceuticals to host-parasite dynamics. In order to assess the risk waste pharmaceuticals pose to aquatic wildlife it has been suggested the use of toxicological data derived from mammals during the product development of pharmaceuticals may be useful for predicting toxic effects. An additional similar source of information is the extensive clinical studies undertaken with numerous classes of drugs against parasites of human and veterinary importance. These studies may form the basis of preliminary risk assessments to aquatic populations and their interactions with parasitic diseases in pharmaceutical-exposed habitats. The present article reviews the effects of the most common classes of pharmaceutical medicines to host-parasite relationships and assesses the risk they may pose to wild aquatic organisms. In addition the effects of pharmaceutical mixtures, the importance of sewage treatment, and the risk of developing resistant strains of parasites are also assessed. Copyright © 2008 Elsevier B.V. All rights reserved.

  5. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees.

    Science.gov (United States)

    Huang, Qiang; Chen, Yan Ping; Wang, Rui Wu; Cheng, Shang; Evans, Jay D

    2016-01-01

    To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection.

  6. Thioredoxin 80-Activated-Monocytes (TAMs) Inhibit the Replication of Intracellular Pathogens

    DEFF Research Database (Denmark)

    Cortes-Bratti, Ximena; Brasseres, Eugenie; Herrera-Rodriquez, Fabiola

    2011-01-01

    Background: Thioredoxin 80 (Trx80) is an 80 amino acid natural cleavage product of Trx, produced primarily by monocytes. Trx80 induces differentiation of human monocytes into a novel cell type, named Trx80-activated-monocytes (TAMs). Principal Findings: In this investigation we present evidence...... for a role of TAMs in the control of intracellular bacterial infections. As model pathogens we have chosen Listeria monocytogenes and Brucella abortus which replicate in the cytosol and the endoplasmic reticulum respectively. Our data indicate that TAMs efficiently inhibit intracellular growth of both L...... in TAMs compared to that observed in control cells 24 h post-infection, indicating that TAMs kill bacteria by preventing their escape from the endosomal compartments, which progress into a highly degradative phagolysosome. Significance: Our results show that Trx80 potentiates the bactericidal activities...

  7. Diversity, loss, and gain of malaria parasites in a globally invasive bird.

    Science.gov (United States)

    Marzal, Alfonso; Ricklefs, Robert E; Valkiūnas, Gediminas; Albayrak, Tamer; Arriero, Elena; Bonneaud, Camille; Czirják, Gábor A; Ewen, John; Hellgren, Olof; Hořáková, Dita; Iezhova, Tatjana A; Jensen, Henrik; Križanauskienė, Asta; Lima, Marcos R; de Lope, Florentino; Magnussen, Eyðfinn; Martin, Lynn B; Møller, Anders P; Palinauskas, Vaidas; Pap, Péter L; Pérez-Tris, Javier; Sehgal, Ravinder N M; Soler, Manuel; Szöllosi, Eszter; Westerdahl, Helena; Zetindjiev, Pavel; Bensch, Staffan

    2011-01-01

    Invasive species can displace natives, and thus identifying the traits that make aliens successful is crucial for predicting and preventing biodiversity loss. Pathogens may play an important role in the invasive process, facilitating colonization of their hosts in new continents and islands. According to the Novel Weapon Hypothesis, colonizers may out-compete local native species by bringing with them novel pathogens to which native species are not adapted. In contrast, the Enemy Release Hypothesis suggests that flourishing colonizers are successful because they have left their pathogens behind. To assess the role of avian malaria and related haemosporidian parasites in the global spread of a common invasive bird, we examined the prevalence and genetic diversity of haemosporidian parasites (order Haemosporida, genera Plasmodium and Haemoproteus) infecting house sparrows (Passer domesticus). We sampled house sparrows (N = 1820) from 58 locations on 6 continents. All the samples were tested using PCR-based methods; blood films from the PCR-positive birds were examined microscopically to identify parasite species. The results show that haemosporidian parasites in the house sparrows' native range are replaced by species from local host-generalist parasite fauna in the alien environments of North and South America. Furthermore, sparrows in colonized regions displayed a lower diversity and prevalence of parasite infections. Because the house sparrow lost its native parasites when colonizing the American continents, the release from these natural enemies may have facilitated its invasion in the last two centuries. Our findings therefore reject the Novel Weapon Hypothesis and are concordant with the Enemy Release Hypothesis.

  8. Diversity, loss, and gain of malaria parasites in a globally invasive bird.

    Directory of Open Access Journals (Sweden)

    Alfonso Marzal

    Full Text Available Invasive species can displace natives, and thus identifying the traits that make aliens successful is crucial for predicting and preventing biodiversity loss. Pathogens may play an important role in the invasive process, facilitating colonization of their hosts in new continents and islands. According to the Novel Weapon Hypothesis, colonizers may out-compete local native species by bringing with them novel pathogens to which native species are not adapted. In contrast, the Enemy Release Hypothesis suggests that flourishing colonizers are successful because they have left their pathogens behind. To assess the role of avian malaria and related haemosporidian parasites in the global spread of a common invasive bird, we examined the prevalence and genetic diversity of haemosporidian parasites (order Haemosporida, genera Plasmodium and Haemoproteus infecting house sparrows (Passer domesticus. We sampled house sparrows (N = 1820 from 58 locations on 6 continents. All the samples were tested using PCR-based methods; blood films from the PCR-positive birds were examined microscopically to identify parasite species. The results show that haemosporidian parasites in the house sparrows' native range are replaced by species from local host-generalist parasite fauna in the alien environments of North and South America. Furthermore, sparrows in colonized regions displayed a lower diversity and prevalence of parasite infections. Because the house sparrow lost its native parasites when colonizing the American continents, the release from these natural enemies may have facilitated its invasion in the last two centuries. Our findings therefore reject the Novel Weapon Hypothesis and are concordant with the Enemy Release Hypothesis.

  9. Virulence of a malaria parasite, Plasmodium mexicanum, for its sand fly vectors, Lutzomyia vexator and Lutzomyia stewarti (Diptera: Psychodidae).

    Science.gov (United States)

    Schall, Jos J

    2011-11-01

    Evolutionary theory predicts that virulence of parasites for mobile vector insects will be low for natural parasite-host associations that have coevolved. I determined virulence of the malaria parasite of lizards, Plasmodium mexicanum, for its vectors, two species of sand fly (Diptera: Psychodidae), Lutzomyia vexator (Coquillett 1907) and Lutzomyia stewarti (Mangabeira Fo & Galindo 1944), by measuring several life history traits. Developmental rate from egg to eclosion differed for the two species when noninfected. For both sand fly species, developmental rate for each stage (egg to larval hatching, larval period, pupal period) and life span were not altered by infection. Infected sand flies, however, produced fewer eggs. This reduction in fecundity may be a result of lower quality of the blood meal taken from infected lizards (lower concentration of hemoglobin). This report is the first measure of virulence of Plasmodium for an insect vector other than a mosquito and concords with both expectations of theory and previous studies on natural parasite-host associations that revealed low virulence.

  10. Parasites, Plants, and People.

    Science.gov (United States)

    Johnson, Marion; Moore, Tony

    2016-06-01

    Anthelminthic resistance is acknowledged worldwide and is a major problem in Aotearoa New Zealand, thus alternative parasite management strategies are imperative. One Health is an initiative linking animal, human, and environmental health. Parasites, plants, and people illustrate the possibilities of providing diverse diets for stock thereby lowering parasite burdens, improving the cultural wellbeing of a local community, and protecting the environment. Copyright © 2016 Elsevier Ltd. All rights reserved.

  11. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro

    Directory of Open Access Journals (Sweden)

    Renata Rosito Tonelli

    2013-01-01

    Full Text Available Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques.The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment, were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction.In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic

  12. Parasite infracommunities of Leporinus friderici: A comparison of three tributaries of the Jurumirim Reservoir in southeastern Brazil

    Directory of Open Access Journals (Sweden)

    FÁBIO H. YAMADA

    Full Text Available ABSTRACT The degradation and homogenization of natural habitats is considered a major cause of biotic homogenization. Many studies have been undertaken on the effects of dams on aquatic wildlife, in particular fish assemblages. But how do dams affect the parasitic fauna of such fish? The aim of the present study was to examine parasitic similarity, comparing the diversity and structure of parasite communities of Leporinus friderici (Characiformes, Anostomidae in three upstream tributaries under the influence of the Jurumirim Dam on the Upper Paranapanema River in southeastern Brazil. The present study did not find any significant differences in parasite communities among populations of L. friderici in the three upstream tributaries. This result highlights that dams promote and facilitate the dispersal of organisms between localities, and therefore the spatial homogenization of parasite communities. Overall, the results suggest that fish parasite assemblages can provide suitable data for evaluating biotic homogenization caused by dams.

  13. Natural parasitism of Diaphorina citri Kuwayama (Hemiptera, Psyllidae nymphs by Tamarixia radiata Waterston (Hymenoptera, Eulophidae in São Paulo orange groves

    Directory of Open Access Journals (Sweden)

    Paulo Eduardo Branco Paiva

    2012-12-01

    Full Text Available The psyllid Diaphorina citri Kuwayama 1908 has become the main citrus pest species in the state of São Paulo, Brazil, after the introduction of the huanglongbing or citrus greening. This study evaluated the parasitism of 3rd, 4th and 5th instar D. citri nymphs by Tamarixia radiata (Waterston, 1922 in citrus groves under a regimen of regular insecticide applications in ten producing regions: Araraquara, Barretos, Bauru, Botucatu, Franca, Itapetininga, Jaú, Limeira, Lins and São João da Boa Vista. Sixty-nine samples of new branches infested with nymphs of D. citri were collected from 2005 to 2008 in orange groves ranging from 1 to 20 years old, of the varieties Hamlin, Pera, Valencia and Natal. The parasitoid T. radiata is widely distributed in São Paulo orange groves, and was identified in 50 (72% of the samples, showing a mean parasitism rate of 12.4%. The highest parasitism rate was observed in the "summer" (from January through March, with a mean of 25.7%. Nymphal parasitism was above 90% in two samples. The probable causes of the variations in parasitism of D. citri by T. radiata are discussed.

  14. Parasite prevalence corresponds to host life history in a diverse assemblage of afrotropical birds and haemosporidian parasites.

    Directory of Open Access Journals (Sweden)

    Holly L Lutz

    Full Text Available Avian host life history traits have been hypothesized to predict rates of infection by haemosporidian parasites. Using molecular techniques, we tested this hypothesis for parasites from three haemosporidian genera (Plasmodium, Haemoproteus, and Leucocytozoon collected from a diverse sampling of birds in northern Malawi. We found that host life history traits were significantly associated with parasitism rates by all three parasite genera. Nest type and nest location predicted infection probability for all three parasite genera, whereas flocking behavior is an important predictor of Plasmodium and Haemoproteus infection and habitat is an important predictor of Leucocytozoon infection. Parasite prevalence was 79.1% across all individuals sampled, higher than that reported for comparable studies from any other region of the world. Parasite diversity was also exceptionally high, with 248 parasite cytochrome b lineages identified from 152 host species. A large proportion of Plasmodium, Haemoproteus, and Leucocytozoon parasite DNA sequences identified in this study represent new, previously undocumented lineages (n = 201; 81% of total identified based on BLAST queries against the avian malaria database, MalAvi.

  15. Productivity and fishing pressure drive variability in fish parasite assemblages of the Line Islands, equatorial Pacific.

    Science.gov (United States)

    Wood, Chelsea L; Baum, Julia K; Reddy, Sheila M W; Trebilco, Rowan; Sandin, Stuart A; Zgliczynski, Brian J; Briggs, Amy A; Micheli, Fiorenza

    2015-05-01

    across a span of spatial scales. Overall, these results indicate that there are strong and variable effects of anthropogenic and natural drivers on parasite abundance and taxonomic richness. These effects are likely to be mediated by parasite traits, particularly by parasite transmission strategies.

  16. Members of a novel protein family containing microneme adhesive repeat domains act as sialic acid-binding lectins during host cell invasion by apicomplexan parasites.

    Science.gov (United States)

    Friedrich, Nikolas; Santos, Joana M; Liu, Yan; Palma, Angelina S; Leon, Ester; Saouros, Savvas; Kiso, Makoto; Blackman, Michael J; Matthews, Stephen; Feizi, Ten; Soldati-Favre, Dominique

    2010-01-15

    Numerous intracellular pathogens exploit cell surface glycoconjugates for host cell recognition and entry. Unlike bacteria and viruses, Toxoplasma gondii and other parasites of the phylum Apicomplexa actively invade host cells, and this process critically depends on adhesins (microneme proteins) released onto the parasite surface from intracellular organelles called micronemes (MIC). The microneme adhesive repeat (MAR) domain of T. gondii MIC1 (TgMIC1) recognizes sialic acid (Sia), a key determinant on the host cell surface for invasion by this pathogen. By complementation and invasion assays, we demonstrate that TgMIC1 is one important player in Sia-dependent invasion and that another novel Sia-binding lectin, designated TgMIC13, is also involved. Using BLAST searches, we identify a family of MAR-containing proteins in enteroparasitic coccidians, a subclass of apicomplexans, including T. gondii, suggesting that all these parasites exploit sialylated glycoconjugates on host cells as determinants for enteric invasion. Furthermore, this protein family might provide a basis for the broad host cell range observed for coccidians that form tissue cysts during chronic infection. Carbohydrate microarray analyses, corroborated by structural considerations, show that TgMIC13, TgMIC1, and its homologue Neospora caninum MIC1 (NcMIC1) share a preference for alpha2-3- over alpha2-6-linked sialyl-N-acetyllactosamine sequences. However, the three lectins also display differences in binding preferences. Intense binding of TgMIC13 to alpha2-9-linked disialyl sequence reported on embryonal cells and relatively strong binding to 4-O-acetylated-Sia found on gut epithelium and binding of NcMIC1 to 6'sulfo-sialyl Lewis(x) might have implications for tissue tropism.

  17. Linking parasite populations in hosts to parasite populations in space through Taylor's law and the negative binomial distribution.

    Science.gov (United States)

    Cohen, Joel E; Poulin, Robert; Lagrue, Clément

    2017-01-03

    The spatial distribution of individuals of any species is a basic concern of ecology. The spatial distribution of parasites matters to control and conservation of parasites that affect human and nonhuman populations. This paper develops a quantitative theory to predict the spatial distribution of parasites based on the distribution of parasites in hosts and the spatial distribution of hosts. Four models are tested against observations of metazoan hosts and their parasites in littoral zones of four lakes in Otago, New Zealand. These models differ in two dichotomous assumptions, constituting a 2 × 2 theoretical design. One assumption specifies whether the variance function of the number of parasites per host individual is described by Taylor's law (TL) or the negative binomial distribution (NBD). The other assumption specifies whether the numbers of parasite individuals within each host in a square meter of habitat are independent or perfectly correlated among host individuals. We find empirically that the variance-mean relationship of the numbers of parasites per square meter is very well described by TL but is not well described by NBD. Two models that posit perfect correlation of the parasite loads of hosts in a square meter of habitat approximate observations much better than two models that posit independence of parasite loads of hosts in a square meter, regardless of whether the variance-mean relationship of parasites per host individual obeys TL or NBD. We infer that high local interhost correlations in parasite load strongly influence the spatial distribution of parasites. Local hotspots could influence control and conservation of parasites.

  18. Host-Parasite Interactions and Purifying Selection in a Microsporidian Parasite of Honey Bees.

    Directory of Open Access Journals (Sweden)

    Qiang Huang

    Full Text Available To clarify the mechanisms of Nosema ceranae parasitism, we deep-sequenced both honey bee host and parasite mRNAs throughout a complete 6-day infection cycle. By time-series analysis, 1122 parasite genes were significantly differently expressed during the reproduction cycle, clustering into 4 expression patterns. We found reactive mitochondrial oxygen species modulator 1 of the host to be significantly down regulated during the entire infection period. Our data support the hypothesis that apoptosis of honey bee cells was suppressed during infection. We further analyzed genome-wide genetic diversity of this parasite by comparing samples collected from the same site in 2007 and 2013. The number of SNP positions per gene and the proportion of non-synonymous substitutions per gene were significantly reduced over this time period, suggesting purifying selection on the parasite genome and supporting the hypothesis that a subset of N. ceranae strains might be dominating infection.

  19. PARASITES OF FISH

    Science.gov (United States)

    The intent of this chapter is to describe the parasites of importance to fishes maintained and used in laboratory settings. In contrast to the frist edition, the focus will be only on those parasites that pose a serious threat to or are common in fishes held in these confined en...

  20. Coprological Assessment of Enteric Parasites in Argali Sheep ( Ovis ammon , Siberian Ibex ( Capra sibirica , and Domestic Sheep and Goats at the Ikh Nart Nature Reserve in Mongolia

    Directory of Open Access Journals (Sweden)

    David E. Kenny

    2009-12-01

    Full Text Available In the spring of 2009 (April/May the Denver Zoological Foundation in collaboration with the Mongolian Academy of Sciences conducted a fi eld coprological assessment feasibility study at the Ikh Nart Nature Reserve in southeastern Mongolia. Our initial effort was directed at fi nding simple methodologies that would work consistently in the fi eld for identifying some of the enteric parasites for argali sheep ( Ovis ammon and Siberian ibex ( Capra sibirica , and then to compare these to samples from local nomad domestic fat-tailed sheep ( Ovis aries and cashmere goats ( Capra hircus . Direct fecal examination yielded less eggs than the fl otation techniques, but was still felt to be useful as a quick screening tool. From the fl otation techniques we settled on using sugar because it appeared to yield the most eggs and sugar is readily available in Mongolia. We successfully recovered Entamoeba sp., Eimeria spp., trichostrongyles, large trichostrongyle species, Trichuris ovis and Strongyloides papillosus . We are using the digital images we captured to create a fi eld guide for common enteric parasites found in wildlife and domestics ungulates found in the reserve. In the future, we plan to use the fi eld guide and the quantitative modi fi ed McMaster technique to compare parasite egg-type numbers in both wild and domestic ungulates during different seasons.

  1. Reduced helminth parasitism in the introduced bank vole (Myodes glareolus: More parasites lost than gained

    Directory of Open Access Journals (Sweden)

    Karen C. Loxton

    2016-08-01

    Full Text Available Introduced species are often less parasitised compared to their native counterparts and to ecologically similar hosts in the new environment. Reduced parasitism may come about due to both the loss of original parasites and low acquisition of novel parasites. In this study we investigated the intestinal helminth parasites of the introduced bank vole (Myodes glareolus in Ireland. Results were compared to data from other European studies and to the intestinal helminth fauna of an ecologically similar native rodent in Ireland, the wood mouse (Apodemus sylvaticus. The helminth fauna of introduced bank voles exhibited low diversity with only 3 species recovered: Aspiculuris tianjinensis; Aonchotheca murissylvatici and Taenia martis larvae. In particular, no adult parasites with indirect life-cycles were found in bank voles suggesting that indirectly transmitted parasites are less likely to establish in invasive hosts. Also, the results of this study add support to the enemy release hypothesis.

  2. Parasites and immunotherapy: with or against?

    Science.gov (United States)

    Yousofi Darani, Hossein; Yousefi, Morteza; Safari, Marzieh; Jafari, Rasool

    2016-06-01

    Immunotherapy is a sort of therapy in which antibody or antigen administrates to the patient in order to treat or reduce the severity of complications of disease. This kind of treatment practiced in a wide variety of diseases including infectious diseases, autoimmune disorders, cancers and allergy. Successful and unsuccessful immunotherapeutic strategies have been practiced in variety of parasitic infections. On the other hand parasites or parasite antigens have also been considered for immunotherapy against other diseases such as cancer, asthma and multiple sclerosis. In this paper immunotherapy against common parasitic infections, and also immunotherapy of cancer, asthma and multiple sclerosis with parasites or parasite antigens have been reviewed.

  3. Structural and functional insights into the malaria parasite moving junction complex.

    Directory of Open Access Journals (Sweden)

    Brigitte Vulliez-Le Normand

    Full Text Available Members of the phylum Apicomplexa, which include the malaria parasite Plasmodium, share many features in their invasion mechanism in spite of their diverse host cell specificities and life cycle characteristics. The formation of a moving junction (MJ between the membranes of the invading apicomplexan parasite and the host cell is common to these intracellular pathogens. The MJ contains two key parasite components: the surface protein Apical Membrane Antigen 1 (AMA1 and its receptor, the Rhoptry Neck Protein (RON complex, which is targeted to the host cell membrane during invasion. In particular, RON2, a transmembrane component of the RON complex, interacts directly with AMA1. Here, we report the crystal structure of AMA1 from Plasmodium falciparum in complex with a peptide derived from the extracellular region of PfRON2, highlighting clear specificities of the P. falciparum RON2-AMA1 interaction. The receptor-binding site of PfAMA1 comprises the hydrophobic groove and a region that becomes exposed by displacement of the flexible Domain II loop. Mutations of key contact residues of PfRON2 and PfAMA1 abrogate binding between the recombinant proteins. Although PfRON2 contacts some polymorphic residues, binding studies with PfAMA1 from different strains show that these have little effect on affinity. Moreover, we demonstrate that the PfRON2 peptide inhibits erythrocyte invasion by P. falciparum merozoites and that this strong inhibitory potency is not affected by AMA1 polymorphisms. In parallel, we have determined the crystal structure of PfAMA1 in complex with the invasion-inhibitory peptide R1 derived by phage display, revealing an unexpected structural mimicry of the PfRON2 peptide. These results identify the key residues governing the interactions between AMA1 and RON2 in P. falciparum and suggest novel approaches to antimalarial therapeutics.

  4. Parasitic worms: how many really?

    Science.gov (United States)

    Strona, Giovanni; Fattorini, Simone

    2014-04-01

    Accumulation curves are useful tools to estimate species diversity. Here we argue that they can also be used in the study of global parasite species richness. Although this basic idea is not completely new, our approach differs from the previous ones as it treats each host species as an independent sample. We show that randomly resampling host-parasite records from the existing databases makes it possible to empirically model the relationship between the number of investigated host species, and the corresponding number of parasite species retrieved from those hosts. This method was tested on 21 inclusive lists of parasitic worms occurring on vertebrate hosts. All of the obtained models conform well to a power law curve. These curves were then used to estimate global parasite species richness. Results obtained with the new method suggest that current predictions are likely to severely overestimate parasite diversity. Copyright © 2014 Australian Society for Parasitology Inc. Published by Elsevier Ltd. All rights reserved.

  5. Parasitic wasp responses to symbiont-based defense in aphids

    Directory of Open Access Journals (Sweden)

    Oliver Kerry M

    2012-02-01

    Full Text Available Abstract Background Recent findings indicate that several insect lineages receive protection against particular natural enemies through infection with heritable symbionts, but little is yet known about whether enemies are able to discriminate and respond to symbiont-based defense. The pea aphid, Acyrthosiphon pisum, receives protection against the parasitic wasp, Aphidius ervi, when infected with the bacterial symbiont Hamiltonella defensa and its associated bacteriophage APSE (Acyrthosiphon pisum secondary endosymbiont. Internally developing parasitoid wasps, such as A. ervi, use maternal and embryonic factors to create an environment suitable for developing wasps. If more than one parasitoid egg is deposited into a single aphid host (superparasitism, then additional complements of these factors may contribute to the successful development of the single parasitoid that emerges. Results We performed experiments to determine if superparasitism is a tactic allowing wasps to overcome symbiont-mediated defense. We found that the deposition of two eggs into symbiont-protected aphids significantly increased rates of successful parasitism relative to singly parasitized aphids. We then conducted behavioral assays to determine whether A. ervi selectively superparasitizes H. defensa-infected aphids. In choice tests, we found that A. ervi tends to deposit a single egg in uninfected aphids, but two or more eggs in H. defensa-infected aphids, indicating that oviposition choices may be largely determined by infection status. Finally, we identified differences in the quantity of the trans-β-farnesene, the major component of aphid alarm pheromone, between H. defensa-infected and uninfected aphids, which may form the basis for discrimination. Conclusions Here we show that the parasitic wasp A. ervi discriminates among symbiont-infected and uninfected aphids, and changes its oviposition behavior in a way that increases the likelihood of overcoming symbiont

  6. Host-parasite interactions and ecology of the malaria parasite-a bioinformatics approach.

    Science.gov (United States)

    Izak, Dariusz; Klim, Joanna; Kaczanowski, Szymon

    2018-04-25

    Malaria remains one of the highest mortality infectious diseases. Malaria is caused by parasites from the genus Plasmodium. Most deaths are caused by infections involving Plasmodium falciparum, which has a complex life cycle. Malaria parasites are extremely well adapted for interactions with their host and their host's immune system and are able to suppress the human immune system, erase immunological memory and rapidly alter exposed antigens. Owing to this rapid evolution, parasites develop drug resistance and express novel forms of antigenic proteins that are not recognized by the host immune system. There is an emerging need for novel interventions, including novel drugs and vaccines. Designing novel therapies requires knowledge about host-parasite interactions, which is still limited. However, significant progress has recently been achieved in this field through the application of bioinformatics analysis of parasite genome sequences. In this review, we describe the main achievements in 'malarial' bioinformatics and provide examples of successful applications of protein sequence analysis. These examples include the prediction of protein functions based on homology and the prediction of protein surface localization via domain and motif analysis. Additionally, we describe PlasmoDB, a database that stores accumulated experimental data. This tool allows data mining of the stored information and will play an important role in the development of malaria science. Finally, we illustrate the application of bioinformatics in the development of population genetics research on malaria parasites, an approach referred to as reverse ecology.

  7. Control of human parasitic diseases: Context and overview.

    Science.gov (United States)

    Molyneux, David H

    2006-01-01

    The control of parasitic diseases of humans has been undertaken since the aetiology and natural history of the infections was recognized and the deleterious effects on human health and well-being appreciated by policy makers, medical practitioners and public health specialists. However, while some parasitic infections such as malaria have proved difficult to control, as defined by a sustained reduction in incidence, others, particularly helminth infections can be effectively controlled. The different approaches to control from diagnosis, to treatment and cure of the clinically sick patient, to control the transmission within the community by preventative chemotherapy and vector control are outlined. The concepts of eradication, elimination and control are defined and examples of success summarized. Overviews of the health policy and financing environment in which programmes to control or eliminate parasitic diseases are positioned and the development of public-private partnerships as vehicles for product development or access to drugs for parasite disease control are discussed. Failure to sustain control of parasites may be due to development of drug resistance or the failure to implement proven strategies as a result of decreased resources within the health system, decentralization of health management through health-sector reform and the lack of financial and human resources in settings where per capita government expenditure on health may be less than $US 5 per year. However, success has been achieved in several large-scale programmes through sustained national government investment and/or committed donor support. It is also widely accepted that the level of investment in drug development for the parasitic diseases of poor populations is an unattractive option for pharmaceutical companies. The development of partnerships to specifically address this need provides some hope that the intractable problems of the treatment regimens for the trypanosomiases and

  8. Immune response in the adipose tissue of lean mice infected with the protozoan parasite Neospora caninum

    Science.gov (United States)

    Teixeira, Luzia; Moreira, João; Melo, Joana; Bezerra, Filipa; Marques, Raquel M; Ferreirinha, Pedro; Correia, Alexandra; Monteiro, Mariana P; Ferreira, Paula G; Vilanova, Manuel

    2015-01-01

    The adipose tissue can make important contributions to immune function. Nevertheless, only a limited number of reports have investigated in lean hosts the immune response elicited in this tissue upon infection. Previous studies suggested that the intracellular protozoan Neospora caninum might affect adipose tissue physiology. Therefore, we investigated in mice challenged with this protozoan if immune cell populations within adipose tissue of different anatomical locations could be differently affected. Early in infection, parasites were detected in the adipose tissue and by 7 days of infection increased numbers of macrophages, regulatory T (Treg) cells and T-bet+ cells were observed in gonadal, mesenteric, omental and subcutaneous adipose tissue. Increased expression of interferon-γ was also detected in gonadal adipose tissue of infected mice. Two months after infection, parasite DNA was no longer detected in these tissues, but T helper type 1 (Th1) cell numbers remained above control levels in the infected mice. Moreover, the Th1/Treg cell ratio was higher than that of controls in the mesenteric and subcutaneous adipose tissue. Interestingly, chronically infected mice presented a marked increase of serum leptin, a molecule that plays a role in energy balance regulation as well as in promoting Th1-type immune responses. Altogether, we show that an apicomplexa parasitic infection influences immune cellular composition of adipose tissue throughout the body as well as adipokine production, still noticed at a chronic phase of infection when parasites were already cleared from that particular tissue. This strengthens the emerging view that infections can have long-term consequences for the physiology of adipose tissue. PMID:25581844

  9. Parasite specialization in a unique habitat: hummingbirds as reservoirs of generalist blood parasites of Andean birds.

    Science.gov (United States)

    Moens, Michaël A J; Valkiūnas, Gediminas; Paca, Anahi; Bonaccorso, Elisa; Aguirre, Nikolay; Pérez-Tris, Javier

    2016-09-01

    Understanding how parasites fill their ecological niches requires information on the processes involved in the colonization and exploitation of unique host species. Switching to hosts with atypical attributes may favour generalists broadening their niches or may promote specialization and parasite diversification as the consequence. We analysed which blood parasites have successfully colonized hummingbirds, and how they have evolved to exploit such a unique habitat. We specifically asked (i) whether the assemblage of Haemoproteus parasites of hummingbirds is the result of single or multiple colonization events, (ii) to what extent these parasites are specialized in hummingbirds or shared with other birds and (iii) how hummingbirds contribute to sustain the populations of these parasites, in terms of both prevalence and infection intensity. We sampled 169 hummingbirds of 19 species along an elevation gradient in Southern Ecuador to analyse the host specificity, diversity and infection intensity of Haemoproteus by molecular and microscopy techniques. In addition, 736 birds of 112 species were analysed to explore whether hummingbird parasites are shared with other birds. Hummingbirds hosted a phylogenetically diverse assemblage of generalist Haemoproteus lineages shared with other host orders. Among these parasites, Haemoproteus witti stood out as the most generalized. Interestingly, we found that infection intensities of this parasite were extremely low in passerines (with no detectable gametocytes), but very high in hummingbirds, with many gametocytes seen. Moreover, infection intensities of H. witti were positively correlated with the prevalence across host species. Our results show that hummingbirds have been colonized by generalist Haemoproteus lineages on multiple occasions. However, one of these generalist parasites (H. witti) seems to be highly dependent on hummingbirds, which arise as the most relevant reservoirs in terms of both prevalence and

  10. Imaging and controlling intracellular reactions: Lysosome transport as a function of diameter and the intracellular synthesis of conducting polymers

    Science.gov (United States)

    Payne, Christine

    2014-03-01

    Eukaryotic cells are the ultimate complex environment with intracellular chemical reactions regulated by the local cellular environment. For example, reactants are sequestered into specific organelles to control local concentration and pH, motor proteins transport reactants within the cell, and intracellular vesicles undergo fusion to bring reactants together. Current research in the Payne Lab in the School of Chemistry and Biochemistry at Georgia Tech is aimed at understanding and utilizing this complex environment to control intracellular chemical reactions. This will be illustrated using two examples, intracellular transport as a function of organelle diameter and the intracellular synthesis of conducting polymers. Using single particle tracking fluorescence microscopy, we measured the intracellular transport of lysosomes, membrane-bound organelles, as a function of diameter as they underwent transport in living cells. Both ATP-dependent active transport and diffusion were examined. As expected, diffusion scales with the diameter of the lysosome. However, active transport is unaffected suggesting that motor proteins are insensitive to cytosolic drag. In a second example, we utilize intracellular complexity, specifically the distinct micro-environments of different organelles, to carry out chemical reactions. We show that catalase, found in the peroxisomes of cells, can be used to catalyze the polymerization of the conducting polymer PEDOT:PSS. More importantly, we have found that a range of iron-containing biomolecules are suitable catalysts with different iron-containing biomolecules leading to different polymer properties. These experiments illustrate the advantage of intracellular complexity for the synthesis of novel materials.

  11. Immunity to parasitic infection

    National Research Council Canada - National Science Library

    Lamb, Tracey J

    2012-01-01

    .... Often endemic in developing countries many parasitic diseases are neglected in terms of research funding and much remains to be understood about parasites and the interactions they have with the immune system...

  12. Immunity to parasitic infection

    National Research Council Canada - National Science Library

    Lamb, Tracey J

    2012-01-01

    ... may be manipulated to develop therapeutic interventions against parasitic infection. For easy reference, the most commonly studied parasites are examined in individual chapters written by investigators at the forefront of their field...

  13. 9 CFR 381.88 - Parasites.

    Science.gov (United States)

    2010-01-01

    ... 9 Animals and Animal Products 2 2010-01-01 2010-01-01 false Parasites. 381.88 Section 381.88 Animals and Animal Products FOOD SAFETY AND INSPECTION SERVICE, DEPARTMENT OF AGRICULTURE AGENCY... § 381.88 Parasites. Organs or other parts of carcasses which are found to be infested with parasites, or...

  14. Nanoparticles for intracellular-targeted drug delivery

    International Nuclear Information System (INIS)

    Paulo, Cristiana S O; Pires das Neves, Ricardo; Ferreira, Lino S

    2011-01-01

    Nanoparticles (NPs) are very promising for the intracellular delivery of anticancer and immunomodulatory drugs, stem cell differentiation biomolecules and cell activity modulators. Although initial studies in the area of intracellular drug delivery have been performed in the delivery of DNA, there is an increasing interest in the use of other molecules to modulate cell activity. Herein, we review the latest advances in the intracellular-targeted delivery of short interference RNA, proteins and small molecules using NPs. In most cases, the drugs act at different cellular organelles and therefore the drug-containing NPs should be directed to precise locations within the cell. This will lead to the desired magnitude and duration of the drug effects. The spatial control in the intracellular delivery might open new avenues to modulate cell activity while avoiding side-effects.

  15. Parasitic infections of the external eye.

    Science.gov (United States)

    Pahuja, Shivani; Puranik, Charuta; Jelliti, Bechir; Khairallah, Moncef; Sangwan, Virender S

    2013-08-01

    To review the published literature on parasitic infections of external eye. Published articles and case reports on parasitic infections of external eye were reviewed and relevant information was collected. Parasitic infections of the eye are rare. However, being more commonly seen in developing nations, they require active measures for screening, diagnosis, and therapy. Parasites of importance causing external ocular disease are protozoan parasites, such as Leishmania; metazoans, such as nematodes (roundworms), cestodes (tapeworms), and trematodes (flatworms); or ectoparasites, such as Phthirus pubis and Demodex.

  16. The bigger, the better? Volume measurements of parasites and hosts: Parasitic barnacles (Cirripedia, Rhizocephala and their decapod hosts.

    Directory of Open Access Journals (Sweden)

    Christina Nagler

    Full Text Available Rhizocephala, a group of parasitic castrators of other crustaceans, shows remarkable morphological adaptations to their lifestyle. The adult female parasite consists of a body that can be differentiated into two distinct regions: a sac-like structure containing the reproductive organs (the externa, and a trophic, root like system situated inside the hosts body (the interna. Parasitism results in the castration of their hosts, achieved by absorbing the entire reproductive energy of the host. Thus, the ratio of the host and parasite sizes is crucial for the understanding of the parasite's energetic cost. Using advanced imaging methods (micro-CT in conjunction with 3D modeling, we measured the volume of parasitic structures (externa, interna, egg mass, egg number, visceral mass and the volume of the entire host. Our results show positive correlations between the volume of (1 entire rhizocephalan (externa + interna and host body, (2 rhizocephalan externa and host body, (3 rhizocephalan visceral mass and rhizocephalan body, (4 egg mass and rhizocephalan externa, (5 rhizocephalan egg mass and their egg number. Comparing the rhizocephalan Sylon hippolytes, a parasite of caridean shrimps, and representatives of Peltogaster, parasites of hermit crabs, we could match their different traits on a reconstructed relationship. With this study we add new and significant information to our global understanding of the evolution of parasitic castrators, of interactions between a parasitic castrator and its host and of different parasitic strategies within parasitic castrators exemplified by rhizocephalans.

  17. Variable effects of nicotine, anabasine, and their interactions on parasitized bumble bees

    Science.gov (United States)

    Thorburn, Lukas P.; Adler, Lynn S.; Irwin, Rebecca E.; Palmer-Young, Evan C.

    2015-01-01

    Secondary metabolites in floral nectar have been shown to reduce parasite load in two common bumble bee species. Previous studies on the effects of nectar secondary metabolites on parasitized bees have focused on single compounds in isolation; however, in nature, bees are simultaneously exposed to multiple compounds. We tested for interactions between the effects of two alkaloids found in the nectar of Nicotiana spp. plants, nicotine and anabasine, on parasite load and mortality in bumble bees ( Bombus impatiens) infected with the intestinal parasite Crithidia bombi. Adult worker bees inoculated with C. bombi were fed nicotine and anabasine diet treatments in a factorial design, resulting in four nectar treatment combinations:  2 ppm nicotine, 5 ppm anabasine, 2ppm nicotine and 5 ppm anabasine together, or a control alkaloid-free solution. We conducted the experiment twice: first, with bees incubated under variable environmental conditions (‘Variable’; temperatures varied from 10-35°C with ambient lighting); and second, under carefully controlled environmental conditions (‘Stable’; 27°C incubator, constant darkness). In ‘Variable’, each alkaloid alone significantly decreased parasite loads, but this effect was not realized with the alkaloids in combination, suggesting an antagonistic interaction. Nicotine but not anabasine significantly increased mortality, and the two compounds had no interactive effects on mortality. In ‘Stable’, nicotine significantly increased parasite loads, the opposite of its effect in ‘Variable’. While not significant, the relationship between anabasine and parasite loads was also positive. Interactive effects between the two alkaloids on parasite load were non-significant, but the pattern of antagonistic interaction was similar to that in the variable experiment. Neither alkaloid, nor their interaction, significantly affected mortality under controlled conditions. Our results do not indicate synergy between Nicotiana

  18. The role of moulting in parasite defence.

    Science.gov (United States)

    Duneau, David; Ebert, Dieter

    2012-08-07

    Parasitic infections consist of a succession of steps during which hosts and parasites interact in specific manners. At each step, hosts can use diverse defence mechanisms to counteract the parasite's attempts to invade and exploit them. Of these steps, the penetration of parasites into the host is a key step for a successful infection and the epithelium is the first line of host defence. The shedding of this protective layer (moulting) is a crucial feature in the life cycle of several invertebrate and vertebrate taxa, and is generally considered to make hosts vulnerable to parasites and predators. Here, we used the crustacean Daphnia magna to test whether moulting influences the likelihood of infection by the castrating bacterium Pasteuria ramosa. This parasite is known to attach to the host cuticula before penetrating into its body. We found that the likelihood of successful parasite infection is greatly reduced if the host moults within 12 h after parasite exposure. Thus, moulting is beneficial for the host being exposed to this parasite. We further show that exposure to the parasite does not induce hosts to moult earlier. We discuss the implications of our findings for host and parasite evolution and epidemiology.

  19. Ticks parasitizing bats (Mammalia: Chiroptera in the Caatinga Biome, Brazil

    Directory of Open Access Journals (Sweden)

    Hermes Ribeiro Luz

    Full Text Available Abstract In this paper, the authors report ticks parasitizing bats from the Serra das Almas Natural Reserve (RPPN located in the municipality of Crateús, state of Ceará, in the semiarid Caatinga biome of northeastern Brazil. The study was carried out during nine nights in the dry season (July 2012 and 10 nights in the rainy season (February 2013. Only bats of the Phyllostomidae and Mormoopidae families were parasitized by ticks. The species Artibeus planirostris and Carolia perspicillata were the most parasitized. A total of 409 larvae were collected and classified into three genera: Antricola (n = 1, Nothoaspis (n = 1 and Ornithodoros (n = 407. Four species were morphologically identified as Nothoaspis amazoniensis, Ornithodoros cavernicolous, Ornithodoros fonsecai, Ornithodoros hasei, and Ornithodoros marinkellei. Ornithodoros hasei was the most common tick associated with bats in the current study. The present study expand the distributional ranges of at least three soft ticks into the Caatinga biome, and highlight an unexpected richness of argasid ticks inhabiting this arid ecosystem.

  20. Maternal androgens in avian brood parasites and their hosts: responses to parasitism and competition?

    Science.gov (United States)

    Hahn, Caldwell; Wingfield, John C.; Fox, David M.; Walker, Brian G.; Thomley, Jill E

    2017-01-01

    In the coevolutionary dynamic of avian brood parasites and their hosts, maternal (or transgenerational) effects have rarely been investigated. We examined the potential role of elevated yolk testosterone in eggs of the principal brood parasite in North America, the brown-headed cowbird, and three of its frequent host species. Elevated maternal androgens in eggs are a common maternal effect observed in many avian species when breeding conditions are unfavorable. These steroids accelerate embryo development, shorten incubation period, increase nestling growth rate, and enhance begging vigor, all traits that can increase the survival of offspring. We hypothesized that elevated maternal androgens in host eggs are a defense against brood parasitism. Our second hypothesis was that elevated maternal androgens in cowbird eggs are a defense against intra-specific competition. For host species, we found that elevated yolk testosterone was correlated with parasitized nests of small species, those whose nest success is most reduced by cowbird parasitism. For cowbirds, we found that elevated yolk testosterone was correlated with eggs in multiply-parasitized nests, which indicate intra-specific competition for nests due to high cowbird density. We propose experimental work to further examine the use of maternal effects by cowbirds and their hosts.

  1. Women and Parasitic Diseases

    Science.gov (United States)

    ... Consultations, and General Public. Contact Us Parasites Home Women Recommend on Facebook Tweet Share Compartir Infection with ... of parasites can lead to unique consequences for women. Some examples are given below. Infection with Toxoplasma ...

  2. Natural infection of Lutzomyia tortura with Leishmania (Viannia) naiffi in an Amazonian area of Ecuador.

    Science.gov (United States)

    Kato, Hirotomo; Gomez, Eduardo A; Yamamoto, Yu-ichi; Calvopiña, Manuel; Guevara, Angel G; Marco, Jorge D; Barroso, Paola A; Iwata, Hiroyuki; Hashiguchi, Yoshihisa

    2008-09-01

    Natural infection of sand flies with Leishmania parasites was surveyed in an Amazonian area in Ecuador where leishmaniasis is endemic. Seventy-one female sand flies were dissected and one was positive for Leishmania protozoa. The species of this sand fly was identified as Lutzomyia (Lu.) tortura on the basis of morphologic characteristics. Analysis of the cytochrome b gene sequence identified the parasite as L. (Viannia) naiffi. We report the distribution of L. (V.) naiffi in Ecuador and detection of a naturally infected sand fly in the Ecuadorian Amazon and natural infection of Lu. tortura with Leishmania parasites in the New World.

  3. The dynamics of natural Plasmodium falciparum infections.

    Directory of Open Access Journals (Sweden)

    Ingrid Felger

    Full Text Available BACKGROUND: Natural immunity to Plasmodium falciparum has been widely studied, but its effects on parasite dynamics are poorly understood. Acquisition and clearance rates of untreated infections are key elements of the dynamics of malaria, but estimating these parameters is challenging because of frequent super-infection and imperfect detectability of parasites. Consequently, information on effects of host immune status or age on infection dynamics is fragmentary. METHODS: An age-stratified cohort of 347 individuals from Northern Ghana was sampled six times at 2 month intervals. High-throughput capillary electrophoresis was used to genotype the msp-2 locus of all P. falciparum infections detected by PCR. Force of infection (FOI and duration were estimated for each age group using an immigration-death model that allows for imperfect detection of circulating parasites. RESULTS: Allowing for imperfect detection substantially increased estimates of FOI and duration. Effects of naturally acquired immunity on the FOI and duration would be reflected in age dependence in these indices, but in our cohort data FOI tended to increase with age in children. Persistence of individual parasite clones was characteristic of all age-groups. Duration peaked in 5-9 year old children (average duration 319 days, 95% confidence interval 318;320. CONCLUSIONS: The main age-dependence is on parasite densities, with only small age-variations in the FOI and persistence of infections. This supports the hypothesis that acquired immunity controls transmission mainly by limiting blood-stage parasite densities rather than changing rates of acquisition or clearance of infections.

  4. A novel phytomyxean parasite associated with galls on the bull-kelp Durvillaea antarctica (Chamisso) Hariot.

    Science.gov (United States)

    Goecke, Franz; Wiese, Jutta; Núñez, Alejandra; Labes, Antje; Imhoff, Johannes F; Neuhauser, Sigrid

    2012-01-01

    Durvillaea antarctica (Fucales, Phaeophyceae) is a large kelp of high ecological and economic significance in the Southern Hemisphere. In natural beds along the central coast of Chile (Pacific Ocean), abnormal growth characterized by evident gall development and discolorations of the fronds/thallus was observed. Analysing these galls by light microscopy and scanning electron microscopy revealed the presence of endophytic eukaryotes showing typical characteristics for phytomyxean parasites. The parasite developed within enlarged cells of the subcortical tissue of the host. Multinucleate plasmodia developed into many, single resting spores. The affiliation of this parasite to the Phytomyxea (Rhizaria) was supported by 18S rDNA data, placing it within the Phagomyxida. Similar microorganisms were already reported once 23 years ago, indicating that these parasites are persistent and widespread in D. antarctica beds for long times. The symptoms caused by this parasite are discussed along with the ecological and economic consequences. Phytomyxean parasites may play an important role in the marine ecosystem, but they remain understudied in this environment. Our results demonstrate for the first time the presence of resting spores in Phagomyxida, an order in which resting spores were thought to be absent making this the first record of a phagomyxean parasite with a complete life cycle so far, challenging the existing taxonomic concepts within the Phytomyxea. The importance of the here described resting spores for the survival and ecology of the phagomyxid parasite will be discussed together with the impact this parasite may have on 'the strongest seaweed of the world', which is an important habitat forming and economic resource from the Southern Hemisphere.

  5. Efficient intracellular delivery and improved biocompatibility of colloidal silver nanoparticles towards intracellular SERS immuno-sensing.

    Science.gov (United States)

    Bhardwaj, Vinay; Srinivasan, Supriya; McGoron, Anthony J

    2015-06-21

    High throughput intracellular delivery strategies, electroporation, passive and TATHA2 facilitated diffusion of colloidal silver nanoparticles (AgNPs) are investigated for cellular toxicity and uptake using state-of-art analytical techniques. The TATHA2 facilitated approach efficiently delivered high payload with no toxicity, pre-requisites for intracellular applications of plasmonic metal nanoparticles (PMNPs) in sensing and therapeutics.

  6. Dynamics of Parascaris and Strongylus spp. parasites in untreated juvenile horses.

    Science.gov (United States)

    Fabiani, J V; Lyons, E T; Nielsen, M K

    2016-10-30

    Parasite control in foals is of utmost importance due to the high susceptibility to parasitic infection and disease in this age group. Foals are commonly co-infected with strongyle and ascarid parasites, which complicate parasite control strategies. The present study retrospectively investigated necropsy records of foals born into a university herd kept without anthelmintic treatment since 1979. The aims were to statistically analyze the relationship between fecal egg counts, worm burdens, foal age, sex, and season with specific focus on Parascaris and Strongylus spp. A total of 83 foals born between 1999 and 2015 were included. Foals were born between January and September within the given year and age at necropsy ranged between 27 and 563 days of age with a mean and median of 202 and 204 days, respectively. One set of multivariate mixed linear models was constructed analyzing strongyle and ascarid fecal egg counts as outcome variables, and another set of analyses investigated the following worm counts as outcome variables: Intestinal Parascaris spp. counts (immatures and adults), S. vulgaris (migrating and intestinal stages), S. edentatus (migrating and intestinal stages). Both ascarid and strongyle egg counts were influenced significantly by differences between study years (pvulgaris larvae were not statistically associated with any of the investigated covariates. This study provides novel information on the dynamics of important parasites in naturally infected foals. Copyright © 2016 Elsevier B.V. All rights reserved.

  7. [Parasitism in Phyllocnistis citrella Stainton (Lepidoptera: Gracillariidae) in Citrus orchards in Montenegro, RS, Brazil].

    Science.gov (United States)

    Jahnke, Simone M; Redaelli, Luiza R; Diefenbach, Lúcia M G

    2006-01-01

    Phyllocnistis citrella Stainton, the citrus-leafminer, is an important pest of citrus worldwide. Knowledge of natural parasitism levels is fundamental to the establishment of tactics of management and control of this species. This work aimed to evaluate the parasitism in two citrus orchards, one of 'Montenegrina' (Citrus deliciosa Ten.) and the other of 'Murcott' (C. sinensis (L.) Osbeck x C. reticulata Blanco), located in Montenegro, RS. In fortnightly samplings, from July/2001 to June/2003, all leaves containing P. citrella pupae from randomly selected plants were collected and maintained individually until emergence of the parasitoids or the citrus-leafminer. Parasitism was calculated considering the number of emerged parasitoids relative to the total number of emerged individuals. Correlation and linear regression tests were done to evaluate the relationship and the influence of biotic and abiotic factors upon the parasitism index. In both orchards the greatest parasitism percentage was registered on autumn in both years. The total percentage was 36.2% in 'Murcott' and 26.4% in 'Montenegrina' in the first year, and 30.2% and 37.6%, respectively, in the second year. In 'Murcott', this index did not differed between the years (chi2 = 2.06; df = 1; P > 0.05), in 'Montenegrina' the parasitism was significantly higher in the second year (chi2 = 7.36; df = 1; P < 0.05). The correlation and linear regression tests indicated a strong influence, in the parasitism index, of the host populational density registered in the previous 45 and 135 days.

  8. Nuclear hormone receptors in parasitic helminths

    OpenAIRE

    Wu, Wenjie; LoVerde, Philip T

    2010-01-01

    Nuclear receptors (NRs) belong to a large protein superfamily that are important transcriptional modulators in metazoans. Parasitic helminths include parasitic worms from the Lophotrochozoa (Platyhelminths) and Ecdysozoa (Nematoda). NRs in parasitic helminths diverged into two different evolutionary lineages. NRs in parasitic Platyhelminths have orthologues in Deuterostomes, in arthropods or both with a feature of extensive gene loss and gene duplication within different gene groups. NRs in p...

  9. Prevalence of Parasitic Contamination

    Science.gov (United States)

    Ismail, Yazan

    2016-01-01

    One of the main ways in transmitting parasites to humans is through consuming contaminated raw vegetables. The aim of this study was to evaluate the prevalence of parasitological contamination (helminthes eggs, Giardia and Entamoeba histolytica cysts) of salad vegetables sold at supermarkets and street vendors in Amman and Baqa’a – Jordan. A total of 133 samples of salad vegetables were collected and examined for the prevalence of parasites. It was found that 29% of the samples were contaminated with different parasites. Of the 30 lettuce, 33 tomato, 42 parsley and 28 cucumber samples examined the prevalence of Ascaris spp. eggs was 43%, 15%, 21% and 4%; Toxocara spp. eggs was 30%, 0%, 0% and 4%; Giardia spp. cysts was 23%, 6%, 0% and 0%; Taenia/Echinococcus eggs was 20%, 0%, 5% and 0%; Fasciola hepatica eggs was 13%, 3%, 2% and 0%; and E. histolytica cysts was 10%, 6%, 0% and 0%, respectively. There was no significant difference in the prevalence of parasite in salad vegetables either between supermarkets and street vendors, or between Amman and Baqa’a, Ascaris spp. was found to be the highest prevalent parasite in salad vegetables from supermarkets and street vendors and from Amman and Baqa’a. Our results pointed out that, the parasitic contamination of salad vegetables found in our study might be caused by irrigating crops with faecal contaminated water. We concluded that salad vegetables sold in Amman and Baqa’a may cause a health risk to consumers.

  10. Parasites in soil/sludge systems

    Energy Technology Data Exchange (ETDEWEB)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55/sup 0/C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities.

  11. Parasites in soil/sludge systems

    International Nuclear Information System (INIS)

    Brandon, J.R.

    1978-03-01

    The potential for the transmission of parasites, such as Entamoeba sp., schistosomes, and nematodes such as Ascaris sp., to man through the use of sewage sludges as fertilizer is reviewed. The eggs of Ascaris have been found to be the most resistant of these parasites to normal sludge treatment methods. Results of studies on the effectiveness of heat and ionizing radiation treatments reported show that a treatment of 55 0 C for 1 hour or more sufficiently reduces the number of viable Ascaris eggs in seeded sludge systems. An absorbed dose of 300 kilorads radiation is more than adequate for the same purpose. However, before an unequivocal statement can be made about the effectiveness of either of these treatments in reducing viable ova in real systems, certain qualifying factors must be investigated. There are conflicting reports on the radiation sensitivities of Ascaris eggs in different stages of development. Also, irradiation of composted sludge using an electron beam was unsuccessful in rendering all naturally-occurring Ascaris ova non-viable, even at 300 kilorads. The significant differences in radiation and heat sensitivities of Ascaris eggs in compost vs liquid systems points out the need to further investigate the effects of moisture levels on these sensitivities

  12. MR imaging of intracellular and extracellular deoxyhemoglobin

    International Nuclear Information System (INIS)

    Janick, P.A.; Grossman, R.I.; Asakura, T.

    1989-01-01

    MR imaging was performed on varying concentrations of intracellular and extracellular deoxyhemoglobin as well as varying proportions of deoxyhemoglobin and oxyhemoglobin in vitro at 1.5T with use of standard spin-echo and gradient-refocused spin sequences. This study indicates that susceptibility-induced T2 shortening occurs over a broad range of intracellular deoxyhemoglobin concentrations (maximal at hematocrits between 20% and 45%), reflecting diffusional effects at the cellular level. T2* gradient-echo imaging enhances the observed hypointensity in images of intracellular deoxyhemoglobin. The characteristic MR appearance of acute hemotomas can be modeled by the behavior of intracellular and extracellular deoxyhemoglobin and oxyhemoglobin

  13. Medically Important Parasites Carried by Cockroaches in Melong Subdivision, Littoral, Cameroon

    Directory of Open Access Journals (Sweden)

    R. J. Atiokeng Tatang

    2017-01-01

    Full Text Available Cockroaches have been recognized as mechanical vectors of pathogens that can infest humans or animals. A total of 844 adult cockroaches (436 males and 408 females were caught. In the laboratory, cockroaches were first washed in saturated salt solution to remove ectoparasites and then rinsed with 70% alcohol, dried, and dissected for endoparasites. An overall transport rate of 47.39% was recorded. Six genera of parasites were identified. These were Ascaris (33.76%, Trichuris (11.97%, Capillaria (6.16%, Toxocara (4.86%, Hook Worm (4.86%, and Eimeria (2.73%. The parasites were more recorded on the external surface (54.27% of cockroaches than in the internal surface (GIT, 38.51%. The same tendency was obtained between sexes with female cockroaches having a higher transport rate (36.69%. Cockroaches caught in toilets carried more parasites (31.99% as compared to those from kitchens (22.63% and houses (11.14%. Almost all encountered parasites were recognized as responsible of zoonosis and they can be consequently released in nature by hosts and easily disseminated by cockroaches as mechanical vectors. Sanitary education, reenforcement of worms’ eradication programs, and the fight against these insects remain a necessity in the Mélong Subdivision.

  14. Disentangling the influence of parasite genotype, host genotype and maternal environment on different stages of bacterial infection in Daphnia magna.

    Science.gov (United States)

    Hall, Matthew D; Ebert, Dieter

    2012-08-22

    Individuals naturally vary in the severity of infectious disease when exposed to a parasite. Dissecting this variation into genetic and environmental components can reveal whether or not this variation depends on the host genotype, parasite genotype or a range of environmental conditions. Complicating this task, however, is that the symptoms of disease result from the combined effect of a series of events, from the initial encounter between a host and parasite, through to the activation of the host immune system and the exploitation of host resources. Here, we use the crustacean Daphnia magna and its parasite Pasteuria ramosa to show how disentangling genetic and environmental factors at different stages of infection improves our understanding of the processes shaping infectious disease. Using compatible host-parasite combinations, we experimentally exclude variation in the ability of a parasite to penetrate the host, from measures of parasite clearance, the reduction in host fecundity and the proliferation of the parasite. We show how parasite resistance consists of two components that vary in environmental sensitivity, how the maternal environment influences all measured aspects of the within-host infection process and how host-parasite interactions following the penetration of the parasite into the host have a distinct temporal component.

  15. First report of a Mephitidae (Mammalia: Carnivora naturally infected by parasites of the genus Physaloptera (Rudolphi, 1918 (Spirurida: Physalopteridae

    Directory of Open Access Journals (Sweden)

    Gregório Correa Guimarães

    2015-02-01

    Full Text Available Wild animals may be regarded as reservoirs of several parasite species. The occurrence of certain parasitic agents may provide significant information on host’s ecology and behavior and its trophic relations. Thus, this study aimed to determine the parasitic fauna of wild animals from southern Minas Gerais within the period from January to December 2011. A cross-sectional study was conducted with a convenience sample consisting of the dead bodies of two run over animals, which were rescued from highways and transported to the Laboratory of Animal Anatomy of the Federal University of Lavras (UFLA. The specimens were inspected to verify the presence of ectoparasites and, then, dissected to resume gastrointestinal content and detect helminths. No ectoparasites were identified in the two animals, both belonging to the species Conepatus semistriatus (striped hog-nosed skunk, but the presence of helminths belonging to the genus Physaloptera was identified in the stomach of one specimen.

  16. First report of a Mephitidae (Mammalia: Carnivora naturally infected by parasites of the genus Physaloptera (Rudolphi, 1918 (Spirurida: Physalopteridae

    Directory of Open Access Journals (Sweden)

    Gregório Corrêa Guimarães

    2015-05-01

    Full Text Available Wild animals may be regarded as reservoirs of several parasite species. The occurrence of certain parasitic agents may provide significant information on host’s ecology and behavior and its trophic relations. Thus, this study aimed to determine the parasitic fauna of wild animals from southern Minas Gerais within the period from January to December 2011. A cross-sectional study was conducted with a convenience sample consisting of the dead bodies of two run over animals, which were rescued from highways and transported to the Laboratory of Animal Anatomy of the Federal University of Lavras (UFLA. The specimens were inspected to verify the presence of ectoparasites and, then, dissected to resume gastrointestinal content and detect helminths. No ectoparasites were identified in the two animals, both belonging to the species Conepatus semistriatus (striped hog-nosed skunk, but the presence of helminths belonging to the genus Physaloptera was identified in the stomach of one specimen.

  17. Introduction of New Parasites in Denmark

    DEFF Research Database (Denmark)

    Enemark, Heidi L.

    examples of such parasites/parasitic diseases: Setaria tundra, a mosquito-borne filarioid nematode which was detected for the first time in Danish deer in 2010. This parasite is usually considered harmless but is capable of causing peritonitis and mortality in ungulates. The newly detected parasite...... was genetically very similar to previously published isolates from France and Italy, and may have been spread to Denmark from southern Europe. Giardia spp. a zoonotic, unicellular parasite (protozoa) well known in Danish livestock but recently found in extremely high numbers in Danish deer with chronic diarrhea...... for the first time in Denmark approximately 10 years ago in 3 foxes from the Copenhagen area. Since then, no systematic surveillance has been performed, and therefore the current prevalence among wildlife and pets is unknown. So far the parasite has not been found in intermediate hosts (rodents) in Denmark...

  18. Natural variability of parasite communities of Macrouridae of the middle and lower slope of the Mediterranean Sea and their relation with fish diet and health indicators

    Science.gov (United States)

    Pérez-i-García, D.; Constenla, M.; Soler-Membrives, A.; Cartes, J. E.; Solé, M.; Carrassón, M.

    2017-06-01

    This study examines the parasite communities of Coelorinchus caelorhincus, Coelorinchus mediterraneus, Coryphaenoides guentheri and Coryphaenoides mediterraneus of the middle and lower slopes of the Mediterranean Sea. Histopathological, enzymatic activity (acetylcholinesterase and lactate dehydrogenase), dietary and environmental (oxygen, salinity, temperature and turbidity) information were also obtained. A total of 11 parasite taxa were found in the four fish species, the copepod Hamaticolax resupinus being the only parasite shared by all of them. Coelorinchus mediterraneus, Coryphaenoides guentheri and Cor. mediterraneus exhibited rather homogeneous parasite communities, especially in the case of the latter two. Coelorinchus mediterraneus showed the highest richness of parasite taxa (eight species), whereas C. guentheri and Cor. mediterraneus harboured up to five and six, respectively, and C. caelorhincus up to three. Several of the parasites encountered occurred at very low prevalences (level, probably due to the low parasite burden in their hosts. It is possible that the major role of small macrourids, especially C. guentheri, is to act as an intermediate hosts in deep-Mediterranean trophic webs.

  19. Adaptations in the energy metabolism of parasites

    NARCIS (Netherlands)

    van Grinsven, K.W.A.|info:eu-repo/dai/nl/304833436

    2009-01-01

    For this thesis fundamental research was performed on the metabolic adaptations found in parasites. Studying the adaptations in parasite metabolisms leads to a better understanding of parasite bioenergetics and can also result in the identification of new anti-parasitic drug targets. We focussed on

  20. Cathepsin-Mediated Cleavage of Peptides from Peptide Amphiphiles Leads to Enhanced Intracellular Peptide Accumulation

    Energy Technology Data Exchange (ETDEWEB)

    Acar, Handan [Institute; Department; Samaeekia, Ravand [Institute; Department; Schnorenberg, Mathew R. [Institute; Department; Medical; Sasmal, Dibyendu K. [Institute; Huang, Jun [Institute; Tirrell, Matthew V. [Institute; Institute; LaBelle, James L. [Department

    2017-08-24

    Peptides synthesized in the likeness of their native interaction domain(s) are natural choices to target protein protein interactions (PPIs) due to their fidelity of orthostatic contact points between binding partners. Despite therapeutic promise, intracellular delivery of biofunctional peptides at concentrations necessary for efficacy remains a formidable challenge. Peptide amphiphiles (PAs) provide a facile method of intracellular delivery and stabilization of bioactive peptides. PAs consisting of biofunctional peptide headgroups linked to hydrophobic alkyl lipid-like tails prevent peptide hydrolysis and proteolysis in circulation, and PA monomers are internalized via endocytosis. However, endocytotic sequestration and steric hindrance from the lipid tail are two major mechanisms that limit PA efficacy to target intracellular PPIs. To address these problems, we have constructed a PA platform consisting of cathepsin-B cleavable PAs in which a selective p53-based inhibitory peptide is cleaved from its lipid tail within endosomes, allowing for intracellular peptide accumulation and extracellular recycling of the lipid moiety. We monitor for cleavage and follow individual PA components in real time using a resonance energy transfer (FRET)-based tracking system. Using this platform, components in real time using a Forster we provide a better understanding and quantification of cellular internalization, trafficking, and endosomal cleavage of PAs and of the ultimate fates of each component.

  1. A novel phytomyxean parasite associated with galls on the bull-kelp Durvillaea antarctica (Chamisso Hariot.

    Directory of Open Access Journals (Sweden)

    Franz Goecke

    Full Text Available Durvillaea antarctica (Fucales, Phaeophyceae is a large kelp of high ecological and economic significance in the Southern Hemisphere. In natural beds along the central coast of Chile (Pacific Ocean, abnormal growth characterized by evident gall development and discolorations of the fronds/thallus was observed. Analysing these galls by light microscopy and scanning electron microscopy revealed the presence of endophytic eukaryotes showing typical characteristics for phytomyxean parasites. The parasite developed within enlarged cells of the subcortical tissue of the host. Multinucleate plasmodia developed into many, single resting spores. The affiliation of this parasite to the Phytomyxea (Rhizaria was supported by 18S rDNA data, placing it within the Phagomyxida. Similar microorganisms were already reported once 23 years ago, indicating that these parasites are persistent and widespread in D. antarctica beds for long times. The symptoms caused by this parasite are discussed along with the ecological and economic consequences. Phytomyxean parasites may play an important role in the marine ecosystem, but they remain understudied in this environment. Our results demonstrate for the first time the presence of resting spores in Phagomyxida, an order in which resting spores were thought to be absent making this the first record of a phagomyxean parasite with a complete life cycle so far, challenging the existing taxonomic concepts within the Phytomyxea. The importance of the here described resting spores for the survival and ecology of the phagomyxid parasite will be discussed together with the impact this parasite may have on 'the strongest seaweed of the world', which is an important habitat forming and economic resource from the Southern Hemisphere.

  2. Nuclear techniques in the study of parasitic infections

    International Nuclear Information System (INIS)

    1982-01-01

    Out of 57 papers published, 47 fall within the INIS subject scope. Seven main topics were covered: resistance to infections with protozoan parasites; resistance to infections with African trypanosomes and helminths of ruminant animals; resistance to infections with filarial parasites and schistosomes; pathology of parasitic infections; epidemiology and diagnosis of parasitic infections; physiology and biochemistry of parasitic organisms; pharmacodynamics of anti-parasitic agents

  3. Nutrition and metabolism of parasitized and non-parasitized ruminants. Some approaches for studying the mode of action of parasites

    International Nuclear Information System (INIS)

    Leng, R.A.

    1981-01-01

    The effects of helminth infections on ruminant digestive function and metabolism are discussed against the background of current information on the mechanisms controlling feed intake and utilization in normal animals. Although parasites reduce productivity by impairing appetite and utilization of nutrients, few studies have been conducted on the function of the digestive tract and the metabolism of parasitized animals. Those areas which warrant further investigation are described, and the techniques which could be usefully applied are outlined. It is concluded that more emphasis should be given to the diet available to parasitized animals, and that by using diets of different digestibility and protein content, valuable information could be obtained as to the relative importance of reduced appetite and reduced efficiency of feed utilization. Central to all studies is a proper delineation of the fate of proteins in the small intestine of parasitized animals, and characterization of the types of bacteria in the gut and their effects on endogenous protein losses. The application of 15 N is mentioned. The potential usefulness of 14 C (eg. to measure the flow of digesta, to the lower digestive tract; clearance of 14 C-propionate from blood; etc.) is described

  4. Host Diet Affects the Morphology of Monarch Butterfly Parasites.

    Science.gov (United States)

    Hoang, Kevin; Tao, Leiling; Hunter, Mark D; de Roode, Jacobus C

    2017-06-01

    Understanding host-parasite interactions is essential for ecological research, wildlife conservation, and health management. While most studies focus on numerical traits of parasite groups, such as changes in parasite load, less focus is placed on the traits of individual parasites such as parasite size and shape (parasite morphology). Parasite morphology has significant effects on parasite fitness such as initial colonization of hosts, avoidance of host immune defenses, and the availability of resources for parasite replication. As such, understanding factors that affect parasite morphology is important in predicting the consequences of host-parasite interactions. Here, we studied how host diet affected the spore morphology of a protozoan parasite ( Ophryocystis elektroscirrha ), a specialist parasite of the monarch butterfly ( Danaus plexippus ). We found that different host plant species (milkweeds; Asclepias spp.) significantly affected parasite spore size. Previous studies have found that cardenolides, secondary chemicals in host plants of monarchs, can reduce parasite loads and increase the lifespan of infected butterflies. Adding to this benefit of high cardenolide milkweeds, we found that infected monarchs reared on milkweeds of higher cardenolide concentrations yielded smaller parasites, a potentially hidden characteristic of cardenolides that may have important implications for monarch-parasite interactions.

  5. Parasites from the Past

    DEFF Research Database (Denmark)

    Søe, Martin Jensen; Fredensborg, Brian Lund; Nejsum, Peter

    will investigate how the diversity of food-borne parasitic infections has changed with cultural and dietary habits, hunting practice and intensity of animal husbandry. This is done by isolating and typing ancient DNA remains from parasite eggs found in archeological samples from across Denmark....

  6. Analysis of the Sarcocystis neurona microneme protein SnMIC10: protein characteristics and expression during intracellular development.

    Science.gov (United States)

    Hoane, Jessica S; Carruthers, Vernon B; Striepen, Boris; Morrison, David P; Entzeroth, Rolf; Howe, Daniel K

    2003-07-01

    Sarcocystis neurona, an apicomplexan parasite, is the primary causative agent of equine protozoal myeloencephalitis. Like other members of the Apicomplexa, S. neurona zoites possess secretory organelles that contain proteins necessary for host cell invasion and intracellular survival. From a collection of S. neurona expressed sequence tags, we identified a sequence encoding a putative microneme protein based on similarity to Toxoplasma gondii MIC10 (TgMIC10). Pairwise sequence alignments of SnMIC10 to TgMIC10 and NcMIC10 from Neospora caninum revealed approximately 33% identity to both orthologues. The open reading frame of the S. neurona gene encodes a 255 amino acid protein with a predicted 39-residue signal peptide. Like TgMIC10 and NcMIC10, SnMIC10 is predicted to be hydrophilic, highly alpha-helical in structure, and devoid of identifiable adhesive domains. Antibodies raised against recombinant SnMIC10 recognised a protein band with an apparent molecular weight of 24 kDa in Western blots of S. neurona merozoites, consistent with the size predicted for SnMIC10. In vitro secretion assays demonstrated that this protein is secreted by extracellular merozoites in a temperature-dependent manner. Indirect immunofluorescence analysis of SnMIC10 showed a polar labelling pattern, which is consistent with the apical position of the micronemes, and immunoelectron microscopy provided definitive localisation of the protein to these secretory organelles. Further analysis of SnMIC10 in intracellular parasites revealed that expression of this protein is temporally regulated during endopolygeny, supporting the view that micronemes are only needed during host cell invasion. Collectively, the data indicate that SnMIC10 is a microneme protein that is part of the excreted/secreted antigen fraction of S. neurona. Identification and characterisation of additional S. neurona microneme antigens and comparisons to orthologues in other Apicomplexa could provide further insight into the

  7. Evolution and diversity of secretome genes in the apicomplexan parasite Theileria annulata

    Directory of Open Access Journals (Sweden)

    Shiels Brian R

    2010-01-01

    Full Text Available Abstract Background Little is known about how apicomplexan parasites have evolved to infect different host species and cell types. Theileria annulata and Theileria parva invade and transform bovine leukocytes but each species favours a different host cell lineage. Parasite-encoded proteins secreted from the intracellular macroschizont stage within the leukocyte represent a critical interface between host and pathogen systems. Genome sequencing has revealed that several Theileria-specific gene families encoding secreted proteins are positively selected at the inter-species level, indicating diversification between the species. We extend this analysis to the intra-species level, focusing on allelic diversity of two major secretome families. These families represent a well-characterised group of genes implicated in control of the host cell phenotype and a gene family of unknown function. To gain further insight into their evolution and function, this study investigates whether representative genes of these two families are diversifying or constrained within the T. annulata population. Results Strong evidence is provided that the sub-telomerically encoded SVSP family and the host-nucleus targeted TashAT family have evolved under contrasting pressures within natural T. annulata populations. SVSP genes were found to possess atypical codon usage and be evolving neutrally, with high levels of nucleotide substitutions and multiple indels. No evidence of geographical sub-structuring of allelic sequences was found. In contrast, TashAT family genes, implicated in control of host cell gene expression, are strongly conserved at the protein level and geographically sub-structured allelic sequences were identified among Tunisian and Turkish isolates. Although different copy numbers of DNA binding motifs were identified in alleles of TashAT proteins, motif periodicity was strongly maintained, implying conserved functional activity of these sites. Conclusions

  8. Utilization of Different Omic Approaches to Unravel Stress Response Mechanisms in the Parasite Entamoeba histolytica

    Directory of Open Access Journals (Sweden)

    Shruti Nagaraja

    2018-02-01

    Full Text Available During its life cycle, the unicellular parasite Entamoeba histolytica is challenged by a wide variety of environmental stresses, such as fluctuation in glucose concentration, changes in gut microbiota composition, and the release of oxidative and nitrosative species from neutrophils and macrophages. The best mode of survival for this parasite is to continuously adapt itself to the dynamic environment of the host. Our ability to study the stress-induced responses and adaptive mechanisms of this parasite has been transformed through the development of genomics, proteomics or metabolomics (omics sciences. These studies provide insights into different facets of the parasite's behavior in the host. However, there is a dire need for multi-omics data integration to better understand its pathogenic nature, ultimately paving the way to identify new chemotherapeutic targets against amebiasis. This review provides an integration of the most relevant omics information on the mechanisms that are used by E. histolytica to resist environmental stresses.

  9. INTESTINAL AND BLOOD PARASITES OF MAN IN TIMOR

    Directory of Open Access Journals (Sweden)

    W. Patrick Carney

    2012-09-01

    Full Text Available Survey tinja dan darah dipulau Timor guna menentukan distribusi dan prevalensi penyakit parasit diantara penduduk telah dilakukan pada bulan Juli dan Agustus tahun 1972 sebagai kelanjutan dari deretan survey yang dilakukan oleh Direktorat Jenderal Pencegahan Pemberantasan Penyakit menular Departemen Kesehatan, Bagian Parasitologi dan Pathologi Umum Fakultas Kedokteran Universitas Indonesia dan US Namru-2 di Indonesia. Sejumlah 445 sediaan tinja untuk pemeriksaan parasit usus, 581 sediaan darah untuk pemeriksaan parasit malaria dan 663 sediaan darah untuk pemeriksaan parasit filaria telah diambil dari penduduk cara merata di 7 desa pada 3 kabupaten di Timor, Nusa Tenggara Timur. Enam puluh delapan per cent diantara penduduk melihatkan satu atau lebih parasit usus didalam tinjanya dimana cacing tambang merupakan parasit usus yang terbanyak. Ascaris lumbricoides ketemukan jauh lebih kurang daripada di Jawa, Sumatra dan Sulawesi, juga diketemukan perbedaan itara "intestinal parasite rate" di Timor Indonesia dan Timor Portugis. Dua belas percent penduduk yang diperiksa melihatkan parasit malaria didalam darahnya sedangkan parasit filaria ditemukan sebanyak 8 percent. Plasmodium falciparum merupakan parasit malaria yang terbanyak ditemukan, ia jenis parasit fdaria yang ditemukan adalah "Timor microfilaria" dan Wuchereria bancrofti dimana yang pertama merupakan parasit yang terbanyak diantara penduduk yang diperiksa.

  10. Single-cell intracellular nano-pH probes†

    OpenAIRE

    Özel, Rıfat Emrah; Lohith, Akshar; Mak, Wai Han; Pourmand, Nader

    2015-01-01

    Within a large clonal population, such as cancerous tumor entities, cells are not identical, and the differences between intracellular pH levels of individual cells may be important indicators of heterogeneity that could be relevant in clinical practice, especially in personalized medicine. Therefore, the detection of the intracellular pH at the single-cell level is of great importance to identify and study outlier cells. However, quantitative and real-time measurements of the intracellular p...

  11. Myeloid-derived suppressor cell functionality and interaction with Leishmania major parasites differ in C57BL/6 and BALB/c mice.

    Science.gov (United States)

    Schmid, Maximilian; Zimara, Nicole; Wege, Anja Kathrin; Ritter, Uwe

    2014-11-01

    Myeloid-derived suppressor cells (MDSCs) represent a heterogeneous population of CD11b+ cells. According to the surface molecules Ly6G and Ly6C (where Ly6G and Ly6C are lymphocyte antigen 6, locus G and C, respectively), MDSCs are further divided into monocytic (Mo-MDSCs, CD11b+ /Ly6C(high) /Ly6G-) and polymorphonucleated suppressor cells (PMN-MDSCs, CD11b+ /Ly6C(int) /Ly6G+). Most published manuscripts focus on the suppressive role of MDSCs in cancer, whereas their impact on adaptive immunity against obligatory intracellular parasites is not well understood. Furthermore, it is not clear how the genetic background of mice influences MDSC functionality. Therefore, we implemented an experimental model of leishmaniasis, and analyzed MDSC maturation and the impact of MDSCs on the parasite-specific T-cell responses in resistant C57BL/6 and susceptible BALB/c mice. This experimental setup demonstrated the impaired ability of BALB/c mice to produce Mo-MDSCs when compared with C57BL/6 mice. This phenotype is detectable after subcutaneous infection with parasites and is specifically represented by a reduced accumulation of Mo-MDSCs at the site of infection in BALB/c mice. Moreover, infected C57BL/6-derived MDSCs were able to suppress Leishmania-specific CD4+ -cell proliferation, whereas BALB/c-derived MDSCs harboring parasites lost this suppressive function. In conclusion, we demonstrate that (i) genetic background defines MDSC differentiation; and (ii) Leishmania major parasites are able to modulate the suppressive effect of MDSCs in a strain-dependent manner. © 2014 WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim.

  12. The Effect Of Intensive Keramba On The Presence Of Parasite Organisms In Rivers Of Lingsar Area

    Directory of Open Access Journals (Sweden)

    Supriadi Supriadi

    2015-04-01

    Full Text Available The application of intensive keramba in rivers could affect the presence of parasite organisms throughout  the river downstream. The aims of this research are to find out the diversity of parasite species and the effect of intensive aquaculture method developed by the community on the presence of various parasitic organisms, particularly in the downstream area. A total of 65 Tilapia fish samples (O. niloticus that was collected from 3 areas ( 15 samples from upstream, 25 samples in keramba and 25 samples from downstream areas have been examined  in the laboratory of Faculty of Mathematic and Natural Science, University of Mataram. Methods employed  to identify parasites that  infected fish samples are native method and flotation method. This research has identified 7 species of parasites which were divided into 2 groups: ectoparasites (Trichodina sp., Amylodinium sp., Oogonium sp., Dactylogirus sp., Trematode and endoparasites (Entamoeba sp. dan Camallanus sp.. Diversity index calculation  indicated that parasite organisms in upstream area were lower in number than that in the downstream and intensive karamba area (H’= (0,825; 1,596 dan 1.324 respectively.  These data has showed there was a difference in species diversity and evenness index of parasite organisms in the upstream, downstream and intensive keramba area. In conclusion, there was significant influence of the application of intensive keramba on the appearance of various parasite organisms that could affect the sustainability of  fish aquaculture.

  13. Host density and competency determine the effects of host diversity on trematode parasite infection.

    Directory of Open Access Journals (Sweden)

    Jeremy M Wojdak

    Full Text Available Variation in host species composition can dramatically alter parasite transmission in natural communities. Whether diverse host communities dilute or amplify parasite transmission is thought to depend critically on species traits, particularly on how hosts affect each other's densities, and their relative competency as hosts. Here we studied a community of potential hosts and/or decoys (i.e. non-competent hosts for two trematode parasite species, Echinostoma trivolvis and Ribeiroia ondatrae, which commonly infect wildlife across North America. We manipulated the density of a focal host (green frog tadpoles, Rana clamitans, in concert with manipulating the diversity of alternative species, to simulate communities where alternative species either (1 replace the focal host species so that the total number of individuals remains constant (substitution or (2 add to total host density (addition. For E. trivolvis, we found that total parasite transmission remained roughly equal (or perhaps decreased slightly when alternative species replaced focal host individuals, but parasite transmission was higher when alternative species were added to a community without replacing focal host individuals. Given the alternative species were roughly equal in competency, these results are consistent with current theory. Remarkably, both total tadpole and per-capita tadpole infection intensity by E. trivolvis increased with increasing intraspecific host density. For R. ondatrae, alternative species did not function as effective decoys or hosts for parasite infective stages, and the diversity and density treatments did not produce clear changes in parasite transmission, although high tank to tank variation in R. ondatrae infection could have obscured patterns.

  14. Hematozoa of forest birds in American Samoa - Evidence for a diverse, indigenous parasite fauna from the South Pacific

    Science.gov (United States)

    Atkinson, C.T.; Utzurrum, R.C.; Seamon, J.O.; Savage, Amy F.; Lapointe, D.A.

    2006-01-01

    Introduced avian diseases pose a significant threat to forest birds on isolated island archipelagos, especially where most passerines are endemic and many groups of blood-sucking arthropods are either absent or only recently introduced. We conducted a blood parasite survey of forest birds from the main islands of American Samoa to obtain baseline information about the identity, distribution and prevalence of hematozoan parasites in this island group. We examined Giemsa-stained blood smears from 857 individual birds representing 20 species on Tutuila, Ofu, Olosega, and Ta'u islands. Four hematozoan parasites were identified - Plasmodium circumflexum (1%, 12/857), Trypanosoma avium (4%, 32/857), microfilaria (9%, 76/857), and an Atoxoplasma sp. (parasite infections. Given the central location of American Samoa in the South Pacific, it is likely that avian malaria and other hematozoan parasites are indigenous and widespread at least as far as the central South Pacific. Their natural occurrence may provide some immunological protection to indigenous birds in the event that other closely related parasites are accidentally introduced to the region.

  15. Morphological effects on helminth parasites caused by herbicide under experimental conditions

    Directory of Open Access Journals (Sweden)

    Tainá Carneiro de Castro Monte

    2018-02-01

    Full Text Available Abstract Helminth parasites have been studied as potential accumulators for different pollutants. Echinostoma paraensei is a foodborne trematode whose vertebrate host, the rodent Nectomys squamipes, is naturally exposed to environmental pesticides. However, little information exists regarding the pesticide’s effects on helminths. This study investigated the morphological effects on the trematode, E. paraensei, after experimental Roundup® herbicide exposure, in concentrations below those recommended for agricultural use. After two hours of exposure, scanning electron microscopy (SEM showed changes to the tegument, such as furrowing, shrinkage, peeling, spines loss on the peristomic collar, and histopathological evidence of altered cells in the cecum and acinus vitelline glands with vacuoles and structural changes to the muscular layers. Glycidic content was decreased, primarily in the connective tissue. As E. paraensei is an intestinal parasite of the semi-aquatic wild rodent, N. squamipes, it is predisposed to pesticide exposure resulting from agricultural practices. Therefore, we emphasize the need to evaluate its impact on helminth parasites, due to their pivotal role in regulating host populations.

  16. Gene Expression Contributes to the Recent Evolution of Host Resistance in a Model Host Parasite System

    Directory of Open Access Journals (Sweden)

    Brian K. Lohman

    2017-09-01

    Full Text Available Heritable population differences in immune gene expression following infection can reveal mechanisms of host immune evolution. We compared gene expression in infected and uninfected threespine stickleback (Gasterosteus aculeatus from two natural populations that differ in resistance to a native cestode parasite, Schistocephalus solidus. Genes in both the innate and adaptive immune system were differentially expressed as a function of host population, infection status, and their interaction. These genes were enriched for loci controlling immune functions known to differ between host populations or in response to infection. Coexpression network analysis identified two distinct processes contributing to resistance: parasite survival and suppression of growth. Comparing networks between populations showed resistant fish have a dynamic expression profile while susceptible fish are static. In summary, recent evolutionary divergence between two vertebrate populations has generated population-specific gene expression responses to parasite infection, affecting parasite establishment and growth.

  17. A model for studying isolation mechanisms in parasite populations: the genus Lepeophtheirus (Copepoda, Caligidae).

    Science.gov (United States)

    De Meeus, T; Renaud, F; Gabrion, C

    1990-05-01

    In the Mediterranean, the parasitic copepod Lepeophtheirus thompsoni Baird, 1850 specifically infests turbot (Psetta maxima L., 1758), whereas L. europaensis Zeddam, Berrebi, Renaud, Raibaut, and Gabrion, 1988 infests brill (Scophthalmus rhombus L., 1758) and flounder (Platichthys flesus L., 1758). Experimental infestation of turbot by copepods from each of the three fish species showed an absence of any physiological incompatibility preventing natural development of the two parasite species, at least on one host species, i.e., the turbot. Moreover, interspecific hybrids were obtained experimentally, which implies that 1) there is no strict genetic barrier between the two species and 2) the natural prezygotic isolation results from a choice of the most favorable habitat. We discuss the origin and possible consequences of the presence, in the Mediterranean, of L. europaensis on brill and flounder, two hosts separated by their taxonomic status and ecobiology.

  18. Pollination services enhanced with urbanization despite increasing pollinator parasitism

    Science.gov (United States)

    Radzevičiūtė, Rita; Murray, Tomás E.

    2016-01-01

    Animal-mediated pollination is required for the reproduction of the majority of angiosperms, and pollinators are therefore essential for ecosystem functioning and the economy. Two major threats to insect pollinators are anthropogenic land-use change and the spread of pathogens, whose effects may interact to impact pollination. Here, we investigated the relative effects on the ecosystem service of pollination of (i) land-use change brought on by agriculture and urbanization as well as (ii) the prevalence of pollinator parasites, using experimental insect pollinator-dependent plant species in natural pollinator communities. We found that pollinator habitat (i.e. availability of nesting resources for ground-nesting bees and local flower richness) was strongly related to flower visitation rates at the local scale and indirectly influenced plant pollination success. At the landscape scale, pollination was positively related to urbanization, both directly and indirectly via elevated visitation rates. Bumblebees were the most abundant pollinator group visiting experimental flowers. Prevalence of trypanosomatids, such as the common bumblebee parasite Crithidia bombi, was higher in urban compared with agricultural areas, a relationship which was mediated through higher Bombus abundance. Yet, we did not find any top-down, negative effects of bumblebee parasitism on pollination. We conclude that urban areas can be places of high transmission of both pollen and pathogens. PMID:27335419

  19. Naris deformation in Darwin’s finches: Experimental and historical evidence for a post-1960s arrival of the parasite Philornis downsi

    Directory of Open Access Journals (Sweden)

    Sonia Kleindorfer

    2016-07-01

    Full Text Available The rate of evolution depends on the strength of selection, which may be particularly strong for introduced parasites and their naive hosts. Because natural selection acts on phenotypes and because parasites can alter host phenotype, one fruitful starting point to measure the impact of novel pathogens is to quantify parasite-induced changes to host phenotype. Our study system is Darwin’s finches on Floreana Island, Galápagos Archipelago, and the virulent fly larvae of Philornis downsi that were first discovered in Darwin’s finch nests in 1997. We use an experimental approach and measure host phenotype in parasitized and parasite-free chicks in Darwin’s small ground finch (Geospiza fuliginosa. Beak size did not differ between the two treatment groups, but naris size was 106% larger in parasitized chicks (∼3.3 mm versus parasite-free chicks (∼1.6 mm. To test if P. downsi was present prior to the 1960s, we compared naris size in historical (1899–1962 and contemporary birds (2004–2014 on Floreana Island in small ground finches (G. fuliginosa and medium tree finches (Camarhynchus pauper. Contemporary Darwin’s finches had significantly larger naris size (including extreme deformation, whereas historical naris size was both smaller and less variable. These findings provide the first longitudinal analysis for the extent of P. downsi-induced change to host naris size and show that Darwin’s finches, prior to the 1960s, were not malformed. Thus natural selection on altered host phenotype as a consequence of P. downsi parasitism appears to be contemporary and novel.

  20. Genetic variation in the cellular response of Daphnia magna (Crustacea: Cladocera) to its bacterial parasite.

    Science.gov (United States)

    Auld, Stuart K J R; Scholefield, Jennifer A; Little, Tom J

    2010-11-07

    Linking measures of immune function with infection, and ultimately, host and parasite fitness is a major goal in the field of ecological immunology. In this study, we tested for the presence and timing of a cellular immune response in the crustacean Daphnia magna following exposure to its sterilizing endoparasite Pasteuria ramosa. We found that D. magna possesses two cell types circulating in the haemolymph: a spherical one, which we call a granulocyte and an irregular-shaped amoeboid cell first described by Metchnikoff over 125 years ago. Daphnia magna mounts a strong cellular response (of the amoeboid cells) just a few hours after parasite exposure. We further tested for, and found, considerable genetic variation for the magnitude of this cellular response. These data fostered a heuristic model of resistance in this naturally coevolving host-parasite interaction. Specifically, the strongest cellular responses were found in the most susceptible hosts, indicating resistance is not always borne from a response that destroys invading parasites, but rather stems from mechanisms that prevent their initial entry. Thus, D. magna may have a two-stage defence--a genetically determined barrier to parasite establishment and a cellular response once establishment has begun.

  1. The interrelation between intestinal parasites and latent TB infections among newly resettled refugees in Texas.

    Science.gov (United States)

    Board, Amy R; Suzuki, Sumihiro

    2016-01-01

    Previous research has documented that parasite infection may increase vulnerability to TB among certain at risk populations. The purpose of this study was to identify whether an association exists between latent tuberculosis infection (LTBI) and intestinal parasite infection among newly resettled refugees in Texas while controlling for additional effects of region of origin, age and sex. Data for all refugees screened for both TB and intestinal parasites between January 2010 and mid-October 2013 were obtained from the Texas Refugee Health Screening Program and were analyzed using logistic regression. A total of 9860 refugees were included. In multivariable logistic regression analysis, pathogenic and non-pathogenic intestinal parasite infections yielded statistically significant reduced odds of LTBI. However, when individual parasite species were analyzed, hookworm infection indicated statistically significant increased odds of LTBI (OR 1.674, CI: 1.126-2.488). A positive association exists between hookworm infection and LTBI in newly arrived refugees to Texas. More research is needed to assess the nature and extent of these associations. © The Author 2015. Published by Oxford University Press on behalf of Royal Society of Tropical Medicine and Hygiene. All rights reserved. For permissions, please e-mail: journals.permissions@oup.com.

  2. Drug resistance in vectorborne parasites: multiple actors and scenarios for an evolutionary arms race.

    Science.gov (United States)

    Vanaerschot, Manu; Huijben, Silvie; Van den Broeck, Frederik; Dujardin, Jean-Claude

    2014-01-01

    Drug-resistant pathogens emerge faster than new drugs come out of drug discovery pipelines. Current and future drug options should therefore be better protected, requiring a clear understanding of the factors that contribute to the natural history of drug resistance. Although many of these factors are relatively well understood for most bacteria, this proves to be more complex for vectorborne parasites. In this review, we discuss considering three key models (Plasmodium, Leishmania and Schistosoma) how drug resistance can emerge, spread and persist. We demonstrate a multiplicity of scenarios, clearly resulting from the biological diversity of the different organisms, but also from the different modes of action of the drugs used, the specific within- and between-host ecology of the parasites, and environmental factors that may have direct or indirect effects. We conclude that integrated control of drug-resistant vectorborne parasites is not dependent upon chemotherapy only, but also requires a better insight into the ecology of these parasites and how their transmission can be impaired. © 2013 Federation of European Microbiological Societies. Published by John Wiley & Sons Ltd. All rights reserved.

  3. Aldo-keto reductase and alcohol dehydrogenase contribute to benznidazole natural resistance in Trypanosoma cruzi.

    Science.gov (United States)

    González, Laura; García-Huertas, Paola; Triana-Chávez, Omar; García, Gabriela Andrea; Murta, Silvane Maria Fonseca; Mejía-Jaramillo, Ana M

    2017-12-01

    The improvement of Chagas disease treatment is focused not only on the development of new drugs but also in understanding mechanisms of action and resistance to drugs conventionally used. Thus, some strategies aim to detect specific changes in proteins between sensitive and resistant parasites and to evaluate the role played in these processes by functional genomics. In this work, we used a natural Trypanosoma cruzi population resistant to benznidazole, which has clones with different susceptibilities to this drug without alterations in the NTR I gene. Using 2DE-gel electrophoresis, the aldo-keto reductase and the alcohol dehydrogenase proteins were found up regulated in the natural resistant clone and therefore their possible role in the resistance to benznidazole and glyoxal was investigated. Both genes were overexpressed in a drug sensitive T. cruzi clone and the biological changes in response to these compounds were evaluated. The results showed that the overexpression of these proteins enhances resistance to benznidazole and glyoxal in T. cruzi. Moreover, a decrease in mitochondrial and cell membrane damage was observed, accompanied by a drop in the intracellular concentration of reactive oxygen species after treatment. Our results suggest that these proteins are involved in the mechanism of action of benznidazole. © 2017 John Wiley & Sons Ltd.

  4. Egg size matching by an intraspecific brood parasite

    Science.gov (United States)

    Lemons, Patrick R.; Sedinger, James S.

    2011-01-01

    Avian brood parasitism provides an ideal system with which to understand animal recognition and its affect on fitness. This phenomenon of laying eggs in the nests of other individuals has classically been framed from the perspective of interspecific brood parasitism and host recognition of parasitic eggs. Few examples exist of strategies adopted by intraspecific brood parasites to maximize success of parasitic eggs. Intraspecific brood parasitism within precocial birds can be a risky strategy in that hatch synchrony is essential to reproductive success. Given that egg size is positively correlated with incubation time, parasitic birds would benefit by recognizing and selecting hosts with a similar egg size. Intraspecific brood parasitism is an alternative reproductive strategy in black brant (Branta bernicla nigricans), a colonial nesting goose with precocial young. Based on a randomization test, parasitic eggs in this study differed less in size from eggs in their host's nests than did random eggs placed in random nests. Parasitic eggs were remarkably similar in size to hosts’ eggs, differing by nests differed by nearly 8%. The precision with which parasitic brant match the egg size of hosts in our study supports our hypothesis that brant match egg size of hosts, thereby maximizing hatching success of their parasitic eggs.

  5. Selection of binding targets in parasites using phage-display and aptamer libraries in vivo and in vitro.

    Science.gov (United States)

    Tonelli, R R; Colli, W; Alves, M J M

    2012-01-01

    Parasite infections are largely dependent on interactions between pathogen and different host cell populations to guarantee a successful infectious process. This is particularly true for obligatory intracellular parasites as Plasmodium, Toxoplasma, and Leishmania, to name a few. Adhesion to and entry into the cell are essential steps requiring specific parasite and host cell molecules. The large amount of possible involved molecules poses additional difficulties for their identification by the classical biochemical approaches. In this respect, the search for alternative techniques should be pursued. Among them two powerful methodologies can be employed, both relying upon the construction of highly diverse combinatorial libraries of peptides or oligonucleotides that randomly bind with high affinity to targets on the cell surface and are selectively displaced by putative ligands. These are, respectively, the peptide-based phage display and the oligonucleotide-based aptamer techniques. The phage display technique has been extensively employed for the identification of novel ligands in vitro and in vivo in different areas such as cancer, vaccine development, and epitope mapping. Particularly, phage display has been employed in the investigation of pathogen-host interactions. Although this methodology has been used for some parasites with encouraging results, in trypanosomatids its use is, as yet, scanty. RNA and DNA aptamers, developed by the SELEX process (Systematic Evolution of Ligands by Exponential Enrichment), were described over two decades ago and since then contributed to a large number of structured nucleic acids for diagnostic or therapeutic purposes or for the understanding of the cell biology. Similarly to the phage display technique scarce use of the SELEX process has been used in the probing of parasite-host interaction. In this review, an overall survey on the use of both phage display and aptamer technologies in different pathogenic organisms will be

  6. Regulatory hotspots in the malaria parasite genome dictate transcriptional variation.

    Directory of Open Access Journals (Sweden)

    Joseph M Gonzales

    2008-09-01

    Full Text Available The determinants of transcriptional regulation in malaria parasites remain elusive. The presence of a well-characterized gene expression cascade shared by different Plasmodium falciparum strains could imply that transcriptional regulation and its natural variation do not contribute significantly to the evolution of parasite drug resistance. To clarify the role of transcriptional variation as a source of stain-specific diversity in the most deadly malaria species and to find genetic loci that dictate variations in gene expression, we examined genome-wide expression level polymorphisms (ELPs in a genetic cross between phenotypically distinct parasite clones. Significant variation in gene expression is observed through direct co-hybridizations of RNA from different P. falciparum clones. Nearly 18% of genes were regulated by a significant expression quantitative trait locus. The genetic determinants of most of these ELPs resided in hotspots that are physically distant from their targets. The most prominent regulatory locus, influencing 269 transcripts, coincided with a Chromosome 5 amplification event carrying the drug resistance gene, pfmdr1, and 13 other genes. Drug selection pressure in the Dd2 parental clone lineage led not only to a copy number change in the pfmdr1 gene but also to an increased copy number of putative neighboring regulatory factors that, in turn, broadly influence the transcriptional network. Previously unrecognized transcriptional variation, controlled by polymorphic regulatory genes and possibly master regulators within large copy number variants, contributes to sweeping phenotypic evolution in drug-resistant malaria parasites.

  7. Ultrastructural analysis of Apicomplexa-Like parasites in two conch species Laevistrombus canarium and canarium urceus from Johor Straits, Malaysia.

    Science.gov (United States)

    Azmi, Nur-Fauzana; Ghaffar, Mazlan Abd; Daud, Hassan Hj Mohd; Cob, Zaidi Che

    2018-02-01

    The tropical conch, Laevistrombus canarium (Linnaeus, 1758) and Canarium urceus (Linneaus, 1758) are ecologically and economically important shellfish species in Malaysia and neighboring region. Their populations, however are currently declining and this histopathological study investigates the aspect of parasitism and diseases that may affect their well-being. Conch samples were randomly collected from their natural habitat and histological sections (4-5 µm) of various organs and tissues were examined under light microscope. This was followed by ultrastructure analysis on infected tissues using transmission electron microscope (TEM). Based on the histological analysis, large numbers of gamonts, sporocysts and trophozoites of Apicomplexa-like parasites were observed in the vacuolated cells and pyramidal crypt cells of the digestive tubules, and in the digestive ducts. Furthermore, coccidian and oocysts-like Pseudoklossia sp. stages were also observed in the cells of the kidney. Apart from that, spores with cyst-like structure were observed in the digestive gland and kidney. Although the parasites were present in most of the organs analyzed, there was no obvious symptom, inflammatory response or mortality incurred on both species, which implies the possibility of a non-virulent relationship like commensalisms or mutualism. However, more investigations, including molecular studies, are needed to confirm the parasite identification and dynamics, and to further evaluate the nature of relationship between Apicomplexa parasites and their host. Copyright © 2018 Elsevier Inc. All rights reserved.

  8. Subversion of complement by hematophagous parasites.

    Science.gov (United States)

    Schroeder, Hélène; Skelly, Patrick J; Zipfel, Peter F; Losson, Bertrand; Vanderplasschen, Alain

    2009-01-01

    The complement system is a crucial part of innate and adaptive immunity which exerts a significant evolutionary pressure on pathogens. It has selected for those pathogens, mainly microorganisms but also parasites, that have evolved countermeasures. The characterization of how pathogens evade complement attack is a rapidly developing field of current research. In recent years, multiple complement evasion strategies have been characterized. In this review, we focus on complement escape mechanisms expressed by hematophagous parasites, a heterogeneous group of metazoan parasites that share the property of ingesting the whole blood of their host. Complement inhibition is crucial for parasite survival within the host tissue or to facilitate blood feeding. Finally, complement inhibition by hematophagous parasites may also contribute to their success as pathogen vectors.

  9. Mapping the antigenicity of the parasites in Leishmania donovani infection by proteome serology.

    Directory of Open Access Journals (Sweden)

    Michael Forgber

    Full Text Available BACKGROUND: Leishmaniasis defines a cluster of protozoal diseases with diverse clinical manifestations. The visceral form caused by Leishmania donovani is the most severe. So far, no vaccines exist for visceral leishmaniasis despite indications of naturally developing immunity, and sensitive immunodiagnostics are still at early stages of development. METHODOLOGY/PRINCIPLE FINDINGS: Establishing a proteome-serological methodology, we mapped the antigenicity of the parasites and the specificities of the immune responses in human leishmaniasis. Using 2-dimensional Western blot analyses with sera and parasites isolated from patients in India, we detected immune responses with widely divergent specificities for up to 330 different leishmanial antigens. 68 antigens were assigned to proteins in silver- and fluorochrome-stained gels. The antigenicity of these proteins did not correlate with the expression levels of the proteins. Although some antigens are shared among different parasite isolates, there are extensive differences and no immunodominant antigens, but indications of antigenic drift in the parasites. Six antigens were identified by mass spectrometry. CONCLUSIONS/SIGNIFICANCE: Proteomics-based dissection of the serospecificities of leishmaniasis patients provides a comprehensive inventory of the complexity and interindividual heterogeneity of the host-responses to and variations in the antigenicity of the Leishmania parasites. This information can be instrumental in the development of vaccines and new immune monitoring and diagnostic devices.

  10. Subcellular localization of an intracellular serine protease of 68 kDa in Leishmania (Leishmania amazonensis promastigotes

    Directory of Open Access Journals (Sweden)

    José Andrés Morgado-Díaz

    2005-07-01

    Full Text Available Here we report the subcellular localization of an intracellular serine protease of 68 kDa in axenic promastigotes of Leishmania (Leishmania amazonensis, using subcellular fractionation, enzymatic assays, immunoblotting, and immunocytochemistry. All fractions were evaluated by transmission electron microscopy and the serine protease activity was measured during the cell fractionation procedure using a-N-r-tosyl-L-arginine methyl ester (L-TAME as substrate, phenylmethylsulphone fluoride (PMSF and L-1-tosylamino-2-phenylethylchloromethylketone (TPCK as specific inhibitors. The enzymatic activity was detected mainly in a membranous vesicular fraction (6.5-fold enrichment relative to the whole homogenate, but also in a crude plasma membrane fraction (2.0-fold. Analysis by SDS-PAGE gelatin under reducing conditions demonstrated that the major proteolytic activity was found in a 68 kDa protein in all fractions studied. A protein with identical molecular weight was also recognized in immunoblots by a polyclonal antibody against serine protease (anti-SP, with higher immunoreactivity in the vesicular fraction. Electron microscopic immunolocalization using the same polyclonal antibody showed the enzyme present at the cell surface, as well as in cytoplasmic membranous compartments of the parasite. Our findings indicate that the internal location of this serine protease in L. amazonensis is mainly restricted to the membranes of intracellular compartments resembling endocytic/exocytic elements.

  11. Dual Transcriptome Profiling of Leishmania-Infected Human Macrophages Reveals Distinct Reprogramming Signatures.

    Science.gov (United States)

    Fernandes, Maria Cecilia; Dillon, Laura A L; Belew, Ashton Trey; Bravo, Hector Corrada; Mosser, David M; El-Sayed, Najib M

    2016-05-10

    Macrophages are mononuclear phagocytes that constitute a first line of defense against pathogens. While lethal to many microbes, they are the primary host cells of Leishmania spp. parasites, the obligate intracellular pathogens that cause leishmaniasis. We conducted transcriptomic profiling of two Leishmania species and the human macrophage over the course of intracellular infection by using high-throughput RNA sequencing to characterize the global gene expression changes and reprogramming events that underlie the interactions between the pathogen and its host. A systematic exclusion of the generic effects of large-particle phagocytosis revealed a vigorous, parasite-specific response of the human macrophage early in the infection that was greatly tempered at later time points. An analogous temporal expression pattern was observed with the parasite, suggesting that much of the reprogramming that occurs as parasites transform into intracellular forms generally stabilizes shortly after entry. Following that, the parasite establishes an intracellular niche within macrophages, with minimal communication between the parasite and the host cell later during the infection. No significant difference was observed between parasite species transcriptomes or in the transcriptional response of macrophages infected with each species. Our comparative analysis of gene expression changes that occur as mouse and human macrophages are infected by Leishmania spp. points toward a general signature of the Leishmania-macrophage infectome. Little is known about the transcriptional changes that occur within mammalian cells harboring intracellular pathogens. This study characterizes the gene expression signatures of Leishmania spp. parasites and the coordinated response of infected human macrophages as the pathogen enters and persists within them. After accounting for the generic effects of large-particle phagocytosis, we observed a parasite-specific response of the human macrophages early in

  12. Mechanisms of host seeking by parasitic nematodes.

    Science.gov (United States)

    Gang, Spencer S; Hallem, Elissa A

    2016-07-01

    The phylum Nematoda comprises a diverse group of roundworms that includes parasites of vertebrates, invertebrates, and plants. Human-parasitic nematodes infect more than one billion people worldwide and cause some of the most common neglected tropical diseases, particularly in low-resource countries [1]. Parasitic nematodes of livestock and crops result in billions of dollars in losses each year [1]. Many nematode infections are treatable with low-cost anthelmintic drugs, but repeated infections are common in endemic areas and drug resistance is a growing concern with increasing therapeutic and agricultural administration [1]. Many parasitic nematodes have an environmental infective larval stage that engages in host seeking, a process whereby the infective larvae use sensory cues to search for hosts. Host seeking is a complex behavior that involves multiple sensory modalities, including olfaction, gustation, thermosensation, and humidity sensation. As the initial step of the parasite-host interaction, host seeking could be a powerful target for preventative intervention. However, host-seeking behavior remains poorly understood. Here we review what is currently known about the host-seeking behaviors of different parasitic nematodes, including insect-parasitic nematodes, mammalian-parasitic nematodes, and plant-parasitic nematodes. We also discuss the neural bases of these behaviors. Copyright © 2016 Elsevier B.V. All rights reserved.

  13. De novo assembly and characterization of the transcriptome of the parasitic weed dodder identifies genes associated with plant parasitism.

    Science.gov (United States)

    Ranjan, Aashish; Ichihashi, Yasunori; Farhi, Moran; Zumstein, Kristina; Townsley, Brad; David-Schwartz, Rakefet; Sinha, Neelima R

    2014-11-01

    Parasitic flowering plants are one of the most destructive agricultural pests and have major impact on crop yields throughout the world. Being dependent on finding a host plant for growth, parasitic plants penetrate their host using specialized organs called haustoria. Haustoria establish vascular connections with the host, which enable the parasite to steal nutrients and water. The underlying molecular and developmental basis of parasitism by plants is largely unknown. In order to investigate the process of parasitism, RNAs from different stages (i.e. seed, seedling, vegetative strand, prehaustoria, haustoria, and flower) were used to de novo assemble and annotate the transcriptome of the obligate plant stem parasite dodder (Cuscuta pentagona). The assembled transcriptome was used to dissect transcriptional dynamics during dodder development and parasitism and identified key gene categories involved in the process of plant parasitism. Host plant infection is accompanied by increased expression of parasite genes underlying transport and transporter categories, response to stress and stimuli, as well as genes encoding enzymes involved in cell wall modifications. By contrast, expression of photosynthetic genes is decreased in the dodder infective stages compared with normal stem. In addition, genes relating to biosynthesis, transport, and response of phytohormones, such as auxin, gibberellins, and strigolactone, were differentially expressed in the dodder infective stages compared with stems and seedlings. This analysis sheds light on the transcriptional changes that accompany plant parasitism and will aid in identifying potential gene targets for use in controlling the infestation of crops by parasitic weeds. © 2014 American Society of Plant Biologists. All Rights Reserved.

  14. Euplectrus furnius parasitizing Spodoptera frugiperda in maize in Brazil

    Directory of Open Access Journals (Sweden)

    Vinícius Soares Sturza

    2013-11-01

    Full Text Available Brazil is among the world's biggest maize producers and fall armyworm, Spodoptera frugiperda (Smith (Lepidoptera: Noctuidae, is the main insect pest on this crop in the country. Despite the importance of its natural enemies, there still is a lack of information about parasitoids species that attack this insect-pest, such as larval parasitoids. This research reports Euplectrus furnius Walker (Hymenoptera: Eulophidae parasitizing S. fugiperda larvae on maize crop in Brazil.

  15. Rare species of fungi parasiting on algae I. Parasites of Spirogyra and Mougeotia

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available Investigations carried out on the genus Spirogyra Link and Mougeotia Agardh revealed the following species of fungi parasiting in the Spirogyra and Mougeotia cells: Olpidium endogenum, Blyttiomyces helicus, B. spinulosus, Micromyces zygogonii and Rhizophydium ampullaceum. First information on B. helicus as parasitic on algae is presented.

  16. APPLICATION OF BIOTECHNOLOGY TO THE STUDY OF FILARIAL PARASITES AND THEIR VECTORS

    Directory of Open Access Journals (Sweden)

    A. C. Vickery

    2012-09-01

    Full Text Available Over 200 species of filarial parasites have been described, although the life cycle and nature of their obligate intermediate arthropod vectors have been identified for only about a quarter of them. Traditional methods of studying phylogenetic relationships between closely related parasite species have utilized morphologic, biochemical and biologic characteristics, usually of the microfilarial stage. Identification of competent vectors from among complexes of sibling species, has employed similar techniques, despite the fact that differences between geographical isolates may reflect environmental rather than genetically controlled factors. Studies of the prevalence and transmission of animal, human and zoonotic filarids, so important for vector identification and control, has lead to the examination of filarial parasites at the genetic level. Genomic DNA libraries are being constructed and screened for clones which are species specific. From this work, DNA probes which can accurately enumerate larval stages in vector squash preparations, and monoclonal antibodies specific for defined filarial antigens, are being prepared. The nucleotide sequences of rRNA are also being defined. The application of these technologies to the study of filarial parasites and their vectors, promises to not only allow the construction of accurate phylogenetic trees, but also to provide the data necessary for the identification and control of the vectors of filarial pathogens of animals and man.

  17. Immunological change in a parasite-impoverished environment: divergent signals from four island taxa.

    Directory of Open Access Journals (Sweden)

    Jon S Beadell

    2007-09-01

    Full Text Available Dramatic declines of native Hawaiian avifauna due to the human-mediated emergence of avian malaria and pox prompted an examination of whether island taxa share a common altered immunological signature, potentially driven by reduced genetic diversity and reduced exposure to parasites. We tested this hypothesis by characterizing parasite prevalence, genetic diversity and three measures of immune response in two recently-introduced species (Neochmia temporalis and Zosterops lateralis and two island endemics (Acrocephalus aequinoctialis and A. rimitarae and then comparing the results to those observed in closely-related mainland counterparts. The prevalence of blood parasites was significantly lower in 3 of 4 island taxa, due in part to the absence of certain parasite lineages represented in mainland populations. Indices of genetic diversity were unchanged in the island population of N. temporalis; however, allelic richness was significantly lower in the island population of Z. lateralis while both allelic richness and heterozygosity were significantly reduced in the two island-endemic species examined. Although parasite prevalence and genetic diversity generally conformed to expectations for an island system, we did not find evidence for a pattern of uniformly altered immune responses in island taxa, even amongst endemic taxa with the longest residence times. The island population of Z. lateralis exhibited a significantly reduced inflammatory cell-mediated response while levels of natural antibodies remained unchanged for this and the other recently introduced island taxon. In contrast, the island endemic A. rimitarae exhibited a significantly increased inflammatory response as well as higher levels of natural antibodies and complement. These measures were unchanged or lower in A. aequinoctialis. We suggest that small differences in the pathogenic landscape and the stochastic history of mutation and genetic drift are likely to be important in

  18. Glyoxalase diversity in parasitic protists.

    Science.gov (United States)

    Deponte, Marcel

    2014-04-01

    Our current knowledge of the isomerase glyoxalase I and the thioesterase glyoxalase II is based on a variety of prokaryotic and eukaryotic (model) systems with an emphasis on human glyoxalases. During the last decade, important insights on glyoxalase catalysis and structure-function relationships have also been obtained from parasitic protists. These organisms, including kinetoplastid and apicomplexan parasites, are particularly interesting, both because of their relevance as pathogens and because of their phylogenetic diversity and host-parasite co-evolution which has led to specialized organellar and metabolic adaptations. Accordingly, the glyoxalase repertoire and properties vary significantly among parasitic protists of different major eukaryotic lineages (and even between closely related organisms). For example, several protists have an insular or non-canonical glyoxalase. Furthermore, the structures and the substrate specificities of glyoxalases display drastic variations. The aim of the present review is to highlight such differences as well as similarities between the glyoxalases of parasitic protists and to emphasize the power of comparative studies for gaining insights into fundamental principles and alternative glyoxalase functions.

  19. Brood parasitism and quasi-parasitism in the European barn swallow Hirundo rustica rustica

    Czech Academy of Sciences Publication Activity Database

    Petrželková, Adéla; Michálková, R.; Albrechtová, Jana; Cepák, J.; Honza, Marcel; Kreisinger, J.; Munclinger, P.; Soudková, M.; Tomášek, Oldřich; Albrecht, Tomáš

    2015-01-01

    Roč. 69, č. 9 (2015), s. 1405-1414 ISSN 0340-5443 R&D Projects: GA ČR(CZ) GAP506/12/2472 Institutional support: RVO:68081766 Keywords : Altricial birds * Colonial breeding * Conspecific brood parasitism * Egg dumping * Host fitness * Parasite fitness Subject RIV: EG - Zoology Impact factor: 2.382, year: 2015

  20. Nematode parasites of animals are more prone to develop xenobiotic resistance than nematode parasites of plants

    Directory of Open Access Journals (Sweden)

    Silvestre A.

    2004-06-01

    Full Text Available In this paper, we concentrate on a comparison of plant and animal-parasitic nematodes, to gain insight into the factors that influence the acquisition of the drug resistance by nematodes. Comparing nematode parasite of domestic animals and cultivated plants, it appears that drug resistance threatens only domestic animal production. Does the paucity of report on nematicide field resistance reflect reality or, is nematicide resistance bypassed by other management practices, specific to cultivated plants (i.e. agricultural control ? First, it seems that selection pressure by treatments in plants is not as efficient as selection pressure in ruminants. Agronomic practices (i.e. sanitation, early planting, usage of nematodes resistant cultivar and crop rotation are frequently used to control parasitic-plant nematodes. Although the efficiency of such measures is generally moderate to high, integrated approaches are developing successfully in parasitic-plant nematode models. Secondly, the majority of anthelmintic resistance cases recorded in animal-parasitic nematodes concern drug families that are not used in plant-parasitic nematodes control (i.e. benzimidazoles, avermectines and levamisole. Thirdly, particular life traits of parasitic-plant nematodes (low to moderate fecundity and reproductive strategy are expected to reduce probability of appearance and transmission of drug resistance genes. It has been demonstrated that, for a large number of nematodes such as Meloidogyne spp., the mode of reproduction by mitotic parthenogenesis reduced genetic diversity of populations which may prevent a rapid drug resistance development. In conclusion, anthelmintic resistance develops in nematode parasite of animals as a consequence of an efficient selection pressure. Early detection of anthelmintic resistance is then crucial : it is not possible to avoid it, but only to delay its development in farm animal industry.

  1. From Parasite Encounter to Infection: Multiple-Scale Drivers of Parasite Richness in a Wild Social Primate Population

    Science.gov (United States)

    Benavides J. A.; Huchard, E.; Pettorelli, N.; King, A. J.; Brown, M. E.; Archer, C. E.; Appleton, C. C.; Raymond, M.; Cowlishaw, G.

    2011-01-01

    Host parasite diversity plays a fundamental role in ecological and evolutionary processes, yet the factors that drive it are still poorly understood. A variety of processes, operating across a range of spatial scales, are likely to influence both the probability of parasite encounter and subsequent infection. Here, we explored eight possible determinants of parasite richness, comprising rainfall and temperature at the population level, ranging behavior and home range productivity at the group level, and age, sex, body condition, and social rank at the individual level. We used a unique dataset describing gastrointestinal parasites in a terrestrial subtropical vertebrate (chacma baboons, Papio ursinus), comprising 662 faecal samples from 86 individuals representing all age-sex classes across two groups over two dry seasons in a desert population. Three mixed models were used to identify the most important factor at each of the three spatial scales (population, group, individual); these were then standardised and combined in a single, global, mixed model. Individual age had the strongest influence on parasite richness, in a convex relationship. Parasite richness was also higher in females and animals in poor condition, albeit at a lower order of magnitude than age. Finally, with a further halving of effect size, parasite richness was positively correlated to day range and temperature. These findings indicate that a range of factors influence host parasite richness through both encounter and infection probabilities, but that individual-level processes may be more important than those at the group or population level.

  2. Microaspiration of esophageal gland cells and cDNA library construction for identifying parasitism genes of plant-parasitic nematodes.

    Science.gov (United States)

    Hussey, Richard S; Huang, Guozhong; Allen, Rex

    2011-01-01

    Identifying parasitism genes encoding proteins secreted from a plant-parasitic nematode's esophageal gland cells and injected through its stylet into plant tissue is the key to understanding the molecular basis of nematode parasitism of plants. Parasitism genes have been cloned by directly microaspirating the cytoplasm from the esophageal gland cells of different parasitic stages of cyst or root-knot nematodes to provide mRNA to create a gland cell-specific cDNA library by long-distance reverse-transcriptase polymerase chain reaction. cDNA clones are sequenced and deduced protein sequences with a signal peptide for secretion are identified for high-throughput in situ hybridization to confirm gland-specific expression.

  3. A survey of innovation through duplication in the reduced genomes of twelve parasites.

    Directory of Open Access Journals (Sweden)

    Jeremy D DeBarry

    Full Text Available We characterize the prevalence, distribution, divergence, and putative functions of detectable two-copy paralogs and segmental duplications in the Apicomplexa, a phylum of parasitic protists. Apicomplexans are mostly obligate intracellular parasites responsible for human and animal diseases (e.g. malaria and toxoplasmosis. Gene loss is a major force in the phylum. Genomes are small and protein-encoding gene repertoires are reduced. Despite this genomic streamlining, duplications and gene family amplifications are present. The potential for innovation introduced by duplications is of particular interest. We compared genomes of twelve apicomplexans across four lineages and used orthology and genome cartography to map distributions of duplications against genome architectures. Segmental duplications appear limited to five species. Where present, they correspond to regions enriched for multi-copy and species-specific genes, pointing toward roles in adaptation and innovation. We found a phylum-wide association of duplications with dynamic chromosome regions and syntenic breakpoints. Trends in the distribution of duplicated genes indicate that recent, species-specific duplicates are often tandem while most others have been dispersed by genome rearrangements. These trends show a relationship between genome architecture and gene duplication. Functional analysis reveals: proteases, which are vital to a parasitic lifecycle, to be prominent in putative recent duplications; a pair of paralogous genes in Toxoplasma gondii previously shown to produce the rate-limiting step in dopamine synthesis in mammalian cells, a possible link to the modification of host behavior; and phylum-wide differences in expression and subcellular localization, indicative of modes of divergence. We have uncovered trends in multiple modes of duplicate divergence including sequence, intron content, expression, subcellular localization, and functions of putative recent duplicates that

  4. Parasites of mammals species abundance near zone Chernobyl

    International Nuclear Information System (INIS)

    Pen'kevich, V.A.

    2014-01-01

    In wildlife reserve parasitize various types of parasites: arachnids (mites) parasitic insects (horseflies, keds, mosquitoes, gnats, midges), helminths (trematodes, cestodes, nematodes and acanthocephalans) and parasitic protozoa. In quantity: 3 (beaver) to 25 species (wolf). (authors)

  5. Parasites in Forensic Science: a historic perspective

    Science.gov (United States)

    Cardoso, Rita; Alves, Helena; Richter, Joachim; Botelho, Monica C

    Parasites show a great potential to Forensic Science. Forensic Science is the application of any science and methodology to the legal system. The forensic scientist collects and analyses the physical evidence and produce a report of the results to the court. A parasite is an organism that lives at the expense of another and they exist in any ecosystem. Parasites are the cause of many important diseases. The forensic scientists can use the parasites to identify a crime scene, to determine the murder weapon or simply identify an individual. The applications for parasites in the Forensic Science can be many and more studies should be made in Forensic Parasitology. The most important parasites in Forensic Science are helminths specifically schistosomes. Through history there are many cases where schistosomes were described in autopsies and it was related to the cause of death. Here we review the applications of parasites in Forensic Science and its importance to the forensic scientist.

  6. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens.

    Science.gov (United States)

    Ferguson, Laura V; Kirk Hillier, N; Smith, Todd G

    2013-12-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites.

  7. Influence of Hepatozoon parasites on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens☆

    Science.gov (United States)

    Ferguson, Laura V.; Kirk Hillier, N.; Smith, Todd G.

    2012-01-01

    Hepatozoon species are heteroxenous parasites that commonly infect the blood of vertebrates and various organs of arthropods. Despite their ubiquity, little is known about how these parasites affect host phenotype, including whether or not these parasites induce changes in hosts to increase transmission success. The objectives of this research were to investigate influences of the frog blood parasite Hepatozoon clamatae and the snake blood parasite Hepatozoon sipedon on host-seeking and host-choice behaviour of the mosquitoes Culex territans and Culex pipiens, respectively. During development of H. sipedon in C. pipiens, significantly fewer infected mosquitoes fed on uninfected snakes compared to uninfected mosquitoes. When H. sipedon was mature in C. pipiens, the number of infected and uninfected C. pipiens that fed on snakes was not significantly different. Higher numbers of mosquitoes fed on naturally infected snakes and frogs compared to laboratory-reared, uninfected control animals. However, experiments using only laboratory-raised frogs revealed that infection did not significantly affect host choice by C. territans. Behaviour of C. pipiens in the presence of H. sipedon may increase transmission success of the parasite and provide the first evidence of phenotypic changes in the invertebrate host of Hepatozoon parasites. PMID:24533317

  8. Meso- and bathy-pelagic fish parasites at the Mid-Atlantic Ridge (MAR): Low host specificity and restricted parasite diversity

    Science.gov (United States)

    Klimpel, Sven; Busch, Markus Wilhelm; Sutton, Tracey; Palm, Harry Wilhelm

    2010-04-01

    Seven meso- and bathy-pelagic fish species from the Mid-Atlantic Ridge (MAR) were firstly studied for fish parasites and feeding ecology. With a total of seven parasite species, the 247 meso- and bathy-pelagic deep-sea fish specimens belonging to the families Melamphaidae (3 spp.), Myctophidae (3 spp.) and Stomiidae (1 sp.) revealed low parasite diversity. The genetically identified nematodes Anisakis simplex (s.s.) and Anisakis pegreffii from the body cavity, liver and muscles of Myctophum punctatum were the most abundant parasites, reaching a prevalence of 91.4% and mean intensity of 3.1 (1-14). Anisakis sp. (unidentified) infected Chauliodus sloani and Poromitra crassiceps. Bothriocephalidean and tetraphyllidean cestode larvae infected Benthosema glaciale, the latter also occurring in C. sloani and Scopelogadus beanii, at low prevalences. Adult parasites at low infection rates included the digenean Lethadena sp. (2.9%), and the two copepod species Sarcotretes scopeli (5.7%) and Tautochondria dolichoura (5.3-11.4%). The myctophid Lampanyctus macdonaldi and the melamphaid Scopelogadus mizolepis mizolepis were free of parasites. Analyses of the stomach contents revealed crustaceans, especially copepods and euphausiids for the myctophids and also amphipods for the melamphaids as predominant prey items. While all stomachs showing distinct content comprising often unidentified 'tissue' (possibly gelatinous zooplankton), only C. sloani preyed upon fish. Though this feeding habit would enable transfer of a variety of crustacean-transmitted parasites into the fish, the parasite fauna in the meso- and bathy-pelagic fish was species poor. All observed parasites showed low host specificity, demonstrating no distinct pattern of host-parasite co-evolution. The MAR is no barrier for the parasite distribution in the North Atlantic meso- and bathy-pelagial.

  9. Intracellular Drug Bioavailability: Effect of Neutral Lipids and Phospholipids.

    Science.gov (United States)

    Treyer, Andrea; Mateus, André; Wiśniewski, Jacek R; Boriss, Hinnerk; Matsson, Pär; Artursson, Per

    2018-06-04

    Intracellular unbound drug concentrations are the pharmacologically relevant concentrations for targets inside cells. Intracellular drug concentrations are determined by multiple processes, including the extent of drug binding to intracellular structures. The aim of this study was to evaluate the effect of neutral lipid (NL) and phospholipid (PL) levels on intracellular drug disposition. The NL and/or PL content of 3T3-L1 cells were enhanced, resulting in phenotypes (in terms of morphology and proteome) reminiscent of adipocytes (high NL and PL) or mild phospholipidosis (only high PL). Intracellular bioavailability ( F ic ) was then determined for 23 drugs in these cellular models and in untreated wild-type cells. A higher PL content led to higher intracellular drug binding and a lower F ic . The induction of NL did not further increase drug binding but led to altered F ic due to increased lysosomal pH. Further, there was a good correlation between binding to beads coated with pure PL and intracellular drug binding. In conclusion, our results suggest that PL content is a major determinant of drug binding in cells and that PL beads may constitute a simple alternative to estimating this parameter. Further, the presence of massive amounts of intracellular NLs did not influence drug binding significantly.

  10. Study of the resistance of Oryza sativa to Pyricularia oryzae by applying mutagenic techniques to the parasite

    International Nuclear Information System (INIS)

    Notteghem, J.L.

    1977-01-01

    The strategy for using resistant varieties is often based on hypotheses about the development of the genetic potential of the parasite when it encounters the resistance in question. An attempt has been made to find a method of studying experimentally how such resistance evolves through analysis of the pathogenic ability of artificial mutants of the parasite which are specific to the varieties of rice studied. With physical and chemical mutagens it has been possible to obtain a multivirulent strain and also variants similar to those found in nature. The results demonstrate the effectiveness of the method for investigating the variability of the parasite and the behaviour of resistant varieties in the face of this variability. (author)

  11. Rare species of fungi parasiting on algae. II. Parasites of Desmidiaceae

    Directory of Open Access Journals (Sweden)

    Joanna Z. Kadłubowska

    2014-08-01

    Full Text Available Investigations carried out on the Desmidiaceae revealed the following species of fungi parasitizing on desmids: Myzocytium megastomum, Lagenidium closterii, Ancylistes closterii and Rhizophydium globosum. Legenidium closterii is new in Poland. It is the first information of this species as a parasite on the algae from the genus Tetmemorus. Figures of sporangia of Rhizophydium globosum on Euastrum ansatum, Cosmarium botrytis, C. pseudamoenum and a resting spore on Staurastrum punctulatum are the first graphic documentation of this species.

  12. HAEMATOZOA IN BIRDS FROM LA MACARENA NATIONAL NATURAL PARK (COLOMBIA

    Directory of Open Access Journals (Sweden)

    BASTO NATALIA

    2006-12-01

    Full Text Available Birds from 69 species in 25 families were collected from La Macarena NationalNatural Park in Colombia between June and November 2000 and examined forhaematozoa. Eighty-two of the 342 birds (24% were positive for one or more taxon.Microfilariae were the most commonly seen parasites (10.5% and Leucocytozoonthe least common (0.3%. Other parasites were species of the genera Plasmodium(4.4%, Trypanosoma (3.5%, Hepatozoon (3.5% and Haemoproteus (3.2%.The low intensity of haemosporidian parasites agreed with other records from theNeotropics. Parasite prevalence in this Neotropical region was higher than levelsfound in other surveys in the Neotropics, but lower than levels found for the Nearcticarea. A new host-parasite association is reported here, as well as avian speciesexamined for haematozoa for the first time.

  13. Parasites as biological tags of fish stocks: a meta-analysis of their discriminatory power.

    Science.gov (United States)

    Poulin, Robert; Kamiya, Tsukushi

    2015-01-01

    The use of parasites as biological tags to discriminate among marine fish stocks has become a widely accepted method in fisheries management. Here, we first link this approach to its unstated ecological foundation, the decay in the similarity of the species composition of assemblages as a function of increasing distance between them, a phenomenon almost universal in nature. We explain how distance decay of similarity can influence the use of parasites as biological tags. Then, we perform a meta-analysis of 61 uses of parasites as tags of marine fish populations in multivariate discriminant analyses, obtained from 29 articles. Our main finding is that across all studies, the observed overall probability of correct classification of fish based on parasite data was about 71%. This corresponds to a two-fold improvement over the rate of correct classification expected by chance alone, and the average effect size (Zr = 0·463) computed from the original values was also indicative of a medium-to-large effect. However, none of the moderator variables included in the meta-analysis had a significant effect on the proportion of correct classification; these moderators included the total number of fish sampled, the number of parasite species used in the discriminant analysis, the number of localities from which fish were sampled, the minimum and maximum distance between any pair of sampling localities, etc. Therefore, there are no clear-cut situations in which the use of parasites as tags is more useful than others. Finally, we provide recommendations for the future usage of parasites as tags for stock discrimination, to ensure that future applications of the method achieve statistical rigour and a high discriminatory power.

  14. Host-Parasite Interactions from the Inside: Plant Reproductive Ontogeny Drives Specialization in Parasitic Insects.

    Directory of Open Access Journals (Sweden)

    Thomas Boivin

    Full Text Available Host plant interactions are likely key drivers of evolutionary processes involved in the diversification of phytophagous insects. Granivory has received substantial attention for its crucial role in shaping the interaction between plants and their seed parasites, but fine-scale mechanisms explaining the role of host plant reproductive biology on specialization of seed parasites remain poorly described. In a comparative approach using plant histological techniques, we tested the hypotheses that different seed parasite species synchronize their life cycles to specific stages in seed development, and that the stage they target depends on major differences in seed development programs. In a pinaceous system, seed storage products are initiated before ovule fertilization and the wasps target the ovule's nucellus during megagametogenesis, a stage at which larvae may benefit from the by-products derived from both secreting cells and dying nucellar cells. In a cupressaceous system, oviposition activity peaks later, during embryogenesis, and the wasps target the ovule's megagametophyte where larvae may benefit from cell disintegration during embryogenesis. Our cytohistological approach shows for the first time how, despite divergent oviposition targets, different parasite species share a common strategy that consists of first competing for nutrients with developing plant structures, and then consuming these developed structures to complete their development. Our results support the prediction that seed developmental program is an axis for specialization in seed parasites, and that it could be an important parameter in models of their ecological and taxonomic divergence. This study provides the basis for further investigating the possibility of the link between plant ontogeny and pre-dispersal seed parasitism.

  15. Effective and specific in planta RNAi in cyst nematodes: expression interference of four parasitism genes reduces parasitic success.

    Science.gov (United States)

    Sindhu, Anoop S; Maier, Tom R; Mitchum, Melissa G; Hussey, Richard S; Davis, Eric L; Baum, Thomas J

    2009-01-01

    Cyst nematodes are highly evolved sedentary plant endoparasites that use parasitism proteins injected through the stylet into host tissues to successfully parasitize plants. These secretory proteins likely are essential for parasitism as they are involved in a variety of parasitic events leading to the establishment of specialized feeding cells required by the nematode to obtain nourishment. With the advent of RNA interference (RNAi) technology and the demonstration of host-induced gene silencing in parasites, a new strategy to control pests and pathogens has become available, particularly in root-knot nematodes. Plant host-induced silencing of cyst nematode genes so far has had only limited success but similarly should disrupt the parasitic cycle and render the host plant resistant. Additional in planta RNAi data for cyst nematodes are being provided by targeting four parasitism genes through host-induced RNAi gene silencing in transgenic Arabidopsis thaliana, which is a host for the sugar beet cyst nematode Heterodera schachtii. Here it is reported that mRNA abundances of targeted nematode genes were specifically reduced in nematodes feeding on plants expressing corresponding RNAi constructs. Furthermore, this host-induced RNAi of all four nematode parasitism genes led to a reduction in the number of mature nematode females. Although no complete resistance was observed, the reduction of developing females ranged from 23% to 64% in different RNAi lines. These observations demonstrate the relevance of the targeted parasitism genes during the nematode life cycle and, potentially more importantly, suggest that a viable level of resistance in crop plants may be accomplished in the future using this technology against cyst nematodes.

  16. Enhanced intracellular delivery and antibacterial efficacy of enrofloxacin-loaded docosanoic acid solid lipid nanoparticles against intracellular Salmonella.

    Science.gov (United States)

    Xie, Shuyu; Yang, Fei; Tao, Yanfei; Chen, Dongmei; Qu, Wei; Huang, Lingli; Liu, Zhenli; Pan, Yuanhu; Yuan, Zonghui

    2017-01-23

    Enrofloxacin-loaded docosanoic acid solid lipid nanoparticles (SLNs) with different physicochemical properties were developed to enhance activity against intracellular Salmonella. Their cellular uptake, intracellular elimination and antibacterial activity were studied in RAW 264.7 cells. During the experimental period, SLN-encapsulated enrofloxacin accumulated in the cells approximately 27.06-37.71 times more efficiently than free drugs at the same extracellular concentration. After incubation for 0.5 h, the intracellular enrofloxacin was enhanced from 0.336 to 1.147 μg/mg of protein as the sizes of nanoparticles were increased from 150 to 605 nm, and from 0.960 to 1.147 μg/mg of protein when the charge was improved from -8.1 to -24.9 mv. The cellular uptake was more significantly influenced by the size than it was by the charge, and was not affected by whether the charge was positive or negative. The elimination of optimal SLN-encapsulated enrofloxacin from the cells was significantly slower than that of free enrofloxacin after removing extracellular drug. The inhibition effect against intracellular Salmonella CVCC541 of 0.24 and 0.06 μg/mL encapsulated enrofloxacin was stronger than 0.6 μg/mL free drug after all of the incubation periods and at 48 h, respectively. Docosanoic acid SLNs are thus considered as a promising carrier for intracellular bacterial treatment.

  17. Macrófagos e inducción de arginasa como mecanismo de evasión de parásitos Macrophages and arginase induction as a mechanism for parasite escape

    Directory of Open Access Journals (Sweden)

    Cinthia C Stempin

    2007-12-01

    make possible their survival and replication in the host. Some parasites modulate the production of several toxic molecules synthesized by the immune system. Several parasites are highly sensitive to nitric oxide (ON and their derivatives. ON is produced in macrophages (MΦ after stimulation with microbial products or cytokines. In the past, M Φ were defined as inflammatory cells (classically activated MΦ, able to produce inflammatory mediators, to act like antigens presenting cells and to kill intracellular pathogens. Nevertheless, activated MΦ involve a more heterogeneous group of cells with different biological markers that can carry out different immunological functions. Alternatively activated MΦ fail to produce ON due to the arginase induction and consequently they have diminished their capacity to kill intracellular pathogens. It has been reported the induction of arginase by different parasites; therefore this mechanism could favor their survival in the host. In our group, we studied the participation of arginase in a model of Trypanosoma cruzi infection and the intracellular signals involved in the replication of this parasite in MΦ. The data obtained from our works would allow the understanding of some mechanisms by which cells can be programmed to favor the establishment of chronic parasitic infections.

  18. Recent Duplication and Functional Divergence in Parasitic Nematode Levamisole-Sensitive Acetylcholine Receptors.

    Directory of Open Access Journals (Sweden)

    Thomas B Duguet

    2016-07-01

    Full Text Available Helminth parasites rely on fast-synaptic transmission in their neuromusculature to experience the outside world and respond to it. Acetylcholine plays a pivotal role in this and its receptors are targeted by a wide variety of both natural and synthetic compounds used in human health and for the control of parasitic disease. The model, Caenorhabditis elegans is characterized by a large number of acetylcholine receptor subunit genes, a feature shared across the nematodes. This dynamic family is characterized by both gene duplication and loss between species. The pentameric levamisole-sensitive acetylcholine receptor has been characterized from C. elegans, comprised of five different subunits. More recently, cognate receptors have been reconstituted from multiple parasitic nematodes that are found to vary in subunit composition. In order to understand the implications of receptor composition change and the origins of potentially novel drug targets, we investigated a specific example of subunit duplication based on analysis of genome data for 25 species from the 50 helminth genome initiative. We found multiple independent duplications of the unc-29, acetylcholine receptor subunit, where codon substitution rate analysis identified positive, directional selection acting on amino acid positions associated with subunit assembly. Characterization of four gene copies from a model parasitic nematode, Haemonchus contortus, demonstrated that each copy has acquired unique functional characteristics based on phenotype rescue of transgenic C. elegans and electrophysiology of receptors reconstituted in Xenopus oocytes. We found evidence that a specific incompatibility has evolved for two subunits co-expressed in muscle. We demonstrated that functional divergence of acetylcholine receptors, driven by directional selection, can occur more rapidly than previously thought and may be mediated by alteration of receptor assembly. This phenomenon is common among the

  19. Parasites and steroid hormones: corticosteroid and sex steroid synthesis, their role in the parasite physiology and development.

    Directory of Open Access Journals (Sweden)

    Marta C. Romano

    2015-06-01

    Full Text Available In many cases parasites display highly complex life cycles that include establishment of the larva or adults within host organs, but even in those that have only one host reciprocal intricate interactions occur. A bulk of evidence indicates that steroid hormones influence the development and course of parasitic infections, the host gender susceptibility to the infection and the associate differences in immunological response are good examples of the host-parasite interplay. However, the capacity of these organisms to synthesize their own steroidogenic hormones still has more questions than answers. It is now well known that many parasites synthesize ecdysteroids, but limited information is available on sex steroid and corticosteroid synthesis. This review intends to summarize some of the existing information in the field. In many but not all parasitosis the host hormonal environment determines the susceptibility, the course and severity of parasite infections. In most cases the infection disturbs the host environment, and activate immune responses that finally affect the endocrine system. Furthermore, sex steroids and corticosteroids may also directly modify the parasite reproduction and molting. Available information indicates that parasites synthesize some steroid hormones like ecdysteroids and sex steroids and the presence and activity of related enzymes have been demonstrated. More recently, the synthesis of corticosteroid like compounds has been shown in Taenia solium and tapeworms and in Taenia crassiceps WFU cysticerci. Deeper knowledge of the endocrine properties of parasites will contribute to understand their reproduction and reciprocal interactions with the host, and also may contribute to design tools to combat the infection in some clinical situations.

  20. Regulation of intracellular pH in cnidarians: response to acidosis in Anemonia viridis.

    Science.gov (United States)

    Laurent, Julien; Venn, Alexander; Tambutté, Éric; Ganot, Philippe; Allemand, Denis; Tambutté, Sylvie

    2014-02-01

    The regulation of intracellular pH (pHi) is a fundamental aspect of cell physiology that has received little attention in studies of the phylum Cnidaria, which includes ecologically important sea anemones and reef-building corals. Like all organisms, cnidarians must maintain pH homeostasis to counterbalance reductions in pHi, which can arise because of changes in either intrinsic or extrinsic parameters. Corals and sea anemones face natural daily changes in internal fluids, where the extracellular pH can range from 8.9 during the day to 7.4 at night. Furthermore, cnidarians are likely to experience future CO₂-driven declines in seawater pH, a process known as ocean acidification. Here, we carried out the first mechanistic investigation to determine how cnidarian pHi regulation responds to decreases in extracellular and intracellular pH. Using the anemone Anemonia viridis, we employed confocal live cell imaging and a pH-sensitive dye to track the dynamics of pHi after intracellular acidosis induced by acute exposure to decreases in seawater pH and NH₄Cl prepulses. The investigation was conducted on cells that contained intracellular symbiotic algae (Symbiodinium sp.) and on symbiont-free endoderm cells. Experiments using inhibitors and Na⁺-free seawater indicate a potential role of Na⁺/H⁺ plasma membrane exchangers (NHEs) in mediating pHi recovery following intracellular acidosis in both cell types. We also measured the buffering capacity of cells, and obtained values between 20.8 and 43.8 mM per pH unit, which are comparable to those in other invertebrates. Our findings provide the first steps towards a better understanding of acid-base regulation in these basal metazoans, for which information on cell physiology is extremely limited. © 2013 FEBS.

  1. Update on pathology of ocular parasitic disease.

    Science.gov (United States)

    Das, Dipankar; Ramachandra, Varsha; Islam, Saidul; Bhattacharjee, Harsha; Biswas, Jyotirmay; Koul, Akanksha; Deka, Panna; Deka, Apurba

    2016-11-01

    Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa) or multicellular (helminths and arthropods). The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field.

  2. Considering RNAi experimental design in parasitic helminths.

    Science.gov (United States)

    Dalzell, Johnathan J; Warnock, Neil D; McVeigh, Paul; Marks, Nikki J; Mousley, Angela; Atkinson, Louise; Maule, Aaron G

    2012-04-01

    Almost a decade has passed since the first report of RNA interference (RNAi) in a parasitic helminth. Whilst much progress has been made with RNAi informing gene function studies in disparate nematode and flatworm parasites, substantial and seemingly prohibitive difficulties have been encountered in some species, hindering progress. An appraisal of current practices, trends and ideals of RNAi experimental design in parasitic helminths is both timely and necessary for a number of reasons: firstly, the increasing availability of parasitic helminth genome/transcriptome resources means there is a growing need for gene function tools such as RNAi; secondly, fundamental differences and unique challenges exist for parasite species which do not apply to model organisms; thirdly, the inherent variation in experimental design, and reported difficulties with reproducibility undermine confidence. Ideally, RNAi studies of gene function should adopt standardised experimental design to aid reproducibility, interpretation and comparative analyses. Although the huge variations in parasite biology and experimental endpoints make RNAi experimental design standardization difficult or impractical, we must strive to validate RNAi experimentation in helminth parasites. To aid this process we identify multiple approaches to RNAi experimental validation and highlight those which we deem to be critical for gene function studies in helminth parasites.

  3. Parasitic nematode interactions with mammals and plants.

    Science.gov (United States)

    Jasmer, Douglas P; Goverse, Aska; Smant, Geert

    2003-01-01

    Parasitic nematodes that infect humans, animals, and plants cause serious diseases that are deleterious to human health and agricultural productivity. Chemical and biological control methods have reduced the impact of these parasites. However, surviving environmental stages lead to persistent reinfection of host species. In addition, development of resistance to nematicides and anthelmintics by these parasites and reduced availability of some nematicides, for environmental protection, pose significant obstacles for current and future prospects of effective parasite control. Due to marked differences in host species, research on animal and plant parasitic nematodes often proceeds independently. Despite the differences between animals and plants, basic cellular properties are shared among these host organisms. Some common properties may be important for mechanisms [homologous or convergent (homoplastic)] by which nematodes successfully infect these diverse hosts or by which animal and plant hosts resist infections by these pathogens. Here we compare host/parasite interactions between plant parasitic nematodes (PPN) and animal parasitic nematodes, with an emphasis on mammalian hosts (MPN). Similarities and differences are considered in the context of progress on molecular dissection of these interactions. A comprehensive coverage is not possible in the space allotted. Instead, an illustrative approach is used to establish examples that, it is hoped, exemplify the value of the comparative approach.

  4. Update on pathology of ocular parasitic disease

    Directory of Open Access Journals (Sweden)

    Dipankar Das

    2016-01-01

    Full Text Available Parasites are a group of eukaryotic organisms that may be free-living or form a symbiotic or parasitic relationship with the hosts. Consisting of over 800,000 recognized species, parasites may be unicellular (Protozoa or multicellular (helminths and arthropods. The association of parasites with human population started long before the emergence of civilization. Parasitic zoonotic diseases are prevalent worldwide including India. Appropriate epidemiological data are lacking on existing zoonotic parasitic diseases, and newer diseases are emerging in our scenario. Systemic diseases such as cysticercosis, paragonimiasis, hydatidosis, and toxoplasmosis are fairly common. Acquired Toxoplasma infections are rising in immune-deficient individuals. Amongst the ocular parasitic diseases, various protozoas such as Cystoidea, trematodes, tissue flagellates, sporozoas etc. affect humans in general and eyes in particular, in different parts of the world. These zoonoses seem to be a real health related problem globally. Recent intensification of research throughout the world has led to specialization in biological fields, creating a conducive situation for researchers interested in this subject. The basics of parasitology lie in morphology, pathology, and with recent updates in molecular parasitology, the scope has extended further. The current review is to address the recent update in ophthalmic parasites with special reference to pathology and give a glimpse of further research in this field.

  5. Parasite stress promotes homicide and child maltreatment

    Science.gov (United States)

    Thornhill, Randy; Fincher, Corey L.

    2011-01-01

    Researchers using the parasite-stress theory of human values have discovered many cross-cultural behavioural patterns that inform a range of scholarly disciplines. Here, we apply the theory to major categories of interpersonal violence, and the empirical findings are supportive. We hypothesize that the collectivism evoked by high parasite stress is a cause of adult-on-adult interpersonal violence. Across the US states, parasite stress and collectivism each positively predicts rates of men's and women's slaying of a romantic partner, as well as the rate of male-honour homicide and of the motivationally similar felony-related homicide. Of these four types of homicide, wealth inequality has an independent effect only on rates of male-honour and felony-related homicide. Parasite stress and collectivism also positively predict cross-national homicide rates. Child maltreatment by caretakers is caused, in part, by divestment in offspring of low phenotypic quality, and high parasite stress produces more such offspring than low parasite stress. Rates of each of two categories of the child maltreatment—lethal and non-lethal—across the US states are predicted positively by parasite stress, with wealth inequality and collectivism having limited effects. Parasite stress may be the strongest predictor of interpersonal violence to date. PMID:22042922

  6. Gastrointestinal parasite infection of the Gray mouse lemur ...

    African Journals Online (AJOL)

    Faecal material from 169 individuals of Microcebus murinus living in five littoral forest fragments was analyzed for gastrointestinal parasites. The fragments differed in size and forest quality. Gastrointestinal parasite infection of M. murinus was characterised using parasite species richness, the prevalence of parasites, and ...

  7. Trichloroethylene-mediated cytotoxicity in human epidermal keratinocytes is mediated by the rapid accumulation of intracellular calcium: Interception by naringenin.

    Science.gov (United States)

    Ali, F; Khan, A Q; Khan, R; Sultana, S

    2016-02-01

    Industrial solvents pose a significant threat to the humankind. The mechanisms of their toxicity still remain in debate. Trichloroethylene (TCE) is a widespread industrial solvent responsible for severe liver dysfunction, cutaneous toxicity in occupationally exposed humans. We utilized an in vitro system of human epidermal keratinocyte (HaCaT) cells in this study to avoid complex cell and extracellular interactions. We report the cytotoxicity of organic solvent TCE in HaCaT and its reversal by a natural flavanone, naringenin (Nar). The cytotoxicity was attributed to the rapid intracellular free calcium (Ca(2+)) release, which might lead to the elevation of protein kinase C along with robust free radical generation, instability due to energy depletion, and sensitization of intracellular stress signal transducer nuclear factor κB. These effects were actually seen to induce significant amount of genomic DNA fragmentation. Furthermore, all these effects of TCE were effectively reversed by the treatment of Nar, a natural flavanone. Our studies identify intracellular Ca as a unique target used by organic solvents in the cytotoxicity and highlight the Ca(2+) ion stabilizer properties of Nar. © The Author(s) 2015.

  8. Structural basis of malaria parasite lysyl-tRNA synthetase inhibition by cladosporin.

    Science.gov (United States)

    Khan, Sameena; Sharma, Arvind; Belrhali, Hassan; Yogavel, Manickam; Sharma, Amit

    2014-06-01

    Malaria parasites inevitably develop drug resistance to anti-malarials over time. Hence the immediacy for discovering new chemical scaffolds to include in combination malaria drug therapy. The desirable attributes of new chemotherapeutic agents currently include activity against both liver and blood stage malaria parasites. One such recently discovered compound called cladosporin abrogates parasite growth via inhibition of Plasmodium falciparum lysyl-tRNA synthetase (PfKRS), an enzyme central to protein translation. Here, we present crystal structure of ternary PfKRS-lysine-cladosporin (PfKRS-K-C) complex that reveals cladosporin's remarkable ability to mimic the natural substrate adenosine and thereby colonize PfKRS active site. The isocoumarin fragment of cladosporin sandwiches between critical adenine-recognizing residues while its pyran ring fits snugly in the ribose-recognizing cavity. PfKRS-K-C structure highlights ample space within PfKRS active site for further chemical derivatization of cladosporin. Such derivatives may be useful against additional human pathogens that retain high conservation in cladosporin chelating residues within their lysyl-tRNA synthetase.

  9. Gastrointestinal parasites in stray and shelter cats in the municipality of Rio de Janeiro, Brazil

    Directory of Open Access Journals (Sweden)

    Pâmela Figueiredo Pereira

    Full Text Available Abstract The increasingly urban nature of the population has led many people to choose independent pets, such as cats. This situation has also made it possible for these animals to be abandoned, thus increasing the numbers of cats on the streets and in shelters. These animals can act as a source of infection for other hosts. Between 2014 and 2015, the frequency of gastrointestinal parasites in captive and stray cats in the municipality of Rio de Janeiro was analyzed. Ninety-one fecal samples were collected from captive cats and 172 from stray cats. Centrifugal sedimentation and flotation techniques were used. The frequency of parasites among the stray cats was 77.3%, and this was significantly higher than the frequency observed in captive cats (49.5%. Helminths were detected more frequently, and hookworms were the parasites most detected. Toxocara cati, Cystoisospora sp. and Dipylidium caninum were also detected. No statistical difference in the frequency of parasites was observed between the sexes among the captive cats. However, among the stray cats, males (85.5% presented higher positivity than females (71.8%. The high frequency of hookworms, which are the agent for “cutaneous larva migrans” in humans, shows the need to control parasitic infections among the cats studied.

  10. A quantitative reverse-transcriptase PCR assay for the assessment of drug activities against intracellular Theileria annulata schizonts

    Directory of Open Access Journals (Sweden)

    Isabel Hostettler

    2014-12-01

    Full Text Available Intracellular schizonts of the apicomplexans Theileria annulata and Theileria parva immortalize bovine leucocytes thereby causing fatal immunoproliferative diseases. Buparvaquone, a hydroxynaphthoquinone related to parvaquone, is the only drug available against Theileria. The drug is only effective at the onset of infection and emerging resistance underlines the need for identifying alternative compounds. Current drug assays employ monitoring of proliferation of infected cells, with apoptosis of the infected host cell as a read-out, but it is often unclear whether active compounds directly impair the viability of the parasite or primarily induce host cell death. We here report on the development of a quantitative reverse transcriptase real time PCR method based on two Theileria genes, tasp and tap104, which are both expressed in schizonts. Upon in vitro treatment of T. annulata infected bovine monocytes with buparvaquone, TaSP and Tap104 mRNA expression levels significantly decreased in relation to host cell actin already within 4 h of drug exposure, while significant differences in host cell proliferation were detectable only after 48–72 h. TEM revealed marked alterations of the schizont ultrastructure already after 2 h of buparvaquone treatment, while the host cell remained unaffected. Expression of TaSP and Tap104 proteins showed a marked decrease only after 24 h. Therefore, the analysis of expression levels of mRNA coding for TaSP and Tap104 allows to directly measuring impairment of parasite viability. We subsequently applied this method using a series of compounds affecting different targets in other apicomplexan parasites, and show that monitoring of TaSP- and Tap104 mRNA levels constitutes a suitable tool for anti-theilerial drug development.

  11. Induction of partial protection against infection with Toxoplasma gondii genotype II by DNA vaccination with recombinant chimeric tachyzoite antigens

    DEFF Research Database (Denmark)

    Rosenberg, Carina Agerbo; De Craeye, S.; Jongert, E.

    2009-01-01

    Infection with the obligate intracellular parasite Toxoplasma gondii is a significant source of parasitic infections worldwide. In adults, infections may often lead to severe retinochoroiditis. Infection of the foetus causes abortion or congenital pathology that may lead to neurological complicat......Infection with the obligate intracellular parasite Toxoplasma gondii is a significant source of parasitic infections worldwide. In adults, infections may often lead to severe retinochoroiditis. Infection of the foetus causes abortion or congenital pathology that may lead to neurological...

  12. New mechanisms of disease and parasite-host interactions.

    Science.gov (United States)

    de Souza, Tiago Alves Jorge; de Carli, Gabriel Jose; Pereira, Tiago Campos

    2016-09-01

    An unconventional interaction between a patient and parasites was recently reported, in which parasitic cells invaded host's tissues, establishing several tumors. This finding raises various intriguing hypotheses on unpredicted forms of interplay between a patient and infecting parasites. Here we present four unusual hypothetical host-parasite scenarios with intriguing medical consequences. Relatively simple experimental designs are described in order to evaluate such hypotheses. The first one refers to the possibility of metabolic disorders in parasites intoxicating the host. The second one is on possibility of patients with inborn errors of metabolism (IEM) being more resistant to parasites (due to accumulation of toxic compounds in the bloodstream). The third one refers to a mirrored scenario: development of tumors in parasites due to ingestion of host's circulating cancer cells. The last one describes a complex relationship between parasites accumulating a metabolite and supplying it to a patient with an IEM. Copyright © 2016 Elsevier Ltd. All rights reserved.

  13. Parasites in food webs: the ultimate missing links

    Science.gov (United States)

    Lafferty, Kevin D.; Allesina, Stefano; Arim, Matias; Briggs, Cherie J.; De Leo, Giulio A.; Dobson, Andrew P.; Dunne, Jennifer A.; Johnson, Pieter T.J.; Kuris, Armand M.; Marcogliese, David J.; Martinez, Neo D.; Memmott, Jane; Marquet, Pablo A.; McLaughlin, John P.; Mordecai, Eerin A.; Pascual, Mercedes; Poulin, Robert; Thieltges, David W.

    2008-01-01

    Parasitism is the most common consumer strategy among organisms, yet only recently has there been a call for the inclusion of infectious disease agents in food webs. The value of this effort hinges on whether parasites affect food-web properties. Increasing evidence suggests that parasites have the potential to uniquely alter food-web topology in terms of chain length, connectance and robustness. In addition, parasites might affect food-web stability, interaction strength and energy flow. Food-web structure also affects infectious disease dynamics because parasites depend on the ecological networks in which they live. Empirically, incorporating parasites into food webs is straightforward. We may start with existing food webs and add parasites as nodes, or we may try to build food webs around systems for which we already have a good understanding of infectious processes. In the future, perhaps researchers will add parasites while they construct food webs. Less clear is how food-web theory can accommodate parasites. This is a deep and central problem in theoretical biology and applied mathematics. For instance, is representing parasites with complex life cycles as a single node equivalent to representing other species with ontogenetic niche shifts as a single node? Can parasitism fit into fundamental frameworks such as the niche model? Can we integrate infectious disease models into the emerging field of dynamic food-web modelling? Future progress will benefit from interdisciplinary collaborations between ecologists and infectious disease biologists.

  14. Recent advances in understanding apicomplexan parasites [version 1; referees: 2 approved

    Directory of Open Access Journals (Sweden)

    Frank Seeber

    2016-06-01

    Full Text Available Intracellular single-celled parasites belonging to the large phylum Apicomplexa are amongst the most prevalent and morbidity-causing pathogens worldwide. In this review, we highlight a few of the many recent advances in the field that helped to clarify some important aspects of their fascinating biology and interaction with their hosts. Plasmodium falciparum causes malaria, and thus the recent emergence of resistance against the currently used drug combinations based on artemisinin has been of major interest for the scientific community. It resulted in great advances in understanding the resistance mechanisms that can hopefully be translated into altered future drug regimens. Apicomplexa are also experts in host cell manipulation and immune evasion. Toxoplasma gondii and Theileria sp., besides Plasmodium sp., are species that secrete effector molecules into the host cell to reach this aim. The underlying molecular mechanisms for how these proteins are trafficked to the host cytosol (T. gondii and Plasmodium and how a secreted protein can immortalize the host cell (Theileria sp. have been illuminated recently. Moreover, how such secreted proteins affect the host innate immune responses against T. gondii and the liver stages of Plasmodium has also been unraveled at the genetic and molecular level, leading to unexpected insights. Methodological advances in metabolomics and molecular biology have been instrumental to solving some fundamental puzzles of mitochondrial carbon metabolism in Apicomplexa. Also, for the first time, the generation of stably transfected Cryptosporidium parasites was achieved, which opens up a wide variety of experimental possibilities for this understudied, important apicomplexan pathogen.

  15. Recent progress in understanding host immune response to Avian Coccidiosis: Th1 and Th17 responses

    Science.gov (United States)

    Host-pathogen interaction leading to protection against coccidiosis is complex, involving many aspects of innate and adaptive immunity to intracellular parasites. The etiologic agent of avian coccidiosis is Eimeria, a genus of eukaryotic obligate intracellular parasites belonging to the phylum Apico...

  16. Hepatozoon parasites (Apicomplexa: Adeleorina) in bats.

    Science.gov (United States)

    Pinto, C Miguel; Helgen, Kristofer M; Fleischer, Robert C; Perkins, Susan L

    2013-08-01

    We provide the first evidence of Hepatozoon parasites infecting bats. We sequenced a short fragment of the 18S rRNA gene (~600 base pairs) of Hepatozoon parasites from 3 Hipposideros cervinus bats from Borneo. Phylogenies inferred by model-based methods place these Hepatozoon within a clade formed by parasites of reptiles, rodents, and marsupials. We discuss the scenario that bats might be common hosts of Hepatozoon.

  17. Flavonoids Promote Haustoria Formation in the Root Parasite Triphysaria versicolor1

    Science.gov (United States)

    Albrecht, Huguette; Yoder, John I.; Phillips, Donald A.

    1999-01-01

    Parasitic plants in the Scrophulariaceae develop infective root structures called haustoria in response to chemical signals released from host-plant roots. This study used a simple in vitro assay to characterize natural and synthetic molecules that induce haustoria in the facultative parasite Triphysaria versicolor. Several phenolic acids, flavonoids, and the quinone 2,6-dimethoxy-p-benzoquinone induced haustoria in T. versicolor root tips within hours after treatment. The concentration at which different molecules were active varied widely, the most active being 2,6-dimethoxy-p-benzoquinone and the anthocyanidin peonidin. Maize (Zea mays) seeds are rich sources of molecules that induce T. versicolor haustoria in vitro, and chromatographic analyses indicated that the active molecules present in maize-seed rinses include anthocyanins, other flavonoids, and simple phenolics. The presence of different classes of inducing molecules in seed rinses was substantiated by the observation that maize kernels deficient in chalcone synthase, a key enzyme in flavonoid biosynthesis, released haustoria-inducing molecules, although at reduced levels compared with wild-type kernels. We discuss these results in light of existing models for host perception in the related parasitic plant Striga. PMID:9952454

  18. Macrodinychus mites as parasitoids of invasive ants: an overlooked parasitic association.

    Science.gov (United States)

    Lachaud, Jean-Paul; Klompen, Hans; Pérez-Lachaud, Gabriela

    2016-07-21

    Mites are frequent ant symbionts, yet the exact nature of their interactions with their hosts is poorly known. Generally, myrmecophilous mites show adaptations for dispersal through phoresis, but species that lack such an adaptation may have evolved unusual specialized relationships with their hosts. The immature stages of Macrodinychus multispinosus develop as ectoparasitoids of pupae of the invasive ant Paratrechina longicornis. Feeding stages show regressed locomotor appendages. These mites complete their development on a single host, sucking all of its body content and therefore killing it. Locally high proportions of parasitized host pupae suggest that M. multispinosus could serve as a biological control agent. This is the ninth species of Macrodinychus reported as ant parasite, and the third known as parasitoid of invasive ants, confirming a unique habit in the evolution of mite feeding strategies and suggesting that the entire genus might be parasitic on ants. Several mites' characteristics, such as their protective morphology, possible viviparity, lack of a specialized stage for phoretic dispersal, and low host specificity, combined with both the general low aggressiveness of invasive P. longicornis towards other ants and its possible susceptibility to generalist ectoparasites would account for the host shift in native macrodinychid mites.

  19. Self-organization of intracellular gradients during mitosis

    Directory of Open Access Journals (Sweden)

    Fuller Brian G

    2010-01-01

    Full Text Available Abstract Gradients are used in a number of biological systems to transmit spatial information over a range of distances. The best studied are morphogen gradients where information is transmitted over many cell lengths. Smaller mitotic gradients reflect the need to organize several distinct events along the length of the mitotic spindle. The intracellular gradients that characterize mitosis are emerging as important regulatory paradigms. Intracellular gradients utilize intrinsic auto-regulatory feedback loops and diffusion to establish stable regions of activity within the mitotic cytosol. We review three recently described intracellular mitotic gradients. The Ran GTP gradient with its elaborate cascade of nuclear transport receptors and cargoes is the best characterized, yet the dynamics underlying the robust gradient of Ran-GTP have received little attention. Gradients of phosphorylation have been observed on Aurora B kinase substrates both before and after anaphase onset. In both instances the phosphorylation gradient appears to result from a soluble gradient of Aurora B kinase activity. Regulatory properties that support gradient formation are highlighted. Intracellular activity gradients that regulate localized mitotic events bare several hallmarks of self-organizing biologic systems that designate spatial information during pattern formation. Intracellular pattern formation represents a new paradigm in mitotic regulation.

  20. Natural variation in learning and memory dynamics studied by artificial selection on learning rate in parasitic wasps.

    NARCIS (Netherlands)

    Van den Berg, M.; Duivenvoorde, L.; Wang, G.; Tribuhl, S.; Bukovinszky, T.; Vet, L.E.M.; Dicke, M.; Smid, H.M.

    2011-01-01

    Animals form memory types that differ in duration and stability. The initial anaesthesia-sensitive memory (ASM) can be replaced by anaesthesia-resistant memory (ARM), and/or by protein synthesis-dependent, long-term memory (LTM). We previously showed that two closely related parasitic wasp species

  1. Footprints of directional selection in wild Atlantic salmon populations: evidence for parasite-driven evolution?

    Science.gov (United States)

    Zueva, Ksenia J; Lumme, Jaakko; Veselov, Alexey E; Kent, Matthew P; Lien, Sigbjørn; Primmer, Craig R

    2014-01-01

    Mechanisms of host-parasite co-adaptation have long been of interest in evolutionary biology; however, determining the genetic basis of parasite resistance has been challenging. Current advances in genome technologies provide new opportunities for obtaining a genome-scale view of the action of parasite-driven natural selection in wild populations and thus facilitate the search for specific genomic regions underlying inter-population differences in pathogen response. European populations of Atlantic salmon (Salmo salar L.) exhibit natural variance in susceptibility levels to the ectoparasite Gyrodactylus salaris Malmberg 1957, ranging from resistance to extreme susceptibility, and are therefore a good model for studying the evolution of virulence and resistance. However, distinguishing the molecular signatures of genetic drift and environment-associated selection in small populations such as land-locked Atlantic salmon populations presents a challenge, specifically in the search for pathogen-driven selection. We used a novel genome-scan analysis approach that enabled us to i) identify signals of selection in salmon populations affected by varying levels of genetic drift and ii) separate potentially selected loci into the categories of pathogen (G. salaris)-driven selection and selection acting upon other environmental characteristics. A total of 4631 single nucleotide polymorphisms (SNPs) were screened in Atlantic salmon from 12 different northern European populations. We identified three genomic regions potentially affected by parasite-driven selection, as well as three regions presumably affected by salinity-driven directional selection. Functional annotation of candidate SNPs is consistent with the role of the detected genomic regions in immune defence and, implicitly, in osmoregulation. These results provide new insights into the genetic basis of pathogen susceptibility in Atlantic salmon and will enable future searches for the specific genes involved.

  2. Parasitism, personality and cognition in fish.

    Science.gov (United States)

    Barber, I; Mora, A B; Payne, E M; Weinersmith, K L; Sih, A

    2017-08-01

    It is well established that parasites can have profound effects on the behaviour of host organisms, and that individual differences in behaviour can influence susceptibility to parasite infections. Recently, two major themes of research have developed. First, there has been a growing interest in the proximate, mechanistic processes underpinning parasite-associated behaviour change, and the interactive roles of the neuro-, immune, and other physiological systems in determining relationships between behaviour and infection susceptibility. Secondly, as the study of behaviour has shifted away from one-off measurements of single behaviours and towards a behavioural syndromes/personality framework, research is starting to focus on the consequences of parasite infection for temporal and contextual consistency of behaviour, and on the implications of different personality types for infection susceptibility. In addition, there is increasing interest in the potential for relationships between cognition and personality to also have implications for host-parasite interactions. As models well-suited to both the laboratory study of behaviour and experimental parasitology, teleost fish have been used as hosts in many of these studies. In this review we provide a broad overview of the range of mechanisms that potentially generate links between fish behaviour, personality, and parasitism, and illustrate these using examples drawn from the recent literature. In addition, we examine the potential interactions between cognition, personality and parasitism, and identify questions that may be usefully investigated with fish models. Copyright © 2016 Elsevier B.V. All rights reserved.

  3. Nanobodies: Chemical Functionalization Strategies and Intracellular Applications

    Science.gov (United States)

    Schumacher, Dominik; Helma, Jonas; Schneider, Anselm F. L.; Leonhardt, Heinrich

    2018-01-01

    Abstract Nanobodies can be seen as next‐generation tools for the recognition and modulation of antigens that are inaccessible to conventional antibodies. Due to their compact structure and high stability, nanobodies see frequent usage in basic research, and their chemical functionalization opens the way towards promising diagnostic and therapeutic applications. In this Review, central aspects of nanobody functionalization are presented, together with selected applications. While early conjugation strategies relied on the random modification of natural amino acids, more recent studies have focused on the site‐specific attachment of functional moieties. Such techniques include chemoenzymatic approaches, expressed protein ligation, and amber suppression in combination with bioorthogonal modification strategies. Recent applications range from sophisticated imaging and mass spectrometry to the delivery of nanobodies into living cells for the visualization and manipulation of intracellular antigens. PMID:28913971

  4. The origin of malarial parasites in orangutans.

    Directory of Open Access Journals (Sweden)

    M Andreína Pacheco

    Full Text Available BACKGROUND: Recent findings of Plasmodium in African apes have changed our perspectives on the evolution of malarial parasites in hominids. However, phylogenetic analyses of primate malarias are still missing information from Southeast Asian apes. In this study, we report molecular data for a malaria parasite lineage found in orangutans. METHODOLOGY/PRINCIPAL FINDINGS: We screened twenty-four blood samples from Pongo pygmaeus (Kalimantan, Indonesia for Plasmodium parasites by PCR. For all the malaria positive orangutan samples, parasite mitochondrial genomes (mtDNA and two antigens: merozoite surface protein 1 42 kDa (MSP-1(42 and circumsporozoite protein gene (CSP were amplified, cloned, and sequenced. Fifteen orangutans tested positive and yielded 5 distinct mitochondrial haplotypes not previously found. The haplotypes detected exhibited low genetic divergence among them, indicating that they belong to one species. We report phylogenetic analyses using mitochondrial genomes, MSP-1(42 and CSP. We found that the orangutan malaria parasite lineage was part of a monophyletic group that includes all the known non-human primate malaria parasites found in Southeast Asia; specifically, it shares a recent common ancestor with P. inui (a macaque parasite and P. hylobati (a gibbon parasite suggesting that this lineage originated as a result of a host switch. The genetic diversity of MSP-1(42 in orangutans seems to be under negative selection. This result is similar to previous findings in non-human primate malarias closely related to P. vivax. As has been previously observed in the other Plasmodium species found in non-human primates, the CSP shows high polymorphism in the number of repeats. However, it has clearly distinctive motifs from those previously found in other malarial parasites. CONCLUSION: The evidence available from Asian apes indicates that these parasites originated independently from those found in Africa, likely as the result of host

  5. Broomrape weeds. Underground mechanisms of parasitism and associated strategies for their control: a review.

    Directory of Open Access Journals (Sweden)

    Monica eFernandez-Aparicio

    2016-02-01

    Full Text Available Broomrapes are plant-parasitic weeds which constitute one of the most difficult-to-control of all biotic constraints that affect crops in Mediterranean, central and eastern Europe, and Asia. Due to their physical and metabolic overlap with the crop, their underground parasitism, their achlorophyllous nature, and hardly destructible seed bank, broomrape weeds are usually not controlled by management strategies designed for non-parasitic weeds. Instead, broomrape are in a current state of intensification and spread due to lack of broomrape-specific control programs, unconscious introduction to new areas and may be decline of herbicide use and global warming to a lesser degree. We reviewed relevant facts about the biology and physiology of broomrape weeds and the major feasible control strategies. The points of vulnerability of some underground events, key for their parasitism such as crop-induced germination or haustorial development are reviewed as inhibition targets of the broomrape-crop association. Among the reviewed strategies are those aimed 1 to reduce broomrape seed bank viability, such as fumigation, herbigation, solarization and use of broomrape-specific pathogens; 2 diversion strategies to reduce the broomrape ability to timely detect the host such as those based on promotion of suicidal germination, on introduction of allelochemical interference, or on down-regulating host exudation of germination-inducing factors; 3 strategies to inhibit the capacity of the broomrape seedling to penetrate the crop and connect with the vascular system, such as biotic or abiotic inhibition of broomrape radicle growth, crop resistance to broomrape penetration either natural, genetically engineered or elicited by biotic- or abiotic-resistance-inducing agents and 4 strategies acting once broomrape seedling has bridged its vascular system with that of the host, aimed to impede or to endure the parasitic sink such as those based on the delivery of herbicides

  6. Broomrape Weeds. Underground Mechanisms of Parasitism and Associated Strategies for their Control: A Review

    Science.gov (United States)

    Fernández-Aparicio, Mónica; Reboud, Xavier; Gibot-Leclerc, Stephanie

    2016-01-01

    Broomrapes are plant-parasitic weeds which constitute one of the most difficult-to-control of all biotic constraints that affect crops in Mediterranean, central and eastern Europe, and Asia. Due to their physical and metabolic overlap with the crop, their underground parasitism, their achlorophyllous nature, and hardly destructible seed bank, broomrape weeds are usually not controlled by management strategies designed for non-parasitic weeds. Instead, broomrapes are in current state of intensification and spread due to lack of broomrape-specific control programs, unconscious introduction to new areas and may be decline of herbicide use and global warming to a lesser degree. We reviewed relevant facts about the biology and physiology of broomrape weeds and the major feasible control strategies. The points of vulnerability of some underground events, key for their parasitism such as crop-induced germination or haustorial development are reviewed as inhibition targets of the broomrape-crop association. Among the reviewed strategies are those aimed (1) to reduce broomrape seed bank viability, such as fumigation, herbigation, solarization and use of broomrape-specific pathogens; (2) diversion strategies to reduce the broomrape ability to timely detect the host such as those based on promotion of suicidal germination, on introduction of allelochemical interference, or on down-regulating host exudation of germination-inducing factors; (3) strategies to inhibit the capacity of the broomrape seedling to penetrate the crop and connect with the vascular system, such as biotic or abiotic inhibition of broomrape radicle growth and crop resistance to broomrape penetration either natural, genetically engineered or elicited by biotic- or abiotic-resistance-inducing agents; and (4) strategies acting once broomrape seedling has bridged its vascular system with that of the host, aimed to impede or to endure the parasitic sink such as those based on the delivery of herbicides via

  7. Transmission rates of the bacterial endosymbiont, Neorickettsia risticii, during the asexual reproduction phase of its digenean host, Plagiorchis elegans, within naturally infected lymnaeid snails.

    Science.gov (United States)

    Greiman, Stephen E; Tkach, Vasyl V; Vaughan, Jefferson A

    2013-10-22

    Neorickettsia are obligate intracellular bacterial endosymbionts of digenean parasites present in all lifestages of digeneans. Quantitative information on the transmission of neorickettsial endosymbionts throughout the complex life cycles of digeneans is lacking. This study quantified the transmission of Neorickettsia during the asexual reproductive phase of a digenean parasite, Plagiorchis elegans, developing within naturally parasitized lymnaeid pond snails. Lymnaea stagnalis snails were collected from 3 ponds in Nelson County, North Dakota and screened for the presence of digenean cercariae. Cercariae were identified to species by PCR and sequencing of the 28S rRNA gene. Neorickettsia infections were initially detected using nested PCR and sequencing of a partial 16S rRNA gene of pooled cercariae shed from each parasitized snail. Fifty to 100 single cercariae or sporocysts were isolated from each of six parasitized snails and tested for the presence of Neorickettsia using nested PCR to estimate the efficiency at which Neorickettsia were transmitted to cercariae during asexual development of the digenean. A total of 616 L. stagnalis were collected and 240 (39%) shed digenean cercariae. Of these, 18 (8%) were Neorickettsia-positive. Six Neorickettsia infections were selected to determine the transmission efficiency of Neorickettsia from mother to daughter sporocyst and from daughter sporocyst to cercaria. The prevalence of neorickettsiae in cercariae varied from 11 to 91%. The prevalence of neorickettsiae in sporocysts from one snail was 100%. Prevalence of Neorickettsia infection in cercariae of Plagiorchis elegans was variable and never reached 100%. Reasons for this are speculative, however, the low prevalence of Neorickettsia observed in some of our samples (11 to 52%) differs from the high prevalence of other, related bacterial endosymbionts, e.g. Wolbachia in Wolbachia-dependent filariid nematodes, where the prevalence among progeny is universally 100

  8. Prospects and Pitfalls of Pregnancy-Associated Malaria Vaccination Based on the Natural Immune Response to Plasmodium falciparum VAR2CSA-Expressing Parasites

    Directory of Open Access Journals (Sweden)

    Elizabeth G. Kane

    2011-01-01

    Full Text Available Pregnancy-associated malaria, a manifestation of severe malaria, is the cause of up to 200,000 infant deaths a year, through the effects of placental insufficiency leading to growth restriction and preterm delivery. Development of a vaccine is one strategy for control. Plasmodium falciparum-infected red blood cells accumulate in the placenta through specific binding of pregnancy-associated parasite variants that express the VAR2CSA antigen to chondroitin sulphate A on the surface of syncytiotrophoblast cells. Parasite accumulation, accompanied by an inflammatory infiltrate, disrupts the cytokine balance of pregnancy with the potential to cause placental damage and compromise foetal growth. Multigravid women develop immunity towards VAR2CSA-expressing parasites in a gravidity-dependent manner which prevents unfavourable pregnancy outcomes. Although current vaccine design, targeting VAR2CSA antigens, has succeeded in inducing antibodies artificially, this candidate may not provide protection during the first trimester and may only protect those women living in areas endemic for malaria. It is concluded that while insufficient information about placental-parasite interactions is presently available to produce an effective vaccine, incremental progress is being made towards achieving this goal.

  9. Parasites in the Wadden Sea food web

    Science.gov (United States)

    Thieltges, David W.; Engelsma, Marc Y.; Wendling, Carolin C.; Wegner, K. Mathias

    2013-09-01

    While the free-living fauna of the Wadden Sea has received much interest, little is known on the distribution and effects of parasites in the Wadden Sea food web. However, recent studies on this special type of trophic interaction indicate a high diversity of parasites in the Wadden Sea and suggest a multitude of effects on the hosts. This also includes effects on specific predator-prey relationships and the general structure of the food web. Focussing on molluscs, a major group in the Wadden Sea in terms of biomass and abundance and an important link between primary producers and predators, we review existing studies and exemplify the ecological role of parasites in the Wadden Sea food web. First, we give a brief inventory of parasites occurring in the Wadden Sea, ranging from microparasites (e.g. protozoa, bacteria) to macroparasites (e.g. helminths, parasitic copepods) and discuss the effects of spatial scale on heterogeneities in infection levels. We then demonstrate how parasites can affect host population dynamics by acting as a strong mortality factor, causing mollusc mass mortalities. In addition, we will exemplify how parasites can mediate the interaction strength of predator-prey relationships and affect the topological structure of the Wadden Sea food web as a whole. Finally, we highlight some ongoing changes regarding parasitism in the Wadden Sea in the course of global change (e.g. species introduction, climate change) and identify important future research questions to entangle the role of parasites in the Wadden Sea food web.

  10. Differential water mite parasitism, phenoloxidase activity, and resistance to mites are unrelated across pairs of related damselfly species.

    Directory of Open Access Journals (Sweden)

    Julia J Mlynarek

    Full Text Available Related host species often demonstrate differences in prevalence and/or intensity of infection by particular parasite species, as well as different levels of resistance to those parasites. The mechanisms underlying this interspecific variation in parasitism and resistance expression are not well understood. Surprisingly, few researchers have assessed relations between actual levels of parasitism and resistance to parasites seen in nature across multiple host species. The main goal of this study was to determine whether interspecific variation in resistance against ectoparasitic larval water mites either was predictive of interspecific variation in parasitism for ten closely related species of damselflies (grouped into five "species pairs", or was predicted by interspecific variation in a commonly used measure of innate immunity (total Phenoloxidase or potential PO activity. Two of five species pairs had interspecific differences in proportions of individuals resisting larval Arrenurus water mites, only one of five species pairs had species differences in prevalence of larval Arrenurus water mites, and another two of five species pairs showed species differences in mean PO activity. Within the two species pairs where species differed in proportion of individuals resisting mites the species with the higher proportion did not have correspondingly higher PO activity levels. Furthermore, the proportion of individuals resisting mites mirrored prevalence of parasitism in only one species pair. There was no interspecific variation in median intensity of mite infestation within any species pair. We conclude that a species' relative ability to resist particular parasites does not explain interspecific variation in parasitism within species pairs and that neither resistance nor parasitism is reflected by interspecific variation in total PO or potential PO activity.

  11. Intracellular proteins produced by mammalian cells in response to environmental stress

    Science.gov (United States)

    Goochee, Charles F.; Passini, Cheryl A.

    1988-01-01

    The nature of the response of mammalian cells to environmental stress is examined by reviewing results of studies where cultured mouse L cells and baby hamster kidney cells were exposed to heat shock and the synthesis of heat-shock proteins and stress-response proteins (including HSP70, HSC70, HSP90, ubiquitin, and GRP70) in stressed and unstressed cells was evaluated using 2D-PAGE. The intracellular roles of the individual stress response proteins are discussed together with the regulation of the stress response system.

  12. Diversity of extracellular proteins during the transition from the ‘proto-apicomplexan’ alveolates to the apicomplexan obligate parasites

    KAUST Repository

    Templeton, Thomas J.; Pain, Arnab

    2015-01-01

    The recent completion of high-coverage draft genome sequences for several alveolate protozoans – namely, the chromerids, Chromera velia and Vitrella brassicaformis ; the perkinsid Perkinsus marinus ; the apicomplexan, Gregarina niphandrodes , as well as high coverage transcriptome sequence information for several colpodellids, allows for new genome-scale comparisons across a rich landscape of apicomplexans and other alveolates. Genome annotations can now be used to help interpret fine ultrastructure and cell biology, and guide new studies to describe a variety of alveolate life strategies, such as symbiosis or free living, predation, and obligate intracellular parasitism, as well to provide foundations to dissect the evolutionary transitions between these niches. This review focuses on the attempt to identify extracellular proteins which might mediate the physical interface of cell–cell interactions within the above life strategies, aided by annotation of the repertoires of predicted surface and secreted proteins encoded within alveolate genomes. In particular, we discuss what descriptions of the predicted extracellular proteomes reveal regarding a hypothetical last common ancestor of a pre-apicomplexan alveolate – guided by ultrastructure, life strategies and phylogenetic relationships – in an attempt to understand the evolution of obligate parasitism in apicomplexans.

  13. Diversity of extracellular proteins during the transition from the ‘proto-apicomplexan’ alveolates to the apicomplexan obligate parasites

    KAUST Repository

    Templeton, Thomas J.

    2015-11-20

    The recent completion of high-coverage draft genome sequences for several alveolate protozoans – namely, the chromerids, Chromera velia and Vitrella brassicaformis ; the perkinsid Perkinsus marinus ; the apicomplexan, Gregarina niphandrodes , as well as high coverage transcriptome sequence information for several colpodellids, allows for new genome-scale comparisons across a rich landscape of apicomplexans and other alveolates. Genome annotations can now be used to help interpret fine ultrastructure and cell biology, and guide new studies to describe a variety of alveolate life strategies, such as symbiosis or free living, predation, and obligate intracellular parasitism, as well to provide foundations to dissect the evolutionary transitions between these niches. This review focuses on the attempt to identify extracellular proteins which might mediate the physical interface of cell–cell interactions within the above life strategies, aided by annotation of the repertoires of predicted surface and secreted proteins encoded within alveolate genomes. In particular, we discuss what descriptions of the predicted extracellular proteomes reveal regarding a hypothetical last common ancestor of a pre-apicomplexan alveolate – guided by ultrastructure, life strategies and phylogenetic relationships – in an attempt to understand the evolution of obligate parasitism in apicomplexans.

  14. Gastrointestinal function in the parasitized host

    International Nuclear Information System (INIS)

    Castro, G.A.

    1981-01-01

    Emphasis in this review is on (1) digestive-absorptive, secretory and smooth muscle functions altered by gastrointestinal (GI) parasites, (2) mechanisms by which parasites induce changes, and (3) the influence of parasite-induced alterations on the health of the host. Examples involving laboratory and domestic animals indicate that inflammation is an important factor in pathological alterations in epithelial and smooth muscle tissues throughout the alimentary canal. Observations on GI secretory activity reveal an influence of parasites on the host GI endocrine system. It is argued that assessments of the significance of parasite-induced changes on the host must be balanced with the adaptive potential and 'reserve capacity' of the GI system. In this regard host immunity should be considered a specific adaptation. Some tracer studies are mentioned marginally, such as the use of 14 C polyethylene glycol to estimate the direction of not fluid movement in the small intestine, and the use of 51 Cr to demonstrate the significantly faster intestinal transit in Trichinella spiralis infected animals

  15. Targeted mutagenesis in a human-parasitic nematode

    Science.gov (United States)

    Gang, Spencer S.; Castelletto, Michelle L.

    2017-01-01

    Parasitic nematodes infect over 1 billion people worldwide and cause some of the most common neglected tropical diseases. Despite their prevalence, our understanding of the biology of parasitic nematodes has been limited by the lack of tools for genetic intervention. In particular, it has not yet been possible to generate targeted gene disruptions and mutant phenotypes in any parasitic nematode. Here, we report the development of a method for introducing CRISPR-Cas9-mediated gene disruptions in the human-parasitic threadworm Strongyloides stercoralis. We disrupted the S. stercoralis twitchin gene unc-22, resulting in nematodes with severe motility defects. Ss-unc-22 mutations were resolved by homology-directed repair when a repair template was provided. Omission of a repair template resulted in deletions at the target locus. Ss-unc-22 mutations were heritable; we passed Ss-unc-22 mutants through a host and successfully recovered mutant progeny. Using a similar approach, we also disrupted the unc-22 gene of the rat-parasitic nematode Strongyloides ratti. Our results demonstrate the applicability of CRISPR-Cas9 to parasitic nematodes, and thereby enable future studies of gene function in these medically relevant but previously genetically intractable parasites. PMID:29016680

  16. Helminth parasites alter protection against Plasmodium infection.

    Science.gov (United States)

    Salazar-Castañon, Víctor H; Legorreta-Herrera, Martha; Rodriguez-Sosa, Miriam

    2014-01-01

    More than one-third of the world's population is infected with one or more helminthic parasites. Helminth infections are prevalent throughout tropical and subtropical regions where malaria pathogens are transmitted. Malaria is the most widespread and deadliest parasitic disease. The severity of the disease is strongly related to parasite density and the host's immune responses. Furthermore, coinfections between both parasites occur frequently. However, little is known regarding how concomitant infection with helminths and Plasmodium affects the host's immune response. Helminthic infections are frequently massive, chronic, and strong inductors of a Th2-type response. This implies that infection by such parasites could alter the host's susceptibility to subsequent infections by Plasmodium. There are a number of reports on the interactions between helminths and Plasmodium; in some, the burden of Plasmodium parasites increased, but others reported a reduction in the parasite. This review focuses on explaining many of these discrepancies regarding helminth-Plasmodium coinfections in terms of the effects that helminths have on the immune system. In particular, it focuses on helminth-induced immunosuppression and the effects of cytokines controlling polarization toward the Th1 or Th2 arms of the immune response.

  17. The polymerase chain reaction can reveal the occurrence of naturally mixed infections with Leishmania parasites

    DEFF Research Database (Denmark)

    Ibrahim, M E; Smyth, A J; Ali, M H

    1994-01-01

    On isolation and characterization of Leishmania parasites from Sudanese patients with visceral leishmaniasis (VL), four cases of mixed infections were found. Three of those cases were from the Eastern Sudan focus of VL. In one case the patient was found to be concomitantly infected with Leishmania...

  18. Host Mitochondrial Association Evolved in the Human Parasite Toxoplasma gondii via Neofunctionalization of a Gene Duplicate.

    Science.gov (United States)

    Adomako-Ankomah, Yaw; English, Elizabeth D; Danielson, Jeffrey J; Pernas, Lena F; Parker, Michelle L; Boulanger, Martin J; Dubey, Jitender P; Boyle, Jon P

    2016-05-01

    In Toxoplasma gondii, an intracellular parasite of humans and other animals, host mitochondrial association (HMA) is driven by a gene family that encodes multiple mitochondrial association factor 1 (MAF1) proteins. However, the importance of MAF1 gene duplication in the evolution of HMA is not understood, nor is the impact of HMA on parasite biology. Here we used within- and between-species comparative analysis to determine that the MAF1 locus is duplicated in T. gondii and its nearest extant relative Hammondia hammondi, but not another close relative, Neospora caninum Using cross-species complementation, we determined that the MAF1 locus harbors multiple distinct paralogs that differ in their ability to mediate HMA, and that only T. gondii and H. hammondi harbor HMA(+) paralogs. Additionally, we found that exogenous expression of an HMA(+) paralog in T. gondii strains that do not normally exhibit HMA provides a competitive advantage over their wild-type counterparts during a mouse infection. These data indicate that HMA likely evolved by neofunctionalization of a duplicate MAF1 copy in the common ancestor of T. gondii and H. hammondi, and that the neofunctionalized gene duplicate is selectively advantageous. Copyright © 2016 by the Genetics Society of America.

  19. Monitoring changes in the intracellular calcium concentration and synaptic efficacy in the mollusc Aplysia.

    Science.gov (United States)

    Ludwar, Bjoern Ch; Evans, Colin G; Cropper, Elizabeth C

    2012-07-15

    It has been suggested that changes in intracellular calcium mediate the induction of a number of important forms of synaptic plasticity (e.g., homosynaptic facilitation). These hypotheses can be tested by simultaneously monitoring changes in intracellular calcium and alterations in synaptic efficacy. We demonstrate how this can be accomplished by combining calcium imaging with intracellular recording techniques. Our experiments are conducted in a buccal ganglion of the mollusc Aplysia californica. This preparation has a number of experimentally advantageous features: Ganglia can be easily removed from Aplysia and experiments use adult neurons that make normal synaptic connections and have a normal ion channel distribution. Due to the low metabolic rate of the animal and the relatively low temperatures (14-16 °C) that are natural for Aplysia, preparations are stable for long periods of time. To detect changes in intracellular free calcium we will use the cell impermeant version of Calcium Orange which is easily 'loaded' into a neuron via iontophoresis. When this long wavelength fluorescent dye binds to calcium, fluorescence intensity increases. Calcium Orange has fast kinetic properties and, unlike ratiometric dyes (e.g., Fura 2), requires no filter wheel for imaging. It is fairly photo stable and less phototoxic than other dyes (e.g., fluo-3). Like all non-ratiometric dyes, Calcium Orange indicates relative changes in calcium concentration. But, because it is not possible to account for changes in dye concentration due to loading and diffusion, it can not be calibrated to provide absolute calcium concentrations. An upright, fixed stage, compound microscope was used to image neurons with a CCD camera capable of recording around 30 frames per second. In Aplysia this temporal resolution is more than adequate to detect even a single spike induced alteration in the intracellular calcium concentration. Sharp electrodes are simultaneously used to induce and record

  20. Predicting what helminth parasites a fish species should have using Parasite Co-occurrence Modeler (PaCo)

    Science.gov (United States)

    Strona, Giovanni; Lafferty, Kevin D.

    2013-01-01

    Fish pathologists are often interested in which parasites would likely be present in a particular host. Parasite Co-occurrence Modeler (PaCo) is a tool for identifying a list of parasites known from fish species that are similar ecologically, phylogenetically, and geographically to the host of interest. PaCo uses data from FishBase (maximum length, growth rate, life span, age at maturity, trophic level, phylogeny, and biogeography) to estimate compatibility between a target host and parasite species–genera from the major helminth groups (Acanthocephala, Cestoda, Monogenea, Nematoda, and Trematoda). Users can include any combination of host attributes in a model. These unique features make PaCo an innovative tool for addressing both theoretical and applied questions in parasitology. In addition to predicting the occurrence of parasites, PaCo can be used to investigate how host characteristics shape parasite communities. To test the performance of the PaCo algorithm, we created 12,400 parasite lists by applying any possible combination of model parameters (248) to 50 fish hosts. We then measured the relative importance of each parameter by assessing their frequency in the best models for each host. Host phylogeny and host geography were identified as the most important factors, with both present in 88% of the best models. Habitat (64%) was identified in more than half of the best models. Among ecological parameters, trophic level (41%) was the most relevant while life span (34%), growth rate (32%), maximum length (28%), and age at maturity (20%) were less commonly linked to best models. PaCo is free to use at www.purl.oclc.org/fishpest.

  1. Sex as a strategy against rapidly evolving parasites.

    Science.gov (United States)

    Auld, Stuart K J R; Tinkler, Shona K; Tinsley, Matthew C

    2016-12-28

    Why is sex ubiquitous when asexual reproduction is much less costly? Sex disrupts coadapted gene complexes; it also causes costs associated with mate finding and the production of males who do not themselves bear offspring. Theory predicts parasites select for host sex, because genetically variable offspring can escape infection from parasites adapted to infect the previous generations. We examine this using a facultative sexual crustacean, Daphnia magna, and its sterilizing bacterial parasite, Pasteuria ramosa We obtained sexually and asexually produced offspring from wild-caught hosts and exposed them to contemporary parasites or parasites isolated from the same population one year later. We found rapid parasite adaptation to replicate within asexual but not sexual offspring. Moreover, sexually produced offspring were twice as resistant to infection as asexuals when exposed to parasites that had coevolved alongside their parents (i.e. the year two parasite). This fulfils the requirement that the benefits of sex must be both large and rapid for sex to be favoured by selection. © 2016 The Author(s).

  2. Epithelial Cell Gene Expression Induced by Intracellular Staphylococcus aureus

    Directory of Open Access Journals (Sweden)

    Xianglu Li

    2009-01-01

    Full Text Available HEp-2 cell monolayers were cocultured with intracellular Staphylococcus aureus, and changes in gene expression were profiled using DNA microarrays. Intracellular S. aureus affected genes involved in cellular stress responses, signal transduction, inflammation, apoptosis, fibrosis, and cholesterol biosynthesis. Transcription of stress response and signal transduction-related genes including atf3, sgk, map2k1, map2k3, arhb, and arhe was increased. In addition, elevated transcription of proinflammatory genes was observed for tnfa, il1b, il6, il8, cxcl1, ccl20, cox2, and pai1. Genes involved in proapoptosis and fibrosis were also affected at transcriptional level by intracellular S. aureus. Notably, intracellular S. aureus induced strong transcriptional down-regulation of several cholesterol biosynthesis genes. These results suggest that epithelial cells respond to intracellular S. aureus by inducing genes affecting immunity and in repairing damage caused by the organism, and are consistent with the possibility that the organism exploits an intracellular environment to subvert host immunity and promote colonization.

  3. Parasites as biological tags of marine, freshwater and anadromous fishes in North America from the Tropics to the Arctic.

    Science.gov (United States)

    Marcogliese, David J; Jacobson, Kym C

    2015-01-01

    Parasites have been considered as natural biological tags of marine fish populations in North America for almost 75 years. In the Northwest Atlantic, the most studied species include Atlantic cod (Gadus morhua), Atlantic herring (Clupea harengus) and the redfishes (Sebastes spp.). In the North Pacific, research has centred primarily on salmonids (Oncorhynchus spp.). However, parasites have been applied as tags for numerous other pelagic and demersal species on both the Atlantic and Pacific coasts. Relatively few studies have been undertaken in the Arctic, and these were designed to discriminate anadromous and resident salmonids (Salvelinus spp.). Although rarely applied in fresh waters, parasites have been used to delineate certain fish stocks within the Great Lakes-St Lawrence River basin. Anisakid nematodes and the copepod Sphyrion lumpi frequently prove useful indicators in the Northwest Atlantic, while myxozoan parasites prove very effective on the coast and open seas of the Pacific Ocean. Relative differences in the ability of parasites to discriminate between fish stocks on the Pacific and Atlantic coasts may be due to oceanographic and bathymetric differences between regions. Molecular techniques used to differentiate populations and species of parasites show promise in future applications in the field.

  4. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    Science.gov (United States)

    Coppola, S.; Pozzi, D.; Candeloro De Sanctis, S.; Digman, M. A.; Gratton, E.; Caracciolo, G.

    2013-03-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP-DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol-DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm2 s-1). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm2 s-1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes.

  5. Quantitative measurement of intracellular transport of nanocarriers by spatio-temporal image correlation spectroscopy

    International Nuclear Information System (INIS)

    Coppola, S; Pozzi, D; De Sanctis, S Candeloro; Caracciolo, G; Digman, M A; Gratton, E

    2013-01-01

    Spatio-temporal image correlation spectroscopy (STICS) is a powerful technique for assessing the nature of particle motion in complex systems although it has been rarely used to investigate the intracellular dynamics of nanocarriers so far. Here we introduce a method for characterizing the mode of motion of nanocarriers and for quantifying their transport parameters on different length scales from single-cell to subcellular level. Using this strategy we were able to study the mechanisms responsible for the intracellular transport of DOTAP–DOPC/DNA (DOTAP: 1,2-dioleoyl-3-trimethylammonium-propane; DOPC: dioleoylphosphocholine) and DC-Chol–DOPE/DNA (DC-Chol: 3β-[N-(N,N-dimethylaminoethane)-carbamoyl] cholesterol; DOPE: dioleoylphosphatidylethanolamine) lipoplexes in CHO-K1 (CHO: Chinese hamster ovary) live cells. Measurement of both diffusion coefficients and velocity vectors (magnitude and direction) averaged over regions of the cell revealed the presence of distinct modes of motion. Lipoplexes diffused slowly on the cell surface (diffusion coefficient: D ≈ 0.003 μm 2 s −1 ). In the cytosol, the lipoplexes’ motion was characterized by active transport with average velocity v ≈ 0.03 μm 2 s −1 and random motion. The method permitted us to generate an intracellular transport map showing several regions of concerted motion of lipoplexes. (paper)

  6. From Fossil Parasitoids to Vectors: Insects as Parasites and Hosts.

    Science.gov (United States)

    Nagler, Christina; Haug, Joachim T

    2015-01-01

    Within Metazoa, it has been proposed that as many as two-thirds of all species are parasitic. This propensity towards parasitism is also reflected within insects, where several lineages independently evolved a parasitic lifestyle. Parasitic behaviour ranges from parasitic habits in the strict sense, but also includes parasitoid, phoretic or kleptoparasitic behaviour. Numerous insects are also the host for other parasitic insects or metazoans. Insects can also serve as vectors for numerous metazoan, protistan, bacterial and viral diseases. The fossil record can report this behaviour with direct (parasite associated with its host) or indirect evidence (insect with parasitic larva, isolated parasitic insect, pathological changes of host). The high abundance of parasitism in the fossil record of insects can reveal important aspects of parasitic lifestyles in various evolutionary lineages. For a comprehensive view on fossil parasitic insects, we discuss here different aspects, including phylogenetic systematics, functional morphology and a direct comparison of fossil and extant species. Copyright © 2015 Elsevier Ltd. All rights reserved.

  7. Pathoecology of Chiribaya parasitism

    Directory of Open Access Journals (Sweden)

    Martinson Elizabeth

    2003-01-01

    Full Text Available The excavations of Chiribaya culture sites in the Osmore drainage of southern Peru focused on the recovery of information about prehistoric disease, including parasitism. The archaeologists excavated human, dog, guinea pig, and llama mummies. These mummies were analyzed for internal and external parasites. The results of the analysis and reconstruction of prehistoric life from the excavations allows us to interpret the pathoecology of the Chiribaya culture.

  8. Parasites and parasite management practices of organic and conventional dairy herds in Minnesota.

    Science.gov (United States)

    Sorge, U S; Moon, R D; Stromberg, B E; Schroth, S L; Michels, L; Wolff, L J; Kelton, D F; Heins, B J

    2015-05-01

    The objective of this study was to describe the prevalence and practices used to manage internal helminth parasites and external arthropod parasites on organic and conventional dairy herds in Minnesota. All organic (ORG) dairy herds in Minnesota (n=114) and a convenience sample of conventional herds were invited to participate in the study. Thirty-five ORG herds and 28 conventional herds were visited once in summer and fall of 2012. Conventional dairy herds were split into small conventional (SC,conventional herds (MC, ≥200 cows) so that SC herds were comparable in size to the ORG herds. Dairy managers were surveyed to assess their farm management practices and perceptions about parasites, hygiene scores were recorded for adult stock, and fecal samples were collected from a nominal 20 breeding-age heifers to characterize abundance of internal parasites. Nonparametric tests were used to compare fecal egg counts per gram (FEC) among farms grouped by management systems and practices. Organic farms had more designated pasture and were more likely to use rotational grazing compared with conventional farms, but the stocking densities of animals on pasture were similar among farm types. The overall FEC were very low, and only a few individual ORG heifers had FEC >500 eggs/gram. Samples from heifers on ORG farms had significantly more strongyle-type eggs than those on SC and MC farms (ORG: 6.6±2.1; SC: 0.5±0.3; MC: 0.8±0.7), but egg counts of other types of gastrointestinal parasites did not differ significantly among the 3 herd groups. Fly control measures were applied mainly to milking cows and preweaned calves and were used on 88.6% of ORG herds, 60.0% of SC herds, and 91.7% of MC herds. Approximately half of the producers reported having seen skin conditions suggestive of lice or tail mange in their cattle during the previous winter (ORG: 48.6%, SC: 57.1%, MC: 53.9%). Although most conventional producers reported treating these skin conditions, most organic

  9. Intracellular recording from a spider vibration receptor.

    Science.gov (United States)

    Gingl, Ewald; Burger, Anna-M; Barth, Friedrich G

    2006-05-01

    The present study introduces a new preparation of a spider vibration receptor that allows intracellular recording of responses to natural mechanical or electrical stimulation of the associated mechanoreceptor cells. The spider vibration receptor is a lyriform slit sense organ made up of 21 cuticular slits located on the distal end of the metatarsus of each walking leg. The organ is stimulated when the tarsus receives substrate vibrations, which it transmits to the organ's cuticular structures, reducing the displacement to about one tenth due to geometrical reasons. Current clamp recording was used to record action potentials generated by electrical or mechanical stimuli. Square pulse stimulation identified two groups of sensory cells, the first being single-spike cells which generated only one or two action potentials and the second being multi-spike cells which produced bursts of action potentials. When the more natural mechanical sinusoidal stimulation was applied, differences in adaptation rate between the two cell types remained. In agreement with prior extracellular recordings, both cell types showed a decrease in the threshold tarsus deflection with increasing stimulus frequency. Off-responses to mechanical stimuli have also been seen in the metatarsal organ for the first time.

  10. Transient light-induced intracellular oxidation revealed by redox biosensor

    Energy Technology Data Exchange (ETDEWEB)

    Kolossov, Vladimir L., E-mail: viadimer@illinois.edu [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Beaudoin, Jessica N. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Hanafin, William P. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); DiLiberto, Stephen J. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Kenis, Paul J.A. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Chemical and Biomolecular Engineering, University of Illinois at Urbana-Champaign, 600 S. Mathews Avenue, Urbana, IL 61801 (United States); Rex Gaskins, H. [Institute for Genomic Biology, University of Illinois at Urbana-Champaign, 1206 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Animal Sciences, University of Illinois at Urbana-Champaign, 1207 W. Gregory Drive, Urbana, IL 61801 (United States); Department of Pathobiology, University of Illinois at Urbana-Champaign, 2001 S. Lincoln Avenue, Urbana, IL 61801 (United States); Division of Nutritional Sciences, University of Illinois at Urbana-Champaign, 905 S. Goodwin Avenue, Urbana, IL 61801 (United States)

    2013-10-04

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition.

  11. Transient light-induced intracellular oxidation revealed by redox biosensor

    International Nuclear Information System (INIS)

    Kolossov, Vladimir L.; Beaudoin, Jessica N.; Hanafin, William P.; DiLiberto, Stephen J.; Kenis, Paul J.A.; Rex Gaskins, H.

    2013-01-01

    Highlights: •Time-resolved live cell imaging revealed light-induced oxidation. •Only the roGFP probe fused with glutaredoxin reveals photooxidation. •The transient oxidation is rapidly reduced by the cytosolic antioxidant system. •Intracellular photooxidation is media-dependent. •Oxidation is triggered exclusively by exposure to short wavelength excitation. -- Abstract: We have implemented a ratiometric, genetically encoded redox-sensitive green fluorescent protein fused to human glutaredoxin (Grx1-roGFP2) to monitor real time intracellular glutathione redox potentials of mammalian cells. This probe enabled detection of media-dependent oxidation of the cytosol triggered by short wavelength excitation. The transient nature of light-induced oxidation was revealed by time-lapse live cell imaging when time intervals of less than 30 s were implemented. In contrast, transient ROS generation was not observed with the parental roGFP2 probe without Grx1, which exhibits slower thiol-disulfide exchange. These data demonstrate that the enhanced sensitivity of the Grx1-roGFP2 fusion protein enables the detection of short-lived ROS in living cells. The superior sensitivity of Grx1-roGFP2, however, also enhances responsiveness to environmental cues introducing a greater likelihood of false positive results during image acquisition

  12. Expression of parasite genetic variation changes over the course of infection: implications of within-host dynamics for the evolution of virulence.

    Science.gov (United States)

    Clerc, Melanie; Ebert, Dieter; Hall, Matthew D

    2015-04-07

    How infectious disease agents interact with their host changes during the course of infection and can alter the expression of disease-related traits. Yet by measuring parasite life-history traits at one or few moments during infection, studies have overlooked the impact of variable parasite growth trajectories on disease evolution. Here we show that infection-age-specific estimates of host and parasite fitness components can reveal new insight into the evolution of parasites. We do so by characterizing the within-host dynamics over an entire infection period for five genotypes of the castrating bacterial parasite Pasteuria ramosa infecting the crustacean Daphnia magna. Our results reveal that genetic variation for parasite-induced gigantism, host castration and parasite spore loads increases with the age of infection. Driving these patterns appears to be variation in how well the parasite maintains control of host reproduction late in the infection process. We discuss the evolutionary consequences of this finding with regard to natural selection acting on different ages of infection and the mechanism underlying the maintenance of castration efficiency. Our results highlight how elucidating within-host dynamics can shed light on the selective forces that shape infection strategies and the evolution of virulence. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  13. Of poisons and parasites-the defensive role of tetrodotoxin against infections in newts.

    Science.gov (United States)

    Johnson, Pieter T J; Calhoun, Dana M; Stokes, Amber N; Susbilla, Calvin B; McDevitt-Galles, Travis; Briggs, Cheryl J; Hoverman, Jason T; Tkach, Vasyl V; de Roode, Jacobus C

    2018-02-24

    Classical research on animal toxicity has focused on the role of toxins in protection against predators, but recent studies suggest these same compounds can offer a powerful defense against parasites and infectious diseases. Newts in the genus Taricha are brightly coloured and contain the potent neurotoxin, tetrodotoxin (TTX), which is hypothesized to have evolved as a defense against vertebrate predators such as garter snakes. However, newt populations often vary dramatically in toxicity, which is only partially explained by predation pressure. The primary aim of this study was to evaluate the relationships between TTX concentration and infection by parasites. By systematically assessing micro- and macroparasite infections among 345 adult newts (sympatric populations of Taricha granulosa and T. torosa), we detected 18 unique taxa of helminths, fungi, viruses and protozoans. For both newt species, per-host concentrations of TTX, which varied from undetectable to >60 μg/cm 2 skin, negatively predicted overall parasite richness as well as the likelihood of infection by the chytrid fungus, Batrachochytrium dendrobatidis, and ranavirus. No such effect was found on infection load among infected hosts. Despite commonly occurring at the same wetlands, T. torosa supported higher parasite richness and average infection load than T. granulosa. Host body size and sex (females > males) tended to positively predict infection levels in both species. For hosts in which we quantified leucocyte profiles, total white blood cell count correlated positively with both parasite richness and total infection load. By coupling data on host toxicity and infection by a broad range of micro- and macroparasites, these results suggest that-alongside its effects on predators-tetrodotoxin may help protect newts against parasitic infections, highlighting the importance of integrative research on animal chemistry, immunological defenses and natural enemy ecology. © 2018 The Authors. Journal

  14. Molecular mechanisms of nematode-nematophagous microbe interactions: basis for biological control of plant-parasitic nematodes.

    Science.gov (United States)

    Li, Juan; Zou, Chenggang; Xu, Jianping; Ji, Xinglai; Niu, Xuemei; Yang, Jinkui; Huang, Xiaowei; Zhang, Ke-Qin

    2015-01-01

    Plant-parasitic nematodes cause significant damage to a broad range of vegetables and agricultural crops throughout the world. As the natural enemies of nematodes, nematophagous microorganisms offer a promising approach to control the nematode pests. Some of these microorganisms produce traps to capture and kill the worms from the outside. Others act as internal parasites to produce toxins and virulence factors to kill the nematodes from within. Understanding the molecular basis of microbe-nematode interactions provides crucial insights for developing effective biological control agents against plant-parasitic nematodes. Here, we review recent advances in our understanding of the interactions between nematodes and nematophagous microorganisms, with a focus on the molecular mechanisms by which nematophagous microorganisms infect nematodes and on the nematode defense against pathogenic attacks. We conclude by discussing several key areas for future research and development, including potential approaches to apply our recent understandings to develop effective biocontrol strategies.

  15. Intracellular localization and dynamics of Hypericin loaded PLLA nanocarriers by image correlation spectroscopy

    OpenAIRE

    Penjweini, Rozhin; Deville, Sarah; D'Olieslaeger, Lien; Berden, Mandy; Ameloot, Marcel; Ethirajan, Anitha

    2015-01-01

    The study of cell-nanoparticle interactions is an important aspect for understanding drug delivery using nanocarriers. In this regard, advances in fluorescence based microscopy are useful for the investigation of temporal and spatial behavior of nanoparticles (NPs) within the intracellular environment. In this work, we focus on the delivery of the naturally-occurring hydrophobic photosensitizer Hypericin in human lung carcinoma A549 cells by using biodegradable poly L-lactic acid NPs. For the...

  16. Host age modulates within-host parasite competition.

    Science.gov (United States)

    Izhar, Rony; Routtu, Jarkko; Ben-Ami, Frida

    2015-05-01

    In many host populations, one of the most striking differences among hosts is their age. While parasite prevalence differences in relation to host age are well known, little is known on how host age impacts ecological and evolutionary dynamics of diseases. Using two clones of the water flea Daphnia magna and two clones of its bacterial parasite Pasteuria ramosa, we examined how host age at exposure influences within-host parasite competition and virulence. We found that multiply-exposed hosts were more susceptible to infection and suffered higher mortality than singly-exposed hosts. Hosts oldest at exposure were least often infected and vice versa. Furthermore, we found that in young multiply-exposed hosts competition was weak, allowing coexistence and transmission of both parasite clones, whereas in older multiply-exposed hosts competitive exclusion was observed. Thus, age-dependent parasite exposure and host demography (age structure) could together play an important role in mediating parasite evolution. At the individual level, our results demonstrate a previously unnoticed interaction of the host's immune system with host age, suggesting that the specificity of immune function changes as hosts mature. Therefore, evolutionary models of parasite virulence might benefit from incorporating age-dependent epidemiological parameters. © 2015 The Author(s) Published by the Royal Society. All rights reserved.

  17. Who benefits from reduced reproduction in parasitized hosts? An experimental test using the Pasteuria ramosa-Daphnia magna system.

    Science.gov (United States)

    Mageroy, Jon H; Grepperud, Eldfrid J; Jensen, Knut Helge

    2011-12-01

    We investigated whether parasites or hosts benefit from reduced reproduction in infected hosts. When parasites castrate their hosts, the regain of host reproduction is necessary for castration to be a host adaptation. When infecting Daphnia magna with Pasteuria ramosa, in a lake water based medium, 49 2% of the castrated females regained reproduction. We investigated the relationship between castration level, and parasite and host fitness proxies to determine the adaptive value of host castration. Hosts which regained reproduction contained less spores and had a higher lifetime reproduction than permanently castrated hosts. We also found a negative correlation between parasite and host lifetime reproduction. For hosts which regained reproduction we found no optimal level of castration associated with lifetime reproduction. These results support the view that host castration only is adaptive to the parasite in this system. In addition, we suggest that permanent castration might not be the norm under natural conditions in this system. Finally, we argue that a reduction in host reproduction is more likely to evolve as a property favouring parasites rather than hosts. To our knowledge this is the only experimental study to investigate the adaptive value of reduced host reproduction when castrated hosts can regain reproduction.

  18. Internal parasites of reptiles.

    Science.gov (United States)

    Raś-Noryńska, Małgorzata; Sokół, Rajmund

    2015-01-01

    Nowadays a growing number of exotic reptiles are kept as pets. The aim of this study was to determine the species of parasites found in reptile patients of veterinary practices in Poland. Fecal samples obtained from 76 lizards, 15 turtles and 10 snakes were examined by flotation method and direct smear stained with Lugol's iodine. In 63 samples (62.4%) the presence of parasite eggs and oocysts was revealed. Oocysts of Isospora spp. (from 33% to 100% of the samples, depending on the reptilian species) and Oxyurids eggs (10% to 75%) were predominant. In addition, isolated Eimeria spp. oocysts and Giardia intestinalis cysts were found, as well as Strongylus spp. and Hymenolepis spp. eggs. Pet reptiles are often infected with parasites, some of which are potentially dangerous to humans. A routine parasitological examination should be done in such animals.

  19. A life cycle database for parasitic acanthocephalans, cestodes, and nematodes

    Science.gov (United States)

    Benesh, Daniel P.; Lafferty, Kevin D.; Kuris, Armand

    2017-01-01

    Parasitologists have worked out many complex life cycles over the last ~150 years, yet there have been few efforts to synthesize this information to facilitate comparisons among taxa. Most existing host-parasite databases focus on particular host taxa, do not distinguish final from intermediate hosts, and lack parasite life-history information. We summarized the known life cycles of trophically transmitted parasitic acanthocephalans, cestodes, and nematodes. For 973 parasite species, we gathered information from the literature on the hosts infected at each stage of the parasite life cycle (8510 host-parasite species associations), what parasite stage is in each host, and whether parasites need to infect certain hosts to complete the life cycle. We also collected life-history data for these parasites at each life cycle stage, including 2313 development time measurements and 7660 body size measurements. The result is the most comprehensive data summary available for these parasite taxa. In addition to identifying gaps in our knowledge of parasite life cycles, these data can be used to test hypotheses about life cycle evolution, host specificity, parasite life-history strategies, and the roles of parasites in food webs.

  20. Overview on the effects of parasites on fish health

    Science.gov (United States)

    Iwanowicz, D.D.; Cipriano, R.C.; Bruckner, A.W.; Shchelkunov, I.S.

    2011-01-01

    It is believed by many that parasites are only as important as the fish they infect. Parasites are ubiquitous, primarily surviving in a dynamic equilibrium with their host(s) and they are often overlooked in fish health assessments. Changes in the environment, both anthropogenic and environmental, can alter the parasite/host equilibrium and cause disease or mortality in fish. Therefore it is imperative that we have knowledge of both parasites and parasitic communities within a given population. When fish kills occur, it can often be associated with changes in parasite density and community composition. Often the damage associated with these fish is relative to the rate of infestation with the parasite; a fish that is lightly infected will show few signs of the parasite, while a heavily infected fish may become physiologically impaired and even die. Parasites can cause mechanical damage (fusion of gill lamellae, tissue replacement), physiological damage (cell proliferation, immunomodulation, detrimental behavioral responses, altered growth) and reproductive damage. As parasitism is the most common lifestyle on the planet, understanding its role in the environment may help researchers understand changes in a given fish population or stream ecosystem.

  1. Immunodiagnosis of parasitic infections using nuclear techniques

    International Nuclear Information System (INIS)

    1985-07-01

    This report documents the recommendations of the ''Advisory Group on Immunodiagnosis of Parasitic Infections Using Nuclear Techniques'' with a focus on malaria, schistosomiasis and filariasis. Radionuclide tracers are considered an important component of present and future immunological methods for the assessment of the host's humoral and cellular immunity to the parasite and the detection of parasite antigen(s) in human body fluids. The Advisory Group has concluded that there is a continuing need for the development and application of immunodiagnostic methods in parasitic diseases. This report concerns methods which are currently or potentially applicable to immunodiagnostic investigations in parasitic diseases. Reference is made, where appropriate, to recent developments in research which may lead to improvement and standardization of methods now available and the development of new methodology. Separate abstracts on various papers presented were prepared

  2. Coccidian intestinal parasites in the Priapulidae (Priapulida).

    Science.gov (United States)

    Saldarriaga, J F; Storch, V

    1997-01-01

    Four relatively uncommon members of the family Priapulidae (Priapulida) from very different parts of the world were examined to determine the presence of a parasitic coccidian in their midgut. The parasite was found in three of those priapulid species, Priapulopsis bicaudatus, P. australis, and Halicryptus higginsi, but not in the fourth one, Priapulus tuberculatospinosus. Using electron-microscopy techniques, we compared parasites of the different species with one another and with a parasite of Priapulus caudatus investigated by McLean in 1984. All of these parasites apparently belong to the same species and are likely to be Alveocystis intestinalis, a coccidian first described by Beltenev from P. caudatus and H. spinulosus. The present work greatly expands the geographical range of Alveocystis intestinalis and documents an uncommon case of low host specificity in eimeriid coccidians.

  3. Exploitation Strategies in Social Parasites of Fungus Growing Ants

    DEFF Research Database (Denmark)

    Clement, Janni Dolby

    One of the most remarkable and complex parasitic interactions is social parasitism, where a parasite exploits a complete society, rather than an individual organism. By integrating into a society the parasite gains protection against predators and diseases, and can redirect resources from the host...... to increase its own fitness. The host will use a sophisticated recognition system in order to accept nestmates and expel intruders from their societies. However this defence barrier can be overcome by parasites. Among the most specialized social parasites are the inquilines that exploit social insect colonies...... to this are Acromyrmex insinuator and Acromyrmex ameliae, parasites of fungus-growing ants. By still producing a worker caste both species offers a rare opportunity to study adaptive features in parasite worker behaviour. Furthermore can closely related inquiline-host combinations give us an insight in the trade...

  4. Imaging of parasitic diseases

    International Nuclear Information System (INIS)

    Haddad, Maurice C.

    2008-01-01

    This book provides an overview of the imaging findings of parasitic diseases using modern imaging equipment. The chapters consist of short descriptions of causative pathogens, epidemiology, modes of transmission, pathology, clinical manifestations, laboratory tests, and imaging findings, with illustrative examples of parasitic diseases that can affect various systems of the human body. Tables summarizing key diagnostic features and clinical data pertinent to diagnosis are also included. This book is intended for radiologists worldwide. (orig.)

  5. Imaging of parasitic diseases

    Energy Technology Data Exchange (ETDEWEB)

    Haddad, Maurice C. [American Univ. of Beirut Medical Center (Lebanon). Dept. of Diagnostic Radiology; Abd El Bagi, Mohamed E. [Riyadh Military Hospital (Saudi Arabia). Radiology and Imaging Dept. 920W; Tamraz, Jean C. (eds.) [CHU Hotel-Dieu de France, Beirut (Lebanon)

    2008-07-01

    This book provides an overview of the imaging findings of parasitic diseases using modern imaging equipment. The chapters consist of short descriptions of causative pathogens, epidemiology, modes of transmission, pathology, clinical manifestations, laboratory tests, and imaging findings, with illustrative examples of parasitic diseases that can affect various systems of the human body. Tables summarizing key diagnostic features and clinical data pertinent to diagnosis are also included. This book is intended for radiologists worldwide. (orig.)

  6. HYPERTHERMIA, INTRACELLULAR FREE CALCIUM AND CALCIUM IONOPHORES

    NARCIS (Netherlands)

    STEGE, GJJ; WIERENGA, PK; KAMPINGA, HH; KONINGS, AWT

    1993-01-01

    It is shown that heat-induced increase of intracellular calcium does not correlate with hyperthermic cell killing. Six different cell lines were investigated; in four (EAT, HeLa S3, L5178Y-R and L5178Y-S) heat treatments killing 90% of the cells did not affect the levels of intracellular free

  7. Effects of the vascular endothelial growth factor receptor-2 (VEGFR-2) inhibitor SU5416 on in vitro cultures of Plasmodium falciparum

    DEFF Research Database (Denmark)

    Hempel, Casper; Hoyer, Nils; Staalsø, Trine

    2014-01-01

    BACKGROUND: Vascular endothelial growth factor (VEGF) is taken up by parasitized red blood cells during malaria and stimulates intra-erythrocytic growth of Plasmodium falciparum in vitro. The cause and consequence of this uptake is not understood. METHODS: Plasmodium falciparum was cultured......, SU5416, dose-dependently inhibited growth. None of the treatments reduced intracellular VEGF levels. Thus, the anti-parasitic effect of SU5416 seemed independent of VEGF uptake. SU5416 reduced phosphorylated tyrosine in parasitized red blood cells. Similarly, the broad-spectrum tyrosine kinase...... in vitro. Parasite growth and intracellular VEGF levels were assessed using flow cytometry. Intracellular VEGF was visualized by fluorescence immunocytochemistry. Phosphorylated tyrosine was measured by western blotting. In vivo assessment of intra-erythrocytic VEGF was performed in Plasmodium berghei ANKA...

  8. Dynamic analysis of a parasite population model

    Science.gov (United States)

    Sibona, G. J.; Condat, C. A.

    2002-03-01

    We study the dynamics of a model that describes the competitive interaction between an invading species (a parasite) and its antibodies in an living being. This model was recently used to examine the dynamical competition between Tripanosoma cruzi and its antibodies during the acute phase of Chagas' disease. Depending on the antibody properties, the model yields three types of outcomes, corresponding, respectively, to healing, chronic disease, and host death. Here, we study the dynamics of the parasite-antibody interaction with the help of simulations, obtaining phase trajectories and phase diagrams for the system. We show that, under certain conditions, the size of the parasite inoculation can be crucial for the infection outcome and that a retardation in the stimulated production of an antibody species may result in the parasite gaining a definitive advantage. We also find a criterion for the relative sizes of the parameters that are required if parasite-generated decoys are indeed to help the invasion. Decoys may also induce a qualitatively different outcome: a limit cycle for the antibody-parasite population phase trajectories.

  9. Does the parasite-mediated selection drive the MHC class IIB diversity in wild populations of European chub (Squalius cephalus)?

    Science.gov (United States)

    Seifertová, Mária; Jarkovský, Jiří; Šimková, Andrea

    2016-04-01

    The genes of major histocompatibility complex (MHC) provide an excellent opportunity to study host-parasite relationships because they are expected to evolve in response to parasites and variation in parasite communities. In this study, we investigated the potential role of parasite-mediated selection acting on MHC class IIB (DAB) genes in European chub (Squalius cephalus) natural populations. We found significant differences between populations in metazoan parasites, neutral and adaptive genetic diversities. The analyses based on pairwise data revealed that populations with dissimilar MHC allelic profiles were geographically distant populations with significantly different diversity in microsatellites and a dissimilar composition of parasite communities. The results from the generalized estimating equations method (GEE) on the level of individuals revealed that metazoan parasite load in European chub was influenced by the diversity of DAB alleles as well as by the diversity of neutral genetic markers and host traits reflecting condition and immunocompetence. The multivariate co-inertia analysis showed specific associations between DAB alleles and parasite species. DAB1-like alleles were more involved in associations with ectoparasites, while DAB3-like alleles were positively associated with endoparasites which could suggest potential differences between DAB genes caused by different selection pressure. Our study revealed that parasite-mediated selection is not the only variable affecting MHC diversity in European chub; however, we strongly support the role of neutral processes as the main driver of DAB diversity across populations. In addition, our study contributes to the understanding of the evolution of MHC genes in wild living fish.

  10. Longitudinal study of parasite-induced mortality of a long-lived host: the importance of exposure to non-parasitic stressors.

    Science.gov (United States)

    Chin, Hilary M-H; Luong, Lien T; Shostak, Allen W

    2017-12-01

    Hosts face mortality from parasitic and environmental stressors, but interactions of parasitism with other stressors are not well understood, particularly for long-lived hosts. We monitored survival of flour beetles (Tribolium confusum) in a longitudinal design incorporating cestode (Hymenolepis diminuta) infection, starvation and exposure to the pesticide diatomaceous earth (DE). We found that cestode cysticercoids exhibit increasing morphological damage and decreasing ability to excyst over time, but were never eliminated from the host. In the presence of even mild environmental stressors, host lifespan was reduced sufficiently that extensive degradation of cysticercoids was never realized. Median host lifespan was 200 days in the absence of stressors, and 3-197 days with parasitism, starvation and/or DE. Early survival of parasitized hosts was higher relative to controls in the presence of intermediate concentrations of DE, but reduced under all other conditions tested. Parasitism increased host mortality in the presence of other stressors at times when parasitism alone did not cause mortality, consistent with an interpretation of synergy. Environmental stressors modified the parasite numbers needed to reveal intensity-dependent host mortality, but only rarely masked intensity dependence. The longitudinal approach produced observations that would have been overlooked or misinterpreted if survival had only been monitored at a single time point.

  11. Host and parasite life history interplay to yield divergent population genetic structures in two ectoparasites living on the same bat species.

    Science.gov (United States)

    van Schaik, J; Dekeukeleire, D; Kerth, G

    2015-05-01

    Host-parasite interactions are ubiquitous in nature. However, how parasite population genetic structure is shaped by the interaction between host and parasite life history remains understudied. Studies comparing multiple parasites infecting a single host can be used to investigate how different parasite life history traits interplay with host behaviour and life history. In this study, we used 10 newly developed microsatellite loci to investigate the genetic structure of a parasitic bat fly (Basilia nana). Its host, the Bechstein's bat (Myotis bechsteinii), has a social system and roosting behaviour that restrict opportunities for parasite transmission. We compared fly genetic structure to that of the host and another parasite, the wing-mite, Spinturnix bechsteini. We found little spatial or temporal genetic structure in B. nana, suggesting a large, stable population with frequent genetic exchange between fly populations from different bat colonies. This contrasts sharply with the genetic structure of the wing-mite, which is highly substructured between the same bat colonies as well as temporally unstable. Our results suggest that although host and parasite life history interact to yield similar transmission patterns in both parasite species, the level of gene flow and eventual spatiotemporal genetic stability is differentially affected. This can be explained by the differences in generation time and winter survival between the flies and wing-mites. Our study thus exemplifies that the population genetic structure of parasites on a single host can vary strongly as a result of how their individual life history characteristics interact with host behaviour and life history traits. © 2015 John Wiley & Sons Ltd.

  12. Diagnostic problems with parasitic and non-parasitic splenic cysts

    Directory of Open Access Journals (Sweden)

    Adas Gokhan

    2009-05-01

    Full Text Available Abstract Background The splenic cysts constitute a very rare clinical entity. They may occur secondary to trauma or even being more seldom due to parasitic infestations, mainly caused by ecchinocccus granulosus. Literature lacks a defined concencus including the treatment plans and follow up strategies, nor long term results of the patients. In the current study, we aimed to evaluate the diagnosis, management of patients with parasitic and non-parasitic splenic cysts together with their long term follow up progresses. Methods Twenty-four patients with splenic cysts have undergone surgery in our department over the last 9 years. Data from eighteen of the twenty-four patients were collected prospectively, while data from six were retrospectively collected. All patients were assessed in terms of age, gender, hospital stay, preoperative diagnosis, additional disease, serology, ultrasonography, computed tomography (CT, cyst recurrences and treatment. Results In this study, the majority of patients presented with abdominal discomfort and palpable swelling in the left hypochondrium. All patients were operated on electively. The patients included 14 female and 10 male patients, with a mean age of 44.77 years (range 20–62. Splenic hydatid cysts were present in 16 patients, one of whom also had liver hydatid cysts (6.25%. Four other patients were operated on for a simple cyst (16% two patients for an epithelial cyst, and the last two for splenic lymphangioma. Of the 16 patients diagnosed as having splenic hydatit cysts, 11 (68.7% were correctly diagnosed. Only two of these patients were administered benzimidazole therapy pre-operatively because of the risk of multicystic disease The mean follow-up period was 64 months (6–108. There were no recurrences of splenic cysts. Conclusion Surgeons should keep in mind the possibility of a parasitic cyst when no definitive alternative diagnosis can be made. In the treatment of splenic hydatidosis, benzimidazole

  13. Characterization of Leptin Intracellular Trafficking

    Directory of Open Access Journals (Sweden)

    E Walum

    2009-12-01

    Full Text Available Leptin is produced by adipose tissue, and its concentration in plasma is related to the amount of fat in the body. The leptin receptor (OBR is a member of the class I cytokine receptor family and several different isoforms, produced by alternative mRNA splicing are found in many tissues, including the hypothalamus. The two predominant isoforms includes a long form (OBRl with an intracellular domain of 303 amino acids and a shorter form (OBRs with an intracellular domain of 34 amino acids. Since OBRl is mainly expressed in the hypotalamus, it has been suggested to be the main signalling form. The peripheral production of leptin by adipocyte tissue and its effects as a signal of satiety in the central nervous system imply that leptin gains access to regions of the brain regulating in energy balance by crossing the blood-brain barrier. In an attempt to characterize the intracellular transport of leptin, we have followed binding internalization and degradation of leptin in HEK293 cells. We have also monitored the intracellular transport pathway of fluorescent conjugated leptin in HEK293 cells. Phenylarsine oxide, a general inhibitor of endocytosis, as well as incubation at mild hypertonic conditions, prevented the uptake of leptin, confirming a receptor-mediated internalization process. When internalized, 125I-leptin was rapidly accumulated inside the cells and reached a maximum after 10 min. After 70 minutes about 40-50% of total counts in each time point were found in the medium as TCA-soluble material. Leptin sorting, at the level of early endosomes, did not seem to involve recycling endosomes, since FITC-leptin was sorted from Cy3- transferrin containing compartments at 37°C. At 45 minutes of continuos internalization, FITC-leptin appeared mainly accumulated in late endocytic structures colocalizing with internalized rhodamine coupled epidermial growth factor (EGF and the lysosomal marker protein lamp-1. The transport of leptin was also shown

  14. Effects of shortened host life span on the evolution of parasite life history and virulence in a microbial host-parasite system

    Directory of Open Access Journals (Sweden)

    Koella Jacob C

    2009-03-01

    Full Text Available Abstract Background Ecological factors play an important role in the evolution of parasite exploitation strategies. A common prediction is that, as shorter host life span reduces future opportunities of transmission, parasites compensate with an evolutionary shift towards earlier transmission. They may grow more rapidly within the host, have a shorter latency time and, consequently, be more virulent. Thus, increased extrinsic (i.e., not caused by the parasite host mortality leads to the evolution of more virulent parasites. To test these predictions, we performed a serial transfer experiment, using the protozoan Paramecium caudatum and its bacterial parasite Holospora undulata. We simulated variation in host life span by killing hosts after 11 (early killing or 14 (late killing days post inoculation; after killing, parasite transmission stages were collected and used for a new infection cycle. Results After 13 cycles (≈ 300 generations, parasites from the early-killing treatment were less infectious, but had shorter latency time and higher virulence than those from the late-killing treatment. Overall, shorter latency time was associated with higher parasite loads and thus presumably with more rapid within-host replication. Conclusion The analysis of the means of the two treatments is thus consistent with theory, and suggests that evolution is constrained by trade-offs between virulence, transmission and within-host growth. In contrast, we found little evidence for such trade-offs across parasite selection lines within treatments; thus, to some extent, these traits may evolve independently. This study illustrates how environmental variation (experienced by the host can lead to the evolution of distinct parasite strategies.

  15. Stochastic models of intracellular transport

    KAUST Repository

    Bressloff, Paul C.

    2013-01-09

    The interior of a living cell is a crowded, heterogenuous, fluctuating environment. Hence, a major challenge in modeling intracellular transport is to analyze stochastic processes within complex environments. Broadly speaking, there are two basic mechanisms for intracellular transport: passive diffusion and motor-driven active transport. Diffusive transport can be formulated in terms of the motion of an overdamped Brownian particle. On the other hand, active transport requires chemical energy, usually in the form of adenosine triphosphate hydrolysis, and can be direction specific, allowing biomolecules to be transported long distances; this is particularly important in neurons due to their complex geometry. In this review a wide range of analytical methods and models of intracellular transport is presented. In the case of diffusive transport, narrow escape problems, diffusion to a small target, confined and single-file diffusion, homogenization theory, and fractional diffusion are considered. In the case of active transport, Brownian ratchets, random walk models, exclusion processes, random intermittent search processes, quasi-steady-state reduction methods, and mean-field approximations are considered. Applications include receptor trafficking, axonal transport, membrane diffusion, nuclear transport, protein-DNA interactions, virus trafficking, and the self-organization of subcellular structures. © 2013 American Physical Society.

  16. Exploring Anti-Bacterial Compounds against Intracellular Legionella

    Science.gov (United States)

    Harrison, Christopher F.; Kicka, Sébastien; Trofimov, Valentin; Berschl, Kathrin; Ouertatani-Sakouhi, Hajer; Ackermann, Nikolaus; Hedberg, Christian; Cosson, Pierre; Soldati, Thierry; Hilbi, Hubert

    2013-01-01

    Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an ‘accidental’ human pathogen and cause a severe pneumonia known as Legionnaires’ disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoeba castellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target. PMID:24058631

  17. Exploring anti-bacterial compounds against intracellular Legionella.

    Directory of Open Access Journals (Sweden)

    Christopher F Harrison

    Full Text Available Legionella pneumophila is a ubiquitous fresh-water bacterium which reproduces within its erstwhile predators, environmental amoeba, by subverting the normal pathway of phagocytosis and degradation. The molecular mechanisms which confer resistance to amoeba are apparently conserved and also allow replication within macrophages. Thus, L. pneumophila can act as an 'accidental' human pathogen and cause a severe pneumonia known as Legionnaires' disease. The intracellular localisation of L. pneumophila protects it from some antibiotics, and this fact must be taken into account to develop new anti-bacterial compounds. In addition, the intracellular lifestyle of L. pneumophila may render the bacteria susceptible to compounds diminishing bacterial virulence and decreasing intracellular survival and replication of this pathogen. The development of a single infection cycle intracellular replication assay using GFP-producing L. pneumophila and Acanthamoebacastellanii amoeba is reported here. This fluorescence-based assay allows for continuous monitoring of intracellular replication rates, revealing the effect of bacterial gene deletions or drug treatment. To examine how perturbations of the host cell affect L. pneumophila replication, several known host-targeting compounds were tested, including modulators of cytoskeletal dynamics, vesicle scission and Ras GTPase localisation. Our results reveal a hitherto unrealized potential antibiotic property of the β-lactone-based Ras depalmitoylation inhibitor palmostatin M, but not the closely related inhibitor palmostatin B. Further characterisation indicated that this compound caused specific growth inhibition of Legionella and Mycobacterium species, suggesting that it may act on a common bacterial target.

  18. Serotonin Signaling in Schistosoma mansoni: A Serotonin–Activated G Protein-Coupled Receptor Controls Parasite Movement

    Science.gov (United States)

    Rashid, Mohammed; Ribeiro, Paula

    2014-01-01

    Serotonin is an important neuroactive substance in all the parasitic helminths. In Schistosoma mansoni, serotonin is strongly myoexcitatory; it potentiates contraction of the body wall muscles and stimulates motor activity. This is considered to be a critical mechanism of motor control in the parasite, but the mode of action of serotonin is poorly understood. Here we provide the first molecular evidence of a functional serotonin receptor (Sm5HTR) in S. mansoni. The schistosome receptor belongs to the G protein-coupled receptor (GPCR) superfamily and is distantly related to serotonergic type 7 (5HT7) receptors from other species. Functional expression studies in transfected HEK 293 cells showed that Sm5HTR is a specific serotonin receptor and it signals through an increase in intracellular cAMP, consistent with a 5HT7 signaling mechanism. Immunolocalization studies with a specific anti-Sm5HTR antibody revealed that the receptor is abundantly distributed in the worm's nervous system, including the cerebral ganglia and main nerve cords of the central nervous system and the peripheral innervation of the body wall muscles and tegument. RNA interference (RNAi) was performed both in schistosomulae and adult worms to test whether the receptor is required for parasite motility. The RNAi-suppressed adults and larvae were markedly hypoactive compared to the corresponding controls and they were also resistant to exogenous serotonin treatment. These results show that Sm5HTR is at least one of the receptors responsible for the motor effects of serotonin in S. mansoni. The fact that Sm5HTR is expressed in nerve tissue further suggests that serotonin stimulates movement via this receptor by modulating neuronal output to the musculature. Together, the evidence identifies Sm5HTR as an important neuronal protein and a key component of the motor control apparatus in S. mansoni. PMID:24453972

  19. Heritable Variation in Quinone-Induced Haustorium Development in the Parasitic Plant Triphysaria1

    Science.gov (United States)

    Jamison, Denneal S.; Yoder, John I.

    2001-01-01

    We are using the facultative hemiparasite, Triphysaria, as a model for studying host-parasite signaling in the Scrophulariaceae. Parasitic members of this family form subterranean connections, or haustoria, on neighboring host roots to access host water and nutrients. These parasitic organs develop in response to haustorial-inducing factors contained in host root exudates. A well-characterized inducing factor, 2, 6-dimethoxy-p-benzoquinone (DMBQ), can be used to trigger in vitro haustorium formation in the roots of Triphysaria. We have assayed three species, Triphysaria eriantha (Benth.) Chuang and Heckard, Triphysaria pusilla (Benth.) Chuang and Heckard, and Triphysaria versicolor Fischer and C. Meyer, for haustorium development in response to DMBQ. There were significant differences between the species in their ability to recognize and respond to this quinone. Ninety percent of T. versicolor individuals responded, whereas only 40% of T. pusilla and less than 10% of T. eriantha formed haustoria. Within field collections of self-pollinating T. pusilla, differential responsiveness to DMBQ was seen in distinct maternal families. Assaying haustorium development in subsequent generations of self-pollinated T. pusilla showed that DMBQ responsiveness was heritable. Reciprocal crosses between T. eriantha and T. versicolor demonstrated that DMBQ responsiveness was influenced by maternal factors. These results demonstrate heritable, natural variation in the recognition of a haustorial-inducing factor by a parasitic member of the Scrophulariaceae. PMID:11299366

  20. Sexual imprinting misguides species recognition in a facultative interspecific brood parasite.

    Science.gov (United States)

    Sorenson, Michael D; Hauber, Mark E; Derrickson, Scott R

    2010-10-22

    Sexual reproduction relies on the recognition of conspecifics for breeding. Most experiments in birds have implicated a critical role for early social learning in directing subsequent courtship behaviours and mating decisions. This classical view of avian sexual imprinting is challenged, however, by studies of megapodes and obligate brood parasites, species in which reliable recognition is achieved despite the lack of early experience with conspecifics. By rearing males with either conspecific or heterospecific brood mates, we experimentally tested the effect of early social experience on the association preferences and courtship behaviours of two sympatrically breeding ducks. We predicted that redheads (Aythya americana), which are facultative interspecific brood parasites, would show a diminished effect of early social environment on subsequent courtship preferences when compared with their host and congener, the canvasback (Aythya valisineria). Contrary to expectations, cross-fostered males of both species courted heterospecific females and preferred them in spatial association tests, whereas control males courted and associated with conspecific females. These results imply that ontogenetic constraints on species recognition may be a general impediment to the initial evolution of interspecific brood parasitism in birds. Under more natural conditions, a variety of mechanisms may mitigate or counteract the effects of early imprinting for redheads reared in canvasback broods.