WorldWideScience

Sample records for natural image transformations

  1. A progressive data compression scheme based upon adaptive transform coding: Mixture block coding of natural images

    Science.gov (United States)

    Rost, Martin C.; Sayood, Khalid

    1991-01-01

    A method for efficiently coding natural images using a vector-quantized variable-blocksized transform source coder is presented. The method, mixture block coding (MBC), incorporates variable-rate coding by using a mixture of discrete cosine transform (DCT) source coders. Which coders are selected to code any given image region is made through a threshold driven distortion criterion. In this paper, MBC is used in two different applications. The base method is concerned with single-pass low-rate image data compression. The second is a natural extension of the base method which allows for low-rate progressive transmission (PT). Since the base method adapts easily to progressive coding, it offers the aesthetic advantage of progressive coding without incorporating extensive channel overhead. Image compression rates of approximately 0.5 bit/pel are demonstrated for both monochrome and color images.

  2. Perceptual quality of color images of natural scenes transformed in CIELUV color space

    NARCIS (Netherlands)

    Fedorovskaya, E.A.; Blommaert, F.J.J.; Ridder, de H.; Eschbach, R.; Braun, K.

    1997-01-01

    Transformations of digitized color images in perceptually-uniform CIELUV color space and their perceptual relevance were investigated. Chroma veriation was chosen as the first step of a series of investigations into possible transformations (including lightness, hue-angle, chroma, ect.) To obtain

  3. Perceptual quality of color images of natural scenes transformed in CIELUV color space

    NARCIS (Netherlands)

    Fedorovskaya, E.A.; Blommaert, F.J.J.; Ridder, de H.

    1993-01-01

    Transformations of digitized color images in perceptually-uniform CIELUV color space and their perceptual relevance were investigated. Chroma variation was chosen as the first step of a series of investigations into possible transformations (including lightness, hue-angle, chroma, etc.). To obtain

  4. APPLICATION OF NATURAL TRANSFORM IN CRYPTOGRAPHY

    OpenAIRE

    Chindhe, Anil Dhondiram; Kiwne, Sakharam

    2017-01-01

    Abstaract−The newly defined integral transformNatural transform” has many application in the field of science and engineering.In this paper we described the application of Natural transform to Cryptography.This provide the algorithm for cryptography in which we use the natural transform of the exponential function for encryption of the plain text and corresponding inverse natural transform for decryption

  5. Transformation of the Image

    DEFF Research Database (Denmark)

    Middlemas, Jill

    2009-01-01

    reveals that in every case the book of Ezekiel establishes a distance between divinity and forms. How items of a visual nature are employed contribute to a wider discussion about the imago dei and theories about the closest representations of the deity of ancient Israel as a human being, most frequently...

  6. Geometrical Image Transforms

    OpenAIRE

    Havelka, Jan

    2008-01-01

    Tato diplomová práce se zabývá akcelerací geometrických transformací obrazu s využitím GPU a architektury NVIDIA (R) CUDA TM. Časově kritické části kódu jsou přesunuty na GPU a vykonány paralelně. Jedním z výsledků je demonstrační aplikace pro porovnání výkonnosti obou architektur: CPU, a GPU v kombinaci s CPU. Pro referenční implementaci jsou použity vysoce optimalizované algoritmy z knihovny OpenCV, od firmy Intel. This master's thesis deals with acceleration of geometrical image transfo...

  7. Integral transformations applied to image encryption

    International Nuclear Information System (INIS)

    Vilardy, Juan M.; Torres, Cesar O.; Perez, Ronal

    2017-01-01

    In this paper we consider the application of the integral transformations for image encryption through optical systems, a mathematical algorithm under Matlab platform using fractional Fourier transform (FrFT) and Random Phase Mask (RPM) for digital images encryption is implemented. The FrFT can be related to others integral transforms, such as: Fourier transform, Sine and Cosine transforms, Radial Hilbert transform, fractional Sine transform, fractional Cosine transform, fractional Hartley transform, fractional Wavelet transform and Gyrator transform, among other transforms. The encryption scheme is based on the use of the FrFT, the joint transform correlator and two RPMs, which provide security and robustness to the implemented security system. One of the RPMs used during encryption-decryption and the fractional order of the FrFT are the keys to improve security and make the system more resistant against security attacks. (paper)

  8. Episodic memory for natural and transformed food.

    Science.gov (United States)

    Aiello, Marilena; Vignando, Miriam; Foroni, Francesco; Pergola, Giulio; Rossi, Paola; Silveri, Maria Caterina; Rumiati, Raffaella I

    2018-05-10

    It has been proposed that the conceptual knowledge of food and its putative subdivision into natural (i.e., fruit/vegetables) and transformed (i.e., food that underwent thermic or non-thermic processing) may follow the living/non-living distinction. In the present study, we investigated whether the advantage for living things compared to non-living things observed in episodic memory (the so-called animacy effect) extends to natural foods and transformed foods respectively. We pursued this issue in two experiments. In Experiment 1, we measured episodic memory for natural and transformed foods in young participants. In Experiment 2, we enrolled dementia-free centenarians, patients with Alzheimer's disease (DAT), Progressive primary aphasia (PPA), and healthy controls whose episodic memory was also tested for living/non-living things. Results showed that young participants had better recognition memory for transformed foods compared to natural foods. This difference disappeared in centenarians and patients. However, centenarians and PPA exhibited enhanced levels of false alarms (FA) with natural food, and DAT patients with both natural and transformed food. As far as the living/non-living distinction is concerned, the episodic memory for the living category appears more resilient to the decline compared to the non-living category in patients, particularly those with PPA. In conclusion, our study shows that transformed food is better remembered than natural food, suggesting that it is more salient and possibly relevant from an evolutionary perspective. The natural/transformed distinction appears susceptible to erosion only in the presence of a high degree of episodic memory impairment. These results offer novel insight on episodic memory of food, and also extend the current knowledge on the animacy effect in episodic memory. Copyright © 2018 Elsevier Ltd. All rights reserved.

  9. Combined Sparsifying Transforms for Compressive Image Fusion

    Directory of Open Access Journals (Sweden)

    ZHAO, L.

    2013-11-01

    Full Text Available In this paper, we present a new compressive image fusion method based on combined sparsifying transforms. First, the framework of compressive image fusion is introduced briefly. Then, combined sparsifying transforms are presented to enhance the sparsity of images. Finally, a reconstruction algorithm based on the nonlinear conjugate gradient is presented to get the fused image. The simulations demonstrate that by using the combined sparsifying transforms better results can be achieved in terms of both the subjective visual effect and the objective evaluation indexes than using only a single sparsifying transform for compressive image fusion.

  10. Automated image enhancement using power law transformations

    Indian Academy of Sciences (India)

    We propose a scheme for automating power law transformations which are used for image enhancement. The scheme we propose does not require the user to choose the exponent in the power law transformation. This method works well for images having poor contrast, especially to those images in which the peaks ...

  11. Technique for image interpolation using polynomial transforms

    NARCIS (Netherlands)

    Escalante Ramírez, B.; Martens, J.B.; Haskell, G.G.; Hang, H.M.

    1993-01-01

    We present a new technique for image interpolation based on polynomial transforms. This is an image representation model that analyzes an image by locally expanding it into a weighted sum of orthogonal polynomials. In the discrete case, the image segment within every window of analysis is

  12. Medical Image Denoising Using Mixed Transforms

    Directory of Open Access Journals (Sweden)

    Jaleel Sadoon Jameel

    2018-02-01

    Full Text Available  In this paper,  a mixed transform method is proposed based on a combination of wavelet transform (WT and multiwavelet transform (MWT in order to denoise medical images. The proposed method consists of WT and MWT in cascade form to enhance the denoising performance of image processing. Practically, the first step is to add a noise to Magnetic Resonance Image (MRI or Computed Tomography (CT images for the sake of testing. The noisy image is processed by WT to achieve four sub-bands and each sub-band is treated individually using MWT before the soft/hard denoising stage. Simulation results show that a high peak signal to noise ratio (PSNR is improved significantly and the characteristic features are well preserved by employing mixed transform of WT and MWT due to their capability of separating noise signals from image signals. Moreover, the corresponding mean square error (MSE is decreased accordingly compared to other available methods.

  13. Multiplicative by nature: Logarithmic transformation in allometry.

    Science.gov (United States)

    Packard, Gary C

    2014-06-01

    The traditional allometric method, which is at the heart of research paradigms used by comparative biologists around the world, entails fitting a straight line to logarithmic transformations of the original bivariate data and then back-transforming the resulting equation to form a two-parameter power function in the arithmetic scale. The method has the dual advantages of enabling investigators to fit statistical models that describe multiplicative growth while simultaneously addressing the multiplicative nature of residual variation in response variables (heteroscedasticity). However, important assumptions of the traditional method seldom are assessed in contemporary practice. When the assumptions are not met, mean functions may fail to capture the dominant pattern in the original data and incorrect form for error may be imposed upon the fitted model. A worked example from metabolic allometry in doves and pigeons illustrates both the power of newer statistical procedures and limitations of the traditional allometric method. © 2014 Wiley Periodicals, Inc.

  14. Optimized nonorthogonal transforms for image compression.

    Science.gov (United States)

    Guleryuz, O G; Orchard, M T

    1997-01-01

    The transform coding of images is analyzed from a common standpoint in order to generate a framework for the design of optimal transforms. It is argued that all transform coders are alike in the way they manipulate the data structure formed by transform coefficients. A general energy compaction measure is proposed to generate optimized transforms with desirable characteristics particularly suited to the simple transform coding operation of scalar quantization and entropy coding. It is shown that the optimal linear decoder (inverse transform) must be an optimal linear estimator, independent of the structure of the transform generating the coefficients. A formulation that sequentially optimizes the transforms is presented, and design equations and algorithms for its computation provided. The properties of the resulting transform systems are investigated. In particular, it is shown that the resulting basis are nonorthogonal and complete, producing energy compaction optimized, decorrelated transform coefficients. Quantization issues related to nonorthogonal expansion coefficients are addressed with a simple, efficient algorithm. Two implementations are discussed, and image coding examples are given. It is shown that the proposed design framework results in systems with superior energy compaction properties and excellent coding results.

  15. Modified CT imaging by reduction factor transformations

    International Nuclear Information System (INIS)

    Doehring, W.; Linke, G.

    1981-01-01

    The possibilities of CT image modification which had existed so far for given matrix of attenuation values (window setting, highlighting, black-and-white or colour reversal and logarithmic distortion of the video signal) are supplemented by the method of attenuation value transformation. As a specific case a linear interval by interval attenuation value transformation is described. First of all, the intirety of the measured CT values is transformed into the corresponding CT quotients (CTQ) and then subdivided into 5 optional intervals. Each one freely selected CTQ value can be allocated to the first and to the last interval; the intermediate 3 intervals can be linearly transformed at random. The article discusses the influence of such a manipulation on CT image reproduction; this is of particular importance for the image visualisation of the results of quantitative organ analyses by means of computed tomography. The presented paper also points to the possibility of effecting further attenuation value transformations. (orig.) [de

  16. Mathematical transforms and image compression: A review

    Directory of Open Access Journals (Sweden)

    Satish K. Singh

    2010-07-01

    Full Text Available It is well known that images, often used in a variety of computer and other scientific and engineering applications, are difficult to store and transmit due to their sizes. One possible solution to overcome this problem is to use an efficient digital image compression technique where an image is viewed as a matrix and then the operations are performed on the matrix. All the contemporary digital image compression systems use various mathematical transforms for compression. The compression performance is closely related to the performance by these mathematical transforms in terms of energy compaction and spatial frequency isolation by exploiting inter-pixel redundancies present in the image data. Through this paper, a comprehensive literature survey has been carried out and the pros and cons of various transform-based image compression models have also been discussed.

  17. Image compression using the W-transform

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, W.D. Jr. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-12-31

    The authors present the W-transform for a multiresolution signal decomposition. One of the differences between the wavelet transform and W-transform is that the W-transform leads to a nonorthogonal signal decomposition. Another difference between the two is the manner in which the W-transform handles the endpoints (boundaries) of the signal. This approach does not restrict the length of the signal to be a power of two. Furthermore, it does not call for the extension of the signal thus, the W-transform is a convenient tool for image compression. They present the basic theory behind the W-transform and include experimental simulations to demonstrate its capabilities.

  18. Natural Hazards Image Database

    Data.gov (United States)

    National Oceanic and Atmospheric Administration, Department of Commerce — Photographs and other visual media provide valuable pre- and post-event data for natural hazards. Research, mitigation, and forecasting rely on visual data for...

  19. Fourier transformation for engineering and natural science

    International Nuclear Information System (INIS)

    Klingen, B.

    2001-01-01

    The following topics are covered: functions, Dirac delta function, Fourier operators, Fourier integrals, Fourier transformation and periodic functions, discrete Fourier transformations and discrete filters, applications. (WL)

  20. Medical image compression with fast Hartley transform

    International Nuclear Information System (INIS)

    Paik, C.H.; Fox, M.D.

    1988-01-01

    The purpose of data compression is storage and transmission of images with minimization of memory for storage and bandwidth for transmission, while maintaining robustness in the presence of transmission noise or storage medium errors. Here, the fast Hartley transform (FHT) is used for transformation and a new thresholding method is devised. The FHT is used instead of the fast Fourier transform (FFT), thus providing calculation at least as fast as that of the fastest algorithm of FFT. This real numbered transform requires only half the memory array space for saving of transform coefficients and allows for easy implementation on very large-scale integrated circuits because of the use of the same formula for both forward and inverse transformation and the conceptually straightforward algorithm. Threshold values were adaptively selected according to the correlation factor of each block of equally divided blocks of the image. Therefore, this approach provided a coding scheme that included maximum information with minimum image bandwidth. Overall, the results suggested that the Hartley transform adaptive thresholding approach results in improved fidelity, shorter decoding time, and greater robustness in the presence of noise than previous approaches

  1. Digital Image Watermarking in Transform Domains

    International Nuclear Information System (INIS)

    EL-Shazly, E.H.M.

    2012-01-01

    Fast development of internet and availability of huge digital content make it easy to create, modify and copy digital media such as audio, video and images. This causes a problem for owners of that content and hence a need to copy right protection tool was essential. First, encryption was proposed but it ensures protection during transmission only and once decryption occurred any one can modify the data. at that point watermarking was introduced as a solution to such problem. Watermarking is a process of inserting a low energy signal in to a high energy one so that it doesn't affect the main signal features. A good digital image watermarking technique should satisfy four requirements: 1) Embedding of a watermark should not degrade the host image visual quality (imperceptibility). 2) The embedded watermark should stick to the host image so that it couldn’t be removed by common image processing operation and could be extracted from the attacked watermarked image (robustness). 3) Knowing the embedding and extraction procedures is sufficient but not enough to extract the watermark; extra keys should be needed (security). 4) The watermarking technique should allow embedding and extraction of more than one watermark each independent of the other (capacity). This thesis presents a watermarking scheme that full fill the mentioned four requirements by jointing transform domains with Fractional Fourier Transform Domain (FracFT). More work on cascaded Discrete Wavelet Transform DWT with FracFT was done to develop a joint transform simply called Fractional Wavelet Transform (FWT). The proposed schemes were tested with different image processing attacks to verify its robustness. Finally, the watermarked image is transmitted over simulated MC CDMA channel to prove robustness in real transmission conditions case.

  2. Image encryption using the fractional wavelet transform

    International Nuclear Information System (INIS)

    Vilardy, Juan M; Useche, J; Torres, C O; Mattos, L

    2011-01-01

    In this paper a technique for the coding of digital images is developed using Fractional Wavelet Transform (FWT) and random phase masks (RPMs). The digital image to encrypt is transformed with the FWT, after the coefficients resulting from the FWT (Approximation, Details: Horizontal, vertical and diagonal) are multiplied each one by different RPMs (statistically independent) and these latest results is applied an Inverse Wavelet Transform (IWT), obtaining the encrypted digital image. The decryption technique is the same encryption technique in reverse sense. This technique provides immediate advantages security compared to conventional techniques, in this technique the mother wavelet family and fractional orders associated with the FWT are additional keys that make access difficult to information to an unauthorized person (besides the RPMs used), thereby the level of encryption security is extraordinarily increased. In this work the mathematical support for the use of the FWT in the computational algorithm for the encryption is also developed.

  3. Medical images storage using discrete cosine transform

    International Nuclear Information System (INIS)

    Arhouma, Ali M.; Ajaal, Tawfik; Marghani, Khaled

    2010-01-01

    The advances in technology during the last decades have made the use of digital images as one of the common things in everyday life. While the application of digital images in communicating information is very important, the cost of storing and transmitting images is much larger compared to storage and transmission of text. The main problem with all of the images was the fact that they take large size of memory space, large transmission bandwidth and long transmission time. Image data compression is needed to reduce the storage space,transmission bandwidth and transmission time. Medical image compression plays a key role as hospitals move towards filmless imaging and go completely digital. Image compression allows Picture Archiving and Communication Systems (PACS) to reduce the file size on their storage requirements while maintaining relevant diagnostic information. The reduced image file size yield reduced transmission times. Even as the capacity of storage media continues to increase, it is expected that the volume of uncompressed data produced by hospitals will exceed capacity of storage and drive up costs. This paper proposes a Discrete Cosine Transform (DCT) algorithm which can help to solve the image storage and transmission time problem in hospitals. Discrete cosine transform (DCT) has become the most popular technique for image compression over the past several years. One of the major reasons for its popularity is its selection as the standard for JPEG. DCTs are most commonly used for non-analytical applications such as image processing and digital signal-processing (DSP) applications such as video conferencing, fax systems, video disks, and high-definition television HDTV. They also can be used on a matrix of practically any dimension. The proposed (DCT) algorithm improves the performance of medical image compression while satisfying both the medical image quality, and the high compression ratio. Application of DCT coding algorithm to actual still images

  4. Brain's tumor image processing using shearlet transform

    Science.gov (United States)

    Cadena, Luis; Espinosa, Nikolai; Cadena, Franklin; Korneeva, Anna; Kruglyakov, Alexey; Legalov, Alexander; Romanenko, Alexey; Zotin, Alexander

    2017-09-01

    Brain tumor detection is well known research area for medical and computer scientists. In last decades there has been much research done on tumor detection, segmentation, and classification. Medical imaging plays a central role in the diagnosis of brain tumors and nowadays uses methods non-invasive, high-resolution techniques, especially magnetic resonance imaging and computed tomography scans. Edge detection is a fundamental tool in image processing, particularly in the areas of feature detection and feature extraction, which aim at identifying points in a digital image at which the image has discontinuities. Shearlets is the most successful frameworks for the efficient representation of multidimensional data, capturing edges and other anisotropic features which frequently dominate multidimensional phenomena. The paper proposes an improved brain tumor detection method by automatically detecting tumor location in MR images, its features are extracted by new shearlet transform.

  5. Natural genetic transformation in Acinetobacter sp. BD413 Biofilms: introducing natural genetic transformation as a tool for bioenhancement of biofilm reactors

    Energy Technology Data Exchange (ETDEWEB)

    Hendrickx, L

    2002-07-01

    This study focussed on the localization and quantification of natural genetic transformation using neutral and disadvantageous genes in monoculture biofilms to investigate gene transfer and expression of the transferred genes in the absence of a selective advantage. Data obtained by this investigation were regarded as initial steps for evaluating the applicability of adding catabolic traits into the indigenous bacterial community of biofilm reactors by in situ natural genetic transformation. Because Acinetobacter spp. strains are readily found in waste water treatment plants and because Acinetobacter sp. BD413 possesses a high effective level of competence, natural genetic transformation was investigated in monoculture Acinetobacter sp. BD413 biofilms. The genes used for transformation encoded for the green fluorescent protein (GFP) and its variants. Monitoring of transformation events were performed with the use of automated confocal laser scanning microscopy (CLSM) and semi automated digital image processing and analysis. (orig.)

  6. Optical image encryption using multilevel Arnold transform and noninterferometric imaging

    Science.gov (United States)

    Chen, Wen; Chen, Xudong

    2011-11-01

    Information security has attracted much current attention due to the rapid development of modern technologies, such as computer and internet. We propose a novel method for optical image encryption using multilevel Arnold transform and rotatable-phase-mask noninterferometric imaging. An optical image encryption scheme is developed in the gyrator transform domain, and one phase-only mask (i.e., phase grating) is rotated and updated during image encryption. For the decryption, an iterative retrieval algorithm is proposed to extract high-quality plaintexts. Conventional encoding methods (such as digital holography) have been proven vulnerably to the attacks, and the proposed optical encoding scheme can effectively eliminate security deficiency and significantly enhance cryptosystem security. The proposed strategy based on the rotatable phase-only mask can provide a new alternative for data/image encryption in the noninterferometric imaging.

  7. Digital image transformation and rectification of spacecraft and radar images

    Science.gov (United States)

    Wu, S. S. C.

    1985-01-01

    The application of digital processing techniques to spacecraft television pictures and radar images is discussed. The use of digital rectification to produce contour maps from spacecraft pictures is described; images with azimuth and elevation angles are converted into point-perspective frame pictures. The digital correction of the slant angle of radar images to ground scale is examined. The development of orthophoto and stereoscopic shaded relief maps from digital terrain and digital image data is analyzed. Digital image transformations and rectifications are utilized on Viking Orbiter and Lander pictures of Mars.

  8. Social transformation in transdisciplinary natural hazard management

    Science.gov (United States)

    Attems, Marie-Sophie; Fuchs, Sven; Thaler, Thomas

    2017-04-01

    Due to annual increases of natural hazard losses, there is a discussion among authorities and communities in Europe on innovative solutions to increase resilience, and consequently, business-as-usual in risk management practices is often questioned. Therefore, the current situation of risk management requests a societal transformation to response adequately and effectively to the new global dynamics. An emerging concept is the implementation of multiple-use mitigation systems against hazards such as floods, avalanches and land-slides. However, one key aspect refers to the involvement of knowledge outside academic research. Therefore, transdisciplinary knowledge can be used to discuss vital factors which are needed to upscale the implementation of multiple-use mitigation measures. The method used in this contribution is an explorative scenario analysis applied in Austria and processes the knowledge gained in transdisciplinary workshops. The scenario analysis combines qualitative data and the quantitative relations in order to generate a set of plausible future outcomes. The goal is to establish a small amount of consistent scenarios, which are efficient and thereby representative as well as significantly different from each other. The results of the discussions among relevant stakeholders within the workshops and a subsequent quantitative analysis, showed that vital variables influencing the multiple use of mitigation measures are the (1) current legislation, (2) risk acceptance among authorities and the public, (3) land-use pressure, (4) the demand for innovative solutions, (5) the available technical standards and possibilities and (6) finally the policy entrepreneurship. Four different scenarios were the final result of the analysis. Concluding the results, in order to make multiple-use alleviations systems possible contemporary settings concerning risk management strategies will have to change in the future. Legislation and thereby current barriers have to be

  9. Electro-optic imaging Fourier transform spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin (Inventor); Znod, Hanying (Inventor)

    2009-01-01

    An Electro-Optic Imaging Fourier Transform Spectrometer (EOIFTS) for Hyperspectral Imaging is described. The EOIFTS includes an input polarizer, an output polarizer, and a plurality of birefringent phase elements. The relative orientations of the polarizers and birefringent phase elements can be changed mechanically or via a controller, using ferroelectric liquid crystals, to substantially measure the spectral Fourier components of light propagating through the EIOFTS. When achromatic switches are used as an integral part of the birefringent phase elements, the EIOFTS becomes suitable for broadband applications, with over 1 micron infrared bandwidth.

  10. Natural Transformation of Campylobacter jejuni Occurs Beyond Limits of Growth

    Science.gov (United States)

    Vegge, Christina S.; Brøndsted, Lone; Ligowska-Marzęta, Małgorzata; Ingmer, Hanne

    2012-01-01

    Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy dependent process, that occurs in the absence of transcription but requires an active translational machinery. Moreover, we show the ATP dependent ClpP protease to be important for transformation, which possibly could be associated with reduced protein glycosylation in the ClpP mutant. In contrast, competence of C. jejuni was neither found to be involved in DNA repair following DNA damage nor to provide a growth benefit. Kinetic studies revealed that several transformation events occur per cell cycle indicating that natural transformation of C. jejuni is a highly efficient process. Thus, our findings suggest that horizontal gene transfer by natural transformation takes place in various habitats occupied by C. jejuni. PMID:23049803

  11. Natural plasmid transformation in a high-frequency-of transformation marine Vibrio strain

    International Nuclear Information System (INIS)

    Frischer, M.E.; Thurmond, J.M.; Paul, J.H.

    1990-01-01

    The estuarine bacterium Vibrio strain DI-9 has been shown to be naturally transformable with both broad host range plasmid multimers and homologous chromosomal DNA at average frequencies of 3.5 x 10 -9 and 3.4 x 10 -7 transformants per recipient, respectively. Growth of plasmid transformants in nonselective medium resulted in cured strains that transformed 6 to 42,857 times more frequently than the parental strain, depending on the type of transforming DNA. These high-frequency-of-transformation (HfT) strains were transformed at frequencies ranging from 1.1 x 10 -8 to 1.3 x 10 -4 transformants per recipient with plasmid DNA and at an average frequency of 8.3 x 10 -5 transformants per recipient with homologous chromosomal DNA. The highest transformation frequencies were observed by using multimers of an R1162 derivative carrying the transposon Tn5 (pQSR50). Probing of total DNA preparations from one of the cured strains demonstrated that no plasmid DNA remained in the cured strains which may have provided homology to the transforming DNA. All transformants and cured strains could be differentiated from the parental strains by colony morphology. DNA binding studies indicated that late-log-phase HfT strains bound [ 3 H]bacteriophage lambda DNA 2.1 times more rapidly than the parental strain. These results suggest that the original plasmid transformation event of strain DI-9 was the result of uptake and expression of plasmid DNA by a competent mutant (HfT strain). Additionally, it was found that a strain of Vibrio parahaemolyticus, USFS 3420, could be naturally transformed with plasmid DNA. Natural plasmid transformation by high-transforming mutants may be a means of plasmid acquisition by natural aquatic bacterial populations

  12. Natural transformation of Campylobacter jejuni occurs beyond limits of growth

    DEFF Research Database (Denmark)

    Vegge, Christina Skovgaard; Brøndsted, Lone; Ligowska, Małgorzata

    2012-01-01

    of transformation is correlated to the growth conditions, but more importantly that transformation occurs at growth-restrictive conditions as well as in the late stationary phase; hence revealing that growth per se is not required for C. jejuni to be competent. Yet, natural transformation of C. jejuni is an energy......Campylobacter jejuni is a human bacterial pathogen. While poultry is considered to be a major source of food borne campylobacteriosis, C. jejuni is frequently found in the external environment, and water is another well-known source of human infections. Natural transformation is considered...... to be one of the main mechanisms for mediating transfer of genetic material and evolution of the organism. Given the diverse habitats of C. jejuni we set out to examine how environmental conditions and physiological processes affect natural transformation of C. jejuni. We show that the efficiency...

  13. Martensitic nature of δ → γ allotropic transformation in plutonium

    International Nuclear Information System (INIS)

    Lopez, P.C.; Cost, J.R.; Axler, K.M.

    1996-09-01

    Isothermal and isoplethal studies using differential scanning calorimetry have been conducted to characterize the allotropic transformations of plutonium. The δ-γ transformation (upon cooling) was observed to have a classic martensitic nature. The work described herein is the first quantitative study of this phenomena in plutonium

  14. Fourier transform based scalable image quality measure.

    Science.gov (United States)

    Narwaria, Manish; Lin, Weisi; McLoughlin, Ian; Emmanuel, Sabu; Chia, Liang-Tien

    2012-08-01

    We present a new image quality assessment (IQA) algorithm based on the phase and magnitude of the 2D (twodimensional) Discrete Fourier Transform (DFT). The basic idea is to compare the phase and magnitude of the reference and distorted images to compute the quality score. However, it is well known that the Human Visual Systems (HVSs) sensitivity to different frequency components is not the same. We accommodate this fact via a simple yet effective strategy of nonuniform binning of the frequency components. This process also leads to reduced space representation of the image thereby enabling the reduced-reference (RR) prospects of the proposed scheme. We employ linear regression to integrate the effects of the changes in phase and magnitude. In this way, the required weights are determined via proper training and hence more convincing and effective. Lastly, using the fact that phase usually conveys more information than magnitude, we use only the phase for RR quality assessment. This provides the crucial advantage of further reduction in the required amount of reference image information. The proposed method is therefore further scalable for RR scenarios. We report extensive experimental results using a total of 9 publicly available databases: 7 image (with a total of 3832 distorted images with diverse distortions) and 2 video databases (totally 228 distorted videos). These show that the proposed method is overall better than several of the existing fullreference (FR) algorithms and two RR algorithms. Additionally, there is a graceful degradation in prediction performance as the amount of reference image information is reduced thereby confirming its scalability prospects. To enable comparisons and future study, a Matlab implementation of the proposed algorithm is available at http://www.ntu.edu.sg/home/wslin/reduced_phase.rar.

  15. Transforming the nature of fatigue through exercise

    DEFF Research Database (Denmark)

    Adamsen, L; Midtgaard, J; Andersen, C

    2004-01-01

    The objective of this study was to explore the nature of fatigue in cancer patients with advanced stages of disease undergoing chemotherapy and concurrently participating in a 6-week multidimensional exercise programme (physical exercise, relaxation, massage and body-awareness training). Semi-str...

  16. Subband/Transform MATLAB Functions For Processing Images

    Science.gov (United States)

    Glover, D.

    1995-01-01

    SUBTRANS software is package of routines implementing image-data-processing functions for use with MATLAB*(TM) software. Provides capability to transform image data with block transforms and to produce spatial-frequency subbands of transformed data. Functions cascaded to provide further decomposition into more subbands. Also used in image-data-compression systems. For example, transforms used to prepare data for lossy compression. Written for use in MATLAB mathematical-analysis environment.

  17. NATURE IN THE ROMANTIC PERSPECTIVE: LOOK TRANSFORMATIONS

    Directory of Open Access Journals (Sweden)

    Ana Paula de Toledo Soares

    2015-08-01

    Full Text Available This paper aims to elaborate a reflection that follows the displacement of the human view of nature, in the 19th century to the 20th century. Our focus of observation is Gerd Bornheim’s reflections, as well as Deleuze and Schelling’s texts. We selected as object of analysis one Caspar David Friedrich’s screen and Walt Whitman and Alberto Caeiro’s poems, to elaborate the questions.

  18. Bayesian image restoration for medical images using radon transform

    International Nuclear Information System (INIS)

    Shouno, Hayaru; Okada, Masato

    2010-01-01

    We propose an image reconstruction algorithm using Bayesian inference for Radon transformed observation data, which often appears in the field of medical image reconstruction known as computed tomography (CT). In order to apply our Bayesian reconstruction method, we introduced several hyper-parameters that control the ratio between prior information and the fidelity of the observation process. Since the quality of the reconstructed image is influenced by the estimation accuracy of these hyper-parameters, we propose an inference method for them based on the marginal likelihood maximization principle as well as the image reconstruction method. We are able to demonstrate a reconstruction result superior to that obtained using the conventional filtered back projection method. (author)

  19. Optimizing color reproduction of natural images

    NARCIS (Netherlands)

    Yendrikhovskij, S.N.; Blommaert, F.J.J.; Ridder, de H.

    1998-01-01

    The paper elaborates on understanding, measuring and optimizing perceived color quality of natural images. We introduce a model for optimal color reproduction of natural scenes which is based on the assumption that color quality of natural images is constrained by perceived naturalness and

  20. Image encryption with chaotic map and Arnold transform in the gyrator transform domains

    Science.gov (United States)

    Sang, Jun; Luo, Hongling; Zhao, Jun; Alam, Mohammad S.; Cai, Bin

    2017-05-01

    An image encryption method combing chaotic map and Arnold transform in the gyrator transform domains was proposed. Firstly, the original secret image is XOR-ed with a random binary sequence generated by a logistic map. Then, the gyrator transform is performed. Finally, the amplitude and phase of the gyrator transform are permutated by Arnold transform. The decryption procedure is the inverse operation of encryption. The secret keys used in the proposed method include the control parameter and the initial value of the logistic map, the rotation angle of the gyrator transform, and the transform number of the Arnold transform. Therefore, the key space is large, while the key data volume is small. The numerical simulation was conducted to demonstrate the effectiveness of the proposed method and the security analysis was performed in terms of the histogram of the encrypted image, the sensitiveness to the secret keys, decryption upon ciphertext loss, and resistance to the chosen-plaintext attack.

  1. Basic Characterization of Natural Transformation in a Highly Transformable Haemophilus parasuis Strain SC1401

    Science.gov (United States)

    Dai, Ke; He, Lvqin; Chang, Yung-Fu; Cao, Sanjie; Zhao, Qin; Huang, Xiaobo; Wu, Rui; Huang, Yong; Yan, Qigui; Han, Xinfeng; Ma, Xiaoping; Wen, Xintian; Wen, Yiping

    2018-01-01

    Haemophilus parasuis causes Glässer's disease and pneumonia, incurring serious economic losses in the porcine industry. In this study, natural competence was investigated in H. parasuis. We found competence genes in H. parasuis homologous to ones in Haemophilus influenzae and a high consensus battery of Sxy-dependent cyclic AMP (cAMP) receptor protein (CRP-S) regulons using bioinformatics. High rates of natural competence were found from the onset of stationary-phase growth condition to mid-stationary phase (OD600 from 0.29 to 1.735); this rapidly dropped off as cells reached mid-stationary phase (OD600 from 1.735 to 1.625). As a whole, bacteria cultured in liquid media were observed to have lower competence levels than those grown on solid media plates. We also revealed that natural transformation in this species is stable after 200 passages and is largely dependent on DNA concentration. Transformation competition experiments showed that heterogeneous DNA cannot outcompete intraspecific natural transformation, suggesting an endogenous uptake sequence or other molecular markers may be important in differentiating heterogeneous DNA. We performed qRT-PCR targeting multiple putative competence genes in an effort to compare bacteria pre-cultured in TSB++ vs. TSA++ and SC1401 vs. SH0165 to determine expression profiles of the homologs of competence-genes in H. influenzae. Taken together, this study is the first to investigate natural transformation in H. parasuis based on a highly naturally transformable strain SC1401. PMID:29473023

  2. Edge Detection on Images of Pseudoimpedance Section Supported by Context and Adaptive Transformation Model Images

    Directory of Open Access Journals (Sweden)

    Kawalec-Latała Ewa

    2014-03-01

    Full Text Available Most of underground hydrocarbon storage are located in depleted natural gas reservoirs. Seismic survey is the most economical source of detailed subsurface information. The inversion of seismic section for obtaining pseudoacoustic impedance section gives the possibility to extract detailed subsurface information. The seismic wavelet parameters and noise briefly influence the resolution. Low signal parameters, especially long signal duration time and the presence of noise decrease pseudoimpedance resolution. Drawing out from measurement or modelled seismic data approximation of distribution of acoustic pseuoimpedance leads us to visualisation and images useful to stratum homogeneity identification goal. In this paper, the improvement of geologic section image resolution by use of minimum entropy deconvolution method before inversion is applied. The author proposes context and adaptive transformation of images and edge detection methods as a way to increase the effectiveness of correct interpretation of simulated images. In the paper, the edge detection algorithms using Sobel, Prewitt, Robert, Canny operators as well as Laplacian of Gaussian method are emphasised. Wiener filtering of image transformation improving rock section structure interpretation pseudoimpedance matrix on proper acoustic pseudoimpedance value, corresponding to selected geologic stratum. The goal of the study is to develop applications of image transformation tools to inhomogeneity detection in salt deposits.

  3. A fourier transform quality measure for iris images

    CSIR Research Space (South Africa)

    Makinana, S

    2014-08-01

    Full Text Available to ensure that good quality images are selected for feature extraction, in order to improve iris recognition system. In addition, this research proposes a measure of iris image quality using a Fourier Transform. The experimental results demonstrate...

  4. Rectification of aerial images using piecewise linear transformation

    International Nuclear Information System (INIS)

    Liew, L H; Lee, B Y; Wang, Y C; Cheah, W S

    2014-01-01

    Aerial images are widely used in various activities by providing visual records. This type of remotely sensed image is helpful in generating digital maps, managing ecology, monitoring crop growth and region surveying. Such images could provide insight into areas of interest that have lower altitude, particularly in regions where optical satellite imaging is prevented due to cloudiness. Aerial images captured using a non-metric cameras contain real details of the images as well as unexpected distortions. Distortions would affect the actual length, direction and shape of objects in the images. There are many sources that could cause distortions such as lens, earth curvature, topographic relief and the attitude of the aircraft that is used to carry the camera. These distortions occur differently, collectively and irregularly in the entire image. Image rectification is an essential image pre-processing step to eliminate or at least reduce the effect of distortions. In this paper, a non-parametric approach with piecewise linear transformation is investigated in rectifying distorted aerial images. The non-parametric approach requires a set of corresponding control points obtained from a reference image and a distorted image. The corresponding control points are then applied with piecewise linear transformation as geometric transformation. Piecewise linear transformation divides the image into regions by triangulation. Different linear transformations are employed separately to triangular regions instead of using a single transformation as the rectification model for the entire image. The result of rectification is evaluated using total root mean square error (RMSE). Experiments show that piecewise linear transformation could assist in improving the limitation of using global transformation to rectify images

  5. Transformation of natural genetic variation into Haemophilus influenzae genomes.

    Directory of Open Access Journals (Sweden)

    Joshua Chang Mell

    2011-07-01

    Full Text Available Many bacteria are able to efficiently bind and take up double-stranded DNA fragments, and the resulting natural transformation shapes bacterial genomes, transmits antibiotic resistance, and allows escape from immune surveillance. The genomes of many competent pathogens show evidence of extensive historical recombination between lineages, but the actual recombination events have not been well characterized. We used DNA from a clinical isolate of Haemophilus influenzae to transform competent cells of a laboratory strain. To identify which of the ~40,000 polymorphic differences had recombined into the genomes of four transformed clones, their genomes and their donor and recipient parents were deep sequenced to high coverage. Each clone was found to contain ~1000 donor polymorphisms in 3-6 contiguous runs (8.1±4.5 kb in length that collectively comprised ~1-3% of each transformed chromosome. Seven donor-specific insertions and deletions were also acquired as parts of larger donor segments, but the presence of other structural variation flanking 12 of 32 recombination breakpoints suggested that these often disrupt the progress of recombination events. This is the first genome-wide analysis of chromosomes directly transformed with DNA from a divergent genotype, connecting experimental studies of transformation with the high levels of natural genetic variation found in isolates of the same species.

  6. Imaging malignant and apparent malignant transformation of benign gynaecological disease

    Energy Technology Data Exchange (ETDEWEB)

    Lee, A.Y.; Poder, L.; Qayyum, A.; Wang, Z.J.; Yeh, B.M. [Department of Radiology, University of California San Francisco, San Francisco, CA (United States); Coakley, F.V., E-mail: Fergus.Coakley@radiology.ucsf.ed [Department of Radiology, University of California San Francisco, San Francisco, CA (United States)

    2010-12-15

    Common benign gynaecological diseases, such as leiomyoma, adenomyosis, endometriosis, and mature teratoma, rarely undergo malignant transformation. Benign transformations that may mimic malignancy include benign metastasizing leiomyoma, massive ovarian oedema, decidualization of endometrioma, and rupture of mature teratoma. The aim of this review is to provide a contemporary overview of imaging findings in malignant and apparent malignant transformation of benign gynaecological disease.

  7. Liquefied natural gas production at Hammerfest: A transforming marine community

    NARCIS (Netherlands)

    Bets, van L.K.J.; Tatenhove, van J.P.M.; Mol, A.P.J.

    2016-01-01

    Global energy demand and scarce petroleum resources require communities to adapt to a rapidly changing Arctic environment, but as well to a transforming socio-economic environment instigated by oil and gas development. This is illustrated by liquefied natural gas production by Statoil at Hammerfest,

  8. The Living Dead: Transformative Experiences in Modelling Natural Selection

    Science.gov (United States)

    Petersen, Morten Rask

    2017-01-01

    This study considers how students change their coherent conceptual understanding of natural selection through a hands-on simulation. The results show that most students change their understanding. In addition, some students also underwent a transformative experience and used their new knowledge in a leisure time activity. These transformative…

  9. Retina-like sensor image coordinates transformation and display

    Science.gov (United States)

    Cao, Fengmei; Cao, Nan; Bai, Tingzhu; Song, Shengyu

    2015-03-01

    For a new kind of retina-like senor camera, the image acquisition, coordinates transformation and interpolation need to be realized. Both of the coordinates transformation and interpolation are computed in polar coordinate due to the sensor's particular pixels distribution. The image interpolation is based on sub-pixel interpolation and its relative weights are got in polar coordinates. The hardware platform is composed of retina-like senor camera, image grabber and PC. Combined the MIL and OpenCV library, the software program is composed in VC++ on VS 2010. Experience results show that the system can realizes the real-time image acquisition, coordinate transformation and interpolation.

  10. Fractional Hartley transform applied to optical image encryption

    Energy Technology Data Exchange (ETDEWEB)

    Jimenez, C [Grupo GIFES. Universidad de La Guajira. Riohacha (Colombia); Torres, C; Mattos, L, E-mail: carlosj114@gmail.com [Grupo LOI. Universidad Popular del Cesar. Valledupar (Colombia)

    2011-01-01

    A new method for image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as addictional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. Computer simulations are also perfomed to confirm the possibility of proposed method.

  11. Optical image encryption with redefined fractional Hartley transform

    Science.gov (United States)

    Zhao, Daomu; Li, Xinxin; Chen, Linfei

    2008-11-01

    A new method for optical image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform. We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as additional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. The optical realization is then proposed and computer simulations are also performed to confirm the possibility of the proposed method.

  12. Fractional Hartley transform applied to optical image encryption

    Science.gov (United States)

    Jimenez, C.; Torres, C.; Mattos, L.

    2011-01-01

    A new method for image encryption is introduced on the basis of two-dimensional (2-D) generalization of 1-D fractional Hartley transform that has been redefined recently in search of its inverse transform We encrypt the image by two fractional orders and random phase codes. It has an advantage over Hartley transform, for its fractional orders can also be used as addictional keys, and that, of course, strengthens image security. Only when all of these keys are correct, can the image be well decrypted. Computer simulations are also perfomed to confirm the possibilty of proposed method.

  13. Multispectral image pansharpening based on the contourlet transform

    Energy Technology Data Exchange (ETDEWEB)

    Amro, Israa; Mateos, Javier, E-mail: iamro@correo.ugr.e, E-mail: jmd@decsai.ugr.e [Departamento de Ciencias de la Computacion e I.A., Universidad de Granada, 18071 Granada (Spain)

    2010-02-01

    Pansharpening is a technique that fuses the information of a low resolution multispectral image (MS) and a high resolution panchromatic image (PAN), usually remote sensing images, to provide a high resolution multispectral image. In the literature, this task has been addressed from different points of view being one of the most popular the wavelets based algorithms. Recently, the contourlet transform has been proposed. This transform combines the advantages of the wavelets transform with a more efficient directional information representation. In this paper we propose a new pansharpening method based on contourlets, compare with its wavelet counterpart and assess its performance numerically and visually.

  14. Emotional faces influence evaluation of natural and transformed food.

    Science.gov (United States)

    Manippa, Valerio; Padulo, Caterina; Brancucci, Alfredo

    2018-07-01

    Previous evidence showed the presence of a straight relationship between feeding behavior and emotions. Despite that, no studies have focused on the influence of emotional faces on food processing. In our study, participants were presented with 72 couples of visual stimuli composed of a neutral, happy, or disgusted faces (5000 ms duration in Experiment 1, adaptation; 150 ms in Experiment 2, priming) followed by a food stimulus (1500 ms). Food stimuli were grouped in pleasant foods, further divided in natural and transformed, and unpleasant rotten foods. The task consisted in judging the food valence (as 'pleasant' or 'unpleasant') by keypress. Results showed a different pattern of response based on the transformation level of food. In general, the evaluation of natural foods was more rapid compared with transformed foods, maybe for their simplicity and healthier perception. In addition, transformed foods yielded incongruent responses with respect to the preceding emotional face, whereas natural foods yielded congruent responses with respect to it. These effects were independent of the duration of the emotional face (i.e., adaptation or priming paradigm) and may depend on pleasant food stimuli salience.

  15. A robust image watermarking in contourlet transform domain

    Science.gov (United States)

    Sharma, Rajat; Gupta, Abhishek Kumar; Singh, Deepak; Verma, Vivek Singh; Bhardwaj, Anuj

    2017-10-01

    A lot of work has been done in the field of image watermarking to overcome the problems of rightful ownership, copyright protection etc. In order to provide a robust solution of such issues, the authors propose a hybrid approach that involves contourlet, lifting wavelet, and discrete cosine transform. The first level coefficients of the original image which are obtained using contourlet transform are further decomposed using one level lifting wavelet transform. After that, these coefficients are modified using discrete cosine transform. Whereas, second level subband of contourlet transform coefficients are used to obtain block wise modification parameter based on edge detection and entropy calculations. Watermark bits are embedded by quantizing the discrete cosine transform coefficient blocks obtained using HL sub-band of first level lifting wavelet transform coefficients. The experimental results reveal that the proposed scheme has high robustness and imperceptibility.

  16. Aliasless fresnel transform image reconstruction in phase scrambling fourier transform technique by data interpolation

    International Nuclear Information System (INIS)

    Yamada, Yoshifumi; Liu, Na; Ito, Satoshi

    2006-01-01

    The signal in the Fresnel transform technique corresponds to a blurred one of the spin density image. Because the amplitudes of adjacent sampled signals have a high interrelation, the signal amplitude at a point between sampled points can be estimated with a high degree of accuracy even if the sampling is so coarse as to generate aliasing in the reconstructed images. In this report, we describe a new aliasless image reconstruction technique in the phase scrambling Fourier transform (PSFT) imaging technique in which the PSFT signals are converted to Fresnel transform signals by multiplying them by a quadratic phase term and are then interpolated using polynomial expressions to generate fully encoded signals. Numerical simulation using MR images showed that almost completely aliasless images are reconstructed by this technique. Experiments using ultra-low-field PSFT MRI were conducted, and aliasless images were reconstructed from coarsely sampled PSFT signals. (author)

  17. Digital Correlation based on Wavelet Transform for Image Detection

    International Nuclear Information System (INIS)

    Barba, L; Vargas, L; Torres, C; Mattos, L

    2011-01-01

    In this work is presented a method for the optimization of digital correlators to improve the characteristic detection on images using wavelet transform as well as subband filtering. It is proposed an approach of wavelet-based image contrast enhancement in order to increase the performance of digital correlators. The multiresolution representation is employed to improve the high frequency content of images taken into account the input contrast measured for the original image. The energy of correlation peaks and discrimination level of several objects are improved with this technique. To demonstrate the potentiality in extracting characteristics using the wavelet transform, small objects inside reference images are detected successfully.

  18. Bacterial natural transformation by highly fragmented and damaged DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren; Harms, Klaus; Orlando, Ludovic Antoine Alexandre

    2013-01-01

    for microbes, but not as potential substrate for bacterial evolution. Here, we show that fragmented DNA molecules (≥20 bp) that additionally may contain abasic sites, cross-links, or miscoding lesions are acquired by the environmental bacterium Acinetobacter baylyi through natural transformation. With uptake......DNA molecules are continuously released through decomposition of organic matter and are ubiquitous in most environments. Such DNA becomes fragmented and damaged (often DNA is recognized as nutrient source...... of DNA from a 43,000-y-old woolly mammoth bone, we further demonstrate that such natural transformation events include ancient DNA molecules. We find that the DNA recombination is RecA recombinase independent and is directly linked to DNA replication. We show that the adjacent nucleotide variations...

  19. Quaternion Fourier transforms for signal and image processing

    CERN Document Server

    Ell, Todd A; Sangwine, Stephen J

    2014-01-01

    Based on updates to signal and image processing technology made in the last two decades, this text examines the most recent research results pertaining to Quaternion Fourier Transforms. QFT is a central component of processing color images and complex valued signals. The book's attention to mathematical concepts, imaging applications, and Matlab compatibility render it an irreplaceable resource for students, scientists, researchers, and engineers.

  20. Image Registration Using Redundant Wavelet Transforms

    National Research Council Canada - National Science Library

    Brown, Richard

    2001-01-01

    .... In our research, we present a fundamentally new wavelet-based registration algorithm utilizing redundant transforms and a masking process to suppress the adverse effects of noise and improve processing efficiency...

  1. Discrete Orthogonal Transforms and Neural Networks for Image Interpolation

    Directory of Open Access Journals (Sweden)

    J. Polec

    1999-09-01

    Full Text Available In this contribution we present transform and neural network approaches to the interpolation of images. From transform point of view, the principles from [1] are modified for 1st and 2nd order interpolation. We present several new interpolation discrete orthogonal transforms. From neural network point of view, we present interpolation possibilities of multilayer perceptrons. We use various configurations of neural networks for 1st and 2nd order interpolation. The results are compared by means of tables.

  2. Image Retrieval Algorithm Based on Discrete Fractional Transforms

    Science.gov (United States)

    Jindal, Neeru; Singh, Kulbir

    2013-06-01

    The discrete fractional transforms is a signal processing tool which suggests computational algorithms and solutions to various sophisticated applications. In this paper, a new technique to retrieve the encrypted and scrambled image based on discrete fractional transforms has been proposed. Two-dimensional image was encrypted using discrete fractional transforms with three fractional orders and two random phase masks placed in the two intermediate planes. The significant feature of discrete fractional transforms benefits from its extra degree of freedom that is provided by its fractional orders. Security strength was enhanced (1024!)4 times by scrambling the encrypted image. In decryption process, image retrieval is sensitive for both correct fractional order keys and scrambling algorithm. The proposed approach make the brute force attack infeasible. Mean square error and relative error are the recital parameters to verify validity of proposed method.

  3. Transformation invariant image indexing and retrieval for image databases

    NARCIS (Netherlands)

    Gevers, Th.; Smeulders, A.W.M.

    1994-01-01

    This paper presents a novel design of an image database system which supports storage, indexing and retrieval of images by content. The image retrieval methodology is based on the observation that images can be discriminated by the presence of image objects and their spatial relations. Images in the

  4. Tensor Fukunaga-Koontz transform for small target detection in infrared images

    Science.gov (United States)

    Liu, Ruiming; Wang, Jingzhuo; Yang, Huizhen; Gong, Chenglong; Zhou, Yuanshen; Liu, Lipeng; Zhang, Zhen; Shen, Shuli

    2016-09-01

    Infrared small targets detection plays a crucial role in warning and tracking systems. Some novel methods based on pattern recognition technology catch much attention from researchers. However, those classic methods must reshape images into vectors with the high dimensionality. Moreover, vectorizing breaks the natural structure and correlations in the image data. Image representation based on tensor treats images as matrices and can hold the natural structure and correlation information. So tensor algorithms have better classification performance than vector algorithms. Fukunaga-Koontz transform is one of classification algorithms and it is a vector version method with the disadvantage of all vector algorithms. In this paper, we first extended the Fukunaga-Koontz transform into its tensor version, tensor Fukunaga-Koontz transform. Then we designed a method based on tensor Fukunaga-Koontz transform for detecting targets and used it to detect small targets in infrared images. The experimental results, comparison through signal-to-clutter, signal-to-clutter gain and background suppression factor, have validated the advantage of the target detection based on the tensor Fukunaga-Koontz transform over that based on the Fukunaga-Koontz transform.

  5. Topology-Preserving Rigid Transformation of 2D Digital Images.

    Science.gov (United States)

    Ngo, Phuc; Passat, Nicolas; Kenmochi, Yukiko; Talbot, Hugues

    2014-02-01

    We provide conditions under which 2D digital images preserve their topological properties under rigid transformations. We consider the two most common digital topology models, namely dual adjacency and well-composedness. This paper leads to the proposal of optimal preprocessing strategies that ensure the topological invariance of images under arbitrary rigid transformations. These results and methods are proved to be valid for various kinds of images (binary, gray-level, label), thus providing generic and efficient tools, which can be used in particular in the context of image registration and warping.

  6. Naturalness and image quality : chroma and hue variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.; Blommaert, F.J.J.; Fedorovskaya, E.A.; Rogowitz, B.E.; Allebach, J.P.

    1995-01-01

    The relation between perceptual image quality and naturalness was investigated by varying the colorfulness and hue of color images of natural scenes. These variations were created by digitizing the images, subsequently determining their color point distributions in the CIELUV color space and finally

  7. Naturalness and image quality: Chroma and hue variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.; Blommaert, F.J.J.; Fedorovskaya, E.A.; Eschbach, R.; Braun, K.

    1997-01-01

    The relation between perceptual image quality and natural ness was investigated by varying the colorfulness and hue of color images of natural scenes. These variations were created by digitizing the images, subsequently determining their color point distributions in the CIELUV color space and

  8. Performance Evaluation of Frequency Transform Based Block Classification of Compound Image Segmentation Techniques

    Science.gov (United States)

    Selwyn, Ebenezer Juliet; Florinabel, D. Jemi

    2018-04-01

    Compound image segmentation plays a vital role in the compression of computer screen images. Computer screen images are images which are mixed with textual, graphical, or pictorial contents. In this paper, we present a comparison of two transform based block classification of compound images based on metrics like speed of classification, precision and recall rate. Block based classification approaches normally divide the compound images into fixed size blocks of non-overlapping in nature. Then frequency transform like Discrete Cosine Transform (DCT) and Discrete Wavelet Transform (DWT) are applied over each block. Mean and standard deviation are computed for each 8 × 8 block and are used as features set to classify the compound images into text/graphics and picture/background block. The classification accuracy of block classification based segmentation techniques are measured by evaluation metrics like precision and recall rate. Compound images of smooth background and complex background images containing text of varying size, colour and orientation are considered for testing. Experimental evidence shows that the DWT based segmentation provides significant improvement in recall rate and precision rate approximately 2.3% than DCT based segmentation with an increase in block classification time for both smooth and complex background images.

  9. On the nature of the mental image

    NARCIS (Netherlands)

    Janssen, Wiel

    1976-01-01

    The present study investigates the nature of the so-called visual mental image. Specifically it is examined to what degree there is a correspondence between the structures of visual images and visual percepts. After introducing the general problem in Chapter 1 the functional significance of mental

  10. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    Energy Technology Data Exchange (ETDEWEB)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P. [Area de Procesamiento Digital de Senales e Imagenes Biomedicas. Universidad Autonoma Metropolitana Iztapalapa. Mexico D.F. 09340 Mexico (Mexico)

    1998-12-31

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  11. Comparison of Fourier transform and continuous wavelet transform to study echo-planar imaging flow maps

    International Nuclear Information System (INIS)

    Rodriguez G, A.; Bowtell, R.; Mansfield, P.

    1998-01-01

    Velocity maps were studied combining Doyle and Mansfield method (1986) with each of the following transforms: Fourier, window Fourier and wavelet (Mexican hat). Continuous wavelet transform was compared against the two Fourier transform to determine which technique is best suited to study blood maps generated by Half Fourier Echo-Planar Imaging. Coefficient images were calculated and plots of the pixel intensity variation are presented. Finally, contour maps are shown to visualize the behavior of the blood flow in the cardiac chambers for the wavelet technique. (Author)

  12. Naturalness and image quality : saturation and lightness variation in color images of natural scenes

    NARCIS (Netherlands)

    Ridder, de H.

    1996-01-01

    The relation between perceived image quality and naturalness was investigated by varying the colorfulness of natural images at various lightness levels. At each lightness level, subjects assessed perceived colorfulness, naturalness, and quality as a function of average saturation by means of direct

  13. DATA HIDING IN ENCRYPTED IMAGES USING ARNOLD TRANSFORM

    Directory of Open Access Journals (Sweden)

    S. Siva Shankar

    2016-08-01

    Full Text Available Digital image steganography has several applications in information security and communication. Data hiding in encrypted images ensure that both the cover image and the secret message can be recovered at the receiver end. This work presents a novel data hiding and image encryption scheme using random diffusion and Two dimensional Arnold cat mapping transform. The secret message bits are placed in the least significant bit positions of the cover image. Then a shared key is used to generate random 8 bit random integer stream and is added to the stego image in the random diffusion step. Arnold cat mapping transformation is done to scramble the pixels. The two steps of random diffusion and Arnold transform mapping are done alternatively several times to completely encrypt the image contents. The process is reversed at the receiver end to get both the secret message and the cover image with little loss. The random diffusion step overcomes the limited period of the Arnold transform. The embedding capacity of one bit per pixel is achieved. Security analysis is carried out which shows that the encryption is highly secure. The number of collisions is low thus preventing brute force attacks. The original cover image is recoverable with minimal losses.

  14. Imaging features of maxillary osteoblastoma and its malignant transformation

    International Nuclear Information System (INIS)

    Ueno, Hiroshi; Ariji, Ei-ichiro; Tanaka, Takemasa; Kanda, Shigenobu; Mori, Shin-ichiro; Goto, Masaaki; Mizuno, Akio; Okabe, Haruo; Nakamura, Takashi

    1994-01-01

    We report two cases of osteoblastoma, one of them an unusual case in a 32-year-old woman in whom a maxillary tumor was confidently diagnosed as an osteoblastoma at the time of primary excision and subsequently transformed into an osteosarcoma 7 years after the onset of clinical symptoms. The other patient developed osteosarcoma arising in the maxilla, which was diagnosed 3 years after the primary excision and is very suggestive of malignant transformation in osteoblastoma. We present the radiological features, including computed tomographic and magnetic resonance imaging studies, of this unusual event of transformed tumor and compare imaging features of benign and dedifferentiated counterparts of this rare tumor complex. (orig.)

  15. Thermal treatment of natural goethite: Thermal transformation and physical properties

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Haibo [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia); Chen, Tianhu, E-mail: chentianhu@hfut.edu.cn [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Zou, Xuehua; Qing, Chengsong [Laboratory for Nanomineralogy and Environmental Material, School of Resources and Environmental Engineering, Hefei University of Technology (China); Frost, Ray L., E-mail: r.frost@qut.edu.au [School of Chemistry, Physics and Mechanical Engineering, Science and Engineering Faculty, Queensland University of Technology (Australia)

    2013-09-20

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier.

  16. Thermal treatment of natural goethite: Thermal transformation and physical properties

    International Nuclear Information System (INIS)

    Liu, Haibo; Chen, Tianhu; Zou, Xuehua; Qing, Chengsong; Frost, Ray L.

    2013-01-01

    Highlights: • We have characterized the thermal transformation of natural goethite. • The heated products showed a topotactical relationship to the original mineral. • The N2 adsorption isotherm provided the variation of surface area and pore size distribution with temperature. • The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores. • The hematite derived from heating goethite has application as an adsorbent and catalyst. - Abstract: XRD (X-ray diffraction), XRF (X-ray fluorescence), TG (thermogravimetry), FT-IES (Fourier transform infrared emission spectroscopy), FESEM (field emission scanning electron microscope), TEM (transmission electron microscope) and nitrogen–adsorption–desorption analysis were used to characterize the composition and thermal evolution of the structure of natural goethite. The in situ FT-IES demonstrated the start temperature (250 °C) of the transformation of natural goethite to hematite and the thermodynamic stability of protohematite between 250 and 600 °C. The heated products showed a topotactic relationship to the original mineral based on SEM analysis. Finally, the nitrogen–adsorption–desorption isotherm provided the variation of surface area and pore size distribution as a function of temperature. The surface area displayed a remarkable increase up to 350 °C, and then decreased above this temperature. The significant increase in surface area was attributed to the formation of regularly arranged slit-shaped micropores running parallel to elongated direction of hematite microcrystal. The main pore size varied from 0.99 nm to 3.5 nm when heating temperature increases from 300 to 400 °C. The hematite derived from heating goethite possesses high surface area and favors the possible application of hematite as an adsorbent as well as catalyst carrier

  17. Application and Analysis of Wavelet Transform in Image Edge Detection

    Institute of Scientific and Technical Information of China (English)

    Jianfang gao[1

    2016-01-01

    For the image processing technology, technicians have been looking for a convenient and simple detection method for a long time, especially for the innovation research on image edge detection technology. Because there are a lot of original information at the edge during image processing, thus, we can get the real image data in terms of the data acquisition. The usage of edge is often in the case of some irregular geometric objects, and we determine the contour of the image by combining with signal transmitted data. At the present stage, there are different algorithms in image edge detection, however, different types of algorithms have divergent disadvantages so It is diffi cult to detect the image changes in a reasonable range. We try to use wavelet transformation in image edge detection, making full use of the wave with the high resolution characteristics, and combining multiple images, in order to improve the accuracy of image edge detection.

  18. Natural transformation of bacteria by fragmented, damaged and ancient DNA

    DEFF Research Database (Denmark)

    Overballe-Petersen, Søren

    with fullgenome comparisons that the process has general relevance in extant bacteria. Our findings reveal that the large environmental reservoir of short and damaged DNA retains capacity for natural transformation, even after thousands of years. This describes for the first time a process by which cells can...... transfer playing an important role early in the evolution of life. The published article explains the chemical structure behind an observed degradation difference between the two purine-nucleotides guanosine and adenosine in ancient DNA. We also point at new uses for high-through-put DNA sequencing...

  19. Natural color image segmentation using integrated mechanism

    Institute of Scientific and Technical Information of China (English)

    Jie Xu (徐杰); Pengfei Shi (施鹏飞)

    2003-01-01

    A new method for natural color image segmentation using integrated mechanism is proposed in this paper.Edges are first detected in term of the high phase congruency in the gray-level image. K-mean cluster is used to label long edge lines based on the global color information to estimate roughly the distribution of objects in the image, while short ones are merged based on their positions and local color differences to eliminate the negative affection caused by texture or other trivial features in image. Region growing technique is employed to achieve final segmentation results. The proposed method unifies edges, whole and local color distributions, as well as spatial information to solve the natural image segmentation problem.The feasibility and effectiveness of this method have been demonstrated by various experiments.

  20. Image Enhancement In HSI Space Using Wavelet Transform

    Science.gov (United States)

    Bansal, Sonia; Malhotra, Deepti

    2010-11-01

    Image processing modifies images to improve them (enhancement, restoration), extract information (analysis, recognition), and change their structure (composition, image editing). Image Enhancement is simple and most appealing area among all the digital image processing techniques. The main purpose of image enhancement is to bring out detail that is hidden in an image or to increase contrast in a low contrast image [1]. The color restoration functions of some real color image enhancement algorithms are greatly at random and not proved , and the real color images enhanced which are based on illumination-reflectance model have the loss of details and the `halos', we proposed a new algorithm to overcome these disadvantages. Firstly, we transform the real color image from RGB space to HSI space which is approximately orthonormal system. Secondly, the illumination and the reflectance of value are separated by homomorphic filtering based on illumination-reflectance model. We have discovered that the high dynamic range of image including high bright lights is mainly caused by the reflectance. Thirdly, the details of reflectance are preserved by wavelet transform. Fourthly, the dynamic range of reflectance is compressed by Butterworth filtering. Lastly, the energy of the saturation of real color image in HSI space is attenuated according to the spectral sensitivity of most human vision.

  1. REMOTELY SENSEDC IMAGE COMPRESSION BASED ON WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    Heung K. Lee

    1996-06-01

    Full Text Available In this paper, we present an image compression algorithm that is capable of significantly reducing the vast mount of information contained in multispectral images. The developed algorithm exploits the spectral and spatial correlations found in multispectral images. The scheme encodes the difference between images after contrast/brightness equalization to remove the spectral redundancy, and utilizes a two-dimensional wavelet trans-form to remove the spatial redundancy. The transformed images are than encoded by hilbert-curve scanning and run-length-encoding, followed by huffman coding. We also present the performance of the proposed algorithm with KITSAT-1 image as well as the LANDSAT MultiSpectral Scanner data. The loss of information is evaluated by peak signal to noise ratio (PSNR and classification capability.

  2. Robust Image Hashing Using Radon Transform and Invariant Features

    Directory of Open Access Journals (Sweden)

    Y.L. Liu

    2016-09-01

    Full Text Available A robust image hashing method based on radon transform and invariant features is proposed for image authentication, image retrieval, and image detection. Specifically, an input image is firstly converted into a counterpart with a normalized size. Then the invariant centroid algorithm is applied to obtain the invariant feature point and the surrounding circular area, and the radon transform is employed to acquire the mapping coefficient matrix of the area. Finally, the hashing sequence is generated by combining the feature vectors and the invariant moments calculated from the coefficient matrix. Experimental results show that this method not only can resist against the normal image processing operations, but also some geometric distortions. Comparisons of receiver operating characteristic (ROC curve indicate that the proposed method outperforms some existing methods in classification between perceptual robustness and discrimination.

  3. Image reconstruction by domain-transform manifold learning

    Science.gov (United States)

    Zhu, Bo; Liu, Jeremiah Z.; Cauley, Stephen F.; Rosen, Bruce R.; Rosen, Matthew S.

    2018-03-01

    Image reconstruction is essential for imaging applications across the physical and life sciences, including optical and radar systems, magnetic resonance imaging, X-ray computed tomography, positron emission tomography, ultrasound imaging and radio astronomy. During image acquisition, the sensor encodes an intermediate representation of an object in the sensor domain, which is subsequently reconstructed into an image by an inversion of the encoding function. Image reconstruction is challenging because analytic knowledge of the exact inverse transform may not exist a priori, especially in the presence of sensor non-idealities and noise. Thus, the standard reconstruction approach involves approximating the inverse function with multiple ad hoc stages in a signal processing chain, the composition of which depends on the details of each acquisition strategy, and often requires expert parameter tuning to optimize reconstruction performance. Here we present a unified framework for image reconstruction—automated transform by manifold approximation (AUTOMAP)—which recasts image reconstruction as a data-driven supervised learning task that allows a mapping between the sensor and the image domain to emerge from an appropriate corpus of training data. We implement AUTOMAP with a deep neural network and exhibit its flexibility in learning reconstruction transforms for various magnetic resonance imaging acquisition strategies, using the same network architecture and hyperparameters. We further demonstrate that manifold learning during training results in sparse representations of domain transforms along low-dimensional data manifolds, and observe superior immunity to noise and a reduction in reconstruction artefacts compared with conventional handcrafted reconstruction methods. In addition to improving the reconstruction performance of existing acquisition methodologies, we anticipate that AUTOMAP and other learned reconstruction approaches will accelerate the development

  4. ANALYSIS OF SST IMAGES BY WEIGHTED ENSEMBLE TRANSFORM KALMAN FILTER

    OpenAIRE

    Sai , Gorthi; Beyou , Sébastien; Memin , Etienne

    2011-01-01

    International audience; This paper presents a novel, efficient scheme for the analysis of Sea Surface Temperature (SST) ocean images. We consider the estimation of the velocity fields and vorticity values from a sequence of oceanic images. The contribution of this paper lies in proposing a novel, robust and simple approach based onWeighted Ensemble Transform Kalman filter (WETKF) data assimilation technique for the analysis of real SST images, that may contain coast regions or large areas of ...

  5. Mammographic image enhancement using wavelet transform and homomorphic filter

    Directory of Open Access Journals (Sweden)

    F Majidi

    2015-12-01

    Full Text Available Mammography is the most effective method for the early diagnosis of breast cancer diseases. As mammographic images contain low signal to noise ratio and low contrast, it becomes too difficult for radiologists to analyze mammogram. To deal with the above stated problems, it is very important to enhance the mammographic images using image processing methods. This paper introduces a new image enhancement approach for mammographic images which uses the modified mathematical morphology, wavelet transform and homomorphic filter to suppress the noise of images. For performance evaluation of the proposed method, contrast improvement index (CII and edge preservation index (EPI are adopted. Experimental results on mammographic images from Pejvak Digital Imaging Center (PDIC show that the proposed algorithm improves the two indexes, thereby achieving the goal of enhancing mammographic images.

  6. New experimental evidence of the diffusionless transformation nature of bainite

    International Nuclear Information System (INIS)

    Caballero, F.G.; Miller, M.K.; Garcia-Mateo, C.; Cornide, J.

    2013-01-01

    Highlights: ► A new generation of steels has been designed, which on transformation at low temperature (200–350 °C), lead to a nano-scale microstructure, known as NanoBain. The microstructure consists of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes (20–40 nm). ► NanoBain present the highest strength/toughness combinations ever recorded in bainitic steels (∼2.5 GPa/40 MPa m 1/2 ). This structure can be produced without any severe heat treatment, without deformation, simply by phase changes occurring slowly at low temperatures. ► The characterization of NanoBain at the atomic scale has led to revealed extremely important detail on the atomic mechanisms of phase transformations which have been controversial for the last seventy years. ► The results reported in this work have proven beyond doubt that the bainite phase change is essentially displacive in nature. -- Abstract: Since the discovery of bainite, research over many decades has revealed a substantial amount of information about the mechanism of the bainite transformation in steels. Elements of the theory are now routinely being used in many parts of the world in the design of novel alloys and in the interpretation of a variety of experimental data. However, current experimental and theoretical understanding is limiting technological progress. The purpose of this atom probe tomography study was to track atom distributions during the bainite reaction in a nanocrystalline steel. The results are providing new experimental evidence on subjects critically relevant to the understanding of the atomic mechanisms controlling bainitic ferrite formation, such as the incomplete transformation phenomenon, the carbon supersaturation of ferrite, and the plastic accommodation of the surrounding austenite

  7. New experimental evidence of the diffusionless transformation nature of bainite

    Energy Technology Data Exchange (ETDEWEB)

    Caballero, F.G., E-mail: fgc@cenim.csic.es [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo, 8, Madrid, E-28040 (Spain); Miller, M.K. [Oak Ridge National Laboratory (ORNL), Materials Science and Technology Division, Oak Ridge, TN 37831-6136 (United States); Garcia-Mateo, C.; Cornide, J. [Centro Nacional de Investigaciones Metalúrgicas (CENIM-CSIC), Avda Gregorio del Amo, 8, Madrid, E-28040 (Spain)

    2013-11-15

    Highlights: ► A new generation of steels has been designed, which on transformation at low temperature (200–350 °C), lead to a nano-scale microstructure, known as NanoBain. The microstructure consists of slender crystals of ferrite, whose controlling scale compares well with that of carbon nanotubes (20–40 nm). ► NanoBain present the highest strength/toughness combinations ever recorded in bainitic steels (∼2.5 GPa/40 MPa m{sup 1/2}). This structure can be produced without any severe heat treatment, without deformation, simply by phase changes occurring slowly at low temperatures. ► The characterization of NanoBain at the atomic scale has led to revealed extremely important detail on the atomic mechanisms of phase transformations which have been controversial for the last seventy years. ► The results reported in this work have proven beyond doubt that the bainite phase change is essentially displacive in nature. -- Abstract: Since the discovery of bainite, research over many decades has revealed a substantial amount of information about the mechanism of the bainite transformation in steels. Elements of the theory are now routinely being used in many parts of the world in the design of novel alloys and in the interpretation of a variety of experimental data. However, current experimental and theoretical understanding is limiting technological progress. The purpose of this atom probe tomography study was to track atom distributions during the bainite reaction in a nanocrystalline steel. The results are providing new experimental evidence on subjects critically relevant to the understanding of the atomic mechanisms controlling bainitic ferrite formation, such as the incomplete transformation phenomenon, the carbon supersaturation of ferrite, and the plastic accommodation of the surrounding austenite.

  8. Automated image enhancement using power law transformations

    Indian Academy of Sciences (India)

    1Birla Institute of Technology & Science (BITS), Pilani 333 031, India .... Our algorithm has the advantage that it is very simple to implement and .... Education. Jun J, Jun C and Xinglin C 2008 CISP, vol. 3, Congress on Image and Signal ...

  9. Electro-Optical Imaging Fourier-Transform Spectrometer

    Science.gov (United States)

    Chao, Tien-Hsin; Zhou, Hanying

    2006-01-01

    An electro-optical (E-O) imaging Fourier-transform spectrometer (IFTS), now under development, is a prototype of improved imaging spectrometers to be used for hyperspectral imaging, especially in the infrared spectral region. Unlike both imaging and non-imaging traditional Fourier-transform spectrometers, the E-O IFTS does not contain any moving parts. Elimination of the moving parts and the associated actuator mechanisms and supporting structures would increase reliability while enabling reductions in size and mass, relative to traditional Fourier-transform spectrometers that offer equivalent capabilities. Elimination of moving parts would also eliminate the vibrations caused by the motions of those parts. Figure 1 schematically depicts a traditional Fourier-transform spectrometer, wherein a critical time delay is varied by translating one the mirrors of a Michelson interferometer. The time-dependent optical output is a periodic representation of the input spectrum. Data characterizing the input spectrum are generated through fast-Fourier-transform (FFT) post-processing of the output in conjunction with the varying time delay.

  10. Locating An IRIS From Image Using Canny And Hough Transform

    Directory of Open Access Journals (Sweden)

    Poorvi Bhatt

    2017-11-01

    Full Text Available Iris recognition a relatively new biometric technology has great advantages such as variability stability and security thus it is the most promising for high security environments. The proposed system here is a simple system design and implemented to find the iris from the image using Hough Transform Algorithm. Canny Edge detector has been used to get edge image to use it as an input to the Hough Transform. To get the general idea of Hough Transform the Hough Transform for circle is also implemented. RGB value of 3-D accumulator array of peaks of inner circle and outer circle has been performed. And at the end some suggestions are made to improve the system and performance gets discussed.

  11. A VLSI image processor via pseudo-mersenne transforms

    International Nuclear Information System (INIS)

    Sei, W.J.; Jagadeesh, J.M.

    1986-01-01

    The computational burden on image processing in medical fields where a large amount of information must be processed quickly and accurately has led to consideration of special-purpose image processor chip design for some time. The very large scale integration (VLSI) resolution has made it cost-effective and feasible to consider the design of special purpose chips for medical imaging fields. This paper describes a VLSI CMOS chip suitable for parallel implementation of image processing algorithms and cyclic convolutions by using Pseudo-Mersenne Number Transform (PMNT). The main advantages of the PMNT over the Fast Fourier Transform (FFT) are: (1) no multiplications are required; (2) integer arithmetic is used. The design and development of this processor, which operates on 32-point convolution or 5 x 5 window image, are described

  12. SAR image formation with azimuth interpolation after azimuth transform

    Science.gov (United States)

    Doerry,; Armin W. , Martin; Grant D. , Holzrichter; Michael, W [Albuquerque, NM

    2008-07-08

    Two-dimensional SAR data can be processed into a rectangular grid format by subjecting the SAR data to a Fourier transform operation, and thereafter to a corresponding interpolation operation. Because the interpolation operation follows the Fourier transform operation, the interpolation operation can be simplified, and the effect of interpolation errors can be diminished. This provides for the possibility of both reducing the re-grid processing time, and improving the image quality.

  13. W-transform method for feature-oriented multiresolution image retrieval

    Energy Technology Data Exchange (ETDEWEB)

    Kwong, M.K.; Lin, B. [Argonne National Lab., IL (United States). Mathematics and Computer Science Div.

    1995-07-01

    Image database management is important in the development of multimedia technology. Since an enormous amount of digital images is likely to be generated within the next few decades in order to integrate computers, television, VCR, cables, telephone and various imaging devices. Effective image indexing and retrieval systems are urgently needed so that images can be easily organized, searched, transmitted, and presented. Here, the authors present a local-feature-oriented image indexing and retrieval method based on Kwong, and Tang`s W-transform. Multiresolution histogram comparison is an effective method for content-based image indexing and retrieval. However, most recent approaches perform multiresolution analysis for whole images but do not exploit the local features present in the images. Since W-transform is featured by its ability to handle images of arbitrary size, with no periodicity assumptions, it provides a natural tool for analyzing local image features and building indexing systems based on such features. In this approach, the histograms of the local features of images are used in the indexing, system. The system not only can retrieve images that are similar or identical to the query images but also can retrieve images that contain features specified in the query images, even if the retrieved images as a whole might be very different from the query images. The local-feature-oriented method also provides a speed advantage over the global multiresolution histogram comparison method. The feature-oriented approach is expected to be applicable in managing large-scale image systems such as video databases and medical image databases.

  14. Multi-band Image Registration Method Based on Fourier Transform

    Institute of Scientific and Technical Information of China (English)

    庹红娅; 刘允才

    2004-01-01

    This paper presented a registration method based on Fourier transform for multi-band images which is involved in translation and small rotation. Although different band images differ a lot in the intensity and features,they contain certain common information which we can exploit. A model was given that the multi-band images have linear correlations under the least-square sense. It is proved that the coefficients have no effect on the registration progress if two images have linear correlations. Finally, the steps of the registration method were proposed. The experiments show that the model is reasonable and the results are satisfying.

  15. Human Body Image Edge Detection Based on Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    李勇; 付小莉

    2003-01-01

    Human dresses are different in thousands way.Human body image signals have big noise, a poor light and shade contrast and a narrow range of gray gradation distribution. The application of a traditional grads method or gray method to detect human body image edges can't obtain satisfactory results because of false detections and missed detections. According to tte peculiarity of human body image, dyadic wavelet transform of cubic spline is successfully applied to detect the face and profile edges of human body image and Mallat algorithm is used in the wavelet decomposition in this paper.

  16. Image processing tensor transform and discrete tomography with Matlab

    CERN Document Server

    Grigoryan, Artyom M

    2012-01-01

    Focusing on mathematical methods in computer tomography, Image Processing: Tensor Transform and Discrete Tomography with MATLAB(R) introduces novel approaches to help in solving the problem of image reconstruction on the Cartesian lattice. Specifically, it discusses methods of image processing along parallel rays to more quickly and accurately reconstruct images from a finite number of projections, thereby avoiding overradiation of the body during a computed tomography (CT) scan. The book presents several new ideas, concepts, and methods, many of which have not been published elsewhere. New co

  17. TRANSFORMATION

    Energy Technology Data Exchange (ETDEWEB)

    LACKS,S.A.

    2003-10-09

    Transformation, which alters the genetic makeup of an individual, is a concept that intrigues the human imagination. In Streptococcus pneumoniae such transformation was first demonstrated. Perhaps our fascination with genetics derived from our ancestors observing their own progeny, with its retention and assortment of parental traits, but such interest must have been accelerated after the dawn of agriculture. It was in pea plants that Gregor Mendel in the late 1800s examined inherited traits and found them to be determined by physical elements, or genes, passed from parents to progeny. In our day, the material basis of these genetic determinants was revealed to be DNA by the lowly bacteria, in particular, the pneumococcus. For this species, transformation by free DNA is a sexual process that enables cells to sport new combinations of genes and traits. Genetic transformation of the type found in S. pneumoniae occurs naturally in many species of bacteria (70), but, initially only a few other transformable species were found, namely, Haemophilus influenzae, Neisseria meningitides, Neisseria gonorrheae, and Bacillus subtilis (96). Natural transformation, which requires a set of genes evolved for the purpose, contrasts with artificial transformation, which is accomplished by shocking cells either electrically, as in electroporation, or by ionic and temperature shifts. Although such artificial treatments can introduce very small amounts of DNA into virtually any type of cell, the amounts introduced by natural transformation are a million-fold greater, and S. pneumoniae can take up as much as 10% of its cellular DNA content (40).

  18. Infrared Image Segmentation by Combining Fractal Geometry with Wavelet Transformation

    Directory of Open Access Journals (Sweden)

    Xionggang Tu

    2014-11-01

    Full Text Available An infrared image is decomposed into three levels by discrete stationary wavelet transform (DSWT. Noise is reduced by wiener filter in the high resolution levels in the DSWT domain. Nonlinear gray transformation operation is used to enhance details in the low resolution levels in the DSWT domain. Enhanced infrared image is obtained by inverse DSWT. The enhanced infrared image is divided into many small blocks. The fractal dimensions of all the blocks are computed. Region of interest (ROI is extracted by combining all the blocks, which have similar fractal dimensions. ROI is segmented by global threshold method. The man-made objects are efficiently separated from the infrared image by the proposed method.

  19. Medical image compression by using three-dimensional wavelet transformation

    International Nuclear Information System (INIS)

    Wang, J.; Huang, H.K.

    1996-01-01

    This paper proposes a three-dimensional (3-D) medical image compression method for computed tomography (CT) and magnetic resonance (MR) that uses a separable nonuniform 3-D wavelet transform. The separable wavelet transform employs one filter bank within two-dimensional (2-D) slices and then a second filter bank on the slice direction. CT and MR image sets normally have different resolutions within a slice and between slices. The pixel distances within a slice are normally less than 1 mm and the distance between slices can vary from 1 mm to 10 mm. To find the best filter bank in the slice direction, the authors use the various filter banks in the slice direction and compare the compression results. The results from the 12 selected MR and CT image sets at various slice thickness show that the Haar transform in the slice direction gives the optimum performance for most image sets, except for a CT image set which has 1 mm slice distance. Compared with 2-D wavelet compression, compression ratios of the 3-D method are about 70% higher for CT and 35% higher for MR image sets at a peak signal to noise ratio (PSNR) of 50 dB. In general, the smaller the slice distance, the better the 3-D compression performance

  20. QR code-based non-linear image encryption using Shearlet transform and spiral phase transform

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Hennelly, Bryan

    2018-02-01

    In this paper, we propose a new quick response (QR) code-based non-linear technique for image encryption using Shearlet transform (ST) and spiral phase transform. The input image is first converted into a QR code and then scrambled using the Arnold transform. The scrambled image is then decomposed into five coefficients using the ST and the first Shearlet coefficient, C1 is interchanged with a security key before performing the inverse ST. The output after inverse ST is then modulated with a random phase mask and further spiral phase transformed to get the final encrypted image. The first coefficient, C1 is used as a private key for decryption. The sensitivity of the security keys is analysed in terms of correlation coefficient and peak signal-to noise ratio. The robustness of the scheme is also checked against various attacks such as noise, occlusion and special attacks. Numerical simulation results are shown in support of the proposed technique and an optoelectronic set-up for encryption is also proposed.

  1. PT-symmetric planar devices for field transformation and imaging

    International Nuclear Information System (INIS)

    Valagiannopoulos, C A; Monticone, F; Alù, A

    2016-01-01

    The powerful tools of transformation optics (TO) allow an effective distortion of a region of space by carefully engineering the material inhomogeneity and anisotropy, and have been successfully applied in recent years to control electromagnetic fields in many different scenarios, e.g., to realize invisibility cloaks and planar lenses. For various field transformations, it is not necessary to use volumetric inhomogeneous materials, and suitably designed ultrathin metasurfaces with tailored spatial or spectral responses may be able to realize similar functionalities within smaller footprints and more robust mechanisms. Here, inspired by the concept of metamaterial TO lenses, we discuss field transformations enabled by parity-time (PT) symmetric metasurfaces, which can emulate negative refraction. We first analyze a simple realization based on homogeneous and local metasurfaces to achieve negative refraction and imaging, and we then extend our results to arbitrary PT-symmetric two-port networks to realize aberration-free planar imaging. (paper)

  2. Image Compression using Haar and Modified Haar Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Mohannad Abid Shehab Ahmed

    2013-04-01

    Full Text Available Efficient image compression approaches can provide the best solutions to the recent growth of the data intensive and multimedia based applications. As presented in many papers the Haar matrix–based methods and wavelet analysis can be used in various areas of image processing such as edge detection, preserving, smoothing or filtering. In this paper, color image compression analysis and synthesis based on Haar and modified Haar is presented. The standard Haar wavelet transformation with N=2 is composed of a sequence of low-pass and high-pass filters, known as a filter bank, the vertical and horizontal Haar filters are composed to construct four 2-dimensional filters, such filters applied directly to the image to speed up the implementation of the Haar wavelet transform. Modified Haar technique is studied and implemented for odd based numbers i.e. (N=3 & N=5 to generate many solution sets, these sets are tested using the energy function or numerical method to get the optimum one.The Haar transform is simple, efficient in memory usage due to high zero value spread (it can use sparse principle, and exactly reversible without the edge effects as compared to DCT (Discrete Cosine Transform. The implemented Matlab simulation results prove the effectiveness of DWT (Discrete Wave Transform algorithms based on Haar and Modified Haar techniques in attaining an efficient compression ratio (C.R, achieving higher peak signal to noise ratio (PSNR, and the resulting images are of much smoother as compared to standard JPEG especially for high C.R. A comparison between standard JPEG, Haar, and Modified Haar techniques is done finally which approves the highest capability of Modified Haar between others.

  3. Hyperspectral imaging using the single-pixel Fourier transform technique

    Science.gov (United States)

    Jin, Senlin; Hui, Wangwei; Wang, Yunlong; Huang, Kaicheng; Shi, Qiushuai; Ying, Cuifeng; Liu, Dongqi; Ye, Qing; Zhou, Wenyuan; Tian, Jianguo

    2017-03-01

    Hyperspectral imaging technology is playing an increasingly important role in the fields of food analysis, medicine and biotechnology. To improve the speed of operation and increase the light throughput in a compact equipment structure, a Fourier transform hyperspectral imaging system based on a single-pixel technique is proposed in this study. Compared with current imaging spectrometry approaches, the proposed system has a wider spectral range (400-1100 nm), a better spectral resolution (1 nm) and requires fewer measurement data (a sample rate of 6.25%). The performance of this system was verified by its application to the non-destructive testing of potatoes.

  4. Design Transformation based on Nature and Identity Formation in the Design of Landscape Elements

    Directory of Open Access Journals (Sweden)

    Zulkifli Muslim

    2016-01-01

    Full Text Available There is a lack of initiative from the designers to integrate the environmental resources in the material and design production of local urban landscape elements that reflects human culture and lifestyle. Based on criteria and principles of symbol design and transformation process, this paper describes the symbiotic relationship between local plants (flower and designs of landscape elements. Using visual analysis, the researcher manipulated shapes and forms of local plant images in producing possible shapes and forms for a design of landscape element (lamp post. The results indicate that the design transformation is a systematic process that allows for variations in design without losing the core characteristics and identity of the basic elements of nature.

  5. The fuzzy Hough Transform-feature extraction in medical images

    International Nuclear Information System (INIS)

    Philip, K.P.; Dove, E.L.; Stanford, W.; Chandran, K.B.; McPherson, D.D.; Gotteiner, N.L.

    1994-01-01

    Identification of anatomical features is a necessary step for medical image analysis. Automatic methods for feature identification using conventional pattern recognition techniques typically classify an object as a member of a predefined class of objects, but do not attempt to recover the exact or approximate shape of that object. For this reason, such techniques are usually not sufficient to identify the borders of organs when individual geometry varies in local detail, even though the general geometrical shape is similar. The authors present an algorithm that detects features in an image based on approximate geometrical models. The algorithm is based on the traditional and generalized Hough Transforms but includes notions from fuzzy set theory. The authors use the new algorithm to roughly estimate the actual locations of boundaries of an internal organ, and from this estimate, to determine a region of interest around the organ. Based on this rough estimate of the border location, and the derived region of interest, the authors find the final estimate of the true borders with other image processing techniques. The authors present results that demonstrate that the algorithm was successfully used to estimate the approximate location of the chest wall in humans, and of the left ventricular contours of a dog heart obtained from cine-computed tomographic images. The authors use this fuzzy Hough Transform algorithm as part of a larger procedures to automatically identify the myocardial contours of the heart. This algorithm may also allow for more rapid image processing and clinical decision making in other medical imaging applications

  6. Radical Transformation in the Human - Nature Perception: Deep Ecology

    Directory of Open Access Journals (Sweden)

    Hasan YAYLI

    2015-07-01

    Full Text Available There have been numerous endeavors to date the green thought. As the environmental problems have begun to be apparent in the aftermath of the second world war, the year of 1952, a traumatic incident is noted where more than four thousand people have died d ue to air pollution in London, while in 1970, Rome Club have initiated within the Project of Predicament of Mankind in collaboration with Massachusetts Institute of Technology (MIT, in which zero growth thesis put forward in its famed report. Both the for mer and the latter ignited environmental awareness and regarded as the point of origins for the green thought. Regardless of where it begins from, ecological movements have mainly followed the paths of two movements of thought and tried to develop their p aradigms on the basis of these two main thoughts. The environmentalists that named as socialist or Marxist asserts that only through a radical transformation where capitalist way of production is abandoned, the prevention of environmental degradation cou ld be achieved. Whereas the environmentalists who follow the capitalist paradigm believed the protection of environment could be achieved by means of the sustainability in terms of natural resource pool and waste - disposal practices. If we look closely, both of these two movements of thought are anthropocentric. An alternative ecological movement of thought has proposed in 1973 by Norwegian philosopher, Arne Naess, in his work named, “The Shallow and the Deep, Long - Range Ecology Moveme nt: A Summary”. This Deep Ecology approach moves through the commitment to the inner value of the nature aside from mankind and by this way, differs from anthropocentric approaches. Within forty two years, Deep Ecology has led various discussions. The the mes as “ecosophy” which has proposed to define itself and the “bio - regions” conception which put forward to actualize its philosophy could be counted among the reference points of the

  7. Fourier transform digital holographic adaptive optics imaging system

    Science.gov (United States)

    Liu, Changgeng; Yu, Xiao; Kim, Myung K.

    2013-01-01

    A Fourier transform digital holographic adaptive optics imaging system and its basic principles are proposed. The CCD is put at the exact Fourier transform plane of the pupil of the eye lens. The spherical curvature introduced by the optics except the eye lens itself is eliminated. The CCD is also at image plane of the target. The point-spread function of the system is directly recorded, making it easier to determine the correct guide-star hologram. Also, the light signal will be stronger at the CCD, especially for phase-aberration sensing. Numerical propagation is avoided. The sensor aperture has nothing to do with the resolution and the possibility of using low coherence or incoherent illumination is opened. The system becomes more efficient and flexible. Although it is intended for ophthalmic use, it also shows potential application in microscopy. The robustness and feasibility of this compact system are demonstrated by simulations and experiments using scattering objects. PMID:23262541

  8. Transformation of Image Positions, Rotations, and Sizes into Shift Parameters

    DEFF Research Database (Denmark)

    Skov Jensen, A.; Lindvold, L.; Rasmussen, E.

    1987-01-01

    An optical image processing system is described that converts orientation and size to shift properties and simultaneously preserves the positional information as a shift. The system is described analytically and experimentally. The transformed image can be processed further with a classical...... correlator working with a rotational and size-invariant. multiplexed match filter. An optical robot vision system designed on this concept would be able to look at several objects simultaneously and determine their shape, size, orientation, and position with two measurements on the input scene at different...

  9. Non-rigid registration of tomographic images with Fourier transforms

    International Nuclear Information System (INIS)

    Osorio, Ar; Isoardi, Ra; Mato, G

    2007-01-01

    Spatial image registration of deformable body parts such as thorax and abdomen has important medical applications, but at the same time, it represents an important computational challenge. In this work we propose an automatic algorithm to perform non-rigid registration of tomographic images using a non-rigid model based on Fourier transforms. As a measure of similarity, we use the correlation coefficient, finding that the optimal order of the transformation is n = 3 (36 parameters). We apply this method to a digital phantom and to 7 pairs of patient images corresponding to clinical CT scans. The preliminary results indicate a fairly good agreement according to medical experts, with an average registration error of 2 mm for the case of clinical images. For 2D images (dimensions 512x512), the average running time for the algorithm is 15 seconds using a standard personal computer. Summarizing, we find that intra-modality registration of the abdomen can be achieved with acceptable accuracy for slight deformations and can be extended to 3D with a reasonable execution time

  10. The gridding method for image reconstruction by Fourier transformation

    International Nuclear Information System (INIS)

    Schomberg, H.; Timmer, J.

    1995-01-01

    This paper explores a computational method for reconstructing an n-dimensional signal f from a sampled version of its Fourier transform f. The method involves a window function w and proceeds in three steps. First, the convolution g = w * f is computed numerically on a Cartesian grid, using the available samples of f. Then, g = wf is computed via the inverse discrete Fourier transform, and finally f is obtained as g/w. Due to the smoothing effect of the convolution, evaluating w * f is much less error prone than merely interpolating f. The method was originally devised for image reconstruction in radio astronomy, but is actually applicable to a broad range of reconstructive imaging methods, including magnetic resonance imaging and computed tomography. In particular, it provides a fast and accurate alternative to the filtered backprojection. The basic method has several variants with other applications, such as the equidistant resampling of arbitrarily sampled signals or the fast computation of the Radon (Hough) transform

  11. CHLORPYRIFOS TRANSFORMATION BY AQUEOUS CHLORINE IN THE PRESENCE OF BROMIDE AND NATURAL ORGANIC MATTER

    Science.gov (United States)

    The aqueous chlorination of chlorpyrifos (CP) was investigated in the presence of bromide and natural organic matter (NOM), which were identified as naturally occurring aqueous constituents that could impact CP transformation rates to the toxic product chlorpyrifos oxon (CPO). Br...

  12. A new optical encryption system for image transformation

    Science.gov (United States)

    Yao, Shuyu; Chen, Linfei; Chang, Guojun; He, Bingyu

    2017-12-01

    This paper introduces a new optical image encryption system based on Fresnel diffraction and phase iterative algorithm, which can realize the conversion between different images. The method is based on the optical system of free space transmission, and uses the iterative phase retrieval algorithm to encode an image into two phase masks and a ciphertext. Unlike the existed methods, the ciphertext is a visible image, which can be used to achieve the conversion of one image to another image. In order to enhance the security, two phase masks are combined into a wide-scale phase mask by the double image cross pixel scrambling approach. In the decryption process, the wide-scale phase mask is re-decrypted into two random phase masks using a random shift matrix. The ciphertext and the first phase mask are placed on the input plane and the second random phase mask is placed on the transformation plane. The Fresnel diffraction principle can be used to obtain the plaintext information on the output plane. Theoretical analysis and simulation results show that the encryption system is feasible and quite safe.

  13. Fast ghost imaging and ghost encryption based on the discrete cosine transform

    International Nuclear Information System (INIS)

    Tanha, Mehrdad; Ahmadi-Kandjani, Sohrab; Kheradmand, Reza

    2013-01-01

    We introduce the discrete cosine transform as an advanced compression tool for images in computational ghost imaging. A novel approach to fast imaging and encryption, the discrete cosine transform, promotes the security level of ghost images and reduces the image retrieval time. To discuss the advantages of this technique we compare experimental outcomes with simulated ones. (paper)

  14. Natural Genetic Transformation Generates a Population of Merodiploids in Streptococcus pneumoniae.

    OpenAIRE

    Johnston, Calum; Caymaris, Stéphanie; Zomer, Aldert; Bootsma, Hester J.; Prudhomme, Marc; Granadel, Chantal; Hermans, Peter W. M.; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre

    2013-01-01

    Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exog...

  15. Nucleases Encoded by Integraded Elements CJIE2 and CJIE4 Inhibit Natural Transformation of Campylobacter Jejuni

    NARCIS (Netherlands)

    Gaasbeek, E.J.; Wagenaar, J.A.; Guilhabert, M.R.; Putten, van J.P.; Parker, C.T.; Wal, van der F.J.

    2010-01-01

    The species Campylobacter jejuni is naturally competent for DNA uptake; nevertheless, nonnaturally transformable strains do exist. For a subset of strains we previously showed that a periplasmic DNase, encoded by dns, inhibits natural transformation in C. jejuni. In the present study, genetic

  16. Adaptive geodesic transform for segmentation of vertebrae on CT images

    Science.gov (United States)

    Gaonkar, Bilwaj; Shu, Liao; Hermosillo, Gerardo; Zhan, Yiqiang

    2014-03-01

    Vertebral segmentation is a critical first step in any quantitative evaluation of vertebral pathology using CT images. This is especially challenging because bone marrow tissue has the same intensity profile as the muscle surrounding the bone. Thus simple methods such as thresholding or adaptive k-means fail to accurately segment vertebrae. While several other algorithms such as level sets may be used for segmentation any algorithm that is clinically deployable has to work in under a few seconds. To address these dual challenges we present here, a new algorithm based on the geodesic distance transform that is capable of segmenting the spinal vertebrae in under one second. To achieve this we extend the theory of the geodesic distance transforms proposed in1 to incorporate high level anatomical knowledge through adaptive weighting of image gradients. Such knowledge may be provided by the user directly or may be automatically generated by another algorithm. We incorporate information 'learnt' using a previously published machine learning algorithm2 to segment the L1 to L5 vertebrae. While we present a particular application here, the adaptive geodesic transform is a generic concept which can be applied to segmentation of other organs as well.

  17. EBLAST: an efficient high-compression image transformation 3. application to Internet image and video transmission

    Science.gov (United States)

    Schmalz, Mark S.; Ritter, Gerhard X.; Caimi, Frank M.

    2001-12-01

    A wide variety of digital image compression transforms developed for still imaging and broadcast video transmission are unsuitable for Internet video applications due to insufficient compression ratio, poor reconstruction fidelity, or excessive computational requirements. Examples include hierarchical transforms that require all, or large portion of, a source image to reside in memory at one time, transforms that induce significant locking effect at operationally salient compression ratios, and algorithms that require large amounts of floating-point computation. The latter constraint holds especially for video compression by small mobile imaging devices for transmission to, and compression on, platforms such as palmtop computers or personal digital assistants (PDAs). As Internet video requirements for frame rate and resolution increase to produce more detailed, less discontinuous motion sequences, a new class of compression transforms will be needed, especially for small memory models and displays such as those found on PDAs. In this, the third series of papers, we discuss the EBLAST compression transform and its application to Internet communication. Leading transforms for compression of Internet video and still imagery are reviewed and analyzed, including GIF, JPEG, AWIC (wavelet-based), wavelet packets, and SPIHT, whose performance is compared with EBLAST. Performance analysis criteria include time and space complexity and quality of the decompressed image. The latter is determined by rate-distortion data obtained from a database of realistic test images. Discussion also includes issues such as robustness of the compressed format to channel noise. EBLAST has been shown to perform superiorly to JPEG and, unlike current wavelet compression transforms, supports fast implementation on embedded processors with small memory models.

  18. Using appreciative inquiry to transform student nurses’ image of nursing

    Directory of Open Access Journals (Sweden)

    Motshedisi E. Chauke

    2015-08-01

    Full Text Available Introduction: Literature provides adequate evidence of a poor perception of nursing within the profession, resulting in high rates of attrition of student nurses and newly qualified nurses. The nursing profession, in particular nurse educators, has an ethical and professional responsibility to find innovative strategies to promote the positive image of nursing amongst student nurses. Purpose: The purpose of the study was to explore the potential of appreciative inquiry (AI as an intervention teaching strategy to transform student nurses’ image of nursing. Design: A quantitative, quasi-experimental, explorative-descriptive design comprising the pretest, appreciative inquiry as intervention, and the post-test was used. Methods: Convenience sampling was used to select third and fourthyear college and university student nurses in the Gauteng province of South Africa for the pre- and the post-test respectively. Data were collected by means of a questionnaire and analysed by SPSS version 20.0. Findings: The pretest results revealed a mix of positive and negative perceptions of the image of nursing amongst student nurses. The negative perceptions of the image of nursing that needed intervention included the working conditions of nurses, and the perception of nursing as a profession that was not respected and appreciated. The post-test results showed a significant and positive change in the student nurses’ perception of the image of nursing as a respected and appreciated profession. Although AI resulted in a negative to positive change in some aspects of student nurses’ image of nursing, the negative perceptions of the working conditions of nurses remained and became more negative. The positive image of gender in nursing was enhanced following the implementation of AI. Conclusion: Appreciative inquiry demonstrated potential as a teaching strategy to produce a positive nursing image change and positive orientation towards nursing amongst student

  19. Using appreciative inquiry to transform student nurses' image of nursing.

    Science.gov (United States)

    Chauke, Motshedisi E; Van Der Wal, Dirk; Botha, Annalie

    2015-08-19

    Literature provides adequate evidence of a poor perception of nursing within the profession, resulting in high rates of attrition of student nurses and newly qualified nurses. The nursing profession, in particular nurse educators, has an ethical and professional responsibility to find innovative strategies to promote the positive image of nursing amongst student nurses. The purpose of the study was to explore the potential of appreciative inquiry (AI) as an intervention teaching strategy to transform student nurses' image of nursing. A quantitative, quasi-experimental, explorative-descriptive design comprising the pretest, appreciative inquiry as intervention, and the post-test was used. Convenience sampling was used to select third and fourth year college and university student nurses in the Gauteng province of South Africa for the pre- and the post-test respectively. Data were collected by means of a questionnaire and analysed by SPSS version 20.0. The pretest results revealed a mix of positive and negative perceptions of the image of nursing amongst student nurses. The negative perceptions of the image of nursing that needed intervention included the working conditions of nurses, and the perception of nursing as a profession that was not respected and appreciated. The post-test results showed a significant and positive change in the student nurses' perception of the image of nursing as a respected and appreciated profession. Although AI resulted in a negative to positive change in some aspects of student nurses' image of nursing, the negative perceptions of the working conditions of nurses remained and became more negative. The positive image of gender in nursing was enhanced following the implementation of AI. Appreciative inquiry demonstrated potential as a teaching strategy to produce a positive nursing image change and positive orientation towards nursing amongst student nurses.

  20. THE METHODOLOGY OF GEOSYSTEM MAPPING OF PHENOMENA OF THE NATURE TRANSFORMATION

    Directory of Open Access Journals (Sweden)

    T. I. Konovalova

    2017-01-01

    Full Text Available Knowledge of modern geosystems properties, regularities of their formation, and changes under the influence of natural and anthropogenic factors is the basis for the timely prediction of adverse events occurring during the change of environment. Abstract review of the individual components and static Geosystems cannot bring substantive results in solving these problems. The situation is compounded by the need to study and map geosystems regions, which are characterized by tectonic activity and high dynamic processes. This makes it necessary to establish general principles of integrity and display the variability of the geosystems in the map legend, as rules for their cartographic interpretation. Currently, despite a significant amount of geological and geophysical data and landscape there are virtually no developments, dedicated to solving the problem of mapping geosystems such regions. Maps specificity is complex and consists in mapping geosystems, which are characterized by diverse genesis, different stages of development, in the synthesis of space and time into a single whole, the comparison of the current state of geosystems with the natural rhythms and patterns of development of the natural environment. These maps are a theoretical model of reality, a synthesized information on the functioning, dynamics and evolution of geosystems, the direction of their transformation, as in changing natural and anthropogenic conditions. In developing issues that are related to the multivariate analysis of the future state of geosystems, these maps are of high scientific and practical value. The present study offers modern geosystem mapping based on both the traditional route studies, and the use of of space images of the Earth. Methodology of geosystem mapping is associated with the implementation of synergetic approach and further development of the theory of geosystems of V. B. Sochava. The article considers the methodology of geosystems mapping based

  1. Single-pixel imaging by Hadamard transform and its application for hyperspectral imaging

    Science.gov (United States)

    Mizutani, Yasuhiro; Shibuya, Kyuki; Taguchi, Hiroki; Iwata, Tetsuo; Takaya, Yasuhiro; Yasui, Takeshi

    2016-10-01

    In this paper, we report on comparisons of single-pixel imagings using Hadamard Transform (HT) and the ghost imaging (GI) in the view point of the visibility under weak light conditions. For comparing the two methods, we have discussed about qualities of images based on experimental results and numerical analysis. To detect images by the TH method, we have illuminated the Hadamard-pattern mask and calculated by orthogonal transform. On the other hand, the GH method can detect images by illuminating random patterns and a correlation measurement. For comparing two methods under weak light intensity, we have controlled illuminated intensities of a DMD projector about 0.1 in signal-to-noise ratio. Though a process speed of the HT image was faster then an image via the GI, the GI method has an advantage of detection under weak light condition. An essential difference between the HT and the GI method is discussed about reconstruction process. Finally, we also show a typical application of the single-pixel imaging such as hyperspectral images by using dual-optical frequency combs. An optical setup consists of two fiber lasers, spatial light modulated for generating patten illumination, and a single pixel detector. We are successful to detect hyperspectrul images in a range from 1545 to 1555 nm at 0.01nm resolution.

  2. Natural radioactivity distribution images and their educational uses

    International Nuclear Information System (INIS)

    Mori, Chizuo; Sumi, Tetsuo; Miyahara, Hiroshi; Uritani, Akira; Nishina, Kojiro

    1999-01-01

    Distribution images of natural radioactivities in vegetables, meat and porcelain works were obtained by use of Imaging Plate with very high sensitivity to radiations. A brochure titled 'Natural Radiations through Naked Eyes' was published in both Japanese and English which included the images mentioned above. In this paper, the method to obtain the distribution images of extremely low level natural radioactivity, the content of the brochure and the effect of it to the public are described. (author)

  3. Natural radioactivity distribution images and their educational uses

    Energy Technology Data Exchange (ETDEWEB)

    Mori, Chizuo; Sumi, Tetsuo [Aichi Institute of Technology, Toyota, Aichi (Japan); Miyahara, Hiroshi; Uritani, Akira; Nishina, Kojiro

    1999-09-01

    Distribution images of natural radioactivities in vegetables, meat and porcelain works were obtained by use of Imaging Plate with very high sensitivity to radiations. A brochure titled 'Natural Radiations through Naked Eyes' was published in both Japanese and English which included the images mentioned above. In this paper, the method to obtain the distribution images of extremely low level natural radioactivity, the content of the brochure and the effect of it to the public are described. (author)

  4. Weighted ensemble transform Kalman filter for image assimilation

    Directory of Open Access Journals (Sweden)

    Sebastien Beyou

    2013-01-01

    Full Text Available This study proposes an extension of the Weighted Ensemble Kalman filter (WEnKF proposed by Papadakis et al. (2010 for the assimilation of image observations. The main focus of this study is on a novel formulation of the Weighted filter with the Ensemble Transform Kalman filter (WETKF, incorporating directly as a measurement model a non-linear image reconstruction criterion. This technique has been compared to the original WEnKF on numerical and real world data of 2-D turbulence observed through the transport of a passive scalar. In particular, it has been applied for the reconstruction of oceanic surface current vorticity fields from sea surface temperature (SST satellite data. This latter technique enables a consistent recovery along time of oceanic surface currents and vorticity maps in presence of large missing data areas and strong noise.

  5. A type IV pilus mediates DNA binding during natural transformation in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Raphaël Laurenceau

    Full Text Available Natural genetic transformation is widely distributed in bacteria and generally occurs during a genetically programmed differentiated state called competence. This process promotes genome plasticity and adaptability in Gram-negative and Gram-positive bacteria. Transformation requires the binding and internalization of exogenous DNA, the mechanisms of which are unclear. Here, we report the discovery of a transformation pilus at the surface of competent Streptococcus pneumoniae cells. This Type IV-like pilus, which is primarily composed of the ComGC pilin, is required for transformation. We provide evidence that it directly binds DNA and propose that the transformation pilus is the primary DNA receptor on the bacterial cell during transformation in S. pneumoniae. Being a central component of the transformation apparatus, the transformation pilus enables S. pneumoniae, a major Gram-positive human pathogen, to acquire resistance to antibiotics and to escape vaccines through the binding and incorporation of new genetic material.

  6. Natural knowledge as a propaedeutic to self-betterment: Francis Bacon and the transformation of natural history.

    Science.gov (United States)

    Lancaster, James A T

    2012-01-01

    This paper establishes the 'emblematic' use of natural history as a propaedeutic to self-betterment in the Renaissance; in particular, in the natural histories of Gessner and Topsell, but also in the works of Erasmus and Rabelais. Subsequently, it investigates how Francis Bacon's conception of natural history is envisaged in relation to them. The paper contends that, where humanist natural historians understood the use of natural knowledge as a preliminary to individual improvement, Bacon conceived self-betterment foremost as a means to Christian charity, or social-betterment. It thus examines the transformation of the moralizing aspect of Renaissance natural history in Bacon's conception of his Great Instauration.

  7. TEXTURE-AWARE DENSE IMAGE MATCHING USING TERNARY CENSUS TRANSFORM

    Directory of Open Access Journals (Sweden)

    H. Hu

    2016-06-01

    Full Text Available Textureless and geometric discontinuities are major problems in state-of-the-art dense image matching methods, as they can cause visually significant noise and the loss of sharp features. Binary census transform is one of the best matching cost methods but in textureless areas, where the intensity values are similar, it suffers from small random noises. Global optimization for disparity computation is inherently sensitive to parameter tuning in complex urban scenes, and must compromise between smoothness and discontinuities. The aim of this study is to provide a method to overcome these issues in dense image matching, by extending the industry proven Semi-Global Matching through 1 developing a ternary census transform, which takes three outputs in a single order comparison and encodes the results in two bits rather than one, and also 2 by using texture-information to self-tune the parameters, which both preserves sharp edges and enforces smoothness when necessary. Experimental results using various datasets from different platforms have shown that the visual qualities of the triangulated point clouds in urban areas can be largely improved by these proposed methods.

  8. A natural-color mapping for single-band night-time image based on FPGA

    Science.gov (United States)

    Wang, Yilun; Qian, Yunsheng

    2018-01-01

    A natural-color mapping for single-band night-time image method based on FPGA can transmit the color of the reference image to single-band night-time image, which is consistent with human visual habits and can help observers identify the target. This paper introduces the processing of the natural-color mapping algorithm based on FPGA. Firstly, the image can be transformed based on histogram equalization, and the intensity features and standard deviation features of reference image are stored in SRAM. Then, the real-time digital images' intensity features and standard deviation features are calculated by FPGA. At last, FPGA completes the color mapping through matching pixels between images using the features in luminance channel.

  9. Experimental simulation of the natural transformation of kerogen

    Energy Technology Data Exchange (ETDEWEB)

    Monin, J C [Institut Francais du Petrole, Rueil-Malmaison, France; Durand, B; Vandenbroucke, M; Huc, A Y

    1980-01-01

    Analytical techniques such as elemental analysis, infrared spectroscopy, ESR, dark-field electron microscopy and reflectance analysis applied to kerogens enables the geochemist to describe how they evolve at depth. Simulation of this evolution is obtained by the temperature-programmed heating of immature samples in a stream of inert gas. Comparison of naturally occurring samples at increasing stages of maturation, and artificially matured samples demonstrates that this simulation generally reproduces the overall characteristics of evolution at depth. However, agreement is better for hydrogen-rich than for oxygen-rich kerogens. In fact, oxygen is eliminated in nature, and in the laboratory, by different mechanisms. In nature, elimination takes place mainly at the beginning of burial. Temperatures used in the laboratory are necessarily much higher and appear to cause secondary reactions which favor water formation. Elimination of hydrogen occurs, during natural maturation, at greater depths and temperatures - i.e., in the oil and gas formation zone. Therefore, laboratory simulation is better for kerogens which have already reached the oil formation stage. Hydrocarbons released by natural and laboratory-simulated maturation are compared. Although quantities and distributions are different, similarities exist which can be used, to a first approximation, to predict the distribution of hydrocarbons obtained from naturally-evolving kerogens.

  10. TRANSFORMATION ALGORITHM FOR IMAGES OBTAINED BY OMNIDIRECTIONAL CAMERAS

    Directory of Open Access Journals (Sweden)

    V. P. Lazarenko

    2015-01-01

    Full Text Available Omnidirectional optoelectronic systems find their application in areas where a wide viewing angle is critical. However, omnidirectional optoelectronic systems have a large distortion that makes their application more difficult. The paper compares the projection functions of traditional perspective lenses and omnidirectional wide angle fish-eye lenses with a viewing angle not less than 180°. This comparison proves that distortion models of omnidirectional cameras cannot be described as a deviation from the classic model of pinhole camera. To solve this problem, an algorithm for transforming omnidirectional images has been developed. The paper provides a brief comparison of the four calibration methods available in open source toolkits for omnidirectional optoelectronic systems. Geometrical projection model is given used for calibration of omnidirectional optical system. The algorithm consists of three basic steps. At the first step, we calculate he field of view of a virtual pinhole PTZ camera. This field of view is characterized by an array of 3D points in the object space. At the second step the array of corresponding pixels for these three-dimensional points is calculated. Then we make a calculation of the projection function that expresses the relation between a given 3D point in the object space and a corresponding pixel point. In this paper we use calibration procedure providing the projection function for calibrated instance of the camera. At the last step final image is formed pixel-by-pixel from the original omnidirectional image using calculated array of 3D points and projection function. The developed algorithm gives the possibility for obtaining an image for a part of the field of view of an omnidirectional optoelectronic system with the corrected distortion from the original omnidirectional image. The algorithm is designed for operation with the omnidirectional optoelectronic systems with both catadioptric and fish-eye lenses

  11. Variable Rate, Adaptive Transform Tree Coding Of Images

    Science.gov (United States)

    Pearlman, William A.

    1988-10-01

    A tree code, asymptotically optimal for stationary Gaussian sources and squared error distortion [2], is used to encode transforms of image sub-blocks. The variance spectrum of each sub-block is estimated and specified uniquely by a set of one-dimensional auto-regressive parameters. The expected distortion is set to a constant for each block and the rate is allowed to vary to meet the given level of distortion. Since the spectrum and rate are different for every block, the code tree differs for every block. Coding simulations for target block distortion of 15 and average block rate of 0.99 bits per pel (bpp) show that very good results can be obtained at high search intensities at the expense of high computational complexity. The results at the higher search intensities outperform a parallel simulation with quantization replacing tree coding. Comparative coding simulations also show that the reproduced image with variable block rate and average rate of 0.99 bpp has 2.5 dB less distortion than a similarly reproduced image with a constant block rate equal to 1.0 bpp.

  12. Compton camera imaging and the cone transform: a brief overview

    Science.gov (United States)

    Terzioglu, Fatma; Kuchment, Peter; Kunyansky, Leonid

    2018-05-01

    While most of Radon transform applications to imaging involve integrations over smooth sub-manifolds of the ambient space, lately important situations have appeared where the integration surfaces are conical. Three of such applications are single scatter optical tomography, Compton camera medical imaging, and homeland security. In spite of the similar surfaces of integration, the data and the inverse problems associated with these modalities differ significantly. In this article, we present a brief overview of the mathematics arising in Compton camera imaging. In particular, the emphasis is made on the overdetermined data and flexible geometry of the detectors. For the detailed results, as well as other approaches (e.g. smaller-dimensional data or restricted geometry of detectors) the reader is directed to the relevant publications. Only a brief description and some references are provided for the single scatter optical tomography. This work was supported in part by NSF DMS grants 1211463 (the first two authors), 1211521 and 141877 (the third author), as well as a College of Science of Texas A&M University grant.

  13. Wiener discrete cosine transform-based image filtering

    Science.gov (United States)

    Pogrebnyak, Oleksiy; Lukin, Vladimir V.

    2012-10-01

    A classical problem of additive white (spatially uncorrelated) Gaussian noise suppression in grayscale images is considered. The main attention is paid to discrete cosine transform (DCT)-based denoising, in particular, to image processing in blocks of a limited size. The efficiency of DCT-based image filtering with hard thresholding is studied for different sizes of overlapped blocks. A multiscale approach that aggregates the outputs of DCT filters having different overlapped block sizes is proposed. Later, a two-stage denoising procedure that presumes the use of the multiscale DCT-based filtering with hard thresholding at the first stage and a multiscale Wiener DCT-based filtering at the second stage is proposed and tested. The efficiency of the proposed multiscale DCT-based filtering is compared to the state-of-the-art block-matching and three-dimensional filter. Next, the potentially reachable multiscale filtering efficiency in terms of output mean square error (MSE) is studied. The obtained results are of the same order as those obtained by Chatterjee's approach based on nonlocal patch processing. It is shown that the ideal Wiener DCT-based filter potential is usually higher when noise variance is high.

  14. Voracious transformation of a common natural resource into productive capital

    NARCIS (Netherlands)

    van der Ploeg, F.

    2010-01-01

    I analyze a power struggle where competing factions have private financial assets and deplete a common stock of natural resources with no private property rights. I obtain a feedback Nash equilibrium to the dynamic common-pool problem and obtain political variants of the Hotelling depletion rule and

  15. A quorum sensing-mediated switch contributes to natural transformation of Vibrio cholerae

    OpenAIRE

    Blokesch Melanie

    2013-01-01

    There is a fundamental gap in our understanding of how horizontal gene transfer contributes to the enormous range of genetic variations that are observed among bacteria. The objective of our study was to better understand how the acquisition of genetic material by natural transformation is regulated within a population of Vibrio cholerae cells. V. cholerae is an aquatic bacterium and a facultative human pathogen. It acquires natural competence for transformation in response to changing enviro...

  16. High-Throughput Screening Using Fourier-Transform Infrared Imaging

    Directory of Open Access Journals (Sweden)

    Erdem Sasmaz

    2015-06-01

    Full Text Available Efficient parallel screening of combinatorial libraries is one of the most challenging aspects of the high-throughput (HT heterogeneous catalysis workflow. Today, a number of methods have been used in HT catalyst studies, including various optical, mass-spectrometry, and gas-chromatography techniques. Of these, rapid-scanning Fourier-transform infrared (FTIR imaging is one of the fastest and most versatile screening techniques. Here, the new design of the 16-channel HT reactor is presented and test results for its accuracy and reproducibility are shown. The performance of the system was evaluated through the oxidation of CO over commercial Pd/Al2O3 and cobalt oxide nanoparticles synthesized with different reducer-reductant molar ratios, surfactant types, metal and surfactant concentrations, synthesis temperatures, and ramp rates.

  17. Parallel processing approach to transform-based image coding

    Science.gov (United States)

    Normile, James O.; Wright, Dan; Chu, Ken; Yeh, Chia L.

    1991-06-01

    This paper describes a flexible parallel processing architecture designed for use in real time video processing. The system consists of floating point DSP processors connected to each other via fast serial links, each processor has access to a globally shared memory. A multiple bus architecture in combination with a dual ported memory allows communication with a host control processor. The system has been applied to prototyping of video compression and decompression algorithms. The decomposition of transform based algorithms for decompression into a form suitable for parallel processing is described. A technique for automatic load balancing among the processors is developed and discussed, results ar presented with image statistics and data rates. Finally techniques for accelerating the system throughput are analyzed and results from the application of one such modification described.

  18. Fast downscaled inverses for images compressed with M-channel lapped transforms.

    Science.gov (United States)

    de Queiroz, R L; Eschbach, R

    1997-01-01

    Compressed images may be decompressed and displayed or printed using different devices at different resolutions. Full decompression and rescaling in space domain is a very expensive method. We studied downscaled inverses where the image is decompressed partially, and a reduced inverse transform is used to recover the image. In this fashion, fewer transform coefficients are used and the synthesis process is simplified. We studied the design of fast inverses, for a given forward transform. General solutions are presented for M-channel finite impulse response (FIR) filterbanks, of which block and lapped transforms are a subset. Designs of faster inverses are presented for popular block and lapped transforms.

  19. Human visual system-based color image steganography using the contourlet transform

    Science.gov (United States)

    Abdul, W.; Carré, P.; Gaborit, P.

    2010-01-01

    We present a steganographic scheme based on the contourlet transform which uses the contrast sensitivity function (CSF) to control the force of insertion of the hidden information in a perceptually uniform color space. The CIELAB color space is used as it is well suited for steganographic applications because any change in the CIELAB color space has a corresponding effect on the human visual system as is very important for steganographic schemes to be undetectable by the human visual system (HVS). The perceptual decomposition of the contourlet transform gives it a natural advantage over other decompositions as it can be molded with respect to the human perception of different frequencies in an image. The evaluation of the imperceptibility of the steganographic scheme with respect to the color perception of the HVS is done using standard methods such as the structural similarity (SSIM) and CIEDE2000. The robustness of the inserted watermark is tested against JPEG compression.

  20. A Study of Color Transformation on Website Images for the Color Blind

    OpenAIRE

    Siew-Li Ching; Maziani Sabudin

    2010-01-01

    In this paper, we study on color transformation method on website images for the color blind. The most common category of color blindness is red-green color blindness which is viewed as beige color. By transforming the colors of the images, the color blind can improve their color visibility. They can have a better view when browsing through the websites. To transform colors on the website images, we study on two algorithms which are the conversion techniques from RGB colo...

  1. Fourier Transform Infrared Imaging analysis of dental pulp inflammatory diseases.

    Science.gov (United States)

    Giorgini, E; Sabbatini, S; Conti, C; Rubini, C; Rocchetti, R; Fioroni, M; Memè, L; Orilisi, G

    2017-05-01

    Fourier Transform Infrared microspectroscopy let characterize the macromolecular composition and distribution of tissues and cells, by studying the interaction between infrared radiation and matter. Therefore, we hypothesize to exploit this analytical tool in the analysis of inflamed pulps, to detect the different biochemical features related to various degrees of inflammation. IR maps of 13 irreversible and 12 hyperplastic pulpitis, together with 10 normal pulps, were acquired, compared with histological findings and submitted to multivariate (HCA, PCA, SIMCA) and statistical (one-way ANOVA) analysis. The fit of convoluted bands let calculate meaningful band area ratios (means ± s.d., P < 0.05). The infrared imaging analysis pin-pointed higher amounts of water and lower quantities of type I collagen in all inflamed pulps. Specific vibrational markers were defined for irreversible pulpitis (Lipids/Total Biomass, PhII/Total Biomass, CH 2 /CH 3 , and Ty/AII) and hyperplastic ones (OH/Total Biomass, Collagen/Total Biomass, and CH 3 Collagen/Total Biomass). The study confirmed that FTIR microspectroscopy let discriminate tissues' biological features. The infrared imaging analysis evidenced, in inflamed pulps, alterations in tissues' structure and composition. Changes in lipid metabolism, increasing amounts of tyrosine, and the occurrence of phosphorylative processes were highlighted in irreversible pulpitis, while high amounts of water and low quantities of type I collagen were detected in hyperplastic samples. © 2017 John Wiley & Sons A/S. Published by John Wiley & Sons Ltd.

  2. Peptide chemistry toolbox - Transforming natural peptides into peptide therapeutics.

    Science.gov (United States)

    Erak, Miloš; Bellmann-Sickert, Kathrin; Els-Heindl, Sylvia; Beck-Sickinger, Annette G

    2018-06-01

    The development of solid phase peptide synthesis has released tremendous opportunities for using synthetic peptides in medicinal applications. In the last decades, peptide therapeutics became an emerging market in pharmaceutical industry. The need for synthetic strategies in order to improve peptidic properties, such as longer half-life, higher bioavailability, increased potency and efficiency is accordingly rising. In this mini-review, we present a toolbox of modifications in peptide chemistry for overcoming the main drawbacks during the transition from natural peptides to peptide therapeutics. Modifications at the level of the peptide backbone, amino acid side chains and higher orders of structures are described. Furthermore, we are discussing the future of peptide therapeutics development and their impact on the pharmaceutical market. Copyright © 2018 Elsevier Ltd. All rights reserved.

  3. Lifelong Learning from Natural Disasters: Transformative Group-Based Learning at Philippine Universities

    Science.gov (United States)

    Dahl, Kari Kragh Blume; Millora, Christopher Malagad

    2016-01-01

    This study explores reflective experience during transformative, group-based learning among university leaders following a natural disaster such as a typhoon in two Philippine universities. Natural disasters are recurrent phenomena in many parts of the world, but the literature largely ignores their impact on lifelong human learning, for instance…

  4. Research on Methods of Infrared and Color Image Fusion Based on Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Zhao Rentao

    2014-06-01

    Full Text Available There is significant difference in the imaging features of infrared image and color image, but their fusion images also have very good complementary information. In this paper, based on the characteristics of infrared image and color image, first of all, wavelet transform is applied to the luminance component of the infrared image and color image. In multi resolution the relevant regional variance is regarded as the activity measure, relevant regional variance ratio as the matching measure, and the fusion image is enhanced in the process of integration, thus getting the fused images by final synthesis module and multi-resolution inverse transform. The experimental results show that the fusion image obtained by the method proposed in this paper is better than the other methods in keeping the useful information of the original infrared image and the color information of the original color image. In addition, the fusion image has stronger adaptability and better visual effect.

  5. The impact of natural transformation on adaptation in spatially structured bacterial populations.

    Science.gov (United States)

    Moradigaravand, Danesh; Engelstädter, Jan

    2014-06-20

    Recent studies have demonstrated that natural transformation and the formation of highly structured populations in bacteria are interconnected. In spite of growing evidence about this connection, little is known about the dynamics of natural transformation in spatially structured bacterial populations. In this work, we model the interdependency between the dynamics of the bacterial gene pool and those of environmental DNA in space to dissect the effect of transformation on adaptation. Our model reveals that even with only a single locus under consideration, transformation with a free DNA fragment pool results in complex adaptation dynamics that do not emerge in previous models focusing only on the gene shuffling effect of transformation at multiple loci. We demonstrate how spatial restriction on population growth and DNA diffusion in the environment affect the impact of transformation on adaptation. We found that in structured bacterial populations intermediate DNA diffusion rates predominantly cause transformation to impede adaptation by spreading deleterious alleles in the population. Overall, our model highlights distinctive evolutionary consequences of bacterial transformation in spatially restricted compared to planktonic bacterial populations.

  6. Optimized curve design for image analysis using localized geodesic distance transformations

    Science.gov (United States)

    Braithwaite, Billy; Niska, Harri; Pöllänen, Irene; Ikonen, Tiia; Haataja, Keijo; Toivanen, Pekka; Tolonen, Teemu

    2015-03-01

    We consider geodesic distance transformations for digital images. Given a M × N digital image, a distance image is produced by evaluating local pixel distances. Distance Transformation on Curved Space (DTOCS) evaluates shortest geodesics of a given pixel neighborhood by evaluating the height displacements between pixels. In this paper, we propose an optimization framework for geodesic distance transformations in a pattern recognition scheme, yielding more accurate machine learning based image analysis, exemplifying initial experiments using complex breast cancer images. Furthermore, we will outline future research work, which will complete the research work done for this paper.

  7. Medical Image Fusion Algorithm Based on Nonlinear Approximation of Contourlet Transform and Regional Features

    Directory of Open Access Journals (Sweden)

    Hui Huang

    2017-01-01

    Full Text Available According to the pros and cons of contourlet transform and multimodality medical imaging, here we propose a novel image fusion algorithm that combines nonlinear approximation of contourlet transform with image regional features. The most important coefficient bands of the contourlet sparse matrix are retained by nonlinear approximation. Low-frequency and high-frequency regional features are also elaborated to fuse medical images. The results strongly suggested that the proposed algorithm could improve the visual effects of medical image fusion and image quality, image denoising, and enhancement.

  8. Reversible Integer Wavelet Transform for the Joint of Image Encryption and Watermarking

    Directory of Open Access Journals (Sweden)

    Bin Wang

    2015-01-01

    Full Text Available In recent years, signal processing in the encrypted domain has attracted considerable research interest, especially embedding watermarking in encrypted image. In this work, a novel joint of image encryption and watermarking based on reversible integer wavelet transform is proposed. Firstly, the plain-image is encrypted by chaotic maps and reversible integer wavelet transform. Then the lossless watermarking is embedded in the encrypted image by reversible integer wavelet transform and histogram modification. Finally an encrypted image containing watermarking is obtained by the inverse integer wavelet transform. What is more, the original image and watermarking can be completely recovered by inverse process. Numerical experimental results and comparing with previous works show that the proposed scheme possesses higher security and embedding capacity than previous works. It is suitable for protecting the image information.

  9. An Image Filter Based on Shearlet Transformation and Particle Swarm Optimization Algorithm

    Directory of Open Access Journals (Sweden)

    Kai Hu

    2015-01-01

    Full Text Available Digital image is always polluted by noise and made data postprocessing difficult. To remove noise and preserve detail of image as much as possible, this paper proposed image filter algorithm which combined the merits of Shearlet transformation and particle swarm optimization (PSO algorithm. Firstly, we use classical Shearlet transform to decompose noised image into many subwavelets under multiscale and multiorientation. Secondly, we gave weighted factor to those subwavelets obtained. Then, using classical Shearlet inverse transform, we obtained a composite image which is composed of those weighted subwavelets. After that, we designed fast and rough evaluation method to evaluate noise level of the new image; by using this method as fitness, we adopted PSO to find the optimal weighted factor we added; after lots of iterations, by the optimal factors and Shearlet inverse transform, we got the best denoised image. Experimental results have shown that proposed algorithm eliminates noise effectively and yields good peak signal noise ratio (PSNR.

  10. Using the generalized Radon transform for detection of curves in noisy images

    DEFF Research Database (Denmark)

    Toft, Peter Aundal

    1996-01-01

    In this paper the discrete generalized Radon transform will be investigated as a tool for detection of curves in noisy digital images. The discrete generalized Radon transform maps an image into a parameter domain, where curves following a specific parameterized curve form will correspond to a peak...

  11. Transformation of natural complexes, conservation of biodiversity and ecological management of the Polessky radio-ecological nature reserve territory

    International Nuclear Information System (INIS)

    Maslovskij, O.M.; Rykovskij, G.F.

    2001-01-01

    Investigation of mechanisms of radionuclide contamination influence on natural complexes after the Chernobyl diaster showed that the contamination level is not dangerous for the majority of plant and animal species within the larger part of 30km zone and outside it. Medical aspects are discussed in another article. The nature as a whole has coped with the negative influence of the Chernobyl disaster. At the same time natural complexes of the Polessky State Radio-Ecological Nature Reserve (PSRENR) have transformed after the removal of antropogenic stress. Different succession changes take place, biodivesity has sharply increased. It allows us to consider this territory as one of the most important nature protection objects nor only in Belarus but also in East Europe

  12. Vividness and Transformation of Mental Images in Karate

    Directory of Open Access Journals (Sweden)

    Maria Guarnera

    2016-07-01

    Full Text Available Background: Systematic reviews have shown that imagery improves performance in motor tasks. Objective: In order to observe the function of imagery in sport, this study investigated modifications in Imagery Ability, in terms of  both controllability (i.e., the accurateness with which an image can be operated mentally and vividness (i.e., the precision richness of an image, in competitive  and recreational karateka. Method: Thirty volunteers karateka  completed the Vividness of Visual Imagery Questionnaire, the Vividness of Movement Imagery Questionnaire-2, and the Subtraction of parts Task. Results: Competitive athletes reported higher scores on imagery ability than recreational athletes. No correlations were found between the variables of Vividness and the Subtraction of parts Task for any of the two groups. All analyses were two-tailed with α at .05. Conclusion: The study has risen the investigation in the particular ambit of imagery ability, providing an additional support for the multidimensional nature of mental imagery and for its usefulness in athletes.  Keywords: imagery, motor tasks, karate, static vividness

  13. Power distribution transformers using natural ester fluids as dielectric and coolant

    Directory of Open Access Journals (Sweden)

    Jorge Iván Silva-Ortega

    2016-12-01

    Full Text Available Researches related to the use of Natural Ester Fluids as a refrigerant of power transformers have been developed in other countries with successful results. In Colombia there is no a procedure to control the use of these esters in electrical apparatus, so the current implementations are regulated by NTC 1465 standards for mineral esters. This new proposal involves the composition and the most relevant properties (the ignition resistance, impact on the lifetime of the insulating papers and the impact on the environment, which makes the application of natural esters fluids advantageous not only to preserve the environment but also to get a better performance of power transformers.

  14. Natural Genetic Transformation Generates a Population of Merodiploids in Streptococcus pneumoniae

    Science.gov (United States)

    Zomer, Aldert; Bootsma, Hester J.; Prudhomme, Marc; Granadel, Chantal; Hermans, Peter W. M.; Polard, Patrice; Martin, Bernard; Claverys, Jean-Pierre

    2013-01-01

    Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R) corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ∼3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD) formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ∼100 to ∼900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA). We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of merodiploids by

  15. Natural genetic transformation generates a population of merodiploids in Streptococcus pneumoniae.

    Directory of Open Access Journals (Sweden)

    Calum Johnston

    Full Text Available Partial duplication of genetic material is prevalent in eukaryotes and provides potential for evolution of new traits. Prokaryotes, which are generally haploid in nature, can evolve new genes by partial chromosome duplication, known as merodiploidy. Little is known about merodiploid formation during genetic exchange processes, although merodiploids have been serendipitously observed in early studies of bacterial transformation. Natural bacterial transformation involves internalization of exogenous donor DNA and its subsequent integration into the recipient genome by homology. It contributes to the remarkable plasticity of the human pathogen Streptococcus pneumoniae through intra and interspecies genetic exchange. We report that lethal cassette transformation produced merodiploids possessing both intact and cassette-inactivated copies of the essential target gene, bordered by repeats (R corresponding to incomplete copies of IS861. We show that merodiploidy is transiently stimulated by transformation, and only requires uptake of a ~3-kb DNA fragment partly repeated in the chromosome. We propose and validate a model for merodiploid formation, providing evidence that tandem-duplication (TD formation involves unequal crossing-over resulting from alternative pairing and interchromatid integration of R. This unequal crossing-over produces a chromosome dimer, resolution of which generates a chromosome with the TD and an abortive chromosome lacking the duplicated region. We document occurrence of TDs ranging from ~100 to ~900 kb in size at various chromosomal locations, including by self-transformation (transformation with recipient chromosomal DNA. We show that self-transformation produces a population containing many different merodiploid cells. Merodiploidy provides opportunities for evolution of new genetic traits via alteration of duplicated genes, unrestricted by functional selective pressure. Transient stimulation of a varied population of

  16. Improvements in image quality with pseudo-parallel imaging in the phase-scrambling fourier transform technique

    International Nuclear Information System (INIS)

    Ito, Satoshi; Kawawa, Yasuhiro; Yamada, Yoshifumi

    2010-01-01

    The signal obtained in the phase-scrambling Fourier transform (PSFT) imaging technique can be transformed to the signal described by the Fresnel transform of the objects, in which the amplitude of the PSFT presents some kind of blurred image of the objects. Therefore, the signal can be considered to exist in the object domain as well as the Fourier domain of the object. This notable feature makes it possible to assign weights to the reconstructed images by applying a weighting function to the PSFT signal after data acquisition, and as a result, pseudo-parallel image reconstruction using these aliased image data with different weights on the images is feasible. In this study, the improvements in image quality with such pseudo-parallel imaging were examined and demonstrated. The weighting function of the PSFT signal that provides a given weight on the image is estimated using the obtained image data and is iteratively updated after sensitivity encoding (SENSE)-based image reconstruction. Simulation studies showed that reconstruction errors were dramatically reduced and that the spatial resolution was also improved in almost all image spaces. The proposed method was applied to signals synthesized from MR image data with phase variations to verify its effectiveness. It was found that the image quality was improved and that images almost entirely free of aliasing artifacts could be obtained. (author)

  17. Implementation of Texture Based Image Retrieval Using M-band Wavelet Transform

    Institute of Scientific and Technical Information of China (English)

    LiaoYa-li; Yangyan; CaoYang

    2003-01-01

    Wavelet transform has attracted attention because it is a very useful tool for signal analyzing. As a fundamental characteristic of an image, texture traits play an important role in the human vision system for recognition and interpretation of images. The paper presents an approach to implement texture-based image retrieval using M-band wavelet transform. Firstly the traditional 2-band wavelet is extended to M-band wavelet transform. Then the wavelet moments are computed by M-band wavelet coefficients in the wavelet domain. The set of wavelet moments forms the feature vector related to the texture distribution of each wavelet images. The distances between the feature vectors describe the similarities of different images. The experimental result shows that the M-band wavelet moment features of the images are effective for image indexing.The retrieval method has lower computational complexity, yet it is capable of giving better retrieval performance for a given medical image database.

  18. Image compression-encryption algorithms by combining hyper-chaotic system with discrete fractional random transform

    Science.gov (United States)

    Gong, Lihua; Deng, Chengzhi; Pan, Shumin; Zhou, Nanrun

    2018-07-01

    Based on hyper-chaotic system and discrete fractional random transform, an image compression-encryption algorithm is designed. The original image is first transformed into a spectrum by the discrete cosine transform and the resulting spectrum is compressed according to the method of spectrum cutting. The random matrix of the discrete fractional random transform is controlled by a chaotic sequence originated from the high dimensional hyper-chaotic system. Then the compressed spectrum is encrypted by the discrete fractional random transform. The order of DFrRT and the parameters of the hyper-chaotic system are the main keys of this image compression and encryption algorithm. The proposed algorithm can compress and encrypt image signal, especially can encrypt multiple images once. To achieve the compression of multiple images, the images are transformed into spectra by the discrete cosine transform, and then the spectra are incised and spliced into a composite spectrum by Zigzag scanning. Simulation results demonstrate that the proposed image compression and encryption algorithm is of high security and good compression performance.

  19. Radar image and data fusion for natural hazards characterisation

    Science.gov (United States)

    Lu, Zhong; Dzurisin, Daniel; Jung, Hyung-Sup; Zhang, Jixian; Zhang, Yonghong

    2010-01-01

    Fusion of synthetic aperture radar (SAR) images through interferometric, polarimetric and tomographic processing provides an all - weather imaging capability to characterise and monitor various natural hazards. This article outlines interferometric synthetic aperture radar (InSAR) processing and products and their utility for natural hazards characterisation, provides an overview of the techniques and applications related to fusion of SAR/InSAR images with optical and other images and highlights the emerging SAR fusion technologies. In addition to providing precise land - surface digital elevation maps, SAR - derived imaging products can map millimetre - scale elevation changes driven by volcanic, seismic and hydrogeologic processes, by landslides and wildfires and other natural hazards. With products derived from the fusion of SAR and other images, scientists can monitor the progress of flooding, estimate water storage changes in wetlands for improved hydrological modelling predictions and assessments of future flood impacts and map vegetation structure on a global scale and monitor its changes due to such processes as fire, volcanic eruption and deforestation. With the availability of SAR images in near real - time from multiple satellites in the near future, the fusion of SAR images with other images and data is playing an increasingly important role in understanding and forecasting natural hazards.

  20. LOW COMPLEXITY HYBRID LOSSY TO LOSSLESS IMAGE CODER WITH COMBINED ORTHOGONAL POLYNOMIALS TRANSFORM AND INTEGER WAVELET TRANSFORM

    Directory of Open Access Journals (Sweden)

    R. Krishnamoorthy

    2012-05-01

    Full Text Available In this paper, a new lossy to lossless image coding scheme combined with Orthogonal Polynomials Transform and Integer Wavelet Transform is proposed. The Lifting Scheme based Integer Wavelet Transform (LS-IWT is first applied on the image in order to reduce the blocking artifact and memory demand. The Embedded Zero tree Wavelet (EZW subband coding algorithm is used in this proposed work for progressive image coding which achieves efficient bit rate reduction. The computational complexity of lower subband coding of EZW algorithm is reduced in this proposed work with a new integer based Orthogonal Polynomials transform coding. The normalization and mapping are done on the subband of the image for exploiting the subjective redundancy and the zero tree structure is obtained for EZW coding and so the computation complexity is greatly reduced in this proposed work. The experimental results of the proposed technique also show that the efficient bit rate reduction is achieved for both lossy and lossless compression when compared with existing techniques.

  1. Multiple-image encryption via lifting wavelet transform and XOR operation based on compressive ghost imaging scheme

    Science.gov (United States)

    Li, Xianye; Meng, Xiangfeng; Yang, Xiulun; Wang, Yurong; Yin, Yongkai; Peng, Xiang; He, Wenqi; Dong, Guoyan; Chen, Hongyi

    2018-03-01

    A multiple-image encryption method via lifting wavelet transform (LWT) and XOR operation is proposed, which is based on a row scanning compressive ghost imaging scheme. In the encryption process, the scrambling operation is implemented for the sparse images transformed by LWT, then the XOR operation is performed on the scrambled images, and the resulting XOR images are compressed in the row scanning compressive ghost imaging, through which the ciphertext images can be detected by bucket detector arrays. During decryption, the participant who possesses his/her correct key-group, can successfully reconstruct the corresponding plaintext image by measurement key regeneration, compression algorithm reconstruction, XOR operation, sparse images recovery, and inverse LWT (iLWT). Theoretical analysis and numerical simulations validate the feasibility of the proposed method.

  2. Optical colour image watermarking based on phase-truncated linear canonical transform and image decomposition

    Science.gov (United States)

    Su, Yonggang; Tang, Chen; Li, Biyuan; Lei, Zhenkun

    2018-05-01

    This paper presents a novel optical colour image watermarking scheme based on phase-truncated linear canonical transform (PT-LCT) and image decomposition (ID). In this proposed scheme, a PT-LCT-based asymmetric cryptography is designed to encode the colour watermark into a noise-like pattern, and an ID-based multilevel embedding method is constructed to embed the encoded colour watermark into a colour host image. The PT-LCT-based asymmetric cryptography, which can be optically implemented by double random phase encoding with a quadratic phase system, can provide a higher security to resist various common cryptographic attacks. And the ID-based multilevel embedding method, which can be digitally implemented by a computer, can make the information of the colour watermark disperse better in the colour host image. The proposed colour image watermarking scheme possesses high security and can achieve a higher robustness while preserving the watermark’s invisibility. The good performance of the proposed scheme has been demonstrated by extensive experiments and comparison with other relevant schemes.

  3. Earthworm symbiont Verminephrobacter eiseniae mediates natural transformation within the host egg capsules using type IV pili

    Directory of Open Access Journals (Sweden)

    SEANA Kelyn DAVIDSON

    2014-10-01

    Full Text Available The dense microbial communities commonly associated with plants and animals should offer many opportunities for horizontal gene transfer (HGT through described mechanisms of DNA exchange including natural transformation. However, studies of the significance of natural transformation have focused primarily on pathogens. The study presented here demonstrates highly efficient DNA exchange by natural transformation in a common symbiont of earthworms. The obligate bacterial symbiont Verminephrobacter eiseniae is a member of a microbial consortium of the earthworm Eisenia fetida that is transmitted into the egg capsules to colonize the embryonic worms. In the study presented here, by testing for transformants under different conditions in culture, we demonstrate that V. eiseniae can incorporate free DNA from the environment, that competency is regulated by environmental factors, and that it is sequence specific. Mutations in the type IV pili of V. eiseniae resulted in loss of DNA uptake, implicating the type IV pilus (TFP apparatus in DNA uptake. Furthermore, injection of DNA carrying antibiotic-resistance genes into egg capsules resulted in transformants within the capsule, demonstrating the relevance of DNA uptake within the earthworm system. The ability to take up species-specific DNA from the environment may explain the maintenance of the relatively large, intact genome of this long-associated obligate symbiont, and provides a mechanism for acquisition of foreign genes within the earthworm system.

  4. Influence of natural zeolite and nitrification inhibitor on organics degradation and nitrogen transformation during sludge composting.

    Science.gov (United States)

    Zhang, Junya; Sui, Qianwen; Li, Kun; Chen, Meixue; Tong, Juan; Qi, Lu; Wei, Yuansong

    2016-01-01

    Sludge composting is one of the most widely used treatments for sewage sludge resource utilization. Natural zeolite and nitrification inhibitor (NI) are widely used during composting and land application for nitrogen conservation, respectively. Three composting reactors (A--the control, B--natural zeolite addition, and C--3,4-dimethylpyrazole phosphate (DMPP) addition) were established to investigate the influence of NI and natural zeolite addition on organics degradation and nitrogen transformation during sludge composting conducted at the lab scale. The results showed that, in comparison with the control, natural zeolite addition accelerated organics degradation and the maturity of sludge compost was higher, while the DMPP addition slowed down the degradation of organic matters. Meanwhile, the nitrogen transformation functional genes including those responses for nitrification (amoA and nxrA) and denitrification (narG, nirS, nirK, and nosZ) were quantified through quantitative PCR (qPCR) to investigate the effects of natural zeolites and DMPP addition on nitrogen transformation. Although no significant difference in the abundance of nitrogen transformation functional genes was observed between treatments, addition of both natural zeolite and DMPP increases the final total nitrogen content by 48.6% and 23.1%, respectively. The ability of natural zeolite for nitrogen conservation was due to the absorption of NH3 by compost, and nitrogen conservation by DMPP was achieved by the source reduction of denitrification. Besides, it was assumed that the addition of natural zeolite and DMPP may affect the activity of these genes instead of the abundance.

  5. Executive Summary - Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2013-01-01

    In November 2012, the Joint Institute for Strategic Energy Analysis (JISEA) released a new report, 'Natural Gas and the Transformation of the U.S. Energy Sector: Electricity.' The study provides a new methodological approach to estimate natural gas related greenhouse gas (GHG) emissions, tracks trends in regulatory and voluntary industry practices, and explores various electricity futures. The Executive Summary provides key findings, insights, data, and figures from this major study.

  6. Transformation to near-natural forest management, climate change and uncertainty

    DEFF Research Database (Denmark)

    Schou, Erik

    Currently transformation from even-aged management to near-natural forest management is being considered or undertaken throughout the Atlantic region of Europe. What in general lies in this transformation is the desire for a higher degree of utilisation in forest management of the natural processes...... inherent in the forest ecosystem. The motivations for transforming involve economic, biological and social values. At the same time, potential climate changes are expected to change growing conditions of tree species – possibly having a high impact on future forest growth. The purpose of this dissertation......, the studies of the dissertation analysed changes in stand structure and the choice of species at the stand and forest level. Only the value of timber was considered. Both optimisation and simulation approaches have been applied in the dissertation. Methods include dynamic programming, evolution algorithms...

  7. Migrants, markets, and the transformation of natural resources management: galax harvesting in Western North Carolina

    Science.gov (United States)

    Marla R. Emery; Clare Ginger; Jim Chamberlain

    2007-01-01

    Latinos are present in increasing numbers in U.S. forests as consumers and producers. This change is transforming the physical and social spaces of natural resources management. For example, extended families from Mexico and Central America seek picnic areas where many people can spend a day preparing food and socializing, a need not met by the typical arrangement of...

  8. Blind Forensics of Successive Geometric Transformations in Digital Images Using Spectral Method: Theory and Applications.

    Science.gov (United States)

    Chen, Chenglong; Ni, Jiangqun; Shen, Zhaoyi; Shi, Yun Qing

    2017-06-01

    Geometric transformations, such as resizing and rotation, are almost always needed when two or more images are spliced together to create convincing image forgeries. In recent years, researchers have developed many digital forensic techniques to identify these operations. Most previous works in this area focus on the analysis of images that have undergone single geometric transformations, e.g., resizing or rotation. In several recent works, researchers have addressed yet another practical and realistic situation: successive geometric transformations, e.g., repeated resizing, resizing-rotation, rotation-resizing, and repeated rotation. We will also concentrate on this topic in this paper. Specifically, we present an in-depth analysis in the frequency domain of the second-order statistics of the geometrically transformed images. We give an exact formulation of how the parameters of the first and second geometric transformations influence the appearance of periodic artifacts. The expected positions of characteristic resampling peaks are analytically derived. The theory developed here helps to address the gap left by previous works on this topic and is useful for image security and authentication, in particular, the forensics of geometric transformations in digital images. As an application of the developed theory, we present an effective method that allows one to distinguish between the aforementioned four different processing chains. The proposed method can further estimate all the geometric transformation parameters. This may provide useful clues for image forgery detection.

  9. The Cortex Transform as an image preprocessor for sparse distributed memory: An initial study

    Science.gov (United States)

    Olshausen, Bruno; Watson, Andrew

    1990-01-01

    An experiment is described which was designed to evaluate the use of the Cortex Transform as an image processor for Sparse Distributed Memory (SDM). In the experiment, a set of images were injected with Gaussian noise, preprocessed with the Cortex Transform, and then encoded into bit patterns. The various spatial frequency bands of the Cortex Transform were encoded separately so that they could be evaluated based on their ability to properly cluster patterns belonging to the same class. The results of this study indicate that by simply encoding the low pass band of the Cortex Transform, a very suitable input representation for the SDM can be achieved.

  10. Animal Detection in Natural Images: Effects of Color and Image Database

    Science.gov (United States)

    Zhu, Weina; Drewes, Jan; Gegenfurtner, Karl R.

    2013-01-01

    The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs) in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID) that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used. PMID:24130744

  11. Modified natural nanoparticles as contrast agents for medical imaging

    NARCIS (Netherlands)

    Cormode, David P.; Jarzyna, Peter A.; Mulder, Willem J. M.; Fayad, Zahi A.

    2010-01-01

    The development of novel and effective contrast agents is one of the drivers of the ongoing improvement in medical imaging. Many of the new agents reported are nanoparticle-based. There are a variety of natural nanoparticles known, e.g. lipoproteins, viruses or ferritin. Natural nanoparticles have

  12. Image reconstruction from pairs of Fourier-transform magnitude

    International Nuclear Information System (INIS)

    Hunt, B.R.; Overman, T.L.; Gough, P.

    1998-01-01

    The retrieval of phase information from only the magnitude of the Fourier transform of a signal remains an important problem for many applications. We present an algorithm for phase retrieval when there exist two related sets of Fourier-transform magnitude data. The data are assumed to come from a single object observed in two different polarizations through a distorting medium, so the phase component of the Fourier transform of the object is corrupted. Phase retrieval is accomplished by minimization of a suitable criterion function, which can take three different forms. copyright 1998 Optical Society of America

  13. Regular Discrete Cosine Transform and its Application to Digital Images Representation

    Directory of Open Access Journals (Sweden)

    Yuri A. Gadzhiev

    2011-11-01

    Full Text Available Discrete cosine transform dct-i, unlike dct-ii, does not concentrate the energy of a transformed vector sufficiently well, so it is not used practically for the purposes of digital image compression. By performing regular normalization of the basic cosine transform matrix, we obtain a discrete cosine transform which has the same cosine basis as dct-i, coincides as dct-i with its own inverse transform, but unlike dct-i, it does not reduce the proper ability of cosine transform to the energy concentration. In this paper we consider briefly the properties of this transform, its possible integer implementation for the case of 8x8-matrix, its applications to the image itself and to the preliminary rgb colour space transformations, further more we investigate some models of quantization, perform an experiment for the estimation of the level of digital images compression and the quality achieved by use of this transform. This experiment shows that the transform can be sufficiently effective for practical use, but the question of its comparative effectiveness with respect to dct-ii remains open.

  14. Remote Sensing Image Enhancement Based on Non-subsampled Shearlet Transform and Parameterized Logarithmic Image Processing Model

    Directory of Open Access Journals (Sweden)

    TAO Feixiang

    2015-08-01

    Full Text Available Aiming at parts of remote sensing images with dark brightness and low contrast, a remote sensing image enhancement method based on non-subsampled Shearlet transform and parameterized logarithmic image processing model is proposed in this paper to improve the visual effects and interpretability of remote sensing images. Firstly, a remote sensing image is decomposed into a low-frequency component and high frequency components by non-subsampled Shearlet transform.Then the low frequency component is enhanced according to PLIP (parameterized logarithmic image processing model, which can improve the contrast of image, while the improved fuzzy enhancement method is used to enhance the high frequency components in order to highlight the information of edges and details. A large number of experimental results show that, compared with five kinds of image enhancement methods such as bidirectional histogram equalization method, the method based on stationary wavelet transform and the method based on non-subsampled contourlet transform, the proposed method has advantages in both subjective visual effects and objective quantitative evaluation indexes such as contrast and definition, which can more effectively improve the contrast of remote sensing image and enhance edges and texture details with better visual effects.

  15. FFT-enhanced IHS transform method for fusing high-resolution satellite images

    Science.gov (United States)

    Ling, Y.; Ehlers, M.; Usery, E.L.; Madden, M.

    2007-01-01

    Existing image fusion techniques such as the intensity-hue-saturation (IHS) transform and principal components analysis (PCA) methods may not be optimal for fusing the new generation commercial high-resolution satellite images such as Ikonos and QuickBird. One problem is color distortion in the fused image, which causes visual changes as well as spectral differences between the original and fused images. In this paper, a fast Fourier transform (FFT)-enhanced IHS method is developed for fusing new generation high-resolution satellite images. This method combines a standard IHS transform with FFT filtering of both the panchromatic image and the intensity component of the original multispectral image. Ikonos and QuickBird data are used to assess the FFT-enhanced IHS transform method. Experimental results indicate that the FFT-enhanced IHS transform method may improve upon the standard IHS transform and the PCA methods in preserving spectral and spatial information. ?? 2006 International Society for Photogrammetry and Remote Sensing, Inc. (ISPRS).

  16. Optical image transformation and encryption by phase-retrieval-based double random-phase encoding and compressive ghost imaging

    Science.gov (United States)

    Yuan, Sheng; Yang, Yangrui; Liu, Xuemei; Zhou, Xin; Wei, Zhenzhuo

    2018-01-01

    An optical image transformation and encryption scheme is proposed based on double random-phase encoding (DRPE) and compressive ghost imaging (CGI) techniques. In this scheme, a secret image is first transformed into a binary image with the phase-retrieval-based DRPE technique, and then encoded by a series of random amplitude patterns according to the ghost imaging (GI) principle. Compressive sensing, corrosion and expansion operations are implemented to retrieve the secret image in the decryption process. This encryption scheme takes the advantage of complementary capabilities offered by the phase-retrieval-based DRPE and GI-based encryption techniques. That is the phase-retrieval-based DRPE is used to overcome the blurring defect of the decrypted image in the GI-based encryption, and the CGI not only reduces the data amount of the ciphertext, but also enhances the security of DRPE. Computer simulation results are presented to verify the performance of the proposed encryption scheme.

  17. Application of Riesz transforms to the isotropic AM-PM decomposition of geometrical-optical illusion images.

    Science.gov (United States)

    Sierra-Vázquez, Vicente; Serrano-Pedraza, Ignacio

    2010-04-01

    The existence of a special second-order mechanism in the human visual system, able to demodulate the envelope of visual stimuli, suggests that spatial information contained in the image envelope may be perceptually relevant. The Riesz transform, a natural isotropic extension of the Hilbert transform to multidimensional signals, was used here to demodulate band-pass filtered images of well-known visual illusions of length, size, direction, and shape. We show that the local amplitude of the monogenic signal or envelope of each illusion image conveys second-order information related to image holistic spatial structure, whereas the local phase component conveys information about the spatial features. Further low-pass filtering of the illusion image envelopes creates physical distortions that correspond to the subjective distortions perceived in the illusory images. Therefore the envelope seems to be the image component that physically carries the spatial information about these illusions. This result contradicts the popular belief that the relevant spatial information to perceive geometrical-optical illusions is conveyed only by the lower spatial frequencies present in their Fourier spectrum.

  18. Quantum image encryption based on generalized affine transform and logistic map

    Science.gov (United States)

    Liang, Hao-Ran; Tao, Xiang-Yang; Zhou, Nan-Run

    2016-07-01

    Quantum circuits of the generalized affine transform are devised based on the novel enhanced quantum representation of digital images. A novel quantum image encryption algorithm combining the generalized affine transform with logistic map is suggested. The gray-level information of the quantum image is encrypted by the XOR operation with a key generator controlled by the logistic map, while the position information of the quantum image is encoded by the generalized affine transform. The encryption keys include the independent control parameters used in the generalized affine transform and the logistic map. Thus, the key space is large enough to frustrate the possible brute-force attack. Numerical simulations and analyses indicate that the proposed algorithm is realizable, robust and has a better performance than its classical counterpart in terms of computational complexity.

  19. Quaternion-based transformation for extraction of image-generating Doppler for ISAR

    CSIR Research Space (South Africa)

    Abdul Gaffar, MY

    2008-10-01

    Full Text Available contributing motion that is useful to the ISAR imaging process; the contributing motion consists of the Doppler generating axis and the effective angle of rotation. This letter presents a quaternion-based transformation that converts measured attitude...

  20. Three-dimensional object recognitions from two-dimensional images using wavelet transforms and neural networks

    Science.gov (United States)

    Deschenes, Sylvain; Sheng, Yunlong; Chevrette, Paul C.

    1998-03-01

    3D object classification from 2D IR images is shown. The wavelet transform is used for edge detection. Edge tracking is used for removing noise effectively int he wavelet transform. The invariant Fourier descriptor is used to describe the contour curves. Invariance under out-of-plane rotation is achieved by the feature space trajectory neural network working as a classifier.

  1. Imaging properties of the mesooptical Fourier transform microscope for nuclear research emulsion

    International Nuclear Information System (INIS)

    Bencze, Gy.L.; Soroko, L.M.

    1987-01-01

    The optical signal transformation in the Mesooptical Fourier Transform Microscope (MFTM) for nuclear emulsion is treated in terms of Fourier Optics. A continuous conversion of the traditional optical microscope into the MFTM is followed. The images of dot-like and straight line objects given by the MFTM are discussed

  2. COMPARATIVE ANALYSIS OF APPLICATION EFFICIENCY OF ORTHOGONAL TRANSFORMATIONS IN FREQUENCY ALGORITHMS FOR DIGITAL IMAGE WATERMARKING

    Directory of Open Access Journals (Sweden)

    Vladimir A. Batura

    2014-11-01

    Full Text Available The efficiency of orthogonal transformations application in the frequency algorithms of the digital watermarking of still images is examined. Discrete Hadamard transform, discrete cosine transform and discrete Haar transform are selected. Their effectiveness is determined by the invisibility of embedded in digital image watermark and its resistance to the most common image processing operations: JPEG-compression, noising, changing of the brightness and image size, histogram equalization. The algorithm for digital watermarking and its embedding parameters remain unchanged at these orthogonal transformations. Imperceptibility of embedding is defined by the peak signal to noise ratio, watermark stability– by Pearson's correlation coefficient. Embedding is considered to be invisible, if the value of the peak signal to noise ratio is not less than 43 dB. Embedded watermark is considered to be resistant to a specific attack, if the Pearson’s correlation coefficient is not less than 0.5. Elham algorithm based on the image entropy is chosen for computing experiment. Computing experiment is carried out according to the following algorithm: embedding of a digital watermark in low-frequency area of the image (container by Elham algorithm, exposure to a harmful influence on the protected image (cover image, extraction of a digital watermark. These actions are followed by quality assessment of cover image and watermark on the basis of which efficiency of orthogonal transformation is defined. As a result of computing experiment it was determined that the choice of the specified orthogonal transformations at identical algorithm and parameters of embedding doesn't influence the degree of imperceptibility for a watermark. Efficiency of discrete Hadamard transform and discrete cosine transformation in relation to the attacks chosen for experiment was established based on the correlation indicators. Application of discrete Hadamard transform increases

  3. A REVIEW WAVELET TRANSFORM AND FUZZY K-MEANS BASED IMAGE DE-NOISING METHOD

    OpenAIRE

    Nidhi Patel*, Asst. Prof. Pratik Kumar Soni

    2017-01-01

    The research area of image processing technique using fuzzy k-means and wavelet transform. The enormous amount of data necessary for images is a main reason for the growth of many areas within the research field of computer imaging such as image processing and compression. In order to get this in requisites of the concerned research work, wavelet transforms and k-means clustering is applied. This can be done in order to discover more possible combinations that may lead to the finest de-noisin...

  4. Pyramidal Watershed Segmentation Algorithm for High-Resolution Remote Sensing Images Using Discrete Wavelet Transforms

    Directory of Open Access Journals (Sweden)

    K. Parvathi

    2009-01-01

    Full Text Available The watershed transformation is a useful morphological segmentation tool for a variety of grey-scale images. However, over segmentation and under segmentation have become the key problems for the conventional algorithm. In this paper, an efficient segmentation method for high-resolution remote sensing image analysis is presented. Wavelet analysis is one of the most popular techniques that can be used to detect local intensity variation and hence the wavelet transformation is used to analyze the image. Wavelet transform is applied to the image, producing detail (horizontal, vertical, and diagonal and Approximation coefficients. The image gradient with selective regional minima is estimated with the grey-scale morphology for the Approximation image at a suitable resolution, and then the watershed is applied to the gradient image to avoid over segmentation. The segmented image is projected up to high resolutions using the inverse wavelet transform. The watershed segmentation is applied to small subset size image, demanding less computational time. We have applied our new approach to analyze remote sensing images. The algorithm was implemented in MATLAB. Experimental results demonstrated the method to be effective.

  5. Two-dimensional 220 MHz Fourier transform EPR imaging

    International Nuclear Information System (INIS)

    Placidi, Giuseppe; Brivati, John A.; Alecci, Marcello; Testa, Luca; Sotgiu, Antonello

    1998-01-01

    In the last decade radiofrequency continuous-wave EPR spectrometers have been developed to detect and localize free radicals in vivo. Only recently, pulsed radiofrequency EPR spectrometers have been described for imaging applications with small samples. In the present work, we show the first two-dimensional image obtained at 220 MHz on a large phantom (40 ml) that simulates typical conditions of in vivo EPR imaging. This pulsed EPR apparatus has the potential to make the time required for three-dimensional imaging compatible with the biological half-life of normally used paramagnetic probes. (author)

  6. Improved medical image fusion based on cascaded PCA and shift invariant wavelet transforms.

    Science.gov (United States)

    Reena Benjamin, J; Jayasree, T

    2018-02-01

    In the medical field, radiologists need more informative and high-quality medical images to diagnose diseases. Image fusion plays a vital role in the field of biomedical image analysis. It aims to integrate the complementary information from multimodal images, producing a new composite image which is expected to be more informative for visual perception than any of the individual input images. The main objective of this paper is to improve the information, to preserve the edges and to enhance the quality of the fused image using cascaded principal component analysis (PCA) and shift invariant wavelet transforms. A novel image fusion technique based on cascaded PCA and shift invariant wavelet transforms is proposed in this paper. PCA in spatial domain extracts relevant information from the large dataset based on eigenvalue decomposition, and the wavelet transform operating in the complex domain with shift invariant properties brings out more directional and phase details of the image. The significance of maximum fusion rule applied in dual-tree complex wavelet transform domain enhances the average information and morphological details. The input images of the human brain of two different modalities (MRI and CT) are collected from whole brain atlas data distributed by Harvard University. Both MRI and CT images are fused using cascaded PCA and shift invariant wavelet transform method. The proposed method is evaluated based on three main key factors, namely structure preservation, edge preservation, contrast preservation. The experimental results and comparison with other existing fusion methods show the superior performance of the proposed image fusion framework in terms of visual and quantitative evaluations. In this paper, a complex wavelet-based image fusion has been discussed. The experimental results demonstrate that the proposed method enhances the directional features as well as fine edge details. Also, it reduces the redundant details, artifacts, distortions.

  7. Transformation

    DEFF Research Database (Denmark)

    Bock, Lars Nicolai

    2011-01-01

    Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi.......Artiklen diskuterer ordet "transformation" med udgangspunkt i dels hvorledes ordet bruges i arkitektfaglig terminologi og dels med fokus på ordets potentielle indhold og egnethed i samme teminologi....

  8. Conservative image transformations with restoration and scale-space properties

    NARCIS (Netherlands)

    Weickert, J.A.; Haar Romenij, ter B.M.; Viergever, M.A.; Delogne, P.

    1996-01-01

    Many image processing applications require to solve problems such as denoising with edge enhancement, preprocessing for segmentation, or the completion of interrupted lines. This may be accomplished by applying a suitable nonlinear anisotropic diffusion process to the image. Its diffusion tensor is

  9. Comparative performance evaluation of transform coding in image pre-processing

    Science.gov (United States)

    Menon, Vignesh V.; NB, Harikrishnan; Narayanan, Gayathri; CK, Niveditha

    2017-07-01

    We are in the midst of a communication transmute which drives the development as largely as dissemination of pioneering communication systems with ever-increasing fidelity and resolution. Distinguishable researches have been appreciative in image processing techniques crazed by a growing thirst for faster and easier encoding, storage and transmission of visual information. In this paper, the researchers intend to throw light on many techniques which could be worn at the transmitter-end in order to ease the transmission and reconstruction of the images. The researchers investigate the performance of different image transform coding schemes used in pre-processing, their comparison, and effectiveness, the necessary and sufficient conditions, properties and complexity in implementation. Whimsical by prior advancements in image processing techniques, the researchers compare various contemporary image pre-processing frameworks- Compressed Sensing, Singular Value Decomposition, Integer Wavelet Transform on performance. The paper exposes the potential of Integer Wavelet transform to be an efficient pre-processing scheme.

  10. Comparison on Integer Wavelet Transforms in Spherical Wavelet Based Image Based Relighting

    Institute of Scientific and Technical Information of China (English)

    WANGZe; LEEYin; LEUNGChising; WONGTientsin; ZHUYisheng

    2003-01-01

    To provide a good quality rendering in the Image based relighting (IBL) system, tremendous reference images under various illumination conditions are needed. Therefore data compression is essential to enable interactive action. And the rendering speed is another crucial consideration for real applications. Based on Spherical wavelet transform (SWT), this paper presents a quick representation method with Integer wavelet transform (IWT) for the IBL system. It focuses on comparison on different IWTs with the Embedded zerotree wavelet (EZW) used in the IBL system. The whole compression procedure contains two major compression steps. Firstly, SWT is applied to consider the correlation among different reference images. Secondly, the SW transformed images are compressed with IWT based image compression approach. Two IWTs are used and good results are showed in the simulations.

  11. The reduction of motion artifacts in digital subtraction angiography by geometrical image transformation

    International Nuclear Information System (INIS)

    Fitzpatrick, J.M.; Pickens, D.R.; Mandava, V.R.; Grefenstette, J.J.

    1988-01-01

    In the diagnosis of arteriosclerosis, radio-opaque dye is injected into the interior of the arteries to make them visible. Because of its increased contrast sensitivity, digital subtraction angiography has the potential for providing diagnostic images of arteries with reduced dye volumes. In the conventional technique, a mask image, acquired before the introduction of the dye, is subtracted from the contrast image, acquired after the dye is introduced, to produce a difference image in which only the dye in the arteries is visible. The usefulness of this technique has been severely limited by the image degradation caused by patient motion during image acquisition. This motion produces artifacts in the difference image that obscure the arteries. One technique for dealing with the problem is to reduce the degradation by means of image registration. The registration is carried out by means of a geometrical transformation of the mask image before subtraction so that it is in registration with the contrast image. This paper describes a technique for determining an optimal transformation. The authors employ a one-to-one elastic mapping and the Jacobian of that mapping to produce a geometrical image transformation. They choose a parameterized class of such mappings and use a heuristic search algorithm to optimize the parameters to minimize the severity of the motion artifacts. To increase the speed of the optimization process they use a statistical image comparison technique that provides a quick approximate evaluation of each image transformation. They present the experimental results of the application of their registration system to mask-contrast pairs, for images acquired from a specially designed phantom, and for clinical images

  12. Alternatives to the discrete cosine transform for irreversible tomographic image compression

    International Nuclear Information System (INIS)

    Villasenor, J.D.

    1993-01-01

    Full-frame irreversible compression of medical images is currently being performed using the discrete cosine transform (DCT). Although the DCT is the optimum fast transform for video compression applications, the authors show here that it is out-performed by the discrete Fourier transform (DFT) and discrete Hartley transform (DHT) for images obtained using positron emission tomography (PET) and magnetic resonance imaging (MRI), and possibly for certain types of digitized radiographs. The difference occurs because PET and MRI images are characterized by a roughly circular region D of non-zero intensity bounded by a region R in which the Image intensity is essentially zero. Clipping R to its minimum extent can reduce the number of low-intensity pixels but the practical requirement that images be stored on a rectangular grid means that a significant region of zero intensity must remain an integral part of the image to be compressed. With this constraint imposed, the DCT loses its advantage over the DFT because neither transform introduces significant artificial discontinuities. The DFT and DHT have the further important advantage of requiring less computation time than the DCT

  13. Detection of Blood Vessels in Color Fundus Images using a Local Radon Transform

    Directory of Open Access Journals (Sweden)

    Reza Pourreza

    2010-09-01

    Full Text Available Introduction: This paper addresses a method for automatic detection of blood vessels in color fundus images which utilizes two main tools: image partitioning and local Radon transform. Material and Methods: The input images are firstly divided into overlapping windows and then the Radon transform is applied to each. The maximum of the Radon transform in each window corresponds to the probable available sub-vessel. To verify the detected sub-vessel, the maximum is compared with a predefined threshold. The verified sub-vessels are reconstructed using the Radon transform information. All detected and reconstructed sub-vessels are finally combined to make the final vessel tree. Results: The algorithm’s performance was evaluated numerically by applying it to 40 images of DRIVE database, a standard retinal image database. The vessels were extracted manually by two physicians. This database was used to test and compare the available and proposed algorithms for vessel detection in color fundus images. By comparing the output of the algorithm with the manual results, the two parameters TPR and FPR were calculated for each image and the average of TPRs and FPRs were used to plot the ROC curve. Discussion and Conclusion: Comparison of the ROC curve of this algorithm with other algorithms demonstrated the high achieved accuracy. Beside the high accuracy, the Radon transform which is integral-based makes the algorithm robust against noise.

  14. Application of Time-Frequency Domain Transform to Three-Dimensional Interpolation of Medical Images.

    Science.gov (United States)

    Lv, Shengqing; Chen, Yimin; Li, Zeyu; Lu, Jiahui; Gao, Mingke; Lu, Rongrong

    2017-11-01

    Medical image three-dimensional (3D) interpolation is an important means to improve the image effect in 3D reconstruction. In image processing, the time-frequency domain transform is an efficient method. In this article, several time-frequency domain transform methods are applied and compared in 3D interpolation. And a Sobel edge detection and 3D matching interpolation method based on wavelet transform is proposed. We combine wavelet transform, traditional matching interpolation methods, and Sobel edge detection together in our algorithm. What is more, the characteristics of wavelet transform and Sobel operator are used. They deal with the sub-images of wavelet decomposition separately. Sobel edge detection 3D matching interpolation method is used in low-frequency sub-images under the circumstances of ensuring high frequency undistorted. Through wavelet reconstruction, it can get the target interpolation image. In this article, we make 3D interpolation of the real computed tomography (CT) images. Compared with other interpolation methods, our proposed method is verified to be effective and superior.

  15. Temporal adaptation enhances efficient contrast gain control on natural images.

    Directory of Open Access Journals (Sweden)

    Fabian Sinz

    Full Text Available Divisive normalization in primary visual cortex has been linked to adaptation to natural image statistics in accordance to Barlow's redundancy reduction hypothesis. Using recent advances in natural image modeling, we show that the previously studied static model of divisive normalization is rather inefficient in reducing local contrast correlations, but that a simple temporal contrast adaptation mechanism of the half-saturation constant can substantially increase its efficiency. Our findings reveal the experimentally observed temporal dynamics of divisive normalization to be critical for redundancy reduction.

  16. Implementation of the 2-D Wavelet Transform into FPGA for Image

    Science.gov (United States)

    León, M.; Barba, L.; Vargas, L.; Torres, C. O.

    2011-01-01

    This paper presents a hardware system implementation of the of discrete wavelet transform algoritm in two dimensions for FPGA, using the Daubechies filter family of order 2 (db2). The decomposition algorithm of this transform is designed and simulated with the Hardware Description Language VHDL and is implemented in a programmable logic device (FPGA) XC3S1200E reference, Spartan IIIE family, by Xilinx, take advantage the parallels properties of these gives us and speeds processing that can reach them. The architecture is evaluated using images input of different sizes. This implementation is done with the aim of developing a future images encryption hardware system using wavelet transform for security information.

  17. Implementation of the 2-D Wavelet Transform into FPGA for Image

    Energy Technology Data Exchange (ETDEWEB)

    Leon, M; Barba, L; Vargas, L; Torres, C O, E-mail: madeleineleon@unicesar.edu.co [Laboratorio de Optica e Informatica, Universidad Popular del Cesar, Sede balneario Hurtado, Valledupar, Cesar (Colombia)

    2011-01-01

    This paper presents a hardware system implementation of the of discrete wavelet transform algorithm in two dimensions for FPGA, using the Daubechies filter family of order 2 (db2). The decomposition algorithm of this transform is designed and simulated with the Hardware Description Language VHDL and is implemented in a programmable logic device (FPGA) XC3S1200E reference, Spartan IIIE family, by Xilinx, take advantage the parallels properties of these gives us and speeds processing that can reach them. The architecture is evaluated using images input of different sizes. This implementation is done with the aim of developing a future images encryption hardware system using wavelet transform for security information.

  18. An Image Matching Method Based on Fourier and LOG-Polar Transform

    Directory of Open Access Journals (Sweden)

    Zhijia Zhang

    2014-04-01

    Full Text Available This Traditional template matching methods are not appropriate for the situation of large angle rotation between two images in the online detection for industrial production. Aiming at this problem, Fourier transform algorithm was introduced to correct image rotation angle based on its rotatary invariance in time-frequency domain, orienting image under test in the same direction with reference image, and then match these images using matching algorithm based on log-polar transform. Compared with the current matching algorithms, experimental results show that the proposed algorithm can not only match two images with rotation of arbitrary angle, but also possess a high matching accuracy and applicability. In addition, the validity and reliability of algorithm was verified by simulated matching experiment targeting circular images.

  19. A new Watermarking System based on Discrete Cosine Transform (DCT) in color biometric images.

    Science.gov (United States)

    Dogan, Sengul; Tuncer, Turker; Avci, Engin; Gulten, Arif

    2012-08-01

    This paper recommend a biometric color images hiding approach An Watermarking System based on Discrete Cosine Transform (DCT), which is used to protect the security and integrity of transmitted biometric color images. Watermarking is a very important hiding information (audio, video, color image, gray image) technique. It is commonly used on digital objects together with the developing technology in the last few years. One of the common methods used for hiding information on image files is DCT method which used in the frequency domain. In this study, DCT methods in order to embed watermark data into face images, without corrupting their features.

  20. Research on Copy-Move Image Forgery Detection Using Features of Discrete Polar Complex Exponential Transform

    Science.gov (United States)

    Gan, Yanfen; Zhong, Junliu

    2015-12-01

    With the aid of sophisticated photo-editing software, such as Photoshop, copy-move image forgery operation has been widely applied and has become a major concern in the field of information security in the modern society. A lot of work on detecting this kind of forgery has gained great achievements, but the detection results of geometrical transformations of copy-move regions are not so satisfactory. In this paper, a new method based on the Polar Complex Exponential Transform is proposed. This method addresses issues in image geometric moment, focusing on constructing rotation invariant moment and extracting features of the rotation invariant moment. In order to reduce rounding errors of the transform from the Polar coordinate system to the Cartesian coordinate system, a new transformation method is presented and discussed in detail at the same time. The new method constructs a 9 × 9 shrunk template to transform the Cartesian coordinate system back to the Polar coordinate system. It can reduce transform errors to a much greater degree. Forgery detection, such as copy-move image forgery detection, is a difficult procedure, but experiments prove our method is a great improvement in detecting and identifying forgery images affected by the rotated transform.

  1. TRANSFORMER

    Science.gov (United States)

    Baker, W.R.

    1959-08-25

    Transformers of a type adapted for use with extreme high power vacuum tubes where current requirements may be of the order of 2,000 to 200,000 amperes are described. The transformer casing has the form of a re-entrant section being extended through an opening in one end of the cylinder to form a coaxial terminal arrangement. A toroidal multi-turn primary winding is disposed within the casing in coaxial relationship therein. In a second embodiment, means are provided for forming the casing as a multi-turn secondary. The transformer is characterized by minimized resistance heating, minimized external magnetic flux, and an economical construction.

  2. Analytic image reconstruction in PVI using the 3D radon transform

    International Nuclear Information System (INIS)

    Staxyk, M.W.; Rogers, J.G.

    1992-01-01

    This paper reports that algorithms have been derived for three dimensional image reconstruction in positron volume imaging (PVI) using the inversion of the three dimensional Radon Transform (RT). The RT is formed by histogramming events into the planes in which they lie rather than along lines as in the X-ray Transform (XT). The authors show the transformation between the RT and the XT and using this relationship they describe a fast backprojection method for the RT in which the computation time is found to be up to 20 times faster with the new algorithm. Monte Carlo simulations show that statistical noise levels in images reconstructed from complete projections with the new RT algorithm are comparable to those obtained using the Fourier Transform (FT) inversion of the XT

  3. A Precise Lane Detection Algorithm Based on Top View Image Transformation and Least-Square Approaches

    Directory of Open Access Journals (Sweden)

    Byambaa Dorj

    2016-01-01

    Full Text Available The next promising key issue of the automobile development is a self-driving technique. One of the challenges for intelligent self-driving includes a lane-detecting and lane-keeping capability for advanced driver assistance systems. This paper introduces an efficient and lane detection method designed based on top view image transformation that converts an image from a front view to a top view space. After the top view image transformation, a Hough transformation technique is integrated by using a parabolic model of a curved lane in order to estimate a parametric model of the lane in the top view space. The parameters of the parabolic model are estimated by utilizing a least-square approach. The experimental results show that the newly proposed lane detection method with the top view transformation is very effective in estimating a sharp and curved lane leading to a precise self-driving capability.

  4. Hyperspectral Image Classification Using Kernel Fukunaga-Koontz Transform

    Directory of Open Access Journals (Sweden)

    Semih Dinç

    2013-01-01

    images. In experiment section, the improved performance of HSI classification technique, K-FKT, has been tested comparing other methods such as the classical FKT and three types of support vector machines (SVMs.

  5. Transforming the image of nursing: the evidence for assurance.

    Science.gov (United States)

    Wocial, Lucia D; Sego, Kelly; Rager, Carrie; Laubersheimer, Shellee; Everett, Linda Q

    2014-01-01

    A nurse's uniform influences perceptions about nursing practice and thus contributes significantly to the overall image of a nurse. A nurse's uniform also can represent the brand of an organization, the tangible and intangible attributes that distinguish an organization from its competitors. The rebranding of a major health care system provided a unique opportunity to refine the "image of nurses" within the organization. This article describes the planning, evidence gathering, and implementation of a major initiative to promote professional nursing practice.

  6. Local gray level S-curve transformation - A generalized contrast enhancement technique for medical images.

    Science.gov (United States)

    Gandhamal, Akash; Talbar, Sanjay; Gajre, Suhas; Hani, Ahmad Fadzil M; Kumar, Dileep

    2017-04-01

    Most medical images suffer from inadequate contrast and brightness, which leads to blurred or weak edges (low contrast) between adjacent tissues resulting in poor segmentation and errors in classification of tissues. Thus, contrast enhancement to improve visual information is extremely important in the development of computational approaches for obtaining quantitative measurements from medical images. In this research, a contrast enhancement algorithm that applies gray-level S-curve transformation technique locally in medical images obtained from various modalities is investigated. The S-curve transformation is an extended gray level transformation technique that results into a curve similar to a sigmoid function through a pixel to pixel transformation. This curve essentially increases the difference between minimum and maximum gray values and the image gradient, locally thereby, strengthening edges between adjacent tissues. The performance of the proposed technique is determined by measuring several parameters namely, edge content (improvement in image gradient), enhancement measure (degree of contrast enhancement), absolute mean brightness error (luminance distortion caused by the enhancement), and feature similarity index measure (preservation of the original image features). Based on medical image datasets comprising 1937 images from various modalities such as ultrasound, mammograms, fluorescent images, fundus, X-ray radiographs and MR images, it is found that the local gray-level S-curve transformation outperforms existing techniques in terms of improved contrast and brightness, resulting in clear and strong edges between adjacent tissues. The proposed technique can be used as a preprocessing tool for effective segmentation and classification of tissue structures in medical images. Copyright © 2017 Elsevier Ltd. All rights reserved.

  7. Fourier-transform ghost imaging with pure far-field correlated thermal light

    International Nuclear Information System (INIS)

    Liu Honglin; Shen Xia; Han Shensheng; Zhu Daming

    2007-01-01

    Pure far-field correlated thermal light beams are created with phase grating, and Fourier-transform ghost imaging depending only on the far-field correlation is demonstrated experimentally. Theoretical analysis and the results of experimental investigation of this pure far-field correlated thermal light are presented. Applications which may be exploited with this imaging scheme are discussed

  8. "Drinking Deeply with Delight": An Investigation of Transformative Images in Isaiah 1 and 65-66

    Science.gov (United States)

    Radford, Peter

    2016-01-01

    This project examines the images used in the beginning and ending chapters of Isaiah. The purpose of this project is to trace the transformation of specific images from their introduction in Isaiah 1 to their re-interpretation in Isaiah 65-66. While this analysis uses the verbal parallels (shared vocabulary) as a starting point, the present…

  9. Animal detection in natural images: effects of color and image database.

    Directory of Open Access Journals (Sweden)

    Weina Zhu

    Full Text Available The visual system has a remarkable ability to extract categorical information from complex natural scenes. In order to elucidate the role of low-level image features for the recognition of objects in natural scenes, we recorded saccadic eye movements and event-related potentials (ERPs in two experiments, in which human subjects had to detect animals in previously unseen natural images. We used a new natural image database (ANID that is free of some of the potential artifacts that have plagued the widely used COREL images. Color and grayscale images picked from the ANID and COREL databases were used. In all experiments, color images induced a greater N1 EEG component at earlier time points than grayscale images. We suggest that this influence of color in animal detection may be masked by later processes when measuring reation times. The ERP results of go/nogo and forced choice tasks were similar to those reported earlier. The non-animal stimuli induced bigger N1 than animal stimuli both in the COREL and ANID databases. This result indicates ultra-fast processing of animal images is possible irrespective of the particular database. With the ANID images, the difference between color and grayscale images is more pronounced than with the COREL images. The earlier use of the COREL images might have led to an underestimation of the contribution of color. Therefore, we conclude that the ANID image database is better suited for the investigation of the processing of natural scenes than other databases commonly used.

  10. Fourier transform infrared spectroscopy microscopic imaging classification based on spatial-spectral features

    Science.gov (United States)

    Liu, Lian; Yang, Xiukun; Zhong, Mingliang; Liu, Yao; Jing, Xiaojun; Yang, Qin

    2018-04-01

    The discrete fractional Brownian incremental random (DFBIR) field is used to describe the irregular, random, and highly complex shapes of natural objects such as coastlines and biological tissues, for which traditional Euclidean geometry cannot be used. In this paper, an anisotropic variable window (AVW) directional operator based on the DFBIR field model is proposed for extracting spatial characteristics of Fourier transform infrared spectroscopy (FTIR) microscopic imaging. Probabilistic principal component analysis first extracts spectral features, and then the spatial features of the proposed AVW directional operator are combined with the former to construct a spatial-spectral structure, which increases feature-related information and helps a support vector machine classifier to obtain more efficient distribution-related information. Compared to Haralick’s grey-level co-occurrence matrix, Gabor filters, and local binary patterns (e.g. uniform LBPs, rotation-invariant LBPs, uniform rotation-invariant LBPs), experiments on three FTIR spectroscopy microscopic imaging datasets show that the proposed AVW directional operator is more advantageous in terms of classification accuracy, particularly for low-dimensional spaces of spatial characteristics.

  11. Integral transform solution of natural convection in a square cavity with volumetric heat generation

    Directory of Open Access Journals (Sweden)

    C. An

    2013-12-01

    Full Text Available The generalized integral transform technique (GITT is employed to obtain a hybrid numerical-analytical solution of natural convection in a cavity with volumetric heat generation. The hybrid nature of this approach allows for the establishment of benchmark results in the solution of non-linear partial differential equation systems, including the coupled set of heat and fluid flow equations that govern the steady natural convection problem under consideration. Through performing the GITT, the resulting transformed ODE system is then numerically solved by making use of the subroutine DBVPFD from the IMSL Library. Therefore, numerical results under user prescribed accuracy are obtained for different values of Rayleigh numbers, and the convergence behavior of the proposed eigenfunction expansions is illustrated. Critical comparisons against solutions produced by ANSYS CFX 12.0 are then conducted, which demonstrate excellent agreement. Several sets of reference results for natural convection with volumetric heat generation in a bi-dimensional square cavity are also provided for future verification of numerical results obtained by other researchers.

  12. Preferred and acceptable color gamut for reproducing natural image content

    NARCIS (Netherlands)

    Sekulovski, D.; de Volder, R.J.; Heynderickx, I.E.J.

    2009-01-01

    The preferred and maximally acceptable chroma for natural images of mainly one hue is determined using both a tuning and a paired-comparison task. The results clearly show the need for wide-gamut displays, but also the limited acceptance of over-saturated colors. Preference in chroma is dominated by

  13. The potential of imaging subsurface heterogeneities by local, natural earthquakes

    NARCIS (Netherlands)

    Nishitsuji, Y.; Doi, I.; Draganov, D.S.

    2014-01-01

    We have developed a new imaging technique of subsurface heterogeneities that uses Sp-waves from natural earthquakes. This technique can be used as a first screening tool in frontier exploration areas before conventional active exploration. Analyzing Sp-waves from 28 earthquakes (Mj 2.0 to 4.2)

  14. In Vivo Imaging of Natural Killer Cell Trafficking in Tumors

    NARCIS (Netherlands)

    Galli, Filippo; Rapisarda, Anna Serafina; Stabile, Helena; Malviya, Gaurav; Manni, Isabella; Bonanno, Elena; Piaggio, Giulia; Gismondi, Angela; Santoni, Angela; Signore, Alberto

    2015-01-01

    Natural killer cells (NKs) are important effectors of the innate immune system, with marked antitumor activity. Imaging NK trafficking in vivo may be relevant to following up the efficacy of new therapeutic approaches aiming at increasing tumor-infiltrating NKs (TINKs). The specific aims of present

  15. Assessing natural hazard risk using images and data

    Science.gov (United States)

    Mccullough, H. L.; Dunbar, P. K.; Varner, J. D.; Mungov, G.

    2012-12-01

    Photographs and other visual media provide valuable pre- and post-event data for natural hazard assessment. Scientific research, mitigation, and forecasting rely on visual data for risk analysis, inundation mapping and historic records. Instrumental data only reveal a portion of the whole story; photographs explicitly illustrate the physical and societal impacts from the event. Visual data is rapidly increasing as the availability of portable high resolution cameras and video recorders becomes more attainable. Incorporating these data into archives ensures a more complete historical account of events. Integrating natural hazards data, such as tsunami, earthquake and volcanic eruption events, socio-economic information, and tsunami deposits and runups along with images and photographs enhances event comprehension. Global historic databases at NOAA's National Geophysical Data Center (NGDC) consolidate these data, providing the user with easy access to a network of information. NGDC's Natural Hazards Image Database (ngdc.noaa.gov/hazardimages) was recently improved to provide a more efficient and dynamic user interface. It uses the Google Maps API and Keyhole Markup Language (KML) to provide geographic context to the images and events. Descriptive tags, or keywords, have been applied to each image, enabling easier navigation and discovery. In addition, the Natural Hazards Map Viewer (maps.ngdc.noaa.gov/viewers/hazards) provides the ability to search and browse data layers on a Mercator-projection globe with a variety of map backgrounds. This combination of features creates a simple and effective way to enhance our understanding of hazard events and risks using imagery.

  16. Fast data reconstructed method of Fourier transform imaging spectrometer based on multi-core CPU

    Science.gov (United States)

    Yu, Chunchao; Du, Debiao; Xia, Zongze; Song, Li; Zheng, Weijian; Yan, Min; Lei, Zhenggang

    2017-10-01

    Imaging spectrometer can gain two-dimensional space image and one-dimensional spectrum at the same time, which shows high utility in color and spectral measurements, the true color image synthesis, military reconnaissance and so on. In order to realize the fast reconstructed processing of the Fourier transform imaging spectrometer data, the paper designed the optimization reconstructed algorithm with OpenMP parallel calculating technology, which was further used for the optimization process for the HyperSpectral Imager of `HJ-1' Chinese satellite. The results show that the method based on multi-core parallel computing technology can control the multi-core CPU hardware resources competently and significantly enhance the calculation of the spectrum reconstruction processing efficiency. If the technology is applied to more cores workstation in parallel computing, it will be possible to complete Fourier transform imaging spectrometer real-time data processing with a single computer.

  17. Transformation of Indonesian Natural Zeolite into Analcime Phase under Hydrothermal Condition

    Science.gov (United States)

    Lestari, W. W.; Hasanah, D. N.; Putra, R.; Mukti, R. R.; Nugrahaningtyas, K. D.

    2018-04-01

    Natural zeolite is abundantly available in Indonesia and well distributed especially in the volcano area like Java, Sumatera, and Sulawesi. So far, natural zeolite from Klaten, Central Java is one of the most interesting zeolites has been widely studied. This research aims to know the effect of seed-assisted synthesis under a hydrothermal condition at 120 °C for 24 hours of Klaten’s zeolite toward the structural change and phase transformation of the original structure. According to XRD and XRF analysis, seed-assisted synthesis through the addition of aluminosilicate mother solution has transformed Klaten’s zeolite which contains (mordenite and clinoptilolite) into analcime type with decreasing Si/Al ratio from 4.51 into 1.38. Morphological analysis using SEM showed the shape changes from irregular into spherical looks like takraw ball in the range of 0.3 to 0.7 micrometer. Based on FTIR data, structure of TO4 site (T = Si or Al) was observed in the range of 300-1300 cm-1 and the occupancy of Brønsted acid site as OH stretching band from silanol groups was detected at 3440-3650 cm-1. Nitrogen adsorption-desorption analysis confirmed that transformation Klaten’s zeolite into analcime type has decreased the surface area from 55.41 to 22.89 m2/g and showed inhomogeneous pore distribution which can be classified as micro-mesoporous aluminosilicate materials.

  18. Random mutagenesis of the hyperthermophilic archaeon Pyrococcus furiosus using in vitro mariner transposition and natural transformation.

    Science.gov (United States)

    Guschinskaya, Natalia; Brunel, Romain; Tourte, Maxime; Lipscomb, Gina L; Adams, Michael W W; Oger, Philippe; Charpentier, Xavier

    2016-11-08

    Transposition mutagenesis is a powerful tool to identify the function of genes, reveal essential genes and generally to unravel the genetic basis of living organisms. However, transposon-mediated mutagenesis has only been successfully applied to a limited number of archaeal species and has never been reported in Thermococcales. Here, we report random insertion mutagenesis in the hyperthermophilic archaeon Pyrococcus furiosus. The strategy takes advantage of the natural transformability of derivatives of the P. furiosus COM1 strain and of in vitro Mariner-based transposition. A transposon bearing a genetic marker is randomly transposed in vitro in genomic DNA that is then used for natural transformation of P. furiosus. A small-scale transposition reaction routinely generates several hundred and up to two thousands transformants. Southern analysis and sequencing showed that the obtained mutants contain a single and random genomic insertion. Polyploidy has been reported in Thermococcales and P. furiosus is suspected of being polyploid. Yet, about half of the mutants obtained on the first selection are homozygous for the transposon insertion. Two rounds of isolation on selective medium were sufficient to obtain gene conversion in initially heterozygous mutants. This transposition mutagenesis strategy will greatly facilitate functional exploration of the Thermococcales genomes.

  19. Darwinism in the Light of Orthodoxy: Scientific Transformism Based on Materialism and Naturalism

    Directory of Open Access Journals (Sweden)

    Gheorghe Istodor

    2014-11-01

    Full Text Available Darwin and his transformism is the most serious challenge to the religious faith of the Church, initial being challenged the presence and God’s creative work in the living universe of the nature, and finally to challenge the existence of God as the Creator, being replaced by an eternal matters and by a blind and random natural process called natural selection. Darwinian theory proposes a dangerous road that starts from deism – with Anglican theistic accents – accepted in his time to an agnosticism and an atheism worst to strike materialism that have an ideological origins placing the foundations of ateization process of many generations starting with modernism, postmodernism and until today.

  20. Transformation processes influencing physico-chemical forms of radionuclides and trace elements in natural water systems

    International Nuclear Information System (INIS)

    Salbu, B.; Riise, G.; Oughton, D.H.

    1995-01-01

    In order to assess short and long term consequences of radionuclides and trace elements introduced to aquatic systems, knowledge on source terms, key factors and key processes influencing the speciation is essential. The mobility, bioavailability and subsequent transfer into food chains depend on the physico-chemical forms on radionuclides and trace metals. In addition, transformation processes and especially the interaction with natural organic matter (NOM) influences the distribution pattern. Furthermore, the prevailing climate conditions, e.g. episodic events and temperature are vital for fluxes and for the kinetics of the transformation processes. In the present work processes in catchments and processes associated with acidification, episodic events, climate conditions (temperature) and mixing zone phenomena influencing the speciation of radionuclides and trace metals are highlighted. These processes should be highly relevant for assessing far field consequences of radionuclides potentially released from disposal sites. (authors). 21 refs., 8 figs., 1 tab

  1. Microbial transformations of natural organic compounds and radionuclides in subsurface environments

    International Nuclear Information System (INIS)

    Francis, A.J.

    1985-10-01

    A major national concern in the subsurface disposal of energy wastes is the contamination of ground and surface waters by waste leachates containing radionuclides, toxic metals, and organic compounds. Microorganisms play an important role in the transformation of organic compounds, radionuclides, and toxic metals present in the waste and affect their mobility in subsurface environments. Microbial processes involved in dissolution, mobilization, and immobilization of toxic metals under aerobic and anaerobic conditions are briefly reviewed. Metal complexing agents and several organic acids produced by microbial action affect mobilization of radionuclides and toxic metals in subsurface environments. Information on the persistence of and biodegradation rates of synthetic as well as microbiologically produced complexing agents is scarce but important in determining the mobility of metal organic complexes in subsoils. Several gaps in knowledge in the area of microbial transformation of naturally occurring organics, radionuclides, and toxic metals have been identified, and further basic research has been suggested. 31 refs., 1 fig., 3 tabs

  2. Inverse transformation algorithm of transient electromagnetic field and its high-resolution continuous imaging interpretation method

    International Nuclear Information System (INIS)

    Qi, Zhipeng; Li, Xiu; Lu, Xushan; Zhang, Yingying; Yao, Weihua

    2015-01-01

    We introduce a new and potentially useful method for wave field inverse transformation and its application in transient electromagnetic method (TEM) 3D interpretation. The diffusive EM field is known to have a unique integral representation in terms of a fictitious wave field that satisfies a wave equation. The continuous imaging of TEM can be accomplished using the imaging methods in seismic interpretation after the diffusion equation is transformed into a fictitious wave equation. The interpretation method based on the imaging of a fictitious wave field could be used as a fast 3D inversion method. Moreover, the fictitious wave field possesses some wave field features making it possible for the application of a wave field interpretation method in TEM to improve the prospecting resolution.Wave field transformation is a key issue in the migration imaging of a fictitious wave field. The equation in the wave field transformation belongs to the first class Fredholm integration equation, which is a typical ill-posed equation. Additionally, TEM has a large dynamic time range, which also facilitates the weakness of this ill-posed problem. The wave field transformation is implemented by using pre-conditioned regularized conjugate gradient method. The continuous imaging of a fictitious wave field is implemented by using Kirchhoff integration. A synthetic aperture and deconvolution algorithm is also introduced to improve the interpretation resolution. We interpreted field data by the method proposed in this paper, and obtained a satisfying interpretation result. (paper)

  3. Naturally occurring variants of human Α9 nicotinic receptor differentially affect bronchial cell proliferation and transformation.

    Directory of Open Access Journals (Sweden)

    Anna Chikova

    Full Text Available Isolation of polyadenilated mRNA from human immortalized bronchial epithelial cell line BEP2D revealed the presence of multiple isoforms of RNA coded by the CHRNA9 gene for α9 nicotinic acetylcholine receptor (nAChR. BEP2D cells were homozygous for the rs10009228 polymorphism encoding for N442S amino acid substitution, and also contained mRNA coding for several truncated isoforms of α9 protein. To elucidate the biologic significance of the naturally occurring variants of α9 nAChR, we compared the biologic effects of overexpression of full-length α9 N442 and S442 proteins, and the truncated α9 variant occurring due to a loss of the exon 4 sequence that causes frame shift and early termination of the translation. These as well as control vector were overexpressed in the BEP2D cells that were used in the assays of proliferation rate, spontaneous vs. tobacco nitrosamine 4-(methylnitrosamino-1-(3-pyridyl-1-butanone (NNK-induced cellular transformation, and tumorigenicity in cell culture and mice. Overexpression of the S442 variant significantly increased cellular proliferation, and spontaneous and NNK-induced transformation. The N442 variant significantly decreased cellular transformation, without affecting proliferation rate. Overexpression of the truncated α9 significantly decreased proliferation and suppressed cellular transformation. These results suggested that α9 nAChR plays important roles in regulation of bronchial cell growth by endogenous acetylcholine and exogenous nicotine, and susceptibility to NNK-induced carcinogenic transformation. The biologic activities of α9 nAChR may be regulated at the splicing level, and genetic polymorphisms in CHRNA9 affecting protein levels, amino acid sequence and RNA splicing may influence the risk for lung cancer.

  4. Use of the Discrete Cosine Transform for the restoration of an image sequence

    International Nuclear Information System (INIS)

    Acheroy, M.P.J.

    1985-01-01

    The Discrete Cosine Transform (DCT) is recognized as an important tool for image compression techniques. Its use in image restoration is, however, not well known. It is the aim of this paper to provide a restoration method for a sequence of images using the DCT as well for the deblurring as for the noise reduction. It is shown that the DCT can play an interesting role in the deconvolution problem for linear imaging systems with finite, invariant and symmetric impulse response. It is further shown that the noise reduction can be performed onto an image sequence using a time adaptive Kalman filter in the domain of the Karhunen-Loeve transform which is approximated by the DCT

  5. Automated pathologies detection in retina digital images based on complex continuous wavelet transform phase angles.

    Science.gov (United States)

    Lahmiri, Salim; Gargour, Christian S; Gabrea, Marcel

    2014-10-01

    An automated diagnosis system that uses complex continuous wavelet transform (CWT) to process retina digital images and support vector machines (SVMs) for classification purposes is presented. In particular, each retina image is transformed into two one-dimensional signals by concatenating image rows and columns separately. The mathematical norm of phase angles found in each one-dimensional signal at each level of CWT decomposition are relied on to characterise the texture of normal images against abnormal images affected by exudates, drusen and microaneurysms. The leave-one-out cross-validation method was adopted to conduct experiments and the results from the SVM show that the proposed approach gives better results than those obtained by other methods based on the correct classification rate, sensitivity and specificity.

  6. Text Detection in Natural Scene Images by Stroke Gabor Words.

    Science.gov (United States)

    Yi, Chucai; Tian, Yingli

    2011-01-01

    In this paper, we propose a novel algorithm, based on stroke components and descriptive Gabor filters, to detect text regions in natural scene images. Text characters and strings are constructed by stroke components as basic units. Gabor filters are used to describe and analyze the stroke components in text characters or strings. We define a suitability measurement to analyze the confidence of Gabor filters in describing stroke component and the suitability of Gabor filters on an image window. From the training set, we compute a set of Gabor filters that can describe principle stroke components of text by their parameters. Then a K -means algorithm is applied to cluster the descriptive Gabor filters. The clustering centers are defined as Stroke Gabor Words (SGWs) to provide a universal description of stroke components. By suitability evaluation on positive and negative training samples respectively, each SGW generates a pair of characteristic distributions of suitability measurements. On a testing natural scene image, heuristic layout analysis is applied first to extract candidate image windows. Then we compute the principle SGWs for each image window to describe its principle stroke components. Characteristic distributions generated by principle SGWs are used to classify text or nontext windows. Experimental results on benchmark datasets demonstrate that our algorithm can handle complex backgrounds and variant text patterns (font, color, scale, etc.).

  7. Scaled nonuniform Fourier transform for image reconstruction in swept source optical coherence tomography

    Science.gov (United States)

    Mezgebo, Biniyam; Nagib, Karim; Fernando, Namal; Kordi, Behzad; Sherif, Sherif

    2018-02-01

    Swept Source optical coherence tomography (SS-OCT) is an important imaging modality for both medical and industrial diagnostic applications. A cross-sectional SS-OCT image is obtained by applying an inverse discrete Fourier transform (DFT) to axial interferograms measured in the frequency domain (k-space). This inverse DFT is typically implemented as a fast Fourier transform (FFT) that requires the data samples to be equidistant in k-space. As the frequency of light produced by a typical wavelength-swept laser is nonlinear in time, the recorded interferogram samples will not be uniformly spaced in k-space. Many image reconstruction methods have been proposed to overcome this problem. Most such methods rely on oversampling the measured interferogram then use either hardware, e.g., Mach-Zhender interferometer as a frequency clock module, or software, e.g., interpolation in k-space, to obtain equally spaced samples that are suitable for the FFT. To overcome the problem of nonuniform sampling in k-space without any need for interferogram oversampling, an earlier method demonstrated the use of the nonuniform discrete Fourier transform (NDFT) for image reconstruction in SS-OCT. In this paper, we present a more accurate method for SS-OCT image reconstruction from nonuniform samples in k-space using a scaled nonuniform Fourier transform. The result is demonstrated using SS-OCT images of Axolotl salamander eggs.

  8. Multi-Resolution Wavelet-Transformed Image Analysis of Histological Sections of Breast Carcinomas

    Directory of Open Access Journals (Sweden)

    Hae-Gil Hwang

    2005-01-01

    Full Text Available Multi-resolution images of histological sections of breast cancer tissue were analyzed using texture features of Haar- and Daubechies transform wavelets. Tissue samples analyzed were from ductal regions of the breast and included benign ductal hyperplasia, ductal carcinoma in situ (DCIS, and invasive ductal carcinoma (CA. To assess the correlation between computerized image analysis and visual analysis by a pathologist, we created a two-step classification system based on feature extraction and classification. In the feature extraction step, we extracted texture features from wavelet-transformed images at 10× magnification. In the classification step, we applied two types of classifiers to the extracted features, namely a statistics-based multivariate (discriminant analysis and a neural network. Using features from second-level Haar transform wavelet images in combination with discriminant analysis, we obtained classification accuracies of 96.67 and 87.78% for the training and testing set (90 images each, respectively. We conclude that the best classifier of carcinomas in histological sections of breast tissue are the texture features from the second-level Haar transform wavelet images used in a discriminant function.

  9. Role of iron species in the photo-transformation of phenol in artificial and natural seawater

    International Nuclear Information System (INIS)

    Calza, Paola; Massolino, Cristina; Pelizzetti, Ezio; Minero, Claudio

    2012-01-01

    The role played by iron oxides (goethite and akaganeite) and iron(II)/(III) species as photo-sensitizers toward the transformation of organic matter was examined in saline water using phenol as a model molecule. The study was carried out in NaCl 0.7 M solution at pH 8, artificial (ASW) and natural (NSW) seawater, in a device simulating solar light spectrum and intensity. Under illumination phenol decomposition occurs in all the investigated cases. Conversely, dark experiments show that no reaction takes place, implying that phenol transformation is a light- activated process. Following the addition of Fe(II) ions to aerated solutions, Fe(II) is easily oxidized to Fe(III) and hydrogen peroxide is formed. Regardless of the addition of Fe(II) or Fe(III) ions, photo-activated degradation is mediated by Fe(III) species. Several (and different) hydroxylated and halogenated intermediates were identified. In ASW, akaganeite promotes the formation of ortho and para chloro derivatives (2- and 4-chlorophenol, 2,4-dichlorophenol and 2,4,6-trichlorophenol), while goethite induces the formation of 3-chlorophenol and bromophenols. Conversely, Fe(II) or Fe(III) addition causes the formation of 3- and 4-chlorophenol and 2,3- or 3,4-dichlorophenol. 4-Bromophenol was only identified when irradiating Fe(II) spiked solutions. Natural seawater sampled in the Gulf of Trieste, Italy, has been spiked with phenol and irradiated. Phenol photo-induced transformation in NSW mediated by natural photosensitizers occurs and leads to the formation of numerous halophenols, condensed products and nitrophenols. When NSW is spiked with phenol and iron oxides, Fe(II) or Fe(III), halophenols production is enhanced. A close analogy exists between Fe(III), Fe(II)/goethite in ASW and NSW products. Different halophenols production in the natural seawater samples depends on Fe(II)/goethite (above all for 3-chlorophenol, 2,3-dichlorophenol and 4-bromophenol formation) and on Fe(III) colloidal species (3

  10. Digital staining for histopathology multispectral images by the combined application of spectral enhancement and spectral transformation.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2011-01-01

    In this paper we introduced a digital staining method for histopathology images captured with an n-band multispectral camera. The method consisted of two major processes: enhancement of the original spectral transmittance and the transformation of the enhanced transmittance to its target spectral configuration. Enhancement is accomplished by shifting the original transmittance with the scaled difference between the original transmittance and the transmittance estimated with m dominant principal component (PC) vectors;the m-PC vectors were determined from the transmittance samples of the background image. Transformation of the enhanced transmittance to the target spectral configuration was done using an nxn transformation matrix, which was derived by applying a least square method to the enhanced and target spectral training data samples of the different tissue components. Experimental results on the digital conversion of a hematoxylin and eosin (H&E) stained multispectral image to its Masson's trichrome stained (MT) equivalent shows the viability of the method.

  11. A spatial-spectral approach for deriving high signal quality eigenvectors for remote sensing image transformations

    DEFF Research Database (Denmark)

    Rogge, Derek; Bachmann, Martin; Rivard, Benoit

    2014-01-01

    Spectral decorrelation (transformations) methods have long been used in remote sensing. Transformation of the image data onto eigenvectors that comprise physically meaningful spectral properties (signal) can be used to reduce the dimensionality of hyperspectral images as the number of spectrally...... distinct signal sources composing a given hyperspectral scene is generally much less than the number of spectral bands. Determining eigenvectors dominated by signal variance as opposed to noise is a difficult task. Problems also arise in using these transformations on large images, multiple flight...... and spectral subsampling to the data, which is accomplished by deriving a limited set of eigenvectors for spatially contiguous subsets. These subset eigenvectors are compiled together to form a new noise reduced data set, which is subsequently used to derive a set of global orthogonal eigenvectors. Data from...

  12. Role of intensity transformation function for enhancement of bone scintigraphic images.

    Science.gov (United States)

    Pandey, Anil Kumar; Dhiman, Vishali; Sharma, Akshima; ArunRaj, Sreedharan Thankarajan; Baghel, Vivek; Patel, Chetan; Sharma, Param Dev; Bal, Chandrasekhar; Kumar, Rakesh

    2018-03-29

    The bone scintigraphic image might exceed the dynamic range (the ratio between the highest and the lowest brightness a monitor is capable of displaying) of display monitor. In this case, a high intensity area, and loss of the details of other structures in the displayed image makes the clinical interpretation a challenging task. We have investigated the role of intensity transformation function for enhancement of these types of images. Methods: Forty high dynamic range bone scintigraphic images were processed using intensity transformation (IT) function. The IT function has two parameters: threshold and slope. Keeping the threshold equal to mean counts of the image, the value of slope was varied from 1 to 20. In-house application program written in MATLAB R2013b was used to process images. Twenty output images corresponding to one input image were visually inspected by two experienced nuclear medicine (NM) physicians to select diagnostic quality images, and from their selection the standardized slope (value of slope parameter) that produced maximum numbers of diagnostic images was determined. They also rated the image quality of input and output images (at standardized slope) on scale 1 to 5 [where 1 is for poor and 5 if for the excellent diagnostic quality]. Student's t-test was used to test the significance of difference between the mean image quality score assigned to input and processed images at significance level α = 0.05. Results: The application of IT functions with standardized parameters significantly improved the quality of high dynamic range bone scintigraphic images ( P enhancement. Copyright © 2018 by the Society of Nuclear Medicine and Molecular Imaging, Inc.

  13. On application of image analysis and natural language processing for music search

    Science.gov (United States)

    Gwardys, Grzegorz

    2013-10-01

    In this paper, I investigate a problem of finding most similar music tracks using, popular in Natural Language Processing, techniques like: TF-IDF and LDA. I de ned document as music track. Each music track is transformed to spectrogram, thanks that, I can use well known techniques to get words from images. I used SURF operation to detect characteristic points and novel approach for their description. The standard kmeans was used for clusterization. Clusterization is here identical with dictionary making, so after that I can transform spectrograms to text documents and perform TF-IDF and LDA. At the final, I can make a query in an obtained vector space. The research was done on 16 music tracks for training and 336 for testing, that are splitted in four categories: Hiphop, Jazz, Metal and Pop. Although used technique is completely unsupervised, results are satisfactory and encouraging to further research.

  14. An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm

    Science.gov (United States)

    Zhang, B.; Sang, Jun; Alam, Mohammad S.

    2013-03-01

    An image hiding method based on cascaded iterative Fourier transform and public-key encryption algorithm was proposed. Firstly, the original secret image was encrypted into two phase-only masks M1 and M2 via cascaded iterative Fourier transform (CIFT) algorithm. Then, the public-key encryption algorithm RSA was adopted to encrypt M2 into M2' . Finally, a host image was enlarged by extending one pixel into 2×2 pixels and each element in M1 and M2' was multiplied with a superimposition coefficient and added to or subtracted from two different elements in the 2×2 pixels of the enlarged host image. To recover the secret image from the stego-image, the two masks were extracted from the stego-image without the original host image. By applying public-key encryption algorithm, the key distribution was facilitated, and also compared with the image hiding method based on optical interference, the proposed method may reach higher robustness by employing the characteristics of the CIFT algorithm. Computer simulations show that this method has good robustness against image processing.

  15. Chromosomal gene inactivation in the green sulfur bacterium Chlorobium tepidum by natural transformation

    DEFF Research Database (Denmark)

    Frigaard, N-U; Bryant, D A

    2001-01-01

    Conditions for inactivating chromosomal genes of Chlorobium tepidum by natural transformation and homologous recombination were established. As a model, mutants unable to perform nitrogen fixation were constructed by interrupting nifD with various antibiotic resistance markers. Growth of wild...

  16. On social plasticity: the transformative power of pharmaceuticals on health, nature and identity.

    Science.gov (United States)

    Collin, Johanne

    2016-01-01

    This article proposes a theoretical framework on the role of pharmaceuticals in transforming perspectives and shaping contemporary subjectivities. It outlines the significant role drugs play in three fundamental processes of social transformation in Western societies: medicalisation, molecularisation and biosocialisation. Indeed, drugs can be envisaged as major devices of a pharmaceutical regime, which is more akin to the notion of dispositif, as used by Foucault, than to the sole result of high-level scheming by powerful economic interests, a notion which informs a significant share of the literature. Medications serve as a key vector of the transformation of perspective (or gaze) that characterises medicalisation, molecularisation and biosocialisation, by shifting our view on health, nature and identity from a categorical to a dimensional framework. Hence, central to this thesis is that the same underlying mechanism is at work. Indeed, in all three processes there is an evolving polarity between two antinomic categories, the positions of which are constantly being redefined by the various uses of drugs. Due to their concreteness, the fluidity of their use and the plasticity of the identities they authorise, drugs colonise all areas of contemporary social experiences, far beyond the medical sphere. A video abstract of this article can be found at: https://www.youtube.com/watch?v=djIBY7DHKW4&feature=youtu.be. © 2015 The Author. Sociology of Health & Illness published by John Wiley & Sons Ltd on behalf of Foundation for SHIL.

  17. Color image cryptosystem using Fresnel diffraction and phase modulation in an expanded fractional Fourier transform domain

    Science.gov (United States)

    Chen, Hang; Liu, Zhengjun; Chen, Qi; Blondel, Walter; Varis, Pierre

    2018-05-01

    In this letter, what we believe is a new technique for optical color image encryption by using Fresnel diffraction and a phase modulation in an extended fractional Fourier transform domain is proposed. Different from the RGB component separation based method, the color image is converted into one component by improved Chirikov mapping. The encryption system is addressed with Fresnel diffraction and phase modulation. A pair of lenses is placed into the fractional Fourier transform system for the modulation of beam propagation. The structure parameters of the optical system and parameters in Chirikov mapping serve as extra keys. Some numerical simulations are given to test the validity of the proposed cryptosystem.

  18. Image security based on iterative random phase encoding in expanded fractional Fourier transform domains

    Science.gov (United States)

    Liu, Zhengjun; Chen, Hang; Blondel, Walter; Shen, Zhenmin; Liu, Shutian

    2018-06-01

    A novel image encryption method is proposed by using the expanded fractional Fourier transform, which is implemented with a pair of lenses. Here the centers of two lenses are separated at the cross section of axis in optical system. The encryption system is addressed with Fresnel diffraction and phase modulation for the calculation of information transmission. The iterative process with the transform unit is utilized for hiding secret image. The structure parameters of a battery of lenses can be used for additional keys. The performance of encryption method is analyzed theoretically and digitally. The results show that the security of this algorithm is enhanced markedly by the added keys.

  19. Objective scoring of transformed foci in BALB/c 3T3 cell transformation assay by statistical image descriptors.

    Science.gov (United States)

    Urani, C; Corvi, R; Callegaro, G; Stefanini, F M

    2013-09-01

    In vitro cell transformation assays (CTAs) have been shown to model important stages of in vivo carcinogenesis and have the potential to predict carcinogenicity in humans. Advantages of CTAs are their ability of revealing both genotoxic and non-genotoxic carcinogens while reducing both experimental costs and the number of animals used. The endpoint of the CTA is foci formation, and requires classification under light microscopy based on morphology. Thus current limitations for the wide adoption of the assay partially depend on a fair degree of subjectivity in foci scoring. An objective evaluation may be obtained after separating foci from background monolayer in the digital image, and quantifying values of statistical descriptors which are selected to capture eye-scored morphological features. The aim of this study was to develop statistical descriptors to be applied to transformed foci of BALB/c 3T3, which cover foci size, multilayering and invasive cell growth into the background monolayer. Proposed descriptors were applied to a database of 407 foci images to explore the numerical features, and to illustrate open problems and potential solutions. Copyright © 2013 Elsevier Ltd. All rights reserved.

  20. Color image encryption using random transforms, phase retrieval, chaotic maps, and diffusion

    Science.gov (United States)

    Annaby, M. H.; Rushdi, M. A.; Nehary, E. A.

    2018-04-01

    The recent tremendous proliferation of color imaging applications has been accompanied by growing research in data encryption to secure color images against adversary attacks. While recent color image encryption techniques perform reasonably well, they still exhibit vulnerabilities and deficiencies in terms of statistical security measures due to image data redundancy and inherent weaknesses. This paper proposes two encryption algorithms that largely treat these deficiencies and boost the security strength through novel integration of the random fractional Fourier transforms, phase retrieval algorithms, as well as chaotic scrambling and diffusion. We show through detailed experiments and statistical analysis that the proposed enhancements significantly improve security measures and immunity to attacks.

  1. Cell-to-cell transformation in Escherichia coli: a novel type of natural transformation involving cell-derived DNA and a putative promoting pheromone.

    Directory of Open Access Journals (Sweden)

    Rika Etchuuya

    Full Text Available Escherichia coli is not assumed to be naturally transformable. However, several recent reports have shown that E. coli can express modest genetic competence in certain conditions that may arise in its environment. We have shown previously that spontaneous lateral transfer of non-conjugative plasmids occurs in a colony biofilm of mixed E. coli strains (a set of a donor strain harbouring a plasmid and a plasmid-free recipient strain. In this study, with high-frequency combinations of strains and a plasmid, we constructed the same lateral plasmid transfer system in liquid culture. Using this system, we demonstrated that this lateral plasmid transfer was DNase-sensitive, indicating that it is a kind of transformation in which DNase-accessible extracellular naked DNA is essential. However, this transformation did not occur with purified plasmid DNA and required a direct supply of plasmid from co-existing donor cells. Based on this feature, we have termed this transformation type as 'cell-to-cell transformation'. Analyses using medium conditioned with the high-frequency strain revealed that this strain released a certain factor(s that promoted cell-to-cell transformation and arrested growth of the other strains. This factor is heat-labile and protease-sensitive, and its roughly estimated molecular mass was between ∼9 kDa and ∼30 kDa, indicating that it is a polypeptide factor. Interestingly, this factor was effective even when the conditioned medium was diluted 10(-5-10(-6, suggesting that it acts like a pheromone with high bioactivity. Based on these results, we propose that cell-to-cell transformation is a novel natural transformation mechanism in E. coli that requires cell-derived DNA and is promoted by a peptide pheromone. This is the first evidence that suggests the existence of a peptide pheromone-regulated transformation mechanism in E. coli and in Gram-negative bacteria.

  2. Segmentation of Polarimetric SAR Images Usig Wavelet Transformation and Texture Features

    Science.gov (United States)

    Rezaeian, A.; Homayouni, S.; Safari, A.

    2015-12-01

    Polarimetric Synthetic Aperture Radar (PolSAR) sensors can collect useful observations from earth's surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR) are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT). Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM) and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR) L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  3. SEGMENTATION OF POLARIMETRIC SAR IMAGES USIG WAVELET TRANSFORMATION AND TEXTURE FEATURES

    Directory of Open Access Journals (Sweden)

    A. Rezaeian

    2015-12-01

    Full Text Available Polarimetric Synthetic Aperture Radar (PolSAR sensors can collect useful observations from earth’s surfaces and phenomena for various remote sensing applications, such as land cover mapping, change and target detection. These data can be acquired without the limitations of weather conditions, sun illumination and dust particles. As result, SAR images, and in particular Polarimetric SAR (PolSAR are powerful tools for various environmental applications. Unlike the optical images, SAR images suffer from the unavoidable speckle, which causes the segmentation of this data difficult. In this paper, we use the wavelet transformation for segmentation of PolSAR images. Our proposed method is based on the multi-resolution analysis of texture features is based on wavelet transformation. Here, we use the information of gray level value and the information of texture. First, we produce coherency or covariance matrices and then generate span image from them. In the next step of proposed method is texture feature extraction from sub-bands is generated from discrete wavelet transform (DWT. Finally, PolSAR image are segmented using clustering methods as fuzzy c-means (FCM and k-means clustering. We have applied the proposed methodology to full polarimetric SAR images acquired by the Uninhabited Aerial Vehicle Synthetic Aperture Radar (UAVSAR L-band system, during July, in 2012 over an agricultural area in Winnipeg, Canada.

  4. Repetition blindness for natural images of objects with viewpoint changes

    Directory of Open Access Journals (Sweden)

    Stephane eBuffat

    2013-01-01

    Full Text Available When stimuli are repeated in a rapid serial visual presentation (RSVP, observers sometimes fail to report the second occurrence of a target. This phenomenon is referred to as repetition blindness (RB. We report an RSVP experiment with photographs in which we manipulated object viewpoints between the first and second occurrences of a target (0-, 45-, or 90-degree changes, and spatial frequency content. Natural images were spatially filtered to produce low, medium, or high spatial-frequency stimuli. RB was observed for all filtering conditions. Surprisingly, for full-spectrum images, RB increased significantly as the viewpoint reached 90 degrees. For filtered images, a similar pattern of results was found for all conditions except for medium spatial-frequency stimuli. These findings suggest that object recognition in RSVP are subtended by viewpoint-specific representations for all spatial frequencies except medium ones.

  5. Quantum Color Image Encryption Algorithm Based on A Hyper-Chaotic System and Quantum Fourier Transform

    Science.gov (United States)

    Tan, Ru-Chao; Lei, Tong; Zhao, Qing-Min; Gong, Li-Hua; Zhou, Zhi-Hong

    2016-12-01

    To improve the slow processing speed of the classical image encryption algorithms and enhance the security of the private color images, a new quantum color image encryption algorithm based on a hyper-chaotic system is proposed, in which the sequences generated by the Chen's hyper-chaotic system are scrambled and diffused with three components of the original color image. Sequentially, the quantum Fourier transform is exploited to fulfill the encryption. Numerical simulations show that the presented quantum color image encryption algorithm possesses large key space to resist illegal attacks, sensitive dependence on initial keys, uniform distribution of gray values for the encrypted image and weak correlation between two adjacent pixels in the cipher-image.

  6. Functional analysis of cT-DNAs in naturally transformed plants, recent findings and general considerations

    Directory of Open Access Journals (Sweden)

    Léon Otten

    2016-12-01

    Full Text Available Several cases have been reported of naturally transformed plant species. These plants contain cellular T-DNAs (cT-DNAs derived from ancient infections by Agrobacterium. We have determined the structure of 4 different cT-DNAs in N. tomentosiformis, the paternal ancestor of N. tabacum, and found several intact open reading frames. Among these, TB-mas2’ and TA-rolC were tested for activity. TB-mas2’ encodes desoxyfructosylglutamine (DFG synthesis. Some N. tabacum cultivars show very high TB-mas2’ expression and produce DFG in their roots. The TA-rolC gene is biologically active and when expressed under strong constitutive promoter control, generates growth changes in N. tabacum. Based on these first data on the structure and function of cT-DNAs I present a theoretical model on the origin and evolution of naturally transformed plants, which may serve as a basis for further research in this field.

  7. Paddy field – A natural sequential anaerobic–aerobic bioreactor for polychlorinated biphenyls transformation

    International Nuclear Information System (INIS)

    Chen, Chen; Yu, Chunna; Shen, Chaofeng; Tang, Xianjin; Qin, Zhihui; Yang, Kai; Hashmi, Muhammad Zaffar; Huang, Ronglang; Shi, Huixiang

    2014-01-01

    The environmental pollution and health risks caused by the improper disposal of electric and electronic waste (e-waste) have become urgent issues for the developing countries. One of the typical pollutants, polychlorinated biphenyls (PCBs), is commonly found in farmland in Taizhou, a major hotspot of e-waste recycling in China. This study investigated the amount of PCB residue in local farmlands. Biotransformation of PCBs was further studied under different water management conditions in paddy field with or without rice cultivation, with a special focus on the alternating flooded and drying processes. It was found that paddy field improved the attenuation of PCBs, especially for highly chlorinated congeners. In the microcosm experiment, 40% or more of the initial total PCBs was removed after sequential flood–drying treatments, compared to less than 10% in the sterilized control and 20% in the constant-drying system. Variation in the quantity of PCBs degrading and dechlorinating bacterial groups were closely related to the alteration of anaerobic–aerobic conditions. These results suggested that alternating anoxic–oxic environment in paddy field led to the sequential aerobic–anaerobic transformation of PCBs, which provided a favorable environment for natural PCB attenuation. - Highlights: • Paddy fields hold significantly lower level of PCBs than drylands, especially highly-chlorinated PCBs. • Microbial dechlorination of PCBs is favored under flooded conditions in paddy field. • Aerobic biodegradation of PCBs is benefited under dry conditions in paddy field. • PCBs dechlorination rate is accelerated in rice planted paddy field compared to the unplanted one. • Alternating anoxic–oxic environment in paddy field led to the sequential aerobic–anaerobic transformation of PCBs. - Alternating anoxic–oxic environment led to the sequential aerobic–anaerobic transformation of PCBs in paddy field, which could act as a natural sequential anaerobic

  8. The Performance and Scientific Rationale for an Infrared Imaging Fourier Transform Spectrograph on a Large Space Telescope

    National Research Council Canada - National Science Library

    Graham, James R; Abrams, Mark; Bennett, C; Carr, J; Cook, K; Dey, A; Najita, J; Wishnow, E

    1998-01-01

    .... We consider the relationship between pixel size, spectral resolution, and diameter of the beam splitter for imaging and nonimaging Fourier transform spectrographs and give the condition required...

  9. Advances in hyperspectral remote sensing I: The visible Fourier transform hyperspectral imager

    Directory of Open Access Journals (Sweden)

    J. Bruce Rafert

    2015-05-01

    Full Text Available We discuss early hyperspectral research and development activities during the 1990s that led to the deployment of aircraft and satellite payloads whose heritage was based on the use of visible, spatially modulated, imaging Fourier transform spectrometers, beginning with early experiments at the Florida Institute of Technology, through successful launch and deployment of the Visible Fourier Transform Hyperspectral Imager on MightySat II.1 on 19 July 2000. In addition to a brief chronological overview, we also discuss several of the most interesting optical engineering challenges that were addressed over this timeframe, present some as-yet un-exploited features of field-widened (slit-less SMIFTS instruments, and present some images from ground-based, aircraft-based and satellite-based instruments that helped provide the impetus for the proliferation and development of entire new families of instruments and countless new applications for hyperspectral imaging.

  10. Gaseous effluent monitoring and identification using an imaging Fourier transform spectrometer

    Energy Technology Data Exchange (ETDEWEB)

    Carter, M.R.; Bennett, C.L.; Fields, D.J.; Hernandez, J.

    1993-10-01

    We are developing an imaging Fourier transform spectrometer for chemical effluent monitoring. The system consists of a 2-D infrared imaging array in the focal plane of a Michelson interferometer. Individual images are coordinated with the positioning of a moving mirror in the Michelson interferometer. A three dimensional data cube with two spatial dimensions and one interferogram dimension is then Fourier transformed to produce a hyperspectral data cube with one spectral dimension and two spatial dimensions. The spectral range of the instrument is determined by the choice of optical components and the spectral range of the focal plane array. Measurements in the near UV, visible, near IR, and mid-IR ranges are possible with the existing instrument. Gaseous effluent monitoring and identification measurements will be primarily in the ``fingerprint`` region of the spectrum, ({lambda} = 8 to 12 {mu}m). Initial measurements of effluent using this imaging interferometer in the mid-IR will be presented.

  11. An algorithm to transform natural language into SQL queries for relational databases

    Directory of Open Access Journals (Sweden)

    Garima Singh

    2016-09-01

    Full Text Available Intelligent interface, to enhance efficient interactions between user and databases, is the need of the database applications. Databases must be intelligent enough to make the accessibility faster. However, not every user familiar with the Structured Query Language (SQL queries as they may not aware of structure of the database and they thus require to learn SQL. So, non-expert users need a system to interact with relational databases in their natural language such as English. For this, Database Management System (DBMS must have an ability to understand Natural Language (NL. In this research, an intelligent interface is developed using semantic matching technique which translates natural language query to SQL using set of production rules and data dictionary. The data dictionary consists of semantics sets for relations and attributes. A series of steps like lower case conversion, tokenization, speech tagging, database element and SQL element extraction is used to convert Natural Language Query (NLQ to SQL Query. The transformed query is executed and the results are obtained by the user. Intelligent Interface is the need of database applications to enhance efficient interaction between user and DBMS.

  12. Remote Sensing Image Fusion Based on the Combination Grey Absolute Correlation Degree and IHS Transform

    Directory of Open Access Journals (Sweden)

    Hui LIN

    2014-12-01

    Full Text Available An improved fusion algorithm for multi-source remote sensing images with high spatial resolution and multi-spectral capacity is proposed based on traditional IHS fusion and grey correlation analysis. Firstly, grey absolute correlation degree is used to discriminate non-edge pixels and edge pixels in high-spatial resolution images, by which the weight of intensity component is identified in order to combine it with high-spatial resolution image. Therefore, image fusion is achieved using IHS inverse transform. The proposed method is applied to ETM+ multi-spectral images and panchromatic image, and Quickbird’s multi-spectral images and panchromatic image respectively. The experiments prove that the fusion method proposed in the paper can efficiently preserve spectral information of the original multi-spectral images while enhancing spatial resolution greatly. By comparison and analysis, the proposed fusion algorithm is better than traditional IHS fusion and fusion method based on grey correlation analysis and IHS transform.

  13. A Rigid Image Registration Based on the Nonsubsampled Contourlet Transform and Genetic Algorithms

    Directory of Open Access Journals (Sweden)

    Nasreddine Taleb

    2010-09-01

    Full Text Available Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT. An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  14. A rigid image registration based on the nonsubsampled contourlet transform and genetic algorithms.

    Science.gov (United States)

    Meskine, Fatiha; Chikr El Mezouar, Miloud; Taleb, Nasreddine

    2010-01-01

    Image registration is a fundamental task used in image processing to match two or more images taken at different times, from different sensors or from different viewpoints. The objective is to find in a huge search space of geometric transformations, an acceptable accurate solution in a reasonable time to provide better registered images. Exhaustive search is computationally expensive and the computational cost increases exponentially with the number of transformation parameters and the size of the data set. In this work, we present an efficient image registration algorithm that uses genetic algorithms within a multi-resolution framework based on the Non-Subsampled Contourlet Transform (NSCT). An adaptable genetic algorithm for registration is adopted in order to minimize the search space. This approach is used within a hybrid scheme applying the two techniques fitness sharing and elitism. Two NSCT based methods are proposed for registration. A comparative study is established between these methods and a wavelet based one. Because the NSCT is a shift-invariant multidirectional transform, the second method is adopted for its search speeding up property. Simulation results clearly show that both proposed techniques are really promising methods for image registration compared to the wavelet approach, while the second technique has led to the best performance results of all. Moreover, to demonstrate the effectiveness of these methods, these registration techniques have been successfully applied to register SPOT, IKONOS and Synthetic Aperture Radar (SAR) images. The algorithm has been shown to work perfectly well for multi-temporal satellite images as well, even in the presence of noise.

  15. A method based on IHS cylindrical transform model for quality assessment of image fusion

    Science.gov (United States)

    Zhu, Xiaokun; Jia, Yonghong

    2005-10-01

    Image fusion technique has been widely applied to remote sensing image analysis and processing, and methods for quality assessment of image fusion in remote sensing have also become the research issues at home and abroad. Traditional assessment methods combine calculation of quantitative indexes and visual interpretation to compare fused images quantificationally and qualitatively. However, in the existing assessment methods, there are two defects: on one hand, most imdexes lack the theoretic support to compare different fusion methods. On the hand, there is not a uniform preference for most of the quantitative assessment indexes when they are applied to estimate the fusion effects. That is, the spatial resolution and spectral feature could not be analyzed synchronously by these indexes and there is not a general method to unify the spatial and spectral feature assessment. So in this paper, on the basis of the approximate general model of four traditional fusion methods, including Intensity Hue Saturation(IHS) triangle transform fusion, High Pass Filter(HPF) fusion, Principal Component Analysis(PCA) fusion, Wavelet Transform(WT) fusion, a correlation coefficient assessment method based on IHS cylindrical transform is proposed. By experiments, this method can not only get the evaluation results of spatial and spectral features on the basis of uniform preference, but also can acquire the comparison between fusion image sources and fused images, and acquire differences among fusion methods. Compared with the traditional assessment methods, the new methods is more intuitionistic, and in accord with subjective estimation.

  16. ISAba1 and Tn6168 acquisition by natural transformation leads to third-generation cephalosporins resistance in Acinetobacter baumannii.

    Science.gov (United States)

    Domingues, Sara; Rosário, Natasha; Ben Cheikh, Hadhemi; Da Silva, Gabriela Jorge

    2018-05-15

    Acinetobacter baumannii has intrinsic beta-lactamase genes, namely ampC and bla OXA-51 -like, which are only strongly expressed when the ISAba1 insertion sequence is upstream the 5' end of the genes. A second ampC gene has also been identified in some clinical A. baumannii strains. The increased expression of these genes leads to resistance to beta-lactams, including third-generation cephalosporins and/or carbapenems. The aim of this work was to assess the involvement of natural transformation in the transfer of chromosomal ampC-associated mobile elements, and related changes in the resistance profile of recipient cells. Natural transformation assays with the naturally competent A. baumannii A118 clinical isolate as recipient cell and the multidrug resistant A. baumannii Ab51 clinical isolate as the source of donor DNA produced transformants. All tested transformants showed integration of the ISAba1 close to the ampC gene. In two transformants, the ISAba1 was acquired by transposition and inserted between the usual folE and the ampC genes. The remaining transformants acquired the ISAba1 adjacent to a second ampC gene, as part of Tn6168, likely by homologous recombination. Our study demonstrates that natural transformation can contribute to the widespread of beta-lactams resistance, and acquisition of non-resistant determinants can lead to changes in the susceptibility profile of A. baumannii strains. Copyright © 2018 Elsevier B.V. All rights reserved.

  17. Image denoising by sparse 3-D transform-domain collaborative filtering.

    Science.gov (United States)

    Dabov, Kostadin; Foi, Alessandro; Katkovnik, Vladimir; Egiazarian, Karen

    2007-08-01

    We propose a novel image denoising strategy based on an enhanced sparse representation in transform domain. The enhancement of the sparsity is achieved by grouping similar 2-D image fragments (e.g., blocks) into 3-D data arrays which we call "groups." Collaborative filtering is a special procedure developed to deal with these 3-D groups. We realize it using the three successive steps: 3-D transformation of a group, shrinkage of the transform spectrum, and inverse 3-D transformation. The result is a 3-D estimate that consists of the jointly filtered grouped image blocks. By attenuating the noise, the collaborative filtering reveals even the finest details shared by grouped blocks and, at the same time, it preserves the essential unique features of each individual block. The filtered blocks are then returned to their original positions. Because these blocks are overlapping, for each pixel, we obtain many different estimates which need to be combined. Aggregation is a particular averaging procedure which is exploited to take advantage of this redundancy. A significant improvement is obtained by a specially developed collaborative Wiener filtering. An algorithm based on this novel denoising strategy and its efficient implementation are presented in full detail; an extension to color-image denoising is also developed. The experimental results demonstrate that this computationally scalable algorithm achieves state-of-the-art denoising performance in terms of both peak signal-to-noise ratio and subjective visual quality.

  18. 3D spectral imaging with synchrotron Fourier transform infrared spectro-microtomography

    Science.gov (United States)

    Michael C. Martin; Charlotte Dabat-Blondeau; Miriam Unger; Julia Sedlmair; Dilworth Y. Parkinson; Hans A. Bechtel; Barbara Illman; Jonathan M. Castro; Marco Keiluweit; David Buschke; Brenda Ogle; Michael J. Nasse; Carol J. Hirschmugl

    2013-01-01

    We report Fourier transform infrared spectro-microtomography, a nondestructive three-dimensional imaging approach that reveals the distribution of distinctive chemical compositions throughout an intact biological or materials sample. The method combines mid-infrared absorption contrast with computed tomographic data acquisition and reconstruction to enhance chemical...

  19. A Novel Image Encryption Scheme Based on Self-Synchronous Chaotic Stream Cipher and Wavelet Transform

    Directory of Open Access Journals (Sweden)

    Chunlei Fan

    2018-06-01

    Full Text Available In this paper, a novel image encryption scheme is proposed for the secure transmission of image data. A self-synchronous chaotic stream cipher is designed with the purpose of resisting active attack and ensures the limited error propagation of image data. Two-dimensional discrete wavelet transform and Arnold mapping are used to scramble the pixel value of the original image. A four-dimensional hyperchaotic system with four positive Lyapunov exponents serve as the chaotic sequence generator of the self-synchronous stream cipher in order to enhance the security and complexity of the image encryption system. Finally, the simulation experiment results show that this image encryption scheme is both reliable and secure.

  20. Natural image sequences constrain dynamic receptive fields and imply a sparse code.

    Science.gov (United States)

    Häusler, Chris; Susemihl, Alex; Nawrot, Martin P

    2013-11-06

    In their natural environment, animals experience a complex and dynamic visual scenery. Under such natural stimulus conditions, neurons in the visual cortex employ a spatially and temporally sparse code. For the input scenario of natural still images, previous work demonstrated that unsupervised feature learning combined with the constraint of sparse coding can predict physiologically measured receptive fields of simple cells in the primary visual cortex. This convincingly indicated that the mammalian visual system is adapted to the natural spatial input statistics. Here, we extend this approach to the time domain in order to predict dynamic receptive fields that can account for both spatial and temporal sparse activation in biological neurons. We rely on temporal restricted Boltzmann machines and suggest a novel temporal autoencoding training procedure. When tested on a dynamic multi-variate benchmark dataset this method outperformed existing models of this class. Learning features on a large dataset of natural movies allowed us to model spatio-temporal receptive fields for single neurons. They resemble temporally smooth transformations of previously obtained static receptive fields and are thus consistent with existing theories. A neuronal spike response model demonstrates how the dynamic receptive field facilitates temporal and population sparseness. We discuss the potential mechanisms and benefits of a spatially and temporally sparse representation of natural visual input. Copyright © 2013 The Authors. Published by Elsevier B.V. All rights reserved.

  1. Local figure-ground cues are valid for natural images.

    Science.gov (United States)

    Fowlkes, Charless C; Martin, David R; Malik, Jitendra

    2007-06-08

    Figure-ground organization refers to the visual perception that a contour separating two regions belongs to one of the regions. Recent studies have found neural correlates of figure-ground assignment in V2 as early as 10-25 ms after response onset, providing strong support for the role of local bottom-up processing. How much information about figure-ground assignment is available from locally computed cues? Using a large collection of natural images, in which neighboring regions were assigned a figure-ground relation by human observers, we quantified the extent to which figural regions locally tend to be smaller, more convex, and lie below ground regions. Our results suggest that these Gestalt cues are ecologically valid, and we quantify their relative power. We have also developed a simple bottom-up computational model of figure-ground assignment that takes image contours as input. Using parameters fit to natural image statistics, the model is capable of matching human-level performance when scene context limited.

  2. Quantum color image watermarking based on Arnold transformation and LSB steganography

    Science.gov (United States)

    Zhou, Ri-Gui; Hu, Wenwen; Fan, Ping; Luo, Gaofeng

    In this paper, a quantum color image watermarking scheme is proposed through twice-scrambling of Arnold transformations and steganography of least significant bit (LSB). Both carrier image and watermark images are represented by the novel quantum representation of color digital images model (NCQI). The image sizes for carrier and watermark are assumed to be 2n×2n and 2n‑1×2n‑1, respectively. At first, the watermark is scrambled into a disordered form through image preprocessing technique of exchanging the image pixel position and altering the color information based on Arnold transforms, simultaneously. Then, the scrambled watermark with 2n‑1×2n‑1 image size and 24-qubit grayscale is further expanded to an image with size 2n×2n and 6-qubit grayscale using the nearest-neighbor interpolation method. Finally, the scrambled and expanded watermark is embedded into the carrier by steganography of LSB scheme, and a key image with 2n×2n size and 3-qubit information is generated at the meantime, which only can use the key image to retrieve the original watermark. The extraction of watermark is the reverse process of embedding, which is achieved by applying a sequence of operations in the reverse order. Simulation-based experimental results involving different carrier and watermark images (i.e. conventional or non-quantum) are simulated based on the classical computer’s MATLAB 2014b software, which illustrates that the present method has a good performance in terms of three items: visual quality, robustness and steganography capacity.

  3. A Science Faculty's Transformation of Nature of Science Understanding into His Teaching Graduate Level Chemistry Course

    Science.gov (United States)

    Aydin, Sevgi

    2015-01-01

    This is an interpretive case study to examine the teaching of an experienced science faculty who had a strong interest in teaching undergraduate and graduate science courses and nature of science specifically. It was interested in how he transformed knowledge from his experience as a scientist and his ideas about nature of science into forms…

  4. STEGO TRANSFORMATION OF SPATIAL DOMAIN OF COVER IMAGE ROBUST AGAINST ATTACKS ON EMBEDDED MESSAGE

    Directory of Open Access Journals (Sweden)

    Kobozeva A.

    2014-04-01

    Full Text Available One of the main requirements to steganografic algorithm to be developed is robustness against disturbing influences, that is, to attacks against the embedded message. It was shown that guaranteeing the stego algorithm robustness does not depend on whether the additional information is embedded into the spatial or transformation domain of the cover image. Given the existing advantages of the spatial domain of the cover image in organization of embedding and extracting processes, a sufficient condition for ensuring robustness of such stego transformation was obtained in this work. It was shown that the amount of brightness correction related to the pixels of the cover image block is similar to the amount of correction related to the maximum singular value of the corresponding matrix of the block in case of embedding additional data that ensures robustness against attacks on the embedded message. Recommendations were obtained for selecting the size of the cover image block used in stego transformation as one of the parameters determining the calculation error of stego message. Given the inversely correspondence between the stego capacity of the stego channel being organized and the size of the cover image block, l=8 value was recommended.

  5. Attenuated total reflection-Fourier transform infrared imaging of large areas using inverted prism crystals and combining imaging and mapping.

    Science.gov (United States)

    Chan, K L Andrew; Kazarian, Sergei G

    2008-10-01

    Attenuated total reflection-Fourier transform infrared (ATR-FT-IR) imaging is a very useful tool for capturing chemical images of various materials due to the simple sample preparation and the ability to measure wet samples or samples in an aqueous environment. However, the size of the array detector used for image acquisition is often limited and there is usually a trade off between spatial resolution and the field of view (FOV). The combination of mapping and imaging can be used to acquire images with a larger FOV without sacrificing spatial resolution. Previous attempts have demonstrated this using an infrared microscope and a Germanium hemispherical ATR crystal to achieve images of up to 2.5 mm x 2.5 mm but with varying spatial resolution and depth of penetration across the imaged area. In this paper, we demonstrate a combination of mapping and imaging with a different approach using an external optics housing for large ATR accessories and inverted ATR prisms to achieve ATR-FT-IR images with a large FOV and reasonable spatial resolution. The results have shown that a FOV of 10 mm x 14 mm can be obtained with a spatial resolution of approximately 40-60 microm when using an accessory that gives no magnification. A FOV of 1.3 mm x 1.3 mm can be obtained with spatial resolution of approximately 15-20 microm when using a diamond ATR imaging accessory with 4x magnification. No significant change in image quality such as spatial resolution or depth of penetration has been observed across the whole FOV with this method and the measurement time was approximately 15 minutes for an image consisting of 16 image tiles.

  6. Optical image encryption using QR code and multilevel fingerprints in gyrator transform domains

    Science.gov (United States)

    Wei, Yang; Yan, Aimin; Dong, Jiabin; Hu, Zhijuan; Zhang, Jingtao

    2017-11-01

    A new concept of GT encryption scheme is proposed in this paper. We present a novel optical image encryption method by using quick response (QR) code and multilevel fingerprint keys in gyrator transform (GT) domains. In this method, an original image is firstly transformed into a QR code, which is placed in the input plane of cascaded GTs. Subsequently, the QR code is encrypted into the cipher-text by using multilevel fingerprint keys. The original image can be obtained easily by reading the high-quality retrieved QR code with hand-held devices. The main parameters used as private keys are GTs' rotation angles and multilevel fingerprints. Biometrics and cryptography are integrated with each other to improve data security. Numerical simulations are performed to demonstrate the validity and feasibility of the proposed encryption scheme. In the future, the method of applying QR codes and fingerprints in GT domains possesses much potential for information security.

  7. Study on the algorithm of computational ghost imaging based on discrete fourier transform measurement matrix

    Science.gov (United States)

    Zhang, Leihong; Liang, Dong; Li, Bei; Kang, Yi; Pan, Zilan; Zhang, Dawei; Gao, Xiumin; Ma, Xiuhua

    2016-07-01

    On the basis of analyzing the cosine light field with determined analytic expression and the pseudo-inverse method, the object is illuminated by a presetting light field with a determined discrete Fourier transform measurement matrix, and the object image is reconstructed by the pseudo-inverse method. The analytic expression of the algorithm of computational ghost imaging based on discrete Fourier transform measurement matrix is deduced theoretically, and compared with the algorithm of compressive computational ghost imaging based on random measurement matrix. The reconstruction process and the reconstruction error are analyzed. On this basis, the simulation is done to verify the theoretical analysis. When the sampling measurement number is similar to the number of object pixel, the rank of discrete Fourier transform matrix is the same as the one of the random measurement matrix, the PSNR of the reconstruction image of FGI algorithm and PGI algorithm are similar, the reconstruction error of the traditional CGI algorithm is lower than that of reconstruction image based on FGI algorithm and PGI algorithm. As the decreasing of the number of sampling measurement, the PSNR of reconstruction image based on FGI algorithm decreases slowly, and the PSNR of reconstruction image based on PGI algorithm and CGI algorithm decreases sharply. The reconstruction time of FGI algorithm is lower than that of other algorithms and is not affected by the number of sampling measurement. The FGI algorithm can effectively filter out the random white noise through a low-pass filter and realize the reconstruction denoising which has a higher denoising capability than that of the CGI algorithm. The FGI algorithm can improve the reconstruction accuracy and the reconstruction speed of computational ghost imaging.

  8. Using trainable segmentation and watershed transform for identifying unilocular and multilocular cysts from ultrasound images of ovarian tumour

    Science.gov (United States)

    Ibrahim, Dheyaa Ahmed; Al-Assam, Hisham; Du, Hongbo; Jassim, Sabah

    2017-05-01

    Ovarian masses are categorised into different types of malignant and benign. In order to optimize patient treatment, it is necessary to carry out pre-operational characterisation of the suspect ovarian mass to determine its category. Ultrasound imaging has been widely used in differentiating malignant from benign cases due to its safe and non-intrusive nature, and can be used for determining the number of cysts in the ovary. Presently, the gynaecologist is tasked with manually counting the number of cysts shown on the ultrasound image. This paper proposes, a new approach that automatically segments the ovarian masses and cysts from a static B-mode image. Initially, the method uses a trainable segmentation procedure and a trained neural network classifier to accurately identify the position of the masses and cysts. After that, the borders of the masses can be appraised using watershed transform. The effectiveness of the proposed method has been tested by comparing the number of cysts identified by the method against the manual examination by a gynaecologist. A total of 65 ultrasound images were used for the comparison, and the results showed that the proposed solution is a viable alternative to the manual counting method for accurately determining the number of cysts in a US ovarian image.

  9. Optimal transformation for correcting partial volume averaging effects in magnetic resonance imaging

    International Nuclear Information System (INIS)

    Soltanian-Zadeh, H.; Windham, J.P.; Yagle, A.E.

    1993-01-01

    Segmentation of a feature of interest while correcting for partial volume averaging effects is a major tool for identification of hidden abnormalities, fast and accurate volume calculation, and three-dimensional visualization in the field of magnetic resonance imaging (MRI). The authors present the optimal transformation for simultaneous segmentation of a desired feature and correction of partial volume averaging effects, while maximizing the signal-to-noise ratio (SNR) of the desired feature. It is proved that correction of partial volume averaging effects requires the removal of the interfering features from the scene. It is also proved that correction of partial volume averaging effects can be achieved merely by a linear transformation. It is finally shown that the optimal transformation matrix is easily obtained using the Gram-Schmidt orthogonalization procedure, which is numerically stable. Applications of the technique to MRI simulation, phantom, and brain images are shown. They show that in all cases the desired feature is segmented from the interfering features and partial volume information is visualized in the resulting transformed images

  10. Infrared and visible image fusion using discrete cosine transform and swarm intelligence for surveillance applications

    Science.gov (United States)

    Paramanandham, Nirmala; Rajendiran, Kishore

    2018-01-01

    A novel image fusion technique is presented for integrating infrared and visible images. Integration of images from the same or various sensing modalities can deliver the required information that cannot be delivered by viewing the sensor outputs individually and consecutively. In this paper, a swarm intelligence based image fusion technique using discrete cosine transform (DCT) domain is proposed for surveillance application which integrates the infrared image with the visible image for generating a single informative fused image. Particle swarm optimization (PSO) is used in the fusion process for obtaining the optimized weighting factor. These optimized weighting factors are used for fusing the DCT coefficients of visible and infrared images. Inverse DCT is applied for obtaining the initial fused image. An enhanced fused image is obtained through adaptive histogram equalization for a better visual understanding and target detection. The proposed framework is evaluated using quantitative metrics such as standard deviation, spatial frequency, entropy and mean gradient. The experimental results demonstrate the outperformance of the proposed algorithm over many other state- of- the- art techniques reported in literature.

  11. Confocal non-line-of-sight imaging based on the light-cone transform

    Science.gov (United States)

    O’Toole, Matthew; Lindell, David B.; Wetzstein, Gordon

    2018-03-01

    How to image objects that are hidden from a camera’s view is a problem of fundamental importance to many fields of research, with applications in robotic vision, defence, remote sensing, medical imaging and autonomous vehicles. Non-line-of-sight (NLOS) imaging at macroscopic scales has been demonstrated by scanning a visible surface with a pulsed laser and a time-resolved detector. Whereas light detection and ranging (LIDAR) systems use such measurements to recover the shape of visible objects from direct reflections, NLOS imaging reconstructs the shape and albedo of hidden objects from multiply scattered light. Despite recent advances, NLOS imaging has remained impractical owing to the prohibitive memory and processing requirements of existing reconstruction algorithms, and the extremely weak signal of multiply scattered light. Here we show that a confocal scanning procedure can address these challenges by facilitating the derivation of the light-cone transform to solve the NLOS reconstruction problem. This method requires much smaller computational and memory resources than previous reconstruction methods do and images hidden objects at unprecedented resolution. Confocal scanning also provides a sizeable increase in signal and range when imaging retroreflective objects. We quantify the resolution bounds of NLOS imaging, demonstrate its potential for real-time tracking and derive efficient algorithms that incorporate image priors and a physically accurate noise model. Additionally, we describe successful outdoor experiments of NLOS imaging under indirect sunlight.

  12. Depth resolved hyperspectral imaging spectrometer based on structured light illumination and Fourier transform interferometry

    Science.gov (United States)

    Choi, Heejin; Wadduwage, Dushan; Matsudaira, Paul T.; So, Peter T.C.

    2014-01-01

    A depth resolved hyperspectral imaging spectrometer can provide depth resolved imaging both in the spatial and the spectral domain. Images acquired through a standard imaging Fourier transform spectrometer do not have the depth-resolution. By post processing the spectral cubes (x, y, λ) obtained through a Sagnac interferometer under uniform illumination and structured illumination, spectrally resolved images with depth resolution can be recovered using structured light illumination algorithms such as the HiLo method. The proposed scheme is validated with in vitro specimens including fluorescent solution and fluorescent beads with known spectra. The system is further demonstrated in quantifying spectra from 3D resolved features in biological specimens. The system has demonstrated depth resolution of 1.8 μm and spectral resolution of 7 nm respectively. PMID:25360367

  13. Optical image encryption using fresnel zone plate mask based on fast walsh hadamard transform

    Science.gov (United States)

    Khurana, Mehak; Singh, Hukum

    2018-05-01

    A new symmetric encryption technique using Fresnel Zone Plate (FZP) based on Fast Walsh Hadamard Transform (FWHT) is proposed for security enhancement. In this technique, bits of plain image is randomized by shuffling the bits randomly. The obtained scrambled image is then masked with FZP using symmetric encryption in FWHT domain to obtain final encrypted image. FWHT has been used in the cryptosystem so as to protect image data from the quantization error and for reconstructing the image perfectly. The FZP used in proposed scheme increases the key space and makes it robust to many traditional attacks. The effectiveness and robustness of the proposed cryptosystem has been analyzed on the basis of various parameters by simulating on MATLAB 8.1.0 (R2012b). The experimental results are provided to highlight suitability of the proposed cryptosystem and prove that the system is secure.

  14. High-precision terahertz frequency modulated continuous wave imaging method using continuous wavelet transform

    Science.gov (United States)

    Zhou, Yu; Wang, Tianyi; Dai, Bing; Li, Wenjun; Wang, Wei; You, Chengwu; Wang, Kejia; Liu, Jinsong; Wang, Shenglie; Yang, Zhengang

    2018-02-01

    Inspired by the extensive application of terahertz (THz) imaging technologies in the field of aerospace, we exploit a THz frequency modulated continuous-wave imaging method with continuous wavelet transform (CWT) algorithm to detect a multilayer heat shield made of special materials. This method uses the frequency modulation continuous-wave system to catch the reflected THz signal and then process the image data by the CWT with different basis functions. By calculating the sizes of the defects area in the final images and then comparing the results with real samples, a practical high-precision THz imaging method is demonstrated. Our method can be an effective tool for the THz nondestructive testing of composites, drugs, and some cultural heritages.

  15. Relationship between increasing concentrations of two carcinogens and statistical image descriptors of foci morphology in the cell transformation assay.

    Science.gov (United States)

    Callegaro, Giulia; Corvi, Raffaella; Salovaara, Susan; Urani, Chiara; Stefanini, Federico M

    2017-06-01

    Cell Transformation Assays (CTAs) have long been proposed for the identification of chemical carcinogenicity potential. The endpoint of these in vitro assays is represented by the phenotypic alterations in cultured cells, which are characterized by the change from the non-transformed to the transformed phenotype. Despite the wide fields of application and the numerous advantages of CTAs, their use in regulatory toxicology has been limited in part due to concerns about the subjective nature of visual scoring, i.e. the step in which transformed colonies or foci are evaluated through morphological features. An objective evaluation of morphological features has been previously obtained through automated digital processing of foci images to extract the value of three statistical image descriptors. In this study a further potential of the CTA using BALB/c 3T3 cells is addressed by analysing the effect of increasing concentrations of two known carcinogens, benzo[a]pyrene and NiCl 2 , with different modes of action on foci morphology. The main result of our quantitative evaluation shows that the concentration of the considered carcinogens has an effect on foci morphology that is statistically significant for the mean of two among the three selected descriptors. Statistical significance also corresponds to visual relevance. The statistical analysis of variations in foci morphology due to concentration allowed to quantify morphological changes that can be visually appreciated but not precisely determined. Therefore, it has the potential of providing new quantitative parameters in CTAs, and of exploiting all the information encoded in foci. Copyright © 2016 John Wiley & Sons, Ltd. Copyright © 2016 John Wiley & Sons, Ltd.

  16. A real time study on condition monitoring of distribution transformer using thermal imager

    Science.gov (United States)

    Mariprasath, T.; Kirubakaran, V.

    2018-05-01

    The transformer is one of the critical apparatus in the power system. At any cost, a few minutes of outages harshly influence the power system. Hence, prevention-based maintenance technique is very essential. The continuous conditioning and monitoring technology significantly increases the life span of the transformer, as well as reduces the maintenance cost. Hence, conditioning and monitoring of transformer's temperature are very essential. In this paper, a critical review has been made on various conditioning and monitoring techniques. Furthermore, a new method, hot spot indication technique, is discussed. Also, transformer's operating condition is monitored by using thermal imager. From the thermal analysis, it is inferred that major hotspot locations are appearing at connection lead out; also, the bushing of the transformer is the very hottest spot in transformer, so monitoring the level of oil is essential. Alongside, real time power quality analysis has been carried out using the power analyzer. It shows that industrial drives are injecting current harmonics to the distribution network, which causes the power quality problem on the grid. Moreover, the current harmonic limit has exceeded the IEEE standard limit. Hence, the adequate harmonics suppression technique is need an hour.

  17. Testing an AAC system that transforms pictograms into natural language with persons with cerebral palsy.

    Science.gov (United States)

    Pahisa-Solé, Joan; Herrera-Joancomartí, Jordi

    2017-10-18

    In this article, we describe a compansion system that transforms the telegraphic language that comes from the use of pictogram-based augmentative and alternative communication (AAC) into natural language. The system was tested with four participants with severe cerebral palsy and ranging degrees of linguistic competence and intellectual disabilities. Participants had used pictogram-based AAC at least for the past 30 years each and presented a stable linguistic profile. During tests, which consisted of a total of 40 sessions, participants were able to learn new linguistic skills, such as the use of basic verb tenses, while using the compansion system, which proved a source of motivation. The system can be adapted to the linguistic competence of each person and required no learning curve during tests when none of its special features, like gender, number, verb tense, or sentence type modifiers, were used. Furthermore, qualitative and quantitative results showed a mean communication rate increase of 41.59%, compared to the same communication device without the compansion system, and an overall improvement in the communication experience when the output is in natural language. Tests were conducted in Catalan and Spanish.

  18. Exploring how organic matter controls structural transformations in natural aquatic nanocolloidal dispersions.

    Science.gov (United States)

    King, Stephen M; Jarvie, Helen P

    2012-07-03

    The response of the dispersion nanostructure of surface river bed sediment to the controlled removal and readdition of natural organic matter (NOM), in the absence and presence of background electrolyte, was examined using the technique of small-angle neutron scattering (SANS). Partial NOM removal induced aggregation of the mineral particles, but more extensive NOM removal restored colloidal stability. When peat humic acid (PHA) was added to a NOM-deficient sediment concentration-related structural transformations were observed: at 255 mg/L PHA aggregation of the nanocolloid was actually enhanced, but at 380 mg/L PHA disaggregation and colloidal stability were promoted. The addition of 2 mM CaCl(2) induced mild aggregation in the native sediment but not in sediments with added PHA, suggesting that the native NOM and the PHA respond differently to changes in ionic strength. A first attempt at using SANS to directly characterize the thickness and coverage of an adsorbed PHA layer in a natural nanocolloid is also presented. The results are discussed in the context of a hierarchical aquatic colloidal nanostructure, and the implications for contemporary studies of the role of dissolved organic carbon (DOC) in sustaining the transport of colloidal iron in upland catchments.

  19. Digital simulation of staining in histopathology multispectral images: enhancement and linear transformation of spectral transmittance.

    Science.gov (United States)

    Bautista, Pinky A; Yagi, Yukako

    2012-05-01

    Hematoxylin and eosin (H&E) stain is currently the most popular for routine histopathology staining. Special and/or immuno-histochemical (IHC) staining is often requested to further corroborate the initial diagnosis on H&E stained tissue sections. Digital simulation of staining (or digital staining) can be a very valuable tool to produce the desired stained images from the H&E stained tissue sections instantaneously. We present an approach to digital staining of histopathology multispectral images by combining the effects of spectral enhancement and spectral transformation. Spectral enhancement is accomplished by shifting the N-band original spectrum of the multispectral pixel with the weighted difference between the pixel's original and estimated spectrum; the spectrum is estimated using M transformed to the spectral configuration associated to its reaction to a specific stain by utilizing an N × N transformation matrix, which is derived through application of least mean squares method to the enhanced and target spectral transmittance samples of the different tissue components found in the image. Results of our experiments on the digital conversion of an H&E stained multispectral image to its Masson's trichrome stained equivalent show the viability of the method.

  20. Underwater image quality enhancement of sea cucumbers based on improved histogram equalization and wavelet transform

    Directory of Open Access Journals (Sweden)

    Xi Qiao

    2017-09-01

    Full Text Available Sea cucumbers usually live in an environment where lighting and visibility are generally not controllable, which cause the underwater image of sea cucumbers to be distorted, blurred, and severely attenuated. Therefore, the valuable information from such an image cannot be fully extracted for further processing. To solve the problems mentioned above and improve the quality of the underwater images of sea cucumbers, pre-processing of a sea cucumber image is attracting increasing interest. This paper presents a new method based on contrast limited adaptive histogram equalization and wavelet transform (CLAHE-WT to enhance the sea cucumber image quality. CLAHE was used to process the underwater image for increasing contrast based on the Rayleigh distribution, and WT was used for de-noising based on a soft threshold. Qualitative analysis indicated that the proposed method exhibited better performance in enhancing the quality and retaining the image details. For quantitative analysis, the test with 120 underwater images showed that for the proposed method, the mean square error (MSE, peak signal to noise ratio (PSNR, and entropy were 49.2098, 13.3909, and 6.6815, respectively. The proposed method outperformed three established methods in enhancing the visual quality of sea cucumber underwater gray image.

  1. Natural display mode for digital DICOM-conformant diagnostic imaging.

    Science.gov (United States)

    Peters, Klaus-Ruediger; Ramsby, Gale R

    2002-09-01

    The authors performed this study to investigate the verification of the contrast display properties defined by the digital imaging and communication in medicine (DICOM) PS (picture archiving and communication system [PACS] standard) 3.14-2001 gray-scale display function standard and their dependency on display luminance range and video signal bandwidth. Contrast sensitivity and contrast linearity of DICOM-conformant displays were measured in just-noticeable differences (JNDs) on special perceptual contrast test patterns. Measurements were obtained six times at various display settings under dark room conditions. Display luminance range and video bandwidth had a significant effect on contrast perception. The perceptual promises of the standard could be established only with displays that were calibrated to a unity contrast resolution, at which the number of displayed intensity steps was equal to the number of perceivable contrast steps (JNDs). Such display conditions provide for visual perception information at the level of single-step contrast sensitivity and full-range contrast linearity. These "natural display" conditions also help minimize the Mach banding effects that otherwise reduce contrast sensitivity and contrast linearity. Most, if not all, conventionally used digital display modalities are driven with a contrast resolution larger than 1. Such conditions reduce contrast perception when compared with natural imaging conditions. The DICOM-conformant display conditions at unity contrast resolution were characterized as the "natural display" mode, and, thus, the authors a priori recommend them as being useful for making a primary diagnosis with PACS and teleradiology and as a standard for psychophysical research and performance measurements.

  2. Revisiting Seafloor-Spreading in the Red Sea: Basement Nature, Transforms and Ocean-Continent Boundary

    Science.gov (United States)

    Tapponnier, P.; Dyment, J.; Zinger, M. A.; Franken, D.; Afifi, A. M.; Wyllie, A.; Ali, H. G.; Hanbal, I.

    2013-12-01

    A new marine geophysical survey on the Saudi Arabian side of the Red Sea confirms early inferences that ~ 2/3 of the eastern Red Sea is floored by oceanic crust. Most seismic profiles south of 24°N show a strongly reflective, landward-deepening volcanic basement up to ~ 100 km east of the axial ridge, beneath thick evaporitic deposits. This position of the Ocean-Continent Boundary (OCB) is consistent with gravity measurements. The low amplitudes and long wavelengths of magnetic anomalies older than Chrons 1-3 can be accounted for by low-pass filtering due to thick sediments. Seafloor-spreading throughout the Red Sea started around 15 Ma, as in the western Gulf of Aden. Its onset was coeval with the activation of the Aqaba/Levant transform and short-cutting of the Gulf of Suez. The main difference between the southern and northern Red Sea lies not in the nature of the crust but in the direction and modulus of the plate motion rate. The ~ 30° counterclockwise strike change and halving of the spreading rate (~ 16 to ~ 8 mm/yr) between the Hermil (17°N) and Suez triple junctions results in a shift from slow (≈ North Atlantic) to highly oblique, ultra-slow (≈ Southwest Indian) ridge type. The obliquity of spreading in the central and northern basins is taken up by transform discontinuities that stop ~ 40 km short of the coastline, at the OCB. Three large transform fault systems (Jeddah, Zabargad, El Akhawein) nucleated as continental transfer faults reactivating NNE-trending Proterozoic shear zones. The former two systems divide the Red Sea into three main basins. Between ~15 and ~5 Ma, for about 10 million years, thick evaporites were deposited directly on top of oceanic crust in deep water, as the depositional environment, modulated by climate, became restricted by the Suez and Afar/Bab-el-Mandeb volcano-tectonic 'flood-gates.' The presence of these thick deposits (up to ~ 8 km) suffices to account for the difference between the Red Sea and the Gulf of Aden

  3. Literary Routes: Contributions to Natural/Cultural Heritage Tourism. How landscape transforms literature and tourism

    Directory of Open Access Journals (Sweden)

    Rosalinda Ruiz Scarfuto

    2013-12-01

    Full Text Available Literary routes inspired by landscapes is a topic where cultural and natural routes merge to form an added value of heritage that is greater than either one standing alone.  Landscape is traditionally defined as a consequence of transformations by humans, and its scope rarely takes into account how nature has inspired literature to advance the “intellectual development of humankind,” hence transforming heritage.  Literary routes paralleling transhumance routes embraced by the Sami, First Nations, or Spanish shepherds (full of landscapes, seascapes, and riverscapes, can actively transmit traditional technologies, biodiversity, and cosmic philosophy for the betterment of humankind; for example, the depth of literary heritage inspired by landscapes enhances our collective memory through a network of archives (libraries, collections.  The continuous dissemination of this literature traversing borders, language barriers, and time periods has stimulated literary routes to emerge as a function of moving the experience from an intangible heritage based on imaginary landscapes to a tangible sensory experience in situ following a plot, author’s life, or a myth. Literary routes respond to the demand of the growing target travellers, who are more literate and active today than in the past. They are excited followers of their favourite writers, and seek ways to be in contact with them. Now it is time to rekindle the collective memory, expand the literary dimension, and offer a sensorial in situ experience by adding a literary link. For instance, myths of the Ohlone Nation based near a California wetlands use the symbolic coyote as the intermediary to teach humans how to live in harmony with their ecosystem; or in Spain, Arcipreste de Hita’s novel El Libro de Buen Amor (1330 describes traditions and gastronomy as it criss-crosses the Guadarrama mountains, alongside the Poets’ Route that includes international Nobel prize winners in literature

  4. High-resolution magnetic-domain imaging by Fourier transform holography at 21 nm wavelength

    International Nuclear Information System (INIS)

    Schaffert, Stefan; Pfau, Bastian; Günther, Christian M; Schneider, Michael; Korff Schmising, Clemens von; Eisebitt, Stefan; Geilhufe, Jan

    2013-01-01

    Exploiting x-ray magnetic circular dichroism at the L-edges of 3d transition metals, Fourier transform holography has become a standard technique to investigate magnetic samples with sub-100 nm spatial resolution. Here, magnetic imaging in the 21 nm wavelength regime using M-edge circular dichroism is demonstrated. Ultrafast pulses in this wavelength regime are increasingly available from both laser- and accelerator-driven soft x-ray sources. We explain the adaptations concerning sample preparation and data evaluation compared to conventional holography in the 1 nm wavelength range. We find the correction of the Fourier transform hologram to in-plane Fourier components to be critical for high-quality reconstruction and demonstrate 70 nm spatial resolution in magnetization imaging with this approach. (paper)

  5. Determination of mango fruit from binary image using randomized Hough transform

    Science.gov (United States)

    Rizon, Mohamed; Najihah Yusri, Nurul Ain; Abdul Kadir, Mohd Fadzil; bin Mamat, Abd. Rasid; Abd Aziz, Azim Zaliha; Nanaa, Kutiba

    2015-12-01

    A method of detecting mango fruit from RGB input image is proposed in this research. From the input image, the image is processed to obtain the binary image using the texture analysis and morphological operations (dilation and erosion). Later, the Randomized Hough Transform (RHT) method is used to find the best ellipse fits to each binary region. By using the texture analysis, the system can detect the mango fruit that is partially overlapped with each other and mango fruit that is partially occluded by the leaves. The combination of texture analysis and morphological operator can isolate the partially overlapped fruit and fruit that are partially occluded by leaves. The parameters derived from RHT method was used to calculate the center of the ellipse. The center of the ellipse acts as the gripping point for the fruit picking robot. As the results, the rate of detection was up to 95% for fruit that is partially overlapped and partially covered by leaves.

  6. ISAR Imaging of Maneuvering Targets Based on the Modified Discrete Polynomial-Phase Transform

    Directory of Open Access Journals (Sweden)

    Yong Wang

    2015-09-01

    Full Text Available Inverse synthetic aperture radar (ISAR imaging of a maneuvering target is a challenging task in the field of radar signal processing. The azimuth echo can be characterized as a multi-component polynomial phase signal (PPS after the translational compensation, and the high quality ISAR images can be obtained by the parameters estimation of it combined with the Range-Instantaneous-Doppler (RID technique. In this paper, a novel parameters estimation algorithm of the multi-component PPS with order three (cubic phase signal-CPS based on the modified discrete polynomial-phase transform (MDPT is proposed, and the corresponding new ISAR imaging algorithm is presented consequently. This algorithm is efficient and accurate to generate a focused ISAR image, and the results of real data demonstrate the effectiveness of it.

  7. A two-step Hilbert transform method for 2D image reconstruction

    International Nuclear Information System (INIS)

    Noo, Frederic; Clackdoyle, Rolf; Pack, Jed D

    2004-01-01

    The paper describes a new accurate two-dimensional (2D) image reconstruction method consisting of two steps. In the first step, the backprojected image is formed after taking the derivative of the parallel projection data. In the second step, a Hilbert filtering is applied along certain lines in the differentiated backprojection (DBP) image. Formulae for performing the DBP step in fan-beam geometry are also presented. The advantage of this two-step Hilbert transform approach is that in certain situations, regions of interest (ROIs) can be reconstructed from truncated projection data. Simulation results are presented that illustrate very similar reconstructed image quality using the new method compared to standard filtered backprojection, and that show the capability to correctly handle truncated projections. In particular, a simulation is presented of a wide patient whose projections are truncated laterally yet for which highly accurate ROI reconstruction is obtained

  8. An optimized color transformation for the analysis of digital images of hematoxylin & eosin stained slides

    Directory of Open Access Journals (Sweden)

    Mark D Zarella

    2015-01-01

    Full Text Available Hematoxylin and eosin (H&E staining is ubiquitous in pathology practice and research. As digital pathology has evolved, the reliance of quantitative methods that make use of H&E images has similarly expanded. For example, cell counting and nuclear morphometry rely on the accurate demarcation of nuclei from other structures and each other. One of the major obstacles to quantitative analysis of H&E images is the high degree of variability observed between different samples and different laboratories. In an effort to characterize this variability, as well as to provide a substrate that can potentially mitigate this factor in quantitative image analysis, we developed a technique to project H&E images into an optimized space more appropriate for many image analysis procedures. We used a decision tree-based support vector machine learning algorithm to classify 44 H&E stained whole slide images of resected breast tumors according to the histological structures that are present. This procedure takes an H&E image as an input and produces a classification map of the image that predicts the likelihood of a pixel belonging to any one of a set of user-defined structures (e.g., cytoplasm, stroma. By reducing these maps into their constituent pixels in color space, an optimal reference vector is obtained for each structure, which identifies the color attributes that maximally distinguish one structure from other elements in the image. We show that tissue structures can be identified using this semi-automated technique. By comparing structure centroids across different images, we obtained a quantitative depiction of H&E variability for each structure. This measurement can potentially be utilized in the laboratory to help calibrate daily staining or identify troublesome slides. Moreover, by aligning reference vectors derived from this technique, images can be transformed in a way that standardizes their color properties and makes them more amenable to image

  9. An optimized color transformation for the analysis of digital images of hematoxylin & eosin stained slides.

    Science.gov (United States)

    Zarella, Mark D; Breen, David E; Plagov, Andrei; Garcia, Fernando U

    2015-01-01

    Hematoxylin and eosin (H&E) staining is ubiquitous in pathology practice and research. As digital pathology has evolved, the reliance of quantitative methods that make use of H&E images has similarly expanded. For example, cell counting and nuclear morphometry rely on the accurate demarcation of nuclei from other structures and each other. One of the major obstacles to quantitative analysis of H&E images is the high degree of variability observed between different samples and different laboratories. In an effort to characterize this variability, as well as to provide a substrate that can potentially mitigate this factor in quantitative image analysis, we developed a technique to project H&E images into an optimized space more appropriate for many image analysis procedures. We used a decision tree-based support vector machine learning algorithm to classify 44 H&E stained whole slide images of resected breast tumors according to the histological structures that are present. This procedure takes an H&E image as an input and produces a classification map of the image that predicts the likelihood of a pixel belonging to any one of a set of user-defined structures (e.g., cytoplasm, stroma). By reducing these maps into their constituent pixels in color space, an optimal reference vector is obtained for each structure, which identifies the color attributes that maximally distinguish one structure from other elements in the image. We show that tissue structures can be identified using this semi-automated technique. By comparing structure centroids across different images, we obtained a quantitative depiction of H&E variability for each structure. This measurement can potentially be utilized in the laboratory to help calibrate daily staining or identify troublesome slides. Moreover, by aligning reference vectors derived from this technique, images can be transformed in a way that standardizes their color properties and makes them more amenable to image processing.

  10. The Multiscale Bowler-Hat Transform for Vessel Enhancement in 3D Biomedical Images

    OpenAIRE

    Sazak, Cigdem; Nelson, Carl J.; Obara, Boguslaw

    2018-01-01

    Enhancement and detection of 3D vessel-like structures has long been an open problem as most existing image processing methods fail in many aspects, including a lack of uniform enhancement between vessels of different radii and a lack of enhancement at the junctions. Here, we propose a method based on mathematical morphology to enhance 3D vessel-like structures in biomedical images. The proposed method, 3D bowler-hat transform, combines sphere and line structuring elements to enhance vessel-l...

  11. A Novel Image Encryption Based on Algebraic S-box and Arnold Transform

    Science.gov (United States)

    Farwa, Shabieh; Muhammad, Nazeer; Shah, Tariq; Ahmad, Sohail

    2017-09-01

    Recent study shows that substitution box (S-box) only cannot be reliably used in image encryption techniques. We, in this paper, propose a novel and secure image encryption scheme that utilizes the combined effect of an algebraic substitution box along with the scrambling effect of the Arnold transform. The underlying algorithm involves the application of S-box, which is the most imperative source to create confusion and diffusion in the data. The speciality of the proposed algorithm lies, firstly, in the high sensitivity of our S-box to the choice of the initial conditions which makes this S-box stronger than the chaos-based S-boxes as it saves computational labour by deploying a comparatively simple and direct approach based on the algebraic structure of the multiplicative cyclic group of the Galois field. Secondly the proposed method becomes more secure by considering a combination of S-box with certain number of iterations of the Arnold transform. The strength of the S-box is examined in terms of various performance indices such as nonlinearity, strict avalanche criterion, bit independence criterion, linear and differential approximation probabilities etc. We prove through the most significant techniques used for the statistical analyses of the encrypted image that our image encryption algorithm satisfies all the necessary criteria to be usefully and reliably implemented in image encryption applications.

  12. Automatic detection of micro-aneurysms in retinal images based on curvelet transform and morphological operations

    Science.gov (United States)

    Mohammad Alipour, Shirin Hajeb; Rabbani, Hossein

    2013-09-01

    Diabetic retinopathy (DR) is one of the major complications of diabetes that changes the blood vessels of the retina and distorts patient vision that finally in high stages can lead to blindness. Micro-aneurysms (MAs) are one of the first pathologies associated with DR. The number and the location of MAs are very important in grading of DR. Early diagnosis of micro-aneurysms (MAs) can reduce the incidence of blindness. As MAs are tiny area of blood protruding from vessels in the retina and their size is about 25 to 100 microns, automatic detection of these tiny lesions is still challenging. MAs occurring in the macula can lead to visual loss. Also the position of a lesion such as MAs relative to the macula is a useful feature for analysis and classification of different stages of DR. Because MAs are more distinguishable in fundus fluorescin angiography (FFA) compared to color fundus images, we introduce a new method based on curvelet transform and morphological operations for MAs detection in FFA images. As vessels and MAs are the bright parts of FFA image, firstly extracted vessels by curvelet transform are removed from image. Then morphological operations are applied on resulted image for detecting MAs.

  13. The wavelet transform and the suppression theory of binocular vision for stereo image compression

    Energy Technology Data Exchange (ETDEWEB)

    Reynolds, W.D. Jr [Argonne National Lab., IL (United States); Kenyon, R.V. [Illinois Univ., Chicago, IL (United States)

    1996-08-01

    In this paper a method for compression of stereo images. The proposed scheme is a frequency domain approach based on the suppression theory of binocular vision. By using the information in the frequency domain, complex disparity estimation techniques can be avoided. The wavelet transform is used to obtain a multiresolution analysis of the stereo pair by which the subbands convey the necessary frequency domain information.

  14. Adaptive ISAR Imaging of Maneuvering Targets Based on a Modified Fourier Transform.

    Science.gov (United States)

    Wang, Binbin; Xu, Shiyou; Wu, Wenzhen; Hu, Pengjiang; Chen, Zengping

    2018-04-27

    Focusing on the inverse synthetic aperture radar (ISAR) imaging of maneuvering targets, this paper presents a new imaging method which works well when the target's maneuvering is not too severe. After translational motion compensation, we describe the equivalent rotation of maneuvering targets by two variables-the relative chirp rate of the linear frequency modulated (LFM) signal and the Doppler focus shift. The first variable indicates the target's motion status, and the second one represents the possible residual error of the translational motion compensation. With them, a modified Fourier transform matrix is constructed and then used for cross-range compression. Consequently, the imaging of maneuvering is converted into a two-dimensional parameter optimization problem in which a stable and clear ISAR image is guaranteed. A gradient descent optimization scheme is employed to obtain the accurate relative chirp rate and Doppler focus shift. Moreover, we designed an efficient and robust initialization process for the gradient descent method, thus, the well-focused ISAR images of maneuvering targets can be achieved adaptively. Human intervention is not needed, and it is quite convenient for practical ISAR imaging systems. Compared to precedent imaging methods, the new method achieves better imaging quality under reasonable computational cost. Simulation results are provided to validate the effectiveness and advantages of the proposed method.

  15. A high-speed computerized tomography image reconstruction using direct two-dimensional Fourier transform method

    International Nuclear Information System (INIS)

    Niki, Noboru; Mizutani, Toshio; Takahashi, Yoshizo; Inouye, Tamon.

    1983-01-01

    The nescessity for developing real-time computerized tomography (CT) aiming at the dynamic observation of organs such as hearts has lately been advocated. It is necessary for its realization to reconstruct the images which are markedly faster than present CTs. Although various reconstructing methods have been proposed so far, the method practically employed at present is the filtered backprojection (FBP) method only, which can give high quality image reconstruction, but takes much computing time. In the past, the two-dimensional Fourier transform (TFT) method was regarded as unsuitable to practical use because the quality of images obtained was not good, in spite of the promising method for high speed reconstruction because of its less computing time. However, since it was revealed that the image quality by TFT method depended greatly on interpolation accuracy in two-dimensional Fourier space, the authors have developed a high-speed calculation algorithm that can obtain high quality images by pursuing the relationship between the image quality and the interpolation method. In this case, radial data sampling points in Fourier space are increased to β-th power of 2 times, and the linear or spline interpolation is used. Comparison of this method with the present FBP method resulted in the conclusion that the image quality is almost the same in practical image matrix, the computational time by TFT method becomes about 1/10 of FBP method, and the memory capacity also reduces by about 20 %. (Wakatsuki, Y.)

  16. P1-14: Relationship between Colorfulness Adaptation and Spatial Frequency Components in Natural Image

    Directory of Open Access Journals (Sweden)

    Shun Sakaibara

    2012-10-01

    Full Text Available We previously found the effect of colorfulness-adaptation in natural images. It was observed to be stronger in natural images than unnatural images, suggesting the influence of naturalness on the adaptation. However, what characteristics of images and what levels of visual system were involved were not examined enough. This research investigates whether the effect of colorfulness-adaptation is associated with spatial frequency components in natural images. If adaptation was a mechanism in early cortical level, the effect would be strong for adaptation and test images sharing similar spatial frequency components. In the experiment, we examined how the colorfulness impression of a test image changed following adaptation images with different levels of saturation. We selected several types of natural image from a standard image database for test and adaptation images. We also processed them to make shuffled images with spatial frequency component differed from the originals and phase-scrambled images with the component similar to the originals, for both adaptation and test images. Observers evaluated whether a test image was colorful or faded. Results show that the colorfulness perception of the test images was influenced by the saturation of the adaptation images. The effect was the strongest for the combination of natural (original adaptation and natural test images regardless of image types. The effect for the combination of phase-scrambled images was weaker than those of original images and stronger than those of shuffled images. They suggest that not only the spatial frequency components of an image but also the recognition of images would contribute to colorfulness-adaptation.

  17. Content Preserving Watermarking for Medical Images Using Shearlet Transform and SVD

    Science.gov (United States)

    Favorskaya, M. N.; Savchina, E. I.

    2017-05-01

    Medical Image Watermarking (MIW) is a special field of a watermarking due to the requirements of the Digital Imaging and COmmunications in Medicine (DICOM) standard since 1993. All 20 parts of the DICOM standard are revised periodically. The main idea of the MIW is to embed various types of information including the doctor's digital signature, fragile watermark, electronic patient record, and main watermark in a view of region of interest for the doctor into the host medical image. These four types of information are represented in different forms; some of them are encrypted according to the DICOM requirements. However, all types of information ought to be resulted into the generalized binary stream for embedding. The generalized binary stream may have a huge volume. Therefore, not all watermarking methods can be applied successfully. Recently, the digital shearlet transform had been introduced as a rigorous mathematical framework for the geometric representation of multi-dimensional data. Some modifications of the shearlet transform, particularly the non-subsampled shearlet transform, can be associated to a multi-resolution analysis that provides a fully shift-invariant, multi-scale, and multi-directional expansion. During experiments, a quality of the extracted watermarks under the JPEG compression and typical internet attacks was estimated using several metrics, including the peak signal to noise ratio, structural similarity index measure, and bit error rate.

  18. Abdomen disease diagnosis in CT images using flexiscale curvelet transform and improved genetic algorithm.

    Science.gov (United States)

    Sethi, Gaurav; Saini, B S

    2015-12-01

    This paper presents an abdomen disease diagnostic system based on the flexi-scale curvelet transform, which uses different optimal scales for extracting features from computed tomography (CT) images. To optimize the scale of the flexi-scale curvelet transform, we propose an improved genetic algorithm. The conventional genetic algorithm assumes that fit parents will likely produce the healthiest offspring that leads to the least fit parents accumulating at the bottom of the population, reducing the fitness of subsequent populations and delaying the optimal solution search. In our improved genetic algorithm, combining the chromosomes of a low-fitness and a high-fitness individual increases the probability of producing high-fitness offspring. Thereby, all of the least fit parent chromosomes are combined with high fit parent to produce offspring for the next population. In this way, the leftover weak chromosomes cannot damage the fitness of subsequent populations. To further facilitate the search for the optimal solution, our improved genetic algorithm adopts modified elitism. The proposed method was applied to 120 CT abdominal images; 30 images each of normal subjects, cysts, tumors and stones. The features extracted by the flexi-scale curvelet transform were more discriminative than conventional methods, demonstrating the potential of our method as a diagnostic tool for abdomen diseases.

  19. Ultrasonic spectroscopy study into the nature of a high-temperature phase transformation in V203

    International Nuclear Information System (INIS)

    Andrianov, G.O.; Drichko, I.L.; Lakhtman, B.D.

    1978-01-01

    The velocity of longitudinal sound wave propagation in V 2 O 3 vanadium sesquioxide was studied in the temperature range of 250-550 K in a wide range of ultrasound frequencies from 70 to 1500 MHz. The investigation was carried out in order to obtain the dynamic characteristics of the transition and to define the nature of high-temperature anomalies in V 2 O 3 . The sound velocity dispersion was observed. The frequency dependence of the sound velocity can be adequately described by the Mandelstam-Leontovich formula. Values and temperature dependences of tau, Vsub(infinity) and (Vsub(infinity)-Vsub(0)/Vsub(infinity) were calculated where tau is the relaxation time; Vsub(0), Vsub(infinity) are the values of velocitiea when ω→0 and ω→infinity respectively. The acoustic anomalies in the temperature range under investigation are shown to be well described qualitatively by the overlapping zone model. A deep maximum in the sound velocity at T=520 K can be explained by fluctuations in the neighbourhood of the magnetic phase transformation

  20. Imaging ultrasonic dispersive guided wave energy in long bones using linear radon transform.

    Science.gov (United States)

    Tran, Tho N H T; Nguyen, Kim-Cuong T; Sacchi, Mauricio D; Le, Lawrence H

    2014-11-01

    Multichannel analysis of dispersive ultrasonic energy requires a reliable mapping of the data from the time-distance (t-x) domain to the frequency-wavenumber (f-k) or frequency-phase velocity (f-c) domain. The mapping is usually performed with the classic 2-D Fourier transform (FT) with a subsequent substitution and interpolation via c = 2πf/k. The extracted dispersion trajectories of the guided modes lack the resolution in the transformed plane to discriminate wave modes. The resolving power associated with the FT is closely linked to the aperture of the recorded data. Here, we present a linear Radon transform (RT) to image the dispersive energies of the recorded ultrasound wave fields. The RT is posed as an inverse problem, which allows implementation of the regularization strategy to enhance the focusing power. We choose a Cauchy regularization for the high-resolution RT. Three forms of Radon transform: adjoint, damped least-squares, and high-resolution are described, and are compared with respect to robustness using simulated and cervine bone data. The RT also depends on the data aperture, but not as severely as does the FT. With the RT, the resolution of the dispersion panel could be improved up to around 300% over that of the FT. Among the Radon solutions, the high-resolution RT delineated the guided wave energy with much better imaging resolution (at least 110%) than the other two forms. The Radon operator can also accommodate unevenly spaced records. The results of the study suggest that the high-resolution RT is a valuable imaging tool to extract dispersive guided wave energies under limited aperture. Copyright © 2014 World Federation for Ultrasound in Medicine & Biology. Published by Elsevier Inc. All rights reserved.

  1. Impact damage imaging in a curved composite panel with wavenumber index via Riesz transform

    Science.gov (United States)

    Chang, Huan-Yu; Yuan, Fuh-Gwo

    2018-03-01

    The barely visible impact damages reduce the strength of composite structures significantly; however, they are difficult to be detected during regular visual inspection. A guided wave based damage imaging condition method is developed and applied on a curved composite panel, which is a part of an aileron from a retired Boeing C-17 Globemaster III. Ultrasonic guided waves are excited by a piezoelectric transducer (PZT) and then captured by a laser Doppler vibrometer (LDV). The wavefield images are constructed by measuring the out-of-plane velocity point by point within interrogation region, and the anomalies at the damage area can be observed with naked eye. The discontinuities of material properties leads to the change of wavenumber while the wave propagating through the damaged area. These differences in wavenumber can be observed by deriving instantaneous wave vector via Riesz transform (RT), and then be shown and highlighted with the proposed imaging condition named wavenumber index (WI). RT can be introduced as a two-dimensional (2-D) generalization of Hilbert transform (HT) to derive instantaneous phases, amplitudes, orientations of a guided-wave field. WI employs the instantaneous wave vector and weighted instantaneous wave energy computed from the instantaneous amplitudes, yielding high sensitivity and sharp damage image with computational efficiency. The BVID of the composite structure becomes therefore "visible" with the developed technique.

  2. Combustion stratification study of partially premixed combustion using Fourier transform analysis of OH* chemiluminescence images

    KAUST Repository

    Izadi Najafabadi, Mohammad

    2017-11-06

    A relatively high level of stratification (qualitatively: lack of homogeneity) is one of the main advantages of partially premixed combustion over the homogeneous charge compression ignition concept. Stratification can smooth the heat release rate and improve the controllability of combustion. In order to compare stratification levels of different partially premixed combustion strategies or other combustion concepts, an objective and meaningful definition of “stratification level” is required. Such a definition is currently lacking; qualitative/quantitative definitions in the literature cannot properly distinguish various levels of stratification. The main purpose of this study is to objectively define combustion stratification (not to be confused with fuel stratification) based on high-speed OH* chemiluminescence imaging, which is assumed to provide spatial information regarding heat release. Stratification essentially being equivalent to spatial structure, we base our definition on two-dimensional Fourier transforms of photographs of OH* chemiluminescence. A light-duty optical diesel engine has been used to perform the OH* bandpass imaging on. Four experimental points are evaluated, with injection timings in the homogeneous regime as well as in the stratified partially premixed combustion regime. Two-dimensional Fourier transforms translate these chemiluminescence images into a range of spatial frequencies. The frequency information is used to define combustion stratification, using a novel normalization procedure. The results indicate that this new definition, based on Fourier analysis of OH* bandpass images, overcomes the drawbacks of previous definitions used in the literature and is a promising method to compare the level of combustion stratification between different experiments.

  3. Cues and regulatory pathways involved in natural competence and transformation in pathogenic and environmental Gram-negative bacteria.

    Science.gov (United States)

    Seitz, Patrick; Blokesch, Melanie

    2013-05-01

    Bacterial genomics is flourishing, as whole-genome sequencing has become affordable, readily available and rapid. As a result, it has become clear how frequently horizontal gene transfer (HGT) occurs in bacteria. The potential implications are highly significant because HGT contributes to several processes, including the spread of antibiotic-resistance cassettes, the distribution of toxin-encoding phages and the transfer of pathogenicity islands. Three modes of HGT are recognized in bacteria: conjugation, transduction and natural transformation. In contrast to the first two mechanisms, natural competence for transformation does not rely on mobile genetic elements but is driven solely by a developmental programme in the acceptor bacterium. Once the bacterium becomes competent, it is able to take up DNA from the environment and to incorporate the newly acquired DNA into its own chromosome. The initiation and duration of competence differ significantly among bacteria. In this review, we outline the latest data on representative naturally transformable Gram-negative bacteria and how their competence windows differ. We also summarize how environmental cues contribute to the initiation of competence in a subset of naturally transformable Gram-negative bacteria and how the complexity of the niche might dictate the fine-tuning of the competence window. © 2012 Federation of European Microbiological Societies. Published by Blackwell Publishing Ltd. All rights reserved.

  4. Hemorrhagic transformation in ischemic posterior infarction by magnetic resonance imaging (MRI); Kernspintomographische Untersuchung der haemmorrhagischen Transformation ischaemischer Posteriorinfarkte

    Energy Technology Data Exchange (ETDEWEB)

    Reimann, M.; Niehaus, L.; Lehmann, R. [Humboldt-Universitaet, Berlin (Germany). Medizinische Fakultaet Charite

    2000-08-01

    Purpose: To describe the incidence, time course, and clinical correlates of hemorrhagic transformation (HT) of ischemic stroke in the posterior cerebral artery territory. Methods: Within 42 months 48 patients with 52 occipital lobe infarctions were examined by T{sub 1}- and T{sub 2}-weighted MR imaging. The extent and distribution of secondary hemorrhage were analysed at different intervals after stroke. Volume of ischemic and hemorrhagic infarction was measured planimetrically. Results: HT was observed in 71% of the infarcts between the 5{sup th} day and up to 1 year after stroke. HT was most frequently (88%) observed in the 2{sup nd} and 3{sup rd} month. HT was present in 55% of small infarcts (<10 cm{sup 3}), in 88% of medium size (10-50 cm{sup 3}), and in all large (>50 cm{sup 3}) infarcts. In 92% HT presented with petechial bleedings within the cortex (64%) or less frequently (28%) in subcortical structures. The latter types of HT showed no progression and did not increase the clinical deficits. Space-occupying bleedings occurred in only two large defects. Conclusions: In ischemic posterior infarction, HT can frequently be detected within the first three months after stroke and is predominantly of the petechial type and seems not to be relevant with regard to clinical deficits. (orig.) [German] Ziel: MR-tomographische Untersuchung ischaemischer Posteriorinfarkte zur Erfassung der Haeufigkeit, des zeitlichen Verlaufs und der klinischen Bedeutung einer haemorrhagischen Transformation (HT). Methodik: Ueber einen Zeitraum von 42 Monaten wurden 48 Patienten mit 52 Territorialinfarkten im Versorgungsgebiet der Arteria cerebri posterior im MRT (T{sub 1}/T{sub 2}-gewichtete Spinecho-Sequenzen) untersucht. 77 MRT-Untersuchungen aus 5 verschiedenen Untersuchungszeitraeumen wurden hinsichtlich Lokalisation und Ausdehnung einer sekundaeren HT und etwaiger Veraenderungen im Verlauf analysiert. Die Infarkt- und Haemorrhagievolumina wurden planimetrisch gemessen. Ergebnisse

  5. Warped Discrete Cosine Transform-Based Low Bit-Rate Block Coding Using Image Downsampling

    Directory of Open Access Journals (Sweden)

    Ertürk Sarp

    2007-01-01

    Full Text Available This paper presents warped discrete cosine transform (WDCT-based low bit-rate block coding using image downsampling. While WDCT aims to improve the performance of conventional DCT by frequency warping, the WDCT has only been applicable to high bit-rate coding applications because of the overhead required to define the parameters of the warping filter. Recently, low bit-rate block coding based on image downsampling prior to block coding followed by upsampling after the decoding process is proposed to improve the compression performance for low bit-rate block coders. This paper demonstrates that a superior performance can be achieved if WDCT is used in conjunction with image downsampling-based block coding for low bit-rate applications.

  6. Sum of top-hat transform based algorithm for vessel enhancement in MRA images

    Science.gov (United States)

    Ouazaa, Hibet-Allah; Jlassi, Hajer; Hamrouni, Kamel

    2018-04-01

    The Magnetic Resonance Angiography (MRA) is rich with information's. But, they suffer from poor contrast, illumination and noise. Thus, it is required to enhance the images. But, these significant information can be lost if improper techniques are applied. Therefore, in this paper, we propose a new method of enhancement. We applied firstly the CLAHE method to increase the contrast of the image. Then, we applied the sum of Top-Hat Transform to increase the brightness of vessels. It is performed with the structuring element oriented in different angles. The methodology is tested and evaluated on the publicly available database BRAINIX. And, we used the measurement methods MSE (Mean Square Error), PSNR (Peak Signal to Noise Ratio) and SNR (Signal to Noise Ratio) for the evaluation. The results demonstrate that the proposed method could efficiently enhance the image details and is comparable with state of the art algorithms. Hence, the proposed method could be broadly used in various applications.

  7. Inferring river bathymetry via Image-to-Depth Quantile Transformation (IDQT)

    Science.gov (United States)

    Legleiter, Carl

    2016-01-01

    Conventional, regression-based methods of inferring depth from passive optical image data undermine the advantages of remote sensing for characterizing river systems. This study introduces and evaluates a more flexible framework, Image-to-Depth Quantile Transformation (IDQT), that involves linking the frequency distribution of pixel values to that of depth. In addition, a new image processing workflow involving deep water correction and Minimum Noise Fraction (MNF) transformation can reduce a hyperspectral data set to a single variable related to depth and thus suitable for input to IDQT. Applied to a gravel bed river, IDQT avoided negative depth estimates along channel margins and underpredictions of pool depth. Depth retrieval accuracy (R25 0.79) and precision (0.27 m) were comparable to an established band ratio-based method, although a small shallow bias (0.04 m) was observed. Several ways of specifying distributions of pixel values and depths were evaluated but had negligible impact on the resulting depth estimates, implying that IDQT was robust to these implementation details. In essence, IDQT uses frequency distributions of pixel values and depths to achieve an aspatial calibration; the image itself provides information on the spatial distribution of depths. The approach thus reduces sensitivity to misalignment between field and image data sets and allows greater flexibility in the timing of field data collection relative to image acquisition, a significant advantage in dynamic channels. IDQT also creates new possibilities for depth retrieval in the absence of field data if a model could be used to predict the distribution of depths within a reach.

  8. Automatic Detection of Microaneurysms in Color Fundus Images using a Local Radon Transform Method

    Directory of Open Access Journals (Sweden)

    Hamid Reza Pourreza

    2009-03-01

    Full Text Available Introduction: Diabetic retinopathy (DR is one of the most serious and most frequent eye diseases in the world and the most common cause of blindness in adults between 20 and 60 years of age. Following 15 years of diabetes, about 2% of the diabetic patients are blind and 10% suffer from vision impairment due to DR complications. This paper addresses the automatic detection of microaneurysms (MA in color fundus images, which plays a key role in computer-assisted early diagnosis of diabetic retinopathy. Materials and Methods: The algorithm can be divided into three main steps. The purpose of the first step or pre-processing is background normalization and contrast enhancement of the images. The second step aims to detect candidates, i.e., all patterns possibly corresponding to MA, which is achieved using a local radon transform, Then, features are extracted, which are used in the last step to automatically classify the candidates into real MA or other objects using the SVM method. A database of 100 annotated images was used to test the algorithm. The algorithm was compared to manually obtained gradings of these images. Results: The sensitivity of diagnosis for DR was 100%, with specificity of 90% and the sensitivity of precise MA localization was 97%, at an average number of 5 false positives per image. Discussion and Conclusion: Sensitivity and specificity of this algorithm make it one of the best methods in this field. Using the local radon transform in this algorithm eliminates the noise sensitivity for MA detection in retinal image analysis.

  9. A Robust Transform Estimator Based on Residual Analysis and Its Application on UAV Aerial Images

    Directory of Open Access Journals (Sweden)

    Guorong Cai

    2018-02-01

    Full Text Available Estimating the transformation between two images from the same scene is a fundamental step for image registration, image stitching and 3D reconstruction. State-of-the-art methods are mainly based on sorted residual for generating hypotheses. This scheme has acquired encouraging results in many remote sensing applications. Unfortunately, mainstream residual based methods may fail in estimating the transform between Unmanned Aerial Vehicle (UAV low altitude remote sensing images, due to the fact that UAV images always have repetitive patterns and severe viewpoint changes, which produce lower inlier rate and higher pseudo outlier rate than other tasks. We performed extensive experiments and found the main reason is that these methods compute feature pair similarity within a fixed window, making them sensitive to the size of residual window. To solve this problem, three schemes that based on the distribution of residuals are proposed, which are called Relational Window (RW, Sliding Window (SW, Reverse Residual Order (RRO, respectively. Specially, RW employs a relaxation residual window size to evaluate the highest similarity within a relaxation model length. SW fixes the number of overlap models while varying the length of window size. RRO takes the permutation of residual values into consideration to measure similarity, not only including the number of overlap structures, but also giving penalty to reverse number within the overlap structures. Experimental results conducted on our own built UAV high resolution remote sensing images show that the proposed three strategies all outperform traditional methods in the presence of severe perspective distortion due to viewpoint change.

  10. Application of the fractional Fourier transform to image reconstruction in MRI.

    Science.gov (United States)

    Parot, Vicente; Sing-Long, Carlos; Lizama, Carlos; Tejos, Cristian; Uribe, Sergio; Irarrazaval, Pablo

    2012-07-01

    The classic paradigm for MRI requires a homogeneous B(0) field in combination with linear encoding gradients. Distortions are produced when the B(0) is not homogeneous, and several postprocessing techniques have been developed to correct them. Field homogeneity is difficult to achieve, particularly for short-bore magnets and higher B(0) fields. Nonlinear magnetic components can also arise from concomitant fields, particularly in low-field imaging, or intentionally used for nonlinear encoding. In any of these situations, the second-order component is key, because it constitutes the first step to approximate higher-order fields. We propose to use the fractional Fourier transform for analyzing and reconstructing the object's magnetization under the presence of quadratic fields. The fractional fourier transform provides a precise theoretical framework for this. We show how it can be used for reconstruction and for gaining a better understanding of the quadratic field-induced distortions, including examples of reconstruction for simulated and in vivo data. The obtained images have improved quality compared with standard Fourier reconstructions. The fractional fourier transform opens a new paradigm for understanding the MR signal generated by an object under a quadratic main field or nonlinear encoding. Copyright © 2011 Wiley Periodicals, Inc.

  11. Discriminating between photorealistic computer graphics and natural images using fractal geometry

    Institute of Scientific and Technical Information of China (English)

    PAN Feng; CHEN JiongBin; HUANG JiWu

    2009-01-01

    Rendering technology in computer graphics (CG) Is now capable of producing highly photorealistlc Images, giving rise to the problem of how to identify CG Images from natural images. Some methods were proposed to solve this problem. In this paper, we give a novel method from a new point of view of Image perception. Although the photorealisUc CG images are very similar to natural images, they are surrealistic and smoother than natural images, thus leading to the difference in perception. A part of features are derived from fractal dimension to capture the difference In color perception between CG images and natural Images, and several generalized dimensions are used as the rest features to capture difference in coarseness. The effect of these features is verified by experiments. The average accuracy is over 91.2%.

  12. Analysis on imaging features of mammography in computer radiography and investigation on gray scale transform and energy subtraction

    International Nuclear Information System (INIS)

    Feng Shuli

    2003-01-01

    In this dissertation, a novel transform method based on human visual response features for gray scale mammographic imaging in computer radiography (CR) is presented. The parameters for imaging quality on CR imaging for mammography were investigated experimentally. In addition, methods for image energy subtraction and a novel method of image registration for mammography of CR imaging are presented. Because the images are viewed and investigated by humans, the method of displaying differences in gray scale images is more convenient if the gray scale differences are displayed in a manner commensurate with human visual response principles. Through transformation of image gray scale with this method, the contrast of the image will be enhanced and the capability for humans to extract the useful information from the image will be increased. Tumors and microcalcifications are displayed in a form for humans to view more simply after transforming the image. The method is theoretically and experimentally investigated. Through measurement of the parameters of a geometrically blurred image, MTF, DQE, and ROC on CR imaging, and also comparison with the imaging quality of screen-film systems, the results indicate that CR imaging qualities in DQE and ROC are better than those of screen-film systems. In geometric blur of the image and MTF, the differences in image quality between CR and the screen-film system are very small. The results suggest that the CR system can replace the screen-film system for mammography imaging. In addition, the results show that the optimal imaging energy for CR mammography is about 24 kV. This condition indicates that the imaging energy of the CR system is lower than that of the screen-film system and, therefore, the x-ray dose to the patient for mammography with the CR system is lower than that with the screen-film system. Based on the difference of penetrability of x ray with different wavelength, and the fact that the part of the x-ray beam will pass

  13. Generalised model-independent characterisation of strong gravitational lenses. II. Transformation matrix between multiple images

    Science.gov (United States)

    Wagner, J.; Tessore, N.

    2018-05-01

    We determine the transformation matrix that maps multiple images with identifiable resolved features onto one another and that is based on a Taylor-expanded lensing potential in the vicinity of a point on the critical curve within our model-independent lens characterisation approach. From the transformation matrix, the same information about the properties of the critical curve at fold and cusp points can be derived as we previously found when using the quadrupole moment of the individual images as observables. In addition, we read off the relative parities between the images, so that the parity of all images is determined when one is known. We compare all retrievable ratios of potential derivatives to the actual values and to those obtained by using the quadrupole moment as observable for two- and three-image configurations generated by a galaxy-cluster scale singular isothermal ellipse. We conclude that using the quadrupole moments as observables, the properties of the critical curve are retrieved to a higher accuracy at the cusp points and to a lower accuracy at the fold points; the ratios of second-order potential derivatives are retrieved to comparable accuracy. We also show that the approach using ratios of convergences and reduced shear components is equivalent to ours in the vicinity of the critical curve, but yields more accurate results and is more robust because it does not require a special coordinate system as the approach using potential derivatives does. The transformation matrix is determined by mapping manually assigned reference points in the multiple images onto one another. If the assignment of the reference points is subject to measurement uncertainties under the influence of noise, we find that the confidence intervals of the lens parameters can be as large as the values themselves when the uncertainties are larger than one pixel. In addition, observed multiple images with resolved features are more extended than unresolved ones, so that

  14. Transformation of Leuconostoc carnosum 4010 and evidence for natural competence of the organism

    DEFF Research Database (Denmark)

    Helmark, Søren; Hansen, Michael Edberg; Jelle, B.

    2004-01-01

    Plasmid transformation in Leuconostoc carnosum 4010 was analyzed. A successful transformation protocol for L. carnosum was established by modifying an existing protocol for Lactococcus lactis. Several parameters, including the number of generations that the cells had grown at the time of harvest...

  15. Long-distance super-resolution imaging assisted by enhanced spatial Fourier transform.

    Science.gov (United States)

    Tang, Heng-He; Liu, Pu-Kun

    2015-09-07

    A new gradient-index (GRIN) lens that can realize enhanced spatial Fourier transform (FT) over optically long distances is demonstrated. By using an anisotropic GRIN metamaterial with hyperbolic dispersion, evanescent wave in free space can be transformed into propagating wave in the metamaterial and then focused outside due to negative-refraction. Both the results based on the ray tracing and the finite element simulation show that the spatial frequency bandwidth of the spatial FT can be extended to 2.7k(0) (k(0) is the wave vector in free space). Furthermore, assisted by the enhanced spatial FT, a new long-distance (in the optical far-field region) super-resolution imaging scheme is also proposed and the super resolved capability of λ/5 (λ is the wavelength in free space) is verified. The work may provide technical support for designing new-type high-speed microscopes with long working distances.

  16. Comparison of Image Transform-Based Features for Visual Speech Recognition in Clean and Corrupted Videos

    Directory of Open Access Journals (Sweden)

    Seymour Rowan

    2008-01-01

    Full Text Available Abstract We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.

  17. Comparison of Image Transform-Based Features for Visual Speech Recognition in Clean and Corrupted Videos

    Directory of Open Access Journals (Sweden)

    Ji Ming

    2008-03-01

    Full Text Available We present results of a study into the performance of a variety of different image transform-based feature types for speaker-independent visual speech recognition of isolated digits. This includes the first reported use of features extracted using a discrete curvelet transform. The study will show a comparison of some methods for selecting features of each feature type and show the relative benefits of both static and dynamic visual features. The performance of the features will be tested on both clean video data and also video data corrupted in a variety of ways to assess each feature type's robustness to potential real-world conditions. One of the test conditions involves a novel form of video corruption we call jitter which simulates camera and/or head movement during recording.

  18. Infrared and visual image fusion method based on discrete cosine transform and local spatial frequency in discrete stationary wavelet transform domain

    Science.gov (United States)

    Jin, Xin; Jiang, Qian; Yao, Shaowen; Zhou, Dongming; Nie, Rencan; Lee, Shin-Jye; He, Kangjian

    2018-01-01

    In order to promote the performance of infrared and visual image fusion and provide better visual effects, this paper proposes a hybrid fusion method for infrared and visual image by the combination of discrete stationary wavelet transform (DSWT), discrete cosine transform (DCT) and local spatial frequency (LSF). The proposed method has three key processing steps. Firstly, DSWT is employed to decompose the important features of the source image into a series of sub-images with different levels and spatial frequencies. Secondly, DCT is used to separate the significant details of the sub-images according to the energy of different frequencies. Thirdly, LSF is applied to enhance the regional features of DCT coefficients, and it can be helpful and useful for image feature extraction. Some frequently-used image fusion methods and evaluation metrics are employed to evaluate the validity of the proposed method. The experiments indicate that the proposed method can achieve good fusion effect, and it is more efficient than other conventional image fusion methods.

  19. Parallelization of one image compression method. Wavelet, Transform, Vector Quantization and Huffman Coding

    International Nuclear Information System (INIS)

    Moravie, Philippe

    1997-01-01

    Today, in the digitized satellite image domain, the needs for high dimension increase considerably. To transmit or to stock such images (more than 6000 by 6000 pixels), we need to reduce their data volume and so we have to use real-time image compression techniques. The large amount of computations required by image compression algorithms prohibits the use of common sequential processors, for the benefits of parallel computers. The study presented here deals with parallelization of a very efficient image compression scheme, based on three techniques: Wavelets Transform (WT), Vector Quantization (VQ) and Entropic Coding (EC). First, we studied and implemented the parallelism of each algorithm, in order to determine the architectural characteristics needed for real-time image compression. Then, we defined eight parallel architectures: 3 for Mallat algorithm (WT), 3 for Tree-Structured Vector Quantization (VQ) and 2 for Huffman Coding (EC). As our system has to be multi-purpose, we chose 3 global architectures between all of the 3x3x2 systems available. Because, for technological reasons, real-time is not reached at anytime (for all the compression parameter combinations), we also defined and evaluated two algorithmic optimizations: fix point precision and merging entropic coding in vector quantization. As a result, we defined a new multi-purpose multi-SMIMD parallel machine, able to compress digitized satellite image in real-time. The definition of the best suited architecture for real-time image compression was answered by presenting 3 parallel machines among which one multi-purpose, embedded and which might be used for other applications on board. (author) [fr

  20. Transforming a Targeted Porphyrin Theranostic Agent into a PET Imaging Probe for Cancer

    Directory of Open Access Journals (Sweden)

    Jiyun Shi, Tracy W.B. Liu, Juan Chen, David Green, David Jaffray, Brian C. Wilson, Fan Wang, Gang Zheng

    2011-01-01

    Full Text Available Porphyrin based photosensitizers are useful agents for photodynamic therapy (PDT and fluorescence imaging of cancer. Porphyrins are also excellent metal chelators forming highly stable metallo-complexes making them efficient delivery vehicles for radioisotopes. Here we investigated the possibility of incorporating 64Cu into a porphyrin-peptide-folate (PPF probe developed previously as folate receptor (FR targeted fluorescent/PDT agent, and evaluated the potential of turning the resulting 64Cu-PPF into a positron emission tomography (PET probe for cancer imaging. Noninvasive PET imaging followed by radioassay evaluated the tumor accumulation, pharmacokinetics and biodistribution of 64Cu-PPF. 64Cu-PPF uptake in FR-positive tumors was visible on small-animal PET images with high tumor-to-muscle ratio (8.88 ± 3.60 observed after 24 h. Competitive blocking studies confirmed the FR-mediated tracer uptake by the tumor. The ease of efficient 64Cu-radiolabeling of PPF while retaining its favorable biodistribution, pharmacokinetics and selective tumor uptake, provides a robust strategy to transform tumor-targeted porphyrin-based photosensitizers into PET imaging probes.

  1. The effect of image position on the Independent Components of natural binocular images.

    Science.gov (United States)

    Hunter, David W; Hibbard, Paul B

    2018-01-11

    Human visual performance degrades substantially as the angular distance from the fovea increases. This decrease in performance is found for both binocular and monocular vision. Although analysis of the statistics of natural images has provided significant insights into human visual processing, little research has focused on the statistical content of binocular images at eccentric angles. We applied Independent Component Analysis to rectangular image patches cut from locations within binocular images corresponding to different degrees of eccentricity. The distribution of components learned from the varying locations was examined to determine how these distributions varied across eccentricity. We found a general trend towards a broader spread of horizontal and vertical position disparity tunings in eccentric regions compared to the fovea, with the horizontal spread more pronounced than the vertical spread. Eccentric locations above the centroid show a strong bias towards far-tuned components, eccentric locations below the centroid show a strong bias towards near-tuned components. These distributions exhibit substantial similarities with physiological measurements in V1, however in common with previous research we also observe important differences, in particular distributions of binocular phase disparity which do not match physiology.

  2. Screening of a virtual mirror-image library of natural products.

    Science.gov (United States)

    Noguchi, Taro; Oishi, Shinya; Honda, Kaori; Kondoh, Yasumitsu; Saito, Tamio; Ohno, Hiroaki; Osada, Hiroyuki; Fujii, Nobutaka

    2016-06-08

    We established a facile access to an unexplored mirror-image library of chiral natural product derivatives using d-protein technology. In this process, two chemical syntheses of mirror-image substances including a target protein and hit compound(s) allow the lead discovery from a virtual mirror-image library without the synthesis of numerous mirror-image compounds.

  3. Exploration on practice teaching reform of Photoelectric Image Processing course under applied transformation

    Science.gov (United States)

    Cao, Binfang; Li, Xiaoqin; Liu, Changqing; Li, Jianqi

    2017-08-01

    With the further applied transformation of local colleges, teachers are urgently needed to make corresponding changes in the teaching content and methods from different courses. The article discusses practice teaching reform of the Photoelectric Image Processing course in the Optoelectronic Information Science and Engineering major. The Digital Signal Processing (DSP) platform is introduced to the experimental teaching. It will mobilize and inspire students and also enhance their learning motivation and innovation through specific examples. The course via teaching practice process has become the most popular course among students, which will further drive students' enthusiasm and confidence to participate in all kinds of electronic competitions.

  4. Alcoholism detection in magnetic resonance imaging by Haar wavelet transform and back propagation neural network

    Science.gov (United States)

    Yu, Yali; Wang, Mengxia; Lima, Dimas

    2018-04-01

    In order to develop a novel alcoholism detection method, we proposed a magnetic resonance imaging (MRI)-based computer vision approach. We first use contrast equalization to increase the contrast of brain slices. Then, we perform Haar wavelet transform and principal component analysis. Finally, we use back propagation neural network (BPNN) as the classification tool. Our method yields a sensitivity of 81.71±4.51%, a specificity of 81.43±4.52%, and an accuracy of 81.57±2.18%. The Haar wavelet gives better performance than db4 wavelet and sym3 wavelet.

  5. Adaptive Gain and Analog Wavelet Transform for Low-Power Infrared Image Sensors

    Directory of Open Access Journals (Sweden)

    P. Villard

    2012-01-01

    Full Text Available A decorrelation and analog-to-digital conversion scheme aiming to reduce the power consumption of infrared image sensors is presented in this paper. To exploit both intraframe redundancy and inherent photon shot noise characteristics, a column based 1D Haar analog wavelet transform combined with variable gain amplification prior to A/D conversion is used. This allows to use only an 11-bit ADC, instead of a 13-bit one, and to save 15% of data transfer. An 8×16 pixels test circuit demonstrates this functionality.

  6. Fast Imaging Detector Readout Circuits with In-Pixel ADCs for Fourier Transform Imaging Spectrometers

    Science.gov (United States)

    Rider, D.; Blavier, J-F.; Cunningham, T.; Hancock, B.; Key, R.; Pannell, Z.; Sander, S.; Seshadri, S.; Sun, C.; Wrigley, C.

    2011-01-01

    Focal plane arrays (FPAs) with high frame rates and many pixels benefit several upcoming Earth science missions including GEO-CAPE, GACM, and ACE by enabling broader spatial coverage and higher spectral resolution. FPAs for the PanFTS, a high spatial resolution Fourier transform spectrometer and a candidate instrument for the GEO-CAPE mission are the focus of the developments reported here, but this FPA technology has the potential to enable a variety of future measurements and instruments. The ESTO ACT Program funded the developed of a fast readout integrated circuit (ROIC) based on an innovative in-pixel analog-to-digital converter (ADC). The 128 X 128 pixel ROIC features 60 ?m pixels, a 14-bit ADC in each pixel and operates at a continuous frame rate of 14 kHz consuming only 1.1 W of power. The ROIC outputs digitized data completely eliminating the bulky, power consuming signal chains needed by conventional FPAs. The 128 X 128 pixel ROIC has been fabricated in CMOS and tested at the Jet Propulsion Laboratory. The current version is designed to be hybridized with PIN photodiode arrays via indium bump bonding for light detection in the visible and ultraviolet spectral regions. However, the ROIC design incorporates a small photodiode in each cell to permit detailed characterization of the ROICperformance without the need for hybridization. We will describe the essential features of the ROIC design and present results of ROIC performance measurements.

  7. New properties of the V-line Radon transform and their imaging applications

    International Nuclear Information System (INIS)

    Truong, T T; Nguyen, M K

    2015-01-01

    This paper reports on new aspects of the so-called V-line Radon transforms (RTs) complementing those reported in an earlier work. These new properties are nicely uncovered and described with Cartesian coordinates. In particular, we show that the V-line RT belongs to the class of RTs on curves in the plane which can be mapped onto the standard RT on straight lines and thereby are fully characterizable and invertible. Next, we show that the effect of geometric inversion on the V-line RT is to produce a new RT on a pair of supplementary circular arcs, which provides a new access to image reconstruction in the so-called Norton's modality of Compton scatter tomography, a front runner in the race for alternatives to current emission imaging. (paper)

  8. Macro Photography for Reflectance Transformation Imaging: A Practical Guide to the Highlights Method

    Directory of Open Access Journals (Sweden)

    Antonino Cosentino

    2014-11-01

    Full Text Available Reflectance Transformation Imaging (RTI is increasingly being used for art documentation and analysis and it can be successful also for the examination of features on the order of hundreds of microns. This paper evaluates some macro scale photography methods specifically for RTI employing the Highlights method for documenting sub-millimeter details. This RTI technique consists in including one reflective sphere in the scene photographed so that the processing software can calculate for each photo the direction of the light source from its reflection on the sphere. RTI documentation can be performed also with an RTI dome, but the Highlights method is preferred because is more mobile and more affordable. This technique is demonstrated in the documentation of some prints ranging from the XV to the XX century from to the Ingels collection in Sweden. The images are here examined and discussed, showing the application of macro RTI for identifying features of prints.

  9. Application of Fourier transform-second-harmonic generation imaging to the rat cervix.

    Science.gov (United States)

    Lau, T Y; Sangha, H K; Chien, E K; McFarlin, B L; Wagoner Johnson, A J; Toussaint, K C

    2013-07-01

    We present the application of Fourier transform-second-harmonic generation (FT-SHG) imaging to evaluate the arrangement of collagen fibers in five nonpregnant rat cervices. Tissue slices from the mid-cervix and near the external orifice of the cervix were analyzed in both two-dimensions (2D) and three-dimensions (3D). We validate that the cervical microstructure can be quantitatively assessed in three dimensions using FT-SHG imaging and observe collagen fibers oriented both in and out-of-plane in the outermost and the innermost layers, which cannot be observed using 2D FT-SHG analysis alone. This approach has the potential to be a clinically applicable method for measuring progressive changes in collagen organization during cervical remodeling in humans. © 2013 The Authors Journal of Microscopy © 2013 Royal Microscopical Society.

  10. Application of Reflectance Transformation Imaging Technique to Improve Automated Edge Detection in a Fossilized Oyster Reef

    Science.gov (United States)

    Djuricic, Ana; Puttonen, Eetu; Harzhauser, Mathias; Dorninger, Peter; Székely, Balázs; Mandic, Oleg; Nothegger, Clemens; Molnár, Gábor; Pfeifer, Norbert

    2016-04-01

    The world's largest fossilized oyster reef is located in Stetten, Lower Austria excavated during field campaigns of the Natural History Museum Vienna between 2005 and 2008. It is studied in paleontology to learn about change in climate from past events. In order to support this study, a laser scanning and photogrammetric campaign was organized in 2014 for 3D documentation of the large and complex site. The 3D point clouds and high resolution images from this field campaign are visualized by photogrammetric methods in form of digital surface models (DSM, 1 mm resolution) and orthophoto (0.5 mm resolution) to help paleontological interpretation of data. Due to size of the reef, automated analysis techniques are needed to interpret all digital data obtained from the field. One of the key components in successful automation is detection of oyster shell edges. We have tested Reflectance Transformation Imaging (RTI) to visualize the reef data sets for end-users through a cultural heritage viewing interface (RTIViewer). The implementation includes a Lambert shading method to visualize DSMs derived from terrestrial laser scanning using scientific software OPALS. In contrast to shaded RTI no devices consisting of a hardware system with LED lights, or a body to rotate the light source around the object are needed. The gray value for a given shaded pixel is related to the angle between light source and the normal at that position. Brighter values correspond to the slope surfaces facing the light source. Increasing of zenith angle results in internal shading all over the reef surface. In total, oyster reef surface contains 81 DSMs with 3 m x 2 m each. Their surface was illuminated by moving the virtual sun every 30 degrees (12 azimuth angles from 20-350) and every 20 degrees (4 zenith angles from 20-80). This technique provides paleontologists an interactive approach to virtually inspect the oyster reef, and to interpret the shell surface by changing the light source direction

  11. Novel methods for genetic transformation of natural Bacillus subtilis isolates used to study the regulation of the mycosubtilin and surfactin synthetases

    NARCIS (Netherlands)

    Duitman, Erwin H.; Wyczawski, Dobek; Boven, Ludolf G.; Venema, Gerard; Kuipers, Oscar P.; Hamoen, Leendert W.

    Natural isolates of Bacillus subtilis are often difficult to transform due to their low genetic competence levels. Here we describe two methods that stimulate natural transformation. The first method uses plasmid pGSP12, which expresses the competence transcription factor ComK and stimulates

  12. From sermons in stone to studies in science: The transformation of 19th-century juvenile natural history

    Science.gov (United States)

    Dyson, Jon-Paul Charles

    This dissertation seeks to explain the social, cultural, and economic factors that transformed the ways nineteenth-century American children learned about, encountered, and understood the natural world. It highlights the interests, tastes, and fears of the middle-class as key factors in the transformation of children's relationship to nature. Developments such as the quest for gentility and refinement, the evolution of religious practices and beliefs, the print revolution, the popularity of Romanticism, the marginalization of women, the rise of professionalization, the impact of industrialization, and the growth of cities all helped shape nineteenth-century children's relationship to nature. For much of the seventeenth and eighteenth centuries adults had taught children to see nature as a world of wonders in which God acted out his Providential design. During the early republic, however, Americans, especially women, increasingly valued more refined and genteel interpretations of nature that invoked discrete segments of nature for their ability to cultivate morals, evidence the existence of God, and mold children's behavior. The print revolution that swept America during this period abetted this process. During the second quarter of the nineteenth century, increasing numbers of adults began to use religious publications, schoolbooks, literature, and domestic amusements to involve children with the natural world in ways that were variously religious or Romantic. As a result nature became an accepted and valued segment of middle-class life. Ironically, however, these efforts also helped separate religious from secular interpretations of nature, and changes in fashions, literary techniques, and parenting techniques allowed children more autonomy to interpret nature as they wished. In the last half of the nineteenth century, adults continued to rely on nature as a means of training up children in the ways they should go. Writers, teachers, and reformers increasingly

  13. Evaluation of alias-less reconstruction by pseudo-parallel imaging in a phase-scrambling fourier transform technique

    International Nuclear Information System (INIS)

    Ito, Satoshi; Kawawa, Yasuhiro; Yamada, Yoshifumi

    2010-01-01

    We propose an image reconstruction technique in which parallel image reconstruction is performed based on the sensitivity encoding (SENSE) algorithm using only a single set of signals. The signal obtained in the phase-scrambling Fourier transform (PSFT) imaging technique can be transformed to the signal described by the Fresnel transform of the objects, which is known as the diffracted wave-front equation of the object in acoustics or optics. Since the Fresnel transform is a convolution integral on the object space, the space where the PSFT signal exists can be considered as both in the Fourier domain and in the object domain. This notable feature indicates that weighting functions corresponding to the sensitivity of radiofrequency (RF) coils can be approximately given in the PSFT signal space. Therefore, we can obtain two folded images from a single set of signals with different weighting functions, and image reconstruction based on the SENSE parallel imaging algorithm is possible using a series of folded images. Simulation and experimental studies showed that almost alias-free images can be synthesized using a single signal that does not satisfy the sampling theorem. (author)

  14. RESEARCH ON COORDINATE TRANSFORMATION METHOD OF GB-SAR IMAGE SUPPORTED BY 3D LASER SCANNING TECHNOLOGY

    Directory of Open Access Journals (Sweden)

    P. Wang

    2018-04-01

    Full Text Available In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D plane coordinate system with the common three-dimensional (3D terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  15. Research on Coordinate Transformation Method of Gb-Sar Image Supported by 3d Laser Scanning Technology

    Science.gov (United States)

    Wang, P.; Xing, C.

    2018-04-01

    In the image plane of GB-SAR, identification of deformation distribution is usually carried out by artificial interpretation. This method requires analysts to have adequate experience of radar imaging and target recognition, otherwise it can easily cause false recognition of deformation target or region. Therefore, it is very meaningful to connect two-dimensional (2D) plane coordinate system with the common three-dimensional (3D) terrain coordinate system. To improve the global accuracy and reliability of the transformation from 2D coordinates of GB-SAR images to local 3D coordinates, and overcome the limitation of traditional similarity transformation parameter estimation method, 3D laser scanning data is used to assist the transformation of GB-SAR image coordinates. A straight line fitting method for calculating horizontal angle was proposed in this paper. After projection into a consistent imaging plane, we can calculate horizontal rotation angle by using the linear characteristics of the structure in radar image and the 3D coordinate system. Aided by external elevation information by 3D laser scanning technology, we completed the matching of point clouds and pixels on the projection plane according to the geometric projection principle of GB-SAR imaging realizing the transformation calculation of GB-SAR image coordinates to local 3D coordinates. Finally, the effectiveness of the method is verified by the GB-SAR deformation monitoring experiment on the high slope of Geheyan dam.

  16. Vocal Tract Images Reveal Neural Representations of Sensorimotor Transformation During Speech Imitation

    Science.gov (United States)

    Carey, Daniel; Miquel, Marc E.; Evans, Bronwen G.; Adank, Patti; McGettigan, Carolyn

    2017-01-01

    Abstract Imitating speech necessitates the transformation from sensory targets to vocal tract motor output, yet little is known about the representational basis of this process in the human brain. Here, we address this question by using real-time MR imaging (rtMRI) of the vocal tract and functional MRI (fMRI) of the brain in a speech imitation paradigm. Participants trained on imitating a native vowel and a similar nonnative vowel that required lip rounding. Later, participants imitated these vowels and an untrained vowel pair during separate fMRI and rtMRI runs. Univariate fMRI analyses revealed that regions including left inferior frontal gyrus were more active during sensorimotor transformation (ST) and production of nonnative vowels, compared with native vowels; further, ST for nonnative vowels activated somatomotor cortex bilaterally, compared with ST of native vowels. Using test representational similarity analysis (RSA) models constructed from participants’ vocal tract images and from stimulus formant distances, we found that RSA searchlight analyses of fMRI data showed either type of model could be represented in somatomotor, temporal, cerebellar, and hippocampal neural activation patterns during ST. We thus provide the first evidence of widespread and robust cortical and subcortical neural representation of vocal tract and/or formant parameters, during prearticulatory ST. PMID:28334401

  17. Increasing plasmid transformation efficiency of natural spizizen method in Bacillus Subtilis by a cell permeable peptide

    Directory of Open Access Journals (Sweden)

    Mehrdad Moosazadeh Moghaddam

    2013-01-01

    Full Text Available Introduction: Some of bacterial species are able to uptake DNA molecule from environment, the yield of this process depends on some conditions such as plasmid size and host type. In the case of Bacillus subtilis, DNA uptake has low efficacy. Using Spizizen minimal medium is common method in plasmid transformation into B. subtilis, but rate of this process is not suitable and noteworthy. The aim of this study was investigation of novel method for improvement of DNA transformation into B. subtilis based on CM11 cationic peptide as a membrane permeable agent.Materials and methods: In this study, for optimization of pWB980 plasmid transformation into B. subtilis, the CM11 cationic peptide was used. For this purpose, B. subtilis competent cell preparation in the present of different concentration of peptide was implemented by two methods. In the first method, after treatment of bacteria with different amount of peptide for 14h, plasmid was added. In the second method, several concentration of peptide with plasmid was exposed to bacteria simultaneously. Bacteria that uptake DNA were screened on LB agar medium containing kanamycin. The total transformed bacteria per microgram of DNA was calculated and compared with the control.Results: Plasmid transformation in best conditions was 6.5 folds higher than the control. This result was statistically significant (P value <0.001.Discussion and conclusion: This study showed that CM11 cationic peptide as a membrane permeable agent was able to increase plasmid transformation rate into B. subtilis. This property was useful for resolution of low transformation efficacy.

  18. Improving scale invariant feature transform with local color contrastive descriptor for image classification

    Science.gov (United States)

    Guo, Sheng; Huang, Weilin; Qiao, Yu

    2017-01-01

    Image representation and classification are two fundamental tasks toward version understanding. Shape and texture provide two key features for visual representation and have been widely exploited in a number of successful local descriptors, e.g., scale invariant feature transform (SIFT), local binary pattern descriptor, and histogram of oriented gradient. Unlike these gradient-based descriptors, this paper presents a simple yet efficient local descriptor, named local color contrastive descriptor (LCCD), which captures the contrastive aspects among local regions or color channels for image representation. LCCD is partly inspired by the neural science facts that color contrast plays important roles in visual perception and there exist strong linkages between color and shape. We leverage f-divergence as a robust measure to estimate the contrastive features between different spatial locations and multiple channels. Our descriptor enriches local image representation with both color and contrast information. Due to that LCCD does not explore any gradient information, individual LCCD does not yield strong performance. But we verified experimentally that LCCD can compensate strongly SIFT. Extensive experimental results on image classification show that our descriptor improves the performance of SIFT substantially by combination on three challenging benchmarks, including MIT Indoor-67 database, SUN397, and PASCAL VOC 2007.

  19. Robust Digital Image Watermarking Against Cropping Using Sudoku Puzzle in Spatial and Transform Domain

    Directory of Open Access Journals (Sweden)

    shadi saneie

    2016-10-01

    Full Text Available With rapid development of digital technology, protecting information such as copyright, content ownership confirmation has become more important. In image watermarking, information of the image is inserted such that the visual quality of the image is not reduced and the receiver is able to get the required information. Some attacks such as image cropping, destroy the watermark’s information. In this article, a new watermarking scheme is proposed which is robust against tough cropping. In the proposed scheme, classic Sudoku table which is a 9*9 table, has been used. One feature of Sudoku table is that Sudoku's limitations cause uniform scattering of symbols or numbers throughout the table. In the proposed scheme, Sudoku table and both watermarking approaches based on spatial domain and transform domain such as DCT and DWT are used. Lack of using of soduko solution at the stage of extraction and finding correct solution to obtain watermark, is innovation of this scheme. Robustness of watermarking against cropping attack is up to 92%, which shows good and effective performance of the proposed scheme.

  20. Real-time implementation of optimized maximum noise fraction transform for feature extraction of hyperspectral images

    Science.gov (United States)

    Wu, Yuanfeng; Gao, Lianru; Zhang, Bing; Zhao, Haina; Li, Jun

    2014-01-01

    We present a parallel implementation of the optimized maximum noise fraction (G-OMNF) transform algorithm for feature extraction of hyperspectral images on commodity graphics processing units (GPUs). The proposed approach explored the algorithm data-level concurrency and optimized the computing flow. We first defined a three-dimensional grid, in which each thread calculates a sub-block data to easily facilitate the spatial and spectral neighborhood data searches in noise estimation, which is one of the most important steps involved in OMNF. Then, we optimized the processing flow and computed the noise covariance matrix before computing the image covariance matrix to reduce the original hyperspectral image data transmission. These optimization strategies can greatly improve the computing efficiency and can be applied to other feature extraction algorithms. The proposed parallel feature extraction algorithm was implemented on an Nvidia Tesla GPU using the compute unified device architecture and basic linear algebra subroutines library. Through the experiments on several real hyperspectral images, our GPU parallel implementation provides a significant speedup of the algorithm compared with the CPU implementation, especially for highly data parallelizable and arithmetically intensive algorithm parts, such as noise estimation. In order to further evaluate the effectiveness of G-OMNF, we used two different applications: spectral unmixing and classification for evaluation. Considering the sensor scanning rate and the data acquisition time, the proposed parallel implementation met the on-board real-time feature extraction.

  1. Beyond MOS and fibers: Optical Fourier-transform Imaging Unit for Cananea Observatory (OFIUCO)

    Science.gov (United States)

    Nieto-Suárez, M. A.; Rosales-Ortega, F. F.; Castillo, E.; García, P.; Escobedo, G.; Sánchez, S. F.; González, J.; Iglesias-Páramo, J.; Mollá, M.; Chávez, M.; Bertone, E.; et al.

    2017-11-01

    Many physical processes in astronomy are still hampered by the lack of spatial and spectral resolution, and also restricted to the field-of-view (FoV) of current 2D spectroscopy instruments available worldwide. It is due to that, many of the ongoing or proposed studies are based on large-scale imaging and/or spectroscopic surveys. Under this philosophy, large aperture telescopes are dedicated to the study of intrinsically faint and/or distance objects, covering small FoVs, with high spatial resolution, while smaller telescopes are devoted to wide-field explorations. However, future astronomical surveys, should be addressed by acquiring un-biases, spatially resolved, high-quality spectroscopic information for a wide FoV. Therefore, and in order to improve the current instrumental offer in the Observatorio Astrofísico Guillermo Haro (OAGH) in Cananea, Mexico (INAOE); and to explore a possible instrument for the future Telescopio San Pedro Mártir (6.5m), we are currently integrating at INAOE an instrument prototype that will provide us with un-biased wide-field (few arcmin) spectroscopic information, and with the flexibility of operating at different spectral resolutions (R 1-20000), with a spatial resolution limited by seeing, and therefore, to be used in a wide range of astronomical problems. This instrument called OFIUCO: Optical Fourier-transform Imaging Unit for Cananea Observatory, will make use of the Fourier Transform Spectroscopic technique, which has been proved to be feasible in the optical wavelength range (350-1000 nm) with designs such as SITELLE (CFHT). We describe here the basic technical description of a Fourier transform spectrograph with important modifications from previous astronomical versions, as well as the technical advantages and weakness, and the science cases in which this instrument can be implemented.

  2. Small saccades and image complexity during free viewing of natural images in schizophrenia.

    Directory of Open Access Journals (Sweden)

    Jose Ignacio Egaña

    2013-05-01

    Full Text Available In schizophrenia, patients display dysfunctions during the execution of simple visual tasks such as anti-saccade or smooth pursuit. In more ecological scenarios, such as free viewing of natural images, patients appear to make fewer and longer visual fixations and display shorter scanpaths. It is not clear whether these measurements reflect alterations in their proficiency to perform basic eye movements, such as saccades and fixations, or are related to high-level mechanisms, such as exploration or attention. We utilized free exploration of natural images of different complexities as a model of an ecological context where normally operative mechanisms of visual control can be accurately measured. We quantified visual exploration as Euclidean distance, scanpaths, saccades and visual fixation, using the standard SR-Research eye tracker algorithm (SR. We then compared this result with a computation that includes microsaccades (EM. We evaluated 8 schizophrenia patients and corresponding healthy controls (HC. Next, we tested whether the decrement in the number of saccades and fixations, as well as their increment in duration reported previously in schizophrenia patients, resulted from the increasing occurrence of undetected microsaccades. We found that when utilizing the standard SR algorithm, patients displayed shorter scanpaths as well as fewer and shorter saccades and fixations. When we employed the EM algorithm, the differences in these parameters between patients and HC were no longer significant. On the other hand, we found that image complexity plays an important role in exploratory behaviors, demonstrating that this factor explains most of differences between eye-movement behaviors in schizophrenia patients. These results help elucidate the mechanisms of visual motor control that are affected in schizophrenia and contribute to the finding of adequate markers for diagnosis and treatment for this condition.

  3. Nonrigid synthetic aperture radar and optical image coregistration by combining local rigid transformations using a Kohonen network.

    Science.gov (United States)

    Salehpour, Mehdi; Behrad, Alireza

    2017-10-01

    This study proposes a new algorithm for nonrigid coregistration of synthetic aperture radar (SAR) and optical images. The proposed algorithm employs point features extracted by the binary robust invariant scalable keypoints algorithm and a new method called weighted bidirectional matching for initial correspondence. To refine false matches, we assume that the transformation between SAR and optical images is locally rigid. This property is used to refine false matches by assigning scores to matched pairs and clustering local rigid transformations using a two-layer Kohonen network. Finally, the thin plate spline algorithm and mutual information are used for nonrigid coregistration of SAR and optical images.

  4. Research on fast Fourier transforms algorithm of huge remote sensing image technology with GPU and partitioning technology.

    Science.gov (United States)

    Yang, Xue; Li, Xue-You; Li, Jia-Guo; Ma, Jun; Zhang, Li; Yang, Jan; Du, Quan-Ye

    2014-02-01

    Fast Fourier transforms (FFT) is a basic approach to remote sensing image processing. With the improvement of capacity of remote sensing image capture with the features of hyperspectrum, high spatial resolution and high temporal resolution, how to use FFT technology to efficiently process huge remote sensing image becomes the critical step and research hot spot of current image processing technology. FFT algorithm, one of the basic algorithms of image processing, can be used for stripe noise removal, image compression, image registration, etc. in processing remote sensing image. CUFFT function library is the FFT algorithm library based on CPU and FFTW. FFTW is a FFT algorithm developed based on CPU in PC platform, and is currently the fastest CPU based FFT algorithm function library. However there is a common problem that once the available memory or memory is less than the capacity of image, there will be out of memory or memory overflow when using the above two methods to realize image FFT arithmetic. To address this problem, a CPU and partitioning technology based Huge Remote Fast Fourier Transform (HRFFT) algorithm is proposed in this paper. By improving the FFT algorithm in CUFFT function library, the problem of out of memory and memory overflow is solved. Moreover, this method is proved rational by experiment combined with the CCD image of HJ-1A satellite. When applied to practical image processing, it improves effect of the image processing, speeds up the processing, which saves the time of computation and achieves sound result.

  5. Nature of gallium focused ion beam induced phase transformation in 316L austenitic stainless steel

    International Nuclear Information System (INIS)

    Babu, R. Prasath; Irukuvarghula, S.; Harte, A.; Preuss, M.

    2016-01-01

    The microstructural evolution and chemistry of the ferrite phase (α), which transforms from the parent austenite phase (γ) of 316L stainless steel during gallium (Ga) ion beam implantation in Focused Ion Beam (FIB) instrument was systematically studied as a function of Ga"+ ion dose and γ grain orientations. The propensity for initiation of γ → α phase transformation was observed to be strongly dependent on the orientation of the γ grain with respect to the ion beam direction and correlates well with the ion channelling differences in the γ orientations studied. Several α variants formed within a single γ orientation and the sputtering rate of the material, after the γ → α transformation, is governed by the orientation of α variants. With increased ion dose, there is an evolution of orientation of the α variants towards a variant of higher Ga"+ channelling. Unique topographical features were observed within each specific γ orientation that can be attributed to the orientation of defects formed during the ion implantation. In most cases, γ and α were related by either Kurdjumov-Sachs (KS) or Nishiyama-Wassermann (NW) orientation relationship (OR) while in few, no known OR's were identified. While our results are consistent with gallium enrichment being the cause for the γ → α phase transformation, some observations also suggest that the strain associated with the presence of gallium atoms in the lattice has a far field stress effect that promotes the phase transformation ahead of gallium penetration.

  6. Combining Haar Wavelet and Karhunen Loeve Transforms for Medical Images Watermarking

    Directory of Open Access Journals (Sweden)

    Mohamed Ali Hajjaji

    2014-01-01

    Full Text Available This paper presents a novel watermarking method, applied to the medical imaging domain, used to embed the patient’s data into the corresponding image or set of images used for the diagnosis. The main objective behind the proposed technique is to perform the watermarking of the medical images in such a way that the three main attributes of the hidden information (i.e., imperceptibility, robustness, and integration rate can be jointly ameliorated as much as possible. These attributes determine the effectiveness of the watermark, resistance to external attacks, and increase the integration rate. In order to improve the robustness, a combination of the characteristics of Discrete Wavelet and Karhunen Loeve Transforms is proposed. The Karhunen Loeve Transform is applied on the subblocks (sized 8×8 of the different wavelet coefficients (in the HL2, LH2, and HH2 subbands. In this manner, the watermark will be adapted according to the energy values of each of the Karhunen Loeve components, with the aim of ensuring a better watermark extraction under various types of attacks. For the correct identification of inserted data, the use of an Errors Correcting Code (ECC mechanism is required for the check and, if possible, the correction of errors introduced into the inserted data. Concerning the enhancement of the imperceptibility factor, the main goal is to determine the optimal value of the visibility factor, which depends on several parameters of the DWT and the KLT transforms. As a first step, a Fuzzy Inference System (FIS has been set up and then applied to determine an initial visibility factor value. Several features extracted from the Cooccurrence matrix are used as an input to the FIS and used to determine an initial visibility factor for each block; these values are subsequently reweighted in function of the eigenvalues extracted from each subblock. Regarding the integration rate, the previous works insert one bit per coefficient. In our

  7. kCCA Transformation-Based Radiometric Normalization of Multi-Temporal Satellite Images

    Directory of Open Access Journals (Sweden)

    Yang Bai

    2018-03-01

    Full Text Available Radiation normalization is an essential pre-processing step for generating high-quality satellite sequence images. However, most radiometric normalization methods are linear, and they cannot eliminate the regular nonlinear spectral differences. Here we introduce the well-established kernel canonical correlation analysis (kCCA into radiometric normalization for the first time to overcome this problem, which leads to a new kernel method. It can maximally reduce the image differences among multi-temporal images regardless of the imaging conditions and the reflectivity difference. It also perfectly eliminates the impact of nonlinear changes caused by seasonal variation of natural objects. Comparisons with the multivariate alteration detection (CCA-based normalization and the histogram matching, on Gaofen-1 (GF-1 data, indicate that the kCCA-based normalization can preserve more similarity and better correlation between an image-pair and effectively avoid the color error propagation. The proposed method not only builds the common scale or reference to make the radiometric consistency among GF-1 image sequences, but also highlights the interesting spectral changes while eliminates less interesting spectral changes. Our method enables the application of GF-1 data for change detection, land-use, land-cover change detection etc.

  8. Airship Sparse Array Antenna Radar Real Aperture Imaging Based on Compressed Sensing and Sparsity in Transform Domain

    Directory of Open Access Journals (Sweden)

    Li Liechen

    2016-02-01

    Full Text Available A conformal sparse array based on combined Barker code is designed for airship platform. The performance of the designed array such as signal-to-noise ratio is analyzed. Using the hovering characteristics of the airship, interferometry operation can be applied on the real aperture imaging results of two pulses, which can eliminate the random backscatter phase and make the image sparse in the transform domain. Building the relationship between echo and transform coefficients, the Compressed Sensing (CS theory can be introduced to solve the formula and achieving imaging. The image quality of the proposed method can reach the image formed by the full array imaging. The simulation results show the effectiveness of the proposed method.

  9. The phenomenon of literature images transformation into musical images and paradigmal images of corresponding epochs (philosophy of history analysis

    Directory of Open Access Journals (Sweden)

    M. V. Masayev

    2014-01-01

    The author comes to the conclusion that the images of the M. A. Sholokhov’s novels «Quit Waves of Don» and «Newly­ploughed virgin soil» and short story «Destiny of the man» having become musical images of the I. I. Dzerzhinsky’s operas «Quit Waves of Don», «Newly­ploughed virgin soil», «Destiny of the man» and «Grigoriy Melekhov», turned into real paradigmal symbols of the epochs of the civil war, collectivization and the Great Patriotic War.

  10. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images.

    Science.gov (United States)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo; Onozato, Yusuke; Cho, Sang Yong; Kishi, Kazuma; Dobashi, Suguru; Umezawa, Rei; Matsushita, Haruo; Takeda, Ken; Jingu, Keiichi

    2014-11-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. © The Author 2014. Published by Oxford University Press on behalf of The Japan Radiation Research Society and Japanese Society for Radiation Oncology.

  11. Evaluation of accuracy of B-spline transformation-based deformable image registration with different parameter settings for thoracic images

    International Nuclear Information System (INIS)

    Kanai, Takayuki; Kadoya, Noriyuki; Ito, Kengo

    2014-01-01

    Deformable image registration (DIR) is fundamental technique for adaptive radiotherapy and image-guided radiotherapy. However, further improvement of DIR is still needed. We evaluated the accuracy of B-spline transformation-based DIR implemented in elastix. This registration package is largely based on the Insight Segmentation and Registration Toolkit (ITK), and several new functions were implemented to achieve high DIR accuracy. The purpose of this study was to clarify whether new functions implemented in elastix are useful for improving DIR accuracy. Thoracic 4D computed tomography images of ten patients with esophageal or lung cancer were studied. Datasets for these patients were provided by DIR-lab (dir-lab.com) and included a coordinate list of anatomical landmarks that had been manually identified. DIR between peak-inhale and peak-exhale images was performed with four types of parameter settings. The first one represents original ITK (Parameter 1). The second employs the new function of elastix (Parameter 2), and the third was created to verify whether new functions improve DIR accuracy while keeping computational time (Parameter 3). The last one partially employs a new function (Parameter 4). Registration errors for these parameter settings were calculated using the manually determined landmark pairs. 3D registration errors with standard deviation over all cases were 1.78 (1.57), 1.28 (1.10), 1.44 (1.09) and 1.36 (1.35) mm for Parameter 1, 2, 3 and 4, respectively, indicating that the new functions are useful for improving DIR accuracy, even while maintaining the computational time, and this B-spline-based DIR could be used clinically to achieve high-accuracy adaptive radiotherapy. (author)

  12. Properties of octagonal distance transformation (ODT) and its application to recognition of rib images of chest radiograms

    International Nuclear Information System (INIS)

    Ban, Tatsuya; Yokoi, Shigeki; Toriwaki, Jun-ichiro; Fukumura, Teruo.

    1980-01-01

    Digital image processing and image pattern recognition have lately become important, and are utilized in every field. The processing techniques common to these applications include smoothing, thinning, threshold processing, distance transformation, edge detection, etc. This paper describes the distance transformation, specifically the transformation based on octagonal distance (ODT). As the distance transformation, diamond distance or square distance has been employed so far, but these have the disadvantage of great deviation from the Euclid distance, and the octagonal distance transformation is considered to prevent such deviation. First, the basic concept and the definition of symbols are given, the octagonal distance skeleton (ODS) is defined, and the possibility of restoring original figure from the ODS is indicated. Next, the sequential algorithm is given, which executes the ODT and the inverse transformation to restore the original figure from the ODS by scanning on the figure 4 times. As an example of the application, the identification of rib images in chest radiograms is adopted, and the capability of reducing the effect of blood vessel images and noises by combining ODT with thinning or other processing, without quadratic function approximation, is described. (J.P.N.)

  13. Nature of transforming deoxyribonucleic acid in calcium-treated Escherichia coli

    International Nuclear Information System (INIS)

    Strike, P.; Humphreys, G.O.; Roberts, R.J.

    1979-01-01

    A study of the reactivation of ultraviolet-irradiated plasmid and phage deoxyribonucleic acid molecules after transformation into Escherichia coli strains indicated that, when double-stranded deoxyribonucleic acid was used as the donor species, it was taken up without conversion to the single-stranded form

  14. Naturally occurring soil salinity does not reduce N-transforming enzymes or organisms

    Science.gov (United States)

    Soil salinity can negatively affect plant production and important biogeochemical cycles which are mainly carried out by soil microbes. The objective of this study was to contribute new information on soil biological N transformations by examining the impact primary salinity reduction has on a) the ...

  15. Spread spectrum image data hiding in the encrypted discrete cosine transform coefficients

    Science.gov (United States)

    Zhang, Xiaoqiang; Wang, Z. Jane

    2013-10-01

    Digital watermarking and data hiding are important tools for digital rights protection of media data. Spread spectrum (SS)-based watermarking and data-hiding approaches are popular due to their outstanding robustness, but their security might not be sufficient. To improve the security of SS, a SS-based image data-hiding approach is proposed by encrypting the discrete cosine transform coefficients of the host image with the piecewise linear chaotic map, before the operation of watermark embedding. To evaluate the performance of the proposed approach, simulations and analyses of its robustness and security are carried out. The average bit-error-rate values on 100 real images from the Berkeley segmentation dataset under the JPEG compression, additive Gaussian noise, salt and pepper noise, and cropping attacks are reported. Experimental results show that the proposed approach can maintain the high robustness of traditional SS schemes and, meanwhile, also improve the security. The proposed approach can extend the key space of traditional SS schemes from 10 to 10 and thus can resist brute-force attack and unauthorized detection watermark attack.

  16. Automatic detection of karstic sinkholes in seismic 3D images using circular Hough transform

    International Nuclear Information System (INIS)

    Parchkoohi, Mostafa Heydari; Farajkhah, Nasser Keshavarz; Delshad, Meysam Salimi

    2015-01-01

    More than 30% of hydrocarbon reservoirs are reported in carbonates that mostly include evidence of fractures and karstification. Generally, the detection of karstic sinkholes prognosticate good quality hydrocarbon reservoirs where looser sediments fill the holes penetrating hard limestone and the overburden pressure on infill sediments is mostly tolerated by their sturdier surrounding structure. They are also useful for the detection of erosional surfaces in seismic stratigraphic studies and imply possible relative sea level fall at the time of establishment. Karstic sinkholes are identified straightforwardly by using seismic geometric attributes (e.g. coherency, curvature) in which lateral variations are much more emphasized with respect to the original 3D seismic image. Then, seismic interpreters rely on their visual skills and experience in detecting roughly round objects in seismic attribute maps. In this paper, we introduce an image processing workflow to enhance selective edges in seismic attribute volumes stemming from karstic sinkholes and finally locate them in a high quality 3D seismic image by using circular Hough transform. Afterwards, we present a case study from an on-shore oilfield in southwest Iran, in which the proposed algorithm is applied and karstic sinkholes are traced. (paper)

  17. Estimating 3D tilt from local image cues in natural scenes

    OpenAIRE

    Burge, Johannes; McCann, Brian C.; Geisler, Wilson S.

    2016-01-01

    Estimating three-dimensional (3D) surface orientation (slant and tilt) is an important first step toward estimating 3D shape. Here, we examine how three local image cues from the same location (disparity gradient, luminance gradient, and dominant texture orientation) should be combined to estimate 3D tilt in natural scenes. We collected a database of natural stereoscopic images with precisely co-registered range images that provide the ground-truth distance at each pixel location. We then ana...

  18. Capturing the Transformation and Dynamic Nature of an Elementary Teacher Candidate's Identity Development as a Teacher of Science

    Science.gov (United States)

    Naidoo, Kara

    2017-12-01

    This study examines the transformation and dynamic nature of one teacher candidate's (Susan) identity as a learner and teacher of science throughout an innovative science methods course. The goal of this paper is to use theoretically derived themes grounded in cultural-historical activity theory (CHAT) and situated learning theory to determine the ways in which Susan's identity as a learner and teacher of science was influenced by her experiences in the course, and to describe how she made meaning of her transformative process. The following are the three theoretical themes: (1) learning contributes to identity development, (2) identity development is a dialogical process that occurs between individuals, not within individuals, and (3) social practice leads to transformations and transformations lead to the creation of new social practices. Within each theme, specific experiences in the science methods course are identified that influenced Susan's identity development as a teacher of science. Knowing how context and experiences influence identity development can inform design decisions concerning teacher education programs, courses, and experiences for candidates.

  19. Digital double random amplitude image encryption method based on the symmetry property of the parametric discrete Fourier transform

    Science.gov (United States)

    Bekkouche, Toufik; Bouguezel, Saad

    2018-03-01

    We propose a real-to-real image encryption method. It is a double random amplitude encryption method based on the parametric discrete Fourier transform coupled with chaotic maps to perform the scrambling. The main idea behind this method is the introduction of a complex-to-real conversion by exploiting the inherent symmetry property of the transform in the case of real-valued sequences. This conversion allows the encrypted image to be real-valued instead of being a complex-valued image as in all existing double random phase encryption methods. The advantage is to store or transmit only one image instead of two images (real and imaginary parts). Computer simulation results and comparisons with the existing double random amplitude encryption methods are provided for peak signal-to-noise ratio, correlation coefficient, histogram analysis, and key sensitivity.

  20. [Developmental instability of the organism as a result of pessimization of environment under anthropogenic transformation of natural landscapes].

    Science.gov (United States)

    Shadrina, E G; Vol'pert, Ia L

    2014-01-01

    The value of fluctuating asymmetry is considered to be an indicator of the developmental instability of the organism. The consequences of activities of the mining industry plants, which are characterized by alienation and transformation of large areas of natural landscapes, are analyzed as an anthropogenic factor. The objects of study were small mammals (northern red-backed (Clethrionomys rutilus) and gray red-backed (Clethrionomys rufocanus) voles, tundra vole (Microtus oeconomus), Laxmann's (Sorex caecutiens) and tundra (S. tundrensis) shrews) and trees (Japanese white birch (Betula platyphylla), Betula divaricate, Betula exilis, Duschekiafruticosa, and common osier (Salix viminalis)). In total, 3500 skulls and approximately 30000 leaves collected in the taiga zone of Yakutia were studied. The index offluctuating asymmetry, as well as population parameters and composition of small mammal communities, were analyzed. The data on the value of the fluctuating asymmetry in the studied species in natural habitats are given. It is shown that, in natural conditions, this parameter can rise with deterioration in living conditions, particularly at the ecological periphery of the range. Anthropogenic transformation of natural landscapes creates an "anthropogenic periphery" and causes changes similar to the adaptive responses at the northern limit of the distribution of species. It was found that, through pollution and disruption of ecosystems, the mining industry affects all levels of organization of the living matter, but the population and cenotic parameters give an unambiguous response only at macroanthropogenic transformations. Increase in the level of fluctuating asymmetry is the most sensitive indicator of anthropogenic impact and it should also be taken into account that disruptions in the developmental stability of an organism reflect the destructive processes occurring in the population and community.

  1. Governing the transformation towards ‘nature-inclusive’ agriculture : insights from the Netherlands

    NARCIS (Netherlands)

    Runhaar, Hens

    2017-01-01

    It is becoming increasingly difficult to combine nature conservation by farmers with intensive and large-scale farming. The Dutch government recently adopted the new policy concept of ‘nature-inclusive’ farming, which aims at promoting more sustainable agricultural practices that minimizes negative

  2. High-accuracy optical extensometer based on coordinate transform in two-dimensional digital image correlation

    Science.gov (United States)

    Lv, Zeqian; Xu, Xiaohai; Yan, Tianhao; Cai, Yulong; Su, Yong; Zhang, Qingchuan

    2018-01-01

    In the measurement of plate specimens, traditional two-dimensional (2D) digital image correlation (DIC) is challenged by two aspects: (1) the slant optical axis (misalignment of the optical camera axis and the object surface) and (2) out-of-plane motions (including translations and rotations) of the specimens. There are measurement errors in the results measured by 2D DIC, especially when the out-of-plane motions are big enough. To solve this problem, a novel compensation method has been proposed to correct the unsatisfactory results. The proposed compensation method consists of three main parts: 1) a pre-calibration step is used to determine the intrinsic parameters and lens distortions; 2) a compensation panel (a rigid panel with several markers located at known positions) is mounted to the specimen to track the specimen's motion so that the relative coordinate transformation between the compensation panel and the 2D DIC setup can be calculated using the coordinate transform algorithm; 3) three-dimensional world coordinates of measuring points on the specimen can be reconstructed via the coordinate transform algorithm and used to calculate deformations. Simulations have been carried out to validate the proposed compensation method. Results come out that when the extensometer length is 400 pixels, the strain accuracy reaches 10 με no matter out-of-plane translations (less than 1/200 of the object distance) nor out-of-plane rotations (rotation angle less than 5°) occur. The proposed compensation method leads to good results even when the out-of-plane translation reaches several percents of the object distance or the out-of-plane rotation angle reaches tens of degrees. The proposed compensation method has been applied in tensile experiments to obtain high-accuracy results as well.

  3. Imaging open-path Fourier transform infrared spectrometer for 3D cloud profiling

    Science.gov (United States)

    Rentz Dupuis, Julia; Mansur, David J.; Vaillancourt, Robert; Carlson, David; Evans, Thomas; Schundler, Elizabeth; Todd, Lori; Mottus, Kathleen

    2010-04-01

    OPTRA has developed an imaging open-path Fourier transform infrared (I-OP-FTIR) spectrometer for 3D profiling of chemical and biological agent simulant plumes released into test ranges and chambers. An array of I-OP-FTIR instruments positioned around the perimeter of the test site, in concert with advanced spectroscopic algorithms, enables real time tomographic reconstruction of the plume. The approach is intended as a referee measurement for test ranges and chambers. This Small Business Technology Transfer (STTR) effort combines the instrumentation and spectroscopic capabilities of OPTRA, Inc. with the computed tomographic expertise of the University of North Carolina, Chapel Hill. In this paper, we summarize the design and build and detail system characterization and test of a prototype I-OP-FTIR instrument. System characterization includes radiometric performance and spectral resolution. Results from a series of tomographic reconstructions of sulfur hexafluoride plumes in a laboratory setting are also presented.

  4. Computationally Efficient Robust Color Image Watermarking Using Fast Walsh Hadamard Transform

    Directory of Open Access Journals (Sweden)

    Suja Kalarikkal Pullayikodi

    2017-10-01

    Full Text Available Watermark is the copy deterrence mechanism used in the multimedia signal that is to be protected from hacking and piracy such a way that it can later be extracted from the watermarked signal by the decoder. Watermarking can be used in various applications such as authentication, video indexing, copyright protection and access control. In this paper a new CDMA (Code Division Multiple Access based robust watermarking algorithm using customized 8 × 8 Walsh Hadamard Transform, is proposed for the color images and detailed performance and robustness analysis have been performed. The paper studies in detail the effect of spreading code length, number of spreading codes and type of spreading codes on the performance of the watermarking system. Compared to the existing techniques the proposed scheme is computationally more efficient and consumes much less time for execution. Furthermore, the proposed scheme is robust and survives most of the common signal processing and geometric attacks.

  5. Digital tool for detecting diabetic retinopathy in retinography image using gabor transform

    Science.gov (United States)

    Morales, Y.; Nuñez, R.; Suarez, J.; Torres, C.

    2017-01-01

    Diabetic retinopathy is a chronic disease and is the leading cause of blindness in the population. The fundamental problem is that diabetic retinopathy is usually asymptomatic in its early stage and, in advanced stages, it becomes incurable, hence the importance of early detection. To detect diabetic retinopathy, the ophthalmologist examines the fundus by ophthalmoscopy, after sends the patient to get a Retinography. Sometimes, these retinography are not of good quality. This paper show the implementation of a digital tool that facilitates to ophthalmologist provide better patient diagnosis suffering from diabetic retinopathy, informing them that type of retinopathy has and to what degree of severity is find . This tool develops an algorithm in Matlab based on Gabor transform and in the application of digital filters to provide better and higher quality of retinography. The performance of algorithm has been compared with conventional methods obtaining resulting filtered images with better contrast and higher.

  6. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Logan, Jeffrey [National Renewable Energy Lab. (NREL), Golden, CO (United States); Heath, Garvin [National Renewable Energy Lab. (NREL), Golden, CO (United States); Macknick, Jordan [National Renewable Energy Lab. (NREL), Golden, CO (United States); Paranhos, Elizabeth [Univ. of Colorado, Boulder, CO (United States); Boyd, William [Univ. of Colorado, Boulder, CO (United States); Carlson, Ken [Colorado State Univ., Fort Collins, CO (United States)

    2012-11-01

    Domestic natural gas production was largely stagnant from the mid-1970s until about 2005. However, beginning in the late 1990s, advances linking horizontal drilling techniques with hydraulic fracturing allowed drilling to proceed in shale and other formations at much lower cost. The result was a slow, steady increase in unconventional gas production. The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset from the wider dialogue on natural gas; regarding the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity; existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and changes in response to the rapid industry growth and public concerns; natural gas production companies changing their water-related practices; and demand for natural gas in the electric sector.

  7. Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

    Science.gov (United States)

    Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz; de Lustrac, André

    2015-02-01

    Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication of the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device.

  8. Illusion optics: Optically transforming the nature and the location of electromagnetic emissions

    International Nuclear Information System (INIS)

    Yi, Jianjia; Tichit, Paul-Henri; Burokur, Shah Nawaz; Lustrac, André de

    2015-01-01

    Complex electromagnetic structures can be designed by using the powerful concept of transformation electromagnetics. In this study, we define a spatial coordinate transformation that shows the possibility of designing a device capable of producing an illusion on an antenna radiation pattern. Indeed, by compressing the space containing a radiating element, we show that it is able to change the radiation pattern and to make the radiation location appear outside the latter space. Both continuous and discretized models with calculated electromagnetic parameter values are presented. A reduction of the electromagnetic material parameters is also proposed for a possible physical fabrication of the device with achievable values of permittivity and permeability that can be obtained from existing well-known metamaterials. Following that, the design of the proposed antenna using a layered metamaterial is presented. Full wave numerical simulations using Finite Element Method are performed to demonstrate the performances of such a device

  9. Subwavelength Fourier-transform imaging without a lens or a beamsplitter

    International Nuclear Information System (INIS)

    Liu Rui-Feng; Yuan Xin-Xing; Fang Yi-Zhen; Zhang Pei; Zhou Yu; Gao Hong; Li Fu-Li

    2014-01-01

    The fourier-transform patterns of an object are usually observed in the far-field region or obtained in the near-field region with the help of lenses. Here we propose and experimentally demonstrate a scheme of Fourier-transform patterns in the Fresnel diffraction region with thermal light. In this scheme, neither a lens nor a beamsplitter is used, and only one single charge coupled device (CCD) is employed. It means that dividing one beam out of a light source into signal and reference beams is not as necessary as the one done by the use of a beamsplitter in usual ghost interference experiments. Moreover, the coincidence measurement of two point detectors is not necessary and data recorded on a single CCD are sufficient for reconstructing the ghost diffraction patterns. The feature of the scheme promises a great potential application in the fields of X-ray and neutron diffraction imaging processes. (electromagnetism, optics, acoustics, heat transfer, classical mechanics, and fluid dynamics)

  10. Chaos-based partial image encryption scheme based on linear fractional and lifting wavelet transforms

    Science.gov (United States)

    Belazi, Akram; Abd El-Latif, Ahmed A.; Diaconu, Adrian-Viorel; Rhouma, Rhouma; Belghith, Safya

    2017-01-01

    In this paper, a new chaos-based partial image encryption scheme based on Substitution-boxes (S-box) constructed by chaotic system and Linear Fractional Transform (LFT) is proposed. It encrypts only the requisite parts of the sensitive information in Lifting-Wavelet Transform (LWT) frequency domain based on hybrid of chaotic maps and a new S-box. In the proposed encryption scheme, the characteristics of confusion and diffusion are accomplished in three phases: block permutation, substitution, and diffusion. Then, we used dynamic keys instead of fixed keys used in other approaches, to control the encryption process and make any attack impossible. The new S-box was constructed by mixing of chaotic map and LFT to insure the high confidentiality in the inner encryption of the proposed approach. In addition, the hybrid compound of S-box and chaotic systems strengthened the whole encryption performance and enlarged the key space required to resist the brute force attacks. Extensive experiments were conducted to evaluate the security and efficiency of the proposed approach. In comparison with previous schemes, the proposed cryptosystem scheme showed high performances and great potential for prominent prevalence in cryptographic applications.

  11. Practical protocols for fast histopathology by Fourier transform infrared spectroscopic imaging

    Science.gov (United States)

    Keith, Frances N.; Reddy, Rohith K.; Bhargava, Rohit

    2008-02-01

    Fourier transform infrared (FT-IR) spectroscopic imaging is an emerging technique that combines the molecular selectivity of spectroscopy with the spatial specificity of optical microscopy. We demonstrate a new concept in obtaining high fidelity data using commercial array detectors coupled to a microscope and Michelson interferometer. Next, we apply the developed technique to rapidly provide automated histopathologic information for breast cancer. Traditionally, disease diagnoses are based on optical examinations of stained tissue and involve a skilled recognition of morphological patterns of specific cell types (histopathology). Consequently, histopathologic determinations are a time consuming, subjective process with innate intra- and inter-operator variability. Utilizing endogenous molecular contrast inherent in vibrational spectra, specially designed tissue microarrays and pattern recognition of specific biochemical features, we report an integrated algorithm for automated classifications. The developed protocol is objective, statistically significant and, being compatible with current tissue processing procedures, holds potential for routine clinical diagnoses. We first demonstrate that the classification of tissue type (histology) can be accomplished in a manner that is robust and rigorous. Since data quality and classifier performance are linked, we quantify the relationship through our analysis model. Last, we demonstrate the application of the minimum noise fraction (MNF) transform to improve tissue segmentation.

  12. MR image features predicting hemorrhagic transformation in acute cerebral infarction: a multimodal study

    International Nuclear Information System (INIS)

    Liu, Chunming; Xu, Liang; Dong, Longchun; Liu, Zhenxing; Yang, Jun; Liu, Jun; Dong, Zhengchao; Khursheed, Aiman

    2015-01-01

    The aims of this study were to observe magnetic resonance imaging (MRI) features and the frequency of hemorrhagic transformation (HT) in patients with acute cerebral infarction and to identify the risk factors of HT. We first performed multimodal MRI (anatomical, diffusion weighted, and susceptibility weighted) scans on 87 patients with acute cerebral infarction within 24 hours after symptom onset and documented the image findings. We then performed follow-up examinations 3 days to 2 weeks after the onset or whenever the conditions of the patients worsened within 3 days. We utilized univariate statistics to identify the correlations between HT and image features and used multivariate logistical regression to correct for confounding factors to determine relevant independent image features of HT. HT was observed in 17 out of total 87 patients (19.5 %). The infarct size (p = 0.021), cerebral microbleeds (CMBs) (p = 0.004), relative apparent diffusion (rADC) (p = 0.023), and venous anomalies (p = 0.000) were significantly related with HT in the univariate statistics. Multivariate analysis demonstrated that CMBs (odd ratio (OR) = 0.082; 95 % confidence interval (CI) = 0.011-0.597; p = 0.014), rADC (OR = 0.000; 95 % CI = 0.000-0.692; p = 0.041), and venous anomalies (OR = 0.066; 95 % CI = 0.011-0.403; p = 0.003) were independent risk factors for HT. The frequency of HT is 19.5 % in this study. CMBs, rADC, and venous anomalies are independent risk factors for HT of acute cerebral infarction. (orig.)

  13. MR image features predicting hemorrhagic transformation in acute cerebral infarction: a multimodal study

    Energy Technology Data Exchange (ETDEWEB)

    Liu, Chunming; Xu, Liang; Dong, Longchun; Liu, Zhenxing; Yang, Jun; Liu, Jun [Tianjin Union Medicine Centre, Department of Radiology, Tianjin (China); Dong, Zhengchao [Columbia University, Translational Imaging and MRI Unit, Department of Psychiatry, New York, NY (United States); New York State Psychiatric Institute, New York, NY (United States); Khursheed, Aiman [Tianjin Medical University, International Medical School, Tianjin (China)

    2015-11-15

    The aims of this study were to observe magnetic resonance imaging (MRI) features and the frequency of hemorrhagic transformation (HT) in patients with acute cerebral infarction and to identify the risk factors of HT. We first performed multimodal MRI (anatomical, diffusion weighted, and susceptibility weighted) scans on 87 patients with acute cerebral infarction within 24 hours after symptom onset and documented the image findings. We then performed follow-up examinations 3 days to 2 weeks after the onset or whenever the conditions of the patients worsened within 3 days. We utilized univariate statistics to identify the correlations between HT and image features and used multivariate logistical regression to correct for confounding factors to determine relevant independent image features of HT. HT was observed in 17 out of total 87 patients (19.5 %). The infarct size (p = 0.021), cerebral microbleeds (CMBs) (p = 0.004), relative apparent diffusion (rADC) (p = 0.023), and venous anomalies (p = 0.000) were significantly related with HT in the univariate statistics. Multivariate analysis demonstrated that CMBs (odd ratio (OR) = 0.082; 95 % confidence interval (CI) = 0.011-0.597; p = 0.014), rADC (OR = 0.000; 95 % CI = 0.000-0.692; p = 0.041), and venous anomalies (OR = 0.066; 95 % CI = 0.011-0.403; p = 0.003) were independent risk factors for HT. The frequency of HT is 19.5 % in this study. CMBs, rADC, and venous anomalies are independent risk factors for HT of acute cerebral infarction. (orig.)

  14. Natural transformation in plant breeding - a biotechnological platform for quality improvement of ornamental, agricultural and medicinal plants

    DEFF Research Database (Denmark)

    Lütken, Henrik Vlk; Hegelund, Josefine Nymark; Himmelboe, Martin

    2015-01-01

    Compactness is a desirable trait in ornamental plant breeding because it is preferred by producers, distributors and consumers. Presently, in ornamental plant production growth of many potted plants is regulated by application of chemical growth retardants, several of which are harmful to both...... (rol)-genes rolA, rolB, rolC and rolD among 18 ORFs, into the plant genome. Infection of plants by A. rhizogenes induces hairy roots, from which shoots containing rol-genes can be regenerated. Natural transformation with A. rhizogenes reveals very promising results in several plant species and can...... be useful in a broader range of application than ornamental breeding. One important aspect of this technology is that the hairy roots can be used directly in the selection proceß as a primary indicator of a succeßful transformation. Thus the technology avoids use of undesired antibiotic resistance marker...

  15. Effect of cation nature on development of Zn-, Cd- and Ca-zeolite catalysts during ethylbenzene transformations

    International Nuclear Information System (INIS)

    Tuan, K.Kh.; Berentsvejg, V.V.; Rudenko, A.P.; Tkhuan, N.T.; Topchieva, K.V.

    1984-01-01

    It is shown that in the course of ethylbenzene transformations at 650 deg, 0.25 7nY, 0.25CdY, 0.82CdY catalysts on the basis of Y-type zeolite are developed for the process of styrene formation accompanied by the accumulation of packing products (PP) and increase in styrene selectivity from 0 to 100%. It is shown that the nature of Me 2+ ion in zeolite is of great importance in the manifestation of the effect of catalyst development in the course of ethylbenzene transformations. Ions capable of PP formation and accumulation composing polymercatalyst complexes [PPxMe 2+ ] are active in this process

  16. Influence of anthropogenic transformation of Danube–Dniester interfluve on natural foci of tularaemia

    Directory of Open Access Journals (Sweden)

    I. T. Rusev

    2011-04-01

    Full Text Available The paper is devoted to the problem of occurrence of bacteria Francisella tularensis in steppe coastal zone of the Black Sea west part in the second half of XX century. The key factor decreasing the activity of tularaemia natural foci is anthropogenic influence. Resumed activity of natural foci appeared after implementation of big irrigation and drainage construction in former USSR – building of the Danube-Dniester-Dnepr irrigation system resulted in forming new environmental conditions as well as corridors for tularaemia distribution. The practical recommendation is to implement the eco-epizootological monitoring and to collect data for developing practical management of the natural foci of disease.

  17. Natural-pose hand detection in low-resolution images

    Directory of Open Access Journals (Sweden)

    Nyan Bo Bo1

    2009-07-01

    Full Text Available Robust real-time hand detection and tracking in video sequences would enable many applications in areas as diverse ashuman-computer interaction, robotics, security and surveillance, and sign language-based systems. In this paper, we introducea new approach for detecting human hands that works on single, cluttered, low-resolution images. Our prototype system, whichis primarily intended for security applications in which the images are noisy and low-resolution, is able to detect hands as smallas 2424 pixels in cluttered scenes. The system uses grayscale appearance information to classify image sub-windows as eithercontaining or not containing a human hand very rapidly at the cost of a high false positive rate. To improve on the false positiverate of the main classifier without affecting its detection rate, we introduce a post-processor system that utilizes the geometricproperties of skin color blobs. When we test our detector on a test image set containing 106 hands, 92 of those hands aredetected (86.8% detection rate, with an average false positive rate of 1.19 false positive detections per image. The rapiddetection speed, the high detection rate of 86.8%, and the low false positive rate together ensure that our system is useable asthe main detector in a diverse variety of applications requiring robust hand detection and tracking in low-resolution, clutteredscenes.

  18. Improvement of natural image search engines results by emotional filtering

    Directory of Open Access Journals (Sweden)

    Patrice Denis

    2016-04-01

    Full Text Available With the Internet 2.0 era, managing user emotions is a problem that more and more actors are interested in. Historically, the first notions of emotion sharing were expressed and defined with emoticons. They allowed users to show their emotional status to others in an impersonal and emotionless digital world. Now, in the Internet of social media, every day users share lots of content with each other on Facebook, Twitter, Google+ and so on. Several new popular web sites like FlickR, Picassa, Pinterest, Instagram or DeviantArt are now specifically based on sharing image content as well as personal emotional status. This kind of information is economically very valuable as it can for instance help commercial companies sell more efficiently. In fact, with this king of emotional information, business can made where companies will better target their customers needs, and/or even sell them more products. Research has been and is still interested in the mining of emotional information from user data since then. In this paper, we focus on the impact of emotions from images that have been collected from search image engines. More specifically our proposition is the creation of a filtering layer applied on the results of such image search engines. Our peculiarity relies in the fact that it is the first attempt from our knowledge to filter image search engines results with an emotional filtering approach.

  19. Ambiguity attacks on robust blind image watermarking scheme based on redundant discrete wavelet transform and singular value decomposition

    Directory of Open Access Journals (Sweden)

    Khaled Loukhaoukha

    2017-12-01

    Full Text Available Among emergent applications of digital watermarking are copyright protection and proof of ownership. Recently, Makbol and Khoo (2013 have proposed for these applications a new robust blind image watermarking scheme based on the redundant discrete wavelet transform (RDWT and the singular value decomposition (SVD. In this paper, we present two ambiguity attacks on this algorithm that have shown that this algorithm fails when used to provide robustness applications like owner identification, proof of ownership, and transaction tracking. Keywords: Ambiguity attack, Image watermarking, Singular value decomposition, Redundant discrete wavelet transform

  20. Natural Gas and the Transformation of the U.S. Energy Sector: Electricity

    Energy Technology Data Exchange (ETDEWEB)

    Logan, J.; Heath, G.; Macknick, J.; Paranhos, E.; Boyd, W.; Carlson, K.

    2012-11-01

    The Joint Institute for Strategic Energy Analysis (JISEA) designed this study to address four related key questions, which are a subset of the wider dialogue on natural gas: 1. What are the life cycle greenhouse gas (GHG) emissions associated with shale gas compared to conventional natural gas and other fuels used to generate electricity?; 2. What are the existing legal and regulatory frameworks governing unconventional gas development at federal, state, and local levels, and how are they changing in response to the rapid industry growth and public concerns?; 3. How are natural gas production companies changing their water-related practices?; and 4. How might demand for natural gas in the electric sector respond to a variety of policy and technology developments over the next 20 to 40 years?

  1. 76 FR 35234 - Announcement of Funding Awards for Fiscal Year 2010; Transformation Initiative: Natural...

    Science.gov (United States)

    2011-06-16

    ... funding to support scientific research that makes use of natural experiments to evaluate the impacts of... of Planning and Research, 33 Beaver Street, 20th floor, New York, New York, 10004-2737. Grant: $100...

  2. La double nature de l’image d’auteur The double nature of the author’s image

    Directory of Open Access Journals (Sweden)

    Ruth Amossy

    2009-10-01

    Full Text Available L’image d’auteur se décline selon deux modalités principales : l’image de soi que projette l’auteur dans le discours littéraire, ou ethos auctorial ; et l’image de l’auteur produite aux alentours de l’œuvre dans les discours éditoriaux, critiques et autres, ou représentation de l’auteur construite par une tierce personne. Ce travail, situé au carrefour de l’analyse du discours, de la rhétorique et de la narratologie, se propose d’éclairer ce double régime d’images en suggérant d’en explorer plus systématiquement les interrelations. En un premier temps de la recherche, il s’attache à préciser la notion d’image d’auteur pour inviter à une investigation plus approfondie de sa fabrique discursive dans les commentaires éditoriaux, médiatiques, critiques, … Il étudie ensuite la notion d’ethos auctorial en en exposant la construction et les fonctions dans le discours littéraire. Enfin, il esquisse l’analyse d’un fragment de Les bienveillantes de Littell pour éclairer l’articulation complexe des images intra- et extratextuelles de l’auteur.When dealing with the author’s image, one has to distinguish between the image of self built by the author in her text, or “authorial ethos”; and the image of the author as produced outside the literary work in the discourses of the editor, the critics, etc., or representation of the author constructed by another person. At the crossroad of Discourse Analysis, Rhetoric and Narratology, this paper endeavors to illuminate these two categories of images, calling for a further exploration of their intrinsic interrelation. It first describes the notion of author’s image, inviting to an in-depth analysis of its various manifestations; it illuminates the notion of authorial ethos, showing how it is constructed and what functions it fulfils in literary discourse. It then proceeds to a short analysis of a text borrowed from Littell’s novel, The Kindly

  3. Devil’s Vortex Phase Structure as Frequency Plane Mask for Image Encryption Using the Fractional Mellin Transform

    Directory of Open Access Journals (Sweden)

    Sunanda Vashisth

    2014-01-01

    Full Text Available A frequency plane phase mask based on Devil’s vortex structure has been used for image encryption using the fractional Mellin transform. The phase key for decryption is obtained by an iterative phase retrieval algorithm. The proposed scheme has been validated for grayscale secret target images, by numerical simulation. The efficacy of the scheme has been evaluated by computing mean-squared-error between the secret target image and the decrypted image. Sensitivity analysis of the decryption process to variations in various encryption parameters has been carried out. The proposed encryption scheme has been seen to exhibit reasonable robustness against occlusion attack.

  4. Constant Character, Changing Nature: The Transformation of the Hollywood War Film, From 1949 - 1989

    Science.gov (United States)

    2013-04-16

    character remains the same. The nature of war films varies because the nature of society changes. The America of 1950 is vastly different from...Hollywood did not oppose this censorship because it assisted in providing the public with the patriotic films it craved at the time. But with...attitude, along with the institution of the Motion Picture Association of America film rating system, and the arrival of new filmmaking technology

  5. Effect of background radiation shielding on natural radioactivity distribution measurement with imaging plate

    International Nuclear Information System (INIS)

    Mori, C.; Suzuki, T.; Koido, S.; Uritani, A.; Miyahara, H.; Yanagida, K.; Miyahara, J.; Takahashi, K.

    1996-01-01

    Distribution images of natural radioactivity contained in various natural materials such as vegetable, animal meat and pottery work can be obtained with an imaging plate which has high sensitivity for nuclear radiations. For such very low levels of radioactivity, natural background radiations must be reduced using a shielding box. The lining, on the inside of the box, with low atomic number material such as acrylic resin is very effective in reducing electrons, β-rays and low energy X- and γ-rays emitted from the inner surface of the shielding material. Some images of natural radioactivity distribution were obtained and the radioactivity, mainly 40 K, contained in natural materials was measured by using an HPGe detector and also the imaging plate itself. (orig.)

  6. Young women's genital self-image and effects of exposure to pictures of natural vulvas.

    Science.gov (United States)

    Laan, Ellen; Martoredjo, Daphne K; Hesselink, Sara; Snijders, Nóinín; van Lunsen, Rik H W

    2017-12-01

    Many women have doubts about the normality of the physical appearance of their vulvas. This study measured genital self-image in a convenience sample of college-educated women, and assessed whether exposure to pictures of natural vulvas influenced their genital self-image. Forty-three women were either shown pictures of natural vulvas (N = 29) or pictures of neutral objects (N = 14). Genital self-image was measured before and after exposure to the pictures and two weeks later. Sexual function, sexual distress, self-esteem and trait anxiety were measured to investigate whether these factors influenced genital self-image scores after vulva picture exposure. A majority of the participants felt generally positively about their genitals. Having been exposed to pictures of natural vulvas resulted in an even more positive genital self-image, irrespective of levels of sexual function, sexual distress, self-esteem and trait anxiety. In the women who had seen the vulva pictures, the positive effect on genital self-image was still present after two weeks. The results of this study seem to indicate that even in young women with a relatively positive genital self-image, exposure to pictures of a large variety of natural vulvas positively affects genital self-image. This finding may suggest that exposure to pictures of natural vulvas may also lead to a more positive genital self-image in women who consider labiaplasty.

  7. Enhancement of security using structured phase masked in optical image encryption on Fresnel transform domain

    Science.gov (United States)

    Yadav, Poonam Lata; Singh, Hukum

    2018-05-01

    To enhance the security in optical image encryption system and to protect it from the attackers, this paper proposes new digital spiral phase mask based on Fresnel Transform. In this cryptosystem the Spiral Phase Mask (SPM) used is a hybrid of Fresnel Zone Plate (FZP) and Radial Hilbert Mask (RHM) which makes the key strong and enhances the security. The different keys used for encryption and decryption purposed make the system much more secure. Proposed scheme uses various structured phase mask which increases the key space also it increases the number of parameters which makes it difficult for the attackers to exactly find the key to recover the original image. We have also used different keys for encryption and decryption purpose to make the system much more secure. The strength of the proposed cryptosystem has been analyzed by simulating on MATLAB 7.9.0(R2008a). Mean Square Errors (MSE) and Peak Signal to Noise Ratio (PSNR) are calculated for the proposed algorithm. The experimental results are provided to highlight the effectiveness and sustainability of proposed cryptosystem and to prove that the cryptosystem is secure for usage.

  8. Shift-invariant discrete wavelet transform analysis for retinal image classification.

    Science.gov (United States)

    Khademi, April; Krishnan, Sridhar

    2007-12-01

    This work involves retinal image classification and a novel analysis system was developed. From the compressed domain, the proposed scheme extracts textural features from wavelet coefficients, which describe the relative homogeneity of localized areas of the retinal images. Since the discrete wavelet transform (DWT) is shift-variant, a shift-invariant DWT was explored to ensure that a robust feature set was extracted. To combat the small database size, linear discriminant analysis classification was used with the leave one out method. 38 normal and 48 abnormal (exudates, large drusens, fine drusens, choroidal neovascularization, central vein and artery occlusion, histoplasmosis, arteriosclerotic retinopathy, hemi-central retinal vein occlusion and more) were used and a specificity of 79% and sensitivity of 85.4% were achieved (the average classification rate is 82.2%). The success of the system can be accounted to the highly robust feature set which included translation, scale and semi-rotational, features. Additionally, this technique is database independent since the features were specifically tuned to the pathologies of the human eye.

  9. Image encryption based on fractal-structured phase mask in fractional Fourier transform domain

    Science.gov (United States)

    Zhao, Meng-Dan; Gao, Xu-Zhen; Pan, Yue; Zhang, Guan-Lin; Tu, Chenghou; Li, Yongnan; Wang, Hui-Tian

    2018-04-01

    We present an optical encryption approach based on the combination of fractal Fresnel lens (FFL) and fractional Fourier transform (FrFT). Our encryption approach is in fact a four-fold encryption scheme, including the random phase encoding produced by the Gerchberg–Saxton algorithm, a FFL, and two FrFTs. A FFL is composed of a Sierpinski carpet fractal plate and a Fresnel zone plate. In our encryption approach, the security is enhanced due to the more expandable key spaces and the use of FFL overcomes the alignment problem of the optical axis in optical system. Only using the perfectly matched parameters of the FFL and the FrFT, the plaintext can be recovered well. We present an image encryption algorithm that from the ciphertext we can get two original images by the FrFT with two different phase distribution keys, obtained by performing 100 iterations between the two plaintext and ciphertext, respectively. We test the sensitivity of our approach to various parameters such as the wavelength of light, the focal length of FFL, and the fractional orders of FrFT. Our approach can resist various attacks.

  10. Cleopatra – a Queen, a Lover, a Mother: Transformations of the Image

    Directory of Open Access Journals (Sweden)

    Lidia WIŚNIEWSKA

    2012-06-01

    Full Text Available Transformations are not only conditioned by facts encompassing narrower or wider panoramas: from concentrating on death and one (political role (the ode of Horace, through recalling Cleopatra’s mature life and love (the drama of Shakespeare, to creating an image embracing the heroine’s whole life with its numerous roles, but as a mother and a daughter in the first place, because even her lovers resemble a father and a child (the fictional biography of Karen Essex. Above all, they appear to be more connected with different attitudes towards universal references lying within human cognitive abilities. Horace’s didactic opposition of contradictory patterns leads to the victory of one of them — and it is a linear pattern, as an equivalent of modern myth, which is accepted by the author himself. In Shakespeare, it takes a form of tragedy resulting from the fragmentary character of each pattern, one of which introduces change (archaic myth and the other constancy (modern myth, and from a painful attempt to combine them. In Essex, the vision of the world in which archaic myth, strongly represented by a child, triumphs is utopian. Irrespective of the differences, all the works realize the essential role played by images developed by heroes, and especially by authors, in human cognition.

  11. Infrared and Visible Image Fusion Based on Different Constraints in the Non-Subsampled Shearlet Transform Domain

    Science.gov (United States)

    Huang, Yan; Bi, Duyan; Wu, Dongpeng

    2018-01-01

    There are many artificial parameters when fuse infrared and visible images, to overcome the lack of detail in the fusion image because of the artifacts, a novel fusion algorithm for infrared and visible images that is based on different constraints in non-subsampled shearlet transform (NSST) domain is proposed. There are high bands and low bands of images that are decomposed by the NSST. After analyzing the characters of the bands, fusing the high level bands by the gradient constraint, the fused image can obtain more details; fusing the low bands by the constraint of saliency in the images, the targets are more salient. Before the inverse NSST, the Nash equilibrium is used to update the coefficient. The fused images and the quantitative results demonstrate that our method is more effective in reserving details and highlighting the targets when compared with other state-of-the-art methods. PMID:29641505

  12. DprA from Neisseria meningitidis: properties and role in natural competence for transformation.

    Science.gov (United States)

    Hovland, Eirik; Beyene, Getachew Tesfaye; Frye, Stephan A; Homberset, Håvard; Balasingham, Seetha V; Gómez-Muñoz, Marta; Derrick, Jeremy P; Tønjum, Tone; Ambur, Ole H

    2017-07-01

    DNA processing chain A (DprA) is a DNA-binding protein that is ubiquitous in bacteria and expressed in some archaea. DprA is active in many bacterial species that are competent for transformation of DNA, but its role in Neisseriameningitidis (Nm) is not well characterized. An Nm mutant lacking DprA was constructed, and the phenotypes of the wild-type and ΔdprA mutant were compared. The salient feature of the phenotype of dprA null cells is the total lack of competence for genetic transformation shown by all of the donor DNA substrates tested in this study. Here, Nm wild-type and dprA null cells appeared to be equally resistant to genotoxic stress. The gene encoding DprANm was cloned and overexpressed, and the biological activities of DprANm were further investigated. DprANm binds ssDNA more strongly than dsDNA, but lacks DNA uptake sequence-specific DNA binding. DprANm dimerization and interaction with the C-terminal part of the single-stranded binding protein SSBNmwere demonstrated. dprA is co-expressed with smg, a downstream gene of unknown function, and the gene encoding topoisomerase 1, topA.

  13. Surface plasmon resonance imaging reveals multiple binding modes of Agrobacterium transformation mediator VirE2 to ssDNA.

    Science.gov (United States)

    Kim, Sanghyun; Zbaida, David; Elbaum, Michael; Leh, Hervé; Nogues, Claude; Buckle, Malcolm

    2015-07-27

    VirE2 is the major secreted protein of Agrobacterium tumefaciens in its genetic transformation of plant hosts. It is co-expressed with a small acidic chaperone VirE1, which prevents VirE2 oligomerization. After secretion into the host cell, VirE2 serves functions similar to a viral capsid in protecting the single-stranded transferred DNA en route to the nucleus. Binding of VirE2 to ssDNA is strongly cooperative and depends moreover on protein-protein interactions. In order to isolate the protein-DNA interactions, imaging surface plasmon resonance (SPRi) studies were conducted using surface-immobilized DNA substrates of length comparable to the protein-binding footprint. Binding curves revealed an important influence of substrate rigidity with a notable preference for poly-T sequences and absence of binding to both poly-A and double-stranded DNA fragments. Dissociation at high salt concentration confirmed the electrostatic nature of the interaction. VirE1-VirE2 heterodimers also bound to ssDNA, though by a different mechanism that was insensitive to high salt. Neither VirE2 nor VirE1-VirE2 followed the Langmuir isotherm expected for reversible monomeric binding. The differences reflect the cooperative self-interactions of VirE2 that are suppressed by VirE1. © The Author(s) 2015. Published by Oxford University Press on behalf of Nucleic Acids Research.

  14. Transform- and multi-domain deep learning for single-frame rapid autofocusing in whole slide imaging.

    Science.gov (United States)

    Jiang, Shaowei; Liao, Jun; Bian, Zichao; Guo, Kaikai; Zhang, Yongbing; Zheng, Guoan

    2018-04-01

    A whole slide imaging (WSI) system has recently been approved for primary diagnostic use in the US. The image quality and system throughput of WSI is largely determined by the autofocusing process. Traditional approaches acquire multiple images along the optical axis and maximize a figure of merit for autofocusing. Here we explore the use of deep convolution neural networks (CNNs) to predict the focal position of the acquired image without axial scanning. We investigate the autofocusing performance with three illumination settings: incoherent Kohler illumination, partially coherent illumination with two plane waves, and one-plane-wave illumination. We acquire ~130,000 images with different defocus distances as the training data set. Different defocus distances lead to different spatial features of the captured images. However, solely relying on the spatial information leads to a relatively bad performance of the autofocusing process. It is better to extract defocus features from transform domains of the acquired image. For incoherent illumination, the Fourier cutoff frequency is directly related to the defocus distance. Similarly, autocorrelation peaks are directly related to the defocus distance for two-plane-wave illumination. In our implementation, we use the spatial image, the Fourier spectrum, the autocorrelation of the spatial image, and combinations thereof as the inputs for the CNNs. We show that the information from the transform domains can improve the performance and robustness of the autofocusing process. The resulting focusing error is ~0.5 µm, which is within the 0.8-µm depth-of-field range. The reported approach requires little hardware modification for conventional WSI systems and the images can be captured on the fly without focus map surveying. It may find applications in WSI and time-lapse microscopy. The transform- and multi-domain approaches may also provide new insights for developing microscopy-related deep-learning networks. We have made

  15. Transformation & uncertainty : some thoughts on quantum probability theory, quantum statistics, and natural bundles

    NARCIS (Netherlands)

    Janssens, B.

    2010-01-01

    This PHD thesis is concerned partly with uncertainty relations in quantum probability theory, partly with state estimation in quantum stochastics, and partly with natural bundles in differential geometry. The laws of quantum mechanics impose severe restrictions on the performance of measurement.

  16. Role of H2O2 in the photo-transformation of phenol in artificial and natural seawater

    International Nuclear Information System (INIS)

    Calza, Paola; Campra, Laura; Pelizzetti, Ezio; Minero, Claudio

    2012-01-01

    In previous works, it was observed that phenol photo-induced transformation in natural seawater (NSW) mediated by natural photosensitizers occurs and leads to the formation of numerous hydroxylated, condensed, halogenated and nitroderivatives. Irradiation of NSW added with phenol and iron species had provided the enhanced formation of several halophenols, suggesting a central role played by iron species on the phenol halogenation in marine water. In this paper, we focus on hydrogen peroxide, another key photosensitizer, and its interaction with iron species. The ability of Fe(II)/Fe(III) and H 2 O 2 species to act as photo-sensitizers towards the transformation of organic compounds in seawater was investigated under simulated solar radiation. Light activation is necessary to induce the transformation of phenol, as no degradation occurs in the dark when either H 2 O 2 or iron/H 2 O 2 are initially added to artificial seawater (ASW). Fe(II) is easily transformed into Fe(III), assessing that a Fenton reaction (dark, Fe(II)/H 2 O 2 ) does not take place in marine environment, in favour of a photo-activated reaction involving Fe(III) and H 2 O 2 . When NSW is spiked with H 2 O 2 and Fe(III), halophenols' and nitrophenols' concentration decreases and completely disappears at high hydrogen peroxide concentration. Since Fe(II) and Fe(III) in spiked seawater induce an enhanced formation of haloderivatives, an excess of hydrogen peroxide act as scavenger towards the photo-produced chloro/bromo radicals, so hindering halogenation process in seawater. Hence, even if hydrogen peroxide efficiently induces the ·OH radical formation, and could then promote the phenol phototransformation, nevertheless it is negligibly involved in the production of the intermediates formed during phenol photolysis in seawater, whose formation is necessarily linked to other photosensitizer species. - Highlights: ► Hydrogen peroxide-mediated solar-driven transformations of pollutant in seawater are

  17. CRISPR interference can prevent natural transformation and virulence acquisition during in vivo bacterial infection.

    Science.gov (United States)

    Bikard, David; Hatoum-Aslan, Asma; Mucida, Daniel; Marraffini, Luciano A

    2012-08-16

    Pathogenic bacterial strains emerge largely due to transfer of virulence and antimicrobial resistance genes between bacteria, a process known as horizontal gene transfer (HGT). Clustered, regularly interspaced, short palindromic repeat (CRISPR) loci of bacteria and archaea encode a sequence-specific defense mechanism against bacteriophages and constitute a programmable barrier to HGT. However, the impact of CRISPRs on the emergence of virulence is unknown. We programmed the human pathogen Streptococcus pneumoniae with CRISPR sequences that target capsule genes, an essential pneumococcal virulence factor, and show that CRISPR interference can prevent transformation of nonencapsulated, avirulent pneumococci into capsulated, virulent strains during infection in mice. Further, at low frequencies bacteria can lose CRISPR function, acquire capsule genes, and mount a successful infection. These results demonstrate that CRISPR interference can prevent the emergence of virulence in vivo and that strong selective pressure for virulence or antibiotic resistance can lead to CRISPR loss in bacterial pathogens. Copyright © 2012 Elsevier Inc. All rights reserved.

  18. Automated Image Sampling and Classification Can Be Used to Explore Perceived Naturalness of Urban Spaces.

    Directory of Open Access Journals (Sweden)

    Roger Hyam

    Full Text Available The psychological restorative effects of exposure to nature are well established and extend to just viewing of images of nature. A previous study has shown that Perceived Naturalness (PN of images correlates with their restorative value. This study tests whether it is possible to detect degree of PN of images using an image classifier. It takes images that have been scored by humans for PN (including a subset that have been assessed for restorative value and passes them through the Google Vision API image classification service. The resulting labels are assigned to broad semantic classes to create a Calculated Semantic Naturalness (CSN metric for each image. It was found that CSN correlates with PN. CSN was then calculated for a geospatial sampling of Google Street View images across the city of Edinburgh. CSN was found to correlate with PN in this sample also indicating the technique may be useful in large scale studies. Because CSN correlates with PN which correlates with restorativeness it is suggested that CSN or a similar measure may be useful in automatically detecting restorative images and locations. In an exploratory aside CSN was not found to correlate with an indicator of socioeconomic deprivation.

  19. Transformation of polyfluorinated compounds in natural waters by advanced oxidation processes.

    Science.gov (United States)

    Anumol, Tarun; Dagnino, Sonia; Vandervort, Darcy R; Snyder, Shane A

    2016-02-01

    The presence of perfluorocarboxylic acids (PFCAs) in source and finished drinking waters is a concern with studies showing bioaccumulation and adverse toxicological effects in wildlife and potentially humans. Per/Polyfluoroalkyl substances (PFAS) such as fluorotelomer alcohols have been identified as precursors for PFCAs in biological pathways. In this study, we investigated the fate of 6:2 and 8:2 homologues of the fluorotelomer unsaturated carboxylic acids (FTUCAs) during advanced oxidation process (AOPs). Results showed 6:2 FTUCA and 8:2 FTUCA transformed into 6-C PFCA (PFHxA) and 8-C PFCA (PFOA) respectively with very little other PFCA formation for all AOPs. The degradation of 6:2 FTUCA and 8:2 FTUCA was greater in the GW compared to SW for the ozone processes but similar for UV/H2O2. The formation of n-C PFCA followed O3>O3/H2O2 at same dose and UV/H2O2 had much lower formation at the doses tested. Non-targeted analysis with the LC-MS-qTOF indicated the production of other PFCAs which contribute to the total mass balance, although no intermediate product was discovered indicating a rapid and direct transformation from the FTUCAs to the PFCAs and/or significant volatilization of intermediates. With the use of AOPs essential to water reuse treatment schemes, this work raises concerns over the risk of potential formation of PFCAs in the treatment and their adverse health effects in finished drinking water. Copyright © 2015 Elsevier Ltd. All rights reserved.

  20. Structural-functional lung imaging using a combined CT-EIT and a Discrete Cosine Transformation reconstruction method.

    Science.gov (United States)

    Schullcke, Benjamin; Gong, Bo; Krueger-Ziolek, Sabine; Soleimani, Manuchehr; Mueller-Lisse, Ullrich; Moeller, Knut

    2016-05-16

    Lung EIT is a functional imaging method that utilizes electrical currents to reconstruct images of conductivity changes inside the thorax. This technique is radiation free and applicable at the bedside, but lacks of spatial resolution compared to morphological imaging methods such as X-ray computed tomography (CT). In this article we describe an approach for EIT image reconstruction using morphologic information obtained from other structural imaging modalities. This leads to recon- structed images of lung ventilation that can easily be superimposed with structural CT or MRI images, which facilitates image interpretation. The approach is based on a Discrete Cosine Transformation (DCT) of an image of the considered transversal thorax slice. The use of DCT enables reduction of the dimensionality of the reconstruction and ensures that only conductivity changes of the lungs are reconstructed and displayed. The DCT based approach is well suited to fuse morphological image information with functional lung imaging at low computational costs. Results on simulated data indicate that this approach preserves the morphological structures of the lungs and avoids blurring of the solution. Images from patient measurements reveal the capabilities of the method and demonstrate benefits in possible applications.

  1. Digital hologram transformations for RGB color holographic display with independent image magnification and translation in 3D.

    Science.gov (United States)

    Makowski, Piotr L; Zaperty, Weronika; Kozacki, Tomasz

    2018-01-01

    A new framework for in-plane transformations of digital holograms (DHs) is proposed, which provides improved control over basic geometrical features of holographic images reconstructed optically in full color. The method is based on a Fourier hologram equivalent of the adaptive affine transformation technique [Opt. Express18, 8806 (2010)OPEXFF1094-408710.1364/OE.18.008806]. The solution includes four elementary geometrical transformations that can be performed independently on a full-color 3D image reconstructed from an RGB hologram: (i) transverse magnification; (ii) axial translation with minimized distortion; (iii) transverse translation; and (iv) viewing angle rotation. The independent character of transformations (i) and (ii) constitutes the main result of the work and plays a double role: (1) it simplifies synchronization of color components of the RGB image in the presence of mismatch between capture and display parameters; (2) provides improved control over position and size of the projected image, particularly the axial position, which opens new possibilities for efficient animation of holographic content. The approximate character of the operations (i) and (ii) is examined both analytically and experimentally using an RGB circular holographic display system. Additionally, a complex animation built from a single wide-aperture RGB Fourier hologram is presented to demonstrate full capabilities of the developed toolset.

  2. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun; AlTheyab, Abdullah; Hanafy, Sherif M.; Schuster, Gerard T.

    2016-01-01

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green

  3. Radioactivity distribution measurement of various natural material surfaces with imaging plate

    International Nuclear Information System (INIS)

    Mori, C.; Suzuki, T.; Koido, S.; Uritani, A.; Yanagida, K.; Wu, Y.; Nishizawa, K.

    1996-01-01

    Distribution images of natural radioactivity in natural materials such as vegetables were obtained by using Imaging Platc. In ssuch cases, it is necessary to reduce background radiation intensity by one order or more. Graded shielding is very important. Espacially, the innermost surface of a shielding box sshould be covered with acrylic rein plate. We obtained natural radioactivity distribution images of vegetable, sea food, mea etc. Most β-rays emitted from 40 K print the radioactivity distribution image. Comparison between γ-ray intensity of KCL solution measured with HPGe detector and that of natural material specimen gave the radioactivity around 0.06- 0.04Bq/g depending on the kind and the part of specimens. (author). 6 refs., 5 figs., 1 tab

  4. How daylight influences high-order chromatic descriptors in natural images.

    Science.gov (United States)

    Ojeda, Juan; Nieves, Juan Luis; Romero, Javier

    2017-07-01

    Despite the global and local daylight changes naturally occurring in natural scenes, the human visual system usually adapts quite well to those changes, developing a stable color perception. Nevertheless, the influence of daylight in modeling natural image statistics is not fully understood and has received little attention. The aim of this work was to analyze the influence of daylight changes in different high-order chromatic descriptors (i.e., color volume, color gamut, and number of discernible colors) derived from 350 color images, which were rendered under 108 natural illuminants with Correlated Color Temperatures (CCT) from 2735 to 25,889 K. Results suggest that chromatic and luminance information is almost constant and does not depend on the CCT of the illuminant for values above 14,000 K. Nevertheless, differences between the red-green and blue-yellow image components were found below that CCT, with most of the statistical descriptors analyzed showing local extremes in the range 2950 K-6300 K. Uniform regions and areas of the images attracting observers' attention were also considered in this analysis and were characterized by their patchiness index and their saliency maps. Meanwhile, the results of the patchiness index do not show a clear dependence on CCT, and it is remarkable that a significant reduction in the number of discernible colors (58% on average) was found when the images were masked with their corresponding saliency maps. Our results suggest that chromatic diversity, as defined in terms of the discernible colors, can be strongly reduced when an observer scans a natural scene. These findings support the idea that a reduction in the number of discernible colors will guide visual saliency and attention. Whatever the modeling is mediating the neural representation of natural images, natural image statistics, it is clear that natural image statistics should take into account those local maxima and minima depending on the daylight illumination and

  5. Design in the natural stone transformation sector: evaluating a new concept

    Directory of Open Access Journals (Sweden)

    Susana Paixão-Barradas

    2012-09-01

    Full Text Available The European natural stone sector is declining; sales and imports are decreasing, owing to growing competition from Asiatic countries concerning the diversity of low-cost materials and European cultural and historical traditions demanding a commitment to invest in the best equipment and technology available. Design plays an important role in a company regarding the development, innovation and creation of competitive products. The present research involved a questionnaire being given to Portuguese and Spanish companies working in the natural stone sector to ascertain the companies’ characteristics, identifying those working with internal departments specialising in innovation for developing new products and studying the feasibility of working with a new concept by studying the relationship between these companies and the importance they attach to the sensation of well-being which a natural stone product offers. The results showed that companies recognised most feelings presented here as being ‘important’, mainly those referring to social factors. It could be concluded that a company working with an internal design department for product development appreciates such concepts and adds more value to them.

  6. Humans make efficient use of natural image statistics when performing spatial interpolation.

    Science.gov (United States)

    D'Antona, Anthony D; Perry, Jeffrey S; Geisler, Wilson S

    2013-12-16

    Visual systems learn through evolution and experience over the lifespan to exploit the statistical structure of natural images when performing visual tasks. Understanding which aspects of this statistical structure are incorporated into the human nervous system is a fundamental goal in vision science. To address this goal, we measured human ability to estimate the intensity of missing image pixels in natural images. Human estimation accuracy is compared with various simple heuristics (e.g., local mean) and with optimal observers that have nearly complete knowledge of the local statistical structure of natural images. Human estimates are more accurate than those of simple heuristics, and they match the performance of an optimal observer that knows the local statistical structure of relative intensities (contrasts). This optimal observer predicts the detailed pattern of human estimation errors and hence the results place strong constraints on the underlying neural mechanisms. However, humans do not reach the performance of an optimal observer that knows the local statistical structure of the absolute intensities, which reflect both local relative intensities and local mean intensity. As predicted from a statistical analysis of natural images, human estimation accuracy is negligibly improved by expanding the context from a local patch to the whole image. Our results demonstrate that the human visual system exploits efficiently the statistical structure of natural images.

  7. Radiometric modeling and calibration of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) ground based measurement experiment

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-12-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The GIFTS calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts, therefore, enhancing the absolute calibration accuracy. This method is applied to data collected during the GIFTS Ground Based Measurement (GBM) experiment, together with simultaneous observations by the accurately calibrated AERI (Atmospheric Emitted Radiance Interferometer), both simultaneously zenith viewing the sky through the same external scene mirror at ten-minute intervals throughout a cloudless day at Logan Utah on September 13, 2006. The accurately calibrated GIFTS radiances are produced using the first four PC scores in the GIFTS-AERI regression model. Temperature and moisture profiles retrieved from the PC-calibrated GIFTS radiances are verified against radiosonde measurements collected throughout the GIFTS sky measurement period. Using the GIFTS GBM calibration model, we compute the calibrated radiances from data

  8. Fourier transform infrared imaging and infrared fiber optic probe spectroscopy identify collagen type in connective tissues.

    Directory of Open Access Journals (Sweden)

    Arash Hanifi

    Full Text Available Hyaline cartilage and mechanically inferior fibrocartilage consisting of mixed collagen types are frequently found together in repairing articular cartilage. The present study seeks to develop methodology to identify collagen type and other tissue components using Fourier transform infrared (FTIR spectral evaluation of matrix composition in combination with multivariate analyses. FTIR spectra of the primary molecular components of repair cartilage, types I and II collagen, and aggrecan, were used to develop multivariate spectral models for discrimination of the matrix components of the tissues of interest. Infrared imaging data were collected from bovine bone, tendon, normal cartilage, meniscus and human repair cartilage tissues, and composition predicted using partial least squares analyses. Histology and immunohistochemistry results were used as standards for validation. Infrared fiber optic probe spectral data were also obtained from meniscus (a tissue with mixed collagen types to evaluate the potential of this method for identification of collagen type in a minimally-invasive clinical application. Concentration profiles of the tissue components obtained from multivariate analysis were in excellent agreement with histology and immunohistochemistry results. Bone and tendon showed a uniform distribution of predominantly type I collagen through the tissue. Normal cartilage showed a distribution of type II collagen and proteoglycan similar to the known composition, while in repair cartilage, the spectral distribution of both types I and II collagen were similar to that observed via immunohistochemistry. Using the probe, the outer and inner regions of the meniscus were shown to be primarily composed of type I and II collagen, respectively, in accordance with immunohistochemistry data. In summary, multivariate analysis of infrared spectra can indeed be used to differentiate collagen type I and type II, even in the presence of proteoglycan, in

  9. A microbial transformation using Bacillus subtilis B7-S to produce natural vanillin from ferulic acid.

    Science.gov (United States)

    Chen, Peng; Yan, Lei; Wu, Zhengrong; Li, Suyue; Bai, Zhongtian; Yan, Xiaojuan; Wang, Ningbo; Liang, Ning; Li, Hongyu

    2016-02-04

    Bacillus subtilis strain B7-S screened from18 strains is an aerobic, endospore-forming, model organism of Gram-positive bacteria which is capable to form vanillin during ferulic acid bioconversion. The bioconversion of ferulic acid to vanillin by Bacillus subtilis B7-S (B. subtilis B7-S) was investigated. Based on our results, the optimum bioconversion conditions for the production of vanillin by B. subtilis B7-S can be summarized as follows: temperature 35 °C; initial pH 9.0; inoculum volume 5%; ferulic acid concentration 0.6 g/L; volume of culture medium 20%; and shaking speed 200 r/min. Under these conditions, several repeated small-scale batch experiments showed that the maximum conversion efficiency was 63.30% after 3 h of bioconversion. The vanillin products were confirmed by spectral data achieved from UV-vis, inductively coupled plasma atomic emission spectroscope (ICP-AES) and Fourier transform infrared spectrometer (FT-IR) spectra. Scanning electron microscopy (SEM) and transmission electron spectroscopy (TEM) results confirmed that the cell surface of B. subtilis plays a role in the induction of ferulic acid tolerance. These results demonstrate that B. subtilis B7-S has the potential for use in vanillin production through bioconversion of ferulic acid.

  10. Uptake of extracellular DNA: Competence induced pili in natural transformation of Streptococcus pneumoniae

    Science.gov (United States)

    Muschiol, Sandra; Balaban, Murat; Normark, Staffan; Henriques-Normark, Birgitta

    2015-01-01

    Transport of DNA across bacterial membranes involves complex DNA uptake systems. In Gram-positive bacteria, the DNA uptake machinery shares fundamental similarities with type IV pili and type II secretion systems. Although dedicated pilus structures, such as type IV pili in Gram-negative bacteria, are necessary for efficient DNA uptake, the role of similar structures in Gram-positive bacteria is just beginning to emerge. Recently two essentially very different pilus structures composed of the same major pilin protein ComGC were proposed to be involved in transformation of the Gram-positive bacterium Streptococcus pneumoniae – one is a long, thin, type IV pilus-like fiber with DNA binding capacity and the other one is a pilus structure that was thicker, much shorter and not able to bind DNA. Here we discuss how competence induced pili, either by pilus retraction or by a transient pilus-related opening in the cell wall, may mediate DNA uptake in S. pneumoniae. PMID:25640084

  11. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Energy Technology Data Exchange (ETDEWEB)

    Kalkan, B. [Advanced Light Source, Lawrence Berkeley Laboratory, Berkeley, California 20015 (United States); Edwards, T. G.; Sen, S. [Department of Chemical Engineering and Materials Science, University of California, Davis, California 95616 (United States); Raoux, S. [IBM T. J. Watson Research Center, Yorktown Heights, New York 10598 (United States)

    2013-08-28

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  12. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    Science.gov (United States)

    Kalkan, B.; Edwards, T. G.; Raoux, S.; Sen, S.

    2013-08-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ˜5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous → β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ˜2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression.

  13. Nature of metastable amorphous-to-crystalline reversible phase transformations in GaSb

    International Nuclear Information System (INIS)

    Kalkan, B.; Edwards, T. G.; Sen, S.; Raoux, S.

    2013-01-01

    The structural, thermodynamic, and kinetic aspects of the transformations between the metastable amorphous and crystalline phases of GaSb are investigated as a function of pressure at ambient temperature using synchrotron x-ray diffraction experiments in a diamond anvil cell. The results are consistent with the hypothesis that the pressure induced crystallization of amorphous GaSb into the β-Sn crystal structure near ∼5 GPa is possibly a manifestation of an underlying polyamorphic phase transition between a semiconducting, low density and a metallic, high density amorphous (LDA and HDA, respectively) phases. In this scenario, the large differences in the thermal crystallization kinetics between amorphous GaSb deposited in thin film form by sputtering and that prepared by laser melt quenching may be related to the relative location of the glass transition temperature of the latter in the pressure-temperature (P-T) space with respect to the location of the critical point that terminate the LDA ↔ HDA transition. The amorphous →β-Sn phase transition is found to be hysteretically reversible as the β-Sn phase undergoes decompressive amorphization near ∼2 GPa due to the lattice instabilities that give rise to density fluctuations in the crystal upon decompression

  14. The effects of nature images on pain in a simulated hospital patient room.

    Science.gov (United States)

    Vincent, Ellen; Battisto, Dina; Grimes, Larry; McCubbin, James

    2010-01-01

    Views of nature have been reported to relieve stress and pain, making nature an ideal medium for use in healthcare settings. In hospitals whose design does not allow for a view of nature, virtual and surrogate views of nature may be viable therapeutic options. This study tests the effects of specific nature images, as defined by Appleton's prospect refuge theory of landscape preference, on participants experiencing pain. The hypotheses were: (1) Nature views are variable in their impact on specific psychological and physiological health status indicators; and (2) Prospect and refuge nature scenes are more therapeutic than hazard nature scenes. The research question was (1) Which nature image categories are most therapeutic as evidenced by reduced pain and positive mood? An experiment using mixed methods assessed the effects of four different nature scenes on physiological (blood pressure, heart rate) and psychological (mood) responses when a person was subjected to a pain stressor. Four groups were subjected to a specific nature image category of prospect, refuge, hazard, or mixed prospect and refuge; the fifth group viewed no image. The Short-Form McGill Pain Questionnaire and the Profile of Mood States survey instruments were used to assess pain and mood, respectively. Continuous physiological readings of heart rate and blood pressure were collected. Pain was induced through a cold pressor task, which required participants to immerse their nondominant hand in ice water for up to 120 seconds. The mixed prospect and refuge image treatment showed significantly lower sensory pain responses, and the no-image treatment indicated significantly higher affective pain perception responses. The hazard image treatment had significantly lower diastolic blood pressure readings during the pain treatment, but it also had significantly high total mood disturbance. Although there was no clear "most" therapeutic image, the mixed prospect and refuge image showed significant

  15. Multi-focus image fusion based on area-based standard deviation in dual tree contourlet transform domain

    Science.gov (United States)

    Dong, Min; Dong, Chenghui; Guo, Miao; Wang, Zhe; Mu, Xiaomin

    2018-04-01

    Multiresolution-based methods, such as wavelet and Contourlet are usually used to image fusion. This work presents a new image fusion frame-work by utilizing area-based standard deviation in dual tree Contourlet trans-form domain. Firstly, the pre-registered source images are decomposed with dual tree Contourlet transform; low-pass and high-pass coefficients are obtained. Then, the low-pass bands are fused with weighted average based on area standard deviation rather than the simple "averaging" rule. While the high-pass bands are merged with the "max-absolute' fusion rule. Finally, the modified low-pass and high-pass coefficients are used to reconstruct the final fused image. The major advantage of the proposed fusion method over conventional fusion is the approximately shift invariance and multidirectional selectivity of dual tree Contourlet transform. The proposed method is compared with wavelet- , Contourletbased methods and other the state-of-the art methods on common used multi focus images. Experiments demonstrate that the proposed fusion framework is feasible and effective, and it performs better in both subjective and objective evaluation.

  16. Eco Control of Agro Pests using Imaging, Modelling & Natural Predators

    Directory of Open Access Journals (Sweden)

    Fina Faithpraise

    2014-10-01

    Full Text Available Caterpillars in their various forms: size, shape, and colour cause significant harm to crops and humans. This paper offers a solution for the detection and control of caterpillars through the use of a sustainable pest control system that does not require the application of chemical pesticides, which damage human health and destroy the naturally beneficial insects within the environment. The proposed system is capable of controlling 80% of the population of caterpillars in less than 65 days by deploying a controlled number of larval parasitoid wasps (Cotesia Flavipes, Cameron into the crop environment. This is made possible by using a continuous time model of the interaction between the caterpillar and the Cotesia Flavipes (Cameron wasps using a set of simultaneous, non-linear, ordinary differential equations incorporating natural death rates based on the Weibull probability distribution function. A negative binomial distribution is used to model the efficiency and the probability that the wasp will find and parasitize a host larva. The caterpillar is presented in all its life-cycle stages of: egg, larva, pupa and adult and the Cotesia Flavipes (Cameron wasp is present as an adult larval parasitoid. Biological control modelling is used to estimate the quantity of the Cotesia Flavipes (Cameron wasps that should be introduced into the caterpillar infested environment to suppress its population density to an economically acceptable level within a prescribed number of days.

  17. Discrete Fourier Transform-Based Multivariate Image Analysis: Application to Modeling of Aromatase Inhibitory Activity.

    Science.gov (United States)

    Barigye, Stephen J; Freitas, Matheus P; Ausina, Priscila; Zancan, Patricia; Sola-Penna, Mauro; Castillo-Garit, Juan A

    2018-02-12

    We recently generalized the formerly alignment-dependent multivariate image analysis applied to quantitative structure-activity relationships (MIA-QSAR) method through the application of the discrete Fourier transform (DFT), allowing for its application to noncongruent and structurally diverse chemical compound data sets. Here we report the first practical application of this method in the screening of molecular entities of therapeutic interest, with human aromatase inhibitory activity as the case study. We developed an ensemble classification model based on the two-dimensional (2D) DFT MIA-QSAR descriptors, with which we screened the NCI Diversity Set V (1593 compounds) and obtained 34 chemical compounds with possible aromatase inhibitory activity. These compounds were docked into the aromatase active site, and the 10 most promising compounds were selected for in vitro experimental validation. Of these compounds, 7419 (nonsteroidal) and 89 201 (steroidal) demonstrated satisfactory antiproliferative and aromatase inhibitory activities. The obtained results suggest that the 2D-DFT MIA-QSAR method may be useful in ligand-based virtual screening of new molecular entities of therapeutic utility.

  18. Supervised target detection in hyperspectral images using one-class Fukunaga-Koontz Transform

    Science.gov (United States)

    Binol, Hamidullah; Bal, Abdullah

    2016-05-01

    A novel hyperspectral target detection technique based on Fukunaga-Koontz transform (FKT) is presented. FKT offers significant properties for feature selection and ordering. However, it can only be used to solve multi-pattern classification problems. Target detection may be considered as a two-class classification problem, i.e., target versus background clutter. Nevertheless, background clutter typically contains different types of materials. That's why; target detection techniques are different than classification methods by way of modeling clutter. To avoid the modeling of the background clutter, we have improved one-class FKT (OC-FKT) for target detection. The statistical properties of target training samples are used to define tunnel-like boundary of the target class. Non-target samples are then created synthetically as to be outside of the boundary. Thus, only limited target samples become adequate for training of FKT. The hyperspectral image experiments confirm that the proposed OC-FKT technique provides an effective means for target detection.

  19. Cryo-EM image alignment based on nonuniform fast Fourier transform.

    Science.gov (United States)

    Yang, Zhengfan; Penczek, Pawel A

    2008-08-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis.

  20. Cryo-EM image alignment based on nonuniform fast Fourier transform

    International Nuclear Information System (INIS)

    Yang Zhengfan; Penczek, Pawel A.

    2008-01-01

    In single particle analysis, two-dimensional (2-D) alignment is a fundamental step intended to put into register various particle projections of biological macromolecules collected at the electron microscope. The efficiency and quality of three-dimensional (3-D) structure reconstruction largely depends on the computational speed and alignment accuracy of this crucial step. In order to improve the performance of alignment, we introduce a new method that takes advantage of the highly accurate interpolation scheme based on the gridding method, a version of the nonuniform fast Fourier transform, and utilizes a multi-dimensional optimization algorithm for the refinement of the orientation parameters. Using simulated data, we demonstrate that by using less than half of the sample points and taking twice the runtime, our new 2-D alignment method achieves dramatically better alignment accuracy than that based on quadratic interpolation. We also apply our method to image to volume registration, the key step in the single particle EM structure refinement protocol. We find that in this case the accuracy of the method not only surpasses the accuracy of the commonly used real-space implementation, but results are achieved in much shorter time, making gridding-based alignment a perfect candidate for efficient structure determination in single particle analysis

  1. Fourier transform infrared spectroscopic imaging and multivariate regression for prediction of proteoglycan content of articular cartilage.

    Directory of Open Access Journals (Sweden)

    Lassi Rieppo

    Full Text Available Fourier Transform Infrared (FT-IR spectroscopic imaging has been earlier applied for the spatial estimation of the collagen and the proteoglycan (PG contents of articular cartilage (AC. However, earlier studies have been limited to the use of univariate analysis techniques. Current analysis methods lack the needed specificity for collagen and PGs. The aim of the present study was to evaluate the suitability of partial least squares regression (PLSR and principal component regression (PCR methods for the analysis of the PG content of AC. Multivariate regression models were compared with earlier used univariate methods and tested with a sample material consisting of healthy and enzymatically degraded steer AC. Chondroitinase ABC enzyme was used to increase the variation in PG content levels as compared to intact AC. Digital densitometric measurements of Safranin O-stained sections provided the reference for PG content. The results showed that multivariate regression models predict PG content of AC significantly better than earlier used absorbance spectrum (i.e. the area of carbohydrate region with or without amide I normalization or second derivative spectrum univariate parameters. Increased molecular specificity favours the use of multivariate regression models, but they require more knowledge of chemometric analysis and extended laboratory resources for gathering reference data for establishing the models. When true molecular specificity is required, the multivariate models should be used.

  2. ORBS: A data reduction software for the imaging Fourier transform spectrometers SpIOMM and SITELLE

    Science.gov (United States)

    Martin, T.; Drissen, L.; Joncas, G.

    2012-09-01

    SpIOMM (Spectromètre-Imageur de l'Observatoire du Mont Mégantic) is still the only operational astronomical Imaging Fourier Transform Spectrometer (IFTS) capable of obtaining the visible spectrum of every source of light in a field of view of 12 arc-minutes. Even if it has been designed to work with both outputs of the Michelson interferometer, up to now only one output has been used. Here we present ORBS (Outils de Réduction Binoculaire pour SpIOMM/SITELLE), the reduction software we designed in order to take advantage of the two output data. ORBS will also be used to reduce the data of SITELLE (Spectromètre-Imageur pour l' Étude en Long et en Large des raies d' Émissions) { the direct successor of SpIOMM, which will be in operation at the Canada-France- Hawaii Telescope (CFHT) in early 2013. SITELLE will deliver larger data cubes than SpIOMM (up to 2 cubes of 34 Go each). We thus have made a strong effort in optimizing its performance efficiency in terms of speed and memory usage in order to ensure the best compliance with the quality characteristics discussed with the CFHT team. As a result ORBS is now capable of reducing 68 Go of data in less than 20 hours using only 5 Go of random-access memory (RAM).

  3. Quantitative evaluation of temporal partial coherence using 3D Fourier transforms of through-focus TEM images

    International Nuclear Information System (INIS)

    Kimoto, Koji; Sawada, Hidetaka; Sasaki, Takeo; Sato, Yuta; Nagai, Takuro; Ohwada, Megumi; Suenaga, Kazu; Ishizuka, Kazuo

    2013-01-01

    We evaluate the temporal partial coherence of transmission electron microscopy (TEM) using the three-dimensional (3D) Fourier transform (FT) of through-focus images. Young's fringe method often indicates the unexpected high-frequency information due to non-linear imaging terms. We have already used the 3D FT of axial (non-tilted) through-focus images to reduce the effect of non-linear terms on the linear imaging term, and demonstrated the improvement of monochromated lower-voltage TEM performance [Kimoto et al., Ultramicroscopy 121 (2012) 31–39]. Here we apply the 3D FT method with intentionally tilted incidence to normalize various factors associated with a TEM specimen and an imaging device. The temporal partial coherence of two microscopes operated at 30, 60 and 80 kV is evaluated. Our method is applicable to such cases where the non-linear terms become more significant in lower acceleration voltage or aberration-corrected high spatial resolution TEM. - Highlights: • We assess the temporal partial coherence of TEM using a 3-dimensional (3D) Fourier transform (FT) of through-focus images. • We apply the 3D FT method with intentionally tilted incidence to normalize various factors associated with a TEM specimen and an imaging device. • The spatial frequency at which information transfer decreases to 1/e 2 (13.5%) is determined for two lower-voltage TEM systems

  4. Motion nature projection reduces patient's psycho-physiological anxiety during CT imaging.

    NARCIS (Netherlands)

    Zijlstra, Emma; Hagedoorn, Mariët; Krijnen, Wim; van der Schans, Cees; Mobach, Mark P.

    2017-01-01

    A growing body of evidence indicates that natural environments can positively influence people. This study investigated whether the use of motion nature projection in computed tomography (CT) imaging rooms is effective in mitigating psycho-physiological anxiety (vs. no intervention) using a

  5. Natural transformation of Vibrio parahaemolyticus: A rapid method to create genetic deletions.

    Science.gov (United States)

    Chimalapati, Suneeta; de Souza Santos, Marcela; Servage, Kelly; De Nisco, Nicole J; Dalia, Ankur B; Orth, Kim

    2018-03-19

    The Gram-negative bacterium Vibrio parahaemolyticus is an opportunistic human pathogen and the leading cause of seafood borne acute gastroenteritis worldwide. Recently, this bacterium was implicated as the etiologic agent of a severe shrimp disease with consequent devastating outcomes to shrimp farming. In both cases, acquisition of genetic material via horizontal transfer provided V. parahaemolyticus with new virulence tools to cause disease. Dissecting the molecular mechanisms of V. parahaemolyticus pathogenesis often requires manipulating its genome. Classically, genetic deletions in V. parahaemolyticus are performed using a laborious, lengthy, multi-step process. Herein, we describe a fast and efficient method to edit this bacterium's genome based on V. parahaemolyticus natural competence. Although this method is similar to one previously described, V. parahaemolyticus requires counter selection for curing of acquired plasmids due to its recalcitrant nature of retaining extrachromosomal DNA. We believe this approach will be of use to the Vibrio community. Importance Spreading of Vibrios throughout the world correlates with increased global temperatures. As they spread, they find new niches to survive, proliferate and invade. Therefore, genetic manipulation of Vibrios is of utmost importance for studying these species. Herein, we have delineated and validated a rapid method to create genetic deletions in Vibrio parahaemolyticus This study provides insightful methodology for studies with other Vibrio species. Copyright © 2018 American Society for Microbiology.

  6. The role of embodied simulation in mental transformation of whole-body images: evidence from Parkinson's disease.

    Science.gov (United States)

    Conson, Massimiliano; Trojano, Luigi; Vitale, Carmine; Mazzarella, Elisabetta; Allocca, Roberto; Barone, Paolo; Grossi, Dario; Santangelo, Gabriella

    2014-02-01

    It has been repeatedly demonstrated that mentally performing an action and mentally transforming body-parts entail simulation of one's own body movements, consistent with predictions of embodied cognition theories. However, the involvement of embodied simulation in mental transformation of whole-body images is still disputed. Here, we assessed own body transformation in Parkinson's disease (PD) patients with symptoms most affecting the left or the right body side. PD patients were required to perform left-right judgments on front-facing or back-facing human figures, and a letter rotation task. Results demonstrated that PD patients were selectively impaired in judging the side of back-facing human figures corresponding to their own most affected side, but performed as well as healthy subjects on mental transformation of front-facing bodies and on letter rotation. These findings demonstrate a parallel impairment between motor and mental simulation mechanisms in PD patients, thus highlighting the specific contribution of embodied cognition to mental transformation of whole-body images. Copyright © 2014. Published by Elsevier B.V.

  7. Radiometric and spectral calibrations of the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) using principle component analysis

    Science.gov (United States)

    Tian, Jialin; Smith, William L.; Gazarik, Michael J.

    2008-10-01

    The ultimate remote sensing benefits of the high resolution Infrared radiance spectrometers will be realized with their geostationary satellite implementation in the form of imaging spectrometers. This will enable dynamic features of the atmosphere's thermodynamic fields and pollutant and greenhouse gas constituents to be observed for revolutionary improvements in weather forecasts and more accurate air quality and climate predictions. As an important step toward realizing this application objective, the Geostationary Imaging Fourier Transform Spectrometer (GIFTS) Engineering Demonstration Unit (EDU) was successfully developed under the NASA New Millennium Program, 2000-2006. The GIFTS-EDU instrument employs three focal plane arrays (FPAs), which gather measurements across the long-wave IR (LWIR), short/mid-wave IR (SMWIR), and visible spectral bands. The raw GIFTS interferogram measurements are radiometrically and spectrally calibrated to produce radiance spectra, which are further processed to obtain atmospheric profiles via retrieval algorithms. The radiometric calibration is achieved using internal blackbody calibration references at ambient (260 K) and hot (286 K) temperatures. The absolute radiometric performance of the instrument is affected by several factors including the FPA off-axis effect, detector/readout electronics induced nonlinearity distortions, and fore-optics offsets. The GIFTS-EDU, being the very first imaging spectrometer to use ultra-high speed electronics to readout its large area format focal plane array detectors, operating at wavelengths as large as 15 microns, possessed non-linearity's not easily removable in the initial calibration process. In this paper, we introduce a refined calibration technique that utilizes Principle Component (PC) analysis to compensate for instrument distortions and artifacts remaining after the initial radiometric calibration process, thus, further enhance the absolute calibration accuracy. This method is

  8. Adapting the Computed Tomography Criteria of Hemorrhagic Transformation to Stroke Magnetic Resonance Imaging

    Directory of Open Access Journals (Sweden)

    Lars Neeb

    2013-08-01

    Full Text Available Background: The main safety aspect in the use of stroke thrombolysis and in clinical trials of new pharmaceutical or interventional stroke therapies is the incidence of hemorrhagic transformation (HT after treatment. The computed tomography (CT-based classification of the European Cooperative Acute Stroke Study (ECASS distinguishes four categories of HTs. An HT can range from a harmless spot of blood accumulation to a symptomatic space-occupying parenchymal bleeding associated with a massive deterioration of symptoms and clinical prognosis. In magnetic resonance imaging (MRI HTs are often categorized using the ECASS criteria although this classification has not been validated in MRI. We developed MRI-specific criteria for the categorization of HT and sought to assess its diagnostic reliability in a retrospective study. Methods: Consecutive acute ischemic stroke patients, who had received a 3-tesla MRI before and 12-36 h after thrombolysis, were screened retrospectively for an HT of any kind in post-treatment MRI. Intravenous tissue plasminogen activator was given to all patients within 4.5 h. HT categorization was based on a simultaneous read of 3 different MRI sequences (fluid-attenuated inversion recovery, diffusion-weighted imaging and T2* gradient-recalled echo. Categorization of HT in MRI accounted for the various aspects of the imaging pattern as the shape of the bleeding area and signal intensity on each sequence. All data sets were independently categorized in a blinded fashion by 3 expert and 3 resident observers. Interobserver reliability of this classification was determined for all observers together and for each group separately by calculating Kendall's coefficient of concordance (W. Results: Of the 186 patients screened, 39 patients (21% had an HT in post-treatment MRI and were included for the categorization of HT by experts and residents. The overall agreement of HT categorization according to the modified classification was

  9. The differences in transformation mechanism in natural and anthropogenic PAH in environmental system

    International Nuclear Information System (INIS)

    Navai, A.I.; Abasova, D.R.; Suleymanov, B.A.

    2005-01-01

    Full text : In present time, with the large reliability the established fact, that the majority of polycyclic aromatic hydrocarbons acting in an environment as from natural (fires, volcanic activity etc.) and from anthropogenesis (emissions of the industrial enterprises, the exhaust gases of automobiles etc.) sources, have carcinogenic activity. Toxicity and persistence of PAH and also their significant prevalence and their ability to be accumulated in an environment, cause necessity of the constant control most harmful polycyclic aromatic hydrocarbons in a various wide spectrum of natural matrixes - air, water, ground adjournment, ground, vegetative and animal fabrics and secretion, products of a meal. From natural sources creating a background level by PAH, is possible to note their synthesis from some plants and microorganisms, wood fires, volcanic activity and meteoric dust and etc. Anthropogenesis PAH pollution an environmental, the problem carries global character. PAH are formed as collateral products at processes of high-temperature processing of organic raw material, mainly, on oil refining, by-product-coking industry, aluminium manufactures. One of the basic sources of pollution PAH of an environment is the vehicle exhaust gases of automobiles are revealed more than 150 PAH. A significant role in PAH formation play aircraft and navigation. It is impossible to exclude an opportunity of pollution of an environment by components PAH, around and along transport pipelines. The reason to this can be oils outflow during transportation or clearing of pipelines. In the publications there is information on presence PAH in Absheron oils. But this information is not sufficient for PAI components specification. We carried out polycyclic aromatic hydrocarbons research's in oils structure of Absheron peninsula. At the first were investigated the average oils samples, which have taken from Surakhani oilfield. In Surakhani oils were found the following PAH components (in

  10. Employing the Hilbert-Huang Transform to analyze observed natural complex signals: Calm wind meandering cases

    Science.gov (United States)

    Martins, Luis Gustavo Nogueira; Stefanello, Michel Baptistella; Degrazia, Gervásio Annes; Acevedo, Otávio Costa; Puhales, Franciano Scremin; Demarco, Giuliano; Mortarini, Luca; Anfossi, Domenico; Roberti, Débora Regina; Costa, Felipe Denardin; Maldaner, Silvana

    2016-11-01

    In this study we analyze natural complex signals employing the Hilbert-Huang spectral analysis. Specifically, low wind meandering meteorological data are decomposed into turbulent and non turbulent components. These non turbulent movements, responsible for the absence of a preferential direction of the horizontal wind, provoke negative lobes in the meandering autocorrelation functions. The meandering characteristic time scales (meandering periods) are determined from the spectral peak provided by the Hilbert-Huang marginal spectrum. The magnitudes of the temperature and horizontal wind meandering period obtained agree with the results found from the best fit of the heuristic meandering autocorrelation functions. Therefore, the new method represents a new procedure to evaluate meandering periods that does not employ mathematical expressions to represent observed meandering autocorrelation functions.

  11. Identification of natural images and computer-generated graphics based on statistical and textural features.

    Science.gov (United States)

    Peng, Fei; Li, Jiao-ting; Long, Min

    2015-03-01

    To discriminate the acquisition pipelines of digital images, a novel scheme for the identification of natural images and computer-generated graphics is proposed based on statistical and textural features. First, the differences between them are investigated from the view of statistics and texture, and 31 dimensions of feature are acquired for identification. Then, LIBSVM is used for the classification. Finally, the experimental results are presented. The results show that it can achieve an identification accuracy of 97.89% for computer-generated graphics, and an identification accuracy of 97.75% for natural images. The analyses also demonstrate the proposed method has excellent performance, compared with some existing methods based only on statistical features or other features. The method has a great potential to be implemented for the identification of natural images and computer-generated graphics. © 2014 American Academy of Forensic Sciences.

  12. An efficient and secure partial image encryption for wireless multimedia sensor networks using discrete wavelet transform, chaotic maps and substitution box

    Science.gov (United States)

    Khan, Muazzam A.; Ahmad, Jawad; Javaid, Qaisar; Saqib, Nazar A.

    2017-03-01

    Wireless Sensor Networks (WSN) is widely deployed in monitoring of some physical activity and/or environmental conditions. Data gathered from WSN is transmitted via network to a central location for further processing. Numerous applications of WSN can be found in smart homes, intelligent buildings, health care, energy efficient smart grids and industrial control systems. In recent years, computer scientists has focused towards findings more applications of WSN in multimedia technologies, i.e. audio, video and digital images. Due to bulky nature of multimedia data, WSN process a large volume of multimedia data which significantly increases computational complexity and hence reduces battery time. With respect to battery life constraints, image compression in addition with secure transmission over a wide ranged sensor network is an emerging and challenging task in Wireless Multimedia Sensor Networks. Due to the open nature of the Internet, transmission of data must be secure through a process known as encryption. As a result, there is an intensive demand for such schemes that is energy efficient as well as highly secure since decades. In this paper, discrete wavelet-based partial image encryption scheme using hashing algorithm, chaotic maps and Hussain's S-Box is reported. The plaintext image is compressed via discrete wavelet transform and then the image is shuffled column-wise and row wise-wise via Piece-wise Linear Chaotic Map (PWLCM) and Nonlinear Chaotic Algorithm, respectively. To get higher security, initial conditions for PWLCM are made dependent on hash function. The permuted image is bitwise XORed with random matrix generated from Intertwining Logistic map. To enhance the security further, final ciphertext is obtained after substituting all elements with Hussain's substitution box. Experimental and statistical results confirm the strength of the anticipated scheme.

  13. Prospects for the design of an ultraviolet imaging Fourier transform spectrometer

    Science.gov (United States)

    Lemaire, Philippe

    2017-11-01

    Recent results from solar observations in the far and extremeultraviolet (FUV/EUV) obtained from SOHO (SOlar and Heliospheric Observatory) and TRACE (Transition Region Camera) show the extreme variability of the solar atmosphere. Within the limited resolution of the instruments (1-2 arcseconds) horizontal and vertical velocities up-to 100 to 400 km s-1 have been measured. With an horizontal velocity of 100 km s-1 an one arsecond structure crosses the one arcsecond slit width of a classical slit spectrometer in less than 10 seconds. In the future, with higher angular resolution (e.g. 0.1 arcsecond), the capability to study small structures will be greatly reduced by a classical slit spectrometer. To be able to characterize the small scale solar atmospheric structures formed in the 104 K to 106 K temperature range (which emit in the 30 to 180 nm wavelength range) a spectrometer without slit (or with wide slit) is required. At the same time to obtain an accurate measurement of the doppler velocity an high spectral resolution is needed. The two requirements, high spectral resolution and large slit, are difficult to be simultaneously fulfilled with a classical slit spectrometer within the limited volume of a space instrumentation. Also, we propose to use an Imaging Fourier Transform Spectrometer (IFTS) to provide simultaneously a bidimensionnal field and an accurate determination of line profiles and positions. The development of Fourier Transform Spectrometers (FTS), although popular in the infrared, has been very limited in the UV/FUV by the lack of very high quality beam splitter. Since 10 years, the use of diffraction gratings as beam splitters has been suggested and few intruments have been built ([Chak 94]; [Clea 92]; [File 00]). These instruments illustrate some applications in the new wavelength domain opened by using a beam splitter grating, but do not yet provide the full capabilities of an FTS. In this paper we present several optical schemes which can

  14. Thermal properties of mixtures of mineral oil and natural ester in terms of their application in the transformer

    Directory of Open Access Journals (Sweden)

    Nadolny Zbigniew

    2017-01-01

    Full Text Available The article describes research results of thermal properties of mineral oil and natural ester. Percentage proportions of both the liquids were as follows: 100/0, 95/5, 80/20, 50/50, 20/80, 0/100. The authors present measurement results of thermal conductivity, viscosity, specific heat, density, and thermal expansion of the created mixtures. The measurements were taken in a relatively wide temperature range: 25 °C, 40 °C, 60 °C, and 80 °C. On the basis of the measurement results, convection heat transfer coefficient α was calculated and the most advantageous proportion of both the components of the mixture was pointed in terms of cooling effectiveness of the transformer.

  15. Calculation Scheme Based on a Weighted Primitive: Application to Image Processing Transforms

    Directory of Open Access Journals (Sweden)

    Gregorio de Miguel Casado

    2007-01-01

    Full Text Available This paper presents a method to improve the calculation of functions which specially demand a great amount of computing resources. The method is based on the choice of a weighted primitive which enables the calculation of function values under the scope of a recursive operation. When tackling the design level, the method shows suitable for developing a processor which achieves a satisfying trade-off between time delay, area costs, and stability. The method is particularly suitable for the mathematical transforms used in signal processing applications. A generic calculation scheme is developed for the discrete fast Fourier transform (DFT and then applied to other integral transforms such as the discrete Hartley transform (DHT, the discrete cosine transform (DCT, and the discrete sine transform (DST. Some comparisons with other well-known proposals are also provided.

  16. Functional analysis of the interdependence between DNA uptake sequence and its cognate ComP receptor during natural transformation in Neisseria species.

    Directory of Open Access Journals (Sweden)

    Jamie-Lee Berry

    Full Text Available Natural transformation is the widespread biological process by which "competent" bacteria take up free DNA, incorporate it into their genomes, and become genetically altered or "transformed". To curb often deleterious transformation by foreign DNA, several competent species preferentially take up their own DNA that contains specific DUS (DNA uptake sequence watermarks. Our recent finding that ComP is the long sought DUS receptor in Neisseria species paves the way for the functional analysis of the DUS-ComP interdependence which is reported here. By abolishing/modulating ComP levels in Neisseria meningitidis, we show that the enhancement of transformation seen in the presence of DUS is entirely dependent on ComP, which also controls transformation in the absence of DUS. While peripheral bases in the DUS were found to be less important, inner bases are essential since single base mutations led to dramatically impaired interaction with ComP and transformation. Strikingly, naturally occurring DUS variants in the genomes of human Neisseria commensals differing from DUS by only one or two bases were found to be similarly impaired for transformation of N. meningitidis. By showing that ComPsub from the N. subflava commensal specifically binds its cognate DUS variant and mediates DUS-enhanced transformation when expressed in a comP mutant of N. meningitidis, we confirm that a similar mechanism is used by all Neisseria species to promote transformation by their own, or closely related DNA. Together, these findings shed new light on the molecular events involved in the earliest step in natural transformation, and reveal an elegant mechanism for modulating horizontal gene transfer between competent species sharing the same niche.

  17. High-definition Fourier Transform Infrared (FT-IR) Spectroscopic Imaging of Human Tissue Sections towards Improving Pathology

    Science.gov (United States)

    Nguyen, Peter L.; Davidson, Bennett; Akkina, Sanjeev; Guzman, Grace; Setty, Suman; Kajdacsy-Balla, Andre; Walsh, Michael J.

    2015-01-01

    High-definition Fourier Transform Infrared (FT-IR) spectroscopic imaging is an emerging approach to obtain detailed images that have associated biochemical information. FT-IR imaging of tissue is based on the principle that different regions of the mid-infrared are absorbed by different chemical bonds (e.g., C=O, C-H, N-H) within cells or tissue that can then be related to the presence and composition of biomolecules (e.g., lipids, DNA, glycogen, protein, collagen). In an FT-IR image, every pixel within the image comprises an entire Infrared (IR) spectrum that can give information on the biochemical status of the cells that can then be exploited for cell-type or disease-type classification. In this paper, we show: how to obtain IR images from human tissues using an FT-IR system, how to modify existing instrumentation to allow for high-definition imaging capabilities, and how to visualize FT-IR images. We then present some applications of FT-IR for pathology using the liver and kidney as examples. FT-IR imaging holds exciting applications in providing a novel route to obtain biochemical information from cells and tissue in an entirely label-free non-perturbing route towards giving new insight into biomolecular changes as part of disease processes. Additionally, this biochemical information can potentially allow for objective and automated analysis of certain aspects of disease diagnosis. PMID:25650759

  18. The transformation of waste Bakelite to replace natural fine aggregate in cement mortar

    Directory of Open Access Journals (Sweden)

    Nopagon Usahanunth

    2017-06-01

    Full Text Available Bakelite material has been used to produce the various components for cars and consumer goods industry in Thailand. The growth of Bakelite consumption increases Bakelite waste. Bakelite waste is prohibited from disposing of direct landfilling and open burning because of the improper disposal and emission reasons. A large amount of this waste needs the large safe space of warehouse area for keeping which becomes a waste management problem. Size reduction by milling machine is helpful for waste handling and storing, however, the post-milling waste Bakelite plastic utilization shall be studied to maintain the waste storing capacity. There are some studies of the milling machine used for waste plastic size reduction. However, the particular study of milling machine application for waste size reduction and its milling waste utilization is still insufficient in Thailand. The purpose of this research is the use of waste Bakelite aggregate milling machine for Bakelite waste size reduction and use of the post-milling waste Bakelite as a fine aggregate to replace natural sand material in cement mortar. The waste Bakelite fine aggregate (WBFA was mixed in cement mortar mixture with the proportion 0% 20% 40% 60% 80% and 100% by volume for cement mortar sample preparation. The mortar sample was tested for compressive strength follow ASTM standard. The compressive test result of mortar samples will be compared between conventional mortar (0% WBFA and waste Bakelite mortar (WBM as well as comparing with the mortar standard. From an analysis of the sample test data found that the WBFA content in cement mortar mixture can predict the strength of WBM. The compressive strength of WBM at 28 days age with the fraction of WBFA is not exceeded 11.03%, and 23.08% respectively can be met the mortar standard according to the equation. The utilization of WBM to develop mortar non-structural mortar product can be usable from a technical point of view.

  19. Optical Bench Breadboard Of An Imaging Fourier Transform Spectrometer (iFTS) For Climate Observations.

    Science.gov (United States)

    Singh, G.; McElroy, C. T.; Vaziri, Z.; Barton, D.; Blair, G.; Grandmont, F. J.

    2017-12-01

    The fifth assessment report (AR5) of the Intergovernmental Panel on Climate Change (IPCC) states that the warming of zonal mean surface temperature at higher latitudes exceeds the global average temperature change. This poses a great problem as the warming leads to the thawing of the permafrost in the Arctic region that acts as an envelope to trap greenhouse gases such as carbon dioxide and methane. Therefore, there is an urgent need to develop scientific instruments that can be flown in space over the Arctic to provide atmospheric information to quantify the evolution and transport of these gases. The Laboratory for Atmospheric Remote Sounding from Space (LARSS) at York University is developing an imaging Fourier transform spectrometer (IFTS) for climate observations by atmospheric sounding. The spectrometer has two individual channels, one centred at 1650 nm to measure the atmospheric column of carbon dioxide and methane, and another centred at 762 nm to measure the temperature-pressure profile by making measurements of the O2A band. A Commercial-Off-The-Shelf (COTS) modulator has been purchased from ABB Inc. of Quebec City. Interferometers are widely used in many scientific laboratories to measure concentrations of different constituents in a given sample. The performance of these instruments is highly dependent on environmental effects and various properties of the input beam such as coherence, polarity, etc. Thus, the use of such instruments to measure atmospheric concentration is complicated and challenging. The immediate goal of this project is to develop an IFTS system which can measure backscattered radiation in a laboratory environment and develop design elements that will make it operable in the space environment. Progress on the project and information concerning some of the issues listed above will be discussed. The developments which flow from this research project will support efforts by Environment and Climate Change Canada, the Canadian Space

  20. A model of primate visual cortex based on category-specific redundancies in natural images

    Science.gov (United States)

    Malmir, Mohsen; Shiry Ghidary, S.

    2010-12-01

    Neurophysiological and computational studies have proposed that properties of natural images have a prominent role in shaping selectivity of neurons in the visual cortex. An important property of natural images that has been studied extensively is the inherent redundancy in these images. In this paper, the concept of category-specific redundancies is introduced to describe the complex pattern of dependencies between responses of linear filters to natural images. It is proposed that structural similarities between images of different object categories result in dependencies between responses of linear filters in different spatial scales. It is also proposed that the brain gradually removes these dependencies in different areas of the ventral visual hierarchy to provide a more efficient representation of its sensory input. The authors proposed a model to remove these redundancies and trained it with a set of natural images using general learning rules that are developed to remove dependencies between responses of neighbouring neurons. Results of experiments demonstrate the close resemblance of neuronal selectivity between different layers of the model and their corresponding visual areas.

  1. The effect of image sharpness on quantitative eye movement data and on image quality evaluation while viewing natural images

    Science.gov (United States)

    Vuori, Tero; Olkkonen, Maria

    2006-01-01

    The aim of the study is to test both customer image quality rating (subjective image quality) and physical measurement of user behavior (eye movements tracking) to find customer satisfaction differences in imaging technologies. Methodological aim is to find out whether eye movements could be quantitatively used in image quality preference studies. In general, we want to map objective or physically measurable image quality to subjective evaluations and eye movement data. We conducted a series of image quality tests, in which the test subjects evaluated image quality while we recorded their eye movements. Results show that eye movement parameters consistently change according to the instructions given to the user, and according to physical image quality, e.g. saccade duration increased with increasing blur. Results indicate that eye movement tracking could be used to differentiate image quality evaluation strategies that the users have. Results also show that eye movements would help mapping between technological and subjective image quality. Furthermore, these results give some empirical emphasis to top-down perception processes in image quality perception and evaluation by showing differences between perceptual processes in situations when cognitive task varies.

  2. Simultaneous UV Imaging and Raman Spectroscopy for the Measurement of Solvent-Mediated Phase Transformations During Dissolution Testing

    DEFF Research Database (Denmark)

    Ostergaard, Jesper; Wu, Jian; Naelapää, Kaisa

    2014-01-01

    The current work reports the simultaneous use of UV imaging and Raman spectroscopy for detailed characterization of drug dissolution behavior including solid-state phase transformations during dissolution. The dissolution of drug substances from compacts of sodium naproxen in 0.1 HCl as well as t...... of UV imaging and Raman spectroscopy offers a detailed characterization of drug dissolution behavior in a time-effective and sample-sparing manner. © 2014 Wiley Periodicals, Inc. and the American Pharmacists Association J Pharm Sci 103:1149-1156, 2014....

  3. Robust and adaptive band-to-band image transform of UAS miniature multi-lens multispectral camera

    Science.gov (United States)

    Jhan, Jyun-Ping; Rau, Jiann-Yeou; Haala, Norbert

    2018-03-01

    Utilizing miniature multispectral (MS) or hyperspectral (HS) cameras by mounting them on an Unmanned Aerial System (UAS) has the benefits of convenience and flexibility to collect remote sensing imagery for precision agriculture, vegetation monitoring, and environment investigation applications. Most miniature MS cameras adopt a multi-lens structure to record discrete MS bands of visible and invisible information. The differences in lens distortion, mounting positions, and viewing angles among lenses mean that the acquired original MS images have significant band misregistration errors. We have developed a Robust and Adaptive Band-to-Band Image Transform (RABBIT) method for dealing with the band co-registration of various types of miniature multi-lens multispectral cameras (Mini-MSCs) to obtain band co-registered MS imagery for remote sensing applications. The RABBIT utilizes modified projective transformation (MPT) to transfer the multiple image geometry of a multi-lens imaging system to one sensor geometry, and combines this with a robust and adaptive correction (RAC) procedure to correct several systematic errors and to obtain sub-pixel accuracy. This study applies three state-of-the-art Mini-MSCs to evaluate the RABBIT method's performance, specifically the Tetracam Miniature Multiple Camera Array (MiniMCA), Micasense RedEdge, and Parrot Sequoia. Six MS datasets acquired at different target distances and dates, and locations are also applied to prove its reliability and applicability. Results prove that RABBIT is feasible for different types of Mini-MSCs with accurate, robust, and rapid image processing efficiency.

  4. New Analysis Method Application in Metallographic Images through the Construction of Mosaics Via Speeded Up Robust Features and Scale Invariant Feature Transform

    Directory of Open Access Journals (Sweden)

    Pedro Pedrosa Rebouças Filho

    2015-06-01

    Full Text Available In many applications in metallography and analysis, many regions need to be considered and not only the current region. In cases where there are analyses with multiple images, the specialist should also evaluate neighboring areas. For example, in metallurgy, welding technology is derived from conventional testing and metallographic analysis. In welding, these tests allow us to know the features of the metal, especially in the Heat-Affected Zone (HAZ; the region most likely for natural metallurgical problems to occur in welding. The expanse of the Heat-Affected Zone exceeds the size of the area observed through a microscope and typically requires multiple images to be mounted on a larger picture surface to allow for the study of the entire heat affected zone. This image stitching process is performed manually and is subject to all the inherent flaws of the human being due to results of fatigue and distraction. The analyzing of grain growth is also necessary in the examination of multiple regions, although not necessarily neighboring regions, but this analysis would be a useful tool to aid a specialist. In areas such as microscopic metallography, which study metallurgical products with the aid of a microscope, the assembly of mosaics is done manually, which consumes a lot of time and is also subject to failures due to human limitations. The mosaic technique is used in the construct of environment or scenes with corresponding characteristics between themselves. Through several small images, and with corresponding characteristics between themselves, a new model is generated in a larger size. This article proposes the use of Digital Image Processing for the automatization of the construction of these mosaics in metallographic images. The use of this proposed method is meant to significantly reduce the time required to build the mosaic and reduce the possibility of failures in assembling the final image; therefore increasing efficiency in obtaining

  5. Extraction of Nucleolus Candidate Zone in White Blood Cells of Peripheral Blood Smear Images Using Curvelet Transform

    Directory of Open Access Journals (Sweden)

    Ramin Soltanzadeh

    2012-01-01

    Full Text Available The main part of each white blood cell (WBC is its nucleus which contains chromosomes. Although white blood cells (WBCs with giant nuclei are the main symptom of leukemia, they are not sufficient to prove this disease and other symptoms must be investigated. For example another important symptom of leukemia is the existence of nucleolus in nucleus. The nucleus contains chromatin and a structure called the nucleolus. Chromatin is DNA in its active form while nucleolus is composed of protein and RNA, which are usually inactive. In this paper, to diagnose this symptom and in order to discriminate between nucleoli and chromatins, we employ curvelet transform, which is a multiresolution transform for detecting 2D singularities in images. For this reason, at first nuclei are extracted by means of K-means method, then curvelet transform is applied on extracted nuclei and the coefficients are modified, and finally reconstructed image is used to extract the candidate locations of chromatins and nucleoli. This method is applied on 100 microscopic images and succeeds with specificity of 80.2% and sensitivity of 84.3% to detect the nucleolus candidate zone. After nucleolus candidate zone detection, new features that can be used to classify atypical and blast cells such as gradient of saturation channel are extracted.

  6. Classification of natural circulation two-phase flow patterns using fuzzy inference on image analysis

    International Nuclear Information System (INIS)

    Mesquita, R.N. de; Masotti, P.H.F.; Penha, R.M.L.; Andrade, D.A.; Sabundjian, G.; Torres, W.M.

    2012-01-01

    Highlights: ► A fuzzy classification system for two-phase flow instability patterns is developed. ► Flow patterns are classified based on images of natural circulation experiments. ► Fuzzy inference is optimized to use single grayscale profiles as input. - Abstract: Two-phase flow on natural circulation phenomenon has been an important theme on recent studies related to nuclear reactor designs. The accuracy of heat transfer estimation has been improved with new models that require precise prediction of pattern transitions of flow. In this work, visualization of natural circulation cycles is used to study two-phase flow patterns associated with phase transients and static instabilities of flow. A Fuzzy Flow-type Classification System (FFCS) was developed to classify these patterns based only on image extracted features. Image acquisition and temperature measurements were simultaneously done. Experiments in natural circulation facility were adjusted to generate a series of characteristic two-phase flow instability periodic cycles. The facility is composed of a loop of glass tubes, a heat source using electrical heaters, a cold source using a helicoidal heat exchanger, a visualization section and thermocouples positioned over different loop sections. The instability cyclic period is estimated based on temperature measurements associated with the detection of a flow transition image pattern. FFCS shows good results provided that adequate image acquisition parameters and pre-processing adjustments are used.

  7. Characteristics of compressed natural gas jet and jet-wall impingement using the Schlieren imaging technique

    International Nuclear Information System (INIS)

    Ismael, M A; Heikal, M R; Baharom, M B

    2013-01-01

    An experimental study was performed to investigate the compressed natural gas jet characteristics and jet-wall impingement using the Schlieren imaging technique and image processing. An injector driver was used to drive the natural gas injector and synchronized with camera triggering. A constant-volume optical chamber was designed to facilitate maximum optical access for the study of the jet macroscopic characteristics and jet-wall impingement at different injection pressures and injectors-wall distances. Measurement of the jet tip penetration and cone angle at different conditions are presented in this paper together with temporal presentation of the jet radial travel along the wall.

  8. Imaging near-surface heterogeneities by natural migration of backscattered surface waves

    KAUST Repository

    AlTheyab, Abdullah

    2016-02-01

    We present a migration method that does not require a velocity model to migrate backscattered surface waves to their projected locations on the surface. This migration method, denoted as natural migration, uses recorded Green\\'s functions along the surface instead of simulated Green\\'s functions. The key assumptions are that the scattering bodies are within the depth interrogated by the surface waves, and the Green\\'s functions are recorded with dense receiver sampling along the free surface. This natural migration takes into account all orders of multiples, mode conversions and non-linear effects of surface waves in the data. The natural imaging formulae are derived for both active source and ambient-noise data, and computer simulations show that natural migration can effectively image near-surface heterogeneities with typical ambient-noise sources and geophone distributions.

  9. Adaption of optical Fresnel transform to optical Wigner transform

    International Nuclear Information System (INIS)

    Lv Cuihong; Fan Hongyi

    2010-01-01

    Enlightened by the algorithmic isomorphism between the rotation of the Wigner distribution function (WDF) and the αth fractional Fourier transform, we show that the optical Fresnel transform performed on the input through an ABCD system makes the output naturally adapting to the associated Wigner transform, i.e. there exists algorithmic isomorphism between ABCD transformation of the WDF and the optical Fresnel transform. We prove this adaption in the context of operator language. Both the single-mode and the two-mode Fresnel operators as the image of classical Fresnel transform are introduced in our discussions, while the two-mode Wigner operator in the entangled state representation is introduced for fitting the two-mode Fresnel operator.

  10. Nitrogen-15 natural abundance of different soil N pools as a tool for assessing N transformation processes in alpine soils

    Science.gov (United States)

    Makarov, Mikhail; Malysheva, Tatiana; Tiunov, Alexei; Kadulin, Maxim; Maslov, Mikhail

    2017-04-01

    Nitrogen availability, net N mineralization, nitrification and 15N natural abundance of total soil N and small soil N pools (N-NH4+, N-NO3-, DON and microbial biomass N) were studied in a toposequence of alpine ecosystems in the Northern Caucasus. The toposequence was represented by (1) low productive alpine lichen heath (ALH) of the wind-exposed ridge and upper slope; (2) more productive Festuca varia grassland (FG) of the middle slope; (3) most productive Geranium gymnocaulon/Hedysarum caucasicum meadow (GHM) of the lower slope and (4) low productive snow bed community (SBC) of the slope bottom. Nitrogen transformation in the alpine soils produces distinct N pools with different 15N enrichment: DON/microbial biomass N > total N > N-NH4+ > N-NO3-. Grassland and meadow soils of the middle part of the toposequence are characterized by higher nitrogen transformation activities and higher δ15 values of total N and N-NH4+. Field incubation of alpine soils increased δ15N of N-NH4+ from -2.6 - +2.0‰ to +6.1 - +15.7‰. The N-NO3-produced in the incubation experiment had extremely low (negative) δ15N values (up to -14‰). We found a positive correlation between δ15N of different soil N pools (total N, N-NH4+ and N-NO3-) and net N mineralization and nitrification. Nitrification controls the formation of 15N enriched N-NH4+ pool while N mineralization probably had an important role in regulation of 15N enrichment of DON pool in alpine soils. Overall, our results support the hypothesis that 15N is more enriched in N-rich and more depleted in N-poor ecosystems. We conclude that δ15N values of different soil N pools could be a good indicator of microbial N transformation in alpine soils of the Northern Caucasus. Acknowledgement: This study was supported by Russian Science Foundation (16-14-10208).

  11. High-Spatial- and High-Temporal-Resolution Dynamic Contrast-enhanced MR Breast Imaging with Sweep Imaging with Fourier Transformation: A Pilot Study

    Science.gov (United States)

    Benson, John C.; Idiyatullin, Djaudat; Snyder, Angela L.; Snyder, Carl J.; Hutter, Diane; Everson, Lenore I.; Eberly, Lynn E.; Nelson, Michael T.; Garwood, Michael

    2015-01-01

    Purpose To report the results of sweep imaging with Fourier transformation (SWIFT) magnetic resonance (MR) imaging for diagnostic breast imaging. Materials and Methods Informed consent was obtained from all participants under one of two institutional review board–approved, HIPAA-compliant protocols. Twelve female patients (age range, 19–54 years; mean age, 41.2 years) and eight normal control subjects (age range, 22–56 years; mean age, 43.2 years) enrolled and completed the study from January 28, 2011, to March 5, 2013. Patients had previous lesions that were Breast Imaging Reporting and Data System 4 and 5 based on mammography and/or ultrasonographic imaging. Contrast-enhanced SWIFT imaging was completed by using a 4-T research MR imaging system. Noncontrast studies were completed in the normal control subjects. One of two sized single-breast SWIFT-compatible transceiver coils was used for nine patients and five controls. Three patients and five control subjects used a SWIFT-compatible dual breast coil. Temporal resolution was 5.9–7.5 seconds. Spatial resolution was 1.00 mm isotropic, with later examinations at 0.67 mm isotropic, and dual breast at 1.00 mm or 0.75 mm isotropic resolution. Results Two nonblinded breast radiologists reported SWIFT image findings of normal breast tissue, benign fibroadenomas (six of six lesions), and malignant lesions (10 of 12 lesions) concordant with other imaging modalities and pathologic reports. Two lesions in two patients were not visualized because of coil field of view. The images yielded by SWIFT showed the presence and extent of known breast lesions. Conclusion The SWIFT technique could become an important addition to breast imaging modalities because it provides high spatial resolution at all points during the dynamic contrast-enhanced examination. © RSNA, 2014 PMID:25247405

  12. Image Transform Based on the Distribution of Representative Colors for Color Deficient

    Science.gov (United States)

    Ohata, Fukashi; Kudo, Hiroaki; Matsumoto, Tetsuya; Takeuchi, Yoshinori; Ohnishi, Noboru

    This paper proposes the method to convert digital image containing distinguishing difficulty sets of colors into the image with high visibility. We set up four criteria, automatically processing by a computer, retaining continuity in color space, not making images into lower visible for people with normal color vision, and not making images not originally having distinguishing difficulty sets of colors into lower visible. We conducted the psychological experiment. We obtained the result that the visibility of a converted image had been improved at 60% for 40 images, and we confirmed the main criterion of the continuity in color space was kept.

  13. Automated segmentation and isolation of touching cell nuclei in cytopathology smear images of pleural effusion using distance transform watershed method

    Science.gov (United States)

    Win, Khin Yadanar; Choomchuay, Somsak; Hamamoto, Kazuhiko

    2017-06-01

    The automated segmentation of cell nuclei is an essential stage in the quantitative image analysis of cell nuclei extracted from smear cytology images of pleural fluid. Cell nuclei can indicate cancer as the characteristics of cell nuclei are associated with cells proliferation and malignancy in term of size, shape and the stained color. Nevertheless, automatic nuclei segmentation has remained challenging due to the artifacts caused by slide preparation, nuclei heterogeneity such as the poor contrast, inconsistent stained color, the cells variation, and cells overlapping. In this paper, we proposed a watershed-based method that is capable to segment the nuclei of the variety of cells from cytology pleural fluid smear images. Firstly, the original image is preprocessed by converting into the grayscale image and enhancing by adjusting and equalizing the intensity using histogram equalization. Next, the cell nuclei are segmented using OTSU thresholding as the binary image. The undesirable artifacts are eliminated using morphological operations. Finally, the distance transform based watershed method is applied to isolate the touching and overlapping cell nuclei. The proposed method is tested with 25 Papanicolaou (Pap) stained pleural fluid images. The accuracy of our proposed method is 92%. The method is relatively simple, and the results are very promising.

  14. A Panchromatic Imaging Fourier Transform Spectrometer for the NASA Geostationary Coastal and Air Pollution Events Mission

    Science.gov (United States)

    Wu, Yen-Hung; Key, Richard; Sander, Stanley; Blavier, Jean-Francois; Rider, David

    2011-01-01

    This paper summarizes the design and development of the Panchromatic Imaging Fourier Transform Spectrometer (PanFTS) for the NASA Geostationary Coastal and Air Pollution Events (GEO-CAPE) Mission. The PanFTS instrument will advance the understanding of the global climate and atmospheric chemistry by measuring spectrally resolved outgoing thermal and reflected solar radiation. With continuous spectral coverage from the near-ultraviolet through the thermal infrared, this instrument is designed to measure pollutants, greenhouse gases, and aerosols as called for by the U.S. National Research Council Decadal Survey; Earth Science and Applications from Space: National Imperatives for the Next Decade and Beyond1. The PanFTS instrument is a hybrid instrument based on spectrometers like the Tropospheric Emissions Spectrometer (TES) that measures thermal emission, and those like the Orbiting Carbon Observatory (OCO), and the Ozone Monitoring Instrument (OMI) that measure scattered solar radiation. Simultaneous measurements over the broad spectral range from IR to UV is accomplished by a two sided interferometer with separate optical trains and detectors for the ultraviolet-visible and infrared spectral domains. This allows each side of the instrument to be independently optimized for its respective spectral domain. The overall interferometer design is compact because the two sides share a single high precision cryogenic optical path difference mechanism (OPDM) and metrology laser as well as a number of other instrument systems including the line-of-sight pointing mirror, the data management system, thermal control system, electrical system, and the mechanical structure. The PanFTS breadboard instrument has been tested in the laboratory and demonstrated the basic functionality for simultaneous measurements in the visible and infrared. It is set to begin operations in the field at the California Laboratory for Atmospheric Remote Sensing (CLARS) observatory on Mt. Wilson

  15. Hadamard Transforms

    CERN Document Server

    Agaian, Sos; Egiazarian, Karen; Astola, Jaakko

    2011-01-01

    The Hadamard matrix and Hadamard transform are fundamental problem-solving tools in a wide spectrum of scientific disciplines and technologies, such as communication systems, signal and image processing (signal representation, coding, filtering, recognition, and watermarking), digital logic (Boolean function analysis and synthesis), and fault-tolerant system design. Hadamard Transforms intends to bring together different topics concerning current developments in Hadamard matrices, transforms, and their applications. Each chapter begins with the basics of the theory, progresses to more advanced

  16. Evolved Multiresolution Transforms for Optimized Image Compression and Reconstruction Under Quantization

    National Research Council Canada - National Science Library

    Moore, Frank

    2005-01-01

    ...) First, this research demonstrates that a GA can evolve a single set of coefficients describing a single matched forward and inverse transform pair that can be used at each level of a multiresolution...

  17. Nonlinear QR code based optical image encryption using spiral phase transform, equal modulus decomposition and singular value decomposition

    Science.gov (United States)

    Kumar, Ravi; Bhaduri, Basanta; Nishchal, Naveen K.

    2018-01-01

    In this study, we propose a quick response (QR) code based nonlinear optical image encryption technique using spiral phase transform (SPT), equal modulus decomposition (EMD) and singular value decomposition (SVD). First, the primary image is converted into a QR code and then multiplied with a spiral phase mask (SPM). Next, the product is spiral phase transformed with particular spiral phase function, and further, the EMD is performed on the output of SPT, which results into two complex images, Z 1 and Z 2. Among these, Z 1 is further Fresnel propagated with distance d, and Z 2 is reserved as a decryption key. Afterwards, SVD is performed on Fresnel propagated output to get three decomposed matrices i.e. one diagonal matrix and two unitary matrices. The two unitary matrices are modulated with two different SPMs and then, the inverse SVD is performed using the diagonal matrix and modulated unitary matrices to get the final encrypted image. Numerical simulation results confirm the validity and effectiveness of the proposed technique. The proposed technique is robust against noise attack, specific attack, and brutal force attack. Simulation results are presented in support of the proposed idea.

  18. Automatic Lumbar Vertebrae Segmentation in Fluoroscopic Images Via Optimised Concurrent Hough Transform

    National Research Council Canada - National Science Library

    Zheng, Yalin

    2001-01-01

    .... Digital videofluoroscopy (DVF) was widely used to obtain images for motion studies. This can provide motion sequences of the lumbar spine, but the images obtained often suffer due to noise, exacerbated by the very low radiation dosage...

  19. A Novel Image Tag Completion Method Based on Convolutional Neural Transformation

    KAUST Repository

    Geng, Yanyan; Zhang, Guohui; Li, Weizhi; Gu, Yi; Liang, Ru-Ze; Liang, Gaoyuan; Wang, Jingbin; Wu, Yanbin; Patil, Nitin; Wang, Jing-Yan

    2017-01-01

    In the problems of image retrieval and annotation, complete textual tag lists of images play critical roles. However, in real-world applications, the image tags are usually incomplete, thus it is important to learn the complete tags for images. In this paper, we study the problem of image tag complete and proposed a novel method for this problem based on a popular image representation method, convolutional neural network (CNN). The method estimates the complete tags from the convolutional filtering outputs of images based on a linear predictor. The CNN parameters, linear predictor, and the complete tags are learned jointly by our method. We build a minimization problem to encourage the consistency between the complete tags and the available incomplete tags, reduce the estimation error, and reduce the model complexity. An iterative algorithm is developed to solve the minimization problem. Experiments over benchmark image data sets show its effectiveness.

  20. A Novel Image Tag Completion Method Based on Convolutional Neural Transformation

    KAUST Repository

    Geng, Yanyan

    2017-10-24

    In the problems of image retrieval and annotation, complete textual tag lists of images play critical roles. However, in real-world applications, the image tags are usually incomplete, thus it is important to learn the complete tags for images. In this paper, we study the problem of image tag complete and proposed a novel method for this problem based on a popular image representation method, convolutional neural network (CNN). The method estimates the complete tags from the convolutional filtering outputs of images based on a linear predictor. The CNN parameters, linear predictor, and the complete tags are learned jointly by our method. We build a minimization problem to encourage the consistency between the complete tags and the available incomplete tags, reduce the estimation error, and reduce the model complexity. An iterative algorithm is developed to solve the minimization problem. Experiments over benchmark image data sets show its effectiveness.

  1. The assessment of multi-sensor image fusion using wavelet transforms for mapping the Brazilian Savanna

    NARCIS (Netherlands)

    Weimar Acerbi, F.; Clevers, J.G.P.W.; Schaepman, M.E.

    2006-01-01

    Multi-sensor image fusion using the wavelet approach provides a conceptual framework for the improvement of the spatial resolution with minimal distortion of the spectral content of the source image. This paper assesses whether images with a large ratio of spatial resolution can be fused, and

  2. Comparison of hyperspectral transformation accuracies of multispectral Landsat TM, ETM+, OLI and EO-1 ALI images for detecting minerals in a geothermal prospect area

    Science.gov (United States)

    Hoang, Nguyen Tien; Koike, Katsuaki

    2018-03-01

    Hyperspectral remote sensing generally provides more detailed spectral information and greater accuracy than multispectral remote sensing for identification of surface materials. However, there have been no hyperspectral imagers that cover the entire Earth surface. This lack points to a need for producing pseudo-hyperspectral imagery by hyperspectral transformation from multispectral images. We have recently developed such a method, a Pseudo-Hyperspectral Image Transformation Algorithm (PHITA), which transforms Landsat 7 ETM+ images into pseudo-EO-1 Hyperion images using multiple linear regression models of ETM+ and Hyperion band reflectance data. This study extends the PHITA to transform TM, OLI, and EO-1 ALI sensor images into pseudo-Hyperion images. By choosing a part of the Fish Lake Valley geothermal prospect area in the western United States for study, the pseudo-Hyperion images produced from the TM, ETM+, OLI, and ALI images by PHITA were confirmed to be applicable to mineral mapping. Using a reference map as the truth, three main minerals (muscovite and chlorite mixture, opal, and calcite) were identified with high overall accuracies from the pseudo-images (> 95% and > 42% for excluding and including unclassified pixels, respectively). The highest accuracy was obtained from the ALI image, followed by ETM+, TM, and OLI images in descending order. The TM, OLI, and ALI images can be alternatives to ETM+ imagery for the hyperspectral transformation that aids the production of pseudo-Hyperion images for areas without high-quality ETM+ images because of scan line corrector failure, and for long-term global monitoring of land surfaces.

  3. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels

    Science.gov (United States)

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  4. Adaptive pseudo-color enhancement method of weld radiographic images based on HSI color space and self-transformation of pixels.

    Science.gov (United States)

    Jiang, Hongquan; Zhao, Yalin; Gao, Jianmin; Gao, Zhiyong

    2017-06-01

    The radiographic testing (RT) image of a steam turbine manufacturing enterprise has the characteristics of low gray level, low contrast, and blurriness, which lead to a substandard image quality. Moreover, it is not conducive for human eyes to detect and evaluate defects. This study proposes an adaptive pseudo-color enhancement method for weld radiographic images based on the hue, saturation, and intensity (HSI) color space and the self-transformation of pixels to solve these problems. First, the pixel's self-transformation is performed to the pixel value of the original RT image. The function value after the pixel's self-transformation is assigned to the HSI components in the HSI color space. Thereafter, the average intensity of the enhanced image is adaptively adjusted to 0.5 according to the intensity of the original image. Moreover, the hue range and interval can be adjusted according to personal habits. Finally, the HSI components after the adaptive adjustment can be transformed to display in the red, green, and blue color space. Numerous weld radiographic images from a steam turbine manufacturing enterprise are used to validate the proposed method. The experimental results show that the proposed pseudo-color enhancement method can improve image definition and make the target and background areas distinct in weld radiographic images. The enhanced images will be more conducive for defect recognition. Moreover, the image enhanced using the proposed method conforms to the human eye visual properties, and the effectiveness of defect recognition and evaluation can be ensured.

  5. Thermochemically induced transformations in Al-smectites: A Spanish natural analogue of the bentonite barrier behaviour in a radwaste disposal

    International Nuclear Information System (INIS)

    Perez del Villar, L.; Delgado, A.; Reyes, E.; Pelayo, M.; Fernandez-Soler, J.M.; Cozar, J.S.; Tsige, M.; Quejido, A.J.

    2005-01-01

    The thermal effect induced by the Morron de Mateo volcanic dome (Cabo de Gata volcanic region, Spain) on the adjacent bentonitised tuffaceous beds has been studied as a natural analogue of the thermal behaviour of the bentonite-engineered barrier of a geological radwaste repository. These bentonites consist mainly of Fe-rich smectites and were formed in equilibrium with seawater at temperatures between 75 and 95 o C, according to the δ 18 O and δD values. In contrast, bentonites from other localities in the region consist mainly of Al-smectites, formed in equilibrium with meteoric water below 25 deg. C. This investigation is focussed on the detection of the chemical differences between smectites from proximal and distal zones to the dome, as well as to test whether the temperatures calculated based on the O and H isotopic values correspond to their formation or transformation. The initial hypothesis was that the chosen smectites could be formed under marine conditions, being later transformed and isotopically re-equilibrated as a result of the intrusion. To check this hypothesis, a detailed mineralogical, chemical, geochemical and isotopic study has been performed on the smectitised tuffaceous materials and the overlaying biocalcarenites outcropping near and far from the dome. The results show that distal smectites are dioctahedral Al-smectites, similar to those from other deposits in the region, while proximal smectites are Fe- and Mg-rich smectites, showing two evolutionary trends on a Fe-Mg-Al ternary diagram. Similar features are observed when their structural formulae are plotted on the muscovite-celadonite-pyrophylite diagram. Thus, they plot in the smectite domain with interlayer charge less than 1, which is mainly due to octahedral substitution for distal smectites, while for proximal ones it is caused by both octahedral and tetrahedral substitutions. In this ternary diagram, the domains of both proximal and distal smectites are partially overlapped. The

  6. Visualizing the Limits of Low Vision in Detecting Natural Image Features

    NARCIS (Netherlands)

    Hogervorst, M.A.; Damme, W.J.M. van

    2008-01-01

    Purpose. The purpose of our study was to develop a tool to visualize the limitations posed by visual impairments in detecting small and low-contrast elements in natural images. This visualization tool incorporates existing models of several aspects of visual perception, such as the band-limited

  7. Nonlinear image encryption using a fully phase nonzero-order joint transform correlator in the Gyrator domain

    Science.gov (United States)

    Vilardy, Juan M.; Millán, María S.; Pérez-Cabré, Elisabet

    2017-02-01

    A novel nonlinear image encryption scheme based on a fully phase nonzero-order joint transform correlator architecture (JTC) in the Gyrator domain (GD) is proposed. In this encryption scheme, the two non-overlapping data distributions of the input plane of the JTC are fully encoded in phase and this input plane is transformed using the Gyrator transform (GT); the intensity distribution captured in the GD represents a new definition of the joint Gyrator power distribution (JGPD). The JGPD is modified by two nonlinear operations with the purpose of retrieving the encrypted image, with enhancement of the decrypted signal quality and improvement of the overall security. There are three keys used in the encryption scheme, two random phase masks and the rotation angle of the GT, which are all necessary for a proper decryption. Decryption is highly sensitivity to changes of the rotation angle of the GT as well as to little changes in other parameters or keys. The proposed encryption scheme in the GD still preserves the shift-invariance properties originated in the JTC-based encryption in the Fourier domain. The proposed encryption scheme is more resistant to brute force attacks, chosen-plaintext attacks, known-plaintext attacks, and ciphertext-only attacks, as they have been introduced in the cryptanalysis of the JTC-based encryption system. Numerical results are presented and discussed in order to verify and analyze the feasibility and validity of the novel encryption-decryption scheme.

  8. Identification of new natural sweet compounds in wine using centrifugal partition chromatography-gustatometry and Fourier transform mass spectrometry.

    Science.gov (United States)

    Marchal, Axel; Waffo-Téguo, Pierre; Génin, Eric; Mérillon, Jean-Michel; Dubourdieu, Denis

    2011-12-15

    Sweetness contributes notably to the taste-balance of dry wines and increases during oak-barrel aging owing to the release of natural sweeteners from wood. The search for such taste-active molecules, which are sometimes present at very low concentrations in wine or other complex matrixes, requires both reliable purification tools and powerful identification techniques. Here, we report the development of an original inductive method using centrifugal partition chromatography (CPC) and sensorial analysis. This method, called CPC-gustatometry, was implemented to isolate a sweet fraction with only four compounds from a complex oak wood extract. The recently developed Fourier transform mass spectrometry (FT-MS, Orbitrap analyzer) was used jointly with two-dimensional nuclear magnetic resonance (2D (1)H and (13)C NMR) to obtain the structural elucidation of the purified compounds. The tandem mass spectrometry (MS/MS) spectra obtained with resonant and nonresonant fragmentation modes were compared, thus providing complementary information about the molecular structure. Two oleanane-type triterpenoids substituted with galloyl and glucosyl moieties were identified, one of which exhibits sweet properties. We term these compounds which have never been reported, Quercotriterpenoside I and II.

  9. Perturbative triples correction for local pair natural orbital based explicitly correlated CCSD(F12*) using Laplace transformation techniques.

    Science.gov (United States)

    Schmitz, Gunnar; Hättig, Christof

    2016-12-21

    We present an implementation of pair natural orbital coupled cluster singles and doubles with perturbative triples, PNO-CCSD(T), which avoids the quasi-canonical triples approximation (T0) where couplings due to off-diagonal Fock matrix elements are neglected. A numerical Laplace transformation of the canonical expression for the perturbative (T) triples correction is used to avoid an I/O and storage bottleneck for the triples amplitudes. Results for a test set of reaction energies show that only very few Laplace grid points are needed to obtain converged energy differences and that PNO-CCSD(T) is a more robust approximation than PNO-CCSD(T0) with a reduced mean absolute deviation from canonical CCSD(T) results. We combine the PNO-based (T) triples correction with the explicitly correlated PNO-CCSD(F12*) method and investigate the use of specialized F12-PNOs in the conventional triples correction. We find that no significant additional errors are introduced and that PNO-CCSD(F12*)(T) can be applied in a black box manner.

  10. Glycine identification in natural jarosites using laser desorption Fourier transform mass spectrometry: implications for the search for life on Mars.

    Science.gov (United States)

    Kotler, J Michelle; Hinman, Nancy W; Yan, Beizhan; Stoner, Daphne L; Scott, Jill R

    2008-04-01

    The jarosite group minerals have received increasing attention since the discovery of jarosite on the martian surface by the Mars Exploration Rover Opportunity. Given that jarosite can incorporate foreign ions within its structure, we have investigated the use of jarosite as an indicator of aqueous and biological processes on Earth and Mars. The use of laser desorption Fourier transform mass spectrometry has revealed the presence of organic matter in several jarosite samples from various locations worldwide. One of the ions from the natural jarosites has been attributed to glycine because it was systematically observed in combinations of glycine with synthetic ammonium and potassium jarosites, Na(2)SO(4) and K(2)SO(4). The ability to observe these organic signatures in jarosite samples with an in situ instrumental technique, such as the one employed in this study, furthers the goals of planetary geologists to determine whether signs of life (e.g., the presence of biomolecules or biomolecule precursors) can be detected in the rock record of terrestrial and extraterrestrial samples.

  11. Noise Reduction planar bone imaging nuclear medicine with the use of wavelet transform: an assessment of its quality

    International Nuclear Information System (INIS)

    Casas Cardoso, Maria del Carmen; Perez Diaz, Marlen; Casas Cardoso, Gladis; Lorenzo Ginori, Juan; Paz Viera, Juan Enrique; Roque Diaz, Reinaldo; Cardenas Barreras, Julian

    2009-01-01

    Diagnostic imaging of Nuclear Medicine (MN), is highly used in Oncology, as it constitutes a noninvasive technique that allows early detection of tumors and assessment of therapeutic response of patients under treatment. However, particularly planar scintigraphy images, can be prone to problems of detectability of small lesions, because they are contaminated with noise, a phenomenon which is accentuated by the inability to increase the dose of the radiopharmaceutical or time acquisition of images of the patient over 'certain levels'. The aim of this work is to improve the detectability of tumors of bone. We describe an algorithm for random noise reduction using the wavelet transform (TW). The quality of the resulting images are evaluated through quantitative metrics such as Signal to Noise Ratio (SNR), the Mean Square Error (NMSEA) and Structural Similarity Index (SSIM). It also includes a subjective assessment of image quality by expert criteria, using a variant of the methodology FROC (Free-Response ROC). It was found that some of the filters designed in the wavelet domain, significantly improve the quality of planar bone imaging in terms of increased signal to noise ratio without implying notable structural distortions, which facilitates clinical diagnosis. (author)

  12. A toolbox and sample object perception data for equalization of natural images

    Directory of Open Access Journals (Sweden)

    Wilma A. Bainbridge

    2015-12-01

    Full Text Available For psychologists and neuroscientists, careful selection of their stimuli is essential, so that low-level visual features such as color or spatial frequency do not serve as confounds between conditions of interest. Here, we detail the Natural Image Statistical Toolbox, which allows scientists to measure, visualize, and control stimulus sets along a set of low-level visual properties. Additionally, we provide a set of object images varying along several perceptual object properties, including physical size and interaction envelope size (i.e., the space around an object transversed during an interaction, serving as a test-bed for the Natural Image Statistical Toolbox. This stimulus set is also a highly characterized set useful to psychology and neuroscience studies on object perception.

  13. Image as the elements of attractiveness of the destinations of the nature-oriented tourism

    Directory of Open Access Journals (Sweden)

    Josef Navrátil

    2012-01-01

    Full Text Available The aim of this paper is to assess the relations between partial components of image of various touristically attractive locations. This research is focused on specific locations in vulnerable areas since the sustainable way of the tourism development concerns them in the highest manner and the touristic pressure on these locations permanently increases. The paper makes effort to extend the usual and nearly traditional understanding of the image in the tourism, which is usually related only to the problems of brand and/or the tourist destination. This is done through a survey realized at 26 selected locations with the aim to obtain 64 completely filled-in questionnaires in each location. Particular statements of respondents concerning the image of the visited location were summarized to the 20 categories. A multidimensional analysis was used to reveal the relations in partial answers. Authors have identified an important number of elements of image of the tourist attractions. By means of the analysis authors have identified differences between historic attractions and nature attractions. However, authors have identified simultaneously both the natural type of the image of the destination and the culture-historical type of image of the destination in all studied locations.

  14. Automated processing of shoeprint images based on the Fourier transform for use in forensic science.

    Science.gov (United States)

    de Chazal, Philip; Flynn, John; Reilly, Richard B

    2005-03-01

    The development of a system for automatically sorting a database of shoeprint images based on the outsole pattern in response to a reference shoeprint image is presented. The database images are sorted so that those from the same pattern group as the reference shoeprint are likely to be at the start of the list. A database of 476 complete shoeprint images belonging to 140 pattern groups was established with each group containing two or more examples. A panel of human observers performed the grouping of the images into pattern categories. Tests of the system using the database showed that the first-ranked database image belongs to the same pattern category as the reference image 65 percent of the time and that a correct match appears within the first 5 percent of the sorted images 87 percent of the time. The system has translational and rotational invariance so that the spatial positioning of the reference shoeprint images does not have to correspond with the spatial positioning of the shoeprint images of the database. The performance of the system for matching partial-prints was also determined.

  15. Capturing the Transformation and Dynamic Nature of an Elementary Teacher Candidate's Identity Development as a Teacher of Science

    Science.gov (United States)

    Naidoo, Kara

    2017-01-01

    This study examines the transformation and dynamic nature of one teacher candidate's (Susan) identity as a learner and teacher of science throughout an innovative science methods course. The goal of this paper is to use theoretically derived themes grounded in cultural-historical activity theory (CHAT) and situated learning theory to determine the…

  16. Encoding and decoding of digital spiral imaging based on bidirectional transformation of light's spatial eigenmodes.

    Science.gov (United States)

    Zhang, Wuhong; Chen, Lixiang

    2016-06-15

    Digital spiral imaging has been demonstrated as an effective optical tool to encode optical information and retrieve topographic information of an object. Here we develop a conceptually new and concise scheme for optical image encoding and decoding toward free-space digital spiral imaging. We experimentally demonstrate that the optical lattices with ℓ=±50 orbital angular momentum superpositions and a clover image with nearly 200 Laguerre-Gaussian (LG) modes can be well encoded and successfully decoded. It is found that an image encoded/decoded with a two-index LG spectrum (considering both azimuthal and radial indices, ℓ and p) possesses much higher fidelity than that with a one-index LG spectrum (only considering the ℓ index). Our work provides an alternative tool for the image encoding/decoding scheme toward free-space optical communications.

  17. Three-dimensional imaging of flat natural and cultural heritage objects by a Compton scattering modality

    Science.gov (United States)

    Guerrero Prado, Patricio; Nguyen, Mai K.; Dumas, Laurent; Cohen, Serge X.

    2017-01-01

    Characterization and interpretation of flat ancient material objects, such as those found in archaeology, paleoenvironments, paleontology, and cultural heritage, have remained a challenging task to perform by means of conventional x-ray tomography methods due to their anisotropic morphology and flattened geometry. To overcome the limitations of the mentioned methodologies for such samples, an imaging modality based on Compton scattering is proposed in this work. Classical x-ray tomography treats Compton scattering data as noise in the image formation process, while in Compton scattering tomography the conditions are set such that Compton data become the principal image contrasting agent. Under these conditions, we are able, first, to avoid relative rotations between the sample and the imaging setup, and second, to obtain three-dimensional data even when the object is supported by a dense material by exploiting backscattered photons. Mathematically this problem is addressed by means of a conical Radon transform and its inversion. The image formation process and object reconstruction model are presented. The feasibility of this methodology is supported by numerical simulations.

  18. Level 0 to 1 processing of the imaging Fourier transform spectrometer GLORIA: generation of radiometrically and spectrally calibrated spectra

    Directory of Open Access Journals (Sweden)

    A. Kleinert

    2014-12-01

    Full Text Available The Gimballed Limb Observer for Radiance Imaging of the Atmosphere (GLORIA is an imaging Fourier transform spectrometer that is capable of operating on various high-altitude research aircraft. It measures the atmospheric emission in the thermal infrared spectral region in limb and nadir geometry. GLORIA consists of a classical Michelson interferometer combined with an infrared camera. The infrared detector has a usable area of 128 × 128 pixels, measuring up to 16 384 interferograms simultaneously. Imaging Fourier transform spectrometers impose a number of challenges with respect to instrument calibration and algorithm development. The optical setup with extremely high optical throughput requires the development of new methods and algorithms for spectral and radiometric calibration. Due to the vast amount of data there is a high demand for scientifically intelligent optimisation of the data processing. This paper outlines the characterisation and processing steps required for the generation of radiometrically and spectrally calibrated spectra. Methods for performance optimisation of the processing algorithm are presented. The performance of the data processing and the quality of the calibrated spectra are demonstrated for measurements collected during the first deployments of GLORIA on aircraft.

  19. COMPRESSING BIOMEDICAL IMAGE BY USING INTEGER WAVELET TRANSFORM AND PREDICTIVE ENCODER

    OpenAIRE

    Anushree Srivastava*, Narendra Kumar Chaurasia

    2016-01-01

    Image compression has become an important process in today’s world of information exchange. It helps in effective utilization of high speed network resources. Medical image compression has an important role in medical field because they are used for future reference of patients. Medical data is compressed in such a way so that the diagnostics capabilities are not compromised or no medical information is lost. Medical imaging poses the great challenge of having compression algorithms that redu...

  20. A Fast Enhanced Secure Image Chaotic Cryptosystem Based on Hybrid Chaotic Magic Transform

    Directory of Open Access Journals (Sweden)

    Srinivas Koppu

    2017-01-01

    Full Text Available An enhanced secure image chaotic cryptosystem has been proposed based on hybrid CMT-Lanczos algorithm. We have achieved fast encryption and decryption along with privacy of images. The pseudorandom generator has been used along with Lanczos algorithm to generate root characteristics and eigenvectors. Using hybrid CMT image, pixels are shuffled to accomplish excellent randomness. Compared with existing methods, the proposed method had more robustness to various attacks: brute-force attack, known cipher plaintext, chosen-plaintext, security key space, key sensitivity, correlation analysis and information entropy, and differential attacks. Simulation results show that the proposed methods give better result in protecting images with low-time complexity.

  1. Automated Detection of Buildings from Heterogeneous VHR Satellite Images for Rapid Response to Natural Disasters

    Directory of Open Access Journals (Sweden)

    Shaodan Li

    2017-11-01

    Full Text Available In this paper, we present a novel approach for automatically detecting buildings from multiple heterogeneous and uncalibrated very high-resolution (VHR satellite images for a rapid response to natural disasters. In the proposed method, a simple and efficient visual attention method is first used to extract built-up area candidates (BACs from each multispectral (MS satellite image. After this, morphological building indices (MBIs are extracted from all the masked panchromatic (PAN and MS images with BACs to characterize the structural features of buildings. Finally, buildings are automatically detected in a hierarchical probabilistic model by fusing the MBI and masked PAN images. The experimental results show that the proposed method is comparable to supervised classification methods in terms of recall, precision and F-value.

  2. Unraveling the nature of electric field- and stress- induced structural transformations in soft PZT by a new powder poling technique.

    Science.gov (United States)

    Kalyani, Ajay Kumar; V, Lalitha K; James, Ajit R; Fitch, Andy; Ranjan, Rajeev

    2015-02-25

    A 'powder-poling' technique was developed to study electric field induced structural transformations in ferroelectrics exhibiting a morphotropic phase boundary (MPB). The technique was employed on soft PZT exhibiting a large longitudinal piezoelectric response (d(33) ∼ 650 pC N(-1)). It was found that electric poling brings about a considerable degree of irreversible tetragonal to monoclinic transformation. The same transformation was achieved after subjecting the specimen to mechanical stress, which suggests an equivalence of stress and electric field with regard to the structural mechanism in MPB compositions. The electric field induced structural transformation was also found to be accompanied by a decrease in the spatial coherence of polarization.

  3. Fourier-transform imaging of cotton and botanical and field trash mixtures

    Science.gov (United States)

    Botanical and field cotton trash comingled with cotton lint can greatly reduce the marketability and quality of cotton. Trash can be found comingled with cotton lint during harvesting, ginning, and processing, thus this study is of interest. Attenuated Total Reflectance-Fourier Transform Infrared (A...

  4. Asymmetric double-image encryption method by using iterative phase retrieval algorithm in fractional Fourier transform domain

    Science.gov (United States)

    Sui, Liansheng; Lu, Haiwei; Ning, Xiaojuan; Wang, Yinghui

    2014-02-01

    A double-image encryption scheme is proposed based on an asymmetric technique, in which the encryption and decryption processes are different and the encryption keys are not identical to the decryption ones. First, a phase-only function (POF) of each plain image is retrieved by using an iterative process and then encoded into an interim matrix. Two interim matrices are directly modulated into a complex image by using the convolution operation in the fractional Fourier transform (FrFT) domain. Second, the complex image is encrypted into the gray scale ciphertext with stationary white-noise distribution by using the FrFT. In the encryption process, three random phase functions are used as encryption keys to retrieve the POFs of plain images. Simultaneously, two decryption keys are generated in the encryption process, which make the optical implementation of the decryption process convenient and efficient. The proposed encryption scheme has high robustness to various attacks, such as brute-force attack, known plaintext attack, cipher-only attack, and specific attack. Numerical simulations demonstrate the validity and security of the proposed method.

  5. Preliminary investigations into macroscopic attenuated total reflection-fourier transform infrared imaging of intact spherical domains: spatial resolution and image distortion.

    Science.gov (United States)

    Everall, Neil J; Priestnall, Ian M; Clarke, Fiona; Jayes, Linda; Poulter, Graham; Coombs, David; George, Michael W

    2009-03-01

    This paper describes preliminary investigations into the spatial resolution of macro attenuated total reflection (ATR) Fourier transform infrared (FT-IR) imaging and the distortions that arise when imaging intact, convex domains, using spheres as an extreme example. The competing effects of shallow evanescent wave penetration and blurring due to finite spatial resolution meant that spheres within the range 20-140 microm all appeared to be approximately the same size ( approximately 30-35 microm) when imaged with a numerical aperture (NA) of approximately 0.2. A very simple model was developed that predicted this extreme insensitivity to particle size. On the basis of these studies, it is anticipated that ATR imaging at this NA will be insensitive to the size of intact highly convex objects. A higher numerical aperture device should give a better estimate of the size of small spheres, owing to superior spatial resolution, but large spheres should still appear undersized due to the shallow sampling depth. An estimate of the point spread function (PSF) was required in order to develop and apply the model. The PSF was measured by imaging a sharp interface; assuming an Airy profile, the PSF width (distance from central maximum to first minimum) was estimated to be approximately 20 and 30 microm for IR bands at 1600 and 1000 cm(-1), respectively. This work has two significant limitations. First, underestimation of domain size only arises when imaging intact convex objects; if surfaces are prepared that randomly and representatively section through domains, the images can be analyzed to calculate parameters such as domain size, area, and volume. Second, the model ignores reflection and refraction and assumes weak absorption; hence, the predicted intensity profiles are not expected to be accurate; they merely give a rough estimate of the apparent sphere size. Much further work is required to place the field of quantitative ATR-FT-IR imaging on a sound basis.

  6. Latent fingerprint wavelet transform image enhancement technique for optical coherence tomography

    CSIR Research Space (South Africa)

    Makinana, S

    2016-09-01

    Full Text Available (FMR) and Equal Error Rate (EER) were used. The results of these two measures gives the FMR of 3% and EER of 1.9% for denoised images which is better than non-denoised images where the EER is 8.7%....

  7. Distinguishing Computer-Generated Graphics from Natural Images Based on Sensor Pattern Noise and Deep Learning

    Directory of Open Access Journals (Sweden)

    Ye Yao

    2018-04-01

    Full Text Available Computer-generated graphics (CGs are images generated by computer software. The rapid development of computer graphics technologies has made it easier to generate photorealistic computer graphics, and these graphics are quite difficult to distinguish from natural images (NIs with the naked eye. In this paper, we propose a method based on sensor pattern noise (SPN and deep learning to distinguish CGs from NIs. Before being fed into our convolutional neural network (CNN-based model, these images—CGs and NIs—are clipped into image patches. Furthermore, three high-pass filters (HPFs are used to remove low-frequency signals, which represent the image content. These filters are also used to reveal the residual signal as well as SPN introduced by the digital camera device. Different from the traditional methods of distinguishing CGs from NIs, the proposed method utilizes a five-layer CNN to classify the input image patches. Based on the classification results of the image patches, we deploy a majority vote scheme to obtain the classification results for the full-size images. The experiments have demonstrated that (1 the proposed method with three HPFs can achieve better results than that with only one HPF or no HPF and that (2 the proposed method with three HPFs achieves 100% accuracy, although the NIs undergo a JPEG compression with a quality factor of 75.

  8. Molecular Imaging: A Useful Tool for the Development of Natural Killer Cell-Based Immunotherapies

    Directory of Open Access Journals (Sweden)

    Prakash Gangadaran

    2017-09-01

    Full Text Available Molecular imaging is a relatively new discipline that allows visualization, characterization, and measurement of the biological processes in living subjects, including humans, at a cellular and molecular level. The interaction between cancer cells and natural killer (NK cells is complex and incompletely understood. Despite our limited knowledge, progress in the search for immune cell therapies against cancer could be significantly improved by dynamic and non-invasive visualization and tracking of immune cells and by visualization of the response of cancer cells to therapies in preclinical and clinical studies. Molecular imaging is an essential tool for these studies, and a multimodal molecular imaging approach can be applied to monitor immune cells in vivo, for instance, to visualize therapeutic effects. In this review, we discuss the usefulness of NK cells in cancer therapies and the preclinical and clinical usefulness of molecular imaging in NK cell-based therapies. Furthermore, we discuss different molecular imaging modalities for use with NK cell-based therapies, and their preclinical and clinical applications in animal and human subjects. Molecular imaging has contributed to the development of NK cell-based therapies against cancers in animal models and to the refinement of current cell-based cancer immunotherapies. Developing sensitive and reproducible non-invasive molecular imaging technologies for in vivo NK cell monitoring and for real-time assessment of therapeutic effects will accelerate the development of NK cell therapies.

  9. Fourier transform imaging of impurities in the unit cells of crystals: Mn in GaAs

    Science.gov (United States)

    Lee, T.-L.; Bihler, C.; Schoch, W.; Limmer, W.; Daeubler, J.; Thieß, S.; Brandt, M. S.; Zegenhagen, J.

    2010-06-01

    The lattice sites of Mn in ferromagnetic (Ga,Mn)As thin films were imaged using the x-ray standing wave technique. The model-free images, obtained straightforwardly by Fourier inversion, disclose immediately that the Mn mostly substitutes the Ga with a small fraction residing on minority sites. The images further reveal variations in the Mn concentrations of the different sites upon post-growth treatments. Subsequent model refinement based on the directly reconstructed images resolves with high precision the complete Mn site distributions. It is found that post-growth annealing increases the fraction of substitutional Mn at the expense of interstitial Mn whereas hydrogenation has little influence on the Mn site distribution. Our study offers an element-specific high-resolution imaging approach for accurately determining the detailed site distributions of dilute concentrations of atoms in crystals.

  10. Using the Natural Scenes’ Edges for Assessing Image Quality Blindly and Efficiently

    Directory of Open Access Journals (Sweden)

    Saifeldeen Abdalmajeed

    2015-01-01

    Full Text Available Two real blind/no-reference (NR image quality assessment (IQA algorithms in the spatial domain are developed. To measure image quality, the introduced approach uses an unprecedented concept for gathering a set of novel features based on edges of natural scenes. The enhanced sensitivity of the human eye to the information carried by edge and contour of an image supports this claim. The effectiveness of the proposed technique in quantifying image quality has been studied. The gathered features are formed using both Weibull distribution statistics and two sharpness functions to devise two separate NR IQA algorithms. The presented algorithms do not need training on databases of human judgments or even prior knowledge about expected distortions, so they are real NR IQA algorithms. In contrast to the most general no-reference IQA, the model used for this study is generic and has been created in such a way that it is not specified to any particular distortion type. When testing the proposed algorithms on LIVE database, experiments show that they correlate well with subjective opinion scores. They also show that the introduced methods significantly outperform the popular full-reference peak signal-to-noise ratio (PSNR and the structural similarity (SSIM methods. Besides they outperform the recently developed NR natural image quality evaluator (NIQE model.

  11. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry

    International Nuclear Information System (INIS)

    Xu, Chen; Chen, Hongmei; Sugiyama, Yuko; Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Chuang, Chia-ying; Schwehr, Kathleen A.; Kaplan, Daniel I.; Yeager, Chris; Roberts, Kimberly A.; Hatcher, Patrick G.; Santschi, Peter H.

    2013-01-01

    Major fractions of radioiodine ( 129 I) are associated with natural organic matter (NOM) in the groundwater and surface soils of the Savannah River Site (SRS). Electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was applied to elucidate the interactions between inorganic iodine species (iodide and iodate) and a fulvic acid (FA) extracted from a SRS surface soil. Iodate is likely reduced to reactive iodine species by the lignin- and tannin-like compounds or the carboxylic-rich alicyclic molecules (CRAM), during which condensed aromatics and lignin-like compounds were generated. Iodide is catalytically oxidized into reactive iodine species by peroxides, while FA is oxidized by peroxides into more aliphatic and less aromatic compounds. Only 9% of the total identified organo-iodine compounds derived from molecules originally present in the FA, whereas most were iodine binding to newly-produced compounds. The resulting iodinated molecules were distributed in three regions in the van Krevelen diagrams, denoting unsaturated hydrocarbons, lignin and protein. Moreover, characteristics of these organo-iodine compounds, such as their relatively low O/C ratios ( 2 or -HNCOR groups and a ring-activating functionality to favor the electrophilic substitution. The ESI-FTICR-MS technique provides novel evidence to better understand the reactivity and scavenging properties of NOM towards radioiodine and possible influence of NOM on 129 I migration. Highlights: ► IO 3 − reduced by lignin-, tannin-like compounds/carboxylic-rich alicyclic molecules ► Condensed aromatic and lignin-like compounds generated after iodate-iodination ► Aliphatic and less aromatic compounds formed after iodide-iodination ► Organo-iodine identified as unsaturated hydrocarbons, lignin and protein ► Organo-iodine with low O/C ratios imply less environmental mobility

  12. Novel molecular-level evidence of iodine binding to natural organic matter from Fourier transform ion cyclotron resonance mass spectrometry

    Energy Technology Data Exchange (ETDEWEB)

    Xu, Chen, E-mail: xuchen66@tamu.edu [Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A and M University, Building 3029, Galveston, TX 77551 (United States); Chen, Hongmei [Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 (United States); Sugiyama, Yuko [Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 (United States); University of Hyogo, 1-1-12, Shinzaike-honcho, Himeji, Hyogo 670-0092 (Japan); Zhang, Saijin; Li, Hsiu-Ping; Ho, Yi-Fang; Chuang, Chia-ying; Schwehr, Kathleen A. [Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A and M University, Building 3029, Galveston, TX 77551 (United States); Kaplan, Daniel I. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Yeager, Chris [Los Alamos National Laboratory, Los Alamos, NM 87545 (United States); Roberts, Kimberly A. [Savannah River National Laboratory, Aiken, SC 29808 (United States); Hatcher, Patrick G. [Department of Chemistry and Biochemistry, Old Dominion University, Norfolk, VA 23529 (United States); Santschi, Peter H. [Laboratory for Environmental and Oceanographic Research, Department of Marine Sciences, Texas A and M University, Building 3029, Galveston, TX 77551 (United States)

    2013-04-01

    Major fractions of radioiodine ({sup 129}I) are associated with natural organic matter (NOM) in the groundwater and surface soils of the Savannah River Site (SRS). Electrospray ionization coupled to Fourier transform ion cyclotron resonance mass spectrometry (ESI-FTICR-MS) was applied to elucidate the interactions between inorganic iodine species (iodide and iodate) and a fulvic acid (FA) extracted from a SRS surface soil. Iodate is likely reduced to reactive iodine species by the lignin- and tannin-like compounds or the carboxylic-rich alicyclic molecules (CRAM), during which condensed aromatics and lignin-like compounds were generated. Iodide is catalytically oxidized into reactive iodine species by peroxides, while FA is oxidized by peroxides into more aliphatic and less aromatic compounds. Only 9% of the total identified organo-iodine compounds derived from molecules originally present in the FA, whereas most were iodine binding to newly-produced compounds. The resulting iodinated molecules were distributed in three regions in the van Krevelen diagrams, denoting unsaturated hydrocarbons, lignin and protein. Moreover, characteristics of these organo-iodine compounds, such as their relatively low O/C ratios (< 0.2 or < 0.4) and yet some degree of un-saturation close to that of lignin, have multiple important environmental implications concerning possibly less sterically-hindered aromatic ring system for iodine to get access to and a lower hydrophilicity of the molecules thus to retard their migration in the natural aquatic systems. Lastly, ∼ 69% of the identified organo-iodine species contains nitrogen, which is presumably present as -NH{sub 2} or -HNCOR groups and a ring-activating functionality to favor the electrophilic substitution. The ESI-FTICR-MS technique provides novel evidence to better understand the reactivity and scavenging properties of NOM towards radioiodine and possible influence of NOM on {sup 129}I migration. Highlights: ► IO{sub 3}{sup

  13. The Nature of Self-Directed Learning and Transformational Learning in Self-Managing Bipolar Disorder to Stay Well

    Science.gov (United States)

    Francik, Wendy A.

    2012-01-01

    The purpose of the research was to explore the self-directed learning and transformational learning experiences among persons with bipolar disorder. A review of previous research pointed out how personal experiences with self-directed learning and transformational learning facilitated individuals' learning to manage HIV, Methicillan-resitant…

  14. Partial Fingerprint Image Enhancement using Region Division Technique and Morphological Transform

    International Nuclear Information System (INIS)

    Ahmad, A.; Arshad, I.; Raja, G.

    2015-01-01

    Fingerprints are the most renowned biometric trait for identification and verification. The quality of fingerprint image plays a vital role in feature extraction and matching. Existing algorithms work well for good quality fingerprint images and fail for partial fingerprint images as they are obtained from excessively dry fingers or affected by disease resulting in broken ridges. We propose an algorithm to enhance partial fingerprint images using morphological operatins with region division technique. The proposed method divides low quality image into six regions from top to bottom. Morphological operations choose an appropriate Structuring Element (SE) that joins broken ridges and thus enhance the image for further processing. The proposed method uses SE line with suitable angle theta and radius r in each region based on the orientation of the ridges. The algorithm is applied to 14 low quality fingerprint images from FVC-2002 database. Experimental results show that percentage accuracy has been improved using the proposed algorithm. The manual markup has been reduced and accuracy of 76.16% with Equal Error Rate (EER) of 3.16% is achieved. (author)

  15. Image secure transmission for optical orthogonal frequency-division multiplexing visible light communication systems using chaotic discrete cosine transform

    Science.gov (United States)

    Wang, Zhongpeng; Zhang, Shaozhong; Chen, Fangni; Wu, Ming-Wei; Qiu, Weiwei

    2017-11-01

    A physical encryption scheme for orthogonal frequency-division multiplexing (OFDM) visible light communication (VLC) systems using chaotic discrete cosine transform (DCT) is proposed. In the scheme, the row of the DCT matrix is permutated by a scrambling sequence generated by a three-dimensional (3-D) Arnold chaos map. Furthermore, two scrambling sequences, which are also generated from a 3-D Arnold map, are employed to encrypt the real and imaginary parts of the transmitted OFDM signal before the chaotic DCT operation. The proposed scheme enhances the physical layer security and improves the bit error rate (BER) performance for OFDM-based VLC. The simulation results prove the efficiency of the proposed encryption method. The experimental results show that the proposed security scheme not only protects image data from eavesdroppers but also keeps the good BER and peak-to-average power ratio performances for image-based OFDM-VLC systems.

  16. Quantitation of pulmonary nodule's border structure by means of Fourier transform by using chest X-ray CT images

    International Nuclear Information System (INIS)

    Shikata, Hidenori; Masuyama, Hiroshi; Kido, Shoji

    1998-01-01

    In order to evaluate quantitatively the border structure of pulmonary nodules by using chest X-ray CT images, we investigated whether the sum of high-frequency elements of the power spectrum in a Fourier-transformed nodule's contour line becomes a valuable measure of the border structure of pulmonary nodules. We expect that this measure clearly reflects the radiologic characteristics of a nodule, that is, the contour line is clear or unclear in benign or malignant nodules, respectively. We evaluated and analyzed images statistically for 31 patients (15 benign, 16 malignant), and we were able to recognize a measurable difference between the benign and malignant cases. We conclude that we can evaluate the border structure of a nodule by our proposed measure, and that this measure is valuable for quantitative differential diagnosis. (author)

  17. Algorithm for three dimension reconstruction of magnetic resonance tomographs and X-ray images based on Fast Fourier Transform

    International Nuclear Information System (INIS)

    Bueno, Josiane M.; Traina, Agma Juci M.; Cruvinel, Paulo E.

    1995-01-01

    This work presents an algorithm for three-dimensional digital image reconstruction. Such algorithms based on the combination of both a Fast Fourier Transform method with Hamming Window and the use of a tri-linear interpolation function. The algorithm allows not only the generation of three-dimensional spatial spin distribution maps for Magnetic Resonance Tomography data but also X and Y-rays linear attenuation coefficient maps for CT scanners. Results demonstrates the usefulness of the algorithm in three-dimensional image reconstruction by doing first two-dimensional reconstruction and rather after interpolation. The algorithm was developed in C++ language, and there are two available versions: one under the DOS environment, and the other under the UNIX/Sun environment. (author)

  18. Imaging near-surface heterogeneities by natural migration of surface waves

    KAUST Repository

    Liu, Zhaolun

    2016-09-06

    We demonstrate that near-surface heterogeneities can be imaged by natural migration of backscattered surface waves in common shot gathers. No velocity model is required because the data are migrated onto surface points with the virtual Green\\'s functions computed from the shot gathers. Migrating shot gathers recorded by 2D and 3D land surveys validates the effectiveness of detecting nearsurface heterogeneities by natural migration. The implication is that more accurate hazard maps can be created by migrating surface waves in land surveys.

  19. Discrete Fourier Transform in a Complex Vector Space

    Science.gov (United States)

    Dean, Bruce H. (Inventor)

    2015-01-01

    An image-based phase retrieval technique has been developed that can be used on board a space based iterative transformation system. Image-based wavefront sensing is computationally demanding due to the floating-point nature of the process. The discrete Fourier transform (DFT) calculation is presented in "diagonal" form. By diagonal we mean that a transformation of basis is introduced by an application of the similarity transform of linear algebra. The current method exploits the diagonal structure of the DFT in a special way, particularly when parts of the calculation do not have to be repeated at each iteration to converge to an acceptable solution in order to focus an image.

  20. An Investigation of Zimbabwe High School Chemistry Students' Laboratory Work-Based Images of the Nature of Science

    Science.gov (United States)

    Vhurumuku, Elaosi; Holtman, Lorna; Mikalsen, Oyvind; Kolsto, Stein D.

    2006-01-01

    This study investigates the proximal and distal images of the nature of science (NOS) that A-level students develop from their participation in chemistry laboratory work. We also explored the nature of the interactions among the students' proximal and distal images of the NOS and students' participation in laboratory work. Students' views of the…