WorldWideScience

Sample records for natural greenhouse effect

  1. Peat and the greenhouse effect - Comparison of peat with coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.

    1993-01-01

    The earth's climate is effected both by natural factors and human activities. So called greenhouse gas emissions increase the increment of the temperature of the air nearby the earth's surface, due to which the social changes can be large. The increment of greenhouse gas concentration in the atmosphere is due to increasing energy consumption. About 50 % of the climatic changes are caused by increase of the CO 2 concentration in the atmosphere. Other gases, formed in the energy production, intensifying the greenhouse effect are methane and nitrous oxide. The effect of greenhouse gases is based on their ability to absorb infrared radiation coming from the earth. This presentation discusses some of the greenhouse effect caused by some peat production and utilization chains in comparison with corresponding effects of coal, oil, natural gas and wood. The instantaneous greenhouse effects and the cumulative effects of the emissions of the gases (CO 2 , CH 4 and N 2 O) during a time period has been reviewed. The greenhouse effect has been calculated as CO 2 - equivalents. (5 figs.)

  2. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    Directory of Open Access Journals (Sweden)

    Alejandro López

    2013-08-01

    Full Text Available Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1, and at low wind speed (≈ 1.8 m s-1 the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening to the windward side and two side vents, the windward one being blocked by another greenhouse close to it, while the leeward one is free of obstacles. When no fans are used, air enters through the roof vent and exits through both side vents, thus flowing contrary to the thermal effect which causes hot air to rise and impairing the natural ventilation of the greenhouse. Using fans inside the greenhouse helps the air to circulate and mix, giving rise to a more homogeneous inside temperature and increasing the average value of normalized air velocity by 365 %. These fans also increase the average values of kinetic turbulence energy inside the greenhouse by 550 % compared to conditions of natural ventilation. As the fans are placed 4 m away from the side vents, their effect on the entrance of outside air is insufficient and they do not help to reduce the inside temperature on hot days with little wind. It is therefore recommended to place the fans closer to the side vents to allow an additional increase of the air exchange rate of greenhouses.

  3. Sonic anemometry to measure natural ventilation in greenhouses.

    Science.gov (United States)

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco

    2011-01-01

    The present work has developed a methodology for studying natural ventilation in Mediterranean greenhouses by means of sonic anemometry. In addition, specific calculation programmes have been designed to enable processing and analysis of the data recorded during the experiments. Sonic anemometry allows us to study the direction of the airflow at all the greenhouse vents. Knowing through which vents the air enters and leaves the greenhouse enables us to establish the airflow pattern of the greenhouse under natural ventilation conditions. In the greenhouse analysed in this work for Poniente wind (from the southwest), a roof vent designed to open towards the North (leeward) could allow a positive interaction between the wind and stack effects, improving the ventilation capacity of the greenhouse. The cooling effect produced by the mass of turbulent air oscillating between inside and outside the greenhouse at the side vents was limited to 2% (for high wind speed, u(o) ≥ 4 m s(-1)) reaching 36.3% when wind speed was lower (u(o) = 2 m s(-1)).

  4. The greenhouse effect and natural fluctuations of the climate

    International Nuclear Information System (INIS)

    Schoenwiese, C.D.

    1993-01-01

    There is a straight line connecting the first estimate in 1896 of worldwide climate changes due to the increasing use of fossil sources of energy with the Climate Convention of the United Nations at the 1992 Environmental Summit. Extensive model calculations exist of the 'greenhouse effect', in which the lower atmosphere is heated by manmade emissions of trace gases affecting the climate. However, the anticipated changes are not restricted to the temperature of the air; they affect the climate as a whole worldwide. As a consequence, the German Federal Government, in addition to its ban on CFCs, plans to reduce manmade carbon dioxide emissions by 25 or 30% by 2005. Natural fluctuations of the climate compete with the greenhouse effect: Volcanic and solar effects, but also random variations within the complicated interactions in the climatic system (atmosphere - oceans - ice regions - biosphere - land surface). Mathematical and statistical analyses of the superposition of such climatic mechanisms, which are based on data from observations, result in a risk analysis at a high level of probability. (orig.) [de

  5. Greenhouse effects of the peat production and use as compared to coal, oil, natural gas and wood

    International Nuclear Information System (INIS)

    Hillebrand, K.; Wihersaari, M.

    1993-01-01

    This report examines the greenhouse effects of greenhouse gas emissions (carbon dioxide, methane and nitrous oxide) arising from certain production and utilization chains of peat and compares them with the corresponding effects associated with the production and utilization chains of coal, oil, natural gas and wood. In order to estimate the greenhouse effects of the peat production and utilization chains, the initial state of the peat bog together with the instantaneous and cumulative greenhouse effects associated with the production and burning of peat as well as subsequent use of the production area were taken into account. The initial state of the peat bog was taken to be either a bog in its natural sale, a forest-drained bog or a cultivated peatland. As regards alternatives for subsequent use of the peat production area, afforestation, paludification and lake formation were all examined

  6. The greenhouse advantage of natural gas appliances

    International Nuclear Information System (INIS)

    Coombe, N.

    2000-01-01

    The life cycle report prepared recently by Energetics for the AGA, Assessment of Greenhouse Gas Emissions from Natural Gas, demonstrates clearly the greenhouse advantage natural gas has over coal in generating electricity. This study also goes one step further in applying this life cycle approach to the use of space and water heating within the home. The study shows the significant green-house advantage that natural gas appliances have over electric appliances. Findings from other studies also support this claim. The natural gas suppliers are encouraged to take advantage of the marketing opportunity that these studies provide, offering the householders the fuel that will significantly reduce their contribution to greenhouse emission

  7. Greenhouse effect: Myth or reality

    International Nuclear Information System (INIS)

    Martin, J.L.

    1992-01-01

    This paper debates on greenhouse effect controversy. Natural greenhouse effect is beneficent but additional greenhouse effect, in relation with human activities, can present a major risk for humanity. However an international agreement is difficult owing to the enormous costs which could not be endured by South economies. A tax on carbon dioxide emissions would have for consequence a wave of industrial delocalizations without precedent with important unemployment in Europe and no impact on additional greenhouse effect because it is a radiative effect and it is not a classic local chemical pollution. 11 refs., 10 figs

  8. Lay perceptions of the greenhouse effect

    International Nuclear Information System (INIS)

    Peretti-Watel, P.; Hammer, B.

    2006-01-01

    Using the data from the French Environment Barometer EDF-RD 2004 (national representative sample of French citizens aged over 15) and surveys by ADEME between 2000 and 2005, the paper investigates lay perceptions of the causes and consequences of the greenhouse effect, which may be considered as archetypical of contemporary environmental risks. Beyond lay lack of knowledge, the greenhouse effect gives rise to coherent and meaningful cognitions, including causal explanations, shaped by the pre-existing cognitive framework. This cognitive work, based on analogic rather than scientific thought, strings together the greenhouse effect, ozone depletion, air pollution and even nuclear power. The cognitive process is also fed by the individuals' general conceptions of Nature and of the rights and duties of humankind towards Nature. People are not greatly worried about the unseen and controversial consequences of the greenhouse effect: such worry could be one of those 'elite fears' mentioned by Beck. Finally, while the efficiency of public policies to counter the greenhouse effect requires extensive societal involvement, low confidence towards both political and scientific authorities may prevent the population from becoming aware of the environmental stakes tied to the greenhouse effect. (authors)

  9. Greenhouse gas emissions from high demand, natural gas-intensive energy scenarios

    International Nuclear Information System (INIS)

    Victor, D.G.

    1990-01-01

    Since coal and oil emit 70% and 30% more CO 2 per unit of energy than natural gas (methane), fuel switching to natural gas is an obvious pathway to lower CO 2 emissions and reduced theorized greenhouse warming. However, methane is, itself, a strong greenhouse gas so the CO 2 advantages of natural gas may be offset by leaks in the natural gas recovery and supply system. Simple models of atmospheric CO 2 and methane are used to test this hypothesis for several natural gas-intensive energy scenarios, including the work of Ausubel et al (1988). It is found that the methane leaks are significant and may increase the total 'greenhouse effect' from natural gas-intensive energy scenarios by 10%. Furthermore, because methane is short-lived in the atmosphere, leaking methane from natural gas-intensive, high energy growth scenarios effectively recharges the concentration of atmospheric methane continuously. For such scenarios, the problem of methane leaks is even more serious. A second objective is to explore some high demand scenarios that describe the role of methane leaks in the greenhouse tradeoff between gas and coal as energy sources. It is found that the uncertainty in the methane leaks from the natural gas system are large enough to consume the CO 2 advantages from using natural gas instead of coal for 20% of the market share. (author)

  10. Effectiveness of horizontal air flow fans supporting natural ventilation in a Mediterranean multi-span greenhouse

    OpenAIRE

    López, Alejandro; Valera, Diego Luis; Molina-Aiz, Francisco Domingo; Peña, Araceli

    2013-01-01

    Natural ventilation is the most important method of climate control in Mediterranean greenhouses. In this study, the microclimate and air flow inside a Mediterranean greenhouse were evaluated by means of sonic anemometry. Experiments were carried out in conditions of moderate wind (≈ 4.0 m s-1), and at low wind speed (≈ 1.8 m s-1) the natural ventilation of the greenhouse was supplemented by two horizontal air flow fans. The greenhouse is equipped with a single roof vent opening t...

  11. Nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weinberg, A.M.

    1990-01-01

    The extent and nature of the greenhouse effect are examined and placed in an environmental and historical context. The effect of energy policies on the greenhouse effect are discussed and the offending countries are identified. What energy policies would mitigate the greenhouse effect, and yet make good sense whether or not the effect proves to be real? Conservation is a desirable though not completely understood strategy. Conservation may not be a better bet in every instance than is increase in supply. If the greenhouse effect turns out to be real, nuclear energy can be one of the supply options that we turn to. If the greenhouse effect turns out to be false, and acceptable, economic nuclear option is surely better than one that does nothing but create strife and dissension. Let us remember that nuclear energy is the only large-scale non-fossil source other than hydropower that has been demonstrated to be practical. (author)

  12. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    1989-01-01

    Carbon dioxide from fossil fuel combustion accounts for about 40% of the global warming due to the 'greenhouse effect'. Thus national energy policies of the fuels used to generate electricity can have a significant effect on the levels of gas emissions which contribute to the 'greenhouse effect'. The more efficient use of energy is the first way of controlling the increase in gas emissions. The use of natural gas instead of coal or oil would also be beneficial but the reserves of natural gas are limited. The use of nuclear-generated electricity has already reduced the level of global warming by 3% but could have a greater effect in the future. Ways in which the government could reduce 'greenhouse' gas emissions are listed. These include the more extensive use of nuclear power for generating electricity not only for domestic but industrial uses. (U.K.)

  13. Effects of 17β-estradiol on emissions of greenhouse gases in simulative natural water body.

    Science.gov (United States)

    Ruan, Aidong; Zhao, Ying; Liu, Chenxiao; Zong, Fengjiao; Yu, Zhongbo

    2015-05-01

    Environmental estrogens are widely spread across the world and are increasingly thought of as serious contaminators. The present study looks at the influence of different concentrations of 17β-estradiol on greenhouse gas emissions (CO2 , CH4 , and N2 O) in simulated systems to explore the relationship between environmental estrogen-pollution and greenhouse gas emissions in natural water bodies. The present study finds that 17β-estradiol pollution in simulated systems has significant promoting effects on the emissions of CH4 and CO2 , although no significant effects on N2 O emissions. The present study indicates that 17β-estradiol has different effects on the different elements cycles; the mechanism of microbial ecology is under review. © 2015 SETAC.

  14. Effects of ground insulation and greenhouse microenvironment on ...

    African Journals Online (AJOL)

    A study was conducted at Egerton University, Njoro, Kenya to establish the potential of plastic digester to produce biogas under natural and greenhouse microenvironment. The specific objectives were to evaluate the effects of greenhouse and ground insulation on the rate and quality of biogas generation. A greenhouse ...

  15. 76 FR 22825 - Mandatory Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems

    Science.gov (United States)

    2011-04-25

    ... Reporting of Greenhouse Gases: Petroleum and Natural Gas Systems AGENCY: Environmental Protection Agency... Subpart W: Petroleum and Natural Gas Systems of the Greenhouse Gas Reporting Rule. As part of the... greenhouse gas emissions for the petroleum and natural gas systems source category of the greenhouse gas...

  16. INFLUENCE OF AGRICULTURAL POLLUTANTS ON THE GREENHOUSE EFFECT

    Directory of Open Access Journals (Sweden)

    B. LIXANDRU

    2007-05-01

    Full Text Available The general heating of our planet has become a proved fact today, and its consequences are observed in more climatic disturbances which affect almost the whole Earth. At the base of this climatic process there is the excessive development of the greenhouse effect. The greenhouse effect is a natural physical phenomenon which has gradually developed with the geophysical and biological evolution of the Earth, and its consequence is the thermical constancy of +150C as medium global temperature. The main physical factories which contribute at the realization of greenhouse effect are CO2, watery vapors, NOx and CH4. Naturally, the greenhouse gases have the perfectly global self-regulation cycles. This capacity of self-regulation seems to be troubled by the huge amounts of polluted gaseous thrown in the air by different and usual human activities. In this sense, the agriculture has an important role and the main pollution sources are the rice plantations, inorganic fertilizations and animal farms.

  17. Assessment of greenhouse gas emissions from natural gas

    International Nuclear Information System (INIS)

    Anon

    2000-01-01

    The study, 'Assesment of greenhouse gas emission from natural gas' by independent consultants Energetics Pty Ltd, shows that natural gas has significantly fewer greenhouses gas emissions than either black or brown cola for the defined life cycle stages. The life cycle emissions from natural gas use by an Australian Major User are approximately 50% less than the emissions from Victorian brown coal and approximately 38% less than the emissions from Australian average black coal. Australian Best Practice gas fired electricity generation is estimated to emit between 514 and 658 kg CO 2 e/MWh. By comparison, Australian Best Practice coal-fired electricity generation is estimated to emit between 907 and 1,246 kg CO 2 e/MWh for black and brown coal respectively. Greenhouse gas emissions from Australian Best Practice gas-fired electricity generation using combined cycle gas turbines (including full fuel cycle emissions) vary from 41% to 46% of the emissions from brown coal-fired electricity generation and 57% to 64% of emissions from black coal-fired electricity generation. Greenhouse gas emissions from direct gas supply water heating range from 1,470 to 2,042 kilograms per annum. This compares with emissions of 1,922 to 2,499 kg for electric heating from gas-fired electricity generation and 3,975 to 5,393 kg for coal-fired electricity generation. The implications for greenhouse policy nationally are also discussed, emphasising the need to review national energy policy, currently tied to 'fuel neutrality' doctrine

  18. Greenhouse Gases

    Science.gov (United States)

    ... Production of Hydrogen Use of Hydrogen Greenhouse Gases Basics | | Did you know? Without naturally occurring greenhouse gases, the earth would be too cold to support life as we know it. Without the greenhouse effect, ...

  19. Grappling with greenhouse

    International Nuclear Information System (INIS)

    Mitchell, C.D.

    1992-01-01

    A natural greenhouse effect keeps the Earth at a temperature suitable for life. Some of the gases responsible for the greenhouse effect are increasing at an unprecedented rate because of human activity. These increased levels of greenhouse gases in the atmosphere will strengthen the natural greenhouse effect, leading to an overall warming of the Earth's surface. Global warming resulting from the enhanced greenhouse effect is likely to be obscured by normal climatic fluctuations for another ten years or more. The extent of human-caused climate change will depend largely on future concentrations of greenhouse gases in the atmosphere. In turn, the composition of the atmosphere depends on the release of greenhouse gases. Releases are hard to predict, because they require an understanding of future human activity. The composition of the atmosphere also depends on the processes which remove greenhouse gases from it. This booklet is summarizing the latest research results in the form of climate change scenarios. The present scenarios of change are based on climate models, together with an understanding of how present-day climate, with its inherent natural variability, affects human activities. These scenarios present a coherent range of future possibilities for climate; they are not predictions but they serve as a useful starting point. It is estimated that human-caused climate change will affect all aspects of life in Australia, including our cities, agriculture, pests and diseases, fisheries and natural ecosystems. 15 figs., ills

  20. Recent data concerning contribution of various greenhouse effect gas sources

    International Nuclear Information System (INIS)

    Lambert, G.

    1991-01-01

    The greenhouse effect contributes to a +33 degrees C warming of the earth atmosphere (mean temperature of +15 deg C instead of -18 deg C without any greenhouse effect). The roles of water vapour, carbon dioxide and methane in greenhouse effect are discussed; the CH 4 raise seems to be due to rice cultivation and cattle farming; the CO 2 raise is mainly due oil, coal and natural gas burning. Greenhouse gas increase will cause a 2 to 4 deg C increase of the earth mean temperature but the anthropogenous causes will be obviously seen only during the next century

  1. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Science.gov (United States)

    Jin, Tea-Hwan; Shin, Ki-Yeol; Yoon, Si-Won; Im, Yong-Hoon; Chang, Ki-Chang

    2017-11-01

    A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  2. Simulation of thermal environment in a three-layer vinyl greenhouse by natural ventilation control

    Directory of Open Access Journals (Sweden)

    Jin Tea-Hwan

    2017-01-01

    Full Text Available A high energy, efficient, harmonious, ecological greenhouse has been highlighted by advanced future agricultural technology recently. This greenhouse is essential for expanding the production cycle toward growth conditions through combined thermal environmental control. However, it has a negative effect on farming income via huge energy supply expenses. Because not only production income, but operating costs related to thermal load for thermal environment control is important in farming income, it needs studies such as a harmonious ecological greenhouse using natural ventilation control. This study is simulated for energy consumption and thermal environmental conditions in a three-layered greenhouse by natural ventilation using window opening. A virtual 3D model of a three-layered greenhouse was designed based on the real one in the Gangneung area. This 3D model was used to calculate a thermal environment state such as indoor temperature, relative humidity, and thermal load in the case of a window opening rate from 0 to 100%. There was also a heat exchange operated for heating or cooling controlled by various setting temperatures. The results show that the cooling load can be reduced by natural ventilation control in the summer season, and the heat exchange capacity for heating can also be simulated for growth conditions in the winter season.

  3. The greenhouse effect

    International Nuclear Information System (INIS)

    Berger, A.

    1991-01-01

    The greenhouse effect on earth can be defined as the long wave energy trapped in the atmosphere. Climate forcing and climate system response within which climate feedback mechanisms are contained are determined. Quantitative examples illustrate what could happen if the greenhouse effect is perturbed by human activities, in particular if CO2 atmospheric concentration would double in the future. Recent satellite measurements of the greenhouse effect are given. The net cooling effect of clouds and whether or not there will be less cooling by clouds as the planet warms are also discussed

  4. Heat Transfer and Fluid Flow in Naturally Ventilated Greenhouses

    Directory of Open Access Journals (Sweden)

    M. Elashmawy

    2017-08-01

    Full Text Available In this paper, heat transfer and fluid flow in naturally ventilated greenhouses are studied numerically for tow configuration according to the number and positions of the opening. The equations governing the phenomenon are developed using the stream function-vorticity formalism and solved using the finite volume method. The aim of the study is to investigate how buoyancy forces influence airflow and temperature patterns inside the greenhouse. Rayleigh number is the main parameter which changes from 103 to 106 and Prandtl number is fixed at Pr=0.71. Results are reported in terms of stream function, isotherms and average Nusselt number. It is found that the flow structure is sensitive to the value of Rayleigh number and the number of openings. Also, that using asymmetric opening positions improve the natural ventilation and facilitate the occurrence of buoyancy induced upward cross-airflow inside the greenhouse.

  5. The greenhouse effect - little strokes fell great oaks

    International Nuclear Information System (INIS)

    Kanestroem, Ingolf

    2003-01-01

    It is a common assumption that carbon dioxide and other greenhouse gases constitute only a very small fraction of the atmosphere and thus cannot be as important as the climate researchers maintain. However, the adage of the title is appropriate for the impact of the greenhouse gases on the atmosphere. During the last 25 years, the global temperature has risen 0,5 o C, and during the last century by 0,75 o C. Thus according to the UN Climate Panel, there is evidence of a noticeable anthropogenic impact on the global climate. The article discusses the concept of greenhouse effect, the composition of the atmosphere, greenhouse gases and their importance, emission of carbon dioxide and natural climate changes

  6. Greenhouse effect: science or religion of the 21. century

    International Nuclear Information System (INIS)

    Ploye, F.

    2000-01-01

    This book is a study about the natural phenomenon of the greenhouse effect, about its importance for the development of life on the Earth's surface and about the effect of human activities on its enhancement and on the future climatic changes. In particular, the increase of the greenhouse gases content of the atmosphere due to the combustion of fossil fuels is analyzed and some possible solutions to oppose this evolution are evoked. (J.S.)

  7. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D.M.; Tolland, H.G.

    1989-05-01

    Global levels of the ''Greenhouse'' gases - carbon dioxide, the chlorofluorocarbons (CFCs), methane, nitrous oxide and tropospheric ozone are increasing as a result of man's activities. This increase is widely expected to bring about a rise in global temperature with concomitant environmental impacts. Global warming has been observed over the last century, and the last decade has seen seven of the warmest years on record. There has also been increased variability in the weather (an expected consequence of global warming). However, these possible manifestations of the Greenhouse Effect are within natural variations and proof must await more definitive indications. A brief outline of current views on the Greenhouse Effect is given. This report addresses the energy sector using CO 2 emissions as a measure of its ''Greenhouse'' contribution. This approach understates the energy sector contribution. However, the difference is within the error band. It seems likely that the warming effect of non-energy related emissions will remain the same and there will be more pressure to reduce the emissions from the energy sector. To assess policy options the pattern of future energy demand is estimated. Two scenarios have been adopted to provide alternative frameworks. Both assume low energy growth projections based on increased energy efficiency. The role of nuclear power in reducing carbon dioxide emissions is considered. (author)

  8. Natural ventilation of large multi-span greenhouses

    NARCIS (Netherlands)

    Jong, de T.

    1990-01-01

    In this thesis the ventilation of large multi-span greenhouses caused by wind and temperature effects is studied. Quantification of the ventilation is important to improve the control of the greenhouse climate.

    Knowledge of the flow characteristics of the one-side-mounted windows of

  9. The enhanced greenhouse signal versus natural variations in observed climate time series: a statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwiese, C D [J.W. Goethe Univ., Frankfurt (Germany). Inst. for Meteorology and Geophysics

    1996-12-31

    It is a well-known fact that human activities lead to an atmospheric concentration increase of some IR-active trace gases (greenhouse gases GHG) and that this influence enhances the `greenhouse effect`. However, there are major quantitative and regional uncertainties in the related climate model projections and the observational data reflect the whole complex of both anthropogenic and natural forcing of the climate system. This contribution aims at the separation of the anthropogenic enhanced greenhouse signal in observed global surface air temperature data versus other forcing using statistical methods such as multiple (multiforced) regressions and neural networks. The competitive natural forcing considered are volcanic and solar activity, in addition the ENSO (El Nino/Southern Oscillation) mechanism. This analysis will be extended also to the NAO (North Atlantic Oscillation) and anthropogenic sulfate formation in the troposphere

  10. The enhanced greenhouse signal versus natural variations in observed climate time series: a statistical approach

    Energy Technology Data Exchange (ETDEWEB)

    Schoenwiese, C.D. [J.W. Goethe Univ., Frankfurt (Germany). Inst. for Meteorology and Geophysics

    1995-12-31

    It is a well-known fact that human activities lead to an atmospheric concentration increase of some IR-active trace gases (greenhouse gases GHG) and that this influence enhances the `greenhouse effect`. However, there are major quantitative and regional uncertainties in the related climate model projections and the observational data reflect the whole complex of both anthropogenic and natural forcing of the climate system. This contribution aims at the separation of the anthropogenic enhanced greenhouse signal in observed global surface air temperature data versus other forcing using statistical methods such as multiple (multiforced) regressions and neural networks. The competitive natural forcing considered are volcanic and solar activity, in addition the ENSO (El Nino/Southern Oscillation) mechanism. This analysis will be extended also to the NAO (North Atlantic Oscillation) and anthropogenic sulfate formation in the troposphere

  11. The greenhouse effect. Drivhuseffekten; Jordens atmosfaere og magnetfelt

    Energy Technology Data Exchange (ETDEWEB)

    Egeland, A; Henriksen, T [Oslo Univ., Fysisk Inst. (Norway); Kanestroem, I [Oslo Univ., Inst. for Geofysikk (Norway)

    1990-01-01

    This book deals with what is popularly called ''the greenhouse effect''. The starting point is the sun, and it is considered how the atmosphere and magnetic field of the earth protect us against the radiation from the outer space. The atmosphere contains gases in a quantity and a mixture that make conditions suitable for the life on the earth. We are dependent on the existing greenhouse effect, but are anxious that the emitted gases caused by human activities, will increase the temperature in an alarming degree. The book is addressed to all who have an interest in the nature and the environment. It may be used in colleges and in courses for environmental studies. It gives information to politicians and other people who have to make decisions in the management of the nature and the resources of the earth. 70 figs., 15 tabs.

  12. The greenhouse effect

    International Nuclear Information System (INIS)

    2004-01-01

    In the framework of the sustainable development, this paper presents the greenhouse effect and its impact on the climatic change, the world interest from Rio to Buenos Aires, the human activities producing the carbon dioxide and responsible of the greenhouse effect, the carbon dioxide emission decrease possibilities and shows the necessity of the electric power producers contribution. (A.L.B.)

  13. The Peculiar Negative Greenhouse Effect Over Antarctica

    Science.gov (United States)

    Sejas, S.; Taylor, P. C.; Cai, M.

    2017-12-01

    Greenhouse gases warm the climate system by reducing the energy loss to space through the greenhouse effect. Thus, a common way to measure the strength of the greenhouse effect is by taking the difference between the surface longwave (LW) emission and the outgoing LW radiation. Based on this definition, a paradoxical negative greenhouse effect is found over the Antarctic Plateau, which suprisingly indicates that greenhouse gases enhance energy loss to space. Using 13 years of NASA satellite observations, we verify the existence of the negative greenhouse effect and find that the magnitude and sign of the greenhouse effect varies seasonally and spectrally. A previous explanation attributes the negative greenhouse effect solely to stratospheric CO2 and warmer than surface stratospheric temperatures. However, we surprisingly find that the negative greenhouse effect is predominantly caused by tropospheric water vapor. A novel principle-based explanation provides the first complete account of the Antarctic Plateau's negative greenhouse effect indicating that it is controlled by the vertical variation of temperature and greenhouse gas absorption strength. Our findings indicate that the strong surface-based temperature inversion and scarcity of free tropospheric water vapor over the Antarctic Plateau cause the negative greenhouse effect. These are climatological features uniquely found in the Antarctic Plateau region, explaining why the greenhouse effect is positive everywhere else.

  14. Lay perceptions of the greenhouse effect; Les representations profanes de l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Peretti-Watel, P. [Institut National de la Sante et de la Recherche Medicale (INSERM), UMR 379, Epidemiologie et Sciences Sociales Appliquees a l' Innovation Medicale / ORS PACA, 13 - Marseille (France); Hammer, B. [Electricite de France (EDF-GRETS), 92 - Clamart (France)

    2006-10-15

    Using the data from the French Environment Barometer EDF-RD 2004 (national representative sample of French citizens aged over 15) and surveys by ADEME between 2000 and 2005, the paper investigates lay perceptions of the causes and consequences of the greenhouse effect, which may be considered as archetypical of contemporary environmental risks. Beyond lay lack of knowledge, the greenhouse effect gives rise to coherent and meaningful cognitions, including causal explanations, shaped by the pre-existing cognitive framework. This cognitive work, based on analogic rather than scientific thought, strings together the greenhouse effect, ozone depletion, air pollution and even nuclear power. The cognitive process is also fed by the individuals' general conceptions of Nature and of the rights and duties of humankind towards Nature. People are not greatly worried about the unseen and controversial consequences of the greenhouse effect: such worry could be one of those 'elite fears' mentioned by Beck. Finally, while the efficiency of public policies to counter the greenhouse effect requires extensive societal involvement, low confidence towards both political and scientific authorities may prevent the population from becoming aware of the environmental stakes tied to the greenhouse effect. (authors)

  15. Regional greenhouse climate effects

    International Nuclear Information System (INIS)

    Hansen, J.; Rind, D.; Delgenio, A.; Lacis, A.; Lebedeff, S.; Prather, M.; Ruedy, R.; Karl, T.

    1990-01-01

    The authors discuss the impact of an increasing greenhouse effect on three aspects of regional climate: droughts, storms and temperature. A continuous of current growth rates of greenhouse gases causes an increase in the frequency and severity of droughts in their climate model simulations, with the greatest impacts in broad regions of the subtropics and middle latitudes. But the greenhouse effect enhances both ends of the hydrologic cycle in the model, that is, there is an increased frequency of extreme wet situations, as well as increased drought. Model results are shown to imply that increased greenhouse warming will lead to more intense thunderstorms, that is, deeper thunderstorms with greater rainfall. Emanual has shown that the model results also imply that the greenhouse warming leads to more destructive tropical cyclones. The authors present updated records of observed temperatures and show that the observations and model results, averaged over the globe and over the US, are generally consistent. The impacts of simulated climate changes on droughts, storms and temperature provide no evidence that there will be regional winners if greenhouse gases continue to increase rapidly

  16. Exergy outcomes associated with the greenhouse effects

    International Nuclear Information System (INIS)

    Valero, A.; Arauzo, I.

    1991-01-01

    In this paper the effect on the exergy of the Earth's fossil fuels if natural environmental conditions are changed due to the greenhouse effect is studied. The change considered here is a temperature rise produced as a result of increased CO 2 concentration. The temperature change due to the increase in CO 2 concentration is modeled in accordance with the most recent studies on the greenhouse effect. The result is that the ''average fossil fuel'', based on estimates of proven reserves, will lose 0.3% of its exergy if the atmospheric concentration of CO 2 doubles. Assuming that CO 2 concentration will double over the next hundred years, this 0.3% exergy loss of proven reserves means that we will lose as much capacity to produce work as primary energy was consumed in USA and Canada during 1988

  17. A Hiatus of the Greenhouse Effect

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown. PMID:27616203

  18. A Hiatus of the Greenhouse Effect.

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-12

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth's surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  19. A Hiatus of the Greenhouse Effect

    Science.gov (United States)

    Song, Jinjie; Wang, Yuan; Tang, Jianping

    2016-09-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth’s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (Ga and Gs) are estimated to represent the radiative warming effects of the atmosphere and the surface in the infrared range from 1979 to 2014. The atmospheric and surface greenhouse effect over the tropical monsoon-prone regions is found to contribute substantially to the global total. Furthermore, the downward tendency of cloud activity leads to a greenhouse effect hiatus after the early 1990 s, prior to the warming pause. Additionally, this pause in the greenhouse effect is mostly caused by the high number of La Niña events between 1991 and 2014. A strong La Niña indicates suppressed convection in the tropical central Pacific that reduces atmospheric water vapor content and cloud volume. This significantly weakened regional greenhouse effect offsets the enhanced warming influence in other places and decelerates the rising global greenhouse effect. This work suggests that the greenhouse effect hiatus can be served as an additional factor to cause the recent global warming slowdown.

  20. Observational determination of the greenhouse effect

    Science.gov (United States)

    Raval, A.; Ramanathan, V.

    1989-01-01

    Satellite measurements are used to quantify the atmospheric greenhouse effect, defined here as the infrared radiation energy trapped by atmospheric gases and clouds. The greenhouse effect is found to increase significantly with sea surface temperature. The rate of increase gives compelling evidence for the positive feedback between surface temperature, water vapor and the greenhouse effect; the magnitude of the feedback is consistent with that predicted by climate models. This study demonstrates an effective method for directly monitoring, from space, future changes in the greenhouse effect.

  1. Greenhouse effect and climatic consequences: a scientific evaluation

    International Nuclear Information System (INIS)

    1991-01-01

    The greenhouse effect and its causes and mechanisms are first recalled; anthropogenic contribution (CO2, CFC, ...) is evaluated and related to the biosphere temperature variation, without neglecting natural climatic variations. Based on climate models and energy scenarios, anthropogenic contribution effects on climatic variation, sea-level rise, etc. are evaluated and compared. Recommendations for improving precision of climate models are proposed [fr

  2. A meteorologist's view of the greenhouse effect

    International Nuclear Information System (INIS)

    Zillman, J.W.

    2001-01-01

    The greenhouse effect is a natural process in the atmosphere which keeps the earth's surface warm enough for human life There are theoretical and observational reasons for believing that increasing atmospheric concentrations of the trace gases responsible for this surface warmth are leading to enhanced warming and other changes of global and regional climate By modifying the meteorological models used for routine numerical weather prediction to incorporate the influences that are believed to be of most importance on decade to century and longer time scales, the climate research community are able to explore the possible impacts on global and regional climate of a range of possible future greenhouse gas emissions and concentrations. Despite many uncertainties, these provide the principal scientific basis for intergovernmental negotiation on the development of global strategies for averting or minimising adverse human impacts on climate and assisting national communities in planning to live with natural climate variability and possible future human-induced change

  3. Nuclear energy and greenhouse effect

    International Nuclear Information System (INIS)

    Strub, R.A.

    1991-01-01

    The contribution of nuclear power plants against the greenhouse effects is evaluated, not only nuclear energy is unable to fight greenhouse effect increase but long life wastes endanger environment. 8 refs

  4. The greenhouse effect gases

    International Nuclear Information System (INIS)

    2006-06-01

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  5. Greenhouse effect

    International Nuclear Information System (INIS)

    Lepetit, J.P.

    1992-01-01

    This book speaks about the growth of greenhouse gases content in the atmosphere and try to forecast the different scenarios which may happen. But, in spite of international cooperation and coordinated research programs, nobody owns the answer. So possible future climatic changes depend on the behavior of the concerned actors. A review of energy policy driven by USA, Japan, Sweden, United Kingdom and Federal Republic of Germany is given. Political management of this file and public opinion in front of greenhouse effect are also described. 7 refs., 3 figs., 6 tabs

  6. Greenhouse effects. Attempts of two sciences academy reports synthesis

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    This work deals with the greenhouse effect. It is divided into three parts. In the first one, are given the main questions which are raised by the greenhouse effect: what will be the global increase of the earth if the developed countries continue to release gases as carbon oxides or chlorofluorocarbons? What will it be with the increase of the population and with the development of the countries less industrialized nowadays (80% of the earth's population)? What will be the effect on the global climate and on the regional climates? What will be the consequences for the nature, the men and the living species? The possible consequences are explained and some solutions are proposed. (O.L.)

  7. Climate, greenhouse effect, energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    The book has sections on the sun as energy source, the earth climate and it's changes and factors influencing this, the greenhouse effect on earth and other planets, greenhouse gases and aerosols and their properties and importance, historic climate and paleoclimate, climatic models and their uses and limitations, future climate, consequences of climatic changes, uncertainties regarding the climate and measures for reducing the greenhouse effect. Finally there are sections on energy and energy resources, the use, sources such as fossil fuels, nuclear power, renewable resources, heat pumps, energy storage and environmental aspects and the earth magnetic field is briefly surveyed

  8. Harnessing greenhouse effect

    International Nuclear Information System (INIS)

    Meunier, F.; Rivet, P.; Terrier, M.F.

    2005-01-01

    This book considers the energy and greenhouse effect questions in a global way. It presents the different methods of fight against the increase of the greenhouse effect (energy saving, carbon sinks, cogeneration,..), describes the main alternative energy sources to fossil fuels (biomass, wind power, solar, nuclear,..), and shows that, even worrying, the future is not so dark as it seems to be and that technical solutions exist which will allow to answer the worldwide growing up energy needs and to slow down the climatic drift. (J.S.)

  9. A Note on Fourier and the Greenhouse Effect

    OpenAIRE

    Postma, Joseph E.

    2015-01-01

    Joseph Fourier's discovery of the greenhouse effect is discussed and is compared to the modern conception of the greenhouse effect. It is confirmed that what Fourier discovered is analogous to the modern concept of the greenhouse effect. However, the modern concept of the greenhouse effect is found to be based on a paradoxical analogy to Fourier's greenhouse work and so either Fourier's greenhouse work, the modern conception of the greenhouse effect, or the modern definition of heat is incorr...

  10. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    International Nuclear Information System (INIS)

    Pucker, Johanna; Zwart, Robin; Jungmeier, Gerfried

    2012-01-01

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO 2 -eq.) – carbon dioxide, methane and nitrous oxide – and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O 2 -blown entrained flow, O 2 -blown circulating fluidised bed and air–steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air–steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO 2 -eq. 32 kg MWh −1 of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O 2 -blown entrained flow and O 2 -blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO 2 -eq. 41 to 75 kg MWh −1 of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO 2 -eq. 57–75 kg MWh −1 of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59–2.13 MWh MWh −1 of heat output) than for the reference systems (in 1.37–1.51 MWh MWh −1 of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by 92% when air

  11. The greenhouse effect: Its causes, possible impacts, and associated uncertainties

    International Nuclear Information System (INIS)

    Schneider, S.H.; Rosenberg, N.J.

    1991-01-01

    The Earth's climate changes. The climatic effects of having polluted the atmosphere with gases such as carbon dioxide (CO2) may already be felt. There is no doubt that the concentration of CO2 in the atmosphere has been rising. CO2 tends to trap heat near the Earth's surface. This is known as the greenhouse effect, and its existence and basic mechanisms are not questioned by atmospheric scientists. What is questioned is the precise amount of warming and the regional pattern of climatic change that can be expected on the Earth from the anthropogenic increase in the atmospheric concentration of CO2 and other greenhouse gases. It is the regional patterns of changes in temperature, precipitation, and soil moisture that will determine what impact the greenhouse effect will have on natural ecosystems, agriculture, and water supplies. These possible effects are discussed in detail. It is concluded, however, that a detailed assessment of the climatic, biological, and societal changes that are evolving and should continue to occur into the next century cannot reliably be made with available scientific capabilities. Nevertheless, enough is known to suggest a range of plausible futures with attendant impacts, both positive and negative, on natural resources and human well being

  12. Greenhouse effect

    International Nuclear Information System (INIS)

    1992-01-01

    This special issue is devoted to the greenhouse effect and reviews the possible climate change by mankind, paleoclimates, climate models, measurement of terrestrial temperature, CO 2 concentration and energy policy

  13. The greenhouse effect of planetary atmospheres

    International Nuclear Information System (INIS)

    Kondratyev, K.Ya.; Moskalenko, N.I.

    1980-01-01

    The greenhouse effect of the atmosphere is the main factor of possible climate changes of anthropogenic origin. The growing pollution of the atmosphere leads to an increase of the concentration of various gaseous components. Of great importance is also the consideration of the aerosols. All the gaseous components, as well as aerosols, have the absorption bands in the IR spectral range. The traditional attention to the problem of the CO 2 contribution to the greenhouse effect has somewhat overshadowed the significance of the different components. The data characterizing the significance of the different components of the greenhouse effect are considered. The results of studying the absorption spectra of methane, nitrous oxides, sulphuric gas, ammonia, nitric-acid vapours and other components are discussed. The assessments of their contribution to the greenhouse effect are given. The important role of the small-size fraction of the atmospheric aerosols as a factor of the greenhouse effect is discussed. Both the analysis of the causes of the Earth's climate variability and the relevant investigation of the atmospheric greenhouse effect determine the expediency of analysing the conditions of the greenhouse effect formation on other planets. Laboratory studies of the IR absorption spectra of synthetic CO 2 atmospheres were carried out. Some results from these studies are discussed. (author)

  14. Impact on the greenhouse effect of peat mining and combustion

    International Nuclear Information System (INIS)

    Rodhe, H.; Svensson, Bo

    1995-01-01

    Combustion of peat leads to emission of carbon dioxide (CO 2 ) in the atmosphere. In addition, mining of the peat alters the environment such that the natural fluxes of CO 2 and other greenhouse gases are modified. Of particular interest is a reduction in the emission of methane (CH 4 ) in the drained parts of the mires. We estimate the total impact on the greenhouse effect of these processes. The results indicate that the decreased emission of methane from the drained mires compensates for about 15% of the CO 2 emission during the combustion of the peat. It follows that, in a time perspective of less than several hundred years, peat is comparable to a fossil fuel, as far as the contribution to the greenhouse effect is concerned. 39 refs, 1 fig, 4 tabs

  15. The Greenhouse and Anti-Greenhouse Effects on Titan

    Science.gov (United States)

    McKay, C. P.; Cuzzi, Jeffrey N. (Technical Monitor)

    1994-01-01

    Titan is the largest moon of Saturn and is the only moon in the solar system with a substantial atmosphere. Its atmosphere is mostly made of nitrogen, with a few percent CH4, 0.1% H2 and an uncertain level of Ar (less than 10%). The surface pressure is 1.5 atms and the surface temperature is 95 K, decreasing to 71 at the tropopause before rising to stratospheric temperatures of 180 K. In pressure and composition Titan's atmosphere is the closest twin to Earth's. The surface of Titan remains unknown, hidden by the thick smog layer, but it may be an ocean of liquid methane and ethane. Titan's atmosphere has a greenhouse effect which is much stronger than the Earth's - 92% of the surface warming is due to greenhouse radiation. However an organic smog layer in the upper atmosphere produces an anti-greenhouse effect that cuts the greenhouse warming in half - removing 35% of the incoming solar radiation. Models suggest that during its formation Titan's atmosphere was heated to high temperatures due to accretional energy. This was followed by a cold Triton-like period which gradually warmed to the present conditions. The coupled greenhouse and haze anti-greenhouse may be relevant to recent suggestions for haze shielding of a CH4 - NH3 early atmosphere on Earth or Mars. When the NASA/ESA mission to the Saturn System, Cassini, launches in a few years it will carry a probe that will be sent to the surface of Titan and show us this world that is strange and yet in many ways similar to our own.

  16. Greenhouse effect of NO{sub x}

    Energy Technology Data Exchange (ETDEWEB)

    Lammel, G; Grassl, H [Max-Planck-Institut fuer Meteorologie, Hamburg (Germany)

    1995-07-01

    Through various processes the nitrogen oxides (NO{sub x}) interact with trace gases in the troposphere and stratosphere which do absorb in the spectral range relevant to the greenhouse effect (infrared wavelengths). The net effect is an enhancement of the greenhouse effect. The catalytic role of NO{sub x} in the production of tropospheric ozone provides the most prominent contribution. The global waming potential is estimated as GWP (NO{sub x}) = 30-33 and 7-10 for the respective time horizons of 20 and 100 years, and is thereby comparable to that of methane. NO{sub x} emissions in rural areas of anthropogenically influenced regions, or those in the vicinity of the tropopause caused by air traffic, cause the greenhouse effectivity to be substantially more intense. We estimate an additional 5-23% for Germany`s contribution to the anthropogenic greenhouse effect as a result of the indirect greenhouse effects stemming from NO{sub x}. Furthermore, a small and still inaccurately defined amount of the deposited NO{sub x} which has primarily been converted into nitrates is again released from the soil into the atmosphere in the form of the long-lived greenhouse gas nitrous oxide (N{sub i}O). Thus, anthropogenically induced NO{sub x} emissions contribute to enhanced greenhouse effect and to stratospheric ozone depletion in the time scale of more than a century. (orig.)

  17. Greenhouse gas and energy analysis of substitute natural gas from biomass for space heat

    Energy Technology Data Exchange (ETDEWEB)

    Pucker, J.; Jungmeier, G. [JOANNEUM RESEARCH Forschungsgesellschaft mbH, RESOURCES - Institute for Water, Energy and Sustainability, Steyrergasse 17, 8010 Graz (Austria); Zwart, R. [Energy Research Centre of The Netherlands (ECN), Westerduinweg 3, 1755 LE Petten (Netherlands)

    2012-03-15

    In this paper, the greenhouse gas and energy balances of the production and use for space heating of substitute natural gas from biomass (bio-SNG) for space heat are analysed. These balances are compared to the use of natural gas and solid biomass as wood chips to provide the same service. The reduction of the greenhouse gas emissions (CO{sub 2}-eq.) - carbon dioxide, methane and nitrous oxide - and of the fossil primary energy use is investigated in a life cycle assessment (LCA). This assessment was performed for nine systems for bio-SNG; three types of gasification technologies (O{sub 2}-blown entrained flow, O{sub 2}-blown circulating fluidised bed and air-steam indirect gasification) with three different types of feedstock (forest residues, miscanthus and short rotation forestry). The greenhouse gas analysis shows that forest residues using the air-steam indirect gasification technology result in the lowest greenhouse gas emissions (in CO{sub 2}-eq. 32 kg MWh{sup -1} of heat output). This combination results in 80% reduction of greenhouse gas emissions when compared to natural gas and a 29% reduction of greenhouse gases if the forest residues were converted to wood chips and combusted. The gasification technologies O{sub 2}-blown entrained flow and O{sub 2}-blown circulating fluidised bed gasification have higher greenhouse gas emissions that range between in CO{sub 2}-eq. 41 to 75 kg MWh{sup -1} of heat output depending on the feedstock. When comparing feedstocks in the bio-SNG systems, miscanthus had the highest greenhouse gas emissions bio-SNG systems producing in CO2-eq. 57-75 kg MWh{sup -1} of heat output. Energy analysis shows that the total primary energy use is higher for bio-SNG systems (1.59-2.13 MWh MWh{sup -1} of heat output) than for the reference systems (in 1.37-1.51 MWh MWh{sup -1} of heat output). However, with bio-SNG the fossil primary energy consumption is reduced compared to natural gas. For example, fossil primary energy use is reduced by

  18. Country-Level Life Cycle Assessment of Greenhouse Gas Emissions from Liquefied Natural Gas Trade for Electricity Generation.

    Science.gov (United States)

    Kasumu, Adebola S; Li, Vivian; Coleman, James W; Liendo, Jeanne; Jordaan, Sarah M

    2018-02-20

    In the determination of the net impact of liquefied natural gas (LNG) on greenhouse gas emissions, life cycle assessments (LCA) of electricity generation have yet to combine the effects of transport distances between exporting and importing countries, country-level infrastructure in importing countries, and the fuel sources displaced in importing countries. To address this, we conduct a LCA of electricity generated from LNG export from British Columbia, Canada with a three-step approach: (1) a review of viable electricity generation markets for LNG, (2) the development of results for greenhouse gas emissions that account for transport to importing nations as well as the infrastructure required for power generation and delivery, and (3) emissions displacement scenarios to test assumptions about what electricity is being displaced in the importing nation. Results show that while the ultimate magnitude of the greenhouse gas emissions associated with natural gas production systems is still unknown, life cycle greenhouse gas emissions depend on country-level infrastructure (specifically, the efficiency of the generation fleet, transmission and distribution losses and LNG ocean transport distances) as well as the assumptions on what is displaced in the domestic electricity generation mix. Exogenous events such as the Fukushima nuclear disaster have unanticipated effects on the emissions displacement results. We highlight national regulations, environmental policies, and multilateral agreements that could play a role in mitigating emissions.

  19. Sourcebook on the greenhouse effect

    International Nuclear Information System (INIS)

    Ellis, E.; Devine, J.

    1990-01-01

    The Greenhouse Effect Sourcebook contains information for anyone interested in the environment and the present changes which are taking place. It can be used to trace organisations, technical literature or reports. Much of the information relates to the environment in general. The sourcebook contains:- A list of Greenhouse Effect Information useful sources of information under a variety of headings:-Abstracts and indexes, books, conferences, directories, journals, official publications, online databases, (produces and hosts) and organisations, -The Greenhouse Effect References contains over 250 abstracts and details of recently published material, on a variety of environmental subjects from acid rain and aerosols to weather forecasting and wildlife. There is an author index for the references and a keyword index. (author)

  20. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions

    International Nuclear Information System (INIS)

    Bizec, R.F.

    2006-01-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  1. Greenhouse effects on Venus

    Science.gov (United States)

    Bell, Peter M.

    Calculations that used Pioneer-Venus measurements of atmosphere composition, temperature profiles, and radiative heating predicted Venus' surface temperature ‘very precisely,’ says the Ames Research Center. The calculations predict not only Venus' surface temperature but agree with temperatures measured at various altitudes above the surface by the four Pioneer Venus atmosphere probe craft.Using Pioneer-Venus spacecraft data, a research team has virtually proved that the searing 482° C surface temperature of Venus is due to an atmospheric greenhouse effect. Until now the Venus greenhouse effect has been largely a theory.

  2. The Runaway Greenhouse Effect on Earth and other Planets

    Science.gov (United States)

    Rabbette, Maura; Pilewskie, Peter; McKay, Christopher; Young, Robert

    2001-01-01

    Water vapor is an efficient absorber of outgoing longwave infrared radiation on Earth and is the primary greenhouse gas. Since evaporation increases with increasing sea surface temperature, and the increase in water vapor further increases greenhouse warming, there is a positive feedback. The runaway greenhouse effect occurs if this feedback continues unchecked until all the water has left the surface and enters the atmosphere. For Mars and the Earth the runaway greenhouse was halted when water vapor became saturated with respect to ice or liquid water respectively. However, Venus is considered to be an example of a planet where the runaway greenhouse effect did occur, and it has been speculated that if the solar luminosity were to increase above a certain limit, it would also occur on the Earth. Satellite data acquired during the Earth Radiation Budget Experiment (ERBE) under clear sky conditions shows that as the sea surface temperature (SST) increases, the rate of outgoing infrared radiation at the top of the atmosphere also increases, as expected. Over the pacific warm pool where the SST exceeds 300 K the outgoing radiation emitted to space actually decreases with increasing SST, leading to a potentially unstable system. This behavior is a signature of the runaway greenhouse effect on Earth. However, the SST never exceeds 303K, thus the system has a natural cap which stops the runaway. According to Stefan-Boltzmann's law the amount of heat energy radiated by the Earth's surface is proportional to (T(sup 4)). However, if the planet has a substantial atmosphere, it can absorb all infrared radiation from the lower surface before the radiation penetrates into outer space. Thus, an instrument in space looking at the planet does not detect radiation from the surface. The radiation it sees comes from some level higher up. For the earth#s atmosphere the effective temperature (T(sub e)) has a value of 255 K corresponding to the middle troposphere, above most of the

  3. The Greenhouse Effect and Built Environment Education.

    Science.gov (United States)

    Greenall Gough, Annette; Gough, Noel

    The greenhouse effect has always existed. Without the greenhouse effect, Earth could well have the oven-like environment of Venus or the deep-freeze environment of Mars. There is some debate about how much the Earth's surface temperature will rise given a certain amount of increase in the amount of greenhouse gases such as carbon dioxide, nitrous…

  4. Maximum weight of greenhouse effect to global temperature variation

    International Nuclear Information System (INIS)

    Sun, Xian; Jiang, Chuangye

    2007-01-01

    Full text: The global average temperature has risen by 0.74 0 C since the late 19th century. Many studies have concluded that the observed warming in the last 50 years may be attributed to increasing concentrations of anthropogenic greenhouse gases. But some scientists have a different point of view. Global climate change is affected not only by anthropogenic activities, but also constraints in climate system natural factors. How much is the influencing weight of C02's greenhouse effects to the global temperature variation? Does global climate continue warming or decreasing in the next 20 years? They are two hot spots in global climate change. The multi-timescales analysis method - Empirical mode decomposition (EMD) is used to diagnose global annual mean air temperature dataset for land surface provided by IPCC and atmospheric content of C02 provided by the Carbon Dioxide Information Analysis Center (CDIAC) during 1881-2002. The results show that: Global temperature variation contains quasi-periodic oscillations on four timescales (3 yr, 6 yr, 20 yr and 60 yr, respectively) and a century-scale warming trend. The variance contribution of IMF1-IMF4 and trend is 17.55%, 11.34%, 6.77%, 24.15% and 40.19%, respectively. The trend and quasi-60 yr oscillation of temperature variation are the most prominent; C02's greenhouse effect on global temperature variation is mainly century-scale trend. The contribution of C02 concentration to global temperature variability is not more than 40.19%, whereas 59.81% contribution to global temperature variation is non-greenhouse effect. Therefore, it is necessary to re-study the dominant factors that induce the global climate change; It has been noticed that on the periods of 20 yr and 60 yr oscillation, the global temperature is beginning to decreased in the next 20 years. If the present C02 concentration is maintained, the greenhouse effect will be too small to countercheck the natural variation in global climate cooling in the next 20

  5. The effect on climate change impacts for building products when including the timing of greenhouse gas emissions

    Science.gov (United States)

    Richard D Bergman

    2012-01-01

    Greenhouse gases (GHGs) trap infrared radiation emitting from the Earth’s surface to generate the “greenhouse effect” thus keeping the planet warm. Many natural activities including rotting vegetation emit GHGs such as carbon dioxide to produce this natural affect. However, in the last 200 years or so, human activity has increased the atmospheric concentrations of GHGs...

  6. The Greenhouse Effect Does Exist!

    OpenAIRE

    Ebel, Jochen

    2009-01-01

    In particular, without the greenhouse effect, essential features of the atmospheric temperature profile as a function of height cannot be described, i.e., the existence of the tropopause above which we see an almost isothermal temperature curve, whereas beneath it the temperature curve is nearly adiabatic. The relationship between the greenhouse effect and observed temperature curve is explained and the paper by Gerlich and Tscheuschner [arXiv:0707.1161] critically analyzed. Gerlich and Tsche...

  7. an innovation in the teaching of greenhouse effect in chemistry ...

    African Journals Online (AJOL)

    PROF EKWUEME

    2010-10-22

    Oct 22, 2010 ... The teaching of greenhouse effect is difficult and is done in abstraction. This paper suggests a ... atmosphere by the action of man through burning of fossil, fuel, coal, natural gas, deforestation and so on is ... form of visible light from the sun easily penetrate .... production of C02 and from chemical reactions.

  8. Computational Fluid Dynamics Modeling to Improve Natural Flow Rate and Sweet Pepper Productivity in Greenhouse

    OpenAIRE

    W. Limtrakarn; P. Boonmongkol; A. Chompupoung; K. Rungprateepthaworn; J. Kruenate; P. Dechaumphai

    2012-01-01

    Natural flow rate and sweet peppers productivity in tropical greenhouse are improved by CFD simulation is the main objective of this research work. Most of the greenhouse types today are in the arch shape. To develop an improved greenhouse structure for the region, the arch type was built and used as the control model. Mae Sar Mai agriculture research station under the royal project foundation was selected as the field test site. Temperature sensors with data logger were installed to monitor ...

  9. 2012 Stakeholder Workshop on Natural Gas in the Inventory of U.S. Greenhouse Gas Emissions and Sinks

    Science.gov (United States)

    This page describes EPA's September 2012 stakeholder workshop on key aspects of the estimates of greenhouse gas emissions from the natural gas sector in the Inventory of U.S. Greenhouse Gas Emissions and Sinks.

  10. Lifecycle greenhouse gas emissions of coal, conventional and unconventional natural gas for electricity generation

    Science.gov (United States)

    An analysis of the lifecycle greenhouse gas (GHG) emissions associated with natural gas use recently published by Howarth et al. (2011) stated that use of natural gas produced from shale formations via hydraulic fracturing would generate greater lifecycle GHG emissions than petro...

  11. Greenhouse effect: analysis, incertitudes, consequences

    International Nuclear Information System (INIS)

    Perrier, A.

    1991-01-01

    A general presentation of climatic changes due to greenhouse effect with their consequences is analysed. After a schematic description of this effect a simplified atmospheric model (box model) is proposed. This model integrates the main feedback effects and quantifies them. The effects of astronomic and atmospheric factors on climatic changes are analyzed and compared with classical paleoclimatic results. This study shows the need of good global modelization to evaluate long term quantification of climatic greenhouse effects according to the main time lag of the several biospheric boxes. An overview of biologic and agronomic consequences is given to promote new research subjects and to orientate protecting and conservative biospheric actions [fr

  12. Scientists' internal models of the greenhouse effect

    Science.gov (United States)

    Libarkin, J. C.; Miller, H.; Thomas, S. R.

    2013-12-01

    A prior study utilized exploratory factor analysis to identify models underlying drawings of the greenhouse effect made by entering university freshmen. This analysis identified four archetype models of the greenhouse effect that appear within the college enrolling population. The current study collected drawings made by 144 geoscientists, from undergraduate geoscience majors through professionals. These participants scored highly on a standardized assessment of climate change understanding and expressed confidence in their understanding; many also indicated that they teach climate change in their courses. Although geoscientists held slightly more sophisticated greenhouse effect models than entering freshmen, very few held complete, explanatory models. As with freshmen, many scientists (44%) depict greenhouse gases in a layer in the atmosphere; 52% of participants depicted this or another layer as a physical barrier to escaping energy. In addition, 32% of participants indicated that incoming light from the Sun remains unchanged at Earth's surface, in alignment with a common model held by students. Finally, 3-20% of scientists depicted physical greenhouses, ozone, or holes in the atmosphere, all of which correspond to non-explanatory models commonly seen within students and represented in popular literature. For many scientists, incomplete models of the greenhouse effect are clearly enough to allow for reasoning about climate change. These data suggest that: 1) better representations about interdisciplinary concepts, such as the greenhouse effect, are needed for both scientist and public understanding; and 2) the scientific community needs to carefully consider how much understanding of a model is needed before necessary reasoning can occur.

  13. The Greenhouse Effect: Science and Policy.

    Science.gov (United States)

    Schneider, Stephen H.

    1989-01-01

    Discusses many of the scientific questions surrounding the greenhouse effect debate and the issue of plausible responses. Discussion includes topics concerning projecting emissions and greenhouse gas concentrations, estimating global climatic response, economic, social, and political impacts, and policy responses. (RT)

  14. Greenhouse effect: doubts and unknowns

    International Nuclear Information System (INIS)

    Tabarelli, D.

    1992-01-01

    There are few doubts today in the scientific world that atmospheric carbon dioxide traps in heat and therefore contributes to global warming; however, it is yet uncertain as to whether the presence of this gas in the upper atmosphere is the only cause of the greenhouse effect, and the scientific theories defining the effect and its causes present a few obvious and significant gaps. This paper cites the fact that most greenhouse effect models only marginally, if at all, consider the mechanisms governing the formation and absorption of carbon dioxide by the earth's oceans; yet oceanic CO 2 concentration levels are about 60 times greater than those found in the atmosphere, and they depend on complex interactions, in seawater, among such factors as currents, carbon oxygenation, and vegetative activity. Another area of weakness in greenhouse effect modelling stems from the complexity and uncertainty introduced by the fact that, in addition to trapping heat, clouds reflect it, thus giving rise to an opposite cooling effect. In addition, it is pointed out that the current models are limited to predicting global and not regional or local effects

  15. Analysis of politics about greenhouse effect

    International Nuclear Information System (INIS)

    Chetouani, L.; Tournier, M.

    1992-01-01

    This report deals with the greenhouse effect which brings about increasing temperatures. It is based upon documents such as interviews, conferences, political speeches, newspaper articles and so on. After the problem of the greenhouse effect has been exposed, a lexicometric study is carried out. The analysis of all the texts that have been studied finally leads to semiologic interpretations. (TEC). 2 tabs

  16. Life-cycle greenhouse gas emissions of shale gas, natural gas, coal, and petroleum.

    Science.gov (United States)

    Burnham, Andrew; Han, Jeongwoo; Clark, Corrie E; Wang, Michael; Dunn, Jennifer B; Palou-Rivera, Ignasi

    2012-01-17

    The technologies and practices that have enabled the recent boom in shale gas production have also brought attention to the environmental impacts of its use. It has been debated whether the fugitive methane emissions during natural gas production and transmission outweigh the lower carbon dioxide emissions during combustion when compared to coal and petroleum. Using the current state of knowledge of methane emissions from shale gas, conventional natural gas, coal, and petroleum, we estimated up-to-date life-cycle greenhouse gas emissions. In addition, we developed distribution functions for key parameters in each pathway to examine uncertainty and identify data gaps such as methane emissions from shale gas well completions and conventional natural gas liquid unloadings that need to be further addressed. Our base case results show that shale gas life-cycle emissions are 6% lower than conventional natural gas, 23% lower than gasoline, and 33% lower than coal. However, the range in values for shale and conventional gas overlap, so there is a statistical uncertainty whether shale gas emissions are indeed lower than conventional gas. Moreover, this life-cycle analysis, among other work in this area, provides insight on critical stages that the natural gas industry and government agencies can work together on to reduce the greenhouse gas footprint of natural gas.

  17. Greenhouse effects of aircraft emissions

    International Nuclear Information System (INIS)

    Fortuin, J.P.F.; Wauben, W.M.F.; Dorland, R. van; Kelder, H.

    1996-01-01

    Ranges for direct and indirect greenhouse effects due to present day aircraft emissions are quantified for northern midlatitudes, using the concept of fixed temperature (FT) radiative forcing as calculated with a radiative transfer model. The direct greenhouse effects considered here are from emissions of carbon dioxide, water vapor, and nitrogen dioxide. To calculate the concentration increases of carbon dioxide and stratospheric water vapor, an analytical expression is developed based on a linear approximation of global fuel burn versus time. Unlike the expressions currently used in the literature, the authors' expression does not account for emission rates only, but also for a loss term--hence making it more suitable for shorter lived emittants. For midlatitude summer conditions, a total radiative forcing ranging from 0.04 to 0.09 Wm -2 is calculated for the direct greenhouse effects, whereas for midlatitude winter the range is 0.07 to 0.26 Wm -2 . The indirect greenhouse effects considered here are sulfate aerosol formation from sulfur dioxide emissions, contrail formation from emitted water vapor and condensation nuclei, and ozone formation from NO x emissions. The total radiative forcing coming from these indirect effects range from -0.67 to 0.25 Wm -2 in summer a/nd from -0.36 to 0.21 Wm -2 in winter. Further, the global distribution of NO x and ozone increases from aircraft emissions world-wide are simulated with a three-dimensional chemistry transport model for January and July. The geographical distribution of the radiative forcing associated with the simulated ozone increases is also calculated for these months

  18. The greenhouse and antigreenhouse effects on Titan

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1991-01-01

    The parallels between the atmospheric thermal structure of the Saturnian satellite Titan and the hypothesized terrestrial greenhouse effect can serve as bases for the evaluation of competing greenhouse theories. Attention is presently drawn to the similarity between the roles of H2 and CH4 on Titan and CO2 and H2O on earth. Titan also has an antigreenhouse effect due to a high-altitude haze layer which absorbs at solar wavelengths, while remaining transparent in the thermal IR; if this haze layer were removed, the antigreenhouse effect would be greatly reduced, exacerbating the greenhouse effect and raising surface temperature by over 20 K.

  19. A Particle Swarm Optimization of Natural Ventilation Parameters in a Greenhouse with Continuous Roof Vents

    Directory of Open Access Journals (Sweden)

    Abdelhafid HASNI

    2009-03-01

    Full Text Available Although natural ventilation plays an important role in the affecting greenhouse climate, as defined by temperature, humidity and CO2 concentration, particularly in Mediterranean countries, little information and data are presently available on full-scale greenhouse ventilation mechanisms. In this paper, we present a new method for selecting the parameters based on a particle swarm optimization (PSO algorithm which optimize the choice of parameters by minimizing a cost function. The simulator was based on a published model with some minor modifications as we were interested in the parameter of ventilation. The function is defined by a reduced model that could be used to simulate and predict the greenhouse environment, as well as the tuning methods to compute their parameters. This study focuses on the dynamic behavior of the inside air temperature and humidity during ventilation. Our approach is validated by comparison with some experimental results. Various experimental techniques were used to make full-scale measurements of the air exchange rate in a 400 m2 plastic greenhouse. The model which we propose based on natural ventilation parameters optimized by a particle swarm optimization was compared with the measurements results.

  20. The greenhouse effect: A new source of energy

    International Nuclear Information System (INIS)

    Meunier, Francis

    2007-01-01

    Climate change induced by global warming is a result of an excess of energy at the earth's surface due to the greenhouse effect. But a new energy management can reverse the situation taking advantage of the greenhouse effect to produce renewable energy. In fact, both the renewable energy and the energy consumed which are not dissipated into heat are subtracted from the excess of energy produced by the greenhouse effect and contribute to mitigate climate change. This opens perspectives to harness the greenhouse effect [F. Meunier, Domestiquer l'effet de serre, Dunod, 2005]. Should all the primary energy be renewable energy and should part of the energy production not dissipated into heat, the present earth's energy imbalance should be beneficial and should serve to produce renewable energy

  1. Greenhouse gases and global warming

    International Nuclear Information System (INIS)

    1995-01-01

    From previous articles we have learned about the complexities of our environment, its atmosphere and its climate system. we have also learned that climate change and, therefore global warm and cool periods are naturally occurring phenomena. Moreover, all scientific evidence suggests that global warming, are likely to occur again naturally in the future. However, we have not yet considered the role of the rates of climate change in affecting the biosphere. It appears that how quickly the climate changes may be more important than the change itself. In light of this concern, let us now consider the possibility that, is due to human activity. We may over the next century experience global warming at rates and magnitudes unparalleled in recent geologic history. The following questions are answered; What can we learn from past climates? What do we know about global climates over the past 100 years? What causes temperature change? What are the greenhouse gases? How much have concentration of greenhouse gases increased in recent years? Why are increases in concentrations of greenhouse of concern? What is the e nhanced greenhouse effect ? How can human activity impact the global climate? What are some reasons for increased concentrations of greenhouse gases? What are fossil fuel and how do they transform into greenhouse gases? Who are the biggest emitters of greenhouse gases? Why are canada per capita emissions of greenhouse gases relatively high? (Author)

  2. Effects of natural gas composition on performance and regulated, greenhouse gas and particulate emissions in spark-ignition engines

    International Nuclear Information System (INIS)

    Amirante, R.; Distaso, E.; Di Iorio, S.; Sementa, P.; Tamburrano, P.; Vaglieco, B.M.; Reitz, R.D.

    2017-01-01

    Highlights: • The influence of natural gas composition is investigated. • Real-time methane/propane fuel mixtures were realized. • IMEP, HRR and MBF were used to evaluate the effects on engine performance. • Gaseous, greenhouse and Particulate emissions were studied. • The propane content strongly influenced performance and emissions. - Abstract: In vehicles fueled with compressed natural gas, a variation in the fuel composition can have non-negligible effects on their performance, as well as on their emissions. The present work aimed to provide more insight on this crucial aspect by performing experiments on a single-cylinder port-fuel injected spark-ignition engine. In particular, methane/propane mixtures were realized to isolate the effects of a variation of the main constituents in natural gas on engine performance and associated pollutant emissions. The propane volume fraction was varied from 10 to 40%. Using an experimental procedure designed and validated to obtain precise real-time mixture fractions to inject directly into the intake manifold. Indicative Mean Effective Pressure, Heat Release Rate and Mass Burned Fraction were used to evaluate the effects on engine performance. Gaseous emissions were measured as well. Particulate Mass, Number and Size Distributions were analyzed with the aim to identify possible correlations existing between fuel composition and soot emissions. Emissions samples were taken from the exhaust flow, just downstream of the valves. Opacity was measured downstream the Three-Way Catalyst. Three different engine speeds were investigated, namely 2000, 3000 and 4000 rpm. Stoichiometric and full load conditions were considered in all tests. The results were compared with pure methane and propane, as well as with natural gas. The results indicated that both performance and emissions were strongly influenced by the variation of the propane content. Increasing the propane fraction favored more complete combustion and increased NO

  3. Greenhouse Warming Research

    DEFF Research Database (Denmark)

    Sørensen, Bent Erik

    2016-01-01

    The changing greenhouse effect caused by natural and anthropogenic causes is explained and efforts to model the behavior of the near-surface constituents of the Earth's land, ocean and atmosphere are discussed. Emissions of various substances and other aspects of human activity influence...... the greenhouse warming, and the impacts of the warming may again impact the wellbeing of human societies. Thus physical modeling of the near-surface ocean-soil-atmosphere system cannot be carried out without an idea of the development of human activities, which is done by scenario analysis. The interactive...

  4. Small-scale electricity generating facilities from natural gas : a measure to mitigate the greenhouse effect; Microgeneracion de energia con gas natural: una medida efectiva para mitigar el cambio climatico

    Energy Technology Data Exchange (ETDEWEB)

    Gutierrez, A. M.

    2002-07-01

    The forthcoming liberalization of the gas and electricity markets in Europe, in conjunction with the increase of the global energy consumption in the near future are enabling the development of natural gas alternatives to traditional large-scale centralized power plants. They emerged from research suggesting that the use of small-scale electricity generating facilities dispersed throughout the electrical network, provides the electricity system with measurable technical, economic and environmental benefits. In this sense, the distributed generation powered by cogeneration systems offers the biggest measure to mitigate the greenhouse effect due to the carbon dioxide. (Author)

  5. The Contribution of Electricity Generation to Greenhouse Effect

    International Nuclear Information System (INIS)

    Lubis, Erwansyah

    2008-01-01

    The development activities has successfully increasing the human kind, but also has increasing trend the planet changes radically, because of the greenhouse effect (GHE), decreasing ozone layer and acid rain, that all could treat the living of the species-species and including man inside. The electricity generation and transportation are the main contribution of greenhouse gas (GHG), reaching 1/3 of global emission. Base on the Kyoto protocol in 1997, that all countries, alone or together agree to reduce the emission of GG of 5.2 % under the emission of the 1990. The decreasing of GHG could be reached by implementing the technology generation that contain low carbon, such a natural gas, hydro power, wind, solar and nuclear power. Diversification of electricity generation has to take into a count of environmental capacity, so the supply stability and sustainable development could be reached. The IAEA results studies indicated that the emission factor of fossil fuel 2 times greater compare to the natural gas. The emission factor of wind and biomass lie between solar and nuclear power. In the electricity generation chain, nuclear power emit the 25 g of CO 2 /kWh compare to fossil fuel emit 250 - 1250 g CO 2 /kWh. (author)

  6. Intergenerational modelling of the greenhouse effect

    OpenAIRE

    Spash, Clive L.

    1994-01-01

    A major implication of global climate change is that future generations will suffer severe damages while the current generation benefits. In this paper a model is developed to analyze the potential need for mitigating the adverse impacts of the greenhouse effect on efficiency grounds. The model characterises basic transfers, investigate the effect of greenhouse emissions, and analyze exogenous and endogenous uncertainty. The first (or current) generation faces the problem of dividing availabl...

  7. Performance analysis of greenhouse dryer by using insulated north-wall under natural convection mode

    Directory of Open Access Journals (Sweden)

    Prashant Singh Chauhan

    2016-11-01

    Full Text Available A prototype north wall insulated greenhouse dryer has been fabricated and tested in no-load conditions under natural convection mode. Experimentation has been conducted in two different cases. Case-I is when solar collector placed inside the dryer and Case-II is North wall insulated greenhouse dryer without solar collector. Coefficient of performance, heat utilisation factor, convective heat transfer coefficient and coefficient of diffusivity have been evaluated in thermal performance analysis. The difference of the highest convective heat transfer coefficient of both cases is 29.094W/m2°C which is showing the effectiveness of insulated north wall and solar collector. The maximum coefficient of diffusivity (0.0827 was achieved during the third day of experiment in Case-II. The inside room temperature of wall insulated greenhouse dryer for Case-I is 4.11%, 5.08 % and 11.61 % higher than the Case-II during the day 1, day 2 and day 3 respectively. This result is also showing the effectiveness of solar collector and insulated north wall. The highest heat utilisation factor (0.616 is obtained during the second day for Case-I while for Case-II it is 0.769 during the third day of experimentation. Maximum coefficient of performance achieved is 0.892 during the third day of the experiment for Case-I whereas 0.953 is obtained on the first day of experimentation for Case-II.

  8. Greenhouse statistics: A different look at climate research

    International Nuclear Information System (INIS)

    Tol, R.S.J.; Vos, A.F. de

    1994-01-01

    The debate on the enhanced greenhouse effect continues, confusing the climate change impact analysis and the decision makers. This article attempts to quantify the uncertainties surrounding the temperature's response to increasing atmospheric concentrations of greenhouse gases, and attempts to weigh the hypothesis that the observed warming is due to the long-term natural variability against the hypothesis that it is due to human influence. Information from the distant past on the size of natural variability plays a key role in this. On the basis of this information, the authors conclude that the hypothesis that the observed temperature rise is not related to the enhanced greenhouse effect is rejected at the 1% significance level

  9. The greenhouse effect: A new source of energy

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, Francis [CNAM-IFFI (EA 21), 292 rue Saint Martin, 75141 Paris (France)]. E-mail: meunierf@cnam.fr

    2007-02-15

    Climate change induced by global warming is a result of an excess of energy at the earth's surface due to the greenhouse effect. But a new energy management can reverse the situation taking advantage of the greenhouse effect to produce renewable energy. In fact, both the renewable energy and the energy consumed which are not dissipated into heat are subtracted from the excess of energy produced by the greenhouse effect and contribute to mitigate climate change. This opens perspectives to harness the greenhouse effect [F. Meunier, Domestiquer l'effet de serre, Dunod, 2005]. Should all the primary energy be renewable energy and should part of the energy production not dissipated into heat, the present earth's energy imbalance should be beneficial and should serve to produce renewable energy.

  10. The greenhouse effect - little strokes fell great oaks; Drivhuseffekten - liten tue kan velte stort lass

    Energy Technology Data Exchange (ETDEWEB)

    Kanestroem, Ingolf

    2003-07-01

    It is a common assumption that carbon dioxide and other greenhouse gases constitute only a very small fraction of the atmosphere and thus cannot be as important as the climate researchers maintain. However, the adage of the title is appropriate for the impact of the greenhouse gases on the atmosphere. During the last 25 years, the global temperature has risen 0,5 {sup o}C, and during the last century by 0,75 {sup o}C. Thus according to the UN Climate Panel, there is evidence of a noticeable anthropogenic impact on the global climate. The article discusses the concept of greenhouse effect, the composition of the atmosphere, greenhouse gases and their importance, emission of carbon dioxide and natural climate changes.

  11. Identification of Natural Ventilation Parameters in a Greenhouse with Continuous Roof Vents, Using a PSO and GAs

    Directory of Open Access Journals (Sweden)

    Abdelhafid HASNI

    2010-08-01

    Full Text Available Although natural ventilation plays an important role in the affecting greenhouse climate, as defined by temperature, humidity and CO2 concentration, particularly in Mediterranean countries, little information and data are presently available on full-scale greenhouse ventilation mechanisms. In this paper, we present a new method for selecting the parameters based on a particle swarm optimization (PSO algorithm and a genetic algorithm (GA which optimize the choice of parameters by minimizing a cost function. The simulator was based on a published model with some minor modifications as we were interested in the parameter of ventilation. The function is defined by a reduced model that could be used to simulate and predict the greenhouse environment, as well as the tuning methods to compute their parameters. This study focuses on the dynamic behavior of the inside air temperature and humidity during ventilation. Our approach is validated by comparison with some experimental results. Various experimental techniques were used to make full-scale measurements of the air exchange rate in a 400 m2 plastic greenhouse. The model which we propose based on natural ventilation parameters optimized by a particle swarm optimization was compared with the measurements results. Furthermore, the PSO and the GA are used to identify the natural ventilation parameters in a greenhouse. In all cases, identification goal is successfully achieved using the PSO and compared with that obtained using the GA. For the problem at hand, it is found that the PSO outperforms the GA.

  12. Sonic anemometry measurements to determine airflow patterns in multi-tunnel greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Lopez, A.; Valera, D. L.; Molina-aiz, F. D.; Pena, A.

    2012-11-01

    The present work describes a methodology for studying natural ventilation in Mediterranean greenhouses using sonic anemometry. The experimental work took place in the three-span greenhouse located at the agricultural research farm belonging to the University of Almeria. This methodology has allowed us to obtain patterns of natural ventilation of the experimental greenhouse under the most common wind regimes for this region. It has also enabled us to describe how the wind and thermal effects interact in the natural ventilation of the greenhouse, as well as to detect deficiencies in the ventilation of the greenhouse, caused by the barrier effect of the adjacent greenhouse (imply a mean reduction in air velocity close to the greenhouse when facing windward of 98% for u, 63% for u, and more importantly 88% for ux, the component of air velocity that is perpendicular to the side vent). Their knowledge allows us to improve the current control algorithms that manage the movement of the vents. In this work we make a series of proposals that could substantially improve the natural ventilation of the experimental greenhouse. For instance, install vents equipped with ailerons which guide the air inside, or with vents in which the screen is not placed directly over the side surface of the greenhouse. A different proposal is to prolong the opening of the side vents down to the soil, thus fomenting the entrance of air at crop level. (Author) 34 refs.

  13. Economic growth and greenhouse gas emissions

    Energy Technology Data Exchange (ETDEWEB)

    Ansuategi, Alberto [Environment Department, University of York, York (United Kingdom); Escapa, Marta [Foundations of Economic Analysis Department, University of the Basque Country, Bilbao (Spain)

    2002-01-01

    Recent empirical research has examined the relationship between certain indicators of environmental degradation and income, concluding that in some cases an inverted U-shaped relationship, which has been called an environmental Kuznets curve (EKC), exists between these variables. Unfortunately, this inverted U-shaped relationship does not hold for greenhouse gas emissions. One explanation of the absence of EKC-like behavior in greenhouse gas emissions is that greenhouse gases are special pollutants that create global, not local, disutility. But the international nature of global warming is not the only reason that prevents de-linking greenhouse gas emissions from economic growth. The intergenerational nature of the negative impact of greenhouse gas emissions may have also been an important factor preventing the implementation of greenhouse gas abatement measures in the past. In this paper we explore the effect that the presence of intergenerational spillovers has on the emissions-income relationship. We use a numerically calibrated overlapping generations model of climate-economy interactions. We conclude that: (1) the intertemporal responsibility of the regulatory agency, (2) the institutional capacity to make intergenerational transfers and (3) the presence of intergenerationally lagged impact of emissions constitute important determinants of the relationship between economic growth and greenhouse gas emissions.

  14. Nuclear power and the greenhouse effect

    International Nuclear Information System (INIS)

    Donaldson, D; Tolland, H.; Grimston, M.

    1990-01-01

    The greenhouse effect is first explained. The evidence is shown in global warming and changing weather patterns which are generally believed to be due to the emission of greenhouse gases, including carbon dioxide. Serious consequences are predicted if emission of the greenhouse gases is not reduced. Sources of these gases are identified - agriculture, carbon fluorocarbons, coal-fired power stations, vehicle exhausts. The need is to use energy more efficiently but such measures as combined heat and power stations, more fuel efficient cars and better thermal insulation in homes is advocated. The expansion of renewable energy sources such as wind and water power is also suggested. Nuclear power is promoted as it reduces the carbon dioxide emissions and in both the short and long-term will reduce the emission of greenhouse gases. (author)

  15. A Hiatus of the Greenhouse Effect

    OpenAIRE

    Jinjie Song; Yuan Wang; Jianping Tang

    2016-01-01

    The rate at which the global average surface temperature is increasing has slowed down since the end of the last century. This study investigates whether this warming hiatus results from a change in the well-known greenhouse effect. Using long-term, reliable, and consistent observational data from the Earth?s surface and the top of the atmosphere (TOA), two monthly gridded atmospheric and surface greenhouse effect parameters (G a and G s) are estimated to represent the radiative warming effec...

  16. Energy and the greenhouse effect. Answers to 60 questions

    International Nuclear Information System (INIS)

    Visser, H.; De Wolff, J.J.; Folkert, R.J.M.; Hoekstra, J.; Ruijgrok, W.; Stortelder, B.J.M.; Vosbeek, M.E.J.P.; Ruiter, J.P.

    1997-11-01

    The aim of this report is to clarify the complex interaction between the greenhouse effect and the energy sector in the Netherlands, focusing on the future of the energy supply and how changes in policies with respect to energy consumption can influence climatic change. The relation between energy sector and greenhouse effect is dealt with on the basis of 60 questions on the greenhouse effect, emission of greenhouse gases and energy scenarios, and concise answers. Calculations of consequences of future scenarios for the climate are executed by means of the KEMA-developed integrated scenario model for climatic change DIALOOG. 27 refs

  17. The greenhouse effect, v. 15(59)

    International Nuclear Information System (INIS)

    Tsitsonkov, Risto

    2007-01-01

    An explanation for the greenhouse effect, i.e. global warning and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warning Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocols and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its recourse, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system, heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Author)

  18. The greenhouse effect, v. 15(58)

    International Nuclear Information System (INIS)

    Tsitsonkov, Risto

    2007-01-01

    An explanation for the greenhouse effect, i.e. global warning and reasons which contribute to this effect. Greenhouse gases (GHG) and GWP (Global Warning Potential) as a factor for estimating their contributing on the greenhouse effect. Indicators of the climate change in the previous period and projecting of likely scenarios for the future. Consequences on the environment and human activities: industry, energy, agriculture, water resource. The main lines of the Kyoto Protocols and problems in its realization. Suggestions to the country strategy concerning to the acts of the Kyoto Protocol. A special attention is pointed out on the energy, its recourse, the structure of energy consumption and energy efficiency. Main sectors of the energy efficiency: buildings, industry and transport. Buildings: importance of heat insulation. District heating, suggestions for space heating. Heat pumps and CHP. Air conditioning and refrigeration. Industry: process heating, and integrated energy system, heat recovery, refrigeration, compressed air. Need of quality maintenance and servicing. Monitoring and automatic control. Education for energy and its saving. (Author)

  19. Greenhouse effect in double-skin facade

    Energy Technology Data Exchange (ETDEWEB)

    Gratia, E.; Herde, A. de [Universite Catholique de Louvain, Architecture et Climat, Louvain-La-Neuve (Belgium)

    2007-02-15

    In these last years, a great deal of interest has been devoted to double-skin facades due to the advantages claimed by this technology (in terms of energy saving in the cold season, high-tech image, protection from external noise and wind loads). One of the great characteristics of the double-skin facade is the greenhouse effect. We identify the factors that influence the greenhouse effect. The identified parameters are solar radiation level, orientation and shading devices use, opaque wall/window proportion of the interior facade, wind speed, colour of shading devices and of interior facade, depth of the cavity of the double-skin, glazing type in the interior facade and openings in the double-skin. We analyze the impact of these parameters on the mean air temperature evolution in the cavity. After that analyse, the article answers the question: is greenhouse effect favourable? The answer is moderate according to the double-skin orientation. (author)

  20. An innovation in the teaching of greenhouse effect in chemistry ...

    African Journals Online (AJOL)

    The teaching of greenhouse effect is difficult and is done in abstraction. This paper suggests a new instrument, called Improvised Greenhouse Effect Apparatus (IGHA) for the teaching of Greenhouse effect. 100 students were randomly selected from the Department of Chemistry, Cross River State College of Education, ...

  1. Computational Fluid Dynamics Modeling to Improve Natural Flow Rate and Sweet Pepper Productivity in Greenhouse

    Directory of Open Access Journals (Sweden)

    W. Limtrakarn

    2012-01-01

    Full Text Available Natural flow rate and sweet peppers productivity in tropical greenhouse are improved by CFD simulation is the main objective of this research work. Most of the greenhouse types today are in the arch shape. To develop an improved greenhouse structure for the region, the arch type was built and used as the control model. Mae Sar Mai agriculture research station under the royal project foundation was selected as the field test site. Temperature sensors with data logger were installed to monitor variation of temperature inside the greenhouse. The measured temperature data were used as the boundary conditions for the CFD analysis. A new greenhouse model with two-step roof shape was designed and the air flow behavior was simulated by using CFD. Regarding CFD results the air flow rate of the new model is about 39% higher than that of old model. The maximum temperature of the new model is lower than that of the old one. The sweet paper growths in both greenhouse models were measured and compared. Results show that the new model obtains 4°C lower maximum temperature in day time, 97% in number and 90% in weight higher the first grade pepper productivity than the old one.

  2. Students' Understanding of the Greenhouse Effect, the Societal Consequences of Reducing CO2 Emissions and the Problem of Ozone Layer Depletion.

    Science.gov (United States)

    Andersson, Bjorn; Wallin, Anita

    2000-01-01

    Contributes to the growing body of knowledge about students' conceptions and views of environmental and natural resource issues. Questions 9th and 12th grade Swedish students' understandings of the greenhouse effect, reduction of CO2 emissions, and the depletion of the ozone layer. Observes five models of the greenhouse effect that appear among…

  3. Wood and combating the greenhouse effect

    International Nuclear Information System (INIS)

    Lochu, Serge

    2004-01-01

    The article begins by recalling a number of definitions connected with the greenhouse effect and the involvement of trees and forests. Timber's direct role in carbon storage and the reduction of atmospheric carbon dioxide is then described. The results of modelling studies and the indirect effects of timber as a means for economising fossil energy are discussed. While the direct and indirect effects of timber products on the greenhouse phenomenon are clearly positive, actually increasing the share of timber in the market and thereby intensifying its contribution is another matter that relies on consumer behaviour. In this area, large-scale campaigns must continue. (authors)

  4. Greenhouse governance: An Australian iconoclast`s view

    Energy Technology Data Exchange (ETDEWEB)

    O`Brien, B.J. [Brian J O`Brien Associates Pty Ltd, Floreat Park, WA (Australia)

    1996-10-01

    The `No Regrets` policy was an imported stop-gap measure taken over five years ago when greenhouse fears were large and knowledge small. This paper suggests that this policy by 1995 is actually a `Three Regrets Policy` for Australia. Regret 1 is that El Nino effects which greatly affect Australia are given lower priority than greenhouse. Regret 2 is the deteriorating image and role of Science and Engineering in Australian society. Regret 3 is the growing domination of the energy debate by greenhouse. It is suggested that greenhouse fears should be put into an updated Australian perspective. The issues of sea level rise, and increasing temperatures are updated. It is believed that recognition of the importance of natural climate variation is increasing, this is not yet being used to put greenhouse into popular perspective. The paper concludes with five suggested actions to turn the `Three Regrets for Australia` into one that truly is `no regrets` for Australia. Putting greenhouse in perspective means a vigorous program of investigating and gradually understanding the whole suite of influences on the climate, natural as well as greenhouse. It includes making a competitive advantage out of the climate variabilities in Australia, from more accurate seasonal forecasts. (author). 3 tabs., 4 figs., refs.

  5. Chapter 14. Greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Rafferty, Kevin D.

    1998-01-01

    Greenhouse heating is one of the most common uses of geothermal resources. Because of the significant heating requirements of greenhouses and their ability to use very low- temperature fluids, they are a natural application. The evaluation of a particular greenhouse project involves consideration of the structure heating requirements, and the system to meet those requirements. This chapter is intended to provide information on each of these areas.

  6. Atmospheric greenhouse effect - simple model; Atmosfaerens drivhuseffekt - enkel modell

    Energy Technology Data Exchange (ETDEWEB)

    Kanestroem, Ingolf; Henriksen, Thormod

    2011-07-01

    The article shows a simple model for the atmospheric greenhouse effect based on consideration of both the sun and earth as 'black bodies', so that the physical laws that apply to them, may be used. Furthermore, explained why some gases are greenhouse gases, but other gases in the atmosphere has no greenhouse effect. But first, some important concepts and physical laws encountered in the article, are repeated. (AG)

  7. A model for policy analysis of the greenhouse effect

    International Nuclear Information System (INIS)

    Hope, C.

    1992-01-01

    This paper describes the PAGE model (for Policy Analysis of the Greenhouse Effect), developed by Cambridge Decision Analysts for the Directorate general for Environment, Nuclear Safety and Civil Protection of the Commission of the European Communities. The rest of this section describes the motivation for developing PAGE; it is followed by sections outlining the features of PAGE, explaining its structure in more detail, and reporting some of the uses to which it is being put. The current consensus is that unchecked emissions of greenhouse gases will lead to a rise in global mean temperature. The causal chain from emissions to temperature is complex, and current estimates give a range of 2 - 5 deg C for the temperature rise by the year 2100 if no specific actions are taken to control emissions. The damage that a global temperature rise of a few degrees over a century would cause is also not well known. Some influential groups are sufficiently alarmed to have called for global agreements to stabilize or reduce the emissions of greenhouse gases. Others claim that the costs of doing so would not be justified, and that adapting to a changed climate would be the best policy. Negotiations are further complicated by the global nature of the problem; if a country, or even a major trading block such as the European Community, decided to control emissions of a greenhouse gas, some of the benefit would be gained in other parts of the world that have not shared in the cost of control. 12 refs., 6 figs

  8. The nuclear energy and the greenhouse effect

    International Nuclear Information System (INIS)

    Marignac, Y.; Legrand, V.

    2003-01-01

    This article tackles the problem of greenhouse effect and asks the question to know if the development of nuclear energy constitutes the answer to this problem. It appears that the nuclear energy cannot solve in itself the problem of greenhouse effect. Others actions on energy demand, on transport ( that is a big consumer of petroleum and that represents 25% of world emissions) have to studied and need a real policy will. (N.C.)

  9. Greenhouse effect: science or religion of the 21. century; Effet de serre: science ou religion du 21. siecle

    Energy Technology Data Exchange (ETDEWEB)

    Ploye, F

    2000-07-01

    This book is a study about the natural phenomenon of the greenhouse effect, about its importance for the development of life on the Earth's surface and about the effect of human activities on its enhancement and on the future climatic changes. In particular, the increase of the greenhouse gases content of the atmosphere due to the combustion of fossil fuels is analyzed and some possible solutions to oppose this evolution are evoked. (J.S.)

  10. The Greenhouse Effect and Climate Feedbacks

    Science.gov (United States)

    Covey, C.; Haberle, R. M.; McKay, C. P.; Titov, D. V.

    This chapter reviews the theory of the greenhouse effect and climate feedback. It also compares the theory with observations, using examples taken from all four known terrestrial worlds with substantial atmospheres: Venus, Earth, Mars, and Titan. The greenhouse effect traps infrared radiation in the atmosphere, thereby increasing surface temperature. It is one of many factors that affect a world's climate. (Others include solar luminosity and the atmospheric scattering and absorption of solar radiation.) A change in these factors — defined as climate forcing — may change the climate in a way that brings other processes — defined as feedbacks — into play. For example, when Earth's atmospheric carbon dioxide increases, warming the surface, the water vapor content of the atmosphere increases. This is a positive feedback on global warming because water vapor is itself a potent greenhouse gas. Many positive and negative feedback processes are significant in determining Earth's climate, and probably the climates of our terrestrial neighbors.

  11. 76 FR 80553 - Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas...

    Science.gov (United States)

    2011-12-23

    ... permeability gas, shale gas, coal seam, or other tight reservoir rock. For example, wells producing coal bed... separation means one or more of the following processes: forced extraction of natural gas liquids, sulfur and... Mandatory Reporting of Greenhouse Gases: Technical Revisions to the Petroleum and Natural Gas Systems...

  12. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  13. Assessment of the impact of the greenhouse gas emission and sink scenarios in Finland on radiative forcing and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    The objective of this work is to study greenhouse gas emissions and sinks and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of global average radiative forcing, which measures the perturbation in the Earth`s radiation budget. Radiative forcing is calculated on the basis of the concentration changes of the greenhouse gases and the radiation absorption properties of the gases. It takes into account the relatively slow changes in the concentrations due to natural removal and transformation processes and also allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. In addition to the applications mentioned above, the anthropogenic greenhouse gas emission histories of Nordic countries have been estimated, and the radiative forcing caused by them has been calculated with REFUGE. The dynamic impact of aerosol emissions both from the global point of view and in the context of different energy sources (coal, oil and natural gas) have also been studied. In some instances the caused radiative forcing has been examined on a per capita basis. The radiative forcing calculations contain considerable uncertainty due to inaccurately known factors at several stages of the calculation (emission estimation, concentration calculation and radiative forcing calculation). The total uncertainty of the results is typically on the order of +- 40 %, when absolute values are used. If the results are used in a relative way, e.g. to compare the impacts of different scenarios, the final uncertainty is considerably less (typically + 10 %), due to correlations in almost all stages of the calculation process

  14. Approaches to conserving natural enemy populations in greenhouse crops: current methods and future prospects

    NARCIS (Netherlands)

    Messelink, G.J.; Bennison, J.; Alomar, O.; Ingegno, B.L.; Tavella, L.; Shipp, L.; Palevsky, E.; Wäckers, F.L.

    2014-01-01

    Biological pest control in greenhouse crops is usually based on periodical releases of mass-produced natural enemies, and this method has been successfully applied for decades. However, in some cases there are shortcomings in pest control efficacy, which often can be attributed to the poor

  15. Climate Change and the Greenhouse Effect - Nature and Humans

    Science.gov (United States)

    Alevizos, Anastasios; Zygouras, Grigorios

    2014-05-01

    In this project twenty A grade students of Lyceum (age 16) were involved (2011-12) and had been learning to give answers to questions about greenhouse gases, their origin and the processes forming them with regard to human activity on our planet and our dependence on fossil fuels. They had considered whether and how this dependence affects global warming, how this dependence can be reduced by changing attitudes and using renewable energy sources and further more they had put questions and doubts about anthropogenic global warming existence. The student dialogues during a '' TV series debate '' concerning the views, questions and answers of three groups, the ''IPCCs'', the ''CLIMATE SCEPTICS'' and the '' REALISTS'' are exposed on a poster.

  16. Greenhouse effects due to man-made perturbations of trace gases

    Science.gov (United States)

    Wang, W. C.; Yung, Y. L.; Lacis, A. A.; Mo, T.; Hansen, J. E.

    1976-01-01

    Nitrous oxide, methane, ammonia, and a number of other trace constituents of the earth's atmosphere have infrared absorption bands in the spectral range from 7 to 14 microns. Despite their small amounts, these gases can have a significant effect on the thermal structure of the atmosphere by transmitting most of the thermal radiation from the earth's surface to the lower atmosphere. In the present paper, this greenhouse effect is computed for a number of trace gases. The nature and climatic implications of possible changes in the concentrations of N2O, CH4, NH3, and HNO3 are discussed.

  17. Greenhouse effect increase and its consequences

    International Nuclear Information System (INIS)

    Royer, J.F.; Mahfouf, J.F.

    1992-01-01

    Observations on the evolution of the atmospheric composition concerning trace gases (CO 2 , CH 4 , NO 2 , CFC) are first described. Then the fundamental role played by these gases in the radiative equilibrium of the earth through the greenhouse effect is examined. Numerical models have been developed to forecast the consequences of an increase of the greenhouse effect. The importance of the feedback mechanism, where the oceans and the clouds have the central part, but not well estimated by the models, is explained. Climatic changes generally accepted are reviewed. In conclusion the need to improve our knowledge of the global climatic system to forecast future modifications is underlined

  18. The greenhouse effect; L'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2004-07-01

    In the framework of the sustainable development, this paper presents the greenhouse effect and its impact on the climatic change, the world interest from Rio to Buenos Aires, the human activities producing the carbon dioxide and responsible of the greenhouse effect, the carbon dioxide emission decrease possibilities and shows the necessity of the electric power producers contribution. (A.L.B.)

  19. Greenhouse effect economic simulation and public decision

    International Nuclear Information System (INIS)

    Giraud, P.N.

    2002-03-01

    As the other countries, engaged in the greenhouse effect fight, the France has to evaluate the greenhouse gases emissions and the corrective actions. Meanwhile the today models are not enough impressive. The economic tools authorize today a better evaluation. The technical working Group, presided by Pierre-Noel Giraud, proposes to use them largely and provides four main recommendations. (A.L.B.)

  20. Greenhouse effect and its climatic consequences: scientific evaluation

    International Nuclear Information System (INIS)

    1994-11-01

    The greenhouse effect plays a major role in climate evolution and the increase observed at present in the concentration of the main gases causing the greenhouse effect (carbon dioxide, chlorofluorocarbons, methane) stems very definitely from human activities. The global warming potential by the various greenhouse effect gases is calculated through restrictive hypotheses. An essential element in the importance given to the growth of the greenhouse effect phenomena was the regular rise in the concentration of carbon dioxide in the atmosphere. The overall carbon cycle balance still needs to be worked out. The aerosols caused by sulfurous releases have grown. The decrease in the amount of ozone in the stratosphere brings on a slight cooling of the surface of the Earth. The local increase of tropospheric ozone brings on a slight local warming with a comparable order of magnitude. Despite all the progress that has been achieved in modelling the phenomena, we cannot affirm today that these predictions are accurate. Recent work involving analyses of the polar ice-caps along with other indications of past climates have given a better understanding of the North Atlantic climate over the past 200,000 years. 119 refs., 10 figs., 6 tabs

  1. Coal and the greenhouse effect: strategies for the future

    Energy Technology Data Exchange (ETDEWEB)

    Sullivan, K M [Australian Coal Association, Sydney, NSW (Australia)

    1991-07-01

    A number of gases, including carbon dioxide, methane, water vapour, nitrous oxide, ozone and chlorofluorocarbons are transparent to incoming short-wave radiation, but are relatively opaque to outgoing longwave radiation. Variations in the concentration of these gases in the troposphere can alter the thermal balance of the earth's atmosphere. Outgoing terrestrial radiation which would otherwise escape to space, is trapped within the inner layer of the atmosphere, resulting in a potential warming and the greenhouse effect. It is estimated that at present greenhouse gases other than carbon dioxide, contribute about 50% to the greenhouse effect. However, in the future, the contribution made by gases other than CO{sub 2} will be become greater. Greenhouse gases arise from a wide range of sources and their escalating increase is largely related to an increase in the world's population, and the standard of living of many areas as well as changes in lifestyle. The effect of increasing man-made greenhouse gases in the troposphere is unknown, but it is proposed that it may increase temperature and may modify climate, agricultural response and land use. The facts and uncertainties relating to potential greenhouse warming are examined. Man-generated emissions are quantified and their source identified. Coal's contribution worldwide is examined in detail and is shown to be small, being about 10% of man-made greenhouse gases. Strategies for minimising emissions, having maximum potential for reduction, with minimum impact on man are suggested. 16 refs., 1 fig., 3 tabs.

  2. The effects of light-emitting diode lighting on greenhouse plant growth and quality

    Directory of Open Access Journals (Sweden)

    Margit Olle

    2013-06-01

    Full Text Available The aim of this study is to present the light emitting diode (LED technology for greenhouse plant lighting and to give an overview about LED light effects on photosynthetic indices, growth, yield and nutritional value in green vegetables and tomato, cucumber, sweet pepper transplants. The sole LED lighting, applied in closed growth chambers, as well as combinations of LED wavelengths with conventional light sources, fluorescent and high pressure sodium lamp light, and natural illumination in greenhouses are overviewed. Red and blue light are basal in the lighting spectra for green vegetables and tomato, cucumber, and pepper transplants; far red light, important for photomorphogenetic processes in plants also results in growth promotion. However, theoretically unprofitable spectral parts as green or yellow also have significant physiological effects on investigated plants. Presented results disclose the variability of light spectral effects on different plant species and different physiological indices.

  3. Filtering natural light at the greenhouse covering - better greenhouse climate and higher production by filtering out NIR?

    NARCIS (Netherlands)

    Hemming, S.; Kempkes, F.; Braak, van der N.; Dueck, T.A.; Marissen, A.

    2006-01-01

    Wageningen UR investigated the potentials of several NIR-filtering methods to be applied in Dutch horticulture. NIR-filtering can be done by the greenhouse covering or by internal or external moveable screens. The objective of this investigation was to quantify the effect of different NIR-filtering

  4. Atmospheric greenhouse effect: more subtle than it looks like

    International Nuclear Information System (INIS)

    Dufresne, J.L.; Treiner, J.

    2011-01-01

    State-of-the-art radiative models can be used to calculate in a rigorous and accurate manner the atmospheric greenhouse effect, as well as its variation with concentration in water vapour or carbon dioxide. A simple explanation of this effect uses an analogy with the greenhouse effect produced by a glass window. While this analogy has pedagogical virtues and provides a first order explanation of the mean temperature of the Earth, it has an important drawback; it is not able to explain why the greenhouse effect increases with increasing carbon dioxide concentration. Indeed, absorption of infrared radiation by carbon dioxide is, under this scheme, almost at its maximum and depends very weakly on CO 2 concentration. It is said to be saturated. In this paper, we explore this question and propose an alternative model which, while remaining simple, correctly takes into account the various mechanisms and provides an understanding of the increasing greenhouse effect with CO 2 concentration, together with the corresponding climate warming. The role of the atmospheric temperature gradient is particularly stressed. (authors)

  5. Climate and greenhouse effect gas: glaciated archives data

    International Nuclear Information System (INIS)

    Lorius, C.

    1991-01-01

    Ice caps in Antarctica or Greenland have recorded the anthropogenic effect on atmospheric composition and especially on greenhouse effect gases such as carbon dioxide and methane. 2000 meter depth drilling samples allowed to study the climates for 150 000 years ago; hot and cold climates are ruled by periodic movement of the Earth around the sun and by more or less elevated concentration of greenhouse effect gases in the atmosphere. Prospects for to morrow climates and anthropogenic contribution are then possible [fr

  6. Proposed law of nature linking impacts, plume volcanism, and Milankovitch cycles to terrestrial vertebrate mass extinctions via greenhouse-embryo death coupling

    Science.gov (United States)

    Mclean, D. M.

    1994-01-01

    A greenhouse-physiological coupling killing mechanism active among mammals, birds, and reptiles has been identified. Operating via environmental thermal effects upon the maternal core-skin blood flow critical to the survival and development of embryos, it reduces the flow of blood to the uterine tract. Today, during hot summers, this phenomena kills embryos on a vast, global scale. Because of sensitivity of many mammals to modern heat, a major modern greenhouse could reduce population numbers on a global scale, and potentially trigger population collapses in the more vulnerable parts of the world. In the geological past, the killing mechanism has likely been triggered into action by greenhouse warming via impact events, plume volcanism, and Earth orbital variations (Milankovitch cycles). Earth's biosphere is maintained and molded by the flow of energy from the solar energy source to Earth and on to the space energy sink (SES). This SES energy flow maintains Earth's biosphere and its living components, as open, intermediate, dissipative, nonequilibrium systems whose states are dependent upon the rate of energy flowing through them. Greenhouse gases such as CO2 in the atmosphere influence the SES energy flow rate. Steady-state flow is necessary for global ecological stability (autopoiesis). Natural fluctuations of the C cycle such as rapid releases of CO2 from the mantle, or oceans, disrupt steady-state SES flow. These fluctuations constantly challenge the biosphere; slowdown of SES energy flow drives it toward thermodynamical equilibrium and stagnation. Fluctuations induced by impact event, mantle plume volcanism, and Milankovitch cycles can grow into structure-breaking waves triggering major perturbations of Earth's C cycle and mass extinctions. A major C cycle perturbation involves readjustment of the outer physiochemical spheres of the Earth: the atmosphere, hydrosphere, and lithosphere; and by necessity, the biosphere. A greenhouse, one manifestation of a major

  7. Ideas of Elementary Students about Reducing the "Greenhouse Effect."

    Science.gov (United States)

    Francis, Claire; And Others

    1993-01-01

    Presents the results of a questionnaire given to 563 elementary students to study their ideas of actions that would reduce the greenhouse effect. Most of the children (87%) appreciated that planting trees would help reduce global warming. During interviews it was discovered that children were confused between the greenhouse effect and ozone layer…

  8. The role of forestry development in China in alleviating greenhouse effects

    Energy Technology Data Exchange (ETDEWEB)

    Liu Hong

    1996-12-31

    Forestry development in China has gained great achievements and made great progress in realizing sustainable forest management and alleviating global climate change. The main measures to mitigate greenhouse effects through the means of forestry development include afforestation to increase the forested area, fuel wood forest development, management improvement, wise utilization, international cooperation, investment increase, forest related scientific research, strengthening the forest law enforcement system. Climate change as well as how to alleviate the greenhouse effects is a hot topic at present. This paper describes the achievements of China`s forestry development and its role to alleviate the greenhouse effects, and puts forward the measures to mitigate greenhouse effects through the means of forestry development.

  9. Global Warming: Understanding and Teaching the Forecast. Part A The Greenhouse Effect.

    Science.gov (United States)

    Andrews, Bill

    1993-01-01

    Provides information necessary for an interdisciplinary analysis of the greenhouse effect, enhanced greenhouse effect, global warming, global climate change, greenhouse gases, carbon dioxide, and scientific study of global warming for students grades 4-12. Several activity ideas accompany the information. (LZ)

  10. Greenhouse Gas and Noxious Emissions from Dual Fuel Diesel and Natural Gas Heavy Goods Vehicles.

    Science.gov (United States)

    Stettler, Marc E J; Midgley, William J B; Swanson, Jacob J; Cebon, David; Boies, Adam M

    2016-02-16

    Dual fuel diesel and natural gas heavy goods vehicles (HGVs) operate on a combination of the two fuels simultaneously. By substituting diesel for natural gas, vehicle operators can benefit from reduced fuel costs and as natural gas has a lower CO2 intensity compared to diesel, dual fuel HGVs have the potential to reduce greenhouse gas (GHG) emissions from the freight sector. In this study, energy consumption, greenhouse gas and noxious emissions for five after-market dual fuel configurations of two vehicle platforms are compared relative to their diesel-only baseline values over transient and steady state testing. Over a transient cycle, CO2 emissions are reduced by up to 9%; however, methane (CH4) emissions due to incomplete combustion lead to CO2e emissions that are 50-127% higher than the equivalent diesel vehicle. Oxidation catalysts evaluated on the vehicles at steady state reduced CH4 emissions by at most 15% at exhaust gas temperatures representative of transient conditions. This study highlights that control of CH4 emissions and improved control of in-cylinder CH4 combustion are required to reduce total GHG emissions of dual fuel HGVs relative to diesel vehicles.

  11. Increased greenhouse effect substantiated through measurements

    International Nuclear Information System (INIS)

    Skartveit, Arvid

    2001-01-01

    The article presents studies on the greenhouse effect which substantiates the results from satellite measurements during the period 1970 - 1997. These show an increased effect due to increase in the concentration of the climatic gases CO 2 , methane, CFC-11 and CFC-12 in the atmosphere

  12. Greenhouse Effect Detection Experiment (GEDEX). Selected data sets

    Science.gov (United States)

    Olsen, Lola M.; Warnock, Archibald, III

    1992-01-01

    This CD-ROM contains selected data sets compiled by the participants of the Greenhouse Effect Detection Experiment (GEDEX) workshop on atmospheric temperature. The data sets include surface, upper air, and/or satellite-derived measurements of temperature, solar irradiance, clouds, greenhouse gases, fluxes, albedo, aerosols, ozone, and water vapor, along with Southern Oscillation Indices and Quasi-Biennial Oscillation statistics.

  13. A review of greenhouse gas research in Canada

    International Nuclear Information System (INIS)

    Yundt, P.

    1995-11-01

    Greenhouse gas research programs and projects that relate to the Canadian natural gas industry were presented. Fossil fuel related emissions, primarily methane and carbon dioxide, impact on the atmospheric concentrations of the greenhouse gases. Therefore, strategies to reduce these emissions should impact on the Canadian natural gas industry. A list of 39 projects and 18 research programs of potential interest to the natural gas industry were presented in summary form. The involvement of CANMET (Canada Centre for Mineral and Energy Technology), Environment Canada, and NSERC (Natural Sciences and Engineering Research Council) in doing or sponsoring research projects directed towards greenhouse gas emission reduction was highlighted. Some potential options for member companies of the Canadian natural gas industry, to support climate change and greenhouse gas research, were outlined. 6 refs., 12 tabs

  14. Stopping the greenhouse effect - recommendations submitted by the Bundestag Enquete Commission

    International Nuclear Information System (INIS)

    Bach, W.

    1991-01-01

    Details are given about the factors which influence the greenhouse effect and about the impact of the greenhouse effect on the climate. The strategy developed by the enquete commission for the Federal Republic of Germany is essentially based on the international and the EC recommendations for stopping the additional greenhouse effect and for reducing the emission of power-generation trace gases which affect the climate. Different scenarios are analyzed to evaluate the recommended measures. (DG) [de

  15. Effect of greenhouse micro-climate on the selected summer vegetables

    International Nuclear Information System (INIS)

    Sethi, V.P.; Lal, T.; Gupta, Y.P.; Hans, V.S.

    2003-01-01

    The study deals with creating suitable environment for the germination and subsequent growth of plants in the greenhouse of size 7 m x 3 m x 2 m for raising early summer vegetable nursery. It was observed that the average air temperature inside the greenhouse was 10–12°C higher than the ambient air temperature. Inside average soil temperature was also 5–7°C higher than the corresponding temperature outside the greenhouse. Greenhouse night micro-climate was modified by covering its roof with a polyester sheet to cut down the effect of night sky radiation thereby raising the inside minimum temperature. The effect of elevated temperature was monitored on the germination and subsequent growth of “muskmelon” seedlings up to two true leaf stage. It was observed that the germination of seeds, sown inside the greenhouse occurred one week earlier as compared to the seeds sown in the open field. The rate of growth of the seedlings inside the greenhouse took only three weeks to attain two-leaf stage, whereas seedlings sown in the open field took five weeks to reach up to two-leaf stage. Thus, there was a clear saving of 15 days in raising the nursery under the greenhouse. (author)

  16. Three-dimensional computational fluid dynamics analysis of buoyancy-driven natural ventilation and entropy generation in a prismatic greenhouse

    Directory of Open Access Journals (Sweden)

    Aich Walid

    2018-01-01

    Full Text Available A computational analysis of the natural ventilation process and entropy generation in 3-D prismatic greenhouse was performed using CFD. The aim of the study is to investigate how buoyancy forces influence air-flow and temperature patterns inside the greenhouse having lower level opening in its right heated façade and also upper level opening near the roof top in the opposite cooled façade. The bot-tom and all other walls are assumed to be perfect thermal insulators. Rayleigh number is the main parameter which changes from 103 to 106 and Prandtl number is fixed at Pr = 0.71. Results are reported in terms of particles trajectories, iso-surfaces of temperature, mean Nusselt number, and entropy generation. It has been found that the flow structure is sensitive to the value of Rayleigh number and that heat transfer increases with increasing this parameter. Also, it have been noticed that, using asymmetric opening positions improve the natural ventilation and facilitate the occurrence of buoyancy induced upward cross air-flow (low-level supply and upper-level extraction inside the greenhouse.

  17. Greenhouse effect and climate; Effet de serre et climat

    Energy Technology Data Exchange (ETDEWEB)

    Poitou, J

    2008-04-15

    In the framework of the climatic change, the author aims to explain the phenomena of greenhouse effect. He details the historical aspects of the scientific knowledge in the domain, the gases produced, some characteristic of the greenhouse effect, the other actors which contribute to the climate, the climate simulation, the different factors of climate change since 1750 and the signs of the global heating. (A.L.B.)

  18. 'Home made' model to study the greenhouse effect and global warming

    Science.gov (United States)

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-03-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  19. 'Home made' model to study the greenhouse effect and global warming

    International Nuclear Information System (INIS)

    Onorato, P; Mascheretti, P; DeAmbrosis, A

    2011-01-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  20. The social representations of the greenhouse effect (6. wave of questions)

    International Nuclear Information System (INIS)

    2005-01-01

    Six waves of questions concerning the public opinion of the greenhouse effect, were realized by the ISL in May 2000, March 2001, July 2002, June 2003 and May 2004. This sixth wave was realized between June 14 and 25 2005. The report presents the questions asked and analyzes the answers. The concerned domains are the greenhouse effect, the causes, the consequences, the greenhouse effect remediation (technical and political choices), the climatic change, the confidence on the actors and the institutions. (A.L.B.)

  1. Simple model of photo acoustic system for greenhouse effect

    OpenAIRE

    Fukuhara, Akiko; Kaneko, Fumitoshi; Ogawa, Naohisa

    2010-01-01

    The green house effect is caused by the gases which absorb infrared ray (IR) emitted by the earth. It is worthwhile if we can adjudicate on which gas causes the greenhouse effect in our class. For this purpose, one of our authors, Kaneko has designed an educational tool for testing greenhouse effect \\cite{Kaneko}. This system (hereafter abbreviated PAS) is constructed based on photo acoustic effect. Without difficulty and high cost, we can build PAS and check the IR absorption of gas. In this...

  2. The Greenhouse Effect in a Vial.

    Science.gov (United States)

    Golden, Richard; Sneider, Cary

    1989-01-01

    Presents an example of a greenhouse-effect experiment from the Climate Protection Institute. Analyzes the amount of carbon dioxide in ambient air, human exhalation, automobile exhaust, and nearly pure carbon dioxide by titrating with ammonia and bromthymol blue. (MVL)

  3. Greenhouse effect: a much debate question

    International Nuclear Information System (INIS)

    Lenoir, Y.

    1992-01-01

    After a two year inquiry, a french research worker has denounced the official thesis of a growth of greenhouse effect. This paper gives the point of view of the author on climatic change and opens the debate with two another experts

  4. The detection of climate change due to the enhanced greenhouse effect

    Science.gov (United States)

    Schiffer, Robert A.; Unninayar, Sushel

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record.

  5. The detection of climate change due to the enhanced greenhouse effect

    International Nuclear Information System (INIS)

    Schiffer, R.A.; Unninayar, S.

    1991-01-01

    The greenhouse effect is accepted as an undisputed fact from both theoretical and observational considerations. In Earth's atmosphere, the primary greenhouse gas is water vapor. The specific concern today is that increasing concentrations of anthropogenically introduced greenhouse gases will, sooner or later, irreversibly alter the climate of Earth. Detecting climate change has been complicated by uncertainties in historical observations and measurements. Thus, the primary concern for the GEDEX project is how can climate change and enhanced greenhouse effects be unambiguously detected and quantified. Specifically examined are the areas of: Earth surface temperature; the free atmosphere (850 millibars and above); space-based measurements; measurement uncertainties; and modeling the observed temperature record

  6. The greenhouse effect gases; Les gaz a effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2006-06-15

    This road-map proposes by the Group Total aims to inform the public on the greenhouse effect gases. It presents the greenhouses effect as a key component of the climate system, the impacts of the human activity, the foreseeable consequences of global warming, the Kyoto protocol and Total commitment in the domain. (A.L.B.)

  7. Off-season cultivation of capsicums in a solar greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Ghosal, M.K.; Tiwari, G.N. [Indian Inst. of Technology, New Delhi (India). Centre for Energy Studies

    2001-10-01

    The use of solar energy for growing capsicums in pots and in the ground has been studied both under a controlled environment in a solar greenhouse (IIT model) and in an open field during August 2000 to March 2001. Cooling arrangements (natural, forced convection, shading, evaporative cooling) and heating methods (ground air collector, movable insulation during the night) have been employed during the pre-winter and winter periods respectively to maintain the protected environment in the greenhouse. The effects of a north brick wall and the use of movable insulation during the night in the winter months to reduce heat loss from the greenhouse have been incorporated to study the efficacy of the greenhouse. The average height, weight and yield per plant of the greenhouse crop were higher than those of the open field. (author)

  8. Middle-School Understanding of the Greenhouse Effect using a NetLogo Computer Model

    Science.gov (United States)

    Schultz, L.; Koons, P. O.; Schauffler, M.

    2009-12-01

    We investigated the effectiveness of a freely available agent based, modeling program as a learning tool for seventh and eighth grade students to explore the greenhouse effect without added curriculum. The investigation was conducted at two Maine middle-schools with 136 seventh-grade students and 11 eighth-grade students in eight classes. Students were given a pre-test that consisted of a concept map, a free-response question, and multiple-choice questions about how the greenhouse effect influences the Earth's temperature. The computer model simulates the greenhouse effect and allows students to manipulate atmospheric and surface conditions to observe the effects on the Earth’s temperature. Students explored the Greenhouse Effect model for approximately twenty minutes with only two focus questions for guidance. After the exploration period, students were given a post-test that was identical to the pre-test. Parametric post-test analysis of the assessments indicated middle-school students gained in their understanding about how the greenhouse effect influences the Earth's temperature after exploring the computer model for approximately twenty minutes. The magnitude of the changes in pre- and post-test concept map and free-response scores were small (average free-response post-test score of 7.0) compared to an expert's score (48), indicating that students understood only a few of the system relationships. While students gained in their understanding about the greenhouse effect, there was evidence that students held onto their misconceptions that (1) carbon dioxide in the atmosphere deteriorates the ozone layer, (2) the greenhouse effect is a result of humans burning fossil fuels, and (3) infrared and visible light have similar behaviors with greenhouse gases. We recommend using the Greenhouse Effect computer model with guided inquiry to focus students’ investigations on the system relationships in the model.

  9. Comparison of greenhouse and 32P isotopic laboratory methods for evaluating the agronomic effectiveness of natural and modified rock phosphates in some acid soils of Ghana

    International Nuclear Information System (INIS)

    Owusu-Bennoah, E.; Zapata, F.; Fardeau, J.C.

    2002-01-01

    Phosphorus deficiency is one of the major constraints for normal plant growth and crop yields in the acid soils of Ghana and therefore addition of P inputs is required for sustainable crop production. This is often difficult, if not impossible for small-scale farmers due to the high cost of mineral P fertilizers and limited access to fertilizer supplies. Direct application of finely ground phosphate rocks (PRs) and their modified forms have been recommended as alternatives for P fertilization. The direct application of the natural and modified PRs to these acid soils implies the need to predict their agronomic effectiveness of the PRs in the simplest and most cost-effective manner. In this study the classical greenhouse pot experiment was compared to the 32 P isotopic kinetics laboratory method for evaluating the agronomic effectiveness of natural and modified Togo PR in six highly weathered Oxisols from southwest Ghana. In the 32 P isotopic kinetics laboratory experiment the six soil samples were each fertilised at the rate of 50 mg P kg -1 soil in the form of triple superphosphate (TSP), Togo PAPR-50%, and Togo PR, respectively. Controls without P amendment were also included. Isotopic exchange kinetics experiments were carried out on two sets of samples, immediately after P fertilizer additions (without incubation) and after 6 weeks of incubation under wet conditions and at a room temperature of 25 deg C. In the greenhouse pot experiment, P fertilizers in the form of Togo PR, Togo PAPR, Mali PR and TSP were each applied to the six soils at rates equivalent to 0, 30, 60, and 120 kg P ha -1 , respectively. The P fertilizers were mixed with the soils and maize (Zea mays L.) variety Obatanpa was grown for 42 days before harvest. The isotopic kinetics data of the control samples indicated that 5 of the studied soils had very low P fertility status as reflected by their low P concentrations in solution (C P -1 ) and low exchangeable P (E 1 min -1 ). The capacity

  10. Emission of carbon. A most important component for greenhouse effect in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Milaev, V.B.; Kopp, I.Z.; Yasenski, A.N. [Scientific Research Inst. of Atmospheric Air Protection, St. Petersburg (Russian Federation)

    1995-12-31

    Greenhouse effect is most often defined as the probabilities of atmospheric air quasiequilibrium temperature increase as a result of air pollution due to emission of anthropogenic gaseous substances which are usually called `greenhouse gases`. Among greenhouse gases are primarily considered several gaseous substances which contain carbon atoms: carbon oxide, carbon dioxide and methane (CO, CO{sub 2} and CH{sub 4}), and chlorinated and fluorinated hydrocarbons (freons) spectra of which are transparent to solar radiation, but absorb and reradiate longwave radiation causing disturbance of quasistationary thermal regieme of the atmosphere. Qualitative estimates of the income and relative roles of different substances in occurrence of greenhouse effect differ considerable. At the modern state of knowledge the problem of greenhouse effect and greenhouse gases is considered in several aspects. The most widespread and investigated is climatic or meteorological aspect, it is discussed in a number of international works. Rather pressing is thermal physics aspect of the problem of estimating greenhouse effect, which consists in correct construction of a calculation model and usage of the most representative experimental data, since analytical methods require many assumptions, introduction of which may lead to results which differ very much. Bearing these uncertainties in mind the UNEP/WMO/ICSU conference has included into the number of the most urgent tasks in the study of greenhouse effect, the problem of determining the priority of factors which cause greenhouse effect, which in its turn predetermines the necessity to substantiate the methods of selection and criterion of comparative evaluation of such factors. (author)

  11. Emission of carbon. A most important component for greenhouse effect in the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Milaev, V B; Kopp, I Z; Yasenski, A N [Scientific Research Inst. of Atmospheric Air Protection, St. Petersburg (Russian Federation)

    1996-12-31

    Greenhouse effect is most often defined as the probabilities of atmospheric air quasiequilibrium temperature increase as a result of air pollution due to emission of anthropogenic gaseous substances which are usually called `greenhouse gases`. Among greenhouse gases are primarily considered several gaseous substances which contain carbon atoms: carbon oxide, carbon dioxide and methane (CO, CO{sub 2} and CH{sub 4}), and chlorinated and fluorinated hydrocarbons (freons) spectra of which are transparent to solar radiation, but absorb and reradiate longwave radiation causing disturbance of quasistationary thermal regieme of the atmosphere. Qualitative estimates of the income and relative roles of different substances in occurrence of greenhouse effect differ considerable. At the modern state of knowledge the problem of greenhouse effect and greenhouse gases is considered in several aspects. The most widespread and investigated is climatic or meteorological aspect, it is discussed in a number of international works. Rather pressing is thermal physics aspect of the problem of estimating greenhouse effect, which consists in correct construction of a calculation model and usage of the most representative experimental data, since analytical methods require many assumptions, introduction of which may lead to results which differ very much. Bearing these uncertainties in mind the UNEP/WMO/ICSU conference has included into the number of the most urgent tasks in the study of greenhouse effect, the problem of determining the priority of factors which cause greenhouse effect, which in its turn predetermines the necessity to substantiate the methods of selection and criterion of comparative evaluation of such factors. (author)

  12. Greenhouse effect gases inventory in France during the years 1990-1999

    International Nuclear Information System (INIS)

    2000-12-01

    The present report supplies emission data, for France and for the period 1990-1999, concerning all the substances involved in the increase in the greenhouse effect and covered under the United Nations' Framework Convention on Climate Change (UNFCCC). The substances are the six direct greenhouse gases covered by the Kyoto protocol: carbon dioxide (CO 2 ), methane (CH 4 ), nitrous oxide (N 2 O), the two species of halogenous substances - hydro-fluorocarbons (HFCs) and per-fluorocarbons (PFCs), and sulphur hexafluoride (SF 6 ). Emissions of sulphur dioxide (SO 2 ), nitrogen oxides (NO x ), non methane volatile organic compounds (NMVOCs), and carbon monoxide (CO), gases which indirectly make a significant contribution to the greenhouse effect, are reported under the Convention. The emissions of the six gases that directly contribute to the greenhouse effect are expressed in terms of Global Warming Potential (GWP) which decreased by 2.1 % in 1999 compared to 1990. The emissions of the four gases that indirectly contribute to the greenhouse effect are moving towards decrease: this is by 17% for NO x , 23% as regards NMVOCs, 33% for CO and by 44% regarding SO 2 . Out of the six greenhouse gases covered by the Kyoto Protocol, CO 2 accounts for the largest share in total GWP emissions (70 %), followed by N 2 O (16 %), CH 4 (12 %), HFCs (0.99 %), SF 6 (0.5 %), and PFCs (0.39 %). (author)

  13. The 'greenhouse effect' as a function of atmospheric mass

    Energy Technology Data Exchange (ETDEWEB)

    Jelbring, Hans

    2003-07-01

    The main reason for claiming a scientific basis for 'Anthropogenic Greenhouse Warming (AGW)' is related to the use of 'radiative energy flux models' as a major tool for describing vertical energy fluxes within the atmosphere. Such models prescribe that the temperature difference between a planetary surface and the planetary average black body radiation temperature (commonly called the Greenhouse Effect, GE) is caused almost exclusively by the so called greenhouse gases. Here, using a different approach, it is shown that GE can be explained as mainly being a consequence of known physical laws describing the behaviour of ideal gases in a gravity field. A simplified model of Earth, along with a formal proof concerning the model atmosphere and evidence from real planetary atmospheres will help in reaching conclusions. The distinguishing premise is that the bulk part of a planetary GE depends on its atmospheric surface mass density. Thus the GE can be exactly calculated for an ideal planetary model atmosphere. In a real atmosphere some important restrictions have to be met if the gravity induced GE is to be well developed. It will always be partially developed on atmosphere bearing planets. A noteworthy implication is that the calculated values of AGW, accepted by many contemporary climate scientists, are thus irrelevant and probably quite insignificant (not detectable) in relation to natural processes causing climate change. (Author)

  14. Greenhouse effect of trace gases, 1970-1980

    Science.gov (United States)

    Lacis, A.; Hansen, J.; Lee, P.; Lebedeff, S.; Mitchell, T.

    1981-01-01

    Increased abundances were measured for several trace atmospheric gases in the decade 1970-1980. The equilibrium greenhouse warming for the measured increments of CH4, chlorofluorocarbons and N2O is between 50% and 100% of the equilibrium warming for the measured increase of atmospheric CO2 during the same 10 years. The combined warming of CO2 and trace gases should exceed natural global temperature variability in the 1980's and cause the global mean temperature to rise above the maximum of the late 1930's.

  15. Climate change due to the greenhouse effect and its implications for China

    Energy Technology Data Exchange (ETDEWEB)

    Hulme, M.; Wigley, T.; Jiang, T.; Zhao, Z.; Wang, F.; Ding, Y.; Leemans, R.; Markham, A.

    1992-01-01

    The report describes the greenhouse effect, past climate changes, and forecasts. The implications for China, and for policies are discussed. Over China, warming has been greater (nearly 1.0[degree]C since the last century) than over the rest of the planet. It is also more pronounced in winter. Climatic change would have a substantial impact on natural vegetation in China. By 2050, large changes in cropping systems would occur. Sea level rise is likely to affect some densely populated areas. 14 refs., 24 figs., 8 tabs.

  16. A mental picture of the greenhouse effect. A pedagogic explanation

    Science.gov (United States)

    Benestad, Rasmus E.

    2017-05-01

    The popular picture of the greenhouse effect emphasises the radiation transfer but fails to explain the observed climate change. An old conceptual model for the greenhouse effect is revisited and presented as a useful resource in climate change communication. It is validated against state-of-the-art data, and nontraditional diagnostics show a physically consistent picture. The earth's climate is constrained by well-known and elementary physical principles, such as energy balance, flow, and conservation. Greenhouse gases affect the atmospheric optical depth for infrared radiation, and increased opacity implies higher altitude from which earth's equivalent bulk heat loss takes place. Such an increase is seen in the reanalyses, and the outgoing long-wave radiation has become more diffuse over time, consistent with an increased influence of greenhouse gases on the vertical energy flow from the surface to the top of the atmosphere. The reanalyses further imply increases in the overturning in the troposphere, consistent with a constant and continuous vertical energy flow. The increased overturning can explain a slowdown in the global warming, and the association between these aspects can be interpreted as an entanglement between the greenhouse effect and the hydrological cycle, where reduced energy transfer associated with increased opacity is compensated by tropospheric overturning activity.

  17. Do human beings contribute to the greenhouse effect

    International Nuclear Information System (INIS)

    Stordal, Frode

    1999-01-01

    The various sources to and aspects of the greenhouse gas effect were discussed. The gas and pollutant contributions were estimated and the added amounts of methane, nitrogen dioxide and chlorofluorocarbons emissions were approximately equal to that of carbon dioxide. Problems connected to sulphur dioxide emissions were mentioned. The problems of UV and IR radiation were discussed. The sun shine intensity fluctuation was also considered as well as other factors that have influenced the climate before the industrial era. It was concluded that human activities have contributed to the alterations in the greenhouse effect in last century

  18. Global climate: Methane contribution to greenhouse effect

    International Nuclear Information System (INIS)

    Metalli, P.

    1992-01-01

    The global atmospheric concentration of methane greatly contributes to the severity of the greenhouse effect. It has been estimated that this concentration, due mainly to human activities, is growing at the rate of roughly 1.1% per year. Environmental scientists suggest that a reduction, even as small as 10%, in global methane emissions would be enough to curtail the hypothetical global warning scenarios forecasted for the up-coming century. Through the recovery of methane from municipal and farm wastes, as well as, through the control of methane leaks and dispersions in coal mining and petrochemical processes, substantial progress towards the abatement of greenhouse gas effects could be achieved without having to resort to economically detrimental limitations on the use of fossil fuels

  19. Greenhouse effect and the fuel fossil burning in Brazil

    International Nuclear Information System (INIS)

    Rosa, L.P.; Cecchi, J.C.

    1994-01-01

    In Brazil, the global energy consumption per inhabitant is low and the fraction of renewable energy is high, which represents an advantage in terms of gas released. On the other hand the burning in the Amazon Region releases more greenhouse gases than fossil fuel combustion. This article, considering trends in the energy consumption by different economic sectors, discusses the greenhouse effect and its repercussion in energy planning. As known the energy generation process is in great part responsible for the emission of CO 2 , the main anthropogenic gas which causes the greenhouse effect. A comparison of the brazilian case with other studies from developed countries was made to show the advantages and disadvantages of the adopted energetic solution. Carbon emissions were calculated in different scenarios leading to same interesting conclusions. (B.C.A.)

  20. Conceptual approaches to innovative energy saving technologies and reducing greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Buyadgie, Dmytro; Sechenyh, Vitaliy; Buyadgie, Olexiy; Nichenko, Sergii; Vasil' ev, Igor

    2010-09-15

    The study attempts a comprehensive overview of the effects of human activities and proposes technical solutions for compensation of human anthropogenic intervention. Attention is focused on energy consumption optimization and reduction of harmful emissions at current stage of civilization development. Natural sources of energy and their associated greenhouse gases (GHG) emissions are considered in the paper along with the existed approaches to energy utilization, its merits and demerits. The role of heat-utilizing thermotransformers in reduction of thermal release and GHG emissions is specified. The examples of energy efficient technologies, based on application of jet devices, are presented in the study.

  1. Energy policies and the greenhouse effect. V. 1

    International Nuclear Information System (INIS)

    Grubb, Michael.

    1991-01-01

    This study represents the culmination of two years of research on the Greenhouse Effect by the Energy and Environmental Programme. It is the fourth study which we have published on the policy aspects of this subject, following Issues for Policymakers, Negotiating Targets, and our report of October 1990 Formulating a Convention. The first volume of the study concentrates on the policy issues arising from attempts to reduce greenhouse gas emissions from the energy sector. The second volume on 'country studies and technical options' provides the detailed analysis on which the conclusions of this book have been based, and will be published in early 1991. Although it was not our intention to produce such a large work at the outset, the upsurge of interest in the subject has expanded the framework of measures being considered to address environmental issues in general and the greenhouse effect in particular. These developments have had a major impact on the size and content. In this book, as in our previous publications, the Programme's work is aimed at moving the policy debate forward as quickly as possible into areas which seem to offer the best prospects for effective policy action. (Author)

  2. Greenhouse effect: an issue for the refrigeration and air conditioning sector; Effet de serre: quelle problematique pour le froid et le conditionnement de l`air?

    Energy Technology Data Exchange (ETDEWEB)

    Billiard, F. [Institut International du Froid, 75 - Paris (France)

    1997-12-31

    The principles of greenhouse effect and the greenhouse gas main direct and indirect emission sources due to refrigeration and air conditioning systems are first reviewed. Evolution scenarios from 1992 to 2020 and 2100 for the emissions of CFC, HCFC and HFC are presented and related to the Kyoto protocol project limitations; technical improvements in refrigerating and air conditioning systems (lower refrigerant utilization, fluid confinement, alternative technologies, natural refrigerant utilization, etc.) could lead to substantial diminutions of these greenhouse gases

  3. Optimization of ventilation and its effect on the microclimate of a colombian multispan greenhouse

    Directory of Open Access Journals (Sweden)

    Edwin Andrés Villagrán

    2012-08-01

    Full Text Available In Colombia, greenhouse design optimization has not been a relevant topic and, as a consequence, the ventilation systems of current structures are not optimal, generating inadequate microclimates for the development of horticultural species. At the production level, management of the greenhouse climate is deficient, and this factor is not taken into account as a function of characteristics dependent on greenhouse design that cannot be modified during its lifespan. The aim of the present work was to study the efficiency of modifications applied to the ventilation system of a commercial greenhouse available on the Colombian market. This was accomplished by using numerical simulations through the application of the computational fluid dynamics method. Based on the commercial greenhouse design, two modified models were designed by applying structural modifications and changing the orientation of the fixed open ridges. Simulations with the three greenhouse models were carried out in order to maximize the air renovation rates and improve air movement within the entire greenhouse, striving for the highest degree of climate homogenization. The best greenhouse design was the one with the highest air renovation index, high enough to ensure adequate control of temperature and humidity extremes through natural ventilation. Additionally, this design generated the most homogenous microclimate within the cultivation zone

  4. Harnessing greenhouse effect; Domestiquer l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Meunier, F.; Rivet, P.; Terrier, M.F

    2005-07-01

    This book considers the energy and greenhouse effect questions in a global way. It presents the different methods of fight against the increase of the greenhouse effect (energy saving, carbon sinks, cogeneration,..), describes the main alternative energy sources to fossil fuels (biomass, wind power, solar, nuclear,..), and shows that, even worrying, the future is not so dark as it seems to be and that technical solutions exist which will allow to answer the worldwide growing up energy needs and to slow down the climatic drift. (J.S.)

  5. (ajst) effects of ground insulation and greenhouse

    African Journals Online (AJOL)

    NORBERT OPIYO AKECH

    and quality of biogas generation from dairy cattle dung. The effects ... Therefore ground insulation of plastic biogas digester under greenhouse conditions significantly enhances ..... The low values obtained did not suggest failure of the system ...

  6. Impact of neonicotinoid insecticides on natural enemies in greenhouse and interiorscape environments.

    Science.gov (United States)

    Cloyd, Raymond A; Bethke, James A

    2011-01-01

    The neonicotinoid insecticides imidacloprid, acetamiprid, dinotefuran, thiamethoxam and clothianidin are commonly used in greenhouses and/or interiorscapes (plant interiorscapes and conservatories) to manage a wide range of plant-feeding insects such as aphids, mealybugs and whiteflies. However, these systemic insecticides may also be harmful to natural enemies, including predators and parasitoids. Predatory insects and mites may be adversely affected by neonicotinoid systemic insecticides when they: (1) feed on pollen, nectar or plant tissue contaminated with the active ingredient; (2) consume the active ingredient of neonicotinoid insecticides while ingesting plant fluids; (3) feed on hosts (prey) that have consumed leaves contaminated with the active ingredient. Parasitoids may be affected negatively by neonicotinoid insecticides because foliar, drench or granular applications may decrease host population levels so that there are not enough hosts to attack and thus sustain parasitoid populations. Furthermore, host quality may be unacceptable for egg laying by parasitoid females. In addition, female parasitoids that host feed may inadvertently ingest a lethal concentration of the active ingredient or a sublethal dose that inhibits foraging or egg laying. There are, however, issues that require further consideration, such as: the types of plant and flower that accumulate active ingredients, and the concentrations in which they are accumulated; the influence of flower age on the level of exposure of natural enemies to the active ingredient; the effect of neonicotinoid metabolites produced within the plant. As such, the application of neonicotinoid insecticides in conjunction with natural enemies in protected culture and interiorscape environments needs further investigation. Copyright © 2010 Society of Chemical Industry.

  7. Inventory of gases of greenhouse effect and mitigation options for Colombia

    International Nuclear Information System (INIS)

    Academia colombiana de ciencias exactas fisicas y naturales

    1998-01-01

    In the last years, the possibility of a global heating due to the emissions of greenhouse gases has become a true concern for the international scientific community. As a result of it created the IPCC (Intergovernmental Panel on Climate Change) and the agreement mark was approved about the climatic change of the United Nations (UNFCCC) that was subscribed by the countries in 1992 in Rio de Janeiro city in Brazil. The objective of the agreement is the stabilization of the concentrations of the gases of GEI effect in the atmosphere at a level that allows avoiding interferences anthropogenic dangerous for the climatic system. It is sought to reach this level inside a sufficiently long term to allow the natural adaptation from the ecosystems to the climatic change, guaranteeing this way the production of foods and the sustainable development. The government from Colombia subscribed the agreement mark about the climatic change of the United Nations (UNFCCC) in 1992 and the congress of the republic ratified it in 1995. The signatory countries of the agreement commit to elaborate and to publish national inventories of anthropogenic emissions of gases of greenhouse effect as well as to develop plans to reduce or to control the emissions

  8. Primary Student-Teachers' Conceptual Understanding of the Greenhouse Effect: A mixed method study

    Science.gov (United States)

    Ratinen, Ilkka Johannes

    2013-04-01

    The greenhouse effect is a reasonably complex scientific phenomenon which can be used as a model to examine students' conceptual understanding in science. Primary student-teachers' understanding of global environmental problems, such as climate change and ozone depletion, indicates that they have many misconceptions. The present mixed method study examines Finnish primary student-teachers' understanding of the greenhouse effect based on the results obtained via open-ended and closed-form questionnaires. The open-ended questionnaire considers primary student-teachers' spontaneous ideas about the greenhouse effect depicted by concept maps. The present study also uses statistical analysis to reveal respondents' conceptualization of the greenhouse effect. The concept maps and statistical analysis reveal that the primary student-teachers' factual knowledge and their conceptual understanding of the greenhouse effect are incomplete and even misleading. In the light of the results of the present study, proposals for modifying the instruction of climate change in science, especially in geography, are presented.

  9. Studying the Greenhouse Effect: A Simple Demonstration.

    Science.gov (United States)

    Papageorgiou, G.; Ouzounis, K.

    2000-01-01

    Studies the parameters involved in a presentation of the greenhouse effect and describes a simple demonstration of this effect. Required equipment includes a 100-120 watt lamp, a 250mL beaker, and a thermometer capable of recording 0-750 degrees Celsius together with a small amount of chloroform. (Author/SAH)

  10. An experimental evaluation of the greenhouse effect in the substitution of R134a with CO2

    International Nuclear Information System (INIS)

    Aprea, C.; Greco, A.; Maiorino, A.

    2012-01-01

    This paper addresses the problem of R314a substitution with a natural refrigerant fluid. Attention is devoted to the evaluation of the environmental impact, in terms of greenhouse effect. R134a and R744 (CO 2 ) are compared to one another. The hydrofluorocarbon R134a has a large direct warming impact (GWP), whereas the R744 contribution is negligible. The greenhouse effect is determined by the experimental evaluation of the TEWI index (Total Equivalent Warming Impact) that takes into account both direct and indirect contributions to global warming. This paper compares a commercial R134a refrigeration plant and a prototype R744 system working in a trans-critical cycle. The experimental results clearly show that the latter has a larger TEWI than the system operating with R134a. The indirect contribution to global warming provided by R744 is always greater than that of R134a. This contribution prevails in most cases. Only few operating conditions corresponding to a refrigerating plant working as a classical split system benefits, in terms of greenhouse effect, of the substitution of R134a with R744. -- Highlights: ► A comparison between a classical vapour compression plant and a trans-critical cycle. ► Evaluation of the greenhouse effect in R134a substitution with R744. ► Evaluation of direct and indirect contribution to global warming. ► Minimization of the global warming impact of a R744 transcritical cycle.

  11. Physics of greenhouse effect and convection in warm oceans

    Science.gov (United States)

    Inamdar, A. K.; Ramanathan, V.

    1994-01-01

    Sea surface temperature (SST) in roughly 50% of the tropical Pacific Ocean is warm enough (SST greater than 300 K) to permit deep convection. This paper examines the effects of deep convection on the climatological mean vertical distributions of water vapor and its greenhouse effect over such warm oceans. The study, which uses a combination of satellite radiation budget observations, atmospheric soundings deployed from ships, and radiation model calculations, also examines the link between SST, vertical distribution of water vapor, and its greenhouse effect in the tropical oceans. Since the focus of the study is on the radiative effects of water vapor, the radiation model calculations do not include the effects of clouds. The data are grouped into nonconvective and convective categories using SST as an index for convective activity. On average, convective regions are more humid, trap significantly more longwave radiation, and emit more radiation to the sea surface. The greenhouse effect in regions of convection operates as per classical ideas, that is, as the SST increases, the atmosphere traps the excess longwave energy emitted by the surface and reradiates it locally back to the ocean surface. The important departure from the classical picture is that the net (up minus down) fluxes at the surface and at the top of the atmosphere decrease with an increase in SST; that is, the surface and the surface-troposphere column lose the ability to radiate the excess energy to space. The cause of this super greenhouse effect at the surface is the rapid increase in the lower-troposphere humidity with SST; that of the column is due to a combination of increase in humidity in the entire column and increase in the lapse rate within the lower troposphere. The increase in the vertical distribution of humidity far exceeds that which can be attributed to the temperature dependence of saturation vapor pressure; that is, the tropospheric relative humidity is larger in convective

  12. Paludiculture as a chance for peatland and climate: the greenhouse gas balance of biomass production on two rewetted peatlands does not differ from the natural state

    Science.gov (United States)

    Günther, Anke; Huth, Vytas; Jurasinski, Gerald; Albrecht, Kerstin; Glatzel, Stephan

    2015-04-01

    In Europe, rising prices for farm land make it increasingly difficult for government administrations to compete with external investors during the acquisition of land for wetland conservation. Thus, adding economic value to these, otherwise "lost", areas by combining extensive land use with nature conservation efforts could increase the amount of ground available for wetland restoration. Against this background, the concept of paludiculture aims to provide biomass for multiple purposes from peatlands with water tables high enough to conserve the peat body. However, as plants have been shown to contribute to greenhouse gas exchange in peatlands, manipulating the vegetation (by harvesting, sowing etc.) might alter the effect of the restored peatlands on climate. Here, we present greenhouse gas data from two experimental paludiculture systems on formerly drained intensive grasslands in northern Germany. In a fen that has been rewetted more than 15 years ago three species of reed plants were harvested to simulate biomass production for bioenergy and as construction material. And in a peat bog that has been converted from drained grassland to a field with a controlled water table around ground surface Sphagnum mosses were cultivated to provide an alternative growing substrate for horticulture. In both systems, we determined carbon dioxide, methane, and nitrous oxide exchange using closed chambers over two years. Additionally, water and peat chemistry and environmental parameters as recorded by a weather station were analyzed. Both restored peatlands show greenhouse gas balances comparable to those of natural ecosystems. Nitrous oxide was not emitted in either system. Fluctuations of the emissions reflect changes in weather conditions across the study years. In the fen, relative emission patterns between plant species were not constant over time. We did not find a negative short-term effect of biomass harvest or Sphagnum cultivation on net greenhouse gas balances

  13. Greenhouse effect: the right questions

    International Nuclear Information System (INIS)

    Anon.

    1995-01-01

    This paper gives the point of view of the National Council of French engineers and scientists (CNSIF) after the recent publication of a report about the greenhouse effect by the French Academy of Sciences. The CNSIF agrees with the conclusions of this report and gives to non-specialists additional informations about the definition, causes, divergences of opinions about long-term consequences of this effect, and also about the remedial solutions proposed, their delay of efficiency and the socio-economical and political difficulties encountered for their application. (J.S.)

  14. The greenhouse effect and energy efficiency: some facts and figures

    International Nuclear Information System (INIS)

    Anon.

    1990-01-01

    Human activities are changing the composition of the atmosphere. In particular the burning of fossil fuels emits carbon dioxide, one of the so-called ''greenhouse gases'' that help maintain the Earth's surface at a temperature suitable for life. They transmit incoming sunlight but trap outgoing radiated heat. Levels of greenhouse gases are increasing, giving rise to concern that the world may warm further, leading to climate change. Energy efficiency can make an important contribution to controlling the greenhouse effect, and brings further benefits for industry and commerce through cost savings. 17 figs

  15. Literature review on the greenhouse effect and global warming

    International Nuclear Information System (INIS)

    English, M.; Petri, H.; Wong, R.K.W.; Kochtubajda, B.

    1990-08-01

    A literature review of recent (1988-1990) publications on global warming and climate change was carried out by the Alberta Research Council. The objectives of the project were to develop a listing of relevant citations, review the publications, prepare a short summary of the contents of each, and develop statistics with respect to the degree to which scientific consensus exists on the various topics of interest. The bibliography contains 1,557 citations, and a total of 501 publications were reviewed. Topics of interest include computer modelling of world climate, potential impacts of climate change, potential strategies for responding to climate change, and technological solutions. Statistical results are presented of numbers of papers reviewed addressing types of emission, time of effective doubling of greenhouse gases, global temperature increase predicted for effective doubling of greenhouse gases, temperature increase in northern lattitudes for an effective doubling of greenhouse gases, components of atmosphere that are changing, potential impacts on agriculture, forestry, and health, suggested emission limitations, and suggested technological solutions. 4 refs., 11 figs., 3 tabs

  16. The social representations of the greenhouse effect; Les representations sociales de l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Boy, D.

    2000-07-01

    This document presents the results analysis to the inquiry realized during may and june 2000 on the greenhouse effect perception by the public. The following questions have been asked and analyzed: what is the greenhouse effect, who is responsible of the greenhouse effect, what will be the consequences of the greenhouse effect, how to meet with this effect, information and perception. (A.L.B.)

  17. "Home Made" Model to Study the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Onorato, P.; Mascheretti, P.; DeAmbrosis, A.

    2011-01-01

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of…

  18. 'Home made' model to study the greenhouse effect and global warming

    Energy Technology Data Exchange (ETDEWEB)

    Onorato, P; Mascheretti, P; DeAmbrosis, A, E-mail: pasquale.onorato@unipv.it, E-mail: anna.deambrosisvigna@unipv.it [Department of Physics ' A. Volta' , University of Pavia, Via Bassi 6, I-27100 Pavia (Italy)

    2011-03-15

    In this paper a simplified two-parameter model of the greenhouse effect on the Earth is developed, starting from the well known two-layer model. It allows both the analysis of the temperatures of the inner planets, by focusing on the role of the greenhouse effect, and a comparison between the temperatures the planets should have in the absence of greenhouse effect and their actual ones. It may also be used to predict the average temperature of the Earth surface in the future, depending on the variations of the concentration of greenhouse gases in the atmosphere due to human activities. This model can promote an elementary understanding of global warming since it allows a simple formalization of the energy balance for the Earth in the stationary condition, in the presence of greenhouse gases. For these reasons it can be introduced in courses for undergraduate physics students and for teacher preparation.

  19. Is the greenhouse effect proving a pitfall in France?

    International Nuclear Information System (INIS)

    Godard, O.

    1998-01-01

    After Rio and Kyoto, the Buenos-Aires environmental summit comes nearer. The agreements to reduce the production of greenhouse effect gases have failed. The next step might be negotiable and transferable licences with the setting of a quota system. The discussions are expected to be difficult. This new compelling regulation could force some industrial countries to introduce green fiscal reforms. France with its 75% energy coming from nuclear plants has a reduced margin to manage. France cannot accept to be deprived of its right to abandon nuclear energy because of the imposed no-rising of greenhouse effect gases production. (A.C.)

  20. Demonstration of the greenhouse effect for elementary school students

    Science.gov (United States)

    Radovanovic, Jelena

    2014-05-01

    The school where I work is part of the "Step by step towards the sustainable development school" project. Project activities are partly directed towards the popularization of science. As a physics teacher, I have had the opportunity to engage in designing interactive workshops, aiming to introduce younger students to simple experiments which illustrate different natural phenomena, and also in organization, preparation and implementation of school and city science festival (in 2012 and 2013). Numerous displays, workshops and experiments served to introduce a large number of visitors to different topics in the area of science and technology. One of the subjects of forthcoming science festival, planned for May of 2014, is the climate change. To that effect, eight grade students will hold a demonstration and explanation of the greenhouse effect. Although the terms greenhouse effect and global warming are widely used in media, most of the elementary school students in Serbia have poor understanding of the underlying scientific concepts. The experiment with analysis and discussion will first be implemented in one eight-grade class (14 years of age). After that, a group of students from this class will present their newly-acquired knowledge to their peers and younger students at the science fair. Activity objectives: • Explain how atmosphere affects the surface temperature of Earth • Conduct an experiment to demonstrate the greenhouse effect • Analyze the consequences of climate changes Experiment description: Take two empty, transparent containers and add a layer of garden soil. Use cardboard or similar material to make housings for the thermometers. Hang them in the containers, so that they don't touch the soil. Cover one container with a glass panel, and leave the other one open. Place identical incandescent light bulbs at the same distance above each container. Turn the light bulbs on. The students should mark the thermometer readings every 2 minutes, for 20

  1. Greenhouse effect due to chlorofluorocarbons - Climatic implications

    Science.gov (United States)

    Ramanathan, V.

    1975-01-01

    The infrared bands of chlorofluorocarbons and chlorocarbons enhance the atmospheric greenhouse effect. This enhancement may lead to an appreciable increase in the global surface temperature if the atmospheric concentrations of these compounds reach values of the order of 2 parts per billion.

  2. Ozone: The secret greenhouse gas

    International Nuclear Information System (INIS)

    Berntsen, Terje; Tjernshaugen, Andreas

    2001-01-01

    The atmospheric ozone not only protects against harmful ultraviolet radiation; it also contributes to the greenhouse effect. Ozone is one of the jokers to make it difficult to calculate the climatic effect of anthropogenic emissions. The greenhouse effect and the ozone layer should not be confused. The greenhouse effect creates problems when it becomes enhanced, so that the earth becomes warmer. The problem with the ozone layer, on the contrary, is that it becomes thinner and so more of the harmful ultraviolet radiation gets through to the earth. However, ozone is also a greenhouse gas and so the greenhouse effect and the ozone layer are connected

  3. The carbon balance and greenhouse effects of the Finnish forest sector at present, in the past and future

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K [Technical Research Centre of Finland, Espoo (Finland)

    1997-12-31

    In this study the greenhouse impact of the total Finnish forest sector was considered, which means that the estimated emissions and sink effects from exported forest products were also included. The forest biomass is and seems to be in the next decades the most important factor in the carbon balance of the total forest sector. The development alternatives of forest industries and waste management practices has still a remarkable influence on the greenhouse impact of the Finnish forest sector. The waste management practices in the future has an important influence on the emissions but the exact net greenhouse impact of the landfills is still uncertain. However, the methane emissions from existing landfills can be reduced essentially by gas recovery. Increased incineration and energy recovery of wood waste (and replacing fossil fuel use by it) is also a future alternative for reducing the greenhouse effects in the forest sector. The sequestration of carbon by increasing the storages of long-lived wood products in use meets difficulties in practice because of all the material losses in wood using chain and the natural removal of old wood products. An important advantage of mechanical wood processing and the succeeding refinement chain is still their relative low use of energy

  4. The carbon balance and greenhouse effects of the Finnish forest sector at present, in the past and future

    Energy Technology Data Exchange (ETDEWEB)

    Pingoud, K. [Technical Research Centre of Finland, Espoo (Finland)

    1996-12-31

    In this study the greenhouse impact of the total Finnish forest sector was considered, which means that the estimated emissions and sink effects from exported forest products were also included. The forest biomass is and seems to be in the next decades the most important factor in the carbon balance of the total forest sector. The development alternatives of forest industries and waste management practices has still a remarkable influence on the greenhouse impact of the Finnish forest sector. The waste management practices in the future has an important influence on the emissions but the exact net greenhouse impact of the landfills is still uncertain. However, the methane emissions from existing landfills can be reduced essentially by gas recovery. Increased incineration and energy recovery of wood waste (and replacing fossil fuel use by it) is also a future alternative for reducing the greenhouse effects in the forest sector. The sequestration of carbon by increasing the storages of long-lived wood products in use meets difficulties in practice because of all the material losses in wood using chain and the natural removal of old wood products. An important advantage of mechanical wood processing and the succeeding refinement chain is still their relative low use of energy

  5. RE: Request for Correction, Technical Support Document, Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    The Industrial Energy Consumers of America (IECA) joins the U.S. Chamber of Commerce in its request for correction of information developed by the Environmental Protection Agency (EPA) in a background technical support document titled Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

  6. Greenhouse gas emissions from Savanna ( Miombo ) woodlands ...

    African Journals Online (AJOL)

    Natural vegetation represents an important sink for greenhouse gases (GHGs); however, there is relatively little information available on emissions from southern African savannas. The effects of clearing savanna woodlands for crop production on soil fluxes of N2O, CO2 and CH4 were studied on clay (Chromic luvisol) and ...

  7. Greenhouse effect due to atmospheric nitrous oxide

    Science.gov (United States)

    Yung, Y. L.; Wang, W. C.; Lacis, A. A.

    1976-01-01

    The greenhouse effect due to nitrous oxide in the present atmosphere is about 0.8 K. Increase in atmospheric N2O due to perturbation of the nitrogen cycle by man may lead to an increase in surface temperature as large as 0.5 K by 2025, or 1.0 K by 2100. Other climatic effects of N2O are briefly discussed.

  8. The greenhouse effect and extreme weather

    International Nuclear Information System (INIS)

    Groenaas, Sigbjoern; Kvamstoe, Nils Gunnar

    2002-01-01

    The article asserts that an anthropogenic global warming is occurring. This greenhouse effect is expected to cause more occurrences of extreme weather. It is extremely difficult, however, to relate specific weather catastrophes to global warming with certainty, since such extreme weather conditions are rare historically. The subject is controversial. The article also discusses the public debate and the risk of floods

  9. Empirical links between the local runaway greenhouse, super-greenhouse, and deep convection in Earth's tropics

    Science.gov (United States)

    Dewey, M. C.; Goldblatt, C.

    2017-12-01

    Energy balance requires that energy absorbed and emitted at the top of the atmosphere equal; this is maintained via the Planck feedback whereby outgoing longwave radiation (OLR) increases as surface temperature increases. There are two cases where this breaks down: the runaway greenhouse (known from planetary sciences theory) characterized by an asymptotic limit on OLR from moist atmospheres, and the super-greenhouse (known from tropical meteorology observations) where OLR decreases with surface temperature when the atmosphere is moist aloft. Here we show that the runaway greenhouse limit can be empirically observed and constrained in Earth's tropics, that the runaway and super-greenhouse occur as part of the same physical phenomenon, and that the transition through the super-greenhouse to a local runaway greenhouse is intimately linked to the onset of deep convection. A runaway greenhouse occurs when water vapour causes the troposphere to become optically thick to thermal radiation from the surface and a limit on OLR emerges as thermal emission is from a constant temperature level aloft. This limit is modelled as 282 W/m/m [Goldblatt et al, 2013]. Using satellite data from Earth's tropics, we find an empirical value of this limit of 280 W/m/m, in excellent agreement with the model.A column transitioning to a runaway greenhouse typically overshoots the runaway limit and then OLR decreases with increasing surface temperature until the runaway limit is reached after which OLR remains constant. The term super-greenhouse effect (SGE) has been used to describe OLR decreasing with surface warming, observed in these satellite measurements. We show the SGE is one and the same as the transition to a local runaway greenhouse, and represents a fundamental shift in the radiation response of the earth system, rather than simply an extension of water vapour feedback. This transition via SGE from an optically thin to optically thick troposphere is facilitated by enhanced

  10. The french forest and the increasing greenhouse effect

    International Nuclear Information System (INIS)

    Bossy, Anne; Bouhot, Laurence; Barthod, Ch.; Delduc, P.; Pelissie, D.

    1994-01-01

    As a follow up to the Global Convention on Climatic Change, submitted for signature to the Heads of State and Government during the United Nations Conference on Environment and Development in Rio de Janeiro in dune 1992, the French Government, on March 24, 1993, adopted the first parts of a national plan to control the greenhouse effect, which gave considerable emphasis to forests and timber. The proposals that were adopted seek to increase attention to the adaptation of species in forest research stations, increase work on afforestation of agricultural lands and increase the use of timber as a source of energy and construction. These proposals recognised that an investment of 500 francs sufficed to avoid the emission of, or to store, a ton of carbon. This is the threshold adopted by the Commission of European Communities in its study on the possible levy of an 'eco-tax'. Further, when devising strategies on controlling the greenhouse effect, it may be possible to adopt the Anglo-saxon concept set out in the 'no regrets policy'. Thus despite the uncertainties concerning the consequences of increasing the level of gases with a greenhouse effect, in the atmosphere, uncertainties that could change the scientific vantage point, the justification for the measures being advocated should not be challenged. (authors)

  11. The greenhouse gas balance of Italy. An insight on managed and natural terrestrial ecosystems

    International Nuclear Information System (INIS)

    Valentini, Riccardo; Miglietta, Franco

    2015-01-01

    Comprehensively addresses the full greenhouse gases budget of the Italian landscape. Presents the results of the national project CARBOITALY. Provides new data and analyses in the framework of climate policies. The book addresses in a comprehensive way the full greenhouse gases budget of the Italian landscape, focusing on land use and terrestrial ecosystems. In recent years there has been a growing interest in the role of terrestrial ecosystems with regard to the carbon cycle and only recently a regional approach has been considered for its specificity in terms of new methodologies for observations and models and its relevance for national policies on mitigation and adaptation to climate changes. In terms of methods this book describes the role of flux networks and data-driven models, airborne regional measurements of fluxes and specific sectoral approaches related to important components of the human and natural landscapes. There is also a growing need on the part of institutions, agencies and policy stakeholders for new data and analyses enabling them to improve their national inventories of greenhouse gases and their compliance with the UNFCCC process. In this respect the data presented is a basis for a full carbon accounting and available to relevant stakeholders for improvements and/or verification of national inventories. The wealth of research information is the result of a national project, CARBOITALY, which involved 15 Italian institutions and several researchers to provide new data and analyses in the framework of climate policies.

  12. The greenhouse gas balance of Italy. An insight on managed and natural terrestrial ecosystems

    Energy Technology Data Exchange (ETDEWEB)

    Valentini, Riccardo [Tuscia Univ., Viterbo (Italy). Dept. for Innovation in Biological, Agro-Food and Forest System (DIBAF); Euro-Mediterranean Center on Climate Changes (CMCC), Viterbo (Italy). Impacts on Agriculture, Forest and Natural Ecosystem Division (IAFENT); Miglietta, Franco (ed.) [National Research Council of Italy (CNR) and Edmund Mach Foundation, San Michele all' Adige (Italy). FoxLab Inst. of Biometeorology

    2015-04-01

    Comprehensively addresses the full greenhouse gases budget of the Italian landscape. Presents the results of the national project CARBOITALY. Provides new data and analyses in the framework of climate policies. The book addresses in a comprehensive way the full greenhouse gases budget of the Italian landscape, focusing on land use and terrestrial ecosystems. In recent years there has been a growing interest in the role of terrestrial ecosystems with regard to the carbon cycle and only recently a regional approach has been considered for its specificity in terms of new methodologies for observations and models and its relevance for national policies on mitigation and adaptation to climate changes. In terms of methods this book describes the role of flux networks and data-driven models, airborne regional measurements of fluxes and specific sectoral approaches related to important components of the human and natural landscapes. There is also a growing need on the part of institutions, agencies and policy stakeholders for new data and analyses enabling them to improve their national inventories of greenhouse gases and their compliance with the UNFCCC process. In this respect the data presented is a basis for a full carbon accounting and available to relevant stakeholders for improvements and/or verification of national inventories. The wealth of research information is the result of a national project, CARBOITALY, which involved 15 Italian institutions and several researchers to provide new data and analyses in the framework of climate policies.

  13. Greenhouse effect and climate

    International Nuclear Information System (INIS)

    Flohn, H.

    1987-01-01

    Model calculations with different marginal conditions and different physical processes do, on the basis of realistic assumptions, result in a temperature rise of 3 ± 1.5degC at doubling carbon dioxide concentrations. Temperatures are increasing even more due to the presence of trace gases contributing to the greenhouse effect. They are assumed to be having a share of 100% in the carbon dioxide effect (additive) in 30-40 years from now. According to the model calculations the CO 2 increase from about 280 ppm around 1850 to 345 ppm (1985) is equal to a globally averaged temperature rise of 0.5-0.7degC. As the data obtained before 1900 were incomplete and little representative climatic analyses cannot be considered to have been effective but after that time. However, considering the additional influence of other climatic effects such as vulcanism the temperature rise satisfactorily corresponds to the values obtained since 1900. (orig./HP) [de

  14. Greenhouse effect contributions of US landfill methane

    International Nuclear Information System (INIS)

    Augenstein, D.

    1991-01-01

    The greenhouse effect has recently been receiving a great deal of scientific and popular attention. The term refers to a cause-and-effect relationship in which ''heat blanketing'' of the earth, due to trace gas increases in the atmosphere, is expected to result in global warming. The trace gases are increasing as the result of human activities. Carbon dioxide (CO 2 ) is the trace gas contributing most importantly to the ''heat blanketing'' and currently receives the most attention. Less widely recognized has been the high importance of methane (CH 4 ). Methane's contribution to the increased heat blanketing occurring since 1980 is estimated to be over a third as much as that of carbon dioxide. Gas from landfills has in turn been recognized to be a source of methane to the atmospheric buildup. However the magnitude of the landfill methane contribution, and the overall significance of landfill methane to the greenhouse phenomenon has been uncertain and the subject of some debate. (Author)

  15. Children's Models of Understanding of Two Major Global Environmental Issues (Ozone Layer and Greenhouse Effect).

    Science.gov (United States)

    Boyes, Edward; Stanisstreet, Martin

    1997-01-01

    Aims to quantify the models that 13- and 14 year-old students hold about the causes of the greenhouse effect and ozone layer depletion. Assesses the prevalence of those ideas that link the two phenomena. Twice as many students think that holes in the ozone layer cause the greenhouse effect than think the greenhouse effect causes ozone depletion.…

  16. Trace Gases, CO2, Climate, and the Greenhouse Effect.

    Science.gov (United States)

    Aubrecht, Gordon J., II

    1988-01-01

    Reports carbon dioxide and other trace gases can be the cause of the Greenhouse Effect. Discusses some effects of the temperature change and suggests some solutions. Included are several diagrams, graphs, and a table. (YP)

  17. The clear-sky greenhouse effect sensitivity to a sea surface temperature change

    Science.gov (United States)

    Duvel, J. PH.; Breon, F. M.

    1991-01-01

    The clear-sky greenhouse effect response to a sea surface temperature (SST or Ts) change is studied using outgoing clear-sky longwave radiation measurements from the Earth Radiation Budget Experiment. Considering geographical distributions for July 1987, the relation between the SST, the greenhouse effect (defined as the outgoing infrared flux trapped by atmospheric gases), and the precipitable water vapor content (W), estimated by the Special Sensor Microwave Imager, is analyzed first. A fairly linear relation between W and the normalized greenhouse effect g, is found. On the contrary, the SST dependence of both W and g exhibits nonlinearities with, especially, a large increase for SST above 25 C. This enhanced sensitivity of g and W can be interpreted in part by a corresponding large increase of atmospheric water vapor content related to the transition from subtropical dry regions to equatorial moist regions. Using two years of data (1985 and 1986), the normalized greenhouse effect sensitivity to the sea surface temperature is computed from the interannual variation of monthly mean values.

  18. Ozone depletion, greenhouse effect and atomic energy

    International Nuclear Information System (INIS)

    Adzersen, K.H.

    1991-01-01

    After describing the causes and effects of ozone depletion and the greenhouse effect, the author discusses the alternative offered by the nuclear industry. In his opinion, a worldwide energy strategy of risk minimisation will not be possible unless efficient energy use is introduced immediately, efficiently and on a reliable basis. Atomic energy is not viewed as an acceptable means of preventing the threatening climate change. (DG) [de

  19. Through the greenhouse window

    International Nuclear Information System (INIS)

    Townsley, M.

    1989-01-01

    Nuclear power is being promoted as the only answer to the greenhouse effect. However, power station emissions (from fossil-fuel powered stations) account for only a fraction of the total carbon dioxide emissions. And carbon dioxide accounts for only about a half of the global warming effect -the other gases which create the greenhouse effect must also be limited. Nuclear energy is neither a practical nor economic alternative. Energy efficiency and conservation is a far better answer to the greenhouse effect. (U.K.)

  20. The Impact of Upper Tropospheric Humidity from Microwave Limb Sounder on the Midlatitude Greenhouse Effect

    Science.gov (United States)

    Hu, Hua; Liu, W. Timothy

    1998-01-01

    This paper presents an analysis of upper tropospheric humidity, as measured by the Microwave Limb Sounder, and the impact of the humidity on the greenhouse effect in the midlatitudes. Enhanced upper tropospheric humidity and an enhanced greenhouse effect occur over the storm tracks in the North Pacific and North Atlantic. In these areas, strong baroclinic activity and the large number of deep convective clouds transport more water vapor to the upper troposphere, and hence increase greenhouse trapping. The greenhouse effect increases with upper tropospheric humidity in areas with a moist upper troposphere (such as areas over storm tracks), but it is not sensitive to changes in upper tropospheric humidity in regions with a dry upper troposphere, clearly demonstrating that there are different mechanisms controlling the geographical distribution of the greenhouse effect in the midlatitudes.

  1. The climatic warming up (the greenhouse effect); Le rechauffement climatique (l'effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Jancovici, J M; Jouzel, J [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France); Lorius, C [Centre National de la Recherche Scientifique (CNRS), Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Grenoble (France); and others

    2000-05-01

    Facing the environmental and biological impacts of the climatic warming up, scientists and economists organized a debate on the subject. After a theoretical presentation of the greenhouse effect and the greenhouse gases, the climatic changes are discussed and simulation of the effects are presented. The today effects and tomorrow impacts on the agriculture and the public health are also presented. A synthesis is proposed to discuss the contribution of the energy policy and of the technological progress in measures of greenhouse effect control. (A.L.B.)

  2. Fight against the greenhouse effect. From the local to the international action

    International Nuclear Information System (INIS)

    Mousel, M.

    2002-01-01

    In the fight against the greenhouse gases emissions, the local government are directly concerned. This sheet aims to explain the greenhouse effect, the kyoto protocol, the french national policy and to orientate the local actions. (A.L.B.)

  3. Effect of reflective surfaces on a greenhouse lettuce crop

    Energy Technology Data Exchange (ETDEWEB)

    Warman, P.R.; Mayhew, W.J.

    1979-01-01

    The Canadian greenhouse industry is an important segment of horticultural production, providing employment for thousands of people. Continuing increases in the costs of conventional fuel supplies, however, has placed the industry in some jeopardy since the cost of heating during the winter months is also escalating. In response to this problem the Brace Research Institute has developed a single roofed greenhouse designed to capture and store the sun's energy, and to increase the amount of downward solar radiation inside the greenhouse through the use of specularly-reflecting back and side walls. The research investigated the effect of a reflective surface on plant growth, development, and nutritional uptake during fall and the early months of winter. The inside walls of the greenhouse were lined with aluminized polyester to act as a reflective surface and flat black roofing felt paper to provide a non-reflecting surface. Grand Rapids Forcing lettuce was planted from seed into a peat-vermiculite bed and total solar radiation was monitored on the horizontal. Over the duration of the experiment, the reflective side of the greenhouse received more than twice as much solar radiation as the non-reflective side leading to significantly larger plant yields on the reflective side. There were no significant differences in the uptake of the plant macronutrients, N, P, K, Ca, and Mg.

  4. Greenhouse effect gases: reduction challenges and accounting methods

    International Nuclear Information System (INIS)

    Dumergues, Laurent

    2012-01-01

    In this article, the author first proposes an overview of strategic challenges related to the reduction of greenhouse gas emissions. He indicates and discusses the various economic consequences of climate change. These consequences can be environmental (issues ranging from a loss of biodiversity to agriculture), social (from climate refugees to tourism), and economic (from climate disasters to insurance). He focuses on the issue of energy (oil at the base of our economy, carbon contents) and discusses competition issues (an always more demanding regulation, and unavoidable practices). In the second part, he proposes an overview of methods of accounting of greenhouse effect gases, and discusses how to perform an emission inventory

  5. MalariaSphere: A greenhouse-enclosed simulation of a natural Anopheles gambiae (Diptera: Culicidae ecosystem in western Kenya

    Directory of Open Access Journals (Sweden)

    Mukabana Wolfgang R

    2002-12-01

    Full Text Available Abstract Background The development and implementation of innovative vector control strategies for malaria control in Africa requires in-depth ecological studies in contained semi-field environments. This particularly applies to the development and release of genetically-engineered vectors that are refractory to Plasmodium infection. Here we describe a modified greenhouse, designed to simulate a natural Anopheles gambiae Giles ecosystem, and the first successful trials to complete the life-cycle of this mosquito vector therein. Methods We constructed a local house, planted crops and created breeding sites to simulate the natural ecosystem of this vector in a screen-walled greenhouse, exposed to ambient climate conditions, in western Kenya. Using three different starting points for release (blood-fed females, virgin females and males, or eggs, we allowed subsequent stages of the life-cycle to proceed under close observation until one cycle was completed. Results Completion of the life-cycle was observed in all three trials, indicating that the major life-history behaviours (mating, sugar feeding, oviposition and host seeking occurred successfully. Conclusion The system described can be used to study the behavioural ecology of laboratory-reared and wild mosquitoes, and lends itself to contained studies on the stability of transgenes, fitness effects and phenotypic characteristics of genetically-engineered disease vectors. The extension of this approach, to enable continuous maintenance of successive and overlapping insect generations, should be prioritised. Semi-field systems represent a promising means to significantly enhance our understanding of the behavioural and evolutionary ecology of African malaria vectors and our ability to develop and evaluate innovative control strategies. With regard to genetically-modified mosquitoes, development of such systems is an essential prerequisite to full field releases.

  6. The greenhouse effect: will we change the climate?

    International Nuclear Information System (INIS)

    Le Treut, H.

    2004-01-01

    This book presents the great climate factors, the changes resulting from the greenhouse effect and the corresponding human factors part, the atmosphere chemical composition and the biological and geo-political risks bound to the climatic changes. (A.L.B.)

  7. Greenhouse effect: there are solutions

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    A review of solutions that may be undertaken in order to reduce the greenhouse effect gas emissions is presented: clean energy generation through municipal, agricultural and industrial waste processing, reducing energy consumption through public transportation promotion, clean fuel buses and vehicles, or using energy efficient boilers, reduction of carbon dioxide emission from industry through process optimization, waste recycling, energy substitution and conservation, diminution of CO 2 emissions in commercial and residential sectors through space heating and air conditioning retrofitting, lighting substitution. Pollution abatement potentials are evaluated in each case, notably in France

  8. Effects of nitrogen fertilizer application on greenhouse gas emissions and economics of corn production.

    Science.gov (United States)

    Kim, Seungdo; Dale, Bruce E

    2008-08-15

    Nitrogen fertilizer plays an important role in corn cultivation in terms of both economic and environmental aspects. Nitrogen fertilizer positively affects corn yield and the soil organic carbon level, but it also has negative environmental effects through nitrogen-related emissions from soil (e.g., N20, NOx, NO3(-) leaching, etc.). Effects of nitrogen fertilizer on greenhouse gas emissions associated with corn grain are investigated via life cycle assessment. Ecoefficiency analysis is also used to determine an economically and environmentally optimal nitrogen application rate (NAR). The ecoefficiency index in this study is defined as the ratio of economic return due to nitrogen fertilizer to the greenhouse gas emissions of corn cultivation. Greenhouse gas emissions associated with corn grain decrease as NAR increases at a lower NAR until a minimum greenhouse gas emission level is reached because corn yield and soil organic carbon level increase with NAR. Further increasing NAR after a minimum greenhouse gas emission level raises greenhouse gas emissions associated with corn grain. Increased greenhouse gas emissions of corn grain due to nitrous oxide emissions from soil are much higher than reductions of greenhouse gas emissions of corn grain due to corn yield and changes in soil organic carbon levels at a higher NAR. Thus, there exists an environmentally optimal NAR in terms of greenhouse gas emissions. The trends of the ecoefficiency index are similar to those of economic return to nitrogen and greenhouse gas emissions associated with corn grain. Therefore, an appropriate NAR could enhance profitability as well as reduce greenhouse gas emissions associated with corn grain.

  9. Computer Study of Cluster Mechanism of Anti-greenhouse Effect

    OpenAIRE

    A. Galashev

    2009-01-01

    Absorption spectra of infra-red (IR) radiation of the disperse water medium absorbing the most important greenhouse gases: CO2 , N2O , CH4 , C2H2 , C2H6 have been calculated by the molecular dynamics method. Loss of the absorbing ability at the formation of clusters due to a reduction of the number of centers interacting with IR radiation, results in an anti-greenhouse effect. Absorption of O3 molecules by the (H2O)50 cluster is investigated at its interaction with Cl- io...

  10. Identification studies about take measures for mitigate of gas emissions greenhouse effect in energy Sector

    International Nuclear Information System (INIS)

    1999-11-01

    In the Unit Nations Convention about Climatic change has get stability of greenhouse effects in atmosphere concentrations. In the framework to Uruguay Project URU/95/631 have been defined the need to identify, measures, practices, process and technologies for reduce some emissions furthermore in Energy sector. Emission impact, cost-benefit, direct or iundirect, national programs, factibility such as social, politics and Institutional agreements was considered in the present work. It was given emissions proyected for 15 years period 1999-2013 of the following atmospheric pollutants: carbon dioxide,carbon monoxide, nitrogen oxides, sulfur oxides and methane.Eight stages was applied the emission evaluation: natural gas; without natural gas; transport; industrial; Montevidean bus- car demand; natural gas uses in bus-taxi; nitrogen oxides control in thermic centrals; catalytic converters in gasoline cars

  11. SF6 and the greenhouse effect

    International Nuclear Information System (INIS)

    Gjaerde, Anne Cathrine; Rein, Asgaut; Hegerberg, Rolf; Kulsetaas, John

    1997-01-01

    The gas SF 6 (sulfur hexafluoride) is much used as an insulation medium in electric switchgear and breakers. However, there has been some recent concern about the possible contribution of SF 6 to the global greenhouse effect. This report presents some collected facts about SF 6 emission. The concentration of SF 6 in the atmosphere is very low and will probably remain so until the end of the next century. Hence the contribution of SF 6 to the greenhouse effect is negligible. Most of the SF 6 emission comes from the magnesium and aluminium industries. In 1993, SF 6 emission from switchgear in the Norwegian distribution grid corresponded to only 0.2 per million of the CO 2 emission in Norway. But the quantity of SF 6 accumulated in electric switchgear is considerable. However, losing it to the atmosphere can be avoided by using recirculation or destruction systems for SF 6 in connection with maintenance and replacement of components. Norwegian climate policy aims at taking measures against SF 6 and other climate gases on a par with CO 2 . Taxation measures have been suggested for SF 6 . Atmospheric SF 6 does not influence the ozone layer. 3 refs., 8 figs

  12. Greenhouse impact of Finnish peatlands 1900-2100

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J; Minkkinen, K [Helsinki Univ. (Finland). Dept. of Ecology; Tolonen, K; Turunen, J [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P; Nykaenen, H [National Public Health Inst. Kuopio (Finland). Dept. of Environmental Microbiology; Sinisalo, J; Savolainen, I [VTT Energy, Espoo (Finland)

    1997-12-31

    Northern peatlands are significant in regulating the global climate. While sequestering carbon dioxide (CO{sub 2}, ca. 100 Tg C a{sup -} {sup 1}), these peatlands release cat 24-39 Tg methane (CH{sub 4}) annually to the atmosphere. This is 5-15 % of the annual anthropogenic and 10-35 % of the annual natural CH4 emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level drawdown after land use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Currently, some 15 million hectares of northern peatlands and other wetlands have been drained for forestry. More than 90 % of this area is found in Scandinavia and the former Soviet Union. The area drained annually has, however, been declining during the last two decades and, in Finland for instance the annual drained area of nearly 300 000 hectares in the late 1960`s has decreased to cat 35 000 hectares in the early 1990`s. Radiative forcing is the change in the radiative energy balance at the tropopause and it is the driving force behind the greenhouse effect. It is a common quantity for most greenhouse gases and takes into account the dynamics of the greenhouse impact. Radiative forcing model was used to compute the greenhouse impact of the drainage of the peatlands, combining the effects of CO{sub 2} and CH4 balances; N{sub 2}O was not included in the calculations because its contribution is minor. (14 refs.)

  13. Greenhouse impact of Finnish peatlands 1900-2100

    Energy Technology Data Exchange (ETDEWEB)

    Laine, J.; Minkkinen, K. [Helsinki Univ. (Finland). Dept. of Ecology; Tolonen, K.; Turunen, J. [Joensuu Univ. (Finland). Dept. of Biology; Martikainen, P.; Nykaenen, H. [National Public Health Inst. Kuopio (Finland). Dept. of Environmental Microbiology; Sinisalo, J.; Savolainen, I. [VTT Energy, Espoo (Finland)

    1996-12-31

    Northern peatlands are significant in regulating the global climate. While sequestering carbon dioxide (CO{sub 2}, ca. 100 Tg C a{sup -} {sup 1}), these peatlands release cat 24-39 Tg methane (CH{sub 4}) annually to the atmosphere. This is 5-15 % of the annual anthropogenic and 10-35 % of the annual natural CH4 emissions to the atmosphere. The greenhouse gas balance of peatlands may change as a consequence of water level drawdown after land use change, or if summers become warmer and drier, as has been predicted for high latitudes after climatic warming. Currently, some 15 million hectares of northern peatlands and other wetlands have been drained for forestry. More than 90 % of this area is found in Scandinavia and the former Soviet Union. The area drained annually has, however, been declining during the last two decades and, in Finland for instance the annual drained area of nearly 300 000 hectares in the late 1960`s has decreased to cat 35 000 hectares in the early 1990`s. Radiative forcing is the change in the radiative energy balance at the tropopause and it is the driving force behind the greenhouse effect. It is a common quantity for most greenhouse gases and takes into account the dynamics of the greenhouse impact. Radiative forcing model was used to compute the greenhouse impact of the drainage of the peatlands, combining the effects of CO{sub 2} and CH4 balances; N{sub 2}O was not included in the calculations because its contribution is minor. (14 refs.)

  14. Reflections on greenhouse gas life cycle assessment

    International Nuclear Information System (INIS)

    Jarrell, J.; Phillips, B.; Pendergast, D.

    1999-01-01

    The amount of carbon dioxide equivalent greenhouse gas emitted per unit of electricity produced is an important consideration in the planning of future greenhouse gas reduced electricity supply systems. Useful estimates of emissions must also take into account the entire cradle to grave life cycle emissions of alternative systems. Thus emissions of greenhouse gases take into account all of the components of building operating, and decommissioning facilities. This requires an accounting of emissions from production of all materials used to build the plants, transportation of materials to the site as well as fuels used for their construction, operation, and decommissioning. The construction of facilities may also have effects which tend to affect greenhouse gas emissions through modification of the local environment. A notable example, often cited, is the evolution of methane from the decay of organic matter submerged by dams built to serve hydro power facilities. In the long term, we anticipate that some kind of cost will be associated with the release of greenhouse gases. In that event it may be argued that the modified economic system established by inclusion of this cost will naturally control the emission of greenhouse gases from competing means of electricity production. Greenhouse gas emissions from all stages involved in the birth and retirement of electricity producing plant could be suitably constrained as the least cost method of production is sought. Such an ideal system is far from in place. At this point in time the results of life cycle accounting of greenhouse gas emissions are a needed means of comparing emissions from alternative sources of electricity. Many life cycle studies have been undertaken in the past. Many of the estimates are based on past practice which does not take into account any possible need to limit the production of greenhouse gas during the design of the plant and operational processes. Sources of energy used to produce materials

  15. Greenhouse effect: Evolution of scientific message and its transfer

    International Nuclear Information System (INIS)

    Braicovich, L.; Amman, F.; Pavia Univ.

    1991-01-01

    The greenhouse effect, not anymore confined to scientific journals, is becoming a policy issue and, possibly, a nightmare in public opinion. In this analysis of the evolution of the scientific message and its transfer to policy makers and public opinion, the paper first considers, in general terms, the more recent trends in related research activity and in the transfer processes of the results. Then, a more detailed examination is made of the progress achieved in the years 1989-1990 through scientific research in various aspects of the greenhouse effect. It is confirmed that, for the time being, the scientific results leave many important points unresolved; policy decisions on the matter cannot therefore rely on present scientific knowledge as if it were firmly established

  16. Will malaria return to Europe under the greenhouse effect?

    NARCIS (Netherlands)

    Takken, W.; Wege, van de J.; Jetten, T.H.

    1995-01-01

    Malaria risk is determined by environmental and socio-economic factors. The predicted climate change under the greenhouse effect is likely to affect the epidemic potential of malaria due to a change in vector mosquito phenology and distribution. This effect was simulated using a computer model

  17. Policy and Environmental Implications of Photovoltaic Systems in Farming in Southeast Spain: Can Greenhouses Reduce the Greenhouse Effect?

    Directory of Open Access Journals (Sweden)

    Angel Carreño-Ortega

    2017-05-01

    Full Text Available Solar photovoltaic (PV systems have grown in popularity in the farming sector, primarily because land area and farm structures themselves, such as greenhouses, can be exploited for this purpose, and, moreover, because farms tend to be located in rural areas far from energy production plants. In Spain, despite being a country with enormous potential for this renewable energy source, little is being done to exploit it, and policies of recent years have even restricted its implementation. These factors constitute an obstacle, both for achieving environmental commitments and for socioeconomic development. This study proposes the installation of PV systems on greenhouses in southeast Spain, the location with the highest concentration of greenhouses in Europe. Following a sensitivity analysis, it is estimated that the utilization of this technology in the self-consumption scenario at farm level produces increased profitability for farms, which can range from 0.88% (worst scenario to 52.78% (most favorable scenario. Regarding the Spanish environmental policy, the results obtained demonstrate that the impact of applying this technology mounted on greenhouses would bring the country 38% closer to reaching the 2030 greenhouse gas (GHG target. Furthermore, it would make it possible to nearly achieve the official commitment of 20% renewable energies by 2020. Additionally, it would have considerable effects on the regional socioeconomy, with increases in job creation and contribution to gross domestic product (GDP/R&D (Research and Development, allowing greater profitability in agrifood activities throughout the entire region.

  18. Greenhouse effect gases and climatic change: quantification and tools to fight against the emissions; Gaz a effet de serre et changement climatique: quantification et instruments de lutte contre des emissions

    Energy Technology Data Exchange (ETDEWEB)

    Bizec, R.F

    2006-07-01

    The greenhouse effect gases are considered responsible of the climatic change. Their consequences are numerous: increase of the sea level, displacement of the climatic areas, modification of the forests ecosystems, rarefaction of water, progressively decrease of glaciers... This fast modification of the climate would lead to the increase of natural hazards as hurricanes, storms, hails and so on. It is then a necessity to reduce as fast as possible the greenhouse effect gases. The author describes in a first part the methods of the greenhouse effect gases quantification and in the second part the tools to fight these gases, regulations, standards, economic tools, national tools and the projects. (A.L.B.)

  19. Solar radiation distribution inside a greenhouse with south-oriented photovoltaic roofs and effects on crop productivity

    International Nuclear Information System (INIS)

    Cossu, Marco; Murgia, Lelia; Ledda, Luigi; Deligios, Paola A.; Sirigu, Antonella; Chessa, Francesco; Pazzona, Antonio

    2014-01-01

    Highlights: • The solar radiation distribution inside photovoltaic greenhouses has been studied. • A greenhouse with 50% of the roof area covered with solar panels was considered. • The yearly solar light reduction was 64%, with a transversal north–south gradient. • The reduction was 82% under the solar panels and 46% under the plastic cover. • We provided suggestions for a better agronomic sustainability of PV greenhouses. - Abstract: This study assessed the climate conditions inside a greenhouse in which 50% of the roof area was replaced with photovoltaic (PV) modules, describing the solar radiation distribution and the variability of temperature and humidity. The effects of shading from the PV array on crop productivity were described on tomato, also integrating the natural radiation with supplementary lighting powered by PV energy. Experiments were performed inside an east–west oriented greenhouse (total area of 960 m 2 ), where the south-oriented roofs were completely covered with multi-crystalline silicon PV modules, with a total rated power of 68 kWp. The PV system reduced the availability of solar radiation inside the greenhouse by 64%, compared to the situation without PV system (2684 MJ m −2 on yearly basis). The solar radiation distribution followed a north–south gradient, with more solar energy on the sidewalls and decreasing towards the center of the span, except in winter, where it was similar in all plant rows. The reduction under the plastic and PV covers was respectively 46% and 82% on yearly basis. Only a 18% reduction was observed on the plant rows farthest from the PV cover of the span. The supplementary lighting, powered without exceeding the energy produced by the PV array, was not enough to affect the crop production, whose revenue was lower than the cost for heating and lighting. The distribution of the solar radiation observed is useful for choosing the most suitable crops and for designing PV greenhouses with the attitude

  20. The climatic warming up (the greenhouse effect); Le rechauffement climatique (l'effet de serre)

    Energy Technology Data Exchange (ETDEWEB)

    Jancovici, J.M.; Jouzel, J. [CEA Saclay, Lab. des Sciences du Climat et de l' Environnement, 91 - Gif-sur-Yvette (France); Lorius, C. [Centre National de la Recherche Scientifique (CNRS), Lab. de Glaciologie et Geophysique de l' Environnement, 38 - Grenoble (France)] [and others

    2000-05-01

    Facing the environmental and biological impacts of the climatic warming up, scientists and economists organized a debate on the subject. After a theoretical presentation of the greenhouse effect and the greenhouse gases, the climatic changes are discussed and simulation of the effects are presented. The today effects and tomorrow impacts on the agriculture and the public health are also presented. A synthesis is proposed to discuss the contribution of the energy policy and of the technological progress in measures of greenhouse effect control. (A.L.B.)

  1. Greenhouse cooling and heat recovery using fine wire heat exchangers in a closed pot plant greenhouse: design of an energy producing greenhouse

    NARCIS (Netherlands)

    Bakker, J.C.; Zwart, de H.F.; Campen, J.B.

    2006-01-01

    A greenhouse cooling system with heat storage for completely closed greenhouses has been designed, based on the use of a fine wire heat exchanger. The performance of the fine wire heat exchangers was tested under laboratory conditions and in a small greenhouse compartment. The effects of the system

  2. Direct Demonstration of the Greenhouse Effect

    Science.gov (United States)

    Jaffe, D. A.; Malashanka, S.; Call, K.; Bernays, N.

    2012-12-01

    Consider these three "theories:" climate change, evolution, and gravity. Why are two of them hotly debated by non-scientists, but not gravity? In part, the answer is that climate change and evolution are more complex processes and not readily observable over short time scales to most people. In contrast, the "theory of gravity" is tested every day by billions of people world-wide and is therefore not challenged. While there are numerous "demonstrations" of the greenhouse effect available online, unfortunately, many of them are based on poor understanding of the physical principles involved. For this reason, we sought to develop simple and direct experiments that would demonstrate aspects of the greenhouse effect that would be suitable for museums, K-12, and/or college classrooms. We will describe two experiments. In the first, we use a simple plexiglass tube, approximately 12 cm long, with IR transparent windows. The tube is first filled with dry nitrogen and exposed to an IR heat lamp. Following this, the tube is filled with pure, dry CO2. Both tubes warm up, but the tube filled with CO2 ends up about 0.7 degrees C warmer. It is useful to compare this 12 cm column of CO2 to the column in the earth's atmosphere, which is equivalent to approximately 2.7 meters of pure CO2. This demonstration would be suitable for museum exhibits to demonstrate the physical basis of CO2 heating in the atmosphere. In the second experiment, we use FTIR spectroscopy to quantify the CO2 content of ambient air and indoor/classroom air. For this experiment, we use a commercial standard of 350 ppm CO2 to calibrate the absorption features. Once the CO2 content of ambient air is found, it is useful for students to compare their observed value to background data (e.g. NOAA site in Hawaii) and/or the "Keeling Curve". This leads into a discussion on causes for local variations and the long-term trends. This experiment is currently used in our general chemistry class but could be used in many

  3. Combating the greenhouse effect: no role for nuclear power

    International Nuclear Information System (INIS)

    Leggett, J.K.; Kelly, P.M.

    1990-01-01

    Many governments, including the United Kingdom government, now recognise the need for an immediate policy response to the dangerous build up of carbon dioxide and other greenhouse gases in the atmosphere. One immediate goal must be to cut substantially the amount of energy we use. British Nuclear Fuels have recently begun an advertising campaign to promote the expansion of nuclear power as a solution to the greenhouse effect, and government ministers have also advanced this concept in recent statements. In this report we argue that governments must not seek to involve nuclear power in combating global warming for the following reasons: seeking to replace all (or a part) of coal-fired power output with nuclear addresses only 10% (or less) of the greenhouse problem, it is many times cheaper to save a unit of energy than to generate an additional unit, to throw funds at enlarging the nuclear programme at the expense of investment in energy efficiency measures would in fact be to add to the greenhouse threat, the scope for the introduction of energy efficiency is enormous, nuclear power is not a viable option for third World countries, energy-efficiency measures can be introduced far more quickly than can nuclear power stations and energy efficiency technology is proven technology. (author)

  4. The greenhouse effect and climate warming up

    International Nuclear Information System (INIS)

    Leygonie, R.

    1992-01-01

    The present article is a follow-up to a previous article, under the same title, which describes the scientific bases of the greenhouse effect and the prospect, based on climatic global models, of a potential climate warming up. The conclusions of the Intergovernmental Panel on Climate Change (IPCC, August 1990) were summarized, predicting a mean global temperature increase between 2.4 and 5.1 deg C in 2070, among other changes. The recent IPCC work confirms 1990 conclusions but states that the decline of ozone in the lower stratosphere could neutralize the radiative forcing of chlorofluorocarbons. At least ten more years of investigation are needed to ascertain an increase of the greenhouse effect. Information is given on recent events which may be connected with the global climate problem, in particular the spectacular eruption of the Pinatubo volcano, in mid 1991, cause of a probable cooling of the atmosphere and a potential decrease of radiative forcing due to anthropogenic dioxide emissions. The most important recent events in the political field is a directive proposal by the European Commission aimed at a taxation of both energy in general and of carbon dioxide emissions by fossil fuels. Another event is the United Nations Convention on climate change, signed by 155 countries at the Rio de Janeiro Conference on Environment and Development, which pledges signatories to decrease their greenhouse gas - emissions but no figures are given on percentages and calendar of reduction. At last, a short chapter is devoted to the French ECLAT programme on climate change which consists both in participating in world programmes and in performing original investigations by French Scientists

  5. Titan's greenhouse and antigreenhouse effects

    Science.gov (United States)

    Mckay, Christopher P.; Pollack, James B.; Courtin, Regis

    1992-01-01

    Thermal mechanisms active in Titan's atmosphere are discussed in a brief review of data obtained during the Voyager I flyby in 1980. Particular attention is given to the greenhouse effect (GHE) produced by atmospheric H2, N2, and CH4; this GHE is stronger than that on earth, with CH4 and H2 playing roles similar to those of H2O and CO2 on earth. Also active on Titan is an antigreenhouse effect, in which dark-brown and orange organic aerosols block incoming solar light while allowing IR radiation from the Titan surface to escape. The combination of GHE and anti-GHE leads to a surface temperature about 12 C higher than it would be if Titan had no atmosphere.

  6. The greenhouse effect and nuclear energy

    International Nuclear Information System (INIS)

    Coulter, J.

    1988-01-01

    The author argues that nuclear power will do little to mitigate the problem of the greenhouse effect and is likely to exacerbate it. Changes since the mid 1970s illustrate the close linking of nuclear and economic growth with the associated growth of fossil fill consumption, the inability of nuclear power to substitute for fossil either technically or economically, and the greater contribution that can be made to energy availability and to reduction of carbon dioxide release by conservation

  7. Forest fires prevention and limitation of the greenhouse effect

    Directory of Open Access Journals (Sweden)

    2005-01-01

    Full Text Available The contribution of forest fires to the carbon budget and greenhouse effect is examined at global and national (Italian scale and forest management options directed to preventing fires are briefly outlined.

  8. Quantification of the greenhouse effect gases at the territorial scale. Final report

    International Nuclear Information System (INIS)

    Magnin, G.; Lacassagne, S.

    2003-07-01

    An efficient action against the greenhouse effect needs the implication of the local collectivities. To implement appropriate energy policies, deciders need information and tools to quantify the greenhouse gases and evaluate the obtained results of their greenhouse gases reduction policies. This study is a feasibility study of the tools realization, adapted to the french context. It was done in three steps: analysis of the existing tools, application to the french context and elaboration of the requirements of appropriate tools. This report presents the study methodology, the information analysis and the conclusions. (A.L.B.)

  9. Elementary Pre-Service Teacher Perceptions of the Greenhouse Effect.

    Science.gov (United States)

    Groves, Fred H.; Pugh, Ava F.

    1999-01-01

    Expands on earlier work to examine pre-service teachers' views on environmental issues, especially global warming and the related term "greenhouse effect." Suggests that pre-service elementary teachers hold many misconceptions about environmental issues. (DDR)

  10. A new index to assess chemicals increasing the greenhouse effect based on their toxicity to algae.

    Science.gov (United States)

    Wang, Ting; Zhang, Xiaoxian; Tian, Dayong; Gao, Ya; Lin, Zhifen; Liu, Ying; Kong, Lingyun

    2015-11-01

    CO2, as the typical greenhouse gas causing the greenhouse effect, is a major global environmental problem and has attracted increasing attention from governments. Using algae to eliminate CO2, which has been proposed as an effective way to reduce the greenhouse effect in the past decades, can be disturbed by a growing number of artificial chemicals. Thus, seven types of chemicals and Selenastrum capricornutum (algae) were examined in this study, and the good consistency between the toxicity of artificial chemicals to algae and the disturbance of carbon fixation by the chemicals was revealed. This consistency showed that the disturbance of an increasing number of artificial chemicals to the carbon fixation of algae might be a "malware" worsening the global greenhouse effect. Therefore, this study proposes an original, promising index to assess the risk of deepening the greenhouse effect by artificial chemicals before they are produced and marketed. Copyright © 2015 Elsevier B.V. All rights reserved.

  11. Student Mental Models of the Greenhouse Effect: Retention Months After Interventions

    Science.gov (United States)

    Harris, S. E.; Gold, A. U.

    2013-12-01

    Individual understanding of climate science, and the greenhouse effect in particular, is one factor important for societal decision-making. Ideally, learning opportunities about the greenhouse effect will not only move people toward expert-like ideas but will also have long-lasting effects for those individuals. We assessed university students' mental models of the greenhouse effect before and after specific learning experiences, on a final exam, then again a few months later. Our aim was to measure retention after students had not necessarily been thinking about, nor studying, the greenhouse effect recently. How sticky were the ideas learned? 164 students in an introductory science course participated in a sequence of two learning activities and assessments regarding the greenhouse effect. The first lesson involved the full class, then, for the second lesson, half the students completed a simulation-based activity and the other half completed a data-driven activity. We assessed student thinking through concept sketches, multiple choice and short answer questions. All students generated concept sketches four times, and completed a set of multiple choice (MCQs) and short answer questions twice. Later, 3-4 months after the course ended, 27 students ('retention students') completed an additional concept sketch and answered the questions again, as a retention assessment. These 27 students were nearly evenly split between the two contrasting second lessons in the sequence and included both high and low-achieving students. We then compared student sketches and scores to 'expert' answers. The general pattern over time showed a significant increase in student scores from before the lesson sequence to after, both on concept sketches and MCQs, then an additional increase in concept sketch score on the final exam (MCQs were not asked on the final exam). The scores for the retention students were not significantly different from the full class. Within the retention group

  12. Modeling GHG emission and energy consumption in selected greenhouses in Iran

    Energy Technology Data Exchange (ETDEWEB)

    Yousefi, M.; Omid, M.; Rafiee, SH.; Khoshnevisan, B. [Department of Agricultural Machinery Engineering, Faculty of Agricultural Engineering and Technology, University of Tehran, Karaj (Iran, Islamic Republic of)

    2013-07-01

    It is crucial to determine energy efficiency and environmental effects of greenhouse productions. Such study can be a viable solution in probing challenges and existing defects. The aims of this study were to analyze energy consumption and greenhouse gas (GHG) emissions for pepper production using biological method inside greenhouses which used natural gas (NG) heating system in Esfahan province. Data were collected from 22 greenhouse holders using a face to face questionnaire method, in 2010-2011. Also, functional area was selected 1000 m2. Total energy input, total energy output, energy ratio, energy productivity, specific energy, net energy gain and total GHG emissions were calculated as 297799.9 MJ area-1, 3851.84 MJ area-1, 0.013, 0.016 kg MJ-1, 61.85 MJ kg-1, -293948 MJ area-1 and 14390.85 kg CO2 equivalent area-1, respectively. Result revealed that replacing diesel fuel with NG will not be an effective way of reducing energy consumption for greenhouse production. However, it is crucial to focus on energy management in order to enhance the energy and environmental indices. One way to supply adequate input energy and a reduction in GHG emissions is the utilization of renewable and clean energy sources instead of NG and diesel fuel. Also, it is suggested to adopt solar greenhouses in the region and to supply electricity from non-fossil sources seriously.

  13. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    International Nuclear Information System (INIS)

    Dieckhoener, Caroline

    2013-01-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  14. Essays on the economics of energy markets. Security of supply and greenhouse gas abatement

    Energy Technology Data Exchange (ETDEWEB)

    Dieckhoener, Caroline

    2013-02-01

    In summary, the presented thesis analyzes two distinct economic subjects: security of supply in natural gas markets and greenhouse gas abatement potentials in the residential heating market. These subjects considered both reflect key points in the triangle of energy policy and are both associated with transnational market failures within energy markets. The security of supply analyses in an intermeshed network are approached from a rather normative, top-down perspective of a social planner. On the contrary, the analyses of greenhouse gases emitted by households are positive analyses of consumer choices. The normative analyses of security of supply in natural gas markets and the positive analyses on greenhouse gas abatement in the residential heating market are organized in two parts of the thesis. 1. Normative analyses - Security of supply in natural gas markets: The two papers of the first part of the dissertation thesis are based on a normative approach with the European natural gas market and infrastructure model TIGER that allows for security of supply analyses. The general idea behind the modeling approach is based on the assumption of a social planner and finds an efficient utilization of the natural gas infrastructure. More precisely, the security of supply analyses conducted in the first part of the thesis refer to scenario simulations of disrupted supply routes in the European natural gas network. The effects of these security of supply scenarios on the usage of other infrastructure components, on marginal supply costs and disruptions to consumers are investigated. 2. Positive analyses of greenhouse gas abatement potentials - Econometric modeling of consumer choices and evaluation of public policies: The second part of the thesis includes two positive analyses which investigate household choices to derive greenhouse gas abatement potentials. In the residential heating market, the energy efficiency level exhibited and the type of energy carrier used are

  15. Assessing the Greenhouse Gas Emissions from Natural Gas Fired Power Plants

    Science.gov (United States)

    Hajny, K. D.; Shepson, P. B.; Rudek, J.; Stirm, B. H.; Kaeser, R.; Stuff, A. A.

    2017-12-01

    Natural gas is often discussed as a "bridge fuel" to transition to renewable energy as it only produces 51% the amount of CO2 per unit energy as coal. This, coupled with rapid increases in production fueled by technological advances, has led to a near tripling of natural gas used for electricity generation since 2005. One concern with this idea of a "bridge fuel" is that methane, the primary component of natural gas, is itself a potent greenhouse gas with 28 and 84 times the global warming potential of CO2 based on mass over a 100 and 20 year period, respectively. Studies have estimated that leaks from the point of extraction to end use of 3.2% would offset the climate benefits of natural gas. Previous work from our group saw that 3 combined cycle power plants emitted unburned CH4 from the stacks and leaked additional CH4 from equipment on site, but total loss rates were still less than 2.2%. Using Purdue's Airborne Laboratory for Atmospheric Research (ALAR) we completed additional aircraft based mass balance experiments combined with passes directly over power plant stacks to expand on the previous study. In this work, we have measured at 12 additional natural gas fired power plants including a mix of operation types (baseload, peaking, intermediate) and firing methods (combined cycle, simple thermal, combustion turbine). We have also returned to the 3 plants previously sampled to reinvestigate emissions for each of those, to assess reproducibility of the results. Here we report the comparison of reported continuous emissions monitoring systems (CEMS) data for CO2 to our emission rates calculated from mass balance experiments, as well as a comparison of calculated CH4 emission rates to estimated emission rates based on the EPA emission factor of 1 g CH4/mmbtu natural gas and CEMS reported heat input. We will also discuss emissions from a coal-fired plant which has been sampled by the group in the past and has since converted to natural gas. Lastly, we discuss the

  16. Using Interactive Technology to Support Students' Understanding of the Greenhouse Effect and Global Warming

    Science.gov (United States)

    Varma, Keisha; Linn, Marcia C.

    2012-01-01

    In this work, we examine middle school students' understanding of the greenhouse effect and global warming. We designed and refined a technology-enhanced curriculum module called "Global Warming: Virtual Earth". In the module activities, students conduct virtual experiments with a visualization of the greenhouse effect. They analyze data and draw…

  17. REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO2 ICE CLOUDS

    International Nuclear Information System (INIS)

    Kitzmann, D.

    2016-01-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO 2 dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone

  18. Assessment of US, Indian and Chinese Middle School Students' Outlook on the Greenhouse Effect

    Science.gov (United States)

    Niyogi, D.; Ganesh, N.; Singh, D.; Liu, X.; Shepardson, D. P.; Roychoudhury, A.; Hirsch, A.; Halversen, C.

    2012-12-01

    When you think of the greenhouse effect and climate change what images and concepts come to mind? Answers to these questions are important to educators and policy makers as they wrestle with the issue of educating and conveying these concepts in class rooms and to the general public. The greenhouse effect (GHE) sustains life on the earth through regulating the temperatures on the planet. Well-mixed greenhouse gases (GHGs) such as water vapor, carbon dioxide, methane, and nitrous oxide absorb outgoing (long wave) radiation from the Earth's surface while allowing passage without absorption of the incoming solar (shortwave) radiation. Increasing the GHG concentration in the atmosphere increases the absorption of long wavelength radiation thereby increasing global temperatures that result in changes in the atmospheric states consistently over multiple decades.The concept of the greenhouse effect is critical to the discussions underway pertaining to climate change and the controls on greenhouse emissions being proposed in different forums. This study sought to (1) investigate students' conceptions about the greenhouse effect, global warming and climate change; (2) determine if there are differences between perceptions for students in US, India and China (Asia)- where there are known differences in the political and scientific approaches; and (3) determine if there any differences, contextual or otherwise, in the way the greenhouse effect is taught in these countries. This study was conducted in select schools in the Midwest US, India and China that volunteered to work with this project. -For US, data from 51 secondary students from three different schools were analyzed, for India the number was 71 from 3 schools, while for China the number is over 100 (and being analyzed) from different classes within a school. Study Hypotheses: 1.Middle school students have a good scientific understanding of greenhouse gases. 2.The U.S and Asian students have the same outlook. Teachers

  19. A simple demonstration of the greenhouse effect

    International Nuclear Information System (INIS)

    Adelhelm, M.; Hoehn, E.G.

    1993-01-01

    One of the greatest threats humankind may face in the future is the expected warming of the atmosphere within the next decades, caused by the release of infrared-absorbing gases especially carbon dioxide, into the atmosphere. For an increase of atmospheric CO 2 concentration to twice its present value, model calculations predict an increase in temperature of the lower atmosphere of 1.5 to 4.5 C, with concomitant dramatic effects on vegetation, climate, and ocean levels. Much has been published about causes, effects, and possible strategies for abatement of this 'greenhouse effect', and this important topic in science curricula

  20. The greenhouse effect: A summary of KEMA research

    International Nuclear Information System (INIS)

    Ruijgrok, W.

    1994-01-01

    An overview of current research at KEMA in the field of the greenhouse effect and climatic change is presented. Project information regarding motivation, aim, planning and results is given. The projects are carried out within the framework of the so-called 'Collectieve Opdracht' (joint assignment) of the Dutch electric power generating utilities

  1. Knowledge about the 'Greenhouse Effect': Have College Students Improved?

    Science.gov (United States)

    Jeffries, Helen; Stanisstreet, Martin; Boyes, Edward

    2001-01-01

    The ideas of Year I undergraduate biology students about the consequences, causes, and cures of the 'greenhouse effect' was determined using a closed-form questionnaire, and results were compared with a parallel study undertaken nearly 10 years ago. Many of the students in the present survey were unaware of the potential effect of global warming…

  2. Per capita emissions of greenhouse gases and international trade

    International Nuclear Information System (INIS)

    Karman, D.; Baptiste, S.

    1994-01-01

    The role played by international trade in Canada's emissions of greenhouse gases is investigated. Data used in the study include Environment Canada greenhouse gas emission estimates for 1990, a Statistics Canada input-output model linking greenhouse gas emissions to economic activity in different sectors, and monetary statistics on imports and exports. Subject to some simplifying assumptions, it is estimated that nearly 20% of Canada's greenhouse gas emissions can be attributed to the production of commodities destined for export to other countries. If the same greenhouse gas emission intensities are assumed for Canada's imports, the greenhouse gas emissions due to Canada's net trade is nearly 7% of the 660 megatonnes of CO 2 equivalent emissions for 1990. Commodities from natural resource exploitation head the list of greenhouse gas emissions attributed to international trade, as expected from their large export volumes and large greenhouse gas emission intensities. 4 refs., 1 fig

  3. Exploring the Greenhouse Effect through Physics-Oriented Activities

    Science.gov (United States)

    Browne, Kerry P.; Laws, Priscilla W.

    2003-01-01

    We are developing a new activity-based unit on global warming and the environment as part of the "Explorations in Physics Curriculum." We describe the current status of this unit, which focuses on helping students understand the greenhouse effect and its relationship to global warming. We outline several problems encountered in testing the unit…

  4. R W Wood's Experiment Done Right - A Laboratory Demonstration of the Greenhouse Effect

    Science.gov (United States)

    Halpern, J. B.

    2016-12-01

    It would not be exaggerating to say that R. W. Wood was the most respected experimental optical physicist of his time. Thus the null result of his attempt to demonstrate the greenhouse effect by comparing temperature rise in illuminated cylinders with glass or rock salt windows has echoed down through the years in climate science discussions both on the professional and public levels1. Today the web is full of videos purporting to demonstrate the greenhouse effect, but careful examination shows that they simply demonstrate heating via absorption of IR or NIR light by CO2. These experiments miss that the greenhouse effect is a result of the temperature difference between the surface and the upper troposphere as a result of which radiation from greenhouse molecules slows as the level rises. The average distance a photon emitted from a vibrationally excited CO2 molecule is about 10 m at the surface, increasing with altitude until at about 8 km the mean free path allows for radiation to space. Increasing CO2 concentrations raises this level to a higher one, which is colder, and at which the rate of radiation to space decreases. Emitting the same amount of radiation to space as before requires heating the entire system including the surface. To model the greenhouse effect we have used a 22 L bulb with a capsule heater in the center. The temperature near the heater (the surface) or above it can be monitored using a thermocouple and the CO2 mixing ratio determined using a NDIR sensor. By controlling the CO2 concentration in the bulb, the mean free path of re-radiated photons from CO2 can be controlled so that it much smaller than the bulb's diameter. We have measure rises in temperature both near the heater and at a distance from it as CO2is introduced, demonstrating the greenhouse effect. 1. R.W. Wood, London, Edinborough and Dublin Philosophical Magazine , 1909, 17, p319-320 also http://www.wmconnolley.org.uk/sci/wood_rw.1909.html

  5. Photovoltaic greenhouses: evaluation of shading effect and its influence on agricultural performances

    Directory of Open Access Journals (Sweden)

    Sergio Castellano

    2014-12-01

    Full Text Available During the last years, European government remuneration polices promoted the realisation of photovoltaic systems integrated with the structures instead of on ground photovoltaic (PV plants. In this context, in rural areas, greenhouses covered with PV modules have been developed. In order to interdict the building of greenhouses with an amount of opaque panels on covering not coherent with the plant production, local laws assigned a threshold value, usually between 25% and 50%, of the projection on the soil of the roof. These ranges seem not to be based on scientific evaluation about the agricultural performances required to the building but only on empirical assessments. Purpose of this paper is to contribute to better understand the effect of different configurations of PV panels on the covering of a monospan duo-pitched roof greenhouse in terms of shading effect and energy efficiency during different periods of the year. At this aim, daylighting and insolation analysis were performed by means of the software Autodesk® Ecotect® Analysis (Autodesk, Inc., San Rafael, CA, USA on greenhouse model with different covering ratio of polycrystalline photovoltaic panels on the roof.

  6. The Greenhouse effect: from research to political action

    International Nuclear Information System (INIS)

    Bernard, A.; Charmant, A.; Ladoux, N.; Vielle, M.

    1992-01-01

    What would be the ecological and socio-economic consequences of the warming of the planet Earth. The greenhouse effect is better defined today, but evaluating the dangers is still a risky business which demands extreme caution. The study recapitulates the current state of knowledge, and the preventive measures under consideration, so as to encourage the examination of the question

  7. The super greenhouse effect in a warming world: the role of dynamics and thermodynamics

    Science.gov (United States)

    Kashinath, Karthik; O'Brien, Travis; Collins, William

    2016-04-01

    Over warm tropical oceans the increase in greenhouse trapping with increasing SST can be faster than that of the surface emission, resulting in a decrease in clear sky outgoing longwave radiation at the top of the atmosphere (OLR) when SST increases, also known as the super greenhouse effect (SGE). If the SGE is directly linked to SST changes, there are profound implications for positive climate feedbacks in the tropics. We show that CMIP5 models perform well in simulating the observed clear-sky greenhouse effect in the present day. Using global warming experiments we show that the onset and shutdown SST of the SGE, as well as the magnitude of the SGE, increase as the convective threshold SST increases. To account for an increasing convective threshold SST we use an invariant coordinate for convection proposed in a recent study [Williams et al., GRL (2009)]. However, even after accounting for the increase in tropical SST (by normalizing the SGE by surface emission) and accounting for the increase in the threshold temperature for convection (by using the invariant coordinate) we find that the models predict a distinct increase in the clear-sky greenhouse effect in a warmed world. This suggests that thermodynamics (i.e. SST) plays a crucial role in regulating the increasing clear sky greenhouse effect in a warming world. We use theoretical arguments to estimate this increase in SGE and derive its dependence on SST. Finally, as shown in previous studies, we confirm that the increase in the clear-sky greenhouse effect is primarily due to upper tropospheric moistening. Although the absolute increase in upper tropospheric water vapor is small compared to that of the lower troposphere, since the absorptivity scales with fractional changes in water vapor, the contribution of the upper troposphere is more significant, as shown by Chung et al., PNAS (2014).

  8. The Greenhouse effect within an analytic model of the atmosphere

    Energy Technology Data Exchange (ETDEWEB)

    Dehnen, Heinz [Konstanz Univ. (Germany). Fachbereich Physik

    2009-01-15

    Within a simplified atmospheric model the greenhouse effect is treated by analytical methods starting from physical first principles. The influence of solar radiation, absorption cross sections of the greenhouse molecules, and cloud formation on the earth's temperature is shown and discussed explicitly by mathematical formulae in contrast to the climate simulations. The application of our analytical results on the production of 20 .10{sup 9} t of CO{sub 2} per year yields an enlargement of the earth's surface temperature of 2.3 .10{sup -2} C per year in agreement with other estimations. (orig.)

  9. HFCs contribution to the greenhouse effect. Present and projected estimations

    Energy Technology Data Exchange (ETDEWEB)

    Libre, J.M.; Elf-Atochem, S.A. [Central Research & Development, Paris (France)

    1997-12-31

    This paper reviews data that can be used to calculate hydrofluorocarbon (HFC) contribution to the greenhouse effect and compare it to other trace gas contributions. Projections are made for 2010 and 2100 on the basis of available emission scenarios. Industrial judgement on the likelihood of those scenarios is also developed. Calculations can be made in two different ways: from Global Warming Potential weighted emissions of species or by direct calculation of radiative forcing based on measured and projected atmospheric concentrations of compounds. Results show that HFCs corresponding to commercial uses have a negligible contribution to the greenhouse effect in comparison with other trace gases. The projected contributions are also very small even if very high emission scenarios are maintained for decades. In 2010 this contribution remains below 1%. Longer term emissions projections are difficult. However, based on the IPCC scenario IS92a, in spite of huge emissions projected for the year 2100, the HFC contribution remains below 3%. Actually many factors indicate that the real UFC contribution to the greenhouse effect will be even smaller than presented here. Low emissive systems and small charges will likely improve sharply in the future and have drastically improved in the recent past. HFC technology implementation is likely to grow in the future, reach a maximum before the middle of the next century; the market will stabilise driven by recycling, closing of systems and competitive technologies. This hypothesis is supported by previous analysis of the demand for HTCs type applications which can be represented by {open_quotes}S{close_quotes} type curves and by recent analysis indicating that the level of substitution of old products by HFCs is growing slowly. On the basis of those data and best industrial judgement, the contribution of HFCs to the greenhouse effect is highly likely to remain below 1% during the next century. 11 refs., 2 figs., 5 tabs.

  10. On the determination of the overall heat transmission coefficient and soil heat flux for a fog cooled, naturally ventilated greenhouse: Analysis of radiation and convection heat transfer

    International Nuclear Information System (INIS)

    Abdel-Ghany, Ahmed M.; Kozai, Toyoki

    2006-01-01

    A physical model for analyzing the radiative and convective heat transfer in a fog cooled, naturally ventilated greenhouse was developed for estimating the overall heat transmission coefficient based on the conduction, convection and thermal radiation heat transfer coefficients and for predicting the soil heat flux. The contribution of the water vapor of the inside air to the emission and absorption of thermal radiation was determined. Measurements of the outside and inside greenhouse environments to be used in the analysis were conducted around solar noon (12:19-13:00) on a hot sunny day to provide the maximum solar radiation transmission into the greenhouse. The net solar radiation flux measured at the greenhouse floor showed a reasonable agreement with the predicted value. The net fluxes were estimated around noon. The average net radiation (solar and thermal) at the soil surface was 220.0 W m -2 , the average soil heat flux was 155.0 W m -2 and the average contribution of the water vapor of the inside air to the thermal radiation was 22.0 W m -2 . The average overall heat transmission coefficient was 4.0 W m -2 C -1 and was in the range between 3.0 W m -2 C -1 and 6.0 W m -2 C -1 under the different hot summer conditions between the inside and outside of the naturally ventilated, fog cooled greenhouse

  11. A suggestion to assess spilled hydrocarbons as a greenhouse gas source

    Energy Technology Data Exchange (ETDEWEB)

    McAlexander, Benjamin L., E-mail: bmcalexander@trihydro.com

    2014-11-15

    Petroleum-contaminated site management typically counts destruction of hydrocarbons by either natural or engineered processes as a beneficial component of remediation. While such oxidation of spilled hydrocarbons is often necessary for achieving risk reduction for nearby human and ecological receptors, site assessments tend to neglect that this also means that the pollutants are converted to greenhouse gases and emitted to the atmosphere. This article presents a suggestion that the current and long term greenhouse gas emissions from spilled hydrocarbons be incorporated to petroleum site assessments. This would provide a more complete picture of pollutant effects that could then be incorporated to remedial objectives. At some sites, this additional information may affect remedy selection. Possible examples include a shift in emphasis to remedial technologies that reduce pollutant greenhouse gas effects (e.g., by conversion of methane to carbon dioxide in the subsurface), and a more holistic context for considering remedial technologies with low emission footprints.

  12. Natural Gas STAR Program

    Science.gov (United States)

    EPA’s Voluntary Methane Programs encourage oil and natural gas companies to adopt cost-effective technologies and practices that improve operational efficiency and reduce emissions of methane, a potent greenhouse gas.

  13. Effect of greenhouse vegetable farming duration on Zinc accumulation in Northeast China

    Science.gov (United States)

    Wang, Jun; Yu, Peiying; Cui, Shuang; Chen, Xin; Shi, Yi

    2018-02-01

    Greenhouse vegetable production (GVP) has rapidly expanded, and reqiures more attention due to its heavy metal contamination. In this study, different cultivation greenhouses of 1, 2, 3, 5 and 13 years were selected to investigate the effects of GVP duration on Zn accumulation. The results revealed high Zn (total Zn and available Zn) accumulation in GVP surface layers (0-20 cm), and Zn contents in 0-20 cm soil layers were positively correlated with GVP duration (P<0.01). Zn accumulation was mainly attributed to manure fertilizer application due to higher concentrations of Zn in manures. For greenhouse sustainability, reduction of manure application and reasonable use of passivation materials may alleviate metal phytoavailability and the health risk.

  14. Our changing atmosphere: Trace gases and the greenhouse effect

    International Nuclear Information System (INIS)

    Rowland, F.S.

    1991-01-01

    A very important factor in the scientific evaluation of greenhouse warming during the last decade has been the realization that this is not just a problem of increasing CO 2 but is rather a more general problem of increasing concentrations of many trace gases. CFCs are increasing at 5% per year with CFC-113 going up at a more rapid rate; methane approximately 1% per year; CO 2 by 0.5% per year; N 2 O about 0.2% per year. These rates of increase have been fed into detailed models of the infrared absorbing characteristics of the atmosphere, and have provided the estimated relative contributions from the various trace gases. Carbon dioxide is still the major contributor to the greenhouse effect, and its yearly contribution appears to be increasing. An important question for dealing with the greenhouse effect will be the full understanding of these CO 2 concentration changes. The total amount of carbon from the burning of fossil fuel that is going into the atmosphere is considerably larger than the carbon dioxide increase registered in the atmosphere. Appreciable CO 2 contributions are also being received from the burning of the tropical forests. The procedures necessary to solve the chlorofluorocarbon problem have been put into place on an international scale and have begun to be implemented. We still have left for the future, however, efforts to reduce emissions of carbon dioxide, methane, and nitrous oxide

  15. Theme 10: greenhouse effect transport policies and urban organization

    International Nuclear Information System (INIS)

    2002-07-01

    This document describes the reference framework of the theme 10 ''greenhouse effect, transport policies and urban organization'' which is a part of the urban transports interface. It presents the specific actions realized by the theme 10 for a future integration in theme 1, 5 and 8. (A.L.B.)

  16. REVISITING THE SCATTERING GREENHOUSE EFFECT OF CO{sub 2} ICE CLOUDS

    Energy Technology Data Exchange (ETDEWEB)

    Kitzmann, D., E-mail: daniel.kitzmann@csh.unibe.ch [Center for Space and Habitability, University of Bern, Sidlerstr. 5, 3012 Bern (Switzerland)

    2016-02-01

    Carbon dioxide ice clouds are thought to play an important role for cold terrestrial planets with thick CO{sub 2} dominated atmospheres. Various previous studies showed that a scattering greenhouse effect by carbon dioxide ice clouds could result in a massive warming of the planetary surface. However, all of these studies only employed simplified two-stream radiative transfer schemes to describe the anisotropic scattering. Using accurate radiative transfer models with a general discrete ordinate method, this study revisits this important effect and shows that the positive climatic impact of carbon dioxide clouds was strongly overestimated in the past. The revised scattering greenhouse effect can have important implications for the early Mars, but also for planets like the early Earth or the position of the outer boundary of the habitable zone.

  17. What Light through Yonder Window Breaks?--The Greenhouse Effect Revisited.

    Science.gov (United States)

    Bohren, Craig F.

    1992-01-01

    Presents three experiments exploring aspects of the greenhouse effect. Topics and discussion includes radiation in energy transfer, emissivity and absorptivity, the irrelevance of reflectivity, a digression on insulators and convection, climate change, and radiative energy balance. (MCO)

  18. Effects of treated poultry litter on potential Greenhouse Gas ...

    African Journals Online (AJOL)

    This study examined the effects of different treatments of poultry faecal matter on potential greenhouse gas emission and its field application. Poultry litters were randomly assigned to four treatments viz; salt solution, alum, air exclusion and the control (untreated). Alum treated faeces had higher (p<0.05) percentage nitrogen ...

  19. Greenhouse effect: temperature of a metal sphere surrounded by a glass shell and heated by sunlight

    International Nuclear Information System (INIS)

    Nguyen, Phuc H; Matzner, Richard A

    2012-01-01

    We study the greenhouse effect on a model satellite consisting of a tungsten sphere surrounded by a thin spherical, concentric glass shell, with a small gap between the sphere and the shell. The system sits in vacuum and is heated by sunlight incident along the z-axis. This development is a generalization of the simple treatment of the greenhouse effect given by Kittel and Kroemer (1980 Thermal Physics (San Francisco: Freeman)) and can serve as a very simple model demonstrating the much more complex Earth greenhouse effect. Solution of the model problem provides an excellent pedagogical tool at the Junior/Senior undergraduate level.

  20. [Effects of superphosphate addition on NH3 and greenhouse gas emissions during vegetable waste composting].

    Science.gov (United States)

    Yang, Yan; Sun, Qin-ping; Li, Ni; Liu, Chun-sheng; Li, Ji-jin; Liu, Ben-sheng; Zou, Guo-yuan

    2015-01-01

    To study the effects of superphosphate (SP) on the NH, and greenhouse gas emissions, vegetable waste composting was performed for 27 days using 6 different treatments. In addition to the controls, five vegetable waste mixtures (0.77 m3 each) were treated with different amounts of the SP additive, namely, 5%, 10%, 15%, 20% and 25%. The ammonia volatilization loss and greenhouse gas emissions were measured during composting. Results indicated that the SP additive significantly decreased the ammonia volatilization and greenhouse gas emissions during vegetable waste composting. The additive reduced the total NH3 emission by 4.0% to 16.7%. The total greenhouse gas emissions (CO2-eq) of all treatments with SP additives were decreased by 10.2% to 20.8%, as compared with the controls. The NH3 emission during vegetable waste composting had the highest contribution to the greenhouse effect caused by the four different gases. The amount of NH3 (CO2-eq) from each treatment ranged from 59.90 kg . t-1 to 81.58 kg . t-1; NH3(CO2-eq) accounted for 69% to 77% of the total emissions from the four gases. Therefore, SP is a cost-effective phosphorus-based fertilizer that can be used as an additive during vegetable waste composting to reduce the NH3 and greenhouse gas emissions as well as to improve the value of compost as a fertilizer.

  1. Buying greenhouse insurance

    International Nuclear Information System (INIS)

    Manne, A.S.; Richels, R.G.

    1992-01-01

    A growing concern that the increasing accumulation of greenhouse gases will lead to undesirable changes in global climate has resulted in proposals, both in the United States and internationally, to set physical targets for reducing greenhouse gas emissions. But what will these proposals cost? This book outlines a way to think about greenhouse-effect decisions under uncertainty. It describes an insightful model for determining the economic costs of limiting CO 2 emissions produced by burning fossil fuels and provides a solid analytical base for rethinking public policy on the far-reaching issue of global warming. It presents region-by-region estimates of the costs that would underlie an international agreement. Using a computer model known as Global 2100, they analyze the economic impacts of limiting CO 2 emissions under alternative supply and conservation scenarios. The results clearly indicate that a reduction in emissions is not the sole policy response to potential climate change. Following a summary of the greenhouse effect, its likely causes, and possible consequences, this book takes up issues that concern the public at large. They provide an overview of Global 2100, look at how the U.S. energy sector is likely to evolve under business-as-usual conditions and under carbon constraints, and describe the concept of greenhouse insurance. They consider possible global agreements, including an estimate of benefits that might result from trading in an international market in emission rights. They conclude with a technical description directed toward modeling specialists

  2. About greenhouse effect origins

    International Nuclear Information System (INIS)

    Arrhenius, S.; Chamberlin, Th.; Croll, J.; Fourier, J.; Pouillet, C.; Tyndall, J.

    2009-01-01

    In order to understand and decipher the ecological crisis in progress, an historical prospect of its origins and evolution at the worldwide scale is necessary. This book gathers seven founder articles (including 4 original translations), harbingers of the present day climate change. Written during the 19. century by famous scientists like Joseph Fourier, Claude Pouillet, James Croll, John Tyndall, Svante Arrhenius and Thomas Chamberlin, they relate a century of major progress in the domain of Earth's sciences in praise of these scientists. This book allows to (re)discover these texts: discovery of the greenhouse effect principle (Fourier), determination of solar radiation absorption by the atmosphere (Pouillet), rivalry between the astronomical theory of glacial cycles (Croll) and the carbon dioxide climatic theory (Tyndall), influence of the CO 2 concentration in the atmosphere on the global warming (Arrhenius), and confirmation of the major role of CO 2 in the Earth's temperature regulation (Chamberlin). (J.S.)

  3. Environmental policy and the greenhouse effect

    International Nuclear Information System (INIS)

    Weenink, J.B.

    1993-01-01

    Emissions, resulting from human activity, are substantially increasing the atmospheric concentration of greenhouse gases. This is causing an additional average warming of the Earth's surface. This article presents an overview of recent developments in the international discussion on climate change, taking into account the work of other organizations such as the Intergovernmental Panel on Climate Change (IPCC). The long term and global character of the climate change problem requires an international long term strategy based on internationally agreed principles such as sustainable development and the precautionary principle. Research is needed to further develop risk assessment and environmental quality standards, from which emission targets can be derived. As a first step, governments of many industrialized countries have already set provisional national CO 2 emission targets, aimed at stabilization at present levels by the year 2000 and in some cases, reductions thereafter. Under the auspices of United Nations, negotiations have begun on an international framework climate convention and associated agreements, on, for example, greenhouse gas emissions, forestry and funding mechanisms. Obligations imposed on individual nations may be expected to reflect their responsibility for greenhouse warming; this paper presents some views on the equity of burden sharing. 17 refs., 5 tabs

  4. Irrigation management in organic greenhouse

    NARCIS (Netherlands)

    Voogt, W.; Balendonck, J.; Berkelmans, R.; Enthoven, N.

    2017-01-01

    Irrigation in protected cultivation is essential due to the absence of natural precipitation. High evapotranspiration, due to higher temperature and prolonged cropping period, requires ample an adequate supply of water. The water supply in a greenhouse is solely carried out by irrigation and thus

  5. Seventh Grade Students' Mental Models of the Greenhouse Effect

    Science.gov (United States)

    Shepardson, Daniel P.; Choi, Soyoung; Niyogi, Dev; Charusombat, Umarporn

    2011-01-01

    This constructivist study investigates 225 student drawings and explanations from three different schools in the midwest in the US, to identify seventh grade students' mental models of the greenhouse effect. Five distinct mental models were derived from an inductive analysis of the content of the students' drawings and explanations: Model 1, a…

  6. The greenhouse effect and the amount of CO2 emissions in Romania

    International Nuclear Information System (INIS)

    Manea, Gh.

    1992-01-01

    In order to reduce the CO 2 emissions, responsible by the greenhouse effect on Terra, an international control for monitoring them is to be instated. The development of methods for reducing the CO 2 emissions, implies the identification and evaluation of the CO 2 sources, the forecasting of probable evolution of the CO 2 emissions, and also the assessment of the economic impact. This paper tries to accomplish such an evaluation and to draft several scenarios for reduction of the CO 2 emissions. Also considerations about the suitability of the Romanian adhesion to the international treaties regarding the greenhouse effect monitoring are presented. (author). 7 tabs

  7. A tax against the greenhouse effect

    International Nuclear Information System (INIS)

    Anon.

    1996-01-01

    The objectives, principles, practical problems, and contradictory economic policy options with respect to a tax against greenhouse gases are reviewed. An overview of the strategy of the European Union for the stabilization of CO 2 -emissions is given. One particular aspect of this strategy, the proposal for an energy/CO 2 -tax, is addressed more in detail. In addition, the main principles of two proposals for guidelines by the European Commission are summarized. The position of the employers and workers organisation (UNICE and EVV) is given. The results of a model calculation on the economic effects of an energy/CO 2 -tax in Belgium are summarized. (A.S.)

  8. Greenhouse gas emissions from the production and use of alternative transport fuels

    International Nuclear Information System (INIS)

    Le Cornu, J.K.

    1990-01-01

    A number of the commonly proposed alternative transport fuels were ranked according to both the cumulative greenhouse gas emissions and the production costs incurred between the recovery of the prime resource and the fuel's end use by the Australian transport fleet. An examination of the emissions of each greenhouse gas at each production stage confirmed the common presumption that the low levels of secondary greenhouse gas emissions involved contribute little to the overall greenhouse impact of a fuel's production and use. From a greenhouse point of view the transport fuels studied could be reasonable well ranked by considering their carbon dioxide emissions alone. A possible exception may apply in the case of the compressed natural gas option, which may need to separate consideration of the effect of fugitive emissions of methane from gas distribution systems. An assumption involved in reaching this result was that nitrous oxide emissions, on which there was inadequate hard data, would not form more than 1% of the total nitrogen oxide emissions. At such an emission level it could contribute up to 5% of a fuel's total greenhouse impact. It is concluded that apart from some small niche opportunities, there is no Australian alternative transport fuel option whose production cost and greenhouse impact makes it one which policy should favour over other fuels. It is stressed that this is no more than a preliminary scouting study of generic options, which addresses only greenhouse issues. 17 refs., 1 tab., 8 figs

  9. Comparison on the heat requirements of a four-span greenhouse with a melting snow system and a single-span greenhouse

    International Nuclear Information System (INIS)

    Furuno, S.; Sase, S.; Ishii, M.

    2004-01-01

    The heat requirements were measured and compared between a four-span greenhouse with a melting snow system and a typical single-span greenhouse with no melting snow system. Generally, single-span greenhouses require no melting snow system because snow drops off naturally from the roofs by gravity. The results for the four-span greenhouse showed that the provided heat by a heater for melting snow increased with an increase in snowfall, and there was a high correlation between them. The heat requirement per unit floor area of the four-span greenhouse was slightly less than that of the single-span greenhouse. This suggests that the decrease in heat requirement for internal air because of the larger floor/surface area ratio of the four-span greenhouse was more than the increase in heat requirement for melting snow. The measured heat requirement of the four-span greenhouse with the melting snow system was equal to the estimated heat load based on a common calculation procedure. On the other hand, that of the single-span greenhouse was slightly smaller than the estimated heat load. These suggest that the estimated heat load based on the common calculation procedure was slightly overestimated and larger than the actual heat requirement excluding the heat for the melting snow in snowy area. This is likely due to the fact that the parameters in the common calculation procedure were determined under the condition of larger net radiation than that in snowy area

  10. Greenhouse effect, sea level rise, and coastal drainage systems

    Energy Technology Data Exchange (ETDEWEB)

    Titus, J G; Kuo, C Y; Gibbs, M J; LaRoche, T B; Webb, M K; Waddell, J O

    1987-01-01

    Increasing concentrations of carbon dioxide and other gases are expected to warm the earth several degrees in the next century, which would raise sea level a few feet and alter precipitation patterns. Both of these changes would have major impacts on the operation of coastal drainage systems. However, because sea level rise and climate change resulting from the greenhouse effect are still uncertain, most planners and engineers are ignoring the potential implications. Case studies of the potential impact on watersheds in Charleston, South Carolina, and Fort Walton Beach, Florida, suggest that the cost of designing a new system to accommodate a rise in sea level will sometimes be small compared with the retrofit cost that may ultimately be necessary if new systems are not designed for a rise. Rather than ignore the greenhouse effect until its consequences are firmly established, engineers and planners should evaluate whether it would be worthwhile to insure that new systems are not vulnerable to the risks of climate change and sea level rise.

  11. Agricultural sources of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Rochette, P.

    2003-01-01

    The author described different sources of greenhouse gas emissions resulting from agricultural activities and the process by which carbon dioxide, nitrous oxide, and methane are generated on Canadian farms. The author also proposed some practices that would contribute to the reduction of greenhouse gas emissions. A brief description of the greenhouse effect was also provided with special emphasis on the agricultural sector. In 1996, the Canadian agricultural sector was responsible for approximately 10 per cent of greenhouse gas emissions in the country. Given the increase in farm animals and more intensive agricultural activities, it is estimated that greenhouse gas emissions generated by the agricultural sector will increase by 20 per cent by 2010 if current practices remain in effect. The most optimistic scenarios indicate that the agricultural sector could achieve or even exceed Canada's Kyoto Protocol commitments mainly through organic material sequestration in soils. The possibility for farmers to sell greenhouse gas credits could motivate farmers into adopting various practices that reduce emissions of greenhouse gases. However, the author indicated that the best motivation for farmers is the fact that adopting such practices would also lead to more efficient agricultural production. 5 refs., 4 figs

  12. The contribution to the greenhouse effect from the use of peat and coal for energy

    International Nuclear Information System (INIS)

    Zetterberg, L.; Klemedtsson, L.

    1996-06-01

    Emissions and uptake of greenhouse gases have been estimated for the production and combustion of peat in four Swedish regions. Net emissions have been defined as the sum of emissions and uptake from mining, loading, transportation, combustion and forestation of the peat land minus emissions from the virgin peat land. Cropping of the forested peat land is not considered. Net CO 2 -emissions from the production and combustion of peat is estimated to be 87 g/MJ in the regions Bergslagen and Smaaland, 99 g/MJ in Haerjedalen and 95 g/MJ in Vaesterbotten kustland. Net N 2 -emissions are estimated to be 66 mg/MJ for all regions. Due to the natural methane emissions from a virgin peat bog, the production and combustion of peat reduces net CH 4 -emissions by 0.9 g CH 4 /MJ peat. A hypothetical case has been studied where all the drained peat areas are forested (instead of about half of the area as it is today). According to this scenario the net CO 2 -emissions are reduced from 87 to 57 g CO 2 /MJ peat for Bergslagen. As a comparison, CO 2 -emissions from the combustion of coal are ca 92 g CO 2 /MJ. Based on the emissions inventory the contribution to the greenhouse effect has been calculated in terms of the contribution to atmospheric radiative forcing. In conclusion, the contribution to the greenhouse effect from the use of peat for energy from Southern Sweden (Smaaland and Bergslagen) is ca 20% lower than the contribution from coal, counted as an average over 100 years after the mining starts. Corresponding figures for Northern Sweden (Haerjedalen and Vaesterbotten kustland) is ca 15% lower than coal. 21 refs, 12 figs, 7 tabs

  13. Local authorities and greenhouse effect. Analysis and proposals for a mobilization of representatives about the greenhouse effect; Autorites locales et effet de serre. Analyse et propositions pour une mobilisation des elus sur l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Ged, A. [Agora Analyses et Systemes, 13 - Ventabren (France)

    2003-01-01

    The local authorities are essential intermediates for the implementation of environmental policies (Kyoto protocol and European policy) and in particular the fight against the greenhouse effect. This report aims at finding arguments to sensibilize and mobilize the representatives of local authorities about the climatic change and the greenhouse effect problem. The main problem concerns the introduction of the greenhouse effect concern in the decision process of local authorities. Several steps are necessary to carry out this reflection. The analysis must take into consideration the new dimensions of the urban policies and the preoccupations of the representatives. A diagnosis and concrete proposals are deduced from this analysis. (J.S.)

  14. Effect of solid and aqueous extract of vermicompost on growth characteristics of tomato and greenhouse whitefly (Trialeurodes vaporariorum)

    OpenAIRE

    A. Peimani Foroushani; N. Poorjavad; M. Haghigh; J. Khajehali

    2016-01-01

    Considering the increase of using vermicompost fertilizers in greenhouse cultivation, effect of vermicompost application on growth characteristics of tomato and one of its major pests [greenhouse whitefly, Trialeurodes vaporariorum (Hem:Aleyrodidae)] was investigated. The experiment consisted of five treatments: control (without vermicompost), 30% and 60% solid vermicompost fertilizer, and 40% and 20% aqueous extracts of vermicompost. Effect of vermicompost on greenhouse whitefly was tested f...

  15. Cooling performance assessment of horizontal earth tube system and effect on planting in tropical greenhouse

    International Nuclear Information System (INIS)

    Mongkon, S.; Thepa, S.; Namprakai, P.; Pratinthong, N.

    2014-01-01

    Graphical abstract: - Highlights: • The cooling ability of HETS is studied for planting in tropical greenhouse. • The effective of system was moderate with COP more than 2.0. • Increasing diameter and air velocity increase COP more than other parameters. • The plant growth with HETS was significantly better than no-HETS plant. - Abstract: The benefit of geothermal energy is used by the horizontal earth tube system (HETS); which is not prevalent in tropical climate. This study evaluated geothermal cooling ability and parameters studied in Thailand by mathematical model. The measurement of the effect on plant cultivation was carried out in two identical greenhouses with 30 m 2 of greenhouse volume. The HETS supplied cooled air to the model greenhouse (MGH), and the plant growth results were compared to the growth results of a conventional greenhouse (CGH). The prediction demonstrated that the coefficient of performance (COP) in clear sky day would be more than 2.0 while in the experiment it was found to be moderately lower. The parameters study could be useful for implementation of a system for maximum performance. Two plants Dahlias and head lettuce were grown satisfactory. The qualities of the plants with the HETS were better than the non-cooled plants. In addition, the quality of production was affected by variations of microclimate in the greenhouses and solar intensity throughout the cultivation period

  16. The Effects of Concept Cartoons on Eliminating Students’ Misconceptions: Greenhouse Effect and Global Warming

    Directory of Open Access Journals (Sweden)

    Lale Cerrah Ozsevgeç

    2012-10-01

    Full Text Available The aim of the study is to examine the effects of concept cartoons on eliminating students’ misconceptions about the global warming and greenhouse effect. The sample of the study is consisted of 17 students from the 7 grade of Rize Çay Primary School. Simple experimental study design was used in the study. Test and semi-structured interview were used to collect the data. The results of the study showed that the students had misconceptions about global warming and greenhouse effect. The teaching process comprising concept cartoons treated most of these misconceptions. Students indicated that the teaching process was enjoyable and it eased the students’ remembering of the given knowledge. Based on the results, it was suggested that the teachers should be informed about the usage of concept cartoon in the classroom and combination of different teaching methods which is supported by concept cartoon may be more useful for different science subjects.

  17. Improving Students' Conceptual Understanding of the Greenhouse Effect Using Theory-Based Learning Materials that Promote Deep Learning

    Science.gov (United States)

    Reinfried, Sibylle; Aeschbacher, Urs; Rottermann, Benno

    2012-01-01

    Students' everyday ideas of the greenhouse effect are difficult to change. Environmental education faces the challenge of developing instructional settings that foster students' conceptual understanding concept of the greenhouse effect in order to understand global warming. To facilitate students' conceptual development with regard to the…

  18. Cost-effectiveness of greenhouse gases mitigation measures in the European agro-forestry sector: a literature survey

    International Nuclear Information System (INIS)

    Povellato, Andrea; Bosello, Francesco; Giupponi, Carlo

    2007-01-01

    Over the last 20 years, climate change has become an increasing concern for scientists, public opinions and policy makers. Due to the pervasive nature of its impacts for many important aspects of human life, climate change is likely to influence and be influenced by the most diverse policy or management choices. This is particularly true for those interventions affecting agriculture and forestry: they are strongly dependent on climate phenomena, but also contribute to climate evolution being sources of and sinks for greenhouse gases (GHG). This paper offers a survey of the existing literature assessing cost-effectiveness and efficiency of greenhouse gas mitigation strategies or the effects of broader economic reforms in the agricultural and forestry sectors. The focus is mainly on European countries. Different methodological approaches, research questions addressed and results are examined. The main findings are that agriculture can potentially provide emissions reduction at a competitive cost, mainly with methane abatement, while carbon sequestration seems more cost-effective with appropriate forest management measures. Afforestation, cropland management and bioenergy are less economically viable measures due to competition with other land use. Mitigation policies should be carefully designed either to balance costs with expected benefits in terms of social welfare. Regional variability is one of the main drawbacks to fully assess the cost-effectiveness of different measures. Integration of models to take into account both social welfare and spatial heterogeneity seems to be the frontier of the next model generation

  19. [Is there a connection between biodiversity and the greenhouse effect].

    Science.gov (United States)

    Rozanov, S I

    1998-01-01

    It was discussed the role of biodiversity in ecosystems capacity to control CO2 in atmosphere as the main reason not only of "greenhouse effect" but "greenhouse catastrophe". The necessity to perfect the preventive measures has been defined by time factor. This time may be so little for completing the evolution theory and models of biosphere management. The temps of contemporaneous species extinction exceed two orders as minimum ones how it has been known from planet history. It doesn't permit to discharge that evolutional process will be successful to create organisms which have been capable to stabilize biosphere in conditions of its changing status. It's possible that such change may be provocated with the crisis in civilization-biosphere interrelations.

  20. Effect of the plastic cover properties on the thermal efficiency of a greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    Bernaud, P. [Faculte des Sciences et Techniques, Monastir (Tunisia); Champagne, J. Y.; Palec, G. Le; Bournot, P.; Muynck, B. de; Vandevelde, R.

    1984-07-01

    The greenhouse effect is due to the dependency of the transmission factor upon the wavelength of the incident radiation. Experiments have been done that confirm the theoretically admitted results on the thermal behaviour of greenhouses. It is also pointed out that the internal global solar irradiance is characteristic of the plastic cover. A model based on a static description of the system is proposed. A few results are given concerning this model. (author)

  1. How student teachers’ understanding of the greenhouse effect develops during a teacher education programme

    Directory of Open Access Journals (Sweden)

    Margareta Ekborg

    2012-10-01

    Full Text Available This paper reports on a longitudinal study on how student teachers’ understanding of the greenhouse effect developed through a teacher education programme in mathematics and science for pupils aged 7-13. All student teachers, who were accepted to the programme one year, were followed trough 2.5 years of the programme. The student teachers took science courses in which they were taught about the greenhouse effect.Data was collected by questionnaires three times. The results show that a majority of the student teachers developed an adequate understanding of the greenhouse effect during the teaching programme. Several of the students developed further in the second science course. However a rather big group of students with poor understanding did not develop any further in the second science course and no one demonstrated full understanding. Different ways of collecting data and categorising responses affected how the students’ understanding was interpreted.

  2. Health effects of predatory beneficial mites and wasps in greenhouses

    DEFF Research Database (Denmark)

    Bælum, Jesper; Enkegaard, Annie; Doekes, Gert

    A three-year study of 579 greenhouse workers in 31 firms investigated the effect of four different beneficial arthropods. It was shown that the thrips mite Amblyseeius cucumeris and the spider mite predator Phytoseiulus persimilis may cause allergy measured by blood tests as well as eye and nose...... symptoms. No effect was seen by the predator wasp Aphidius colemani nor the predator mite Hypoaspis miles and no effect on lung diseases were seen....

  3. Modeling of the climate system and of its response to a greenhouse effect increase

    International Nuclear Information System (INIS)

    Li, L.

    2005-01-01

    The anthropic disturbance of the Earth's greenhouse effect is already visible and will enhance in the coming years or decades. In front of the rapidity and importance of the global warming effect, the socio-economical management of this change will rise problems and must be studied by the scientific community. At the modeling level, finding a direct strategy for the validation of climate models is not easy: many uncertainties exist because energy transformations take place at a low level and several processes take place at the same time. The variability observed at the seasonal, inter-annual or paleo- scales allows to validate the models at the process level but not the evolution of the whole system. The management of these uncertainties is an integral part of the global warming problem. Thus, several scenarios can be proposed and their risk of occurrence must be estimated. This paper presents first the greenhouse effect, the climatic changes during geologic times, the anthropic disturbance of the greenhouse effect, the modeling of climate and the forecasting of its evolution. (J.S.)

  4. Estimating Greenhouse Gas Emissions Level of A Natural Gas Pipeline – Case Study from A to B Point in West Java-Indonesia

    Directory of Open Access Journals (Sweden)

    Dianita Cindy

    2016-01-01

    Full Text Available Indonesia is one of the highest greenhouse emitters in the world. As a response of this problem, Indonesia declared the national action plan to focus on national greenhouse gas (GHG reduction by 26 % by 2020. To achieve this target, Government puts energy sector as one of the top priorities since it is the second strongest contributor to national GHG emissions. The main purpose of this paper is to apply the method of fugitive emissions calculation to the existing natural gas pipeline in Indonesia. Fugitive emissions are the major component of GHG emissions from natural gas systems and methane (CH4, the primary component of natural gas pipeline, is a potent GHG. Tiered approaches from Interstate Natural Gas Association of America (INGAA are implemented in this paper as the estimation guidelines. A case study of a natural gas pipeline system in Indonesia is analyzed to compare the GHG emissions level resulted from Tier 1 and Tier 2 methods. In these methods, the input data are pipeline length, the number of compressor stations, and the number of meter and pressure regulation stations. In this case, the GHG emissions level of Tier 2 is significantly different from Tier 1. The variation of pipeline length shows that for the length under 479.2 miles, Tier 1 gives lower amount of CO2 equivalent than Tier 2. The differences of these estimation methods and results can be furtherly developed to provide relevant information and recommendation for the Companies and Government to record the emissions level from natural gas transmission pipeline according to their needs and purposes.

  5. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo [Department of Physics ' A Volta' , University of Pavia, Via A Bassi 6, 27100 Pavia (Italy)], E-mail: ugo.besson@unipv.it, E-mail: anna.deambrosisvigna@unipv.it

    2010-03-15

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  6. Studying the physical basis of global warming: thermal effects of the interaction between radiation and matter and greenhouse effect

    International Nuclear Information System (INIS)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation frequency, as a result of interaction between matter and radiation. Multiple experiences are suggested to favour a progressive construction of knowledge on the physical aspects necessary to understand the greenhouse effect and global warming. Some results obtained with university students are briefly reported.

  7. Models of Students' Thinking Concerning the Greenhouse Effect and Teaching Implications.

    Science.gov (United States)

    Koulaidis, Vasilis; Christidou, Vasilia

    1999-01-01

    Primary school students (n=40) ages 11 and 12 years were interviewed concerning their conceptions of the greenhouse effect. Analysis of the data led to the formation of seven distinct models of thinking regarding this phenomenon. (Author/CCM)

  8. GREENHOUSE GASES AND MEANS OF PREVENTION

    Directory of Open Access Journals (Sweden)

    Dušica Stojanović

    2013-09-01

    Full Text Available The greenhouse effect can be defined as the consequence of increased heating of the Earth's surface, as well as the lower atmosphere by carbon dioxide, water vapor, and other trace amounts gases. It is well-known that human industrial activities have released large amounts of greenhouse gases in the atmosphere, about 900 billion tons of carbon dioxide, and it is estimated that up to 450 billion are still in the atmosphere. In comparison to greenhouse gases water vapor is one of the greatest contributors to the greenhouse effect on Earth. Many projects, as does the PURGE project, have tendences to build on the already conducted research and to quantify the positive and negative impacts on health and wellbeing of the population with greenhouse gas reduction strategies that are curently being implemented and should be increasingly applied in various sectors and urban areas, having offices in Europe, China and India.

  9. The nuclear energy and the greenhouse effect; Le nucleaire et l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Marignac, Y.; Legrand, V. [Wise, 75 - Paris (France)

    2003-10-15

    This article tackles the problem of greenhouse effect and asks the question to know if the development of nuclear energy constitutes the answer to this problem. It appears that the nuclear energy cannot solve in itself the problem of greenhouse effect. Others actions on energy demand, on transport ( that is a big consumer of petroleum and that represents 25% of world emissions) have to studied and need a real policy will. (N.C.)

  10. International economy. 82, controlling greenhouse effect: the stake of the international public policy

    International Nuclear Information System (INIS)

    Godard, O.; Oliveira-Martins, J.; Sgard, J.

    2000-01-01

    The greenhouse effect is one of the first stake of public policy which needs to be considered at the worldwide level. The climate changes shade doubts on the economic growth strategies adopted by all countries, and, if no major effort is made in the mastery of energy demand, worldwide greenhouse gas emissions will rapidly reach dangerous thresholds. This book gives a status of the research carried out on the economical impact of these policies. (J.S.)

  11. Effects of treated poultry litter on potential greenhouse gas emission ...

    African Journals Online (AJOL)

    A study was conducted to evaluate the effects of different treatments of poultry faecal waste on potential greenhouse gas emission and inherent agronomic potentials. Sugar solution at 100g/l salt solution at 350g/l and oven-drying were the various faecal treatments examined using a completely randomized design.

  12. Understanding the Greenhouse Effect by Embodiment - Analysing and Using Students' and Scientists' Conceptual Resources

    Science.gov (United States)

    Niebert, Kai; Gropengießer, Harald

    2014-01-01

    Over the last 20 years, science education studies have reported that there are very different understandings among students of science regarding the key aspects of climate change. We used the cognitive linguistic framework of experientialism to shed new light on this valuable pool of studies to identify the conceptual resources of understanding climate change. In our study, we interviewed 35 secondary school students on their understanding of the greenhouse effect and analysed the conceptions of climate scientists as drawn from textbooks and research reports. We analysed all data by metaphor analysis and qualitative content analysis to gain insight into students' and scientists' resources for understanding. In our analysis, we found that students and scientists refer to the same schemata to understand the greenhouse effect. We categorised their conceptions into three different principles the conceptions are based on: warming by more input, warming by less output, and warming by a new equilibrium. By interrelating students' and scientists' conceptions, we identified the students' learning demand: First, our students were afforded with experiences regarding the interactions of electromagnetic radiation and CO2. Second, our students reflected about the experience-based schemata they use as source domains for metaphorical understanding of the greenhouse effect. By uncovering the-mostly unconscious-deployed schemata, we gave students access to their source domains. We implemented these teaching guidelines in interventions and evaluated them in teaching experiments to develop evidence-based and theory-guided learning activities on the greenhouse effect.

  13. Natural gas industry and its effects on the environment

    International Nuclear Information System (INIS)

    Al-Masri, M. S.; Kejeijan, B.

    2008-01-01

    The discoveries of natural gas have increased during the last ten years in Syria, These increases lead to the necessity of knowing the effects of this industry on the environment. Syrian Arabic Republic has been planning to convert most of the current electric of plants to natural gas in addition to future plans to export natural gas to the surrounding countries. In addition, the government is working on the use of LPG gas in automobiles. However, environmentally, the importance of natural gas is due to the followings: 1- Natural gas, when burned, emits lower quantities of greenhouse gases and criteria pollutants per unit of energy produced than to other fossil fuels. This occurs in part because natural gas is more fully combusted, and in part because natural gas contains fewer impurities than any other fossil fuel. 2-The amount of carbon dioxide produced from the combustion of natural gas is less than the amount produced from the combustion of other fossil fuels to produce the same amount of heat. One of the important uses of natural gas is in the transportation since natural gas does not produce during combustion toxic compounds which are usually produced during the combustion of diesel and benzene. therefore natural gas is seen and considered as an important fuel to address environmental concerns. (author)

  14. A microclimate model to investigate greenhouse warming of a sub- Alpine ecosystem

    International Nuclear Information System (INIS)

    Shen, K.P.

    1992-01-01

    Increasing concentrations of greenhouse gases in the earth's atmosphere are expected to result in a global warming of several degrees Celsius in the coming decades. This warming will have far-reaching impacts on the biosphere, and while General Circulation Models (GCMs) try to predict the magnitude and scope of the warming, there is little information regarding the potential impacts of greenhouse warming on natural systems. An experiment currently under way in a meadow in the Colorado Rocky Mountains attempts to investigate the many consequences of greenhouse warming for soil ecosystems. A mathematical model of the soil microclimate was developed to simulate the soil temperature and moisture content of the meadow. The model simulates both treatment and control scenarios so as to investigate the potential effects of warming. Results of model simulation studies indicate warmer, drier soils under treatment conditions, with the greatest temperature effects of warming occurring at night. These results could have several implications regarding the dynamics of the ecosystem, and future model studies will investigate these connections

  15. Investigating the Water Vapor Component of the Greenhouse Effect from the Atmospheric InfraRed Sounder (AIRS)

    Science.gov (United States)

    Gambacorta, A.; Barnet, C.; Sun, F.; Goldberg, M.

    2009-12-01

    We investigate the water vapor component of the greenhouse effect in the tropical region using data from the Atmospheric InfraRed Sounder (AIRS). Differently from previous studies who have relayed on the assumption of constant lapse rate and performed coarse layer or total column sensitivity analysis, we resort to AIRS high vertical resolution to measure the greenhouse effect sensitivity to water vapor along the vertical column. We employ a "partial radiative perturbation" methodology and discriminate between two different dynamic regimes, convective and non-convective. This analysis provides useful insights on the occurrence and strength of the water vapor greenhouse effect and its sensitivity to spatial variations of surface temperature. By comparison with the clear-sky computation conducted in previous works, we attempt to confine an estimate for the cloud contribution to the greenhouse effect. Our results compare well with the current literature, falling in the upper range of the existing global circulation model estimates. We value the results of this analysis as a useful reference to help discriminate among model simulations and improve our capability to make predictions about the future of our climate.

  16. Elements for a policy of greenhouse effect gases reduction

    International Nuclear Information System (INIS)

    2007-01-01

    In the framework of the ''Grenelle de l'environnement'' on the fight against the greenhouse effect gases, the authors aim to offer propositions and recommendations for the future energy policy. They explain the possible confusions. They discuss the economic efficiency of propositions of CO 2 emissions reduction, the actions propositions in the different sectors and the axis of research and development. (A.L.B.)

  17. Accounting for time-dependent effects in biofuel life cycle greenhouse gas emissions calculations.

    Science.gov (United States)

    Kendall, Alissa; Chang, Brenda; Sharpe, Benjamin

    2009-09-15

    This paper proposes a time correction factor (TCF) to properly account for the timing of land use change-derived greenhouse gas emissions in the biofuels life cycle. Land use change emissions occur at the outset of biofuel feedstock production, and are typically amortized over an assumed time horizon to assign the burdens of land use change to multiple generations of feedstock crops. Greenhouse gas intensity calculations amortize emissions by dividing them equally over a time horizon, overlooking the fact that the effect of a greenhouse gas increases with the time it remains in the atmosphere. The TCF is calculated based on the relative climate change effect of an emission occurring at the outset of biofuel feedstock cultivation versus one amortized over a time horizon. For time horizons between 10 and 50 years, the TCF varies between 1.7 and 1.8 for carbon dioxide emissions, indicating that the actual climate change effect of an emission is 70-80% higher than the effect of its amortized values. The TCF has broad relevance for correcting the treatment of emissions timing in other life cycle assessment applications, such as emissions from capital investments for production systems or manufacturing emissions for renewable energy technologies.

  18. Strategic planning and greenhouse effect

    International Nuclear Information System (INIS)

    Corderoy, B.C.

    1990-01-01

    During former years of high load growth in New South Wales and elsewhere, the challenge for generation planners was to develop power station sites and associated transmission infrasture at a rage rapid enough to meet escalating community requirements for electricity. This challenge was met. The planners of today face a situation of far less certainty - load growth is fragile and at a lower level while the community expects that measures adopted will maintain accepted standards of reliability, be at a minimum level of financial risk and increasingly be environmentally benign. One particular environmental challenge is that posed by the greenhouse effect for which there is a further need to develop a much wider range of strategies. This involves better performance for existing plant, looking at different types of generating systems but also looking to the other side of the energy equation, demand site energy efficiency programs. These issues are briefly discussed

  19. Greenhouse effect reduction and energy recovery from waste landfill

    Energy Technology Data Exchange (ETDEWEB)

    Lombardi, Lidia [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy)]. E-mail: lidia.lombardi@pin.unifi.it; Carnevale, Ennio [Dipartimento di Energetica ' Sergio Stecco' , Universita degli Studi di Firenze, Via Santa Marta 3, 50139 Florence (Italy); Corti, Andrea [Dipartimento di Ingegneria dell' Informazione, Universita degli Studi di Siena, Via Roma 56, 53100 Siena (Italy)

    2006-12-15

    Waste management systems are a non-negligible source of greenhouse gases. In particular, methane and carbon dioxide emissions occur in landfills due to the breakdown of biodegradable carbon compounds operated on by anaerobic bacteria. The conventional possibilities of reducing the greenhouse effect (GHE) from waste landfilling consists in landfill gas (LFG) flaring or combustion with energy recovery in reciprocating engines. These conventional treatments are compared with three innovative possibilities: the direct LFG feeding to a fuel cell (FC); the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a stationary FC; the production of a hydrogen-rich gas, by means of steam reforming and CO{sub 2} capture, to feed a vehicle FC. The comparison is carried out from an environmental point of view, calculating the specific production of GHE per unit mass of waste disposed in landfill equipped with the different considered technologies.

  20. Comparison of life cycle greenhouse gases from natural gas pathways for medium and heavy-duty vehicles.

    Science.gov (United States)

    Tong, Fan; Jaramillo, Paulina; Azevedo, Inês M L

    2015-06-16

    The low-cost and abundant supply of shale gas in the United States has increased the interest in using natural gas for transportation. We compare the life cycle greenhouse gas (GHG) emissions from different natural gas pathways for medium and heavy-duty vehicles (MHDVs). For Class 8 tractor-trailers and refuse trucks, none of the natural gas pathways provide emissions reductions per unit of freight-distance moved compared to diesel trucks. When compared to the petroleum-based fuels currently used in these vehicles, CNG and centrally produced LNG increase emissions by 0-3% and 2-13%, respectively, for Class 8 trucks. Battery electric vehicles (BEVs) powered with natural gas-produced electricity are the only fuel-technology combination that achieves emission reductions for Class 8 transit buses (31% reduction compared to the petroleum-fueled vehicles). For non-Class 8 trucks (pick-up trucks, parcel delivery trucks, and box trucks), BEVs reduce emissions significantly (31-40%) compared to their diesel or gasoline counterparts. CNG and propane achieve relatively smaller emissions reductions (0-6% and 19%, respectively, compared to the petroleum-based fuels), while other natural gas pathways increase emissions for non-Class 8 MHDVs. While using natural gas to fuel electric vehicles could achieve large emission reductions for medium-duty trucks, the results suggest there are no great opportunities to achieve large emission reductions for Class 8 trucks through natural gas pathways with current technologies. There are strategies to reduce the carbon footprint of using natural gas for MHDVs, ranging from increasing vehicle fuel efficiency, reducing life cycle methane leakage rate, to achieving the same payloads and cargo volumes as conventional diesel trucks.

  1. Residential greenhouse

    Energy Technology Data Exchange (ETDEWEB)

    1985-02-01

    The following report examines the technical and economic viability of residential greenhouse additions in Whitehorse, Yukon. The greenhouse was constructed using the south facing wall of an existing residence as a common wall. Total construction costs were $18,000, including labour. Annual fuel demand for the residence has been reduced by about 10 per cent for an annual saving of $425. In addition, produce to the value of $1,000 is grown annually in the greenhouse for domestic consumption and commercial resale. Typically the greenhouse operates for nine months each year. There is a net thermal loss during the months of November, December and January as a result of the large area of glazing. As well as supplementing the heating supply solar greenhouses can provide additional cash crops which can be used to offset the cost of construction. Humidity problems are minimal and can be dealt with by exhausting high humidity air. One system which has been considered for the greenhouse is to use a standard residential heat pump to remove excess moisture and to pump heat into the house. This would have a secondary benefit of excluding the need to circulate greenhouse air through the house. Thus any allergenic reactions to the greenhouse air would be prevented. 8 refs., 3 figs, 2 tabs.

  2. IMAGE: An Integrated Model for the Assessment of the Greenhouse Effect

    NARCIS (Netherlands)

    Rotmans J; Boois H de; Swart RJ

    1989-01-01

    In dit rapport wordt beschreven hoe het RIVM-simulatiemodel IMAGE (an Integrated Model for the Assessment of the Greenhouse Effect) is opgebouwd. Het model beoogt een geintegreerd overzicht te geven van de broeikasproblematiek alsmede inzicht te verschaffen in de wezenlijke drijfveren van het

  3. Australian Students' Appreciation of the Greenhouse Effect and the Ozone Hole.

    Science.gov (United States)

    Fisher, Brian

    1998-01-01

    Examines students' explanations of the greenhouse effect and the hole in the ozone layer, using a life-world and scientific dichotomy. Illuminates ideas often expressed in classrooms and sheds light on the progression in students' developing powers of explanation. Contains 17 references. (DDR)

  4. Separate effects of flooding and anaerobiosis on soil greenhouse gas emissions and redox sensitive biogeochemistry

    Science.gov (United States)

    Gavin McNicol; Whendee L. Silver

    2014-01-01

    Soils are large sources of atmospheric greenhouse gases, and both the magnitude and composition of soil gas emissions are strongly controlled by redox conditions. Though the effect of redox dynamics on greenhouse gas emissions has been well studied in flooded soils, less research has focused on redox dynamics without total soil inundation. For the latter, all that is...

  5. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops.

    Science.gov (United States)

    Prado, Sara G; Jandricic, Sarah E; Frank, Steven D

    2015-06-11

    Aphidius colemani Viereck (Hymenoptera: Braconidae) is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies) and abiotic (climate and lighting). For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids) can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness) seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels.

  6. Ecological Interactions Affecting the Efficacy of Aphidius colemani in Greenhouse Crops

    Directory of Open Access Journals (Sweden)

    Sara G. Prado

    2015-06-01

    Full Text Available Aphidius colemani Viereck (Hymenoptera: Braconidae is a solitary endoparasitoid used for biological control of many economically important pest aphids. Given its widespread use, a vast array of literature on this natural enemy exists. Though often highly effective for aphid suppression, the literature reveals that A. colemani efficacy within greenhouse production systems can be reduced by many stressors, both biotic (plants, aphid hosts, other natural enemies and abiotic (climate and lighting. For example, effects from 3rd and 4th trophic levels (fungal-based control products, hyperparasitoids can suddenly decimate A. colemani populations. But, the most chronic negative effects (reduced parasitoid foraging efficiency, fitness seem to be from stressors at the first trophic level. Negative effects from the 1st trophic level are difficult to mediate since growers are usually constrained to particular plant varieties due to market demands. Major research gaps identified by our review include determining how plants, aphid hosts, and A. colemani interact to affect the net aphid population, and how production conditions such as temperature, humidity and lighting affect both the population growth rate of A. colemani and its target pest. Decades of research have made A. colemani an essential part of biological control programs in greenhouse crops. Future gains in A. colemani efficacy and aphid biological control will require an interdisciplinary, systems approach that considers plant production and climate effects at all trophic levels.

  7. Managing soil organic carbon in agriculture: the net effect on greenhouse gas emissions

    International Nuclear Information System (INIS)

    Marland, Gregg; West, Tristram O.; Schlamadinger, Bernhard; Canella, Lorenza

    2003-01-01

    A change in agricultural practice can increase carbon sequestration in agricultural soils. To know the net effect on greenhouse gas emissions to the atmosphere, however, we consider associated changes in CO 2 emissions resulting from the consumption of fossil fuels, emissions of other greenhouse gases and effects on land productivity and crop yield. We also consider how these factors will evolve over time. A change from conventional tillage to no-till agriculture, based on data for average practice in the U.S.; will result in net carbon sequestration in the soil that averages 337 kg C/ha/yr for the initial 20 yr with a decline to near zero in the following 20 yr, and continuing savings in CO 2 emissions because of reduced use of fossil fuels. The long-term results, considering all factors, can generally be expected to show decreased net greenhouse gas emissions. The quantitative details, however, depend on the site-specific impact of the conversion from conventional to no-till agriculture on agricultural yield and N 2 O emissions from nitrogen fertilizer

  8. The Physics behind a Simple Demonstration of the Greenhouse Effect

    Science.gov (United States)

    Buxton, Gavin A.

    2014-01-01

    A simple, and popular, demonstration of the greenhouse effect involves a higher temperature being observed in a container with an elevated concentration of CO[subscript 2] inside than in a container with just air enclosed, when subject to direct light. The CO[subscript 2] absorbs outgoing thermal radiation and causes the air inside the container…

  9. Emissions of greenhouse gases from the use of transportation fuels and electricity. Volume 2: Appendixes A--S

    Energy Technology Data Exchange (ETDEWEB)

    DeLuchi, M.A. [Argonne National Lab., IL (United States)]|[Univ. of California, Davis, CA (United States). Inst. of Transportation Studies

    1993-11-01

    This volume contains the appendices to the report on Emission of Greenhouse Gases from the Use of Transportation Fuels and Electricity. Emissions of methane, nitrous oxide, carbon monoxide, and other greenhouse gases are discussed. Sources of emission including vehicles, natural gas operations, oil production, coal mines, and power plants are covered. The various energy industries are examined in terms of greenhouse gas production and emissions. Those industries include electricity generation, transport of goods via trains, trucks, ships and pipelines, coal, natural gas and natural gas liquids, petroleum, nuclear energy, and biofuels.

  10. An empirical determination of the heating of the earth by the carbon dioxide greenhouse effect

    Energy Technology Data Exchange (ETDEWEB)

    Hoyt, D V

    1979-11-22

    Models that were developed to describe global warming trends caused by increased concentrations of atmospheric carbon dioxide are reviewed. Described is a new model that permits empirical determination of temperature increases caused by the greenhouse effect. The model is used to evaluate atmospheric CO2 data for 1880-1970. According to the new technique, the global temperature increase caused by the greenhouse effect was /sup 1/m gr /sup 1/x0.40..cap alpha..C during that period. (3 graphs, 33 references)

  11. Effects of US biofuel policies on US and world petroleum product markets with consequences for greenhouse gas emissions

    International Nuclear Information System (INIS)

    Thompson, Wyatt; Whistance, Jarrett; Meyer, Seth

    2011-01-01

    US biofuel policy includes greenhouse gas reduction targets. Regulators do not address the potential that biofuel policy can have indirect impacts on greenhouse gases through its impacts on petroleum product markets, and scientific research only partially addresses this question. We use economic models of US biofuel and agricultural markets and US and world petroleum and petroleum product markets to show that discontinuing biofuel tax credits and ethanol tariff lower biofuel use could lead to increased US petroleum product use, and a reduction in petroleum product use in other parts of the world. The net effect is lower greenhouse gas emissions. Under certain assumptions, we show that biofuel use mandate elimination can have positive or negative impacts on greenhouse gas emissions. The magnitude and the direction of effects depend on how US biofuel trade affects biofuel in other countries with different emissions, context that determines how important use mandates are in the first place, who pays mandate costs, and the price responsiveness of global petroleum supplies and uses. However, our results show that counter-intuitive effects are possible and discourage broad conclusions about the greenhouse gas impacts of removing these elements of US biofuel policy. - Highlights: → Biofuel policy has counter-intuitive greenhouse gas effects under certain conditions. → US biofuel policies affect global petroleum markets, with implications for GHGs. → US biofuel use mandate GHG effects depend on whether they are binding and who pays. → US biofuel GHGs are sensitive to policy, petroleum market responses, and biofuel trade.

  12. 75 FR 14081 - Mandatory Reporting of Greenhouse Gases: Minor Harmonizing Changes to the General Provisions

    Science.gov (United States)

    2010-03-24

    ... (subpart NN): (A) All fractionators. (B) All local natural gas distribution companies. Industrial greenhouse gas suppliers (subpart OO): (A) All producers of industrial greenhouse gases. (B) Importers of industrial greenhouse gases with annual bulk imports of N2O, fluorinated GHG, and CO2 that in combination are...

  13. Greenhouse Environmental Control Using Optimized MIMO PID Technique

    Directory of Open Access Journals (Sweden)

    Fateh BOUNAAMA

    2011-10-01

    Full Text Available Climate control for protected crops brings the added dimension of a biological system into a physical system control situation. The thermally dynamic nature of a greenhouse suggests that disturbance attenuation (load control of external temperature, humidity, and sunlight is far more important than is the case for controlling other types of buildings. This paper investigates the application of multi-inputs multi-outputs (MIMO PID controller to a MIMO greenhouse environmental model with actuation constraints. This method is based on decoupling the system at low frequency point. The optimal tuning values are determined using genetic algorithms optimization (GA. The inside outsides climate model of the environmental greenhouse, and the automatically collected data sets of Avignon, France are used to simulate and test this technique. The control objective is to maintain a highly coupled inside air temperature and relative humidity of strongly perturbed greenhouse, at specified set-points, by the ventilation/cooling and moisturizing operations.

  14. Scientific perspectives on greenhouse problem. Part 2

    International Nuclear Information System (INIS)

    Jastrow, R.; Nierenberg, W.; Seitz, F.

    1992-01-01

    The spectre of major climate change caused by the greenhouse effect has generated intensive research, heated scientific debate and a concerted international effort to draft agreements for the reduction of greenhouse gas emissions. This report of Scientific Perspectives on the greenhouse problem explains the technical issues in the debate in language readily understandable to the non-specialist. The inherent complexities of attempts to simulate the earth's climate are explained, particularly with regard to the effects of clouds and the circulation of the oceans, which together represent the largest factors of uncertainty in current global warming forecasts. Results of the search for the 'greenhouse signal' in existing climate records aredescribed in chapter 3 (part two). Chapter 5 (part two) develops a projection of 21st-century warming based on relatively firm evidence of the earth's actual response to known increases in greenhouse gas emissions during the last 100 years

  15. Greenhouse Earth: A Traveling Exhibition

    International Nuclear Information System (INIS)

    Booth, W.H.; Caesar, S.

    1992-09-01

    The Franklin Institute Science Museum provided an exhibit entitled the Greenhouse Earth: A Traveling Exhibition. This 3500 square-foot exhibit on global climate change was developed in collaboration with the Association of Science-Technology Centers. The exhibit opened at The Franklin Institute on February 14, 1992, welcoming 291,000 visitors over its three-month stay. During its three-year tour, Greenhouse Earth will travel to ten US cities, reaching two million visitors. Greenhouse Earth aims to deepen public understanding of the scientific issues of global warming and the conservation measures that can be taken to slow its effects. The exhibit features hands-on exhibitry, interactive computer programs and videos, a theater production, a ''demonstration cart,'' guided tours, and lectures. supplemental educational programs at the Institute included a teachers preview, a symposium on climate change, and a ''satellite field trip.'' The development of Greenhouse Earth included front-end and formative evaluation procedures. Evaluation includes interviews with visitors, prototypes, and summative surveys for participating museums. During its stay in Philadelphia, Greenhouse Earth was covered by the local and national press, with reviews in print and broadcast media. Greenhouse Earth is the first large-scale museum exhibit to address global climate change

  16. Greenhouse effect of chlorofluorocarbons and other trace gases

    Science.gov (United States)

    Hansen, James; Lacis, Andrew; Prather, Michael

    1989-01-01

    A comparison is made of the radiative (greenhouse) forcing of the climate system due to changes of atmospheric chlorofluorocarbons and other trace gases. It is found that CFCs, defined to include chlorofluorocarbons, chlorocarbons, and fluorocarbons, now provide about one-quater of current annual increases in anthropogenic greenhouse climate forcing. If the growth rates of CFC production in the early 1970s had continued to the present, current annual growth of climate forcing due to CFCs would exceed that due to CO2.

  17. The greenhouse effect evaluation for the french people; Les representations de l'effet de serre dans la population francaise

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2003-07-01

    For the third consecutive years, the ADEME realized an inquiry towards a representative sample of the french people in order to evaluate the social perception of the greenhouse effect, in july 2002. French attitudes and opinions show a bad information on the greenhouse effect increase. The French present as the greenhouse effect causes the industrial activities, the transports and the forests destruction and precise the consequences. Propositions of attitudes and their efficiency are also provided. (A.L.B.)

  18. Discussing the Greenhouse Effect: Children's Collaborative Discourse Reasoning and Conceptual Change.

    Science.gov (United States)

    Mason, Lucia; Santi, Marina

    1998-01-01

    Investigates fifth-grade students' conceptual changes toward the greenhouse effect and global warming due to sociocognitive interaction developed in small and large group discussion in an authentic classroom context during an environmental education unit. Classroom discussions led the children to integrate new scientific knowledge into their…

  19. Exploring French Adolescents' and Adults' Comprehension of the Greenhouse Effect

    Science.gov (United States)

    Frappart, Sören; Moine, Mylène; Jmel, Saïd; Megalakaki, Olga

    2018-01-01

    The aim of the present study was to gain an insight into French young people's conceptual development regarding the greenhouse effect. Because this effect cannot be directly manipulated, we can assume that its conceptualization is mainly shaped through the sharing of information. Eighty French students from Grade Seven through to adulthood…

  20. Investigating the Effect of a North Wall on Energy Consumption of an East–West Oriented Single Span Greenhouse

    Directory of Open Access Journals (Sweden)

    H Ghasemi Mobtaker

    2017-10-01

    Full Text Available Introduction Greenhouse is a structure which provides the best condition for the maximum plants growth during the cold seasons. In cold climate zones such as Tabriz province, Iran, the greenhouse heating is one of the most energy consumers. It has been estimated that the greenhouse heating cost is attributed up to 30% of the total operational costs of the greenhouses. Renewable energy resources are clean alternatives that can be used in greenhouse heating. Among the renewable energy resources, solar energy has the highest potential around the world. In this regard, application of solar energy in greenhouse heating during the cold months of a year could be considerable. The rate of thermal energy required inside the greenhouse depends on the solar radiation received inside the greenhouse. Using a north brick wall in an east-west oriented greenhouse can increase the absorption of solar radiation and consequently reduces the thermal and radiation losses. Therefore, the main objective of the present study is to investigate the effect of implementing of a north wall on the solar radiation absorption and energy consumption of an east-west oriented single span greenhouse in Tabriz. Materials and Methods This study was carried out in Tabriz and a steady state analysis was used to predict the energy consumption of a single span greenhouse. For this purpose, thermal energy balance equations for different components of the greenhouse including the soil layer, internal air and plants were presented. For investigating the effect of the north wall on the energy consumption, the Ft and Fn parameters were used to calculate the radiation loss from the walls of the greenhouses. These factors were determined using a 3D–shadow analysis by Auto–CAD software. An east-west oriented single span greenhouse which has a north brick wall and is covered with a single glass sheet with 4 mm thickness was applied to validate the developed models. The measurements were

  1. Greenhouse cooling using a rainwater basin under the greenhouse

    NARCIS (Netherlands)

    Campen, J.B.

    2006-01-01

    The objective of the study was to determine the technical and economical aspects of additional applications for a rainwater basin installed under a greenhouse. The installation for cooling the greenhouse can be placed under the greenhouse. Part of the installation consists of a short-term heat store

  2. Greenhouse gas emissions from hydroelectric reservoirs

    International Nuclear Information System (INIS)

    Rosa, L.P.; Schaeffer, R.

    1994-01-01

    In a recent paper, Rudd et al. have suggested that, per unit of electrical energy produced, greenhouse-gas emissions from some hydroelectric reservoirs in northern Canada may be comparable to emissions from fossil-fuelled power plants. The purpose of this comment is to elaborate these issues further so as to understand the potential contribution of hydroelectric reservoirs to the greenhouse effect. More than focusing on the total budget of carbon emissions (be they in the form of CH 4 or be they in the form of CO 2 ), this requires an evaluation of the accumulated greenhouse effect of gas emissions from hydroelectric reservoirs and fossil-fuelled power plants. Two issues will be considered: (a) global warming potential (GWP) for CH 4 ; and (b) how greenhouse-gas emissions from hydroelectric power plants stand against emissions from fossil-fuelled power plants with respect to global warming

  3. Potential effects of anthropogenic greenhouse gases on avian habitats and populations in the northern Great Plains

    Science.gov (United States)

    Larson, Diane L.

    1994-01-01

    Biotic response to the buildup of greenhouse gases in Earth's atmosphere is considerably more complex than an adjustment to changing temperature and precipitation. The fertilization effect carbon dioxide has on some plants, the impact UVB radiation has on health and productivity of organisms, and the resulting changes in competitive balance and trophic structure must also be considered. The intent of this paper is to review direct and indirect effects of anthropogenic greenhouse gases on wildlife, and to explore possible effects on populations of birds and their habitats in the northern Great Plains.Many of the potential effects of increasing greenhouse gases, such as declining plant nutritional value, changes in timing of insect emergence, and fewer and saltier wetlands, foreshadow a decline in avian populations on the Great Plains. However, other possible effects such as increased drought resistance and water use efficiency of vegetation, longer growing seasons, and greater overall plant biomass promise at least some mitigation. Effects of multiple simultaneous perturbations such as can be expected under doubled carbon dioxide scenarios will require substantial basic research to clarify.

  4. Effect of the Evaporative Cooling on the Human Thermal Comfort and Heat Stress in a Greenhouse under Arid Conditions

    Directory of Open Access Journals (Sweden)

    A. M. Abdel-Ghany

    2013-01-01

    Full Text Available Thermal sensation and heat stress were evaluated in a plastic greenhouse, with and without evaporative cooling, under arid climatic conditions in Riyadh, Saudi Arabia. Suitable thermal comfort and heat stress scales were selected for the evaluation. Experiments were conducted in hot sunny days to measure the required parameters (i.e., the dry and wet bulb temperatures, globe temperature, natural wet bulb temperature, and solar radiation flux in the greenhouse. The results showed that in the uncooled greenhouse, workers are exposed to strong heat stress and would feel very hot most of the day time; they are safe from heat stress risk and would feel comfortable during night. An efficient evaporative cooling is necessary during the day to reduce heat stress and to improve the comfort conditions and is not necessary at night. In the cooled greenhouse, workers can do any activity: except at around noon they should follow a proposed working schedule, in which the different types of work were scheduled along the daytimes based on the heat stress value. To avoid heat stress and to provide comfort conditions in the greenhouses, the optimum ranges of relative humidity and air temperature are 48–55% and 24–28°C, respectively.

  5. Technological substitution options for controlling greenhouse gas emissions

    International Nuclear Information System (INIS)

    Barbier, E.B.; Burgess, J.C.; Pearce, D.W.

    1991-01-01

    This chapter is concerned with technological options for greenhouse gas substitution. The authors interpret the term substitution to exclude energy conservation/efficiency measures, investments in afforestation (sinks), and greenhouse gas removal or abatement technologies. Their working definition of greenhouse gas substitution includes (1) replacement technologies, for example, substituting a greenhouse gas technology with a nongreenhouse gas technology; and (2) reduction technologies, for example, substituting a greenhouse gas technology with an alternative technology that reduces greenhouse gas emissions. Essentially, replacement technologies involve 100 percent reduction in CO 2 ; reduction technologies involve a partial reduction in CO 2 . Of the man-made sources of greenhouse gases, energy is the most important and is expected to contribute to at least half of the global warming effect in the near future. The majority of this impact is from fossil fuel combustion as a source of carbon dioxide (CO 2 ), although fossil fuels also contribute significantly to methane (CH 4 ), to nitrous oxide (N 2 O), and to low-level ozone (O 3 ) through production of various nitrogen gases (NO x ) and carbon monoxide (CO). This study analyzes the available greenhouse gas substitutions and their costs. The authors concentrate particularly on substitutions for fossil-fuel combustion and CFC production and consumption. They conclude by summarizing the potential for greenhouse gas substitution, the cost-effectiveness of the various options and the design of incentives for substitution

  6. Control and game models of the Greenhouse effect. Economics essays on the comedy and tragedy of the commons

    International Nuclear Information System (INIS)

    Cesar, H.S.J.

    1994-01-01

    Following chapter 1 (introduction and conclusions) in Chapter 2, the groundwork is laid for the analysis later on. First, the most relevant aspects of the Greenhouse Effect are discussed. The causes, trends, impacts and especially the policy options are highlighted. This elaboration will justify the choice of carbon dioxide emissions (CO 2 ) as the primary Greenhouse gas in later chapters. Next, the literature on environmental resource economics using optimal control models is critically surveyed. In Chapter 3, one-country models of the Greenhouse Effect are developed and four elements, often neglected in the literature are elaborated in particular. In Chapter 4, the issue of the 'tragedy of the commons' is highlighted by looking at the transboundary aspect of the Greenhouse Effect. To clarify this, assume the following prisoner's dilemma gamme of a world consisting of two countries. In Chapter 5, it is shown that (in-kind) technology transfers can overcome some of the incentive problems that render cash transfers prone to strategic behviour. (orig./UA)

  7. Gardening with Greenhouses

    Science.gov (United States)

    Keeler, Rusty

    2010-01-01

    Greenhouses come in all shapes, sizes, and price ranges: from simple hand-built plastic-covered frames to dazzling geodesic domes. Some child care centers install greenhouses as a part of their outdoor garden space. Other centers have incorporated a greenhouse into the building itself. Greenhouses provide a great opportunity for children to grow…

  8. Effects of agrochemicals, ultra violet stabilisers and solar radiation on the radiometric properties of greenhouse films

    Directory of Open Access Journals (Sweden)

    Giuliano Vox

    2013-10-01

    Full Text Available Agrochemicals, based on iron, sulphur and chlorine, generate by products that lead to a degradation of greenhouse films together with a decrease in their mechanical and physical properties. The degradation due to agrochemicals depends on their active principles, method and frequency of application, and greenhouse ventilation. The aim of the research was to evaluate how agrochemical contamination and solar radiation influence the radiometric properties of ethylene-vinyl acetate copolymer greenhouse films by means of laboratory and field tests. The films, manufactured on purpose with the addition of different light stabiliser systems, were exposed to natural outdoor weathering at the experimental farm of the University of Bari (Italy; 41° 05’ N in the period from 2006 to 2008. Each film was tested for two low tunnels: one low tunnel was sprayed from inside with the agrochemicals containing iron, chlorine and sulphur while the other one was not sprayed and served as control. Radiometric laboratory tests were carried out on the new films and on samples taken at the end of the trials. The experimental tests showed that both the natural weathering together with the agrochemicals did not modify significantly the radiometric properties of the films in the solar and in the photosynthetically active radiation wavelength range. Within six months of experimental field tests the variations in these radiometric characteristics were at most 10%. Significant variations, up to 70% of the initial value, were recorded for the stabilised films in the long-wave infrared radiation wavelength range.

  9. Modeling of greenhouse with PCM energy storage

    International Nuclear Information System (INIS)

    Najjar, Atyah; Hasan, Afif

    2008-01-01

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 deg. C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse

  10. Modeling of greenhouse with PCM energy storage

    Energy Technology Data Exchange (ETDEWEB)

    Najjar, Atyah [Computation Science, Birzeit University, Birzeit (PS); Hasan, Afif [Mechanical Engineering Department, Birzeit University, Birzeit (PS)

    2008-11-15

    Greenhouses provide a controlled environment that is suitable for plants growth and cultivation. In this paper the maximum temperature change inside the greenhouse is to be reduced by the use of energy storage in a phase change material PCM. A mathematical model is developed for the storage material and for the greenhouse. The coupled models are solved using numerical methods and Java code program. The effect of different parameters on the inside greenhouse temperature is investigated. The temperature swing between maximum and minimum values during 24 h can be reduced by 3-5 C using the PCM storage. This can be improved further by enhancing the heat transfer between the PCM storage and the air inside the greenhouse. (author)

  11. Greener greenhouses

    Energy Technology Data Exchange (ETDEWEB)

    Paksoy, Halime; Turgut, Bekir; Beyhan, Beyza; Dasgan, H. Yildiz; Evliya, Hunay; Abak, Kazim; Bozdag, Saziye

    2010-09-15

    Agricultural greenhouses are solution to the increased demand for higher production yields, facilitating off season cultivation and allowing the growth of certain varieties in areas where it was not possible earlier. Heating and/or cooling system, required to maintain the inside micro-climate in greenhouses mostly rely on fossil fuels and/or electricity. This paper aims to discuss the 'greener' solutions for heating and cooling systems of greenhouses based on different thermal energy storage concepts. Results from a greenhouse Aquifer Thermal Energy Storage (ATES) application in Turkey producing tomatoes with zero fossil fuels and up to 40% higher yield are presented.

  12. Biochars mitigate greenhouse gas emissions and bioaccumulation of potentially toxic elements and arsenic speciation in Phaseolus vulgaris L.

    Science.gov (United States)

    Ibrahim, Muhammad; Li, Gang; Khan, Sardar; Chi, Qiaoqiao; Xu, Yaoyang; Zhu, Yongguan

    2017-08-01

    Anthropogenic and natural activities can lead to increased greenhouse gas emissions and discharge of potentially toxic elements (PTEs) into soil environment. Biochar amendment to soils is a cost-effective technology and sustainable approach used to mitigate greenhouse gas emissions, improve phytoremediation, and minimize the health risks associated with consumption of PTE-contaminated vegetables. Greenhouse pot experiments were conducted to investigate the effects of peanut shell biochar (PNB) and sewage sludge biochar (SSB) on greenhouse gas (GHG) emissions, plant growth, PTE bioaccumulation, and arsenic (As) speciation in bean plants. Results indicated that amendments of PNB and SSB increased plant biomass production by increasing soil fertility and reducing bioavailability of PTEs. Addition of biochars also increased soil pH, total nitrogen (TN), total carbon (TC), dissolved organic carbon (DOC), and ammonium-nitrogen (NH 4 -N) but decreased available concentrations of PTEs such as cadmium (Cd), lead (Pb), and As. The concentration of nitrate-nitrogen (NO 3 - -N) was also decreased in biochar-amended soils. In addition, PNB and SSB amendments significantly (P Greenhouse gases such as carbon dioxide (CO 2 ) and methane (CH 4 ) emissions were significantly (P greenhouse gas emissions and PTE bioaccumulation as well as arsenic speciation in P. vulgaris L.

  13. Knowledge about the Greenhouse Effect and the Effects of the Ozone Layer among Norwegian Pupils Finishing Compulsory Education in 1989, 1993, and 2005—What Now?

    Science.gov (United States)

    Kirkeby Hansen, Pål J.

    2010-02-01

    The greenhouse effect and the effects of the ozone layer have been in the media and public focus for more than two decades. During the same period, Norwegian compulsory schools have had four national curricula. The two last-mentioned prescribe explicitly the two topics. Media and public discourse might have been sources of information causing informal learning among pupils. The point of departure for this questionnaire-based examination of the development of pupils' knowledge about the greenhouse effect and the effects of the ozone layer from 1989 to 2005 is the changing curricula and formal and informal learning. In 2005 the trends seem to be that more pupils confuse the greenhouse effect with the effects of the ozone layer. At the same time, specific knowledge about the greenhouse effect is improving. This article will discuss some possible causes for these trends, and give some recommendations for teaching the topics in accordance with the last national curriculum implemented in 2006.

  14. Applying Time Series Analysis Model to Temperature Data in Greenhouses

    Directory of Open Access Journals (Sweden)

    Abdelhafid Hasni

    2011-03-01

    Full Text Available The objective of the research is to find an appropriate Seasonal Auto-Regressive Integrated Moving Average (SARIMA Model for fitting the inside air temperature (Tin of a naturally ventilated greenhouse under Mediterranean conditions by considering the minimum of Akaike Information Criterion (AIC. The results of fitting were as follows: the best SARIMA Model for fitting air temperature of greenhouse is SARIMA (1,0,0 (1,0,224.

  15. Technologies for a greenhouse-constrained society

    International Nuclear Information System (INIS)

    Kuliasha, M.A.; Zucker, A.; Ballew, K.J.

    1992-01-01

    This conference explored how three technologies might help society adjust to life in a greenhouse-constrained environment. Technology experts and policy makers from around the world met June 11--13, 1991, in Oak Ridge, Tennessee, to address questions about how energy efficiency, biomass, and nuclear technologies can mitigate the greenhouse effect and to explore energy production and use in countries in various stages of development. The conference was organized by Oak Ridge National Laboratory and sponsored by the US Department of Energy. Energy efficiency biomass, and nuclear energy are potential substitutes for fossil fuels that might help slow or even reverse the global warming changes that may result from mankind's thirst for energy. Many other conferences have questioned whether the greenhouse effect is real and what reductions in greenhouse gas emissions might be necessary to avoid serious ecological consequences; this conference studied how these reductions might actually be achieved. For these conference proceedings, individuals papers are processed separately for the Energy Data Base

  16. Management of gas releases with greenhouse effect: which economical tools?; Maitriser les emissions de gaz a effet de serre: quels instruments economiques?

    Energy Technology Data Exchange (ETDEWEB)

    Lepeltier, Serge [Senat, Paris (France)

    2000-06-09

    The climatic change represents the most severe danger to the durable world development, public health and future prosperity. This document concerning the gas releases with greenhouse effect is a report of the Senate Planning delegation regarding the economic and fiscal tools envisaging abatement of releases of gases with greenhouse effect. These issues are presented in four chapters titled as follows: 1. Since the scientific evidencing, requirement of managing the releases of gas with greenhouse effect has been unanimously recognized at the summits of Rio (1992) and Kyoto (1997); 2. The economic theory suggests instruments for reducing the gas releases with greenhouse effect at a minimum cost; 3. Challenges and ways of international cooperation in the field of climatic change; 4. Joining the political will with the pragmatic use of the economic instruments at national scale. The document contains a synthesis of proposals directed towards the following goals: international negotiations relating to climatic change; creating the community framework of managing the gas releases resulting in greenhouse effect; establishing national measures for managing the gas releases leading to greenhouse effect; actions to be undertaken by the territorial collectivities.

  17. Structural analysis and functional characteristics of greenhouses in ...

    African Journals Online (AJOL)

    ... resulting from loads acting on beams of each greenhouse, were analyzed by SAP2000 program. Also, the stretch ratios as per whether greenhouse types and covering materials have a statistically significant effect were examined. According to the obtained data, it was found that all of the selected greenhouses could not

  18. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I; Sinisalo, J; Pipatti, R [VTT Energy, Espoo (Finland)

    1996-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  19. Radiative forcing due to greenhouse gas emission and sink histories in Finland and its future control potential

    Energy Technology Data Exchange (ETDEWEB)

    Savolainen, I.; Sinisalo, J.; Pipatti, R. [VTT Energy, Espoo (Finland)

    1995-12-31

    The effective atmospheric lifetimes of the greenhouse gases like carbon dioxide (CO{sub 2}),nitrous oxide (N{sub 2}O) and many of the CFCs are of the order of 100 years. Human activities, as an example GDP, very often change at rates of a few per cents per year,corresponding time constants of some tens of years. Also the forest ecosystems have time constants of this order. Even the human population of the globe is increasing by about two percent per year. Because so many natural and human-linked processes, which are relevant to global warming, have slow change rates of about same order, a time-dependent consideration of the greenhouse warming and its control can give useful information for the understanding of the problem. The objective of the work is to study the anthropogenic greenhouse gas emissions and sinks in Finland and their greenhouse impact as a function of time. The greenhouse impact is expressed in terms of radiative forcing which describes the perturbation in the Earth`s radiation budget. Radiative forcing allows a comparison of the impact of various greenhouse gases and their possible control options as a function of time. The idea behind the calculations is that Finland should in some way steer its share of the global radiative forcing and greenhouse effect. This presentation describes the calculation model REFUGE and the projects in which it has been used

  20. Development and testing of an assessment to measure spatial thinking about enhanced greenhouse effect

    Science.gov (United States)

    Skaza, Heather Jean

    Americans, in general, do not behave in environmentally sustainable ways. We drive cars and fly in planes that emit planet-warming carbon. We purchase food in nearly indestructible packaging that is not recycled or repurposed. We do not consider the environmental impact of the "stuff" stuffed into our grocery and department stores, most of which is made of materials that had to be dug out of the ground, leaving rivers and skies full of pollution in its place. Citizens have a responsibility to understand complex global and local environmental problems. A person's ability to think about the way that an environmental problem they are tasked with understanding changes over time and space can better prepare them to make sustainable decisions in the face of this complexity. Spatial thinking serves the learner's ability to understand the impact of environmental actions and should be given a consistent place in environmental education. Teaching practices and pedagogies that focus on spatial thinking are necessary to learners' success. In order to know if these strategies are successful, educators need an assessment tool that targets the spatial thinking skills necessary to understanding environmental problems. This dissertation project used a models and modeling theoretical framework to develop and test an assessment of students' spatial thinking abilities related to the environmental problem of enhanced greenhouse effect. This assessment was developed from a review of existing spatial thinking literature, research on existing assessments of spatial thinking abilities, and existing assessment of enhanced greenhouse effect. In addition, I interviewed and surveyed experts in science, math, and environmental education to elicit their perspectives on the spatial thinking skills necessary for learners to understand enhanced greenhouse effect. All of this information was synthesized into 14 Central Concepts of spatial thinking for enhanced greenhouse effect. The assessment was

  1. Climate - Greenhouse effect - Energy

    International Nuclear Information System (INIS)

    Henriksen, Thormod; Kanestroem, Ingolf

    2001-01-01

    This book explains what is understood by climate systems and the concept of greenhouse effect. It also gives a survey of the world's energy consumption, energy reserves and renewable energy sources. Today, 75 - 80 per cent of the world's energy consumption involves fossil fuel. These are the sources that cause the CO 2 emissions. What are the possibilities of reducing the emissions? The world's population is increasing, and to provide food and a worthy life for everybody we have to use more energy. Where do we get this energy from without causing great climate changes and environmental changes? Should gas power plants be built in Norway? Should Swedish nuclear power plants be shut down, or is it advisable to concentrate on nuclear power, worldwide, this century, to reduce the CO 2 emissions until the renewable energy sources have been developed and can take over once the petroleum sources have been depleted? The book also discusses the global magnetic field, which protects against particle radiation from space and which gives rise to the aurora borealis. The book is aimed at students taking environmental courses in universities and colleges, but is also of interest for anybody concerned about climate questions, energy sources and living standard

  2. (Limiting the greenhouse effect)

    Energy Technology Data Exchange (ETDEWEB)

    Rayner, S.

    1991-01-07

    Traveler attended the Dahlem Research Conference organized by the Freien Universitat, Berlin. The subject of the conference was Limiting the Greenhouse Effect: Options for Controlling Atmospheric CO{sub 2} Accumulation. Like all Dahlem workshops, this was a meeting of scientific experts, although the disciplines represented were broader than usual, ranging across anthropology, economics, international relations, forestry, engineering, and atmospheric chemistry. Participation by scientists from developing countries was limited. The conference was divided into four multidisciplinary working groups. Traveler acted as moderator for Group 3 which examined the question What knowledge is required to tackle the principal social and institutional barriers to reducing CO{sub 2} emissions'' The working rapporteur was Jesse Ausubel of Rockefeller University. Other working groups examined the economic costs, benefits, and technical feasibility of options to reduce emissions per unit of energy service; the options for reducing energy use per unit of GNP; and the significant of linkage between strategies to reduce CO{sub 2} emissions and other goals. Draft reports of the working groups are appended. Overall, the conference identified a number of important research needs in all four areas. It may prove particularly important in bringing the social and institutional research needs relevant to climate change closer to the forefront of the scientific and policy communities than hitherto.

  3. Greenhouse Effect in the Classroom: A Project- and Laboratory-Based Curriculum.

    Science.gov (United States)

    Lueddecke, Susann B.; Pinter, Nicholas; McManus, Scott A.

    2001-01-01

    Tests a multifaceted curriculum for use in introductory earth science classes from the secondary school to the introductory undergraduate level. Simulates the greenhouse effect with two fish tanks, heat lamps, and thermometers. Uses a hands-on science approach to develop a deeper understanding of the climate system among students. (Contains 28…

  4. Effects of Greenhouse Gas Emissions on World Agriculture, Food Consumption, and Economic Welfare

    International Nuclear Information System (INIS)

    Darwin, R.

    2004-01-01

    Because of many uncertainties, quantitative estimates of agriculturally related economic impacts of greenhouse gas emissions are often given low confidence. A major source of uncertainty is our inability to accurately project future changes in economic activity, emissions, and climate. This paper focuses on two issues. First, to what extent do variable projections of climate generate uncertainty in agriculturally related economic impacts? Second, to what extent do agriculturally related economic impacts of greenhouse gas emissions depend on economic conditions at the time of impacts? Results indicate that uncertainty due to variable projections of climate is fairly large for most of the economic effects evaluated in this analysis. Results also indicate that economic conditions at the time of impact influence the direction and size of as well as the confidence in the economic effects of identical projections of greenhouse gas impacts. The economic variable that behaves most consistently in this analysis is world crop production. Increases in mean global temperature, for example, cause world crop production to decrease on average under both 1990 and improved economic conditions and in both instances the confidence with respect to variable projections of climate is medium (e.g., 67%) or greater. In addition and as expected, CO2 fertilization causes world crop production to increase on average under 1990 and improved economic conditions. These results suggest that crop production may be a fairly robust indicator of the potential impacts of greenhouse gas emissions. A somewhat unexpected finding is that improved economic conditions are not necessarily a panacea to potential greenhouse-gas-induced damages, particularly at the region level. In fact, in some regions, impacts of climate change or CO2 fertilization that are beneficial under current economic conditions may be detrimental under improved economic conditions (relative to the new economic base). Australia plus

  5. Night-time warming and the greenhouse effect

    International Nuclear Information System (INIS)

    Kukla, G.; Karl, T.R.

    1993-01-01

    Studies of temperature data collected mainly from rural stations in North America, China, the Commonwealth of Independent States, Australia, Sudan, Japan, Denmark, Northern Finland, several Pacific Islands, Pakistan, South Africa and Europe suggest that the reported warming of the Northern Hemisphere since WWII is principally a result of an increase in night-time temperatures. The average monthly maximum and minimum temperatures, as well as the mean diurnal temperature range (DTR), were calculated for various regions from data supplied by 1000 stations from 1951 to 1990. Average and minimum temperatures generally rose during the analysed interval and the rise in night-time temperatures was more pronounced than the increase in daily maximum temperatures. As a result, the mean DTR decreased almost everywhere. The most probable causes of the rise in night-time temperatures are: an increase in cloudiness owing to natural changes in the circulation patterns of oceans and the atmosphere; increased cloud cover density caused by industrial pollution; urban heat islands, generated by cities, which are strongest during the night; irrigation which keeps the surface warmer at night and cooler by day; and anthropogenic greenhouse gases. 18 refs., 3 figs

  6. The coal industry and its greenhouse challenge

    International Nuclear Information System (INIS)

    Armstrong, A.

    1998-01-01

    The Australian coal industry is actively involved in greenhouse gas emission management and abatement issues. An Australian Coal Association (ACA) position paper on greenhouse in November 1989, recommended a number of strategies to minimise the greenhouse effect, including the enhancement of energy utilisation efficiency, improved energy conversion efficiency at coal-fired power stations, expanded use of solar heating, and improved recycling. All of the strategies have been implemented to various degrees. The management and abatement of greenhouse gas emissions within the coal industry has been approached from an individual operational level, and a 'higher' industry level

  7. The climate controversy demands substantive discussion. 'Climatic change sceptics' opposite 'greenhouse effect believers'

    International Nuclear Information System (INIS)

    Thoenes, D.; Labohm, H.

    2006-01-01

    With the aim to inform policymakers an overview is given of the arguments that are used by climatic change sceptics and greenhouse effect believers, and on which arguments do they agree or disagree [nl

  8. Pathogenicity of Two Species of Entomopathogenic Nematodes Against the Greenhouse Whitefly, Trialeurodes vaporariorum (Hemiptera: Aleyrodidae), in Laboratory and Greenhouse Experiments.

    Science.gov (United States)

    Rezaei, Nastaran; Karimi, Javad; Hosseini, Mojtaba; Goldani, Morteza; Campos-Herrera, Raquel

    2015-03-01

    The greenhouse whitefly Trialeurodes vaporariorum (Hemiptera: Aleyrodidae) is a polyphagous pest in greenhouse crops. The efficacy of two entomopathogenic nematodes (EPN), Steinernema feltiae and Heterorhabditis bacteriophora, as biological control agents against T. vaporariorum was evaluated using two model crops typical of vegetable greenhouse productions: cucumber and pepper. Laboratory tests evaluated adults and second nymphal instars for pest susceptibility to different EPN species at different concentrations of infective juveniles (IJ; 0, 25, 50, 100, 150, 200, and 250 IJ per cm(2)); subsequent greenhouse trials against second nymphal instars on cucumber and pepper plants evaluated more natural conditions. Concentrations were applied in combination with Triton X-100 (0.1% v/v), an adjuvant for increasing nematode activity. In laboratory studies, both life stages were susceptible to infection by the two nematode species, but S. feltiae recorded a lower LC50 than H. bacteriophora for both insect stages. Similarly, in greenhouse experiments, S. feltiae required lower concentrations of IJ than H. bacteriophora to reach the same mortality in nymphs. In greenhouse trials, a significant difference was observed in the triple interaction among nematode species × concentration × plant. Furthermore, the highest mortality rate of the second nymphal instars of the T. vaporariorum was obtained from the application of S. feltiae concentrated to 250 IJ/cm(2) on cucumber (49 ± 1.23%). The general mortality caused by nematodes was significantly higher in cucumber than in pepper. These promising results support further investigation for the optimization of the best EPN species/concentration in combination with insecticides or adjuvants to reach a profitable control of this greenhouse pest.

  9. Literature overview for greenhouse effect part VI

    International Nuclear Information System (INIS)

    Orthofer, R.; Nevyjel, A.

    1997-10-01

    On behalf of the Austrian Federal Ministry of Environment, Youth and Family Affairs the current scientific and technical literature in the subject area of greenhouse effect and global climatic change is investigated by performing quarterly on-line retrieval searches in the databases Compendex, Enviroline, NTIS and ULIT. This report contains the research results of the period of September to December 1996. From the observed 199 citations the most significant 50 citations were selected, evaluated and summarised in a literature review. Relevant topics are (1) research on causes, effects and modelling, (2) possible agricultural, technical, economic and political control measures, (3) strategies and actions taken in various countries, and (4) international co-ordination. The review is based on the abstracts from the databases and for the most interesting publications - from the original literature. Five similar reports have been published previously which cover the literature since January 1994. (author)

  10. Learning Molecular Behaviour May Improve Student Explanatory Models of the Greenhouse Effect

    Science.gov (United States)

    Harris, Sara E.; Gold, Anne U.

    2018-01-01

    We assessed undergraduates' representations of the greenhouse effect, based on student-generated concept sketches, before and after a 30-min constructivist lesson. Principal component analysis of features in student sketches revealed seven distinct and coherent explanatory models including a new "Molecular Details" model. After the…

  11. Monitoring and energetic performance of two similar semi-closed greenhouse ventilation systems

    International Nuclear Information System (INIS)

    Coomans, Mathias; Allaerts, Koen; Wittemans, Lieve; Pinxteren, Dave

    2013-01-01

    Highlights: • Measurements on two semi-closed greenhouses and two traditional open greenhouses. • Mechanical and natural ventilation for dehumidification and cooling. • Analyses and comparison of installation controls, indoor climate and energy flows. • Examination of air-to-air heat recuperation efficiency in ventilation unit. • Using the semi-closed systems amounted to energy savings of 13% and 28%. - Abstract: Horticulture is an energy intensive industry when dealing with cold climates such as Western Europe. High energy prices and on-going pressure from international competition are raising demand for energy efficient solutions. In search of reducing greenhouse energy consumption, this study investigates semi-closed systems combining controlled mechanical and natural ventilation with thermal screens. Ventilated greenhouse systems (semi-closed) have been implemented in the greenhouse compartments of two Belgian horticulture research facilities: the Research Station for Vegetable Production Sint-Katelijne-Waver (PSKW) and the Research Center Hoogstraten (PCH). Additionally, two reference compartments were included for comparison of the results. The greenhouses were part of a long-term monitoring campaign in which detailed measurements with a high time resolution were gathered by a central monitoring system. A large amount of data was processed and analysed, including outdoor and indoor climatic parameters, system controls and installation measurements. The ventilated greenhouses obtained energy savings of 13% and 28% for PSKW and PCH respectively, without substantial impact on crop production or indoor climate conditions when compared to the reference compartments. A considerable amount of heat was recovered by the heat recuperation stage in the ventilation unit of PCH, accounting for 12% of the total heat demand. In general, it was demonstrated that the greenhouse heat demand can be reduced significantly by controlled dehumidification with mechanical

  12. Effect on energy use and greenhouse micro climate through fan motor control by variable frequency drives

    International Nuclear Information System (INIS)

    Teitel, Meir; Zhao Yun; Barak, Moti; Bar-lev, Eli; Shmuel, David

    2004-01-01

    A comparison was conducted between ON-OFF and variable frequency drive (VFD) systems to control greenhouse ventilation fans. The study aimed to determine the effect of each system on the energy consumption and resulting greenhouse micro climate. The experiments were conducted in a commercial size greenhouse in which pepper was grown. To check the performance of the fan that was controlled by a VFD system, it was installed in a test facility and operated under several rotation speeds. At each speed of rotation, the static pressure on the fan was changed and parameters, such as electricity consumption and air flow rate, were measured. Reducing the fan speed with the VFD system resulted in reductions in the air flow rate through the greenhouse and energy consumption, the latter being much more significant. The study showed that VFD control can reduce electricity consumption compared with ON-OFF operation by an amount that depends on the weather. In the present study, the average energy consumption with the VFD control system over a period of one month, was about 0.64 of that with an ON-OFF system. The average greenhouse daily air temperatures and humidity ratios obtained with each control system between 0700 and 1800 were nearly equal during that month. The results obtained in the greenhouse further show that the VFD system has a greater potential than the ON-OFF to reduce the range of amplitude variations in the air temperature and humidity ratio within the greenhouse

  13. Taxation of multiple greenhouse gases and the effects on income distribution : A case study of the Netherlands

    NARCIS (Netherlands)

    Kerkhof, Annemarie C.; Moll, Henri C.; Drissen, Eric; Wilting, Harry C.

    2008-01-01

    Current economic instruments aimed at climate change mitigation focus on CO2 emissions only, but the Kyoto Protocol refers to other greenhouse gases (GHG) as well as CO2. These are CH4, N2O, HFCs, PFCs and SF6. Taxation of multiple greenhouse gases improves the cost-effectiveness of climate change

  14. Offsets : An innovative approach to reducing greenhouse gases

    International Nuclear Information System (INIS)

    Steward, B.

    1998-01-01

    One of the most innovative ways to address climate change is the use of offsets, which refers to actions taken outside of a company's operations, domestically and internationally, to reduce greenhouse gas emissions. This paper is devoted to a discussion of Suncor Energy's action plan for greenhouse gases which include offsets, and to an explanation of the reasons why offsets are fundamental to successful greenhouse gas management. Suncor Energy Inc., has developed a plan with seven elements to meet their target of stabilizing their greenhouse gas emissions at 1990 levels by year 2000. The seven elements include: (1) energy efficiency and process improvements at their oil sands facility, (2) the development of alternative and renewable sources of energy, such as ethanol blended gasolines and the use of wind turbines to generate electricity, (3) promoting environmental and economic research to develop more advanced oil and gas technology to reduce greenhouse gas emissions, (4) implementing a constructive public policy input in support of sustainable development, (5) educating employees, customers and communities on global climate change, (6) measuring and reporting the company's environmental progress, and (7) pursuing domestic and international offset opportunities such as transfer of technology to developing countries, cogeneration of energy using natural gas, energy efficiency, renewable energy sources, emission reduction purchases and forest conservation. Of these proposed measures, offsets are the critical element which could spell the difference between success and failure in managing greenhouse gas emissions and the difference between economic hardship and economic opportunity

  15. [Effects of understory removal on soil greenhouse gas emissions in Carya cathayensis stands].

    Science.gov (United States)

    Liu, Juan; Chen, Xue-shuang; Wu, Jia-sen; Jiang, Pei-kun; Zhou, Guo-mo; Li, Yong-fu

    2015-03-01

    CO2, N2O and CH4 are important greenhouse gases, and soils in forest ecosystems are their important sources. Carya cathayensis is a unique tree species with seeds used for high-grade dry fruit and oil production. Understory vegetation management plays an important role in soil greenhouse gases emission of Carya cathayensis stands. A one-year in situ experiment was conducted to study the effects of understory removal on soil CO2, N2O and CH4 emissions in C. cathayensis plantation by closed static chamber technique and gas chromatography method. Soil CO2 flux had a similar seasonal trend in the understory removal and preservation treatments, which was high in summer and autumn, and low in winter and spring. N2O emission occurred mainly in summer, while CH4 emission showed no seasonal trend. Understory removal significantly decreased soil CO, emission, increased N2O emission and CH4 uptake, but had no significant effect on soil water soluble organic carbon and microbial biomass carbon. The global warming potential of soil greenhouse gases emitted in the understory removal. treatment was 15.12 t CO2-e . hm-2 a-1, which was significantly lower than that in understory preservation treatment (17.04 t CO2-e . hm-2 . a-1).

  16. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R.M. [Radian Corporation, Austin, TX (United States)

    1995-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  17. Opportunities to reduce methane emissions in the natural gas industry

    Energy Technology Data Exchange (ETDEWEB)

    Cowgill, R M [Radian Corporation, Austin, TX (United States)

    1996-12-31

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH{sub 4}) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH{sub 4}. Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  18. Opportunities to reduce methane emissions in the natural gas industry

    International Nuclear Information System (INIS)

    Cowgill, R.M.

    1995-01-01

    The U.S. Environmental Protection Agency (EPA) and the Gas Research Institute (GRI) cofunded a project to quantify methane (CH 4 ) emissions from the U.S. natural gas industry. Methane, the major constituent of natural gas, is a potent greenhouse gas that is believed to increase the effect of global warming when released to the atmosphere. Reducing emissions from natural gas systems would lessen the greenhouse gas effect attributable to atmospheric CH 4 . Further, mitigation methods to reduce emissions of natural gas, a marketable resource, could save money and increase energy efficiency. This presentation summarizes the major sources and quantity of methane being emitted to the atmosphere for all segments of the U.S. gas industry: production; processing; storage; transmission; and distribution. A description of how those emissions were determined is included here, as well as a discussion of which sources are potential candidates for reducing emissions. (author)

  19. A Simple Experiment to Demonstrate the Effects of Greenhouse Gases

    Science.gov (United States)

    Keating, C. F.

    2007-01-01

    The role of greenhouse gases in our atmosphere is the subject of considerable discussion and debate. Global warming is well-documented, as is the continually increasing amount of greenhouse gases that human activity puts in the air. Is there a relationship between the two? The simple experiment described in this paper provides a good demonstration…

  20. The future role of peat. The Finnish Ministry of Trade and Industry's investigation on the role of peat in the greenhouse gas balance in Finland

    International Nuclear Information System (INIS)

    Knuutinen, O.

    2000-01-01

    Due to contradictory opinions on the role of peat as a renewable energy source and carbon sink as well as the fact that no comprehensive research are made in this area, the Finnish Ministry of Trade and Industry (KTM) assigned an impartial working group to investigate the role of peat in climatic change. The working group consists of Patrick Crill from USA, Ken Hargreaves from Great Britain, and Atte Korhola from Finland. The objective of the working group is to study the greenhouse gas balances of virgin peatland, ditched peatlands, and cultivated peatlands. The carbon cycles will be investigated, as well as the effects of utilisation of peat on greenhouse gas balance, and the possibilities of effecting the balance with active measures. The alternatives for utilisation peatlands after the peat has been harvested, and the effects of these alternatives on greenhouse gas balance will also be studied. The effects of the peatlands left in passive natural state, the regeneration of peatlands, forestation and other usage on greenhouse gas balance will be investigated, and the need for regulations and instructions for recycling have to be estimated. The greenhouse gas emissions and the carbon sinks have to be defined, the alternative means for definition of them have to be inspected. The mutual dependence of peat and wood fuels has also to be taken into consideration. The report will to include the effects of peat on watercourses, versatility of the nature, the effect of the peat production on the amount of peat production areas, and suggestions for possible need of further investigations

  1. Predicting sublethal effects of herbicides on terrestrial non-crop plant species in the field from greenhouse data

    International Nuclear Information System (INIS)

    Riemens, Marleen M.; Dueck, Thom; Kempenaar, Corne

    2008-01-01

    Guidelines provided by OECD and EPPO allow the use of data obtained in greenhouse experiments in the risk assessment for pesticides to non-target terrestrial plants in the field. The present study was undertaken to investigate the predictability of effects on field-grown plants using greenhouse data. In addition, the influence of plant development stage on plant sensitivity and herbicide efficacy, the influence of the surrounding vegetation on individual plant sensitivity and of sublethal herbicide doses on the biomass, recovery and reproduction of non-crop plants was studied. Results show that in the future, it might well be possible to translate results from greenhouse experiments to field situations, given sufficient experimental data. The results also suggest consequences at the population level. Even when only marginal effects on the biomass of non-target plants are expected, their seed production and thereby survival at the population level may be negatively affected. - The response of greenhouse-grown wild plant species to herbicide exposure could be related to the response of the same species when grown in the field

  2. Effect of noble gases on an atmospheric greenhouse /Titan/.

    Science.gov (United States)

    Cess, R.; Owen, T.

    1973-01-01

    Several models for the atmosphere of Titan have been investigated, taking into account various combinations of neon and argon. The investigation shows that the addition of large amounts of Ne and/or Ar will substantially reduce the hydrogen abundance required for a given greenhouse effect. The fact that a large amount of neon should be present if the atmosphere is a relic of the solar nebula is an especially attractive feature of the models, because it is hard to justify appropriate abundances of other enhancing agents.

  3. Reservoir Greenhouse Gas Emissions at Russian HPP

    Energy Technology Data Exchange (ETDEWEB)

    Fedorov, M. P.; Elistratov, V. V.; Maslikov, V. I.; Sidorenko, G. I.; Chusov, A. N.; Atrashenok, V. P.; Molodtsov, D. V. [St. Petersburg State Polytechnic University (Russian Federation); Savvichev, A. S. [Russian Academy of Sciences, S. N. Vinogradskii Institute of Microbiology (Russian Federation); Zinchenko, A. V. [A. I. Voeikov Main Geophysical Observatory (Russian Federation)

    2015-05-15

    Studies of greenhouse-gas emissions from the surfaces of the world’s reservoirs, which has demonstrated ambiguity of assessments of the effect of reservoirs on greenhouse-gas emissions to the atmosphere, is analyzed. It is recommended that greenhouse- gas emissions from various reservoirs be assessed by the procedure “GHG Measurement Guidelines for Fresh Water Reservoirs” (2010) for the purpose of creating a data base with results of standardized measurements. Aprogram for research into greenhouse-gas emissions is being developed at the St. Petersburg Polytechnic University in conformity with the IHA procedure at the reservoirs impounded by the Sayano-Shushenskaya and Mainskaya HPP operated by the RusHydro Co.

  4. Seasonal variation of heat consumption in greenhouses

    DEFF Research Database (Denmark)

    Nielsen, O.F.; Amsen, M.G.; Strøm, J.S.

    The concept of dynamic variation is introduced as a method to visualize the dynamic fluctuations of heat consumption and thermal climate in greenhouses. The feasibility of the concept is illustrated by describing effects of different greenhouse designs. Engineering data on design heat consumption...

  5. 15 years after Chernobyl. Nuclear plus greenhouse effect?

    International Nuclear Information System (INIS)

    Schneider, M.; Rosen, M.

    2001-04-01

    Today, the argument in favour of nuclear energy is not an economical one nor linked to energy resources but is at the level of climatic change. Nuclear energy is seen as the only energy source without carbon dioxide emissions. A more detailed analysis of greenhouse gases on the life cycle shows that nuclear energy gives as greenhouse gases as big hydroelectric power plants or wind power plants, these emissions are more important than for biogas installations with cogeneration. The strategy of energy efficiency is certainly more competitive than the new reactors in other terms it is more efficiency to reduce the consumption than to increase the nuclear production. (N.C.)

  6. Extraction of Greenhouse Areas with Image Processing Methods in Karabuk Province

    Science.gov (United States)

    Yildirima, M. Z.; Ozcan, C.

    2017-11-01

    Greenhouses provide the environmental conditions to be controlled and regulated as desired while allowing agricultural products to be produced without being affected by external environmental conditions. High quality and a wide variety of agricultural products can be produced throughout the year. In addition, mapping and detection of these areas has great importance in terms of factors such as yield analysis, natural resource management and environmental impact. Various remote sensing techniques are currently available for extraction of greenhouse areas. These techniques are based on the automatic detection and interpretation of objects on remotely sensed images. In this study, greenhouse areas were determined from optical images obtained from Landsat. The study was carried out in the greenhouse areas in Karabuk province. The obtained results are presented with figures and tables.

  7. Greenhouse Gas Emissions from Rubber Industry in Thailand

    NARCIS (Netherlands)

    Jawjit, W.; Kroeze, C.; Rattanapan, S.

    2010-01-01

    Rubber production has been taking place in Thailand for many decades. Thailand is currently the world's largest natural rubber producer. We present emissions of greenhouse gases associated with the production of fresh latex, and three primary rubber products, including concentrated latex, block

  8. Air passenger transport and the greenhouse effect

    International Nuclear Information System (INIS)

    Hubert, M.

    2004-11-01

    The commercial aviation sector accounts for 2.5 % of total worldwide anthropogenic carbon dioxide (CO 2 ) emissions. Water vapour (H 2 O) and NO x emissions, the formation of condensation trails and increased formation of cirrus clouds due to altitude (indirect effects) also accentuate the greenhouse effect. The Intergovernmental Panel on Climate Change (IPCC) estimates that the effects apart from CO 2 emissions are relatively higher for aviation than for other human activities. For one tonne of CO 2 emissions, the radiative forcing of aviation is twice as important as other activities. On this basis, a Paris-New York return trip for one passenger on a charter flight corresponds to a quarter of the total climate impact caused by the annual consumption of a French person. Increased mobility and a rise in international tourism suggest that past trends in the growth of air passenger transport will continue. The improvements in energy efficiency achieved are seemingly not sufficient to prevent a significant increase in the impact of air transport on climate change. (author)

  9. Swedish contribution to the greenhouse effect and required reductions to meet the 550 ppmv target

    International Nuclear Information System (INIS)

    Lindell, Lina; Nilsson, Kristina

    2002-11-01

    According to the Swedish Parliament, the Swedish international climate strategy should focus on a stabilisation of the concentration of greenhouse gases in the atmosphere. An equilibrium concentration lower than 550 ppmv CO 2 -equivalents should be achieved by the end of this century. As an interim target, the yearly emissions should not exceed 4.5 tonnes CO 2 -equivalents per capita by 2050. In this study an inventory of Swedish emissions from 1834 until 2000, for the six greenhouse gases regulated by the Kyoto Protocol, is carried out. Future emission scenarios for carbon dioxide during the time period 2000-2050 are also defined. This data is used for estimating the contribution to the greenhouse effect both today and in the future. Further it is investigated if the 2050-target is sufficient for not exceeding an atmospheric concentration of 550 ppmv. The required reduction for 2100 to reach an equilibrium concentration below this level is also estimated. The Swedish contribution to the greenhouse effect today is about 30 % larger than it should be according to the fairness factor used in this study. The Swedish emission target set for 2050 is sufficient for not exceeding 550 ppmv by that year. However, to reach a stabilisation of the concentration below this level the emissions have to be reduced to 1.0-1.5 tonnes CO 2 -equivalents per capita by 2100

  10. Swedish contribution to the greenhouse effect and required reductions to meet the 550 ppmv target

    Energy Technology Data Exchange (ETDEWEB)

    Lindell, Lina; Nilsson, Kristina [Uppsala Univ. (Sweden). School of Engineering

    2002-11-01

    According to the Swedish Parliament, the Swedish international climate strategy should focus on a stabilisation of the concentration of greenhouse gases in the atmosphere. An equilibrium concentration lower than 550 ppmv CO{sub 2}-equivalents should be achieved by the end of this century. As an interim target, the yearly emissions should not exceed 4.5 tonnes CO{sub 2}-equivalents per capita by 2050. In this study an inventory of Swedish emissions from 1834 until 2000, for the six greenhouse gases regulated by the Kyoto Protocol, is carried out. Future emission scenarios for carbon dioxide during the time period 2000-2050 are also defined. This data is used for estimating the contribution to the greenhouse effect both today and in the future. Further it is investigated if the 2050-target is sufficient for not exceeding an atmospheric concentration of 550 ppmv. The required reduction for 2100 to reach an equilibrium concentration below this level is also estimated. The Swedish contribution to the greenhouse effect today is about 30 % larger than it should be according to the fairness factor used in this study. The Swedish emission target set for 2050 is sufficient for not exceeding 550 ppmv by that year. However, to reach a stabilisation of the concentration below this level the emissions have to be reduced to 1.0-1.5 tonnes CO{sub 2}-equivalents per capita by 2100.

  11. Policy implications of greenhouse warming: Mitigation, adaptation, and the science base

    International Nuclear Information System (INIS)

    Anon.

    1992-01-01

    This book discusses the policy implications of greenhouse warming by examining three major areas: general summary of information about the greenhouse effect leading to a framework for policy; the science basis for the greenhouse effect; mitigation of greenhouse warming. Each section contains 9-13 chapters on specific subjects including the following: overview of greenhouse gases; policy implications; internations considerations; climate records and models; sea levels; temperature rise estimation; energy management at several levels; nonenergy emission reduction; human populations; deforestation. Conclusions are summarized at the end of each section

  12. Water deficit effects on maize yields modeled under current and greenhouse climates

    International Nuclear Information System (INIS)

    Muchow, R.C.; Sinclair, T.R.

    1991-01-01

    The availability of water imposes one of the major limits on rainfed maize (Zea mays L.) productivity. This analysis was undertaken in an attempt to quantify the effects of limited water on maize growth and yield by extending a simple, mechanistic model in which temperature regulates crop development and intercepted solar radiation is used to calculate crop biomass accumulation. A soil water budget was incorporated into the model by accounting for inputs from rainfall and irrigation, and water use by soil evaporation and crop transpiration. The response functions of leaf area development and crop gas exchange to the soil water budget were developed from experimental studies. The model was used to interpret a range of field experiments using observed daily values of temperature, solar radiation, and rainfall or irrigation, where water deficits of varying durations developed at different stages of growth. The relative simplicity of the model and its robustness in simulating maize yields under a range of water-availability conditions allows the model to be readily used for studies of crop performance under alternate conditions. One such study, presented here, was a yield assessment for rainfed maize under possible greenhouse climates where temperature and atmospheric CO 2 concentration were increased. An increase in temperature combined with decreased rainfall lowered grain yield, although the increase in crop water use efficiency associated with elevated CO 2 concentration ameliorated the response to the greenhouse climate. Grain yields for the greenhouse climates as compared to current conditions increased, or decreased only slightly, except when the greenhouse climate was assumed to result in severly decreased rainfall

  13. Greenhouse Gases Concentrations in the Atmosphere Along ...

    African Journals Online (AJOL)

    This study investigated effect of vehicular emission on greenhouse gases concentrations along selected roads of different traffic densities in Abeokuta, Ogun State, Nigeria. Nine roads comprised highway, commercial and residential were selected. Greenhouse Gases (GHGs) were determined from both sides of the roads by ...

  14. Cost-effectiveness of feeding strategies to reduce greenhouse gas emissions from dairy farming

    NARCIS (Netherlands)

    Middelaar, van C.E.; Dijkstra, J.; Berentsen, P.B.M.; Boer, de I.J.M.

    2014-01-01

    The objective of this paper was to evaluate the cost-effectiveness of 3 feeding strategies to reduce enteric CH4 production in dairy cows by calculating the effect on labor income at the farm level and on greenhouse gas (GHG) emissions at the chain level (i.e., from production of farm inputs to the

  15. Evaluation of the greenhouse effect gases (CO2, CH4, N2O) in grass land and in the grass breeding. Greenhouse effect gases prairies. report of the first part of the project December 2002

    International Nuclear Information System (INIS)

    Soussana, J.F.

    2002-12-01

    In the framework of the Kyoto protocol on the greenhouse effect gases reduction, many ecosystems as the prairies can play a main role for the carbon sequestration in soils. The conservation of french prairies and their management adaptation could allow the possibility of carbon sequestration in the soils but also could generate emissions of CO 2 and CH 4 (by the breeding animals on grass) and N 2 O (by the soils). This project aims to establish a detailed evaluation of the contribution of the french prairies to the the greenhouse effect gases flux and evaluate the possibilities of reduction of the emissions by adaptation of breeding systems. (A.L.B.)

  16. Increased nutrient concentrations in Lake Erie tributaries influenced by greenhouse agriculture.

    Science.gov (United States)

    Maguire, Timothy J; Wellen, Christopher; Stammler, Katie L; Mundle, Scott O C

    2018-08-15

    Greenhouse production of vegetables is a growing global trade. While greenhouses are typically captured under regulations aimed at farmland, they may also function as a point source of effluent. In this study, the cumulative impacts greenhouse effluents have on riverine macronutrient and trace metal concentrations were examined. Water samples were collected Bi-weekly for five years from 14 rivers in agriculturally dominated watersheds in southwestern Ontario. Nine of the watersheds contained greenhouses with their boundaries. Greenhouse influenced rivers had significantly higher concentrations of macronutrients (nitrogen, phosphorus, and potassium) and trace metals (copper, molybdenum, and zinc). Concentrations within greenhouse influenced rivers appeared to decrease over the 5-year study while concentrations within non-greenhouse influenced river remained constant. The different temporal pattern between river types was attributed to increased precipitation during the study period. Increases in precipitation diluted concentrations in greenhouse influenced rivers; however, non-influenced river runoff proportionally increased nutrient mobility and flow, stabilizing the observed concentrations of non-point sources. Understanding the dynamic nature of environmental releases of point and non-point sources of nutrients and trace metals in mixed agricultural systems using riverine water chemistry is complicated by changes in climatic conditions, highlighting the need for long-term monitoring of nutrients, river flows and weather data in assessing these agricultural sectors. Copyright © 2018 The Authors. Published by Elsevier B.V. All rights reserved.

  17. The importance of addressing methane emissions as part of a comprehensive greenhouse gas management strategy

    Energy Technology Data Exchange (ETDEWEB)

    Bylin, Carey [U.S. Environmental Protection Agency (EPA), Washington, DC (United States); Robinson, Donald; Cacho, Mariella; Russo, Ignacio; Stricklin, Eric [ICF International, Fairfax, VA (United States); Rortveit, Geir Johan [Statoil, Stavanger (Norway); Chakraborty, A.B. [Oil and Natural Gas Corporation Ltda. (ONGC), Dehradun (India); Pontiff, Mike [Newfield, The Woodlands, TX, (United States); Smith, Reid [British Petroleum (BP), London (United Kingdom)

    2012-07-01

    Given the climate forcing properties of greenhouse gases (GHGs) and the current state of the global economy, it is imperative to mitigate emissions of GHGs cost-effectively. Typically, CO{sub 2} is the main focus of most companies' and governments' GHG emissions reductions strategies. However, when considering near-term goals, it becomes clear that emissions reductions of other GHGs must be pursued. One such GHG is methane, the primary component of natural gas. Reducing GHG emissions and generating profits are not necessarily a mutually exclusive endeavor as illustrated by the United States Environmental Protection Agency's (EPA) Natural Gas STAR Program. The Program is a worldwide voluntary, flexible partnership of oil and gas companies which promotes cost-effective technologies and practices to reduce methane emissions from oil and natural gas operations. In an effort to meet environmental goals without sacrificing profitability, Natural Gas STAR partner companies have identified over 60 cost-effective best practices to reduce their methane emissions, which they report to the EPA. This paper discusses: 1) the importance of reducing methane emissions and its economic impact, 2) a comparison of methane emission reduction projects relative to other greenhouse gas reduction projects in the oil and gas industry, 3) the value of source-specific methane emissions inventories, and 4) methane emission reduction opportunities from hydraulically fractured gas well completions and centrifugal compressor wet seals. From the analyses and examples in this paper, it can be concluded that methane emission reduction projects can be readily identified, profitable, and effective in mitigating global climate change. (author)

  18. Risk Assessment from Radon Gas in the Greenhouses

    International Nuclear Information System (INIS)

    Fahmi, N.M.; El-Khatib, A.M.; Abd El-Zaher, M

    2009-01-01

    Radon is a naturally occurring radioactive gas found in varying amounts in all soils. Therefore, it is very important to study radon emanation from different soils in different circumstances; especially, in green houses which widely used to propagate and cultivate of plants. In greenhouses radon comes from either soil or the substances which make suitable flooring in the greenhouse. Radon and its progeny are accumulated in the air and on the plants themselves, which causes hazard for workers and customers in a later stage. Radon gas is measured in two kinds of greenhouses, one of them is constructed from plastic sheet and the other from glass (Agriculture Research Center - Horticulture Research Institute) using CR-39 NTDs as a passive technique. It based on the production of track in the detector due to alpha-particles emitted from radon and its progeny. The observed track densities are then converted to annual radon dose to be 12.36 mSv and 8.3 mSv for the plastic and glass greenhouses under investigation, respectively. It is also found that the workers have been subject to regulatory control

  19. Microclimate evaluation of a new design of insect-proof screens in a Mediterranean greenhouse

    Directory of Open Access Journals (Sweden)

    Alejandro Lopez-Martinez

    2014-05-01

    Full Text Available This work studies natural ventilation in a Mediterranean greenhouse, comparing a new experimental screen of 13×30 threads cm-2 (porosity 39.0% with a commercial control screen of 10×20 threads cm-2 (porosity 33.5%. In addition, both screens were tested in a wind tunnel to determine the discharge coefficients Cd of the greenhouse side and roof vents, which proved to be 0.16 for the commercial control screen and 0.18 for the experimental screen at both vents. These values represent a theoretical increase of 11% (Cd,φ-10×20 /Cd,φ-13×30 = 0.89 in the natural ventilation capacity of the greenhouse when the experimental screen is used. The greenhouse was divided into two separate sections allowing us to analyze natural ventilation in both sectors simultaneously. Air velocity was measured in the lateral and roof vents with two 3D and six 2D sonic anemometers. Using the commercial control screen there was an average reduction of 16% in ventilation rate, and an average increase of 0.5ºC in the average indoor air temperature, compared to the experimental screen. In addition, the ventilation efficiency ηT was higher with the experimental screen (mean value of 0.9 than with the control (mean value 0.6. We have designed an experimental insect-proof screen (13×30 threads cm-2 with smaller thread diameter, higher thread density, smaller pore size and higher porosity than are used in most commercial meshes. All of these factors promote natural ventilation and improve the greenhouse microclimate.

  20. Perceptions and attitudes of the French about the greenhouse effect; Les francais et l'effet de serre: perceptions et attitudes

    Energy Technology Data Exchange (ETDEWEB)

    Moisan, F. [Agence de l' Environnement et de la Maitrise de l' Energie, ADEME, 75 - Paris (France)

    2003-01-01

    ADEME conducts a yearly survey of a representative sample of the French population in order to assess perceptions of the greenhouse effect and to gauge people's willingness to change everyday activities so as to limit the emission of greenhouse gases. A first series of questions tries to identify how the French perceive and understand phenomena related to the greenhouse effect. Their opinions are collected about the means to fight against this effect and, in particular, about the actions they would be able to undertake personally. The 2002 survey, its major results presented herein, tried to assess the degree of acceptability of definite measures for fighting against the greenhouse effect. This sort of opinion poll should bring to light certain presuppositions underlying people's expectations and perhaps lead us to bear in mind the long term while imagining more ambitious changes in our life-styles. (author)

  1. Biological methanogenesis and the CO2 greenhouse effect

    Science.gov (United States)

    Guthrie, P. D.

    1986-01-01

    It is well established that plants tend to increase net photosynthesis under increased carbon dioxide. It is also well established that a large fraction of atmospheric methane is produced by microbial metabolism of organic sediments in paddies and freshwater wetlands, where a major source of organic debris is local plant growth. As CO2 increases, it may lead to increased methane production and a resulting enhancement of the expected greenhouse warming. A rough estimate of the present rate of this biologically mediated feedback on the climate system indicates that it might account for as much as 30 percent of the observed methane increase and speed up the greenhouse forcing by as much as 15 percent.

  2. Modeling and simulation of fuzzy logic controller for optimization of the greenhouse microclimate management

    Directory of Open Access Journals (Sweden)

    Didi Faouzi

    2017-06-01

    become increasingly sophisticated and of an industrial nature (heating, air conditioning, control, computer, regulation, etc. New climate driving techniques have emerged, including the use of control devices from the classic to the use of artificial intelligence such as neural networks and / or fuzzy logic, etc. As a result, the greenhouse growers prefer these new technologies while optimizing the investment in the field to effectively meet the supply and demand of these fresh products cheaply and widely available throughout the year, The application of artificial intelligence in the industry known for considerable growth, which is not the case in the field of agricultural greenhouses, where enforcement remains timid. It is from this fact, we undertake research work in this area and conduct a simulation based on meteorological data through MATLAB Simulink to finally analyze the thermal behavior - greenhouse microclimate energy.

  3. The greenhouse effect in a gray planetary atmosphere.

    Science.gov (United States)

    Wildt, R.

    1966-01-01

    Hopf analytical solution for values of ratio of gray absorption coefficients for insolating and escaping radiation /greenhouse parameter/ assumed constant at all depths, presenting temperature distribution graphs

  4. Greenhouse effect may not be all bad

    International Nuclear Information System (INIS)

    Senft, D.

    1990-01-01

    Evidence is presented that indicates US temperatures decreased by a fraction of a degree during the past 70 years contrary to the estimates of some researchers concerned with the greenhouse effect. There is general agreement that the carbon dioxide concentrations in the atmosphere will double by the late or mid 21st century. Experiments on cotton growth under increased temperature and carbon dioxide concentrations indicate sizeable gains in yield. This increased yield is exhibited by citrus trees and is projected for other crops. There is a concomitant need for more water and fertilizer. Increased populations of parasitic mites and insects also occur. Climatic changes are seen as being more gradual than previously thought. The possible increases in food production under these changes in climate are one positive element in the emerging scenario

  5. The social representations of the greenhouse effect. Synthesis (second inquiry); Les representations sociales de l'effet de serre. Note de synthese (2. vague d'enquete)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2001-06-01

    This document presents the results analysis to the inquiry realized during february and march 2001 on the greenhouse effect perception by the public. This inquiry follows the first inquiry of spring 2000. The following questions have been asked and analyzed: what is the greenhouse effect, who is responsible of the greenhouse effect, what will be the consequences of the greenhouse effect, how to meet with this effect, information and perception. (A.L.B.)

  6. The greenhouse effect: reality, consequences and solutions; L'effet de serre: realite, consequences et solutions

    Energy Technology Data Exchange (ETDEWEB)

    Ducroux, R.; Philippe, J.B.

    2004-09-01

    Devoted to the public, this synthesis on the greenhouse effect takes stock on the main questions of the context: what is the accuracy degree of simulations? From where are coming the greenhouse gases? What are their consequences in France and in the world, in particular in developing countries? What about some solutions? What are the main today research axis in national and international plans, that are likely to control this phenomena? (A.L.B.)

  7. GREENHOUSE-GROWN CAPE GOOSEBERRY

    African Journals Online (AJOL)

    /2006 S 4,00. Printed in Uganda. All rights reserved O2006, African Crop Science Society. SHORT COMMINICATION. EFFECT OF GIBBERRELLIC ACID ON GROWTH AND FRUIT YIELD OF. GREENHOUSE-GROWN CAPE GOOSEBERRY.

  8. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    Energy Technology Data Exchange (ETDEWEB)

    Gillett, Nathan P [Canadian Centre for Climate Modelling and Analysis, Environment Canada, University of Victoria, PO Box 1700, STN CSC, Victoria, BC, V8W 3V6 (Canada); Matthews, H Damon, E-mail: nathan.gillett@ec.gc.ca [Department of Geography, Planning and Environment, Concordia University, 1455 de Maisonneuve West, H 1255-26, Montreal, QC, H3G 1M8 (Canada)

    2010-07-15

    Greenhouse gases other than CO{sub 2} make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO{sub 2} emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO{sub 2} and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO{sub 2} following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by {approx} 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO{sub 2} from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  9. Accounting for carbon cycle feedbacks in a comparison of the global warming effects of greenhouse gases

    International Nuclear Information System (INIS)

    Gillett, Nathan P; Matthews, H Damon

    2010-01-01

    Greenhouse gases other than CO 2 make a significant contribution to human-induced climate change, and multi-gas mitigation strategies are cheaper to implement than those which limit CO 2 emissions alone. Most practical multi-gas mitigation strategies require metrics to relate the climate warming effects of CO 2 and other greenhouse gases. Global warming potential (GWP), defined as the ratio of time-integrated radiative forcing of a particular gas to that of CO 2 following a unit mass emission, is the metric used in the Kyoto Protocol, and we define mean global temperature change potential (MGTP) as an equivalent metric of the temperature response. Here we show that carbon-climate feedbacks inflate the GWPs and MGTPs of methane and nitrous oxide by ∼ 20% in coupled carbon-climate model simulations of the response to a pulse of 50 x 1990 emissions, due to a warming-induced release of CO 2 from the land biosphere and ocean. The magnitude of this effect is expected to be dependent on the model, but it is not captured at all by the analytical models usually used to calculate metrics such as GWP. We argue that the omission of carbon cycle dynamics has led to a low bias of uncertain but potentially substantial magnitude in metrics of the global warming effect of other greenhouse gases, and we suggest that the carbon-climate feedback should be considered when greenhouse gas metrics are calculated and applied.

  10. Determination of Pesticides Residues in Cucumbers Grown in Greenhouse and the Effect of Some Procedures on Their Residues.

    Science.gov (United States)

    Leili, Mostafa; Pirmoghani, Amin; Samadi, Mohammad Taghi; Shokoohi, Reza; Roshanaei, Ghodratollah; Poormohammadi, Ali

    2016-11-01

    The objective of this study was to determine the residual concentrations of ethion and imidacloprid in cucumbers grown in greenhouse. The effect of some simple processing procedures on both ethion and imidacloprid residues were also studied. Ten active greenhouses that produce cucumber were randomly selected. Ethion and imidacloprid as the most widely used pesticides were measured in cucumber samples of studied greenhouses. Moreover, the effect of storing, washing, and peeling as simple processing procedures on both ethion and imidacloprid residues were investigated. One hour after pesticide application; the maximum residue levels (MRLs) of ethion and imidacloprid were higher than that of Codex standard level. One day after pesticide application, the levels of pesticides were decreased about 35 and 31% for ethion and imidacloprid, respectively, which still were higher than the MRL. Washing procedure led to about 51 and 42.5% loss in ethion and imidacloprid residues, respectively. Peeling procedure also led to highest loss of 93.4 and 63.7% in ethion and imidacloprid residues, respectively. The recovery for both target analytes was in the range between 88 and 102%. The residue values in collected samples one hour after pesticides application were higher than standard value. The storing, washing, and peeling procedures lead to the decrease of pesticide residues in greenhouse cucumbers. Among them, the peeling procedure has the greatest impact on residual reduction. Therefore, these procedures can be used as simple and effective processing techniques for reducing and removing pesticides from greenhouse products before their consumption.

  11. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Directory of Open Access Journals (Sweden)

    Seung-Hwan Yang

    2016-03-01

    Full Text Available If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE, which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE.

  12. Surplus thermal energy model of greenhouses and coefficient analysis for effective utilization

    Energy Technology Data Exchange (ETDEWEB)

    Yang, S.H.; Son, J.E.; Lee, S.D.; Cho, S.I.; Ashtiani-Araghi, A.; Rhee, J.Y.

    2016-11-01

    If a greenhouse in the temperate and subtropical regions is maintained in a closed condition, the indoor temperature commonly exceeds that required for optimal plant growth, even in the cold season. This study considered this excess energy as surplus thermal energy (STE), which can be recovered, stored and used when heating is necessary. To use the STE economically and effectively, the amount of STE must be estimated before designing a utilization system. Therefore, this study proposed an STE model using energy balance equations for the three steps of the STE generation process. The coefficients in the model were determined by the results of previous research and experiments using the test greenhouse. The proposed STE model produced monthly errors of 17.9%, 10.4% and 7.4% for December, January and February, respectively. Furthermore, the effects of the coefficients on the model accuracy were revealed by the estimation error assessment and linear regression analysis through fixing dynamic coefficients. A sensitivity analysis of the model coefficients indicated that the coefficients have to be determined carefully. This study also provides effective ways to increase the amount of STE. (Author)

  13. Greenhouse gas emission reduction options and strategies

    International Nuclear Information System (INIS)

    Kane, R.L.

    1994-01-01

    This paper describes the energy-related components of the Clinton Administration's Climate Change Action Plan. The Action Plan was formulated to meet the Administration's commitment of returning US emissions of greenhouse gases to 1990 levels by the year 2000. The paper discusses what the energy industry and energy consumers will be requested to do in order to meet this commitment. Several themes addressed in this paper include: (1) the largely voluntary nature of the actions identified in the Action Plan; (2) consideration of diverse opportunities to reduce emissions; (3) the outlook for US greenhouse gas emissions after 2000; and (4) actions involved for speeding the utilization of new, energy efficient technologies both domestically and abroad. The value of employing a diverse set of activities and the important role of technology improvements will be explored further in section 10 of this volume: ''Greenhouse Gas Emission Mitigation Strategies.'' Papers presented there include the utilization of more efficient fossil energy technologies, energy conservation and demand-side management programs, renewable energy and reforestation, and carbon dioxide capture and disposal

  14. Steps toward a cooler greenhouse

    International Nuclear Information System (INIS)

    Kerr, R.A.

    1991-01-01

    In April a committee of the National Academies of Science and Engineering and the Institute of Medicine urged the Bush Administration and Congress to begin cutting emissions of greenhouse gases immediately. The risk of delay is great, and the cost of insurance against disastrous climate warming is cheap. Now the committee's panel on mitigation has issued a 500-page report describing just how cheap that hedge against a climate calamity could be. The panel found that it would not be unreasonable to expect that a 25% reduction in US greenhouse gas emissions might be achieved at a cost of less than $10 per ton of carbon dioxide or its equivalent in other greenhouse gases. In more familiar terms, that considerable reduction in greenhouse emissions would cost about $4.75 for each barrel of oil burned or $0.11 per gallon of gasoline. The most cost-effective measures for reducing emissions, are increasing the energy efficiency of residential and commercial buildings and activities, vehicles, and industrial processes that use electricity

  15. Techno-economic analysis of wood biomass boilers for the greenhouse industry

    International Nuclear Information System (INIS)

    Chau, J.; Sowlati, T.; Sokhansanj, S.; Preto, F.; Melin, S.; Bi, X.

    2009-01-01

    The objective of this study is to perform a techno-economic analysis on a typical wood pellet and wood residue boiler for generation of heat to an average-sized greenhouse in British Columbia. The variables analyzed included greenhouse size and structure, boiler efficiency, fuel types, and source of carbon dioxide (CO 2 ) for crop fertilization. The net present value (NPV) show that installing a wood pellet or a wood residue boiler to provide 40% of the annual heat demand is more economical than using a natural gas boiler to provide all the heat at a discount rate of 10%. For an assumed lifespan of 25 years, a wood pellet boiler system could generate NPV of C$259,311 without electrostatic precipitator (ESP) and C$74,695 with ESP, respectively. While, installing a wood residue boiler with or without an ESP could provide NPV of C$919,922 or C$1,104,538, respectively. Using a wood biomass boiler could also eliminate over 3000 tonne CO 2 equivalents of greenhouse gases annually. Wood biomass combustion generates more particulate matters than natural gas combustion. However, an advanced emission control system could significantly reduce particulate matters emission from wood biomass combustion which would bring the particulate emission to a relatively similar level as for natural gas

  16. The great terror of the year 2005: carbon dioxide - Another approach of the Greenhouse Effect

    International Nuclear Information System (INIS)

    Pierre Lutgen

    1997-01-01

    The report speaks of a new vision about the greenhouse effect and its possible consequences in the planet. An increase of the CO2 in the atmosphere doesn't have disastrous effects, the study made in 475 varieties of plants shows that its speed of growth would increase in 50% if the CO2 passed from 350 ppm to 650 ppm; the CO2 not only feeds the plants but rather it assures the daily bread to many scientists. The apocalyptic reports of the IPCC on those which the pathetic call of justice et Pa will be made are refuted every time but for scientific. The scientific bases of the greenhouse effect due to the dioxide of carbon are questionable and they don't justify precipitate and drastic actions

  17. Potential for large-scale solar collector system to offset carbon-based heating in the Ontario greenhouse sector

    Science.gov (United States)

    Semple, Lucas M.; Carriveau, Rupp; Ting, David S.-K.

    2018-04-01

    In the Ontario greenhouse sector the misalignment of available solar radiation during the summer months and large heating demand during the winter months makes solar thermal collector systems an unviable option without some form of seasonal energy storage. Information obtained from Ontario greenhouse operators has shown that over 20% of annual natural gas usage occurs during the summer months for greenhouse pre-heating prior to sunrise. A transient model of the greenhouse microclimate and indoor conditioning systems is carried out using TRNSYS software and validated with actual natural gas usage data. A large-scale solar thermal collector system is then incorporated and found to reduce the annual heating energy demand by approximately 35%. The inclusion of the collector system correlates to a reduction of about 120 tonnes of CO2 equivalent emissions per acre of greenhouse per year. System payback period is discussed considering the benefits of a future Ontario carbon tax.

  18. The impact of liberalization on the greenhouse sector and the environment in the Netherlands

    International Nuclear Information System (INIS)

    Van Gelder, J.W.

    2000-01-01

    Many owners of greenhouses in the Netherlands are afraid they will have to pay higher prices for their energy once the new Dutch Natural Gas Act will come into effect for them too in 2004. It is expected that the use of cogeneration installations and waste heat will no longer be efficient, while the extra use of natural gas for CO2 fertilization and co-firing of less clean fuel oil will become economically more attractive. There is still time to look for operational adjustments and an alternative pricing system

  19. Student Teacher Understanding of the Greenhouse Effect, Ozone Layer Depletion, and Acid Rain.

    Science.gov (United States)

    Dove, Jane

    1996-01-01

    Describes the results of a survey designed to ascertain details of student teachers' knowledge and misconceptions about the greenhouse effect, acid rain, and ozone layer depletion. Results indicate familiarity with the issues but little understanding of the concepts involved and many commonly held misconceptions. (JRH)

  20. Global greenhouse and energy situation and outlook

    International Nuclear Information System (INIS)

    Allen, R.W.; Clively, S.R.; Tilley, J.W.

    1990-01-01

    Fossil fuels provide the basis for world energy usage and, in the absence of fundamental policy changes, are expected to continue to do so for the next few decades. However, the prospect of global warming due to the greenhouse effect will have profound implications for the use of energy. This paper outlines the current situation and trends in world energy use, with a focus on energy requirements by region and fuel. Implications for greenhouse gas emissions and greenhouse policy challenges are also discussed. 8 refs., 1 tab., 2 figs

  1. Effect of advanced injection timing on emission characteristics of diesel engine running on natural gas

    Energy Technology Data Exchange (ETDEWEB)

    Nwafor, O.M.I. [Department of Mechanical Engineering, Federal University of Technology, Owerri, Imo State (Nigeria)

    2007-11-15

    There has been a growing concern on the emission of greenhouse gases into the atmosphere, whose consequence is global warming. The sources of greenhouse gases have been identified, of which the major contributor is the combustion of fossil fuel. Researchers have intensified efforts towards identifying greener alternative fuel substitutes for the present fossil fuel. Natural gas is now being investigated as potential alternative fuel for diesel engines. Natural gas appears more attractive due to its high octane number and perhaps, due to its environmental friendly nature. The test results showed that alternative fuels exhibit longer ignition delay, with slow burning rates. Longer delays will lead to unacceptable rates of pressure rise with the result of diesel knock. This work examines the effect of advanced injection timing on the emission characteristics of dual-fuel engine. The engine has standard injection timing of 30 BTDC. The injection was first advanced by 5.5 and given injection timing of 35.5 BTDC. The engine performance was erratic on this timing. The injection was then advanced by 3.5 . The engine performance was smooth on this timing especially at low loading conditions. The ignition delay was reduced through advanced injection timing but tended to incur a slight increase in fuel consumption. The CO and CO{sub 2} emissions were reduced through advanced injection timing. (author)

  2. Life-cycle energy and greenhouse gas emission impacts of different corn ethanol plant types

    International Nuclear Information System (INIS)

    Wang, Michael; Wu, May; Hong Huo

    2007-01-01

    Since the United States began a programme to develop ethanol as a transportation fuel, its use has increased from 175 million gallons in 1980 to 4.9 billion gallons in 2006. Virtually all of the ethanol used for transportation has been produced from corn. During the period of fuel ethanol growth, corn farming productivity has increased dramatically, and energy use in ethanol plants has been reduced by almost by half. The majority of corn ethanol plants are powered by natural gas. However, as natural gas prices have skyrocketed over the last several years, efforts have been made to further reduce the energy used in ethanol plants or to switch from natural gas to other fuels, such as coal and wood chips. In this paper, we examine nine corn ethanol plant types-categorized according to the type of process fuels employed, use of combined heat and power, and production of wet distiller grains and solubles. We found that these ethanol plant types can have distinctly different energy and greenhouse gas emission effects on a full fuel-cycle basis. In particular, greenhouse gas emission impacts can vary significantly-from a 3% increase if coal is the process fuel to a 52% reduction if wood chips are used. Our results show that, in order to achieve energy and greenhouse gas emission benefits, researchers need to closely examine and differentiate among the types of plants used to produce corn ethanol so that corn ethanol production would move towards a more sustainable path

  3. Towards European organisation for integrated greenhouse gas observation system

    Science.gov (United States)

    Kaukolehto, Marjut; Vesala, Timo; Sorvari, Sanna; Juurola, Eija; Paris, Jean-Daniel

    2013-04-01

    Climate change is one the most challenging problems that humanity will have to cope with in the coming decades. The perturbed global biogeochemical cycles of the greenhouse gases (carbon dioxide, methane and nitrous oxide) are a major driving force of current and future climate change. Deeper understanding of the driving forces of climate change requires full quantification of the greenhouse gas emissions and sinks and their evolution. Regional greenhouse gas budgets, tipping-points, vulnerabilities and the controlling mechanisms can be assessed by long term, high precision observations in the atmosphere and at the ocean and land surface. ICOS RI is a distributed infrastructure for on-line, in-situ monitoring of greenhouse gases (GHG) necessary to understand their present-state and future sinks and sources. ICOS RI provides the long-term observations required to understand the present state and predict future behaviour of the global carbon cycle and greenhouse gas emissions. Linking research, education and innovation promotes technological development and demonstrations related to greenhouse gases. The first objective of ICOS RI is to provide effective access to coherent and precise data and to provide assessments of GHG inventories with high temporal and spatial resolution. The second objective is to provide profound information for research and understanding of regional budgets of greenhouse gas sources and sinks, their human and natural drivers, and the controlling mechanisms. ICOS is one of several ESFRI initiatives in the environmental science domain. There is significant potential for structural and synergetic interaction with several other ESFRI initiatives. ICOS RI is relevant for Joint Programming by providing the data access for the researchers and acting as a contact point for developing joint strategic research agendas among European member states. The preparatory phase ends in March 2013 and there will be an interim period before the legal entity will

  4. Effect Of Gamma Rays And Growth Regulators On Explants Excised From In Vitro Shoots And Greenhouse Seedlings, Of Pepper (Capsicum Annum L.)

    International Nuclear Information System (INIS)

    Maarouf, A. A.; Kassem, M.

    2004-01-01

    This experiment was conducted on pepper (Capsicum annum L.) to compare the ability of the in vitro explants with those of greenhouse grown seedlings on shoot proliferation and callus formation and their ability to form plantlets and the effect of gamma irradiation and growth regulators on the shoot tip, hypocotyls and leaf tissue was used as laboratory explants, leaf tissue nodes and internodes were taken from greenhouse seedlings. 6- benzyla-minopurine (BAP) in different concentrations was combined with Indoleacertic acid (IAA) to know their effect on shoot proliferation, 2,4 - Dichlorophenoxy acetic acid (2,4- D) was used for callus formation, and use stimulation effect of gamma irradiation, potassium nitrat (KNO 3 ), Thidaiazurom (TDZ) and casine hydrolysate (CH) for plantlet formation. The results showed that the highest percentage of callus was obtained by in vitro hypocotyls and greenhouse grown nodes followed by in vitro leaf tissue thereafter greenhouse leaf tissue. The shoot tips were the lowest efficient explants in producing callus in both in vitro and greenhouse ones. The highest percentage of shooting resulted from shoot tip, hypocotyls and leaf tissue of in vitro explants, followed by shoot tip, nodes and internodes of greenhouse grown explants and the lowest percentage was recorded by leaf tissue. Highest percentage of shoot number was obtained form greenhouse grown shoot tip followed by in vitro shoot tip, hypocotyls and leaf tissue of greenhouse grown seedlings the internodes were the lowest efficient in producing shoots. The highest success in plantlet formation was caused by TDZ followed by gamma irradiation and the other treatments were equaled. (Authors)

  5. Greenhouse gas strategy

    International Nuclear Information System (INIS)

    2001-03-01

    Because the overall effects of climate change will likely be more pronounced in the North than in other parts of the country, the Government of the Northwest Territories considers it imperative to support global and local actions to reduce greenhouse gas emissions. Government support is manifested through a coordinating role played by senior government representatives in the development of the NWT Greenhouse Gas Strategy, and by participation on a multi-party working committee to identify and coordinate northern actions and to contribute a northern perspective to Canada's National Climate Change Implementation Strategy. This document outlines the NWT Government's goals and objectives regarding greenhouse gas emission reduction actions. These will include efforts to enhance awareness and understanding; demonstrate leadership by putting the Government's own house in order; encouraging action across sectors; promote technology development and innovation; invest in knowledge and building the foundation for informed future decisions. The strategy also outlines the challenges peculiar to the NWT, such as the high per person carbon dioxide emissions compared to the national average (30 tonnes per person per year as opposed to the national average of 21 tonnes per person per year) and the increasing economic activity in the Territories, most of which are resource-based and therefore energy-intensive. Appendices which form part of the greenhouse gas strategy document, provide details of the potential climate change impact in the NWT, a detailed explanation of the proposed measures, an emission forecast to 2004 from industrial processes, fuel combustion and incineration, and a statement of the official position of the Government of the NWT on climate change

  6. The Effect of Greenhouse Gas Mitigation on Drought Impacts in the U.S.

    Science.gov (United States)

    In this paper, we present a methodology for analyzing the economic benefits in the U.S. of changes in drought frequency and severity due to global greenhouse gas (GHG) mitigation. We construct reduced-form models of the effect of drought on agriculture and reservoir recreation i...

  7. Greenhouse gas emissions from alternative futures of deforestation and agricultural management in the southern Amazon.

    Science.gov (United States)

    Galford, Gillian L; Melillo, Jerry M; Kicklighter, David W; Cronin, Timothy W; Cerri, Carlos E P; Mustard, John F; Cerri, Carlos C

    2010-11-16

    The Brazilian Amazon is one of the most rapidly developing agricultural areas in the world and represents a potentially large future source of greenhouse gases from land clearing and subsequent agricultural management. In an integrated approach, we estimate the greenhouse gas dynamics of natural ecosystems and agricultural ecosystems after clearing in the context of a future climate. We examine scenarios of deforestation and postclearing land use to estimate the future (2006-2050) impacts on carbon dioxide (CO(2)), methane (CH(4)), and nitrous oxide (N(2)O) emissions from the agricultural frontier state of Mato Grosso, using a process-based biogeochemistry model, the Terrestrial Ecosystems Model (TEM). We estimate a net emission of greenhouse gases from Mato Grosso, ranging from 2.8 to 15.9 Pg CO(2)-equivalents (CO(2)-e) from 2006 to 2050. Deforestation is the largest source of greenhouse gas emissions over this period, but land uses following clearing account for a substantial portion (24-49%) of the net greenhouse gas budget. Due to land-cover and land-use change, there is a small foregone carbon sequestration of 0.2-0.4 Pg CO(2)-e by natural forests and cerrado between 2006 and 2050. Both deforestation and future land-use management play important roles in the net greenhouse gas emissions of this frontier, suggesting that both should be considered in emissions policies. We find that avoided deforestation remains the best strategy for minimizing future greenhouse gas emissions from Mato Grosso.

  8. Sludge thermal oxidation processes: mineral recycling, energy impact, and greenhouse effect gases release

    Energy Technology Data Exchange (ETDEWEB)

    Guibelin, Eric

    2003-07-01

    Different treatment routes have been studied for a mixed sludge: the conventional agricultural use is compared with the thermal oxidation processes, including incineration (in gaseous phase) and wet air oxidation (in liquid phase). The interest of a sludge digestion prior to the final treatment has been also considered according to the two major criteria, which are the fossil energy utilisation and the greenhouse effect gases (CO{sub 2}, CH{sub 4}, N{sub 2}O) release. Thermal energy has to be recovered on thermal processes to make these processes environmentally friendly, otherwise their main interest is to extract or destroy micropollutants and pathogens from the carbon cycle. In case of continuous energy recovery, incineration can produce more energy than it consumes. Digestion is especially interesting for agriculture: according to these two schemes, the energy final balance can also be in excess. As to wet air oxidation, it is probably one of the best way to minimize greenhouse effect gases emission. (author)

  9. Can rubber help against the greenhouse effect?

    NARCIS (Netherlands)

    Blume, Anke

    2015-01-01

    Car traffic has a significant share in worldwide greenhouse gas emissions. ­Despite many improvements in the past there is still a big potential for further reductions of the CO2 emissions. Many parts of a car can be replaced by thermoplastics or elastomers in order to reduce weight. In addition,

  10. Study of greenhouse gases emission factor for nuclear power chain of China

    International Nuclear Information System (INIS)

    Ma Zhonghai; Pan Ziqiang; Xie Jianlun; Xiu Binglin

    2001-01-01

    The Greenhouse Gases Emission Factor (GGEF) for nuclear power chain of China is calculated based on Life Cycle Analysis method and the definition of full energy chain. There is no greenhouse gases released directly from nuclear power plant. The greenhouse gases emission from nuclear power plant is mainly from coal-fired electricity supply to nuclear power plant for its normal operation and the production of construction materials those are used in the nuclear power plant. The total GGEF of nuclear power chain in China is 13.71 g-co 2 /kWh. It is necessary to regulate un-rational power source mix and to use the energy sources in rational way for reducing the greenhouse gas effect. Nuclear power for electricity generation is one of effective ways to reduce greenhouse gases emission and retard the greenhouse effect

  11. International policies to address the greenhouse effect. Encouraging developing country participation in global greenhouse control strategies

    International Nuclear Information System (INIS)

    Gupta, J.; Hischenmoller, M.; Vellinga, P.; Van der Wurff, R.; Junne, G.

    1995-01-01

    The conditions under which developing country governments are likely to feel motivated to take real action in addressing the greenhouse gas problem and the international mechanisms that are likely to succeed are briefly outlined

  12. Second Greenhouse Gas Information System Workshop

    Science.gov (United States)

    Boland, S. W.; Duren, R. M.; Mitchiner, J.; Rotman, D.; Sheffner, E.; Ebinger, M. H.; Miller, C. E.; Butler, J. H.; Dimotakis, P.; Jonietz, K.

    2009-12-01

    The second Greenhouse Gas Information System (GHGIS) workshop was held May 20-22, 2009 at the Sandia National Laboratories in Albuquerque, New Mexico. The workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was organized by an interagency collaboration between NASA centers, DOE laboratories, and NOAA. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales in order to significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies. This talk provides an overview of the second Greenhouse Gas Information System workshop, presents its key findings, and discusses current status and next steps in this interagency collaborative effort.

  13. Studying the Physical Basis of Global Warming: Thermal Effects of the Interaction between Radiation and Matter and Greenhouse Effect

    Science.gov (United States)

    Besson, Ugo; De Ambrosis, Anna; Mascheretti, Paolo

    2010-01-01

    We present a teaching module dealing with the thermal effects of interaction between radiation and matter, the infrared emission of bodies and the greenhouse effect devoted to university level and teacher education. The module stresses the dependence of the optical properties of materials (transparency, absorptivity and emissivity) on radiation…

  14. A space parasol as a countermeasure against the greenhouse effect

    Science.gov (United States)

    Hudson, H. S.

    1991-01-01

    It is suggested that the deployment of a 'space parasol' at the L1 Langrangian point of the earth-sun system would serve to intercept some desired fraction of the solar radiant energy, thereby lessening the impact of the greenhouse effect. The parasol satellites are described and possible orbit configurations are discussed. Orbital possibilities include Low Earth Orbit, Geosynchronous orbit, and L1 which appears to be the best option. Structural strength, control, and use of extraterrestrial material in the construction of the parasol are discussed.

  15. Land Use Effects on Net Greenhouse Gas Fluxes in the US Great Plains: Historical Trends and Model Projections

    Science.gov (United States)

    Del Grosso, S. J.; Parton, W. J.; Ojima, D. S.; Mosier, A. R.; Mosier, A. R.; Paustian, K.; Peterson, G. A.

    2001-12-01

    We present maps showing regional patterns of land use change and soil C levels in the US Great Plains during the 20th century and time series of net greenhouse gas fluxes associated with different land uses. Net greenhouse gas fluxes were calculated by accounting for soil CO2 fluxes, the CO2 equivalents of N2O emissions and CH4 uptake, and the CO2 costs of N fertilizer production. Both historical and modern agriculture in this region have been net sources of greenhouse gases. The primary reason for this, prior to 1950, is that agriculture mined soil C and resulted in net CO2 emissions. When chemical N fertilizer became widely used in the 1950's agricultural soils began to sequester CO2-C but these soils were still net greenhouse gas sources if the effects of increased N2O emissions and decreased CH4 uptake are included. The sensitivity of net greenhouse gas fluxes to conventional and alternative land uses was explored using the DAYCENT ecosystem model. Model projections suggest that conversion to no-till, reduction of the fallow period, and use of nitrification inhibitors can significantly decrease net greenhouse gas emissions in dryland and irrigated systems, while maintaining or increasing crop yields.

  16. Are greenhouse gas emissions from international shipping a type of marine pollution?

    International Nuclear Information System (INIS)

    Shi, Yubing

    2016-01-01

    Whether greenhouse gas emissions from international shipping are a type of marine pollution is a controversial issue and is currently open to debate. This article examines the current treaty definitions of marine pollution, and applies them to greenhouse gas emissions from ships. Based on the legal analysis of treaty definitions and relevant international and national regulation on this issue, this article asserts that greenhouse gas emissions from international shipping are a type of ‘conditional’ marine pollution. - Highlights: • Greenhouse gas (GHG) emissions from international shipping are a type of ‘conditional’ marine pollution. • Shipping CO 2 may be treated as marine pollution under the 1972 London Dumping Convention. • Countries have adopted different legislation concerning the legal nature of GHG emissions from ships. • Regulating CO 2 emissions from ships as marine pollution may expedite global GHG emissions reduction.

  17. Reducing the greenhouse gas footprint of shale gas

    International Nuclear Information System (INIS)

    Wang Jinsheng; Ryan, David; Anthony, Edward J.

    2011-01-01

    Shale gas is viewed by many as a global energy game-changer. However, serious concerns exist that shale gas generates more greenhouse gas emissions than does coal. In this work the related published data are reviewed and a reassessment is made. It is shown that the greenhouse gas effect of shale gas is less than that of coal over long term if the higher power generation efficiency of shale gas is taken into account. In short term, the greenhouse gas effect of shale gas can be lowered to the level of that of coal if methane emissions are kept low using existing technologies. Further reducing the greenhouse gas effect of shale gas by storing CO 2 in depleted shale gas reservoirs is also discussed, with the conclusion that more CO 2 than the equivalent CO 2 emitted by the extracted shale gas could be stored in the reservoirs at significantly reduced cost. - Highlights: ► The long-term greenhouse gas footprint of shale gas is smaller than that of coal. ► Carbon capture and storage should be considered for fossil fuels including shale gas. ► Depleted shale gas fields could store more CO 2 than the equivalent emissions. ► Linking shale gas development with CO 2 storage could largely reduce the total cost.

  18. Optimizing Greenhouse Lighting for Advanced Agriculture Based on Real Time Electricity Market Price

    Directory of Open Access Journals (Sweden)

    Mehdi Mahdavian

    2017-01-01

    Full Text Available The world’s growing demand for food can be met by agricultural technology. Use of artificial light to supplement natural sunlight in greenhouse cultivation is one of the most common techniques to increase greenhouse production of food crops. However, artificial light requires significant electrical energy, which increases the cost of greenhouse production and can reduce profit. This paper models the increments to greenhouse productivity as well as the increases in cost from supplemental electric lighting, in a situation where the greenhouse is one of the elements of a smart grid, a system where the electric energy market is dynamic and prices vary over time. We used our models to calculate the optimum values for supplemental light and the required electrical energy for HPS lamps in the greenhouse environment, using cherry tomato cultivation as a case study crop. We considered two optimization techniques: iterative search (IS and genetic algorithm (GA. The two approaches produced similar results, although the GA method was much faster. Both approaches verify the advantages of using optimal supplemental light in terms of increasing production and hence profit.

  19. Misperception and mismanagement of the greenhouse effect?

    International Nuclear Information System (INIS)

    Hatlebakk, M.; Moxnes, E.

    1992-12-01

    We present a stochastic simulation model of the world economy, useful for the analysis of climate policy. The model will also be used in an experiment to investigate the ability of policy makers to tackle the greenhouse problem. Preliminary simulations are conducted to find an optimal stationary tax rate. 30 refs., 6 figs., 10 tabs

  20. Factor Analysis of Drawings: Application to College Student Models of the Greenhouse Effect

    Science.gov (United States)

    Libarkin, Julie C.; Thomas, Stephen R.; Ording, Gabriel

    2015-01-01

    Exploratory factor analysis was used to identify models underlying drawings of the greenhouse effect made by over 200 entering university freshmen. Initial content analysis allowed deconstruction of drawings into salient features, with grouping of these features via factor analysis. A resulting 4-factor solution explains 62% of the data variance,…

  1. Leveling the playing field of transportation fuels: Accounting for indirect emissions of natural gas

    International Nuclear Information System (INIS)

    Sexton, Steven; Eyer, Jonathan

    2016-01-01

    Natural gas transportation fuels are credited in prior studies with greenhouse gas emissions savings relative to petroleum-based fuels and relative to the total emissions of biofuels. These analyses, however, overlook a source of potentially large indirect emissions from natural gas transportation fuels, namely the emissions from incremental coal-fired generation caused by price-induced substitutions away from natural-gas-fired electricity generation. Because coal-fired generation emits substantially more greenhouse gases and criteria air pollutants than natural-gas-fired generation, this indirect coal-use change effect diminishes potential emissions savings from natural gas transportation fuels. Estimates from a parameterized multi-market model suggest the indirect coal-use change effect rivals in magnitude the indirect land-use change effect of biofuels and renders natural gas fuels as carbon intensive as petroleum fuels. - Highlights: •Natural gas used in transport causes indirect emissions in the electricity sector. •These emissions result from increased coal use in electricity generation. •They rival in magnitude indirect land use change (ILUC) emissions of biofuels. •Natural gas fuels are estimated to be as carbon intensive as the petroleum fuels. •Policy ignores indirect emissions from natural gas.

  2. The social representations of the greenhouse effect. Progress report (third inquiry); Les representations sociales de l'effet de serre. Rapport d'etude (3. vague d'enquete)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2002-10-01

    This document presents the results analysis to the inquiry realized during july 2002 on the greenhouse effect perception by the public. This inquiry follows the inquiries realized in spring 2000 and winter 2001. The following questions have been asked and analyzed: what is the greenhouse effect, who is responsible of the greenhouse effect, what will be the consequences of the greenhouse effect, how to meet with this effect, information and perception. (A.L.B.)

  3. The effect of Sphagnum farming on the greenhouse gas balance of donor and propagation areas, irrigation polders and commercial cultivation sites

    Science.gov (United States)

    Oestmann, Jan; Tiemeyer, Bärbel

    2017-04-01

    Drainage of peatlands for agriculture, forestry and peat extraction turned these landscapes into hotspots of greenhouse gas emissions. Climate protection now fosters rewetting projects to restore the natural peatland function as a sink of atmospheric carbon. One possible way to combine ecological and economical goals is Sphagnum farming, i.e. the cultivation of Sphagnum mosses as high-quality substrates for horticulture. This project scientifically evaluates the attempt of commercial Sphagnum farming on former peat extraction sites in north-western Germany. The exchange of carbon dioxide (CO2), methane (CH4) and nitrous oxide (N2O) of the whole peatland-based production chain comprising a donor mire, a propagation area, an irrigation polder and a cultivation site will be determined in a high temporal resolution for two years using manual chambers. This will allow evaluating the greenhouse gas balance of Sphagnum farming sites in comparison to near-natural sites and the potential of Sphagnum farming for restoring drained peatlands to sinks of atmospheric carbon. The influence of different irrigation techniques will also be tested. Additionally, selected plots will be equipped with open top chambers in order to examine the greenhouse gas exchange under potential future climate change conditions. Finally, a 13C pulse labeling experiment will make it possible to trace the newly sequestered CO2 in biomass, soil, respiration and dissolved organic carbon.

  4. Greenhouse effect: A first estimation of the emissions in Italy

    International Nuclear Information System (INIS)

    Gaudioso, D.; Onufrio, G.

    1991-03-01

    The estimate of the anthropogenic emissions of greenhouse gases and the selection of the relevant emission factors represents a preliminary condition to define policies aiming at curbing these emissions. In the first part of this paper there is an analysis of C0 2 emission factors, referred to the various fuels and energy technologies. The values at issue take into account the physico-chemical composition of the different fossil fuels, as well as the overall efficiency of energy production cycles and end uses patterns. As concerns the other greenhouse gases, the available information is summarized at a much more integrate level. The second part presents some estimates of carbon dioxide emissions in Italy, by sector and by fuel; some characteristic levels of specific emissions are also identified. A comparative estimate for CH 4 , N 2 O, CO and CFC's is also made, in order to set up a first reference table of the emissions of greenhouse gases in our country. (author)

  5. Stabilising the global greenhouse. A simulation model

    International Nuclear Information System (INIS)

    Michaelis, P.

    1993-01-01

    This paper investigates the economic implications of a comprehensive approach to greenhouse policies that strives to stabilise the atmospheric concentration of greenhouse gases at an ecolocially determined threshold level. In a theoretical optimisation model conditions for an efficient allocation of abatement effort among pollutants and over time are derived. The model is empirically specified and adapted to a dynamic Gams-algorithm. By various simulation runs for the period of 1990 to 2110, the economics of greenhouse gas accumulation are explored. In particular, the long-run cost associated with the above stabilisation target are evaluated for three different policy scenarios: i) A comprehensive approach that covers all major greenhouse gases simultaneously, ii) a piecemeal approach that is limited to reducing CO 2 emissions, and iii) a ten-year moratorium that postpones abatement effort until new scientific evidence on the greenhouse effect will become available. Comparing the simulation results suggests that a piecemeal approach would considerably increase total cost, whereas a ten-year moratorium might be reasonable even if the probability of 'good news' is comparatively small. (orig.)

  6. Improving material management to reduce greenhouse gas emissions

    NARCIS (Netherlands)

    Hekkert, Marko Peter

    2000-01-01

    Climate change due to greenhouse gas emissions caused by human actions is probably one of the major global environmental problems that we face today. In order to reduce the risk of climate change and the potential effects thereof, the emission of greenhouse gases like carbon dioxide (CO2) and

  7. Antarctic specific features of the greenhouse effect. A radiative analysis using measurements and models

    International Nuclear Information System (INIS)

    Schmithuesen, Holger

    2014-01-01

    CO 2 is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO 2 absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, it is shown that the greenhouse effect of CO 2 is around zero or even negative. Moreover, for central Antarctica an increase in CO 2 concentration leads to an increased long-wave energy loss to space, which cools the earth-atmosphere system. These unique findings for central Antarctica are in contrast to the well known general warming effect of increasing CO 2 . The work contributes to explain the non-warming of central Antarctica since 1957.

  8. Reducing greenhouse gas emissions from the Ontario automotive sector

    International Nuclear Information System (INIS)

    Anon.

    1995-11-01

    A variety of options to reduce greenhouse gas emissions from the automotive sector in Ontario over the next decade were discussed. Each option was assessed in terms of practicality and implications for implementation. I was concluded that improvements in fuel economy anticipated from advancing technology, with or without new mandated standards, will not be enough to offset the impact of growth in vehicle fleet size and kilometres driven. If the goal is to stabilize greenhouse gas emissions, other measures such as reducing the fleet size and vehicle kilometres travelled and accelerated vehicle retirement (scrappage) programs must be considered. Key constraints on expansion of the alternative fuel fleet were identified. These include: (1) limited availability of an adequate range of alternative fuel vehicles at competitive prices, (2) limited refuelling facility infrastructure in the case of natural gas, limited range and fuel storage capacity for natural gas; (3)current limited fuel ethanol production capacity, and (4) market perceptions of performance, reliability and safety. tabs

  9. Life cycle greenhouse gas emissions from U.S. liquefied natural gas exports: implications for end uses.

    Science.gov (United States)

    Abrahams, Leslie S; Samaras, Constantine; Griffin, W Michael; Matthews, H Scott

    2015-03-03

    This study analyzes how incremental U.S. liquefied natural gas (LNG) exports affect global greenhouse gas (GHG) emissions. We find that exported U.S. LNG has mean precombustion emissions of 37 g CO2-equiv/MJ when regasified in Europe and Asia. Shipping emissions of LNG exported from U.S. ports to Asian and European markets account for only 3.5-5.5% of precombustion life cycle emissions, hence shipping distance is not a major driver of GHGs. A scenario-based analysis addressing how potential end uses (electricity and industrial heating) and displacement of existing fuels (coal and Russian natural gas) affect GHG emissions shows the mean emissions for electricity generation using U.S. exported LNG were 655 g CO2-equiv/kWh (with a 90% confidence interval of 562-770), an 11% increase over U.S. natural gas electricity generation. Mean emissions from industrial heating were 104 g CO2-equiv/MJ (90% CI: 87-123). By displacing coal, LNG saves 550 g CO2-equiv per kWh of electricity and 20 g per MJ of heat. LNG saves GHGs under upstream fugitive emissions rates up to 9% and 5% for electricity and heating, respectively. GHG reductions were found if Russian pipeline natural gas was displaced for electricity and heating use regardless of GWP, as long as U.S. fugitive emission rates remain below the estimated 5-7% rate of Russian gas. However, from a country specific carbon accounting perspective, there is an imbalance in accrued social costs and benefits. Assuming a mean social cost of carbon of $49/metric ton, mean global savings from U.S. LNG displacement of coal for electricity generation are $1.50 per thousand cubic feet (Mcf) of gaseous natural gas exported as LNG ($.028/kWh). Conversely, the U.S. carbon cost of exporting the LNG is $1.80/Mcf ($.013/kWh), or $0.50-$5.50/Mcf across the range of potential discount rates. This spatial shift in embodied carbon emissions is important to consider in national interest estimates for LNG exports.

  10. Greenhouse-gas-induced climatic change: A critical appraisal of simulations and observations

    International Nuclear Information System (INIS)

    Schlesinger, M.E.

    1990-01-01

    This book is the culmination of a Workshop on Greenhouse-Gas-Induced Climatic Change: A Critical Appraisal of Simulations and Observations which was held at the University of Massachusetts, Amherst, during 8--12 May 1989. The objectives of the Workshop were to: (1) present and evaluate the current status of climate model simulations of greenhouse-gas-induced changes of both the equilibrium and nonequilibrium (transient) climates; (2) present and assess the current status of the observations of global and regional climates from the beginning of the industrial revolution to the present, circa 1850 to 1989; (3) present reconstructions of climatic change during the last millennium to determine the ''natural variability'' of climate on the intra-century time scale; (4) critically evaluate whether or not the climate has changes from circa 1850 to 1989; and (5) compare the observations with the model simulations to ascertain whether a greenhouse-gas-induced climatic change has occurred and, if not, to estimate when in the future such a climatic change will likely become detectable against the background of the ''natural variability.''

  11. The greenhouse challenge

    International Nuclear Information System (INIS)

    Harrington, Ph.

    1999-01-01

    At Kyoto, Australia was successful in gaining acceptance for a differentiated response to climate change which takes account of our special circumstances and allows for an 8% rise in emissions above 1990 levels by 2008 - 2012. This outcome is both environmentally effective but also responsible from the perspective of Australia's economic and trade interests. While our target is achievable it will require significant efforts on the part of industry, all levels of government and the wider community to move towards best practice in managing our greenhouse gas emissions. At the same time, it will provide an incentive for industry and businesses to further improve their efficiency and perhaps even to capture new opportunities that may present themselves. An outline of the National Greenhouse Strategy is given and some of the many implications for the minerals and energy sector are discussed

  12. Accounting for variation in designing greenhouse experiments with special reference to greenhouses containing plants on conveyor systems

    Science.gov (United States)

    2013-01-01

    Background There are a number of unresolved issues in the design of experiments in greenhouses. They include whether statistical designs should be used and, if so, which designs should be used. Also, are there thigmomorphogenic or other effects arising from the movement of plants on conveyor belts within a greenhouse? A two-phase, single-line wheat experiment involving four tactics was conducted in a conventional greenhouse and a fully-automated phenotyping greenhouse (Smarthouse) to investigate these issues. Results and discussion Analyses of our experiment show that there was a small east–west trend in total area of the plants in the Smarthouse. Analyses of the data from three multiline experiments reveal a large north–south trend. In the single-line experiment, there was no evidence of differences between trios of lanes, nor of movement effects. Swapping plant positions during the trial was found to decrease the east–west trend, but at the cost of increased error variance. The movement of plants in a north–south direction, through a shaded area for an equal amount of time, nullified the north–south trend. An investigation of alternative experimental designs for equally-replicated experiments revealed that generally designs with smaller blocks performed best, but that (nearly) trend-free designs can be effective when blocks are larger. Conclusions To account for variation in microclimate in a greenhouse, using statistical design and analysis is better than rearranging the position of plants during the experiment. For the relocation of plants to be successful requires that plants spend an equal amount of time in each microclimate, preferably during comparable growth stages. Even then, there is no evidence that this will be any more precise than statistical design and analysis of the experiment, and the risk is that it will not be successful at all. As for statistical design and analysis, it is best to use either (i) smaller blocks, (ii) (nearly) trend

  13. Greenhouse gas emissions from solid waste in Beijing: The rising trend and the mitigation effects by management improvements.

    Science.gov (United States)

    Yu, Yongqiang; Zhang, Wen

    2016-04-01

    Disposal of solid waste poses great challenges to city managements. Changes in solid waste composition and disposal methods, along with urbanisation, can certainly affect greenhouse gas emissions from municipal solid waste. In this study, we analysed the changes in the generation, composition and management of municipal solid waste in Beijing. The changes of greenhouse gas emissions from municipal solid waste management were thereafter calculated. The impacts of municipal solid waste management improvements on greenhouse gas emissions and the mitigation effects of treatment techniques of greenhouse gas were also analysed. Municipal solid waste generation in Beijing has increased, and food waste has constituted the most substantial component of municipal solid waste over the past decade. Since the first half of 1950s, greenhouse gas emission has increased from 6 CO2-eq Gg y(-1)to approximately 200 CO2-eq Gg y(-1)in the early 1990s and 2145 CO2-eq Gg y(-1)in 2013. Landfill gas flaring, landfill gas utilisation and energy recovery in incineration are three techniques of the after-emission treatments in municipal solid waste management. The scenario analysis showed that three techniques might reduce greenhouse gas emissions by 22.7%, 4.5% and 9.8%, respectively. In the future, if waste disposal can achieve a ratio of 4:3:3 by landfill, composting and incineration with the proposed after-emission treatments, as stipulated by the Beijing Municipal Waste Management Act, greenhouse gas emissions from municipal solid waste will decrease by 41%. © The Author(s) 2016.

  14. Greenhouse statistics - a different look at climate research

    International Nuclear Information System (INIS)

    Tol, R.; Vos, A. de

    1993-01-01

    The greenhouse effect is a hot topic. There are still major uncertainties about the effects on the climate of the increasing concentrations of greenhouse gases. Politicians and socioeconomic scientists thus sometimes have the feeling that they are building on quicksand, and this hampers the advancement of an adequate policy. It is therefore necessary to map out the uncertainties, and to reduce them. A method is presented for doing this. 5 refs., 5 figs

  15. Comparing effects of low levels of herbicides on greenhouse- and field-grown potatoes (Solanum tuberosum L.), soybeans (Glycine max L.), and peas (Pisum sativum L.).

    Science.gov (United States)

    Pfleeger, Thomas; Olszyk, David; Lee, E Henry; Plocher, Milton

    2011-02-01

    Although laboratory toxicology tests are generally easy to perform, cost effective, and readily interpreted, they have been questioned for their environmental relevance. In contrast, field tests are considered realistic while producing results that are difficult to interpret and expensive to obtain. Toxicology tests were conducted on potatoes, peas, and soybeans grown in a native soil in pots in the greenhouse and were compared to plants grown outside under natural environmental conditions to determine toxicological differences between environments, whether different plant developmental stages were more sensitive to herbicides, and whether these species were good candidates for plant reproductive tests. The reproductive and vegetative endpoints of the greenhouse plants and field-grown plants were also compared. The herbicides bromoxynil, glyphosate, MCPA ([4-chloro-2-methylphenoxy] acetic acid), and sulfometuron-methyl were applied at below field application rates to potato plants at two developmental stages. Peas and soybeans were exposed to sulfometuron-methyl at similar rates at three developmental stages. The effective herbicide concentrations producing a 25% reduction in a given measure differed between experimental conditions but were generally within a single order of magnitude within a species, even though there were differences in plant morphology. This study demonstrated that potatoes, peas, and soybeans grown in pots in a greenhouse produce phytotoxicity results similar to those grown outside in pots; that reproductive endpoints in many cases were more sensitive than vegetative ones; and that potato and pea plants are reasonable candidates for asexual and sexual reproductive phytotoxicity tests, respectively. Plants grown in pots in a greenhouse and outside varied little in toxicity. However, extrapolating those toxicity results to native plant communities in the field is basically unknown and in need of research. © 2010 SETAC.

  16. Greening the greenhouse grower

    DEFF Research Database (Denmark)

    Staats, Henk; Jansen, Lilian; Thøgersen, John

    2011-01-01

    Growing plants and flowers in greenhouses is a commercial activity that imposes a burden on the environment. Recently a system of registration, control, and licensing has been developed by the sector of greenhouse growers in the Netherlands, acknowledged by the state. The current study was executed...... to understand the achievements of the greenhouse growers within this system. We applied a social-cognitive model to understand intentions to reduce emissions and predict actual pesticide use. The social-cognitive concepts from the model were measured in a questionnaire that was completed by 743 greenhouse...

  17. Detection of greenhouse-gas-induced climatic change

    International Nuclear Information System (INIS)

    Wigley, T.M.L.; Jones, P.D.

    1992-01-01

    The aims of the US Department of Energy's Carbon Dioxide Research Program are to improve assessments of greenhouse-gas-induced climatic change and to define and reduce uncertainties through selected research. This project will address: The regional and seasonal details of the expected climatic changes; how rapidly will these changes occur; how and when will the climatic effects of CO 2 and other greenhouse gases be first detected; and the relationships between greenhouse-gas-induced climatic change and changes caused by other external and internal factors. The present project addresses all of these questions. Many of the diverse facets of greenhouse-gas-related climate research can be grouped under three interlinked subject areas: modeling, first detection and supporting data. This project will include the analysis of climate forcing factors, the development and refinement of transient response climate models, and the use of instrumental data in validating General Circulation Models (GCMs)

  18. Multiagency Initiative to Provide Greenhouse Gas Information

    Science.gov (United States)

    Boland, Stacey W.; Duren, Riley M.

    2009-11-01

    Global Greenhouse Gas Information System Workshop; Albuquerque, New Mexico, 20-22 May 2009; The second Greenhouse Gas Information System (GHGIS) workshop brought together 74 representatives from 28 organizations including U.S. government agencies, national laboratories, and members of the academic community to address issues related to the understanding, operational monitoring, and tracking of greenhouse gas emissions and carbon offsets. The workshop was held at Sandia National Laboratories and organized by an interagency collaboration among NASA centers, Department of Energy laboratories, and the U.S. National Oceanic and Atmospheric Administration. It was motivated by the perceived need for an integrated interagency, community-wide initiative to provide information about greenhouse gas sources and sinks at policy-relevant temporal and spatial scales. Such an initiative could significantly enhance the ability of national and regional governments, industry, and private citizens to implement and evaluate effective climate change mitigation policies.

  19. The Dynamic Greenhouse Challenge

    Science.gov (United States)

    Roman, Harry T.

    2010-01-01

    Greenhouses are marvelous devices, allowing one to enjoy the flower spectacle of summer all year round. At night, greenhouses use supplemental heat to keep the fragile plants warm. Over the last 30 years, greenhouse technology has undergone many changes, with the structures being automated and monitored and low-cost plastic structures emerging as…

  20. The southern Brazilian grassland biome: soil carbon stocks, fluxes of greenhouse gases and some options for mitigation.

    Science.gov (United States)

    Pillar, V D; Tornquist, C G; Bayer, C

    2012-08-01

    The southern Brazilian grassland biome contains highly diverse natural ecosystems that have been used for centuries for grazing livestock and that also provide other important environmental services. Here we outline the main factors controlling ecosystem processes, review and discuss the available data on soil carbon stocks and greenhouse gases emissions from soils, and suggest opportunities for mitigation of climatic change. The research on carbon and greenhouse gases emissions in these ecosystems is recent and the results are still fragmented. The available data indicate that the southern Brazilian natural grassland ecosystems under adequate management contain important stocks of organic carbon in the soil, and therefore their conservation is relevant for the mitigation of climate change. Furthermore, these ecosystems show a great and rapid loss of soil organic carbon when converted to crops based on conventional tillage practices. However, in the already converted areas there is potential to mitigate greenhouse gas emissions by using cropping systems based on no soil tillage and cover-crops, and the effect is mainly related to the potential of these crop systems to accumulate soil organic carbon in the soil at rates that surpass the increased soil nitrous oxide emissions. Further modelling with these results associated with geographic information systems could generate regional estimates of carbon balance.

  1. The Anthropogenic "Greenhouse Effect": Greek Prospective Primary Teachers' Ideas about Causes, Consequences and Cures

    Science.gov (United States)

    Ikonomidis, Simos; Papanastasiou, Dimitris; Melas, Dimitris; Avgoloupis, Stavros

    2012-01-01

    This study explores the ideas of Greek prospective primary teachers about the anthropogenic greenhouse effect, particularly about its causes, consequences and cures. For this purpose, a survey was conducted: 265 prospective teachers completed a closed-form questionnaire. The results showed serious misconceptions in all areas (causes, consequences…

  2. The contribution to the greenhouse effect by passenger cars and heating is increasing

    International Nuclear Information System (INIS)

    Bouchereau, J.M.

    2000-12-01

    Between 1990 and 1998, the domestic sector contribution to the greenhouse effect increased from 25 % to 27 %. During this period, there was a 20 % rise in greenhouse gas emissions from passenger cars. These emissions amounted to 20 million tonnes of carbon equivalent out of a total of 175 million tonnes in 1998 (all sectors taken together). Carbon dioxide emissions from the tertiary sector increased by 2,3 % annually between 1980 and 1998, particularly as a result of increased road freight transport. Although technological progress has been made on fuel consumption of vehicles, greater use of passenger cars combined with decreasing running costs has led to gross emissions in France being 2 % more in 1998 than in 1990. In 1998, the transport sector (passenger cars and freight transport) was responsible for three-quarters of this increase. (author)

  3. Cosmopolitan egalitarianism and greenhouse effect

    International Nuclear Information System (INIS)

    Gosseries, A.

    2006-01-01

    In this paper, I look at the way in which a maximin egalitarian theory of justice should deal with the greenhouse effect and its consequences. I adopt both a cosmopolitan and a 'local' approach (in Elster's sense). The paper concentrates on three dimensions of a Kyoto-type international regime raising issues of justice: the determination of a global cap on emissions for a given period, the way in which emission quotas should be distributed among countries for each period, and the questions arising from the tradability of such quotas. Regarding the cap issue, it is subject to both inter-generational and intra-generational constraints of justice. I show that a weak intra-generational principle of compensation is likely to lead to radically demanding implications. As to the initial allocation issue, I look at five possible reasons why egalitarians may want to depart from a population-based allocation among countries. Special attention is devoted to three of them: grand-fathering, the disadvantageous geographical specificities of some countries and historical emissions. I specify the extent to which such a departure from a population-based mode of allocation can be justified on egalitarian grounds. Finally, I look at possible objections to the tradability of such quotas, concluding that they are not sufficient to shift toward non-tradable quotas. (author)

  4. Antarctic specific features of the greenhouse effect. A radiative analysis using measurements and models

    Energy Technology Data Exchange (ETDEWEB)

    Schmithuesen, Holger

    2014-12-10

    CO{sub 2} is the strongest anthropogenic forcing agent for climate change since pre-industrial times. Like other greenhouse gases, CO{sub 2} absorbs terrestrial surface radiation and causes emission from the atmosphere to space. As the surface is generally warmer than the atmosphere, the total long-wave emission to space is commonly less than the surface emission. However, this does not hold true for the high elevated areas of central Antarctica. For this region, it is shown that the greenhouse effect of CO{sub 2} is around zero or even negative. Moreover, for central Antarctica an increase in CO{sub 2} concentration leads to an increased long-wave energy loss to space, which cools the earth-atmosphere system. These unique findings for central Antarctica are in contrast to the well known general warming effect of increasing CO{sub 2}. The work contributes to explain the non-warming of central Antarctica since 1957.

  5. The role of nuclear power in the reduction of greenhouse gas emissions

    International Nuclear Information System (INIS)

    Baratta, A.J.

    2010-01-01

    Nuclear energy is a low greenhouse gas emitter and is capable of providing large amounts of power using proven technology. In the immediate future, it can contribute to greenhouse gas reduction but only on a modest scale, replacing a portion of the electricity produced by coal fired power plants. While it has the potential to do more, there are significant resource issues that must be addressed if nuclear power is to replace coal or natural gas as a source of electricity

  6. Transit Greenhouse Gas Management Compendium

    Science.gov (United States)

    2011-01-12

    This Compendium provides a framework for identifying greenhouse gas (GHG) reduction opportunities while highlighting specific examples of effective GHG reduction practices. The GHG savings benefits of public transit are first described. GHG saving op...

  7. National Greenhouse Gas Emission Inventory

    Data.gov (United States)

    U.S. Environmental Protection Agency — The National Greenhouse Gas Emission Inventory contains information on direct emissions of greenhouse gases as well as indirect or potential emissions of greenhouse...

  8. Smarter greenhouse climate control

    NARCIS (Netherlands)

    Nederhoff, E.M.; Houter, G.

    2011-01-01

    Greenhouse operators strive to be as economic as possible with energy. However, investing in fancy energy-saving equipment is often not cost-effective for smaller operations and in climate zones with mild winters. It is possible, though, for many growers to save energy without buying special

  9. The social representations of the greenhouse effect (6. wave of questions); Les representations sociales de l'effet de serre (6. vague d'enquete)

    Energy Technology Data Exchange (ETDEWEB)

    NONE

    2005-07-01

    Six waves of questions concerning the public opinion of the greenhouse effect, were realized by the ISL in May 2000, March 2001, July 2002, June 2003 and May 2004. This sixth wave was realized between June 14 and 25 2005. The report presents the questions asked and analyzes the answers. The concerned domains are the greenhouse effect, the causes, the consequences, the greenhouse effect remediation (technical and political choices), the climatic change, the confidence on the actors and the institutions. (A.L.B.)

  10. [Treatment effect of biological filtration and vegetable floating-bed combined system on greenhouse turtle breeding wastewater].

    Science.gov (United States)

    Chen, Chong-Jun; Zhang, Rui; Xiang, Kun; Wu, Wei-Xiang

    2014-08-01

    Unorganized discharge of greenhouse turtle breeding wastewater has brought several negative influences on the ecological environment in the rural area of Yangtze River Delta. Biological filtration and vegetable floating-bed combined system is a potential ecological method for greenhouse turtle breeding wastewater treatment. In order to explore the feasibility of this system and evaluate the contribution of vegetable uptake of nitrogen (N) and phosphorus (P) in treating greenhouse turtle breeding wastewater, three types of vegetables, including Ipomoea aquatica, lettuce and celery were selected in this study. Results showed the combined system had a high capacity in simultaneous removal of organic matter, N and P. The removal efficiencies of COD, NH4(+)-N, TN and TP from the wastewater reached up to 93.2%-95.6%, 97.2%-99.6%, 73.9%-93.1% and 74.9%-90.0%, respectively. System with I. aquatica had the highest efficiencies in N and P removal, followed by lettuce and celery. However, plant uptake was not the primary pathway for TN arid TP removal in the combined system. The vegetable uptake of N and P accounted for only 9.1%-25.0% of TN and TP removal from the wastewater while the effect of microorganisms would be dominant for N and P removal. In addition, the highest amounts of N and P uptake in I. aquatica were closely related with the biomass of plant. Results from the study indicated that the biological filtration and vegetable floating-bed combined system was an effective approach to treating greenhouse turtle breeding wastewater in China.

  11. Energy and environment - greenhouse effect. The international, european and national actions to control the greenhouse gases emissions: which accounting and which perspectives?

    International Nuclear Information System (INIS)

    2001-12-01

    The scientific knowledge concerning the climatic change justifies today immediate fight actions against the greenhouse reinforcement. This fight is based on an ambitious international device which must take into account more global challenges. At the european and national scale, the exploitation of the potential of greenhouse gases reduction must be reinforced and more specially the evolution of the life style. (A.L.B.)

  12. Atmospheric greenhouse effect: more subtle than it looks like; L'effet de serre atmospherique: plus subtil qu'on ne le croit

    Energy Technology Data Exchange (ETDEWEB)

    Dufresne, J.L. [Laboratoire de Meteorologie Dynamique (LMD), Institut Pierre-Simon Laplace (IPSL), CNRS, Universite Pierre et Marie Curie, 75 - Paris (France); Treiner, J. [Paris-6, UPMC et Espace des sciences Pierre-Gilles de Gennes, 75 - Paris (France)

    2011-02-15

    State-of-the-art radiative models can be used to calculate in a rigorous and accurate manner the atmospheric greenhouse effect, as well as its variation with concentration in water vapour or carbon dioxide. A simple explanation of this effect uses an analogy with the greenhouse effect produced by a glass window. While this analogy has pedagogical virtues and provides a first order explanation of the mean temperature of the Earth, it has an important drawback; it is not able to explain why the greenhouse effect increases with increasing carbon dioxide concentration. Indeed, absorption of infrared radiation by carbon dioxide is, under this scheme, almost at its maximum and depends very weakly on CO{sub 2} concentration. It is said to be saturated. In this paper, we explore this question and propose an alternative model which, while remaining simple, correctly takes into account the various mechanisms and provides an understanding of the increasing greenhouse effect with CO{sub 2} concentration, together with the corresponding climate warming. The role of the atmospheric temperature gradient is particularly stressed. (authors)

  13. A dynamic model of the greenhouse effect and its control

    International Nuclear Information System (INIS)

    Perman, R.; Nisbet, R.; Ma, Y.

    1991-01-01

    A dynamic model is developed for the analysis of programmes to control the greenhouse effect. The model uses simplified representations of physical processes determining climate change, linked to an economic model of emissions and emissions abatement. Feedbacks between physical and economic processes are incorporated, and the costs of emissions reduction are compared with the benefits through averted damage. Simulation analyses explore the relative merits of several intervention scenarios, each of which is compared with non intervention. Throughout the paper, emphasis is placed upon the long term consequences of behaviour, and the patterns of dynamic adjustment over time. (author)

  14. Kyoto: nuclear power against greenhouse effect

    International Nuclear Information System (INIS)

    Anon.

    1997-01-01

    Among the different possibilities to slow down the increase of greenhouse gas emissions, several participants of the Kyoto conference (December 11, 1997) held the nuclear power resort in a good position. This short paper reports on some extracts of talks given during the conference by participants who take a definite position in favour of the development of nuclear power: FORATOM (European Atomic Forum), Nuclear Energy Institute (US), Japan Atomic Industrial Forum, the Uranium Institute, WONUC (World Council of Nuclear Workers) and SFEN (French Society of Nuclear Energy). (J.S.)

  15. On the Meaning of Feedback Parameter, Transient Climate Response, and the Greenhouse Effect: Basic Considerations and the Discussion of Uncertainties

    Science.gov (United States)

    Kramm, Gerhard

    2010-07-01

    In this paper we discuss the meaning of feedback parameter, greenhouse effect and transient climate response usually related to the globally averaged energy balance model of Schneider and Mass. After scrutinizing this model and the corresponding planetary radiation balance we state that (a) the this globally averaged energy balance model is flawed by unsuitable physical considerations, (b) the planetary radiation balance for an Earth in the absence of an atmosphere is fraught by the inappropriate assumption of a uniform surface temperature, the so-called radiative equilibrium temperature of about 255 K, and (c) the effect of the radiative anthropogenic forcing, considered as a perturbation to the natural system, is much smaller than the uncertainty involved in the solution of the model of Schneider and Mass. This uncertainty is mainly related to the empirical constants suggested by various authors and used for predicting the emission of infrared radiation by the Earth's skin. Furthermore, after inserting the absorption of solar radiation by atmospheric constituents and the exchange of sensible and latent heat between the Earth and the atmosphere into the model of Schneider and Mass the surface temperatures become appreciably lesser than the radiative equilibrium temperature. Moreover, neither the model of Schneider and Mass nor the Dines-type two-layer energy balance model for the Earth-atmosphere system, both contain the planetary radiation balance for an Earth in the absence of an atmosphere as an asymptotic solution, do not provide evidence for the existence of the so-called atmospheric greenhouse effect if realistic empirical data are used.

  16. CF3SF5 : a ‘super’ greenhouse gas

    OpenAIRE

    Tuckett, R. P.

    2008-01-01

    One molecule of the anthropogenic pollutant trifluoromethyl sulphur pentafluoride (CF\\(_3\\)SF\\(_5\\)), an adduct of the CF\\(_3\\) and SF\\(_5\\) free radicals, causes more global warming than one molecule of any other greenhouse gas yet detected in the Earth’s atmosphere. That is, it has the highest per molecule radiative forcing of any greenhouse pollutant, and the value of its global warming potential is only exceeded by that of SF\\(_6\\). First, the greenhouse effect is described, the propertie...

  17. Greenhouse and Energy

    International Nuclear Information System (INIS)

    Swaine, D.J.

    1990-01-01

    The book is based on papers at the conference held at Macquarie University, Australia, in December 1989. The topics include energy aspects of the greenhouse effect, effects of reduction of carbon dioxide, methane emissions, sources of energy production, various aspects of electricity, liquid building, new technology, energy management and environmental and sociological aspects. Whilist the emphasis is on Australian conditions, the approaches are of relevance to other countries. Contains lists of referees and participants. Twenty-three papers have been separately indexed

  18. Measuring University students' understanding of the greenhouse effect - a comparison of multiple-choice, short answer and concept sketch assessment tools with respect to students' mental models

    Science.gov (United States)

    Gold, A. U.; Harris, S. E.

    2013-12-01

    The greenhouse effect comes up in most discussions about climate and is a key concept related to climate change. Existing studies have shown that students and adults alike lack a detailed understanding of this important concept or might hold misconceptions. We studied the effectiveness of different interventions on University-level students' understanding of the greenhouse effect. Introductory level science students were tested for their pre-knowledge of the greenhouse effect using validated multiple-choice questions, short answers and concept sketches. All students participated in a common lesson about the greenhouse effect and were then randomly assigned to one of two lab groups. One group explored an existing simulation about the greenhouse effect (PhET-lesson) and the other group worked with absorption spectra of different greenhouse gases (Data-lesson) to deepen the understanding of the greenhouse effect. All students completed the same assessment including multiple choice, short answers and concept sketches after participation in their lab lesson. 164 students completed all the assessments, 76 completed the PhET lesson and 77 completed the data lesson. 11 students missed the contrasting lesson. In this presentation we show the comparison between the multiple-choice questions, short answer questions and the concept sketches of students. We explore how well each of these assessment types represents student's knowledge. We also identify items that are indicators of the level of understanding of the greenhouse effect as measured in correspondence of student answers to an expert mental model and expert responses. Preliminary data analysis shows that student who produce concept sketch drawings that come close to expert drawings also choose correct multiple-choice answers. However, correct multiple-choice answers are not necessarily an indicator that a student produces an expert-like correlating concept sketch items. Multiple-choice questions that require detailed

  19. Methane leakage in natural gas operations

    International Nuclear Information System (INIS)

    Jennervik, A.

    1992-01-01

    The world gas industry is efficient in conservation of natural gas within its systems. As the influence of methane as an infra-red absorbent gas has been more widely recognized, the considerations of methane's greenhouse effect has become vitally important to gas companies around the world. The industry is universally environmentally conscious. natural gas transmission and distribution companies want to maintain their image as suppliers of clean fuel. Further reductions in methane leakage --- particularly in older distribution systems --- can, should and will be pursued. Unfortunately, there has been little exchange of views on methane leakages between commentators on environmental matters and gas companies and organizations. There is absolutely no need for the industry to avoid the issue of greenhouse gases. Without industry involvement, the environmental debate concerning fossil fuels could lead to selective interpretation of scientific views and available evidence. Companies and authorities would be presented with confusing, contradictory evidence on which to base policy approaches and regulations

  20. What to do about greenhouse warming: Look before you leap

    International Nuclear Information System (INIS)

    Singer, S.F.; Revelle, R.; Starr, C.

    1993-01-01

    Greenhouse warming has emerged as one of the most complex and controversial environmental foreign-policy issues of the 1990s. Carbon dioxide (CO 2 ), generated from the burning of oil, gas, and coal, is thought to enhance the natural greenhouse effect that has kept the planet warm for billions of years. Some scientists predict drastic climatic changes in the 21st Century. It is a foreign-policy issue because the US has taken a more cautious approach to dealing with CO 2 emissions than have many industrialized nations. Wide acceptance of the Montreal Protocol, which limits and rolls back the manufacture of chlorofluorocarbons (CFCs) to protect the ozone layer, has encouraged environmental activists at international conferences the past three years to call for similar controls on CO 2 from fossil-fuel burning. These activists are disappointed with the White House for not supporting immediate action. But should the US assume leadership in a hastily-conceived campaign that could cripple the global economy, or would it be more prudent to assure first, through scientific research, that the problem is both real and urgent? The authors sum up their conclusions in a simple message: The scientific base for a greenhouse warming is too uncertain to justify drastic action at this time. There is little risk in delaying policy responses to this century-old problem since there is every expectation that scientific understanding will be substantially improved within the next decade. Instead of premature and likely ineffective controls on fuel use that would only slow down CO 2 , the same resources could be used to increase our economic and technological resilience so that we can apply specific remedies as necessary to reduce climate change or to adapt to it. Prudent steps now include energy conservation and efficiency increases and make economic sense even without the threat of greenhouse warming

  1. Comparing greenhouse gases for policy purposes

    International Nuclear Information System (INIS)

    Schmalensee, R.

    1993-01-01

    In order to derive optimal policies for greenhouse gas emissions control, the discounted marginal damages of emissions from different gases must be compared. The greenhouse warming potential (GWP) index, which is most often used to compare greenhouse gases, is not based on such a damage comparison. This essay presents assumptions under which ratios of gas-specific discounted marginal damages reduce to ratios of discounted marginal contributions to radiative forcing, where the discount rate is the difference between the discount rate relevant to climate-related damages and the rate of growth of marginal climate-related damages over time. If there are important gas-specific costs or benefits not tied to radiative forcing, however, such as direct effects of carbon dioxide on plant growth, there is in general no shortcut around explicit comparison of discounted net marginal damages. 16 refs

  2. Effect of condensation on light transmission and energy budget of seven greenhouse cover materials

    NARCIS (Netherlands)

    Stanghellini, C.; Bruins, M.A.; Mohammadkhani, V.; Swinkels, G.L.A.M.; Sonneveld, P.J.

    2012-01-01

    Model calculations and the few data that are available show that over 100 L water condense yearly on each square meter of a greenhouse cover. It is known that the presence of condensate reduces light transmission. This effect is suppressed to some extent by adding film-forming (anti-drop) additives

  3. Effect of condensation on light transmission and energy budget of seven greenhouse cover materials

    NARCIS (Netherlands)

    V. Mohammadkhani; Gert-Jan Swinkels; C. Stanghellini; Piet Sonneveld; M.A. Bruins

    2011-01-01

    Model calculations and the few data that are available show that over 100 L water condense yearly on each square meter of a greenhouse cover. It is known that the presence of condensate reduces light transmission. This effect is suppressed to some extent by adding film-forming (anti-drop) additives

  4. London mobilizes against greenhouse effect; Londres se mobilise contre l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Quiret, M.

    2005-01-15

    Great Britain has taken up the bet of new technologies to fight against the greenhouse effect: a national energy research center will coordinate the research on fuel cells, carbon sequestration, wave power, solar energy, hydrogen storage, lithium batteries etc.. A study has been examined by the government. Short paper. (J.S.)

  5. Effects of Bioinsecticides in Control of Greenhouse Whitefly (Trialeurodes vaporariorum Westwood on Tomato

    Directory of Open Access Journals (Sweden)

    Dejan Marčić

    2011-01-01

    Full Text Available The effects of commercial products of entomopathogenic fungus Beauveria bassiana(Naturalis; 0.1%, 0.2% and 0.3%, azadirachtin (NeemAzal T/S; 1% and 2% and oxymatrin(KingBo; 0.1% and 0.2% in the control of greenhouse whitefly (Trialeurodes vaporariorumWestwood on tomato were tested in plastic covered greenhouse. The effects of the bioinsecticides,applied twice at five-day interval, were compared to effects of abamectin (AbastateEW; 0.075% and thiamethoxam (Actara 25-WG; 0.05%. Tested bioinsecticides reducedthe number of larvae by 82-97% (Naturalis, 90-99% (NeemAzal T/S and 90-96% (KingBo,with the efficacy of >96% according to Henderson-Tilton, in the assessment 16 days aftertreatment. In the same assessment, achieved percentages in adults reduction and efficacyamounted 24-89% and 67-95% (Naturalis, 85-93% and 93-97% (NeemAzal T/S, 86-96%and 94-98% (KingBo. Percentages of abundance reduction and efficacy after treatment withAbastate EW were 31% and 88% (larvae and 64% and 84% (adults, while after treatmentwith Actara 25-WG they amounted 96% and 99% (larvae and 83% and 92% (adults. The resultsobtained show that NeemAzal T/S, Naturalis and KingBo can be an efficient alternativeto current insecticides in control of T. vaporariorum populations.

  6. Request for Correction 12003 Greenhouse Gas Emissions Reporting from the Petroleum and Natural Gas Industry

    Science.gov (United States)

    Request for Correction by the U.S. Chamber of Commerce for information in Greenhouse Gas Emissions Reporting from the Petroleum Gas Industry that regarding methane emissions, volatile organic compounds, and hazardous air pollutants.

  7. Methane-bomb natural gas

    International Nuclear Information System (INIS)

    Anon.

    1993-01-01

    About 50% of the so-called 'greenhouse-effect' is not caused by CO 2 , but by more dangerous gases, among them is methane. Natural gas consists to about 98% of methane. In Austria result about 15% of the methane emissions from offtake, storage, transport (pipelines) and distribution from natural gas. A research study of the Research Centre Seibersdorf points out that between 2.5% and 3.6% of the employed natural gas in Austria emits. The impact of this emitted methane is about 29 times worse than the impact of CO 2 (caused for examples by petroleum burning). Nevertheless the Austrian CO 2 -commission states that an increasing use of natural gas would decrease the CO 2 -emissions - but this statement is suspected to be based on wrong assumptions. (blahsl)

  8. Potato (Solanum tuberosum) greenhouse tuber production as an assay for asexual reproduction effects from herbicides

    Science.gov (United States)

    The present study determined whether young potato plants can be used as an assay to indicate potential effects of pesticides on asexual reproduction. Solanum tuberosum (Russet Burbank) plants were grown from seed pieces in a mineral soil in pots under greenhouse conditions. Plant...

  9. Impact of water quality and irrigation management on organic greenhouse horticulture

    NARCIS (Netherlands)

    Dorais, M.; Alsanius, B.W.; Voogt, W.; Pepin, S.; Tuzel, Hakki; Tuzel, Yuksel; Möller, Kurt

    2016-01-01

    Water quality and water supply are essential for organic greenhouse grown crops to prevent soil contamination by undesirable chemicals and microorganisms, while providing the correct amount of water required for plant growth. The absence of natural precipitation combined with higher

  10. Climate change due to greenhouse effects in China as simulated by a regional climate model

    Energy Technology Data Exchange (ETDEWEB)

    Gao, X.J.; Zhao, Z.C.; Ding, Y.H.; Huang, R.H.; Giorgi, F. [National Climate Centre, Beijing (China)

    2001-07-01

    Impacts of greenhouse effects (2 x CO{sub 2}) upon climate change over China as simulated by a regional climate model over China (RegCM / China) have been investigated. The model was based on RegCM2 and was nested to a global coupled ocean-atmosphere model (CSIRO R21L9 AOGCM model). Results of the control run (1 x CO{sub 2}) indicated that simulations of surface air temperature and precipitation in China by RegCM are much better than that by the global coupled model because of a higher resolution. Results of sensitive experiment by RegCM with 2 x CO{sub 2} showed that the surface air temperature over China might increase remarkably due to greenhouse effect, especially in winter season and in North China. Precipitation might also increase in most parts of China due to the CO{sub 2} doubling.

  11. Effect of near-infrared-radiation reflective screen materials on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop

    NARCIS (Netherlands)

    Stanghellini, C.; Jianfeng, D.; Kempkes, F.L.K.

    2011-01-01

    The effect of Near Infrared (NIR)-reflective screen material on ventilation requirement, crop transpiration and water use efficiency of a greenhouse rose crop was investigated in an experiment whereby identical climate was ensured in greenhouse compartments installed with either NIR-reflective or

  12. On the Evaluation of Solar Greenhouse Efficiency in Building Simulation during the Heating Period

    Directory of Open Access Journals (Sweden)

    Francesco Asdrubali

    2012-06-01

    Full Text Available Among solar passive systems integrated in buildings, sunspaces or solar greenhouses represent a very interesting solution. A sunspace is a closed, southbound volume, constituted by transparent surfaces, adjacent to a building, which reduces winter energy demand thanks to the use of solar gains. The effect of a typical solar greenhouse on the energy balance of a building was evaluated during the heating period with two stationary procedures (Method 5000 and EN ISO 13790 and with a dynamic tool (TRNSYS. After the analysis of the greenhouse alone, the behavior of an entire house was simulated; a flat equipped with a sunspace, recently built thanks to public contributions provided by the Umbria Region in Italy to widespread bio-climatic architecture, was used as case-study. Simulations were carried out for the examined flat, both with a steady-state tool and with a dynamic one; the contribution of the sunspace was estimated thanks to the various methods previously mentioned. Finally, the simulated data were satisfactorily compared with the real energy consumptions (natural gas for heating of the flat; the sunspace allows a reduction of winter energy demand of the flat of about 20%.

  13. The fight against the greenhouse effect. Equity and efficiency

    International Nuclear Information System (INIS)

    Vallee, A.

    2003-01-01

    The author discusses the definition of an equitable division rule of the global effort of greenhouse gases emissions decrease, the research of the economic efficiency, the flexibility mechanisms and the emissions trading. (A.L.B.)

  14. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    International Nuclear Information System (INIS)

    Alonso, A.; Brook, B.W.; Meneley, D.A.; Misak, J.; Blees, T.; Van Erp, J.B.

    2015-01-01

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  15. Why nuclear energy is essential to reduce anthropogenic greenhouse gas emission rates

    Energy Technology Data Exchange (ETDEWEB)

    Alonso, A. [Univ. Politecnica de Madrid, Madrid (Spain); Brook, B.W. [Univ. of Tasmania, Hobart TAS (Australia); Meneley, D.A. [Candu Energy Inc., Mississauga, Ontario (Canada); Misak, J. [UJV-Rez, Prague (Czech Republic); Blees, T. [Science Council for Global Initiatives, Chicago, Illinois (United States); Van Erp, J.B. [Illinois Commission on Atomic Energy, Chicago, Illinois (United States)

    2015-12-15

    Reduction of anthropogenic greenhouse gas emissions is advocated by the Intergovernmental Panel on Climate Change. To achieve this target, countries have opted for renewable energy sources, primarily wind and solar. These renewables will be unable to supply the needed large quantities of energy to run industrial societies sustainably, economically and reliably because they are inherently intermittent, depending on flexible backup power or on energy storage for delivery of base-load quantities of electrical energy. The backup power is derived in most cases from combustion of natural gas. Intermittent energy sources, if used in this way, do not meet the requirements of sustainability, nor are they economically viable because they require redundant, under- utilized investment in capacity both for generation and for transmission. Because methane is a potent greenhouse gas, the equivalent carbon dioxide value of methane may cause gas-fired stations to emit more greenhouse gas than coal-fired plants of the same power for currently reported leakage rates of the natural gas. Likewise, intermittent wind/solar photovoltaic systems backed up by gas-fu:ed power plants also release substantial amounts of carbon-dioxide- equivalent greenhouse gas to make such a combination environmentally unacceptable. In the long term, nuclear fission technology is the only known energy source that is capable of delivering the needed large quantities of energy safely, economically, reliably and in a sustainable way, both environmentally and as regards the available resource-base. (author)

  16. A Study on Primary and Secondary School Students' Misconceptions about Greenhouse Effect (Erzurum Sampling)

    Science.gov (United States)

    Gul, Seyda; Yesilyurt, Selami

    2011-01-01

    The aim of this study is to determine what level of primary and secondary school students' misconceptions related to greenhouse effect is. Study group consists of totally 280 students attended to totally 8 primary and secondary schools (4 primary school, 4 secondary school) which were determined with convenient sampling method from center of…

  17. The effect of floating vegetation on denitrification and greenhouse gas production in wetland mesocosms

    Science.gov (United States)

    Jacobs, A. E.; Harrison, J. A.

    2012-12-01

    compared to inflow water, and calculated denitrification was statistically higher in the floating vegetation treatments compared to the other treatments. Greenhouse gas production, measured in CO2 equivalents for N2O and CH4, was highly variable and not statistically different between the treatments. Denitrification in the tarp covered mesocosms was similar to the no-cover treatment, indicating that biotic effects in the floating vegetation treatment may be important in lowering water column oxygen levels and increasing denitrification. Understanding how floating vegetation affects total nitrogen loss, denitrification, and greenhouse gas production can be used to weigh ecological costs and benefits of different vegetation types, especially in constructed and managed wetlands.

  18. Factor Analysis of Drawings: Application to college student models of the greenhouse effect

    Science.gov (United States)

    Libarkin, Julie C.; Thomas, Stephen R.; Ording, Gabriel

    2015-09-01

    Exploratory factor analysis was used to identify models underlying drawings of the greenhouse effect made by over 200 entering university freshmen. Initial content analysis allowed deconstruction of drawings into salient features, with grouping of these features via factor analysis. A resulting 4-factor solution explains 62% of the data variance, suggesting that 4 archetype models of the greenhouse effect dominate thinking within this population. Factor scores, indicating the extent to which each student's drawing aligned with representative models, were compared to performance on conceptual understanding and attitudes measures, demographics, and non-cognitive features of drawings. Student drawings were also compared to drawings made by scientists to ascertain the extent to which models reflect more sophisticated and accurate models. Results indicate that student and scientist drawings share some similarities, most notably the presence of some features of the most sophisticated non-scientific model held among the study population. Prior knowledge, prior attitudes, gender, and non-cognitive components are also predictive of an individual student's model. This work presents a new technique for analyzing drawings, with general implications for the use of drawings in investigating student conceptions.

  19. Address to the international workshop on greenhouse gas mitigation, technologies and measures

    Energy Technology Data Exchange (ETDEWEB)

    Kant, A.

    1996-12-31

    The Netherlands has a long history in combatting natural forces for it`s mere survival and even creation. Around half of the country was not Yet existent around 2000 years ago: it was still below sea level that time. Building dikes and the discovery of eolic energy applied in windmills, allowing to pump water from one side of the dike to the other, are technologies that gradually shaped the country into its current form, a process that continues to materialize till the present day. Water has not always been an enemy of the country. In the Hundred Year War with Spain, during which the country was occupied territory for most of the time, the water was used to drive the Spanish armies from the country. As large parts are well below sea level breaking the dikes resulted in flooding the country which made the armoury of the Spanish army useless. In this way they had to give up the siege of several major Dutch cities that time. These events marked the gradual liberation of the Dutch territory. Consequently, in the discussion on adaption and prevention of the greenhouse effect the Netherlands has a clear stand. The greenhouse effect will occur anyway, even if countries deploy all possible counter measures at once. So their aim is to prevent the occurrence of the greenhouse effect to the highest extent possible, and to protect the most vulnerable areas meanwhile, especially the coastal zones. In order to reach these goals the Dutch government has established a Joint Implementation Experimental Programme in accordance with the provisions made by the Conference of Parties in Berlin (1995).

  20. Localized climate control in greenhouses

    NARCIS (Netherlands)

    Booij, P.S.; Sijs, J.; Fransman, J.E.

    2012-01-01

    Strategies for controlling the indoor climate in greenhouses are based on a few sensors and actuators in combination with an assumption that climate variables, such as temperature, are uniform throughout the greenhouse. While this is already an improper assumption for conventional greenhouses, it

  1. Estimating the Impact of US Agriculture Subsidies on Greenhouse Gas Emissions

    Science.gov (United States)

    Eshel, G.; Martin, P. A.

    2006-12-01

    It has been proposed in the popular media that US agricultural subsidies contribute deleteriously to both the American diet and environment. In this view, subsidies render mostly corn-based, animal products and sweeteners artificically cheap, leading to enhanced consumption. Problems accompanying this structure mentioned include enhanced meat, fat and sugar consumption and the associated enhancement of obesity, cardiovascular diseases, type II diabetes and possible various types of cancer, as well as air, soil and water pollution. Often overlooked in these discussions is the potential enhancement of greenhouse gas emissions accompanying this policy-based steering of food consumption toward certain products at the expense of others, possibly more nutritionally and environmentally benign. If such enhancements are in fact borne out by data, the policies that give rise to them will prove to constitute government-sponsored enhancement of greenhouse gas emissions, in contrast to any climate change mitigation efforts. If so, they represent low- hanging fruits in the national effort to reduce greenhouse gas emissions which may one day be launched. Agriculture subsidies impact the emissions of CO2 (by direct energy consumption), nitrous oxide (by land use alteration and manure management), and methane (by ruminant digestion and manure treatment). Quantifying the impacts of agricultural subsidies is complicated by many compounding and conflicting effects (many related to human behavior rather than the natural sciences) and the relatively short data timeseries. For example, subsidy policies change over time, certain subsidy types are introduced or eliminated, food preferences change as nutritional understanding (or propaganda) shift, etc. Despite the difficulties, such quantification is crucial to better estimate the overall effect and variability of dietary choices on greenhouse gas emissions, and ultimately minimize environmental impacts. In this study, we take preliminary

  2. Stakeholder Workshop on EPA GHG Data on Petroleum and Natural Gas Systems

    Science.gov (United States)

    This page describes EPA's November 2015 stakeholder workshop on greenhouse gas data on petroleum and natural gas systems from the Greenhouse Gas Reporting Program and U.S. Greenhouse Gas Inventory of Emissions and Sinks.

  3. Greenhouse effect and CO2 emissions. 3. rev. and enlarged ed.

    International Nuclear Information System (INIS)

    Kuehr, W.

    1990-01-01

    The brochure is to prove that nuclear energy does not present a technology which would avoid the greenhouse effect. It is true that nuclear power plants do not produce CO 2 , but the production cycle includes ore mines, uranium enrichement, etc. where energy reguirements are met by fossil fuels, and this is where nuclear power plants pruduce CO 2 indirectly. Environmental and climate hazards can be influenced by economic and political decisions. It is important to reduce consumption, to promote renewable energy sources, and to replace nuclear as well as fossil fuels. (orig./HSCH) [de

  4. The Measurement of Technical Efficiency and Effective Factors in Cucumber Greenhouse (Case Study: Eastern Azarbayjan Province

    Directory of Open Access Journals (Sweden)

    B. Abdollahi

    2010-10-01

    Full Text Available The purpose of this study was to estimate technical efficiency of cucumber greenhouses in Eastern Azarbayjan. In economic literature, it means the ratio of maximum output to the inputs. The objective of this research was to determinate the effective factors influencing it's inefficiency. The method of determination of deterministic and stochastic technical efficiency is corrected ordinary least squares (COLS and maximum likelihood (ML respectively. The average of technical efficiency in province’s cucumber greenhouse is approximately about 57 and 93 percent for deterministic and stochastic frontier method respectively. Production types had positive influence on technical inefficiency whereas experience of manager have negative influence on technical inefficiency.

  5. The second generation model of greenhouse gas emissions: background and initial development

    International Nuclear Information System (INIS)

    Baron, R.; Wise, M.A.; Edmonds, J.A.; Pitcher, H.M.; Barns, D.

    1992-01-01

    The analysis of greenhouse gas emissions has made enormous progress during the course of the past decade. We have progressed from the use of simple time-trend extrapolations to the analysis of emissions of several greenhouse gases with parallel but independent behavioral and optimization models of energy, manufacturing, agriculture, and land-use systems. But our ability to examine potential future scenarios of greenhouse gas emissions is limited because modeling tools adequate to the task of integrating analyses of technologies and human activities on a global scale with regional detail, including energy production and consumption, agriculture, manufacture, capital formation, and land-use, along with the interdependencies between these categories, do not yet exist. The first generation of models were specialty models which focused on a particular aspect of the emissions problem without regard to how that activity interacted with other human and natural activities. The natural science pertaining to greenhouse warming now emphasizes the variety of gases associated with potential changes in the radiative composition of the atmosphere: CO 2 , CH 4 , CO, N 2 O, NO x , SO 2 , VOC's, chlorofluorocarbons, (CFC's) and CFC substitutes. Human activities generating the emissions of these gases are interdependent; actions taken to limit emissions from one segment of the economy will affect other segments of the economy. Policy issues such as the recycling of revenues from a carbon tax, land-use changes due to to tree-planting to sequestrate carbon dioxide or extensive development of biomass energy resources, require a more comprehensive modeling approach in which the relationship between technology, institutions, land use, economics and human activity is explicitly represented. The purpose of this paper is to describe briefly the design of a model which is capable of addressing greenhouse gas emissions and the consequences of alternative policy options. 7 refs

  6. The effect of greenhouse covering materials on phytochemical composition and antioxidant capacity of tomato cultivars.

    Science.gov (United States)

    Ahmadi, Latifeh; Hao, Xiuming; Tsao, Rong

    2018-02-13

    The effect of light transmission (direct and diffuse) on the phenolic compounds of five tomato cultivars was investigated under controlled conditions in greenhouses covered with different covering materials. The type of covering material and type of diffusion of light simultaneously affected the reducing power of cultivars. Two-way analysis of variance showed statistically significant differences in total phenolic content for the different cultivars (P  0.05). This study showed that the use of solar energy transmission could positively affect the reducing power of cultivars and alter the biosynthesis of certain phytochemicals that are health-beneficial. Further study could lead to applications for producing greenhouse vegetables with greater health attributes. © 2018 Society of Chemical Industry. © 2018 Society of Chemical Industry.

  7. Cover materials excluding near infrared radiation: effect on greenhouse climate and plant processes

    NARCIS (Netherlands)

    Kempkes, F.L.K.; Stanghellini, C.; Hemming, S.; Dai, J.

    2008-01-01

    Only about half of the energy that enters a greenhouse as sun radiation is in the wavelength range that is useful for photosynthesis (PAR, Photosynthetically Active Radiation). Nearly all the remaining energy fraction is in the Near InfraRed range (NIR) and warms the greenhouse and crop and does

  8. [Preliminary assessment of the potential of biochar technology in mitigating the greenhouse effect in China].

    Science.gov (United States)

    Jiang, Zhi-Xiang; Zheng, Hao; Li, Feng-Min; Wang, Zhen-Yu

    2013-06-01

    The production of biochar by pyrolysis and its application to soil can sequester the CO2 which was absorbed by plants from atmosphere into soil, in addition it can also bring multiple benefits for agriculture production. On the basis of the available potential survey of the biomass residues from agriculture and forestry section, life cycle assessment was employed to quantify the potential of biochar technology in mitigation of greenhouse gases in our country. The results showed: In China, the amount of available biomass resource was 6.04 x 10(8) t every year and its net greenhouse effect potential was 5.32 x 10(8) t CO(2e) (CO(2e): CO2 equivalent), which was equivalent to 0.88 t CO(2e) for every ton biomass. The greatest of contributor to the total potential was plant carbon sequestration in soil as the form of biochar which accounts for 73.94%, followed by production of renewable energy and its percentage was 23.85%. In summary, production of biochar from agriculture and forestry biomass residues had a significant potential for our country to struggle with the pressure of greenhouse gas emission.

  9. Climate variations and the greenhouse effect

    International Nuclear Information System (INIS)

    Michaels, P.J.; Knappenberger, P.C.; Gay, D.A.

    1994-01-01

    A number of recent publications have established the scientific paradigm that anthropogenerated sulfate aerosols are a sufficient explanation for the lack of observed greenhouse warming that has been predicted by transient general circulation climate models. This paper tests that hypothesis by examining the observed and modeled behavior of eigenvectors of the observed temperature field at three levels: hemispheric, polar, and over the regions where sulfate aerosol is most concentrated. Without sulfates in the transient model, there is no significant difference in explanatory power between the three test regions. In all three cases, the model creates much more spurious climatic change than it is able to capture. Most damaging to the sulfate hypothesis is that the GCM most accurately represents the behavior of the first eigenvector in summer in the high sulfate regions. This is where the difference between the model and observed temperatures is supposed to be greatest. Thus while the addition of sulfate aerosol to a transient general circulation model may improve its performance over some regions, this effect is insufficient to explain the overall lack of observed warming. This failure of the aerosol hypothesis is particularly evident in polar regions that are relatively aerosol-free, but also devoid of any significant warming

  10. GEOTHERMAL GREENHOUSING IN TURKEY

    Directory of Open Access Journals (Sweden)

    Sedat Karaman

    2016-07-01

    Full Text Available Use of renewable energy resources should be brought forward to reduce heating costs of greenhouses and to minimize the use of ever-depleting fossil fuels. Geothermal energy not only provides the heat required throughout plant growth, but also allow a year-long production. Geothermal resources with several other benefits therefore play significant role in agricultural activities. With regard to geothermal potential and implementation, Turkey has the 7th place in the world and the 1st place in Europe. Majority of country geothermal resources is used in greenhouse heating. The size of geothermal greenhouses increased 5 folds during the last decade and reached to 2500 decare. In this study, current status of geothermal greenhousing of Turkey was presented; problems and possible solutions were discussed.

  11. A Simple, Student-Built Spectrometer to Explore Infrared Radiation and Greenhouse Gases

    Science.gov (United States)

    Bruce, Mitchell R. M.; Wilson, Tiffany A.; Bruce, Alice E.; Bessey, S. Max; Flood, Virginia J.

    2016-01-01

    In this experiment, students build a spectrometer to explore infrared radiation and greenhouse gases in an inquiry-based investigation to introduce climate science in a general chemistry lab course. The lab is based on the exploration of the thermal effects of molecular absorption of infrared radiation by greenhouse and non-greenhouse gases. A…

  12. Natural gas based infrared heating i greenhouses. Phase II. System optimization; Naturgasbaserad infravaerme i vaexthus. Fas II. Systemoptimering

    Energy Technology Data Exchange (ETDEWEB)

    Naeslund, Mikael [Lund Inst. of Tech. (Sweden). Dept. of Heat and Power Engineering; Schuessler, Hartmut K. [Swedish Univ. of Agricultural Sciences, Alnarp (Sweden); Ljungberg, Sven-Aake [Hoegskolan i Gaevle (Sweden). Avdelningen byggnadskvalitet

    2004-01-01

    The energy use is high in greenhouses and the cost of energy is a substantial part of the plant production cost. Infrared heating (IR) has been shown to decrease the heating demand in industrial facilities and similar buildings. IR was studied with the same purpose for greenhouses. Special emphasis has also been put on the plant growth and quality. Temperature measurements showed a slightly more than 10% decrease in net heating demand compared to the reference houses in the same facility. A saving of 10-15% should be possible with some improvements. Temperature measurements at a few selected points in the infrared heated greenhouse and thermography showed differences. Repeated thermography during similar radiation conditions showed that the production tables in the infrared heated house had differences in radiation temperature and distribution caused by inhomogenous radiation from the radiating tubes. These radiation variations cause differences in in conditions and growth for cuttings and plants in later stage of growth. The thermography study also indicate that the humidity is an important factor for redistributing the radiation and ensure an optimal micro climate when infrared heaters are used in greenhouses. These differences can be reduced if the greenhouse floor layout allows radiating tubes to be located in order to make adjacent radiation fields partly overlapping. Also, burner input, excess air ratio and radiation tube and reflector design are influential for the performance. Good design criteria are discussed. Careful studies of the root development also showed differences caused by the plant location with regard to the heating tubes. The differences were reduced after reporting and further growth. One cultivation even turned out to be more compact and thus of higher quality when infrared heating was used.

  13. Effect of cultivation ages on Cu accumulation in Greenhouse Soils in North China

    Science.gov (United States)

    Wang, Jun; Guo, Wenmiao; Chen, Xin; Shi, Yi

    2017-11-01

    In this study, we determined the influence of cultivation age on Cu accumulation in greenhouse soils. The concentration of plant available Cu (A-Cu) decreased with depth, and the contents of top soils (0-40 cm) in greenhouses were higher than those of the open field. There was a positive correlation between A-Cu concentrations in soils and cultivation ages (R2=0.572). The contents of total Cu (T-Cu) decreased with depth, and positively correlated with cultivation ages in top soils (0-20cm) (R2=0.446). The long-term usage of manures can cause Cu increase and accumulation in greenhouse soils in comparison to the open field.

  14. FETC Programs for Reducing Greenhouse Gas Emissions

    International Nuclear Information System (INIS)

    Ruether, J.A.

    1998-02-01

    Mark Twain once quipped that everyone talks about the weather but no one does anything about it. With interest in global climate change on the rise, researchers in the fossil-energy sector are feeling the heat to provide new technology to permit continued use of fossil fuels but with reduced emissions of so-called 'greenhouse gases.' Three important greenhouse gases, carbon dioxide, methane, and nitrous oxide, are released to the atmosphere in the course of recovering and combusting fossil fuels. Their importance for trapping radiation, called forcing, is in the order given. In this report, we briefly review how greenhouse gases cause forcing and why this has a warming effect on the Earth's atmosphere. Then we discuss programs underway at FETC that are aimed at reducing emissions of methane and carbon dioxide

  15. Equity effects of economic instruments for greenhouse gas abatement

    International Nuclear Information System (INIS)

    Harrison, D. Jr.

    1994-01-01

    This paper discusses the equity effects of using economic instruments--such as a carbon tax or carbon emissions trading program--to regulate greenhouse gas emissions. Determining these equity effects is more complicated than assessing overall costs and benefits, although some of the same issues arise. Among the key issues are the following: (1) benchmark for evaluating impacts of economic instruments (status quo or regulatory program that achieves the same emission reductions); (2) use of any government revenues collected, which are transfers overall but affect gains and losses; (3) time period (long-term or transitional impacts); and (4) groupings (income groups, sectors or regions). Empirical studies suggest that a national tax is regressive in the US but may be less so in other countries. The equity impacts of an international carbon tax or emissions trading program differ greatly depending upon the specific elements. The paper considers options to compensate or mitigate adverse effects to income groups, sectors, or regions of the world. Although impossible to avoid all losses to every group, it would be possible to avoid major equity effects if carbon taxes or carbon trading programs were used to control global warming

  16. Agriculture: Nurseries and Greenhouses

    Science.gov (United States)

    Nurseries and Greenhouses. Information about environmental requirements specifically relating to the production of many types of agricultural crops grown in nurseries and greenhouses, such as ornamental plants and specialty fruits and vegetables.

  17. The story of the greenhouse effect, from Carnot to Gaia. De Carnot a Gaia: histoire de l'effet de serre

    Energy Technology Data Exchange (ETDEWEB)

    Grinevald, J

    1992-05-01

    The theory of the greenhouse effect did not just appear in 1985. It has had a long and interesting birth dating back to the beginning of the 19th century. Here, Jacques Grinevald presents some of its decisive stages such as the thermodynamic revolution and Carnot's transformation of the image of the world into a machine, the hothouse theory advanced by John Tyndall, Vladimir Vernadsky's 'biosphere' ideas or James Lovelock's Gaia hypothesis. In spite of the controversy which surrounds it, the theory of the greenhouse effect is one of science's best established atmospheric theories.

  18. Greenhouse effect gases (GEI) by energy consumption; Gases efecto invernadero (GEI) por consumo de energia

    Energy Technology Data Exchange (ETDEWEB)

    Munoz Ledo C, Ramon; Bazan N, Gerardo [Instituto de Investigaciones Electricas, Cuernavaca, Morelos (Mexico)

    2003-07-01

    The purpose of this article is to present the calculation methodology of greenhouse effect gases (GEI) emissions that are produced by the power sector in Mexico, as well as to discuss its possible impact in the subject of climatic change and the possible mitigating actions to lower the amount of emissions that can be taken and, therefore, the possible climate changes. In Mexico GEI inventories have been made since 1991, year in which the National Inventory of Gases with Greenhouse Effect was obtained for year 1988. The GEI include carbon dioxide (CO2), carbon monoxide (CO), nitrogen oxides (NOx), methane (CH4), nitrous oxide (NO) and volatile organic carbides that are not methane (NMVOC) and are secondary products and harmful that are obtained from the processes that turn fuels into energy (combustion). The main sources of GEI are: fixed sources (industries, residences, commerce, public services and energy transformation, such as power generation); movable sources (that include all type of transport that uses fuel). The fuels that, by their volume and efficiency, generate more emissions of GEI are crude oil, natural gas and solid biomass (firewood-cane bagasse). Any effort to reduce these emissions is very important and remarkable if it affects the consumption of these fuels. [Spanish] El proposito de este articulo es presentar la metodologia de calculo de las emisiones de los gases con efecto invernadero (GEI) que son producidos por el sector energetico en Mexico, asi como discutir su posible impacto en las cuestiones de cambio climatico y las posibles acciones de mitigacion que se pueden realizar para abatir la cantidad de emisiones y, por ende, los posibles cambios de clima. En Mexico se han realizado inventarios de GEI desde 1991, ano en que se obtuvo el Inventario Nacional de Gases con Efecto Invernadero para el ano de 1988. Los GEI comprenden al dioxido de carbono (CO2), monoxido de carbono (CO), oxidos de nitrogeno (NOx), metano (CH4), oxido nitroso (N2O) y

  19. Temperature Simulation of Greenhouse with CFD Methods and Optimal Sensor Placement

    OpenAIRE

    Yanzheng Liu; Jing Chen; Yazhou Lv; Xiaojie Li

    2014-01-01

    The accuracy of information monitoring is significant to increase the effect of Greenhouse Environment Control. In this paper, by taking simulation for the temperature field in the greenhouse as an example, the CFD (Computational Fluid Dynamics) simulation model for measuring the microclimate environment of greenhouse with the principle of thermal environment formation was established, and the temperature distributions under the condition of mechanical ventilation was also simulated. The resu...

  20. Greenhouse

    Data.gov (United States)

    Federal Laboratory Consortium — PurposeThe greenhouse at ERDC’s Cold Regions Research and Engineering Laboratory (CRREL) is used for germination and root-growth studies to support basic and field...